WorldWideScience

Sample records for black carbon absorption

  1. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Science.gov (United States)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  2. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  3. Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon.

    Science.gov (United States)

    Cheng, Yuan; He, Ke-Bin; Engling, Guenter; Weber, Rodney; Liu, Jiu-Meng; Du, Zhen-Yu; Dong, Shu-Ping

    2017-12-01

    Brown carbon (BrC) is increasingly included in climate models as an emerging category of particulate organic compounds that can absorb solar radiation efficiently at specific wavelengths. Water-soluble organic carbon (WSOC) has been commonly used as a surrogate for BrC; however, it only represents a limited fraction of total organic carbon (OC) mass, which could be as low as about 20% in urban atmosphere. Using methanol as the extraction solvent, up to approximately 90% of the OC in Beijing aerosol was isolated and measured for absorption spectra over the ultraviolet-to-visible wavelength range. Compared to methanol-soluble OC (MSOC), WSOC underestimated BrC absorption by about 50% at 365nm. The mass absorption efficiencies measured for BrC in Beijing aerosol were converted to the imaginary refractive indices of BrC and subsequently used to compute BrC coating-induced enhancement of light absorption (E abs ) by black carbon. E abs attributed to lensing was reduced in the case of BrC coating relative to that caused by purely-scattering coating. However, this reduction was overwhelmed by the effect of BrC shell absorption, indicating that the overall effect of BrC coating was an increase in E abs . Methanol extraction significantly reduced charring of OC during thermal-optical analysis, leading to a large increase in the measured elemental carbon (EC) mass and an apparent improvement in the consistency of EC measurements by different thermal-optical methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    Science.gov (United States)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  5. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2010-05-01

    Full Text Available The presence of clear coatings on atmospheric black carbon (BC particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate that the enhancement of light absorption (EAbs by atmospheric black carbon (BC when it is coated in mildly absorbing material (CBrown is reduced relative to the enhancement induced by non-absorbing coatings (CClear. This reduction, sensitive to both the CBrown coating thickness and imaginary refractive index (RI, can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only when models treat BC as large spherical cores (>50 nm. For smaller BC cores (or fractal agglomerates consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It has often been assumed that observation of an absorption Angström exponent (AAE>1 indicates absorption by a non-BC aerosol. Here, it is shown that BC cores coated in CClear can reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown; rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these model

  6. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Science.gov (United States)

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  7. Atmospheric black carbon can exhibit enhanced light absorption at high relative humidity

    Science.gov (United States)

    Wei, Y.; Zhang, Q.; Thompson, J. E.

    2013-11-01

    Some estimates suggest atmospheric soot (a.k.a. black carbon, BC) warms Earth's climate by roughly 50% the magnitude of increased carbon dioxide. However, one uncertainty in the climate-forcing estimate for BC is the degree to which sunlight absorption is influenced by particle mixing state. Here we show that hygroscopic growth of atmospheric aerosol particles sampled at Houston, TX leads to an enhancement in both light scattering and absorption. Measurements suggest light absorption increases roughly three-four fold at high ambient humidity for coated soot particles. However, when the fraction of coated BC particles was reduced, the absorption enhancement was also reduced, suggesting coatings are crucial for the effect to occur. In addition, the extent to which MAC was increased at high humidity varied considerably over time, even for BC that consistently presented as being coated. This suggests the chemical composition of the coating and/or source of BC may also be an important parameter to constrain MAC enhancement at high humidity. Nonetheless, the results are largely consistent with previous laboratory and model results predicting absorption enhancement. We conclude that the enhanced absorption increases the warming effect of soot aerosol aloft, and global climate models should include parameterizations for RH effects to accurately describe absorptive heating by BC.

  8. Quantifying black carbon light absorption enhancement with a novel statistical approach

    Directory of Open Access Journals (Sweden)

    C. Wu

    2018-01-01

    Full Text Available Black carbon (BC particles in the atmosphere can absorb more light when coated by non-absorbing or weakly absorbing materials during atmospheric aging, due to the lensing effect. In this study, the light absorption enhancement factor, Eabs, was quantified using a 1-year measurement of mass absorption efficiency (MAE in the Pearl River Delta region (PRD. A new approach for calculating primary MAE (MAEp, the key for Eabs estimation, is demonstrated using the minimum R squared (MRS method, exploring the inherent source independency between BC and its coating materials. A unique feature of Eabs estimation with the MRS approach is its insensitivity to systematic biases in elemental carbon (EC and σabs measurements. The annual average Eabs550 is found to be 1.50 ± 0.48 (±1 SD in the PRD region, exhibiting a clear seasonal pattern with higher values in summer and lower in winter. Elevated Eabs in the summertime is likely associated with aged air masses, predominantly of marine origin, along with long-range transport of biomass-burning-influenced air masses from Southeast Asia. Core–shell Mie simulations along with measured Eabs and absorption Ångström exponent (AAE constraints suggest that in the PRD, the coating materials are unlikely to be dominated by brown carbon and the coating thickness is higher in the rainy season than in the dry season.

  9. Quantifying black carbon light absorption enhancement with a novel statistical approach

    Science.gov (United States)

    Wu, Cheng; Wu, Dui; Zhen Yu, Jian

    2018-01-01

    Black carbon (BC) particles in the atmosphere can absorb more light when coated by non-absorbing or weakly absorbing materials during atmospheric aging, due to the lensing effect. In this study, the light absorption enhancement factor, Eabs, was quantified using a 1-year measurement of mass absorption efficiency (MAE) in the Pearl River Delta region (PRD). A new approach for calculating primary MAE (MAEp), the key for Eabs estimation, is demonstrated using the minimum R squared (MRS) method, exploring the inherent source independency between BC and its coating materials. A unique feature of Eabs estimation with the MRS approach is its insensitivity to systematic biases in elemental carbon (EC) and σabs measurements. The annual average Eabs550 is found to be 1.50 ± 0.48 (±1 SD) in the PRD region, exhibiting a clear seasonal pattern with higher values in summer and lower in winter. Elevated Eabs in the summertime is likely associated with aged air masses, predominantly of marine origin, along with long-range transport of biomass-burning-influenced air masses from Southeast Asia. Core-shell Mie simulations along with measured Eabs and absorption Ångström exponent (AAE) constraints suggest that in the PRD, the coating materials are unlikely to be dominated by brown carbon and the coating thickness is higher in the rainy season than in the dry season.

  10. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments.

    Science.gov (United States)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R; Collins, Donald R; Molina, Mario J; Zhang, Renyi

    2016-04-19

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  11. Enhanced Microwave Absorption Properties of Oriented Carbonyl Iron/Carbon Black Composite Induced by Shear Force

    Science.gov (United States)

    Min, Dandan; Zhou, Wancheng; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2017-08-01

    Oriented carbonyl iron/carbon black (CI/CB) composite with enhanced microwave absorption properties was prepared by shear force which was applied to make the planes of CI parallel to each other. The effects of orientation, CB content and thickness on the microwave absorption properties were investigated. The measurement results showed that higher permeability and modest permittivity of the composite were obtained after CI orientation in a 2-18-GHz frequency range. The complex permittivity of the CI/CB composite increased with increasing CB content, which was mainly attributed to the interfacial polarization at the CI/resin/CB particle interfaces. The calculated microwave absorption properties indicated that the orientation plays an important role in decreasing the absorber thickness and broadening the absorption bandwidth. The oriented CI/CB composite containing 65 wt.% CI and 3.0 wt.% CB showed a wider absorption frequency range of 12.5 GHz from 5.5 GHz to 18 GHz with reflection loss (RL) below -5 dB at a thickness of 0.9 mm. This work offers a promising approach for the fabrication of microwave absorbing materials with thin thickness and an adjustable wider working frequency range.

  12. Radiative absorption enhancements due to the mixing state of atmospheric black carbon

    Science.gov (United States)

    Cappa, C. D.; Onasch, T. B.; Massoli, P.; Worsnop, D. R.; Bates, T. S.; Cross, E. S.; Davidovits, P.; Forestieri, S.; Hakala, J. P.; Hayden, K. L.; Jobson, B. T.; Kolesar, K. R.; Lack, D. A.; Lambe, A. T.; Lerner, B. M.; Li, S.; Nuaaman, I.; Olfert, J. S.; Petdjd, T. T.; Quinn, P.; Subramanian, R.; Song, C.; Williams, E. J.; Zaveri, R. A.

    2012-12-01

    Atmospheric black carbon (BC) warms Earth's climate through absorption of solar radiation and its reduction has been targeted for near-term climate change mitigation. Additionally, absorption by BC above the Earth's surface can alter local atmospheric dynamics and the hydrologic cycle. Most models that include forcing by BC and that account for internal mixing with non-BC aerosol components assume that this internal mixing enhances BC absorption, some by a factor of ~2 or more; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of the influence of photochemical ageing on BC absorption enhancements (Eabs) and mixing state are reported for two California regions as observed during the CalNex and CARES field studies. The observed Eabs values were small, 6% on average at 532 nm, and increased only weakly with photochemical ageing despite substantial secondary production of and internal mixing with non-BC aerosol. The observed Eabs is less than predicted from observationally-constrained theoretical calculations, suggesting that many climate models may overestimate the direct effect of BC on the Earth's radiation budget. These ambient observations stand in contrast to laboratory measurements that show significant absorption enhancements that are in good agreement with Mie theory calculations for BC when internally mixed (coated) with dioctyl sebacate, a liquid organic compound. New laboratory experiments that aim to identify conditions under which Eabs deviates from theoretical predictions will also be discussed.

  13. Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols

    Science.gov (United States)

    Jacobson, Mark Z.

    2012-03-01

    This study examines modeled properties of black carbon (BC), tar ball (TB), and soil dust (SD) absorption within clouds and aerosols to understand better Cloud Absorption Effects I and II, which are defined as the effects on cloud heating of absorbing inclusions in hydrometeor particles and of absorbing aerosol particles interstitially between hydrometeor particles at their actual relative humidity (RH), respectively. The globally and annually averaged modeled 550 nm aerosol mass absorption coefficient (AMAC) of externally mixed BC was 6.72 (6.3-7.3) m2/g, within the laboratory range (6.3-8.7 m2/g). The global AMAC of internally mixed (IM) BC was 16.2 (13.9-18.2) m2/g, less than the measured maximum at 100% RH (23 m2/g). The resulting AMAC amplification factor due to internal mixing was 2.41 (2-2.9), with highest values in high RH regions. The global 650 nm hydrometeor mass absorption coefficient (HMAC) due to BC inclusions was 17.7 (10.6-19) m2/g, ˜9.3% higher than that of the IM-AMAC. The 650 nm HMACs of TBs and SD were half and 1/190th, respectively, that of BC. Modeled aerosol absorption optical depths were consistent with data. In column tests, BC inclusions in low and mid clouds (CAE I) gave column-integrated BC heating rates ˜200% and 235%, respectively, those of interstitial BC at the actual cloud RH (CAE II), which itself gave heating rates ˜120% and ˜130%, respectively, those of interstitial BC at the clear-sky RH. Globally, cloud optical depth increased then decreased with increasing aerosol optical depth, consistent with boomerang curves from satellite studies. Thus, CAEs, which are largely ignored, heat clouds significantly.

  14. Light absorption enhancement of black carbon from urban haze in Northern China winter.

    Science.gov (United States)

    Chen, Bing; Bai, Zhe; Cui, Xinjuan; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2017-02-01

    Atmospheric black carbon (BC) is an important pollutant for both air quality and Earth's energy balance. Estimates of BC climate forcing remain highly uncertain, e.g., due to the mixing with non-absorbing components. Non-absorbing aerosols create a coating on BC and may thereby act as a lens which may enhance the light absorption. However, this absorption enhancement is poorly constrained. To this end a two-step solvent dissolution protocol was employed to remove both organic and inorganic coatings, and then investigate their effects on BC light absorption. Samples were collected at a severely polluted urban area, Jinan, in the North China Plain (NCP) during February 2014. The BC mass absorption cross-section (MAC) was measured for the aerosol samples before and after the solvent-decoating treatment, and the enhancement of MAC (E MAC ) from the coating effect was defined as the ratio. A distinct diurnal pattern for the enhancement was observed, with E MAC 1.3 ± 0.3 (1 S.D.) in the morning, increasing to 2.2 ± 1.0 in the afternoon, after that dropping to 1.5 ± 0.8 in the evening-night. The BC absorption enhancement primarily was associated with urban-scale photochemical production of nitrate and sulfate aerosols. In addition to that, regional-scale haze plume with increasing sulfate levels strengthened the absorption enhancement. These observations offer direct evidence for an increased absorption enhancement of BC due to severe air pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Black Carbon Absorption at the Global Scale Is Affected by Particle-Scale Diversity in Composition

    Science.gov (United States)

    Fierce, Laura; Bond, Tami C.; Bauer, Susanne E.; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E(sub abs)) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E(sub abs) = 1 - 1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.

  16. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials.

    Science.gov (United States)

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D

    2016-08-02

    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength.

  17. Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China

    Science.gov (United States)

    Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.

    2017-12-01

    The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.

  18. Estimating particulate black carbon concentrations using two offline light absorption methods applied to four types of filter media

    Science.gov (United States)

    Davy, Pamela M.; Tremper, Anja H.; Nicolosi, Eleonora M. G.; Quincey, Paul; Fuller, Gary W.

    2017-03-01

    Atmospheric particulate black carbon has been linked to adverse health outcomes. Additional black carbon measurements would aid a better understanding of population exposure in epidemiological studies as well as the success, or otherwise, of relevant abatement technologies and policies. Two light absorption measurement methods of particles collected on filters have been applied to four different types of filters to provide estimations of particulate black carbon concentrations. The ratio of transmittance (lnI0/I) to reflectance (lnR0/R) varied by filter type and ranged from close to 0.5 (as expected from simple theory) to 1.35 between the four filter types tested. The relationship between light absorption and black carbon, measured by the thermal EC(TOT) method, was nonlinear and differed between filter type and measurement method. This is particularly relevant to epidemiological studies that use light absorption as an exposure metric. An extensive archive of filters was used to derive loading factors and mass extinction coefficients for each filter type. Particulate black carbon time series were then calculated at locations where such measurements were not previously available. When applied to two roads in London, black carbon concentrations were found to have increased between 2011 and 2013, by 0.3 (CI: -0.1, 0.5) and 0.4 (CI: 0.1, 0.9) μg m-3 year-1, in contrast to the expectation from exhaust abatement policies. New opportunities using archived or bespoke filter collections for studies on the health effects of black carbon and the efficacy of abatement strategies are created.

  19. Effect of Mixing State on the Optical Absorption by Black Carbon Containing Particles

    Science.gov (United States)

    Onasch, T. B.; Cappa, C. D.; Forestieri, S.; Lambe, A. T.; Massoli, P.; Olfert, J. S.; Ghazi, R.; Sedlacek, A. J.; Lewis, E. R.; Croasdale, D.; Cummings, M.; Martin, A.; Freedman, A.; Worsnop, D. R.; Davidovits, P.

    2012-12-01

    The positive radiative forcing of black carbon (BC) aerosols may be as large as that of CO2 but remains highly uncertain. Modeling and laboratory studies show that BC-containing aerosols exhibit light absorption enhancements (Eabs) by as much as a factor of two relative to uncoated BC, due to a lensing effect; this effect has been incorporated into several global climate models. Yet contrary to expectations, recent field measurements during NOAA CalNex 2010 and DOE CARES 2010 report low Eabs (coated by hydrophobic dioctyl sebacate (DOS) or hydrophilic sulfuric acid, was conducted as a function of coating thickness and relative humidity. Following coating and size-selection, aerosol mass distributions, size distributions, and mass spectra were measured with a centrifugal particle mass analyzer (CPMA), scanning mobility particle sizer (SMPS), and a soot particle - aerosol mass spectrometer (SP-AMS). Aerosol absorption and extinction were measured with a cavity ring down - photoacoustic aerosol spectrometer (CRD-PAS), and a cavity attenuated phase shift (CAPS) monitor. Eabs was derived as the ratio of absorption cross-sections of coated soot relative to thermally denuded soot. The Eabs of DOS-coated soot increased as a function of coating thickness and were consistent with the Mie theory "core-shell" model. In contrast, as the thickness of sulfuric acid coating and relative humidity were systematically varied we observed enhancements that were significantly lower than the theoretical predictions, similar to that observed in the field measurements. Our measurements suggest this suppressed Eabs may arise from morphological changes and/or phase separations incurred within BC-containing particles for hydrophilic coatings influenced by water vapor.

  20. Enhanced solar energy absorption by internally-mixed black carbon in snow grains

    Directory of Open Access Journals (Sweden)

    M. G. Flanner

    2012-05-01

    Full Text Available Here we explore light absorption by snowpack containing black carbon (BC particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0.05–109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA (Chýlek and Srivastava, 1983 is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8–2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only ~2% of the atmospheric BC burden is cloud-borne, 71–83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32–73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43–86%, relative to scenarios that apply external optical properties to all BC. We

  1. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    Energy Technology Data Exchange (ETDEWEB)

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng; Penner, Joyce E.; Jiao, C.

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism

  2. The role of iron and black carbon in aerosol light absorption

    Directory of Open Access Journals (Sweden)

    Y. Derimian

    2008-07-01

    Full Text Available Iron is a major component of atmospheric aerosols, influencing the light absorption ability of mineral dust, and an important micronutrient that affects oceanic biogeochemistry. The regional distribution of the iron concentration in dust is important for climate studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or simulation of complex natural processes. Simultaneous studies of aerosol chemical composition and radiometric measurements of aerosol optical properties, which were performed in the Negev desert of Israel continuously for about eight years, suggest a potential for deriving a relationship between chemical composition and light absorption properties, in particular the spectral single-scattering albedo.

    The two main data sets of the present study were obtained by a sun/sky radiometer and a stacked filter unit sampler that collects particles in coarse and fine size fractions. Analysis of chemical and optical data showed the presence of mixed dust and pollution aerosol in the study area, although their sources appear to be different. Spectral SSA showed an evident response to increased concentrations of iron, black carbon equivalent matter, and their mixing state. A relationship that relates the spectral SSA, the percentage of iron in total particulate mass, and the pollution components was derived. Results calculated, using this relationship, were compared with measurements from dust episodes in several locations around the globe. The comparison showed reasonable agreement between the calculated and the observed iron concentrations, and supported the validity of the suggested approach for the estimation of iron concentrations in mineral dust.

  3. Coatings and their enhancement of black carbon light absorption in the tropical atmosphere

    Science.gov (United States)

    Schwarz, J. P.; Spackman, J. R.; Fahey, D. W.; Gao, R. S.; Lohmann, U.; Stier, P.; Watts, L. A.; Thomson, D. S.; Lack, D. A.; Pfister, L.; Mahoney, M. J.; Baumgardner, D.; Wilson, J. C.; Reeves, J. M.

    2008-02-01

    Black carbon (BC) is the dominant aerosol absorber of solar radiation in the atmosphere and is an important component of anthropogenic climate forcing. BC's role is strongly dependent on its physical state, which can influence the way that BC particles may act as ice and cloud nuclei, as well as the way they interact with solar radiation. In situ measurements made with a single-particle soot photometer flown on a NASA high-altitude research aircraft show the mass and size of individual BC particles in the tropics, as well as their propensity to be found mixed with additional materials. Mie theory was used to connect observed light scattering off BC particles to the optical effects of coatings on the particles. The observations indicate that as BC from ground-based emission sources rises in altitude to the lower stratosphere, coatings on BC particles become both thicker and more prevalent, while BC mass mixing ratios decrease dramatically from their values near the ground. Coatings enhance light absorption by the ambient BC column by at least 30%. These results reveal the microphysical state of BC in the atmosphere while providing important constraints for models evaluating BC's role in climate change.

  4. Internally mixed black carbon in the Indo-Gangetic Plain and its effect on absorption enhancement

    Science.gov (United States)

    Thamban, Navaneeth M.; Tripathi, S. N.; Moosakutty, Shamjad P.; Kuntamukkala, Pavan; Kanawade, V. P.

    2017-11-01

    We present the systematic analysis of individual black carbon (BC) mixing state and its impact on radiative forcing from an urban Indian city, Kanpur, located in Indo-Gangetic Plain (IGP). Simultaneous measurements using Single Particle Soot Photometer (SP2), Photo-Acoustic Soot Spectrometer (PASS-3) and High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) were conducted from 8 January 2015 to 28 February 2015 at Kanpur. BC mass and number concentrations varied between 0.7 and 17 μg/m3 and 277-5866 #/cm3 with a mean of 4.06 μg/m3 and 1314 #/cm3, respectively. The diurnal variation of BC mass concentration showed a traffic hour peak during both the morning and late night. The mean fraction of "thickly coated BC" particles (fTCBC) was found to be 61.6%, indicating that a large fraction of BC particles was internally mixed. The fTCBC increased after sunrise with a peak at about noontime, indicating that the formation of secondary organic aerosol under active photochemistry can enhance organic coating on a core of black carbon. High-resolution positive matrix factorization (HR-PMF) factors showed distinct characteristics with fTCBC. While primary organic aerosols like cooking organic aerosols (COA) and biomass burning organic aerosols (BBOA) were negatively correlated with fTCBC (r = - 0.78 and - 0.51, respectively), aged low volatile oxygenated organic aerosol (LVOOA) was forming a coating over BC (r = 0.6). Similar positive correlation of fTCBC with inorganic species like ammonium (r = 0.58) and nitrate (r = 0.47) further suggested that BC appears to be largely coated with LVOOA, ammonium, and nitrate. A positive correlation between the fTCBC and the mass absorption cross-section at 781 nm (MAC781) was also observed (r = 0.58). Our results suggest that the observed fTCBC could amplify the MAC781 approximately by a factor of 1.8, which may catalyze the positive radiative forcing in the IGP.

  5. Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China

    Science.gov (United States)

    Lan, Zi-Juan; Huang, Xiao-Feng; Yu, Kuang-You; Sun, Tian-Le; Zeng, Li-Wu; Hu, Min

    2013-04-01

    The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, and the reduction of BC is now expected to have significant near-term climate change mitigation. Large uncertainties of BC optical properties, however, still exist and seriously restrict the ability to quantify BC's climate effects. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a mega-city in South China, Shenzhen, during the summer of 2011. The results indicated that the average BC mass concentration was 4.0 ± 3.1 μg m-3 during the campaign, accounting for ˜11% of the total PM2.5 mass concentration. The PM2.5 light absorption at 405, 532 and 781 nm was 37.1 ± 28.1, 25.4 ± 19.0 and 17.6 ± 12.9 Mm-1, respectively. The average absorption Angstrom exponent of PM2.5 in visual spectrum (AAE405-781 nm) was 1.1 ± 0.1 during the campaign, indicating that the light absorbing carbon mainly came from vehicular emissions, with little contributions from biomass burning emissions. The mass absorption efficiency (MAE) of BC at 532 nm ranged from 5.0 to 8.5 m2 g-1 during the campaign, with an average of 6.5 ± 0.5 m2 g-1, and showed an obvious diurnal pattern with high values in the daytime. The average percentage of internally mixed BC was 24.3 ± 7.9% during the campaign, showing significant positive correlation relationship with the MAE of BC. More quantitative data analysis indicated that the internally mixed BC would amplify MAE by about 7% during the campaign, which stands in accordance with the new finding of a very recent Science magazine paper (Cappa et al., 2012) that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low, in apparent contrast to theoretical model predictions.

  6. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black

    International Nuclear Information System (INIS)

    Liu Lidong; Duan Yuping; Ma Lixin; Liu Shunhua; Yu Zhen

    2010-01-01

    To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.

  7. Aging of black carbon particles under polluted urban environments: timescale, hygroscopicity and enhanced absorption and direct radiative forcing

    Science.gov (United States)

    Peng, J.; Hu, M.; Guo, S.; Du, Z.; Zheng, J.; Shang, D.; Levy Zamora, M.; Shao, M.; Wu, Y.; Zheng, J.; Wang, Y.; Zeng, L.; Collins, D. R.; Molina, M.; Zhang, R.

    2017-12-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the hygroscopic and optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using an outdoor environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. The κ (kappa) values of coating materials are calculated as 0.04 at both subsaturation and supersaturation conditions, respectively, indicating that the initial photochemical aging of BC particles does not appreciably alter the BC hygroscopicity. Our findings suggest that BC aging under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  8. Light Absorption of Black Carbon Aerosol and Its Radiative Forcing Effect in an Megacity Atmosphere in South China

    Science.gov (United States)

    Lan, Zijuan

    2013-04-01

    The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, the regional effect of BC light absorption is more significant. The reduction of BC is now expected to have significant near-term climate change mitigation. Mass absorption efficient (MAE) was one of the important optical properties of BC aerosol for evaluating the BC on its radiative forcing effect, while BC mixing state is one main influencing factor for MAE. Models have estimated that BC radiative forcing can be increased by a factor of ~2 for internally versus externally mixed BC. On the other hand, some organic carbon had been found to significantly absorb light at UV or shorter wavelengths in the most recent studies, with strong spectral dependence. But large uncertainties still remain in determining the positive forcing effect of BC on global clime change due to the technical limitations. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a megacity in South China, Shenzhen, during the summer of 2011. It is in the southeast corner of the Pearl River Delta (PRD) region, neighboring Hong Kong to the south. During the campaign, the average BC mass concentration was 4.0±3.1 μg m-3, accounting for about 11% of PM2.5 mass concentration, which mainly came from fossil fuel combustion rather than biomass burning. The MAE of BC ranged from 5.0 to 8.5 m2 g-1, with an average value of 6.5±0.5 m2 g-1. The percentage of internally mixed BC was averagely 24.3±7.9% and positively correlated with the MAE. It is estimated that the internally mixed BC amplified MAE by about 7% during the campaign, suggesting that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low in comparison with the predictions by theoretical models, which stands in accordance with

  9. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    Science.gov (United States)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  10. Effect of ambient humidity on the light absorption amplification of black carbon in Beijing during January 2013

    Science.gov (United States)

    Wu, Yunfei; Zhang, Renjian; Tian, Ping; Tao, Jun; Hsu, S.-C.; Yan, Peng; Wang, Qiyuan; Cao, Junji; Zhang, Xiaoling; Xia, Xiangao

    2016-01-01

    Black carbon (BC) and its mixing state were measured with a ground-based single particle soot photometer in urban Beijing during the extremely polluted winter of 2013. Up to 70 ± 14% of the BC-containing particles were thickly-coated during periods of haze, compared to 37 ± 9% on non-hazy days. The thickly-coated number fraction (NFBC-thick) increased with increasing BC, reaching a plateau at ∼80-90% when BC concentrations were ≥15 μg m-3 and visibility was ≤2 km. Regional inflows brought more aged, highly thickly-coated BC to Beijing during haze. The absorption coefficient showed a distinct linear correlation with BC concentration; the mass absorption efficiency (MAE) of BC was acquired, with an overall mean of 4.2 ± 0.01 m2 g-1 at 870 nm. The MAE of BC amplified with increasing ambient relative humidity. This was largely explained by the increase in NFBC-thick, which was likely due to the enhanced production of secondary aerosol under humid conditions.

  11. Effects of photochemical oxidation on the mixing state and light absorption of black carbon in the urban atmosphere of China

    Science.gov (United States)

    Wang, Qiyuan; Huang, Rujin; Zhao, Zhuzi; Cao, Junji; Ni, Haiyan; Tie, Xuexi; Zhu, Chongshu; Shen, Zhenxing; Wang, Meng; Dai, Wenting; Han, Yongming; Zhang, Ningning; Prévôt, André S. H.

    2017-04-01

    The relationship between the refractory black carbon (rBC) aerosol mixing state and the atmospheric oxidation capacity was investigated to assess the possible influence of oxidants on the particles’ light absorption effects at two large cities in China. The number fraction of thickly-coated rBC particles (F rBC) was positively correlated with a measure of the oxidant concentrations (OX = O3 + NO2), indicating an enhancement of coated rBC particles under more oxidizing conditions. The slope of a linear regression of F rBC versus OX was 0.58% ppb-1 for Beijing and 0.84% ppb-1 for Xi’an, and these relationships provide some insights into the evolution of rBC mixing state in relation to atmospheric oxidation processes. The mass absorption cross-section of rBC (MACrBC) increased with OX during the daytime at Xi’an, at a rate of 0.26 m2 g-1 ppb-1, suggesting that more oxidizing conditions lead to internal mixing that enhances the light-absorbing capacity of rBC particles. Understanding the dependence of the increasing rates of F rBC and MACrBC as a function of OX may lead to improvements of climate models that deal with the warming effects, but more studies in different cities and seasons are needed to gauge the broader implications of these findings.

  12. Sunlight Absorption on the Greenland Ice Sheet Experiment (SAGE) - Tracing black carbon from emissions to deposition

    Science.gov (United States)

    Polashenski, C.; Soja, A. J.; Thomas, J. L.; Dibb, J. E.; Choi, H. D.; Flanner, M.; Bergin, M.; Casey, K.; Chen, J.; Courville, Z.; Lai, A.; Schauer, J. J.; Shafer, M. M.; Ward, J. L.

    2016-12-01

    The SAGE project seeks to understand the impact of light absorbing impurities on the Greenland Ice Sheet (GrIS). In general, the project has found that black carbon and dust concentrations in snow were low in the dry snow zones of the GrIS during 2012-2014 and that their concentrations do not appear to be trending relative to observations of these concentrations in snow over recent decades. We provide a revised analysis of MODIS albedo trends on the GrIS using new collection 6 data. These indicate that observed albedo of dry snow is not substantially trending. Sensor drift which had been present in collection 5 data has been substantially removed and the observed albedo of dry snow on the GrIS is now showing near zero trend. Episodic enhancements in BC deposition are, however, found in specific layers in our extensive snow pit observations. These peak enhancements include concentrations of up to 40 ng/g BC and would have reduced the albedo of the snow by 0.01-0.02. If timed correctly, the deposition of such a layer could be an important factor in initiating a melt-albedo feedback. Here we present an overview of synthesis work seeking to trace the formation of such a layer back to emission sources and call attention to multiple presentations making up the project. Collectively, the work traces a specific enhanced deposition event occurring on the northwest region of the ice sheet in early August 2013 to source fires in Canada. We summarize the multi-modal approach including remote sensing of aerosols, atmospheric trajectory modeling, chemical transport modeling, and coupled Earth system modeling. The emission, transport, and deposition of the enhanced event is observed and predicted by these tools and we find general agreement between these several modes of sensing and predicting. Further investigations explore other events where BC was emitted and even transported over the ice sheet but did not cause deposition events, resulting in no BC signature in the snow. We

  13. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects

    Science.gov (United States)

    Jacobson, Mark Z.

    2014-07-01

    This paper examines the effects on climate and air pollution of open biomass burning (BB) when heat and moisture fluxes, gases and aerosols (including black and brown carbon, tar balls, and reflective particles), cloud absorption effects (CAEs) I and II, and aerosol semidirect and indirect effects on clouds are treated. It also examines the climate impacts of most anthropogenic heat and moisture fluxes (AHFs and AMFs). Transient 20 year simulations indicate BB may cause a net global warming of 0.4 K because CAE I ( 32% of BB warming), CAE II, semidirect effects, AHFs ( 7%), AMFs, and aerosol absorption outweigh direct aerosol cooling and indirect effects, contrary to previous BB studies that did not treat CAEs, AHFs, AMFs, or brown carbon. Some BB warming can be understood in terms of the anticorrelation between instantaneous direct radiative forcing (DRF) changes and surface temperature changes in clouds containing absorbing aerosols. BB may cause 250,000 (73,000-435,000) premature mortalities/yr, with >90% from particles. AHFs from all sources and AMFs + AHFs from power plants and electricity use each may cause a statistically significant +0.03 K global warming. Solar plus thermal-IR DRFs were +0.033 (+0.027) W/m2 for all AHFs globally without (with) evaporating cooling water, +0.009 W/m2 for AMFs globally, +0.52 W/m2 (94.3% solar) for all-source BC outside of clouds plus interstitially between cloud drops at the cloud relative humidity, and +0.06 W/m2 (99.7% solar) for BC inclusions in cloud hydrometeor particles. Modeled post-1850 biomass, biofuel, and fossil fuel burning, AHFs, AMFs, and urban surfaces accounted for most observed global warming.

  14. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    Science.gov (United States)

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  15. Constraining Black Carbon Aerosol over Asia using OMI Aerosol Absorption Optical Depth and the Adjoint of GEOS-Chem

    Science.gov (United States)

    Zhang, Li; Henze, David K.; Grell, Georg A.; Carmichael. Gregory R.; Bousserez, Nicolas; Zhang, Qiang; Torres, Omar; Ahn, Changwoo; Lu, Zifeng; Cao, Junji; hide

    2015-01-01

    Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are

  16. Microwave Absorption Properties of Double-Layer RADAR Absorbing Materials Based on Doped Barium Hexaferrite/TiO2/Conducting Carbon Black

    Directory of Open Access Journals (Sweden)

    Sukanta Das

    2014-01-01

    Full Text Available In this report, we demonstrate microwave absorption properties of barium hexaferrite, doped barium hexaferrite, titanium dioxide and conducting carbon black based RADAR absorbing material for stealth application. Double-layer absorbers are prepared with a top layer consisting of 30% hexaferrite and 10% titanium dioxide while the bottom layer composed of 30% hexaferrite and 10% conducting carbon black, embedded in chloroprene matrix. The top and bottom layers are prepared as impedance matching layer and conducting layer, respectively, with a total thickness of 2 mm. Microwave absorption properties of all the composites were analyzed in X-band region. Maximum reflection loss of −32 dB at 10.64 GHz was observed for barium hexaferrite based double-layer absorber whereas for doped barium hexaferrite based absorber the reflection loss was found to be −29.56 dB at 11.7 GHz. A consistence reflection loss value (>−24 dB was observed for doped barium hexaferrite based RADAR absorbing materials within the entire bandwidth.

  17. Equivalent Black Carbon measurements and spectral analysis of absorption coefficient during a biomass burning episode in the city of Bogotá, Colombia.

    Science.gov (United States)

    Quirama, M.; Morales, R.

    2016-12-01

    Light-absorbing carbonaceous aerosol is recognized as a significant short lived climate pollutant that can contribute to direct and indirect radiative forcing. In urban environments, black carbon is an important contributor to the deterioration of local air quality. In this study, we report measurements of equivalent Black Carbon performed during the months of January, February, and March 2016 in the city of Bogotá, Colombia. During this period, a persistent condition of atmospheric stability lead to high concentrations of particulate matter throughout the city. During the month of February, the city was further impacted by a series of small-scale forest fires that took place on hills neighboring the city center. Equivalent Black Carbon (eBC) concentrations were monitored before, during, and after a mayor forest fire episode with a 7-wavelength Aethalometer. The monitoring instruments were located at a traffic impacted site, 18.3 km from the forest fire. To evaluate the contribution of biomass burning to the light-absorbing aerosol particle concentration, spectral analysis of the absorption coefficient of the sampled aerosol particles was performed. When the biomass burning plume directly impacted the monitoring station during the night of February 4, eBC concentrations of up to 40 µg/m3 were observed at nighttime. This concentration was significantly higher than average nighttime concentrations of eBC, observed to be 4 µg/m3 at the site. However, during the period most intensely affected by the biomass burning plume, the angstrom exponent computed between the 450nm and the 970 nm channel, was found to be close to 1. Angstrom exponent close to 1 is an indication that the contribution from traffic generated black carbon is dominant compared to the contribution of biomass burning. The data set collected during this period suggests that despite the significant contribution of the fresh biomass burning plume to the particulate matter concentration in the city, the

  18. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    Science.gov (United States)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m

  19. Rheology of Carbon Black Suspensions: Effect of Carbon Black Structure

    Science.gov (United States)

    Aoki, Yuji

    2008-07-01

    Rheology of carbon black (CB) suspensions in an alkyd resin-type varnish (Varnish-2), a rosin-modified phenol resin-type varnish (Varnish-1), and a polystyrene/di-butyl phthalate (PS/DBP) solution was investigated to clarify the effects of CB morphology such as primary particle size and DBP absorption value (a measure of aggregate structure). It was found that the important parameters to characterize the CB aggregates are the effective volume fraction φeff of CB aggregates evaluated by plotting the relative viscosity ηr = η0/ηm (ηm: medium viscosity) on the universal ηr versus φ curve obtained for the hard-core silica particles for CB/Varnish-2 and CB/(PS/DBP) systems, and the critical gel concentration φcrit found for CB/Varnish-1 systems. Because the φeff and φcrit values depended on DBP absorption value, irrespective of the primary particle size, and were found to be larger for the higher-structure CB with higher DBP absorption value.

  20. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    T. W. Chan

    2011-10-01

    Full Text Available In this study a photoacoustic spectrometer (PA, a laser-induced incandescence instrument system (LII and an Aerosol Mass Spectrometer were operated in parallel for in-situ measurements of black carbon (BC light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by the presence of non-refractory material thus providing true atmospheric BC mass concentrations. In contrast, the PA response is enhanced when the non-refractory material is internally mixed with the BC particles. Through concurrent measurements using the LII and PA the specific absorption cross-section (SAC can be quantified with high time resolution (1 min. Comparisons of ambient PA and LII measurements from four different locations (suburban Toronto; a street canyon with diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario, show that different impacts from emission sources and/or atmospheric processes result in different particle light absorption enhancements and hence variations in the SAC. The diversity of measurements obtained, including those with the thermodenuder, demonstrated that it is possible to identify measurements where the presence of externally-mixed non-refractory particles obscures direct observation of the effect of coating material on the SAC, thus allowing this effect to be measured with more confidence. Depending upon the time and location of measurement (urban, rural, close to and within a lake breeze frontal zone, 30 min average SAC varies between 9 ± 2 and 43 ± 4 m2 g−1. Causes of this variation, which were determined through the use of meteorological and gaseous measurements (CO, SO2, O3, include the particle emission source, airmass source region, the degree of atmospheric processing. Observations from this study

  1. Black carbon in aerosol during BIBLE B

    Science.gov (United States)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  2. Black carbon aerosol size in snow.

    Science.gov (United States)

    Schwarz, J P; Gao, R S; Perring, A E; Spackman, J R; Fahey, D W

    2013-01-01

    The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall.

  3. The New MODIS-Terra, and the Proposed COBRA Mission: First Global Aerosol Distribution and Properties Over Land and Ocean, and Plans to Measure Global Black Carbon Absorption Over the Ocean Glint

    Science.gov (United States)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine; Martins, Vanderlei; Schoeberl, Mark; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct, the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse (mainly natural) aerosol particles. New methods to derive the aerosol absorption of sunlight are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. However MODIS or any present satellite sensor cannot measure absorption by Black Carbon over the oceans, a critical component in studying climate change and human health. For this purpose we propose the COBRA mission that observes the ocean at glint and off glint simultaneously measuring the spectral polarized light and deriving precisely the aerosol absorption.

  4. Source attribution of black carbon in Arctic snow.

    Science.gov (United States)

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  5. Soft black hole absorption rates as conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Steven G. [Brown University, Department of Physics,182 Hope St, Providence, RI, 02912 (United States); Michigan State University, Department of Physics and Astronomy,East Lansing, MI, 48824 (United States); Schwab, Burkhard UniversityW. [Harvard University, Center for Mathematical Science and Applications,1 Oxford St, Cambridge, MA, 02138 (United States)

    2017-04-10

    The absorption rate of low-energy, or soft, electromagnetic radiation by spherically symmetric black holes in arbitrary dimensions is shown to be fixed by conservation of energy and large gauge transformations. We interpret this result as the explicit realization of the Hawking-Perry-Strominger Ward identity for large gauge transformations in the background of a non-evaporating black hole. Along the way we rederive and extend previous analytic results regarding the absorption rate for the minimal scalar and the photon.

  6. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  7. Black carbon network in Mexico. First Results

    Science.gov (United States)

    Barrera, Valter; Peralta, Oscar; Granado, Karen; Ortinez, Abraham; Alvarez-Ospina, Harry; Espinoza, Maria de la Luz; Castro, Telma

    2017-04-01

    heating. The annual BC concentration media for Mexico City and Monterrey site were near 2.5 μg/m3, Guadalajara near 2 μg/m3, and Juriquilla 1.2 μg/m3. Daily and weekly data showed the BC and CO strong relationships produced by the traffic source in the three main cities. BC can be used as a marker for mobile sources policies in cities to evaluate these results quickly. Guadalajara and Juriquilla had some monitoring issues. Data verification is still been verified. This work presents a first year BC experimental network extended measure campaign for year 2015 in some cities in Mexico, to obtain direct equivalent black carbon (eBC) concentrations (Also, named when eBC data is derived from optical absorption methods) (Petzold, 2013) using aethalometers and photoacoustic extinctiometers. After this effort (mainly from National University and local agencies) it is planned to extend this BC Network to other cities around Mexico and with the Mexican Government support. REFERENCES Bond, T. C., et al., (2013). Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380-5552. Ramanathan, V. and Carmichael, G. (2008). Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221-227 Petzold A., et al. (2013). Recommendations for reporting "black carbon" measurements. Atmos. Chem. Phys., 13, 8365-8379.

  8. Emissions & Measurements - Black Carbon | Science ...

    Science.gov (United States)

    Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD) support measurement and laboratory analysis approaches to accurately characterize source emissions, and near source concentrations of air pollutants. They also support integrated Agency research programs (e.g., source to health outcomes) and the development of databases and inventories that assist Federal, state, and local air quality managers and industry implement and comply with air pollution standards. EM research underway in NRMRL supports the Agency's efforts to accurately characterize, analyze, measure and manage sources of air pollution. This pamphlet focuses on the EM research that NRMRL researchers conduct related to black carbon (BC). Black Carbon is a pollutant of concern to EPA due to its potential impact on human health and climate change. There are extensive uncertainties in emissions of BC from stationary and mobile sources. Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD)

  9. Coal as a Substitute for Carbon Black

    Science.gov (United States)

    Kushida, R. O.

    1982-01-01

    New proposal shows sprayed coal powder formed by extrusion of coal heated to plastic state may be inexpensive substitute for carbon black. Carbon black is used extensively in rubber industry as reinforcing agent in such articles as tires and hoses. It is made from natural gas and petroleum, both of which are in short supply.

  10. Absorption of scalars by extremal black holes in string theory

    Science.gov (United States)

    Moura, Filipe

    2017-09-01

    We show that the low frequency absorption cross section of minimally coupled test massless scalar fields by extremal spherically symmetric black holes in d dimensions is equal to the horizon area, even in the presence of string-theoretical α ' corrections. Classically one has the relation σ = 4 GS between that absorption cross section and the black hole entropy. By comparing in each case the values of the horizon area and Wald's entropy, we discuss the validity of such relation in the presence of higher derivative corrections for extremal black holes in many different contexts: in the presence of electric and magnetic charges; for nonsupersymmetric and supersymmetric black holes; in d=4 and d=5 dimensions. The examples we consider seem to indicate that this relation is not verified in the presence of α ' corrections in general, although being valid in some specific cases (electrically charged maximally supersymmetric black holes in d=5). We argue that the relation σ = 4 GS should in general be valid for the absorption cross section of scalar fields which, although being independent from the black hole solution, have their origin from string theory, and therefore are not minimally coupled.

  11. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  12. Immersion microcalorimetry of a carbon black

    International Nuclear Information System (INIS)

    Mendelbaum, Georges

    1966-01-01

    This research thesis first reports a detailed bibliographical study on various topics (fabrication of carbon black, oxidation, immersion heat, adsorptions, main existing theories, and thermodynamics) and then the development of immersion and adsorption microcalorimetry apparatuses aimed at studying the surface of a carbon black and the influence of the oxidation of this carbon black on the adsorption of polar and non-polar solvents. Immersion heats of a raw or oxidised carbon black have been measured in water, in cyclohexane and in methanol. The adsorption of methanol at 20 C and that of nitrogen at -196 C have also been measured. The author outlines that degassing conditions had to be taken into account before performing measurements [fr

  13. Ice Formation of Coated Black Carbon Particles

    Science.gov (United States)

    Friedman, B.; Kulkarni, G.; Beránek, J.; Zelenyuk, A.; Cziczo, D. J.; Thornton, J. A.

    2010-12-01

    The importance of black carbon particles as heterogeneous ice nuclei is currently in question. While pure black carbon is hydrophobic, atmospheric processing or aging by condensation or heterogeneous oxidation may alter the surface, physical and chemical properties, likely causing the particle surface and perhaps the particle bulk to become more hydrophilic. The impact of such atmospheric processing on the ice nucleating ability of soot remains poorly explored. In this laboratory study we simulated various atmospheric processing mechanisms and their effect on the ice formation of black carbon particles. Black carbon particles were generated by both dry powder dispersion of commercial carbon black and using a miniCAST soot generator. The particles were then coated with various atmospherically relevant coatings, including dicarboxylic acids of varying solubility. The ice-forming potential of the resulting particles was continuously determined at heterogeneous conditions in the PNNL Compact Ice Chamber. Single Particle Mass Spectrometer (SPLAT) was used to characterize the size, chemical composition, morphology, fractal dimension, and effective densities of individual particles with and without the coatings and to quantify the relationship between particle chemical and physical properties and their IN activity. We discuss the implications of our results in the context of typical lifetimes and processing history experienced by black carbon particles emitted into the upper troposphere.

  14. Synthesis of carbon black/carbon nitride intercalation compound composite for efficient hydrogen production.

    Science.gov (United States)

    Wu, Zhaochun; Gao, Honglin; Yan, Shicheng; Zou, Zhigang

    2014-08-21

    The photoactivity of g-C3N4 is greatly limited by its high recombination rate of photogenerated carriers. Coupling g-C3N4 with other materials has been demonstrated to be an effective way to facilitate the separation and transport of charge carriers. Herein we report a composite of conductive carbon black and carbon nitride intercalation compound synthesized through facile one-step molten salt method. The as-prepared carbon black/carbon nitride intercalation compound composite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), UV-vis absorption spectrum and photoluminescence spectroscopy (PL). The carbon black nanoparticles, homogeneously dispersed on the surface of carbon nitride intercalation compound, efficiently enhanced separation and transport of photogenerated carriers, thus improving the visible-light photocatalytic activity. The composite of 0.5 wt% carbon black and carbon nitride intercalation compound exhibited a H2 production rate of 68.9 μmol h(-1), which is about 3.2 times higher than hydrogen production on pristine carbon nitride intercalation compound.

  15. Effect of carbon black content on the microwave absorbing properties of CB/epoxy composites

    Directory of Open Access Journals (Sweden)

    Pourya Mehdizadeh

    2016-04-01

    Full Text Available To prevent serious electromagnetic interference, a single-layer and double layer wave-absorbing coating employing complex absorbents composed of carbon black with epoxy resin as matrix was prepared. The morphologies of carbon black /epoxy composites were characterized by scanning electron microscope  and atomic force microscope, respectively. The carbon black  particles exhibit obvious polyaromatic were characterized by X-ray diffraction. The electromagnetic parameters of carbon black  were measured in the frequency range of 8–12 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss  using arch method. The effects of carbon black  mass ratio, thickness and double-layer on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, higher ratio and double-layer of carbon black /epoxy content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of carbon black  in composites.

  16. Sevelamer carbonate markedly reduces levothyroxine absorption.

    Science.gov (United States)

    Iovino, Michele; Iovine, Nicola; Petrosino, Alfanso; Giagulli, Vito A; Licchelli, Brunella; Guastamacchia, Edoardo; Triggiani, Vincenzo

    2014-01-01

    We report the case of a young woman affected by hypothyroidism due to Hashimoto's thyroiditis, previously well compensated with a full replacement therapy (150 mcg/day of levothyroxine), presenting a clinical picture of myxedema, with a TSH=650 mU/L. Two years earlier she had started a dialysis treatment because of a chronic renal failure and had been under treatment for the last 18 months with sevelamer carbonate, a phosphate binder. No improvement of clinical conditions nor reduction in TSH serum levels was observed even on increasing the dose of levothyroxine up to 300 mcg/day, whereas euthyroidism finally restored by administering the first morning dose of sevelamer carbonate at least 4 hours after levothyroxine administration. This case shows that sevelamer carbonate, in analogy with what has been already reported for sevelamer hydrochloride, can interfere with levothyroxine absorption leading to a condition of hypothyroidism in patients previously well compensated with a given replacement dose.

  17. Strong saturable absorption of black titanium oxide nanoparticle films

    Science.gov (United States)

    Zhang, Rong-Fang; Guo, Deng-Zhu; Zhang, Geng-Min

    2017-12-01

    Nonlinear optical materials with strong saturable absorption (SA) properties play an essential role in passive mode-locking generation of ultrafast lasers. Here we report black TiO2-x nanoparticles are promising candidate for such an application. Black TiO2-x nanoparticles are synthesized by using cathodic plasma electrolysis, and nanoparticle films are deposited on optical glass plates via natural sedimentation and post annealing. Characterization of the samples with TEM, SEM, XRD and XPS reveal that nanoparticles have diameters of 8-70 nm, and are in polycrystalline structure and co-existence of anatase, rutile and abundant oxygen-deficient phases. Optical transmittance and reflectance measurements with a UV/VIS/NIR spectrophotometer evidence an excellent wide-spectral optical absorption property. The nonlinear optical properties of the samples were measured by using open-aperture Z-scan technique with picosecond 532-nm laser, and verified by direct transmission measurements using nanosecond 1064-nm laser. Strong SA behavior was detected, and the nonlinear absorption coefficient is as high as β = - 4.9 × 10-8 m/W, at least two orders larger than most previous reports on ordinary TiO2. The strong SA behaviors are ascribed to the existence of plenty surface states and defect states within bandgap, and the relaxation rates of electrons from upper energy levels to lower ones are much slower than excitation rates.

  18. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  19. Pyrolytic carbon black composite and method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe

    2016-09-13

    A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.

  20. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  1. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  2. Black carbon, a short lived climate forcer

    International Nuclear Information System (INIS)

    Tuddenham, M.; Roussel, I.

    2013-01-01

    Black carbon, an indicator of urban pollution health effects, is at the heart of adaptation issues as benefits of its control can be felt both at the scale of climate phenomenon and air quality. This element has to do with several notions whose definitions need to be stated again. It sets urban policies at the crossing of climate, air pollution, population health and sustainable development stakes. The CITEPA has made available Mark Tuddenham's literature monitoring concerning black carbon, and, more widely, SLFC (Short lived climate forcers). (authors)

  3. The Emergence of Black Carbon into the Climate Policy Arena

    Science.gov (United States)

    Streets, D. G.; Bond, T. C.

    2002-05-01

    Until a few years ago, aerosols such as black carbon were solely in the domain of atmospheric research. We did not fully understand their roles in atmospheric chemistry or absorption of radiation. The only policy relevance concerned fine particles in general, and the regulation of inhalable particulate matter in the developed world signaled that high local concentrations in cities were a public health issue. But gradually the importance of aerosols spread to regional scale. We learned that aerosols play important roles in regional air quality concerns such as regional haze, visibility impairment, and reduced insolation. Finally, the importance of aerosols reached global scale, as it was realized that their role in climate modification is significant. Within the last year, the importance of black carbon has come to the forefront. Work by Hansen, Jacobson and others has elevated the contribution of black carbon to perhaps the second most important global warming species after carbon dioxide. This is beginning to have profound repercussions in the policy arena and in the world of research planning. In his speech of June 11, 2001, President Bush specifically mentioned black soot as an important pollutant not addressed by the Kyoto Protocol. Then, on February 14, 2002, he unveiled a new U.S. Climate Change Strategy that called for a National Aerosol-Climate Interactions Program (NACIP) to define and evaluate the role of aerosols that absorb solar radiation, such as black carbon and mineral dust. The result has been the formulation of a much more policy-focused agenda to supersede the more academic aerosol research programs of previous years. But black carbon poses an array of problems not previously faced in air pollution control regimes: it is exceedingly difficult to measure accurately, a large portion of the global budget arises from biomass burning, the fuel-derived sources are largely domestic stoves used for cooking and heating, and the primary emitting countries

  4. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  5. Black Carbon Measurements From Ireland's Transboundary Network (TXB)

    Science.gov (United States)

    Spohn, T. K.; Martin, D.; O'Dowd, C. D. D.

    2017-12-01

    Black Carbon (BC) is carbonaceous aerosol formed by incomplete fossil fuel combustion. Named for its light absorbing properties, it acts to trap heat in the atmosphere, thus behaving like a greenhouse gas, and is considered a strong, short-lived climate forcer by the International Panel on Climate Change (IPCC). Carbonaceous aerosols from biomass burning (BB) such as forest fires and residential wood burning, also known as brown carbon, affect the ultra violet (UV) light absorption in the atmosphere as well. In 2016 a three node black carbon monitoring network was established in Ireland as part of a Transboundary Monitoring Network (TXB). The three sites (Mace Head, Malin Head, and Carnsore Point) are coastal locations on opposing sides of the country, and offer the opportunity to assess typical northern hemispheric background concentrations as well national and European pollution events. The instruments deployed in this network (Magee Scientific AE33) facilitate elimination of the changes in response due to `aerosol loading' effects; and a real-time calculation of the `loading compensation' parameter which offers insights into aerosol optical properties. Additionally, these instruments have an inbuilt algorithm, which estimates the difference in absorption in the ultraviolet wavelengths (mostly by brown carbon) and the near infrared wavelengths (only by black carbon).Presented here are the first results of the BC measurements from the three Irish stations, including instrument validation, seasonal variation as well as local, regional, and transboundary influences based on air mass trajectories as well as concurrent in-situ observations (meteorological parameters, particle number, and aerosol composition). A comparison of the instrumental algorithm to off-line sensitivity calculations will also be made to assess the contribution of biomass burning to BC pollution events.

  6. A black carbon air quality network

    Science.gov (United States)

    Kirchstetter, T.; Caubel, J.; Cados, T.; Preble, C.; Rosen, A.

    2016-12-01

    We developed a portable, power efficient black carbon sensor for deployment in an air quality network in West Oakland, California. West Oakland is a San Francisco Bay Area residential/industrial community adjacent to regional port and rail yard facilities, and is surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we are collaborating with community members to build and operate a 100-sensor black carbon measurement network for a period of several months. The sensor employs the filter-based light transmission method to measure black carbon. Each sensor node in the network transmits data hourly via SMS text messages. Cost, power consumption, and performance are considered in choosing components (e.g., pump) and operating conditions (e.g., sample flow rate). In field evaluation trials over several weeks at three monitoring locations, the sensor nodes provided black carbon concentrations comparable to commercial instruments and ran autonomously for a week before sample filters and rechargeable batteries needed to be replaced. Buildup to the 100-sensor network is taking place during Fall 2016 and will overlap with other ongoing air monitoring projects and monitoring platforms in West Oakland. Sensors will be placed along commercial corridors, adjacent to freeways, upwind of and within the Port, and throughout the residential community. Spatial and temporal black carbon concentration patterns will help characterize pollution sources and demonstrate the value of sensing networks for characterizing intra-urban air pollution concentrations and exposure to air pollution.

  7. Reducing Black Carbon May Be the Fastest Strategy for Slowing ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Reducing Black Carbon May Be the Fastest Strategy for Slowing Climate Change. Reducing Black Carbon May Be the Fastest Strategy for Slowing Climate Change. IGSD/INECE Climate Briefing Note June 2009. A drastic reduction of black-carbon emissions could ...

  8. Black carbon: The reverse of its dark side

    NARCIS (Netherlands)

    Koelmans, A.A.; Jonker, M.T.O.; Cornelissen, G.; Bucheli, T.D.; Noort, van P.C.M.; Gustafsson, O.

    2006-01-01

    The emission of black carbon is known to cause major environmental problems. Black carbon particles contribute to global warming, carry carcinogenic compounds and cause serious health risks. Here, we show another side of the coin. We review evidence that black carbon may strongly reduce the risk

  9. The effect of cutting on carbon dioxide absorption and carbohydrate ...

    African Journals Online (AJOL)

    grass) and Osteospermun sinuatum (Karoo-bush) plants during the flag leaf and flower bud stages respectively resulted in a sharp decline in net carbon dioxide absorption. As new photosynthetic material was produced the total carbon ...

  10. Carbon nanotube-based black coatings

    Science.gov (United States)

    Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M.

    2018-03-01

    Coatings comprising carbon nanotubes are very black, that is, characterized by uniformly low reflectance over a broad range of wavelengths from the visible to far infrared. Arguably, there is no other material that is comparable. This is attributable to the intrinsic properties of graphitic material as well as the morphology (density, thickness, disorder, and tube size). We briefly describe a history of other coatings such as nickel phosphorous, gold black, and carbon-based paints and the comparable structural morphology that we associate with very black coatings. The need for black coatings is persistent for a variety of applications ranging from baffles and traps to blackbodies and thermal detectors. Applications for space-based instruments are of interest and we present a review of space qualification and the results of outgassing measurements. Questions of nanoparticle safety depend on the nanotube size and aspect ratio as well as the nature and route of exposure. We describe the growth of carbon nanotube forests along with the catalyst requirements and temperature limitations. We also describe coatings derived from carbon nanotubes and applied like paint. Building the measurement apparatus and determining the optical properties of something having negligible reflectance are challenging and we summarize the methods and means for such measurements. There exists information in the literature for effective media approximations to model the dielectric function of vertically aligned arrays. We summarize this along with the refractive index of graphite from the literature that is necessary for modeling the optical properties. In our experience, the scientific questions can be overshadowed by practical matters, so we provide an appendix of recipes for making as-grown and sprayed coatings along with an example of reflectance measurements.

  11. Influence of sample composition on aerosol organic and black carbon determinations

    International Nuclear Information System (INIS)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550 degrees C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations

  12. Near-infrared light absorption by brown carbon in the ambient atmosphere

    Science.gov (United States)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  13. A Model For The Absorption Of Thermal Radiation By Gold-Black

    OpenAIRE

    Quinlan, Brendan Robert

    2015-01-01

    The work presented here addresses an important topic in thermal radiation detection when gold-black is used as an absorber. Sought is a model to simulate the absorption of thermal radiation by gold-black. Fractal geometry is created to simulate the topology of gold-black. Then electrical circuits based on the topology are identified that capture the physics of the interaction between the gold-black material and incident electro-magnetic radiation. Parameters of the model are then adj...

  14. Black phosphorus: broadband nonlinear optical absorption and application

    Science.gov (United States)

    Li, Ying; He, Yanliang; Cai, Yao; Chen, Shuqing; Liu, Jun; Chen, Yu; Yuanjiang, Xiang

    2018-02-01

    Black phosphorus (BP), 2D layered material with layered dependent direct bandgap (0.3 eV (bulk), 2.0 eV (single layer)) that has gained renewed attention, has been demonstrated as an extremely appropriate optical material for broadband optical applications from infrared to mid-infrared wavebands. Herein, by coupling multi-layer BP films with microfiber, we fabricated a nonlinear optical device with long light-matter interaction distance and enhanced damage threshold. Through taking full advantage of its fine nonlinear optical absorption property, we obtained stable mode-locking (51 ps) and Q-switched mode-locking states in Yb-doped or Er-doped (403.7 fs) all-fiber lasers and the single-longitudinal-mode operation (53 kHz) in an Er-doped fiber laser with enhanced power tolerance, using the same nonlinear optical device. Our results showed that BP could be a favorable nonlinear optical material for developing BP-enabled wave-guiding photonic devices, and revealed new insight into BP for high optical power unexplored optical devices.

  15. Brown carbon absorption in the red and near-infrared spectral region

    OpenAIRE

    A. Hoffer; Á. Tóth; M. Pósfai; C. E. Chung; A. Gelencsér; A. Gelencsér

    2017-01-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these pa...

  16. Black Carbon Measurement and Modeling in the Arabian Peninsula

    Science.gov (United States)

    Zawad, Faisal Al; Khoder, Mamdouh; Almazroui, Mansour; Alghamdi, Mansour; Lihavainen, Heikki; Hyvarinen, Antti; Henriksson, Svante

    2017-04-01

    Black carbon is an important atmospheric aerosol as an effective factor in public health, changing the global and regional climate, and reducing visibility. Black carbon absorbs light, warms the atmosphere, and modifies cloud droplets and the amount of precipitation. In spite of this significance, knowledge of black carbon over the Arabian Peninsula is hard to find in literature until recently. The total mass of black carbon and wind direction and speeds were measured continuously at Hada Al-Sham, Saudi Arabia for the year 2013. In addition, a state of the art global aerosol - climate model (ECHAM5-HAM) was used to determine black carbon climatology over the Arabian Peninsula. Simulation of the model was carried out for the years eight years (2004 - 2011). The daily mean values of the concentrations of black carbon had a minimum of 15.0 ng/m3 and a maximum of 6372 ng/m3 with a mean of at 1899 ng/m3. The diurnal pattern of black carbon showed higher values overnight, and steady low values during daytimes caused by sea and land breezes. Seasons of black carbon vary over the Arabian Peninsula, and the longest is in the Northern Region where it lasts from July to October. High concentrations of black carbon at Hada Al-Sham was observed with a mean of 1.9 µm/m3, and seasons of black carbon vary widely across the Arabian Peninsula. Assessment of the effects of black carbon over the Arabian Peninsula on the global radiation balance. Initiating a black carbon monitoring network is highly recommended to assess its impacts on health, environment, and climate.

  17. Prenatal Exposure to Carbon Black (Printex 90)

    DEFF Research Database (Denmark)

    Jackson, Petra; Vogel, Ulla; Wallin, Håkan

    2011-01-01

    Maternal pulmonary exposure to ultrafine particles during pregnancy may affect the health of the child. Developmental toxicity of carbon black (Printex 90) nanoparticles was evaluated in a mouse model. Time-mated mice were intratracheally instilled with Printex 90 dispersed in Millipore water...... on gestation days (GD) 7, 10, 15 and 18, with total doses of 11, 54 and 268 mu g Printex 90/animal. The female offspring prenatally exposed to 268 mu g Printex 90/animal displayed altered habituation pattern during the Open field test....

  18. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    Science.gov (United States)

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  19. Kinetics of absorption of carbon dioxide in aqueous ammonia solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Versteeg, G. F.

    2009-01-01

    In the present work the absorption of carbon dioxide into aqueous ammonia solutions has been studied in a stirred cell reactor, at low temperatures and ammonia concentrations ranging from 0.1 to about 7 kmol m-3. The absorption experiments were carried out at conditions where the so-called pseudo

  20. Optical absorption of charged excitons in semiconducting carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2012-01-01

    In this article we examine the absorption coefficient of charged excitons in carbon nanotubes. We investigate the temperature and damping dependence of the absorption spectra. We show that the trion peak in the spectrum is asymmetric for temperatures greater than approximately 1 K whereas...

  1. Seasonal features of black carbon measured at Syowa Station, Antarctica

    Science.gov (United States)

    Hara, K.; Osada, K.; Yabuki, M.; Shiobara, M.; Yamanouchi, T.

    2015-12-01

    Black carbon (BC) is one of important aerosol constituents because the strong light absorption ability. Low concentrations of aerosols and BC let BC make insignificant contribution to aerosol radiative forcing in the Antarctica at the moment. Because of less or negligible source strength of BC in the Antarctic circle, BC can be used as a tracer of transport from the mid-latitudes. This study aims to understand seasonal feature, transport pathway, and origins of black carbon in the Antarctic coats. Black carbon measurement has been made using 7-wavelength aethalometer at Syowa Station, Antarctica since February, 2005. Mass BC concentrations were estimated from light attenuation by Weingartner's correction procedure (Weingartner et al., 2003) in this study. Detection limit was 0.2 - 0.4 ng/m3 in our measurement conditions (2-hour resolution and flow rate of ca. 10LPM). BC concentrations ranged from near detection limit to 55.7 ng/m3 at Syowa Station, Antarctica during the measurements. No trend has been observed since February, 2005. High BC concentrations were coincident with poleward flow from the mid-latitudes under the storm conditions by cyclone approach, whereas low BC concentrations were found in transport from coastal regions and the Antarctic continent. Considering that outflow from South America and Southern Africa affect remarkably air quality in the Southern Ocean of Atlantic and Indian Ocean sectors, BC at Syowa Station might be originated from biomass burning and human activity on South America and Southern Africa. Seasonal features of BC at Syowa Station shows maximum in September - October and lower in December - April. Spring maximum in September - October was obtained at the other Antarctic stations (Neumayer, Halley, South pole, and Ferraz). Although second maximum was found in January at the other stations, the maximum was not observed at Syowa Station.

  2. Optical absorption of carbon-gold core-shell nanoparticles

    Science.gov (United States)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  3. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau.

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Li, Chaoliu; Gao, Tanguang; Cong, Zhiyuan; Sprenger, Michael; Liu, Yajun; Li, Xiaofei; Guo, Junming; Sillanpää, Mika; Wang, Kun; Chen, Jizu; Li, Yang; Sun, Shiwei

    2017-12-31

    Black carbon (BC) emitted from the incomplete combustion of biomass and fossil fuel impacts the climate system, cryospheric change, and human health. This study documents black carbon deposition in snow from a benchmark glacier on the northern Tibetan Plateau. Significant seasonality of BC concentrations indicates different input or post-depositional processes. BC particles deposited in snow had a mass volume median diameter slightly larger than that of black carbon particles typically found in the atmosphere. Also, unlike black carbon particles in the atmosphere, the particles deposited in snow did not exhibit highly fractal morphology by Scanning Transmission Electron Microscope. Footprint analysis indicated BC deposited on the glacier in summer originated mainly from Central Asia; in winter, the depositing air masses generally originated from Central Asia and Pakistan. Anthropogenic emissions play an important role on black carbon deposition in glacial snow, especially in winter. The mass absorption efficiency of BC in snow at 632nm exhibited significantly seasonality, with higher values in summer and lower values in winter. The information on black carbon deposition in glacial snow provided in this study could be used to help mitigate the impacts of BC on glacier melting on the northern Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Monumental heritage exposure to urban black carbon pollution

    Science.gov (United States)

    Patrón, D.; Lyamani, H.; Titos, G.; Casquero-Vera, J. A.; Cardell, C.; Močnik, G.; Alados-Arboledas, L.; Olmo, F. J.

    2017-12-01

    In this study, aerosol light-absorption measurements obtained at three sites during a winter campaign were used to analyse and identify the major sources of Black Carbon (BC) particles in and around the Alhambra monument, a UNESCO World Heritage Site that receives over 2 million visitors per year. The Conditional Bivariate Probability Function and the Aethalometer model were employed to identify the main sources of BC particles and to estimate the contributions of biomass burning and fossil fuel emissions to the total Equivalent Black Carbon (EBC) concentrations over the monumental complex. Unexpected high levels of EBC were found at the Alhambra, comparable to those measured in relatively polluted European urban areas during winter. EBC concentrations above 3.0 μg/m3, which are associated with unacceptable levels of soiling and negative public reactions, were observed at Alhambra monument on 13 days from 12 October 2015 to 29 February 2016, which can pose a risk to its long-term conservation and may cause negative social and economic impacts. It was found that road traffic emissions from the nearby urban area and access road to the Alhambra were the main sources of BC particles over the monument. However, biomass burning emissions were found to have very small impact on EBC concentrations at the Alhambra. The highest EBC concentrations were observed during an extended stagnant episode associated with persistent high-pressure systems, reflecting the large impact that can have these synoptic conditions on BC over the Alhambra.

  5. Separation of brown carbon from black carbon for IMPROVE and CSN PM2.5Samples.

    Science.gov (United States)

    Chow, Judith C; Watson, John G; Green, Mark C; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Cropper, Paul M; Kohl, Steven D; Gronstal, Steven B

    2018-01-17

    The replacement of the DRI Model 2001 with Model 2015 thermal/optical analyzers (TOAs) results in continuity of the long-term organic carbon (OC) and elemental carbon (EC) data base, and it adds optical information with no additional carbon analysis effort. The value of multiwavelength light attenuation is that light absorption due to black carbon (BC) can be separated from that of brown carbon (BrC), with subsequent attribution to known sources such as biomass burning and secondary organic aerosols. There is evidence of filter loading effects for the 25% of all samples with the highest EC concentrations based on the ratio of light attenuation to EC. Loading corrections similar to those used for the seven-wavelength aethalometer need to be investigated. On average, non-urban IMPROVE samples show higher BrC fractions of short-wavelength absorption than urban CSN samples, owing to greater influence from biomass burning and aged aerosols, as well as to higher primary BC contributions from engine exhaust at urban sites. Sequential samples taken during an Everglades National Park wildfire demonstrate the evolution from flaming to smoldering combustion, with the BrC fraction increasing as smoldering begins to dominate the fire event.

  6. Use of submicron carbon filaments in place of carbon black as a porous reduction electrode in lithium batteries with a catholyte comprising bromine chloride in thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Wilson Greatbatch, Ltd., Clarence, NY (United States); Shui, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

    1995-12-31

    Submicron carbon filaments used in place of carbon black as porous reduction electrodes in carbon limited lithium batteries in plate and jellyroll configurations with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8,700 mAh/g carbon, compared to a value of up to 2,900 mAh/g carbon for carbon black. The high specific capacity per g carbon (demonstrating superior carbon efficiency) for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity and without a binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode.

  7. Influence of public transport in black carbon

    Science.gov (United States)

    Vasquez, Y.; Oyola, P.; Gramsch, E. V.; Moreno, F.; Rubio, M.

    2013-05-01

    As a consequence of poor air quality in Santiago de Chile, several measures were taken by the local authorities to improve the environmental conditions and protect the public health. In year 2005 the Chilean government implemented a project called "Transantiago" aimed to introduce major modifications in the public transportation system. The primary objectives of this project were to: provide an economically, socially and environmentally sustainable service and improve the quality of service without increasing fares. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. The black carbon has been used to evaluate changes in air quality due to changes in traffic. The assessment was done using measurements of black carbon before Transantiago (June-July 2005) and after its implementation (June-July 2007). Four sites were selected to monitor black carbon at street levels, one site (Alameda) that represents trunk-bus streets, i.e., buses crossing the city through main avenues. Buses using these streets had an important technological update with respect to 2005. Two streets (Usach and Departamental) show a mixed condition, i.e., they combine feeder and trunk buses. These streets combine new EURO III buses with old buses with more than 3 years of service. The last street (Eliodoro Yañez) represent private cars road without public transportation and did not experience change. Hence, the results from the years 2005 and 2007 can be directly compared using an appropriate methodology. To ensure that it was not the meteorological conditions that drive the trends, the comparison between year 2005 and 2007 was done using Wilcoxon test and a regression model. A first assessment at the four sites suggested a non decrease in black carbon concentration from 2005 to 2007, except for Alameda. A first statistical approach confirmed small increases in BC in Usach and E

  8. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Kleingeld, T.; van Aken, C.; Hogendoorn, J. A.; Versteeg, G. F.

    2006-01-01

    In the present work the absorption of carbon dioxide into aqueous piperazine (PZ) solutions has been studied in a stirred cell, at low to moderate temperatures, piperazine concentrations ranging from 0.6 to 1.5 kmol m- 3, and carbon dioxide pressures up to 500 mbar, respectively. The obtained

  9. Effect of sterilization on mineralization of straw and black carbon

    DEFF Research Database (Denmark)

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    The study was aimed at investigating the role of microorganisms in the degradation of BC (black carbon). CO evolution was measured under sterilized and non-sterilized soil using BC and straw amendments. Black carbon and straw were produced from homogenously C labelled roots of barley (Hordeum vul...... abiotic source must also be present perhaps abiotic mineralization of labile BC components....

  10. Brown carbon absorption in the red and near-infrared spectral region

    Science.gov (United States)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  11. Brown carbon absorption in the red and near-infrared spectral region

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2017-06-01

    Full Text Available Black carbon (BC aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  12. Chemically treated carbon black waste and its potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tong, Yen Wah [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Ting, Yen-Peng [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Koh, Shin Nuo [Sembcorp Industries Ltd., 30 Hill Street #05-04, 179360 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Hazardous impurities separated from carbon black waste with little damage to solid. • Heavy metals were effectively removed from carbon black waste by HNO{sub 3} leaching. • Treated carbon black waste has high adsorption capacity (∼356.4 mg{sub dye}/g). • Carbon black waste was also found to show high electrical conductivity (10 S/cm). - Abstract: In this work, carbon black waste – a hazardous solid residue generated from gasification of crude oil bottom in refineries – was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2 M nitric acid for 1 h at 20 °C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO{sub 3} as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2 mg {sub dye}/g {sub carbonblack}), which can be attributed to its high specific surface area (∼559 m{sup 2}/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10 S

  13. Endovascular vein harvest: systemic carbon dioxide absorption.

    Science.gov (United States)

    Maslow, Andrew M; Schwartz, Carl S; Bert, Arthur; Hurlburt, Peter; Gough, Jeffrey; Stearns, Gary; Singh, Arun K

    2006-06-01

    Endovascular vein harvest (EDVH) requires CO(2) insufflation to expand the subcutaneous space, allowing visualization and dissection of the saphenous vein. The purpose of this study was to assess the extent of CO(2) absorption during EDVH. Prospective observational study. Single tertiary care hospital. Sixty patients (30 EDVH and 30 open-vein harvest) undergoing isolated coronary artery bypass graft surgery. Hemodynamic, procedural, and laboratory data were collected prior to (baseline), during, and at it the conclusion (final) of vein harvesting. Data were also collected during cardiopulmonary bypass (CPB). Data were compared by using t tests, analysis of variance, and correlation statistics when needed. There were significant increases in arterial CO(2) (PaCO(2), 35%) and decreases in pH (1.35%) during EDVH. These were associated with increases in heart rate, mean blood pressure, and cardiac output. Within the EDVH group, greater elevations (>10 mmHg) in PaCO2 were more likely during difficult harvest procedures, and these patients exhibited greater increase in heart rate. Elevated CO(2) persisted during CPB, requiring higher systemic gas flows and greater use of phenylephrine to maintain desired hemodynamics. EDVH was associated with systemic absorption of CO(2). Greater absorption was more likely in difficult procedures and was associated with greater hemodynamic changes requiring medical therapy.

  14. Quantifying light absorption by organic carbon in Western North American snow by serial chemical extractions

    Science.gov (United States)

    Dang, Cheng; Hegg, Dean A.

    2014-09-01

    Light-absorbing particulates (LAPs) in snow, namely black carbon (BC), organic carbon (OC), and iron oxides, can reduce snow albedo and influence regional and global climate. Partitioning light absorption by LAPs to BC and non-BC (i.e., OC and iron oxides) is important yet difficult due to both technical limitations and the complicated nature of LAPs. In this work, we applied serial chemical extractions on LAP samples acquired from snow samples in western North America to study the light absorption by different types of OC. We also estimated the light absorption due to iron oxides. Based on these chemical analyses, we then compared our estimation of the non-BC light absorption with that from an optical method. The results suggest that humic-like substances (sodium hydroxide (NaOH)-soluble), polar OCs (methanol-soluble), and iron oxides are responsible for 9%, 4%, and 14% (sample means) of the total light absorption, respectively, in our samples, though it should also be noted that there is great variance in these means. The total light absorption due to non-BC LAPs estimated by chemical methods is lower than that estimated by optical method by about 10% in all sampling regions. Reasons for this difference are explored.

  15. Optical Properties of Small Ice Crystals with Black Carbon Inclusions

    Science.gov (United States)

    Yang, X.; Geier, M.; Arienti, M.

    2013-12-01

    Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Cappa, C.D., Onasch, T.B., Massoli, et al. (2012). Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science, 337(6098), 1078-1081. Ghan, S.J., & Schwartz, S.E. (2007). Aerosol properties and processes: A path from field and laboratory measurements to global climate models. Bulletin of the American Meteorological Society, 88(7), 1059-1083. Liou, K.N., Takano, Y., & Yang, P. (2011). Light absorption and scattering by aggregates: Application to black carbon and snow grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(10), 1581-1594. Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221-227. Yang, P., Bi, L., Baum, B.A., et al. (2013). Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 μ m. Journal of the Atmospheric Sciences, 70(1), 330-347. Yurkin, M.A., & Hoekstra, A.G. (2011). The discrete-dipole-approximation code ADDA: capabilities and known limitations. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(13), 2234-2247.

  16. Study of black carbon levels in city centers and industrial centers in Jordan

    International Nuclear Information System (INIS)

    Hamasha, K.M.; Almomani, M.S.; Abu-Allaban, M.; Arnott, W. P.

    2010-01-01

    Light absorption coefficients of black carbon (B abc ) were measured at serveral urban and industrial locations in Jordan during summer of 2007 and winter of 2008 using the photoacoustic instrument at a wavelength of 870 nm. Black carbon mass concentration (BC) was calculated using B abc .Black carbon levels at urban locations in the summer of 2007 were higher than those obtained at industrial centers.Zarqa had the highest value of BC in summer (29.24μg/m 3 ) and in winter (13.27μg/m 3 ). Ibbeen and Irbid city center had relatively high values of BC in winter: 11.75μg/m 3 and 12.48μg/m 3 , respectively. (authors).

  17. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  18. Addressing inconsistencies in black carbon literature

    Science.gov (United States)

    Shonkoff, S. B.; Chafe, Z.; Smith, K. R.

    2010-12-01

    The literature describing black carbon (BC) emissions, and their effect on Earth’s climate, is growing rapidly. Unfortunately, inconsistencies in definitions; data collection and characterization; system boundaries; and time horizons have led to confusion about the relative importance of BC compared to other climate-active pollutant (CAPs). We discuss three sources of confusion: 1) Currently available BC inventories are not directly comparable to those used by the IPCC to track the greenhouse gases (GHGs) considered in the Kyoto Protocol (CO2, CH4, N2O). In particular, BC inventories often include all emissions: natural and anthropogenic in origin, controllable and non-controllable. IPCC inventories include only anthropogenic emissions. This BC accounting is appropriate for atmospheric science deliberations, but risks being interpreted as an overstatement against official Kyoto GHG inventories in a policy or control context. The IPCC convention of using 1750 as the starting year for emission inventories further complicates matters: significant BC emissions were emitted previous to that date by both human and natural sources. Though none of the pre-1750 BC emissions remain in the atmosphere today, their legacy presents challenges in assigning historical responsibility for associated global warming among sectors and regional populations. 2) Inconsistencies exist in the specific emissions sources considered in atmospheric models used to predict net BC forcing often lead to widely varying climate forcing estimates. For example, while some analyses consider only fossil fuel 1, others include both open biomass burning and fossil fuel combustion 2, and yet others include sources beyond biomass and fossil fuel burning 3. 3) Inconsistencies exist in how analyses incorporate the relationship between BC emissions and the associated cooling aerosols and processes, such as organic carbon (OC), and aerosol indirect effects (AIE). Unlike Kyoto GHGs, BC is rarely emitted in pure

  19. Quasinormal modes, stability analysis and absorption cross section for 4-dimensional topological Lifshitz black hole

    International Nuclear Information System (INIS)

    Gonzalez, P.A.; Moncada, Felipe; Vasquez, Yerko

    2012-01-01

    We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)

  20. Quasinormal modes, stability analysis and absorption cross section for 4-dimensional topological Lifshitz black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A. [Universidad Central de Chile, Escuela de Ingenieria Civil en Obras Civiles, Facultad de Ciencias Fisicas y Matematicas, Santiago (Chile); Universidad Diego Portales, Santiago (Chile); Moncada, Felipe; Vasquez, Yerko [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Temuco (Chile)

    2012-12-15

    We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)

  1. Absorption and excretion of black currant anthocyanins in human and Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L.. F.; Ravn-Haren, Gitte; Dragsted, L. O.

    2003-01-01

    Anthocyanins are thought to protect against cardiovascular diseases. Watanabe heritable hyperlipidemic (WHHL) rabbits are hypercholesterolemic and used as a model of the development of atherosclerosis. To compare the uptake and excretion of anthocyanins in humans and WHHL rabbits, single-dose black......). The excretion and absorption of anthocyanins from black currant juice were found to be within the same order of magnitude in the two species regarding urinary excretion within the first 4 h (rabbits, 0.035%; humans, 0.072%) and t(ma)x (rabbits, similar to30 min; humans, similar to45 min). A food matrix effect...... was detected in rabbits, resulting in the absorption of a higher proportion of the anthocyanins from black currant juice than from an aqueous citric acid matrix. In humans the absorption and urinary excretion of anthocyanins from black currant juice were found to be proportional with dose and not influenced...

  2. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    Science.gov (United States)

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  3. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Science.gov (United States)

    Frysz, Christine A.; Shui, Xiaoping; Chung, D. D. L.

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments' processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm 3 of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon™ binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 405 less volume electrical resistivity than the carbon black electrode, both without a binder.

  4. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Technology Div., Wilson Greatbatch Ltd., Clarence, NY (United States); Shui Xiaoping [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States); Chung, D.D.L. [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States)

    1996-01-01

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm{sup 3} of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon{sup TM} binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 40% less volume electrical resistivity than the carbon black electrode, both without a binder. (orig.)

  5. Uptake mechanism for iodine species to black carbon.

    Science.gov (United States)

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  6. Carbon dioxide absorption in piperazine activated N-methyldiethanolamine

    NARCIS (Netherlands)

    Derks, P.W.J.

    2006-01-01

    The removal of carbon dioxide from process gas streams is an important step in many industrial processes for a number of technical, economical or environmental reasons. The conventional technology to capture CO2 on large scale is the absorption - desorption process, in which (aqueous) solutions of

  7. Pilot absorption experiments with carbonic anhydrase enhanced MDEA

    DEFF Research Database (Denmark)

    Gladis, Arne; F. Lomholdt, Niels; Fosbøl, Philip Loldrup

    2017-01-01

    was determined by both a density method and the BaCl2 method. After the solvent was loaded to equilibrium it was heated up and reintroduced into the column, where CO2 was stripped off using air as stripping gas. The addition of CA increased the mass transfer significantly in all experiments. Lower absorption......Mass transfer experiments were carried out on DTU’s pilot absorber unit, a 10 m high column packed with 250 Y Mellapak structured packing. The influence of temperature, solvent loading, column height and liquid flow rates on absorption performance were determined for a 30 wt% N......-methyl-diethanolamine (MDEA) solvent, with and without the enzyme carbonic anhydrase (CA). The absorption experiments were performed at atmospheric pressure and agas phase carbon dioxide mole fraction of 0.13. During experiments liquid samples were withdrawn at each meter of column height and the solvent loading...

  8. Black carbon fractal morphology and short-wave radiative impact: a modelling study

    Directory of Open Access Journals (Sweden)

    M. Kahnert

    2011-11-01

    emphasise that there are other potentially important morphological features that have not been addressed in the present study, such as sintering and coating of freshly emitted black carbon by films of organic material. Finally, we found that the spectral variation of the absorption cross section of black carbon significantly deviates from a simple 1/λ scaling law. We therefore discourage the use of single-wavelength absorption measurements in conjunction with a 1/λ scaling relation in broadband radiative forcing simulations of black carbon.

  9. Black carbon sequestration as an alternative to bioenergy

    International Nuclear Information System (INIS)

    Fowles, Malcolm

    2007-01-01

    Most policy and much research concerning the application of biomass to reduce global warming gas emissions has concentrated either on increasing the Earth's reservoir of biomass or on substituting biomass for fossil fuels, with or without CO 2 sequestration. Suggested approaches entail varied risks of impermanence, delay, high costs, and unknowable side-effects. An under-researched alternative approach is to extract from biomass black (elemental) carbon, which can be permanently sequestered as mineral geomass and may be relatively advantageous in terms of those risks. This paper reviews salient features of black carbon sequestration and uses a high-level quantitative model to compare the approach with the alternative use of biomass to displace fossil fuels. Black carbon has been demonstrated to produce significant benefits when sequestered in agricultural soil, apparently without bad side-effects. Black carbon sequestration appears to be more efficient in general than energy generation, in terms of atmospheric carbon saved per unit of biomass; an exception is where biomass can efficiently displace coal-fired generation. Black carbon sequestration can reasonably be expected to be relatively quick and cheap to apply due to its short value chain and known technology. However, the model is sensitive to several input variables, whose values depend heavily on local conditions. Because characteristics of black carbon sequestration are only known from limited geographical contexts, its worldwide potential will not be known without multiple streams of research, replicated in other contexts. (author)

  10. Global civil aviation black carbon emissions.

    Science.gov (United States)

    Stettler, Marc E J; Boies, Adam M; Petzold, Andreas; Barrett, Steven R H

    2013-09-17

    Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.

  11. Molecular simulation of polycyclic aromatic hydrocarbon sorption to black carbon

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2009-01-01

    Strong sorption of hydrophobic organic contaminants to soot or black carbon (BC) is an important environmental process limiting the bioremediation potential of contaminated soils and sediments. Reliable methods to predict BC sorption coefficients for organic contaminants are therefore required. A

  12. Platinum-carbon black-titanium dioxide nanocomposite ...

    Indian Academy of Sciences (India)

    carbon black-titanium ... Importantly, galvanostatic data confirm the superior stability of these materials against corrosion under anodic polarization conditions relative to commercial benchmark fuel cell electrocatalysts. EIS spectra from ETEK 5, ...

  13. Dispersion mechanisms of carbon black in an elastomer matrix

    OpenAIRE

    Collin, Véronique; Peuvrel-Disdier, Edith

    2005-01-01

    International audience; Dispersion mechanisms of carbon black pellets in an uncured SBR elastomer matrix under shear conditions were studied using a rheo-optical approach. A transparent counter-rotating plate-and-plate shear cell coupled with an optical microscope was used. Elementary mechanisms of dispersion such as rupture, erosion of isolated carbon black pellets were investigated. A criterion for rupture and an erosion law were determined. The rupture mechanism was shown to be governed by...

  14. Contribution of Brown Carbon to Total Aerosol Absorption in Indo-Gangetic Plain

    Science.gov (United States)

    Tripathi, S. N.; Moosakutty, S. P.; Bergin, M.; Vreeland, H. P.

    2015-12-01

    Carbonaceous aerosols play an important role in earth's radiative balance by absorbing and scattering light. We report physical and optical properties of carbonaceous aerosols from Indo-Gangetic Plain (IGP) for 60 days during 2014-15 winter season. Mass concentration and size distribution of black carbon (BC) and organic carbon (OC) were measured in real time using Single Particle Soot Photometer (SP2) and High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) respectively. Optical properties of aerosols at atmospheric and denuded (heated at 300 ˚C) conditions were also measured using 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Analysis shows large scale carbonaceous aerosol loading during winter season in IGP. Multiple biomass burning events combined with trash burning contributed to this high loading along with very low boundary layer height. An inter-comparison shows that Aethalometer over estimates BC by a factor of 3 when compared with that of SP 2 measurement. Enhancement in absorption (Eabs) defined as the ratio of atmospheric absorption to denuded absorption shows presence of absorbing organics known as brown carbon (BrC). Optical closure performed between denuded aerosol absorption measured by PASS 3 and Mie theory derived absorption using SP 2 BC size distribution showed a difference of only 30 % at 781 nm. This difference might be due to the non-spherical shape and presence of residual coating on BC. Refractive index of BrC at 405 and 532 nm were derived using optical closure method for the entire sampling period. Overall results indicates that the impact of BrC on optical absorption is significant in areas dominated by biomass burning such as IGP and such effects needs to be considered in global aerosol modelling studies.

  15. Black Carbon at the Mt. Bachelor Observatory Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Dan A. [Univ. of Washington, Bothell, WA (United States); Sedlacek, Arthur [Brookhaven National Lab. (BNL), Upton, NY (United States); Laing, James R. [Univ. of Washington, Bothell, WA (United States)

    2017-03-01

    This campaign was initiated to measure refractory black carbon (rBC, as defined in Schwarz et al. (2010)) at the Mt. Bachelor Observatory (MBO) using the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility single-particle soot photometer (SP2; unit 54). MBO is a high-elevation site located on the summit of Mt. Bachelor in central Oregon, USA (43.979°N, 121.687°W, 2,763 meters ASL). This site is operated by Professor Dan Jaffe’s group at the University of Washington Bothell and has been used continuously as an atmospheric observatory for the past 12 years (Jaffe et al., 2005; Gratz et al., 2014). The location of MBO allows frequent sampling of the free troposphere along with a wide array of plumes from regional and distant sources. MBO is currently supported with funding from the National Science Foundation (NSF) to the Principal Investigator (PI; D. Jaffe) via the project “Influence of Free Tropospheric Ozone and PM on Surface Air Quality in the Western U.S.” (#1447832) covering the period 03/15/2015 to 02/28/2018. The SP2 instrument from Droplet Measurement Technologies provides particle-resolved measurements of rBC mass loading, size and mass distributions, and mixing state. The SP2 was installed at MBO on 6/27/2016 and ran through 9/23/2016. Additional measurements at MBO during this campaign included carbon monoxide (CO), fine particulate matter (PM1), aerosol light scattering coefficients (σscat) at three wavelengths using a TSI nephelometer, aerosol absorption coefficients (σabs) with the Brechtel tricolor absorption photometer (TAP), aerosol number size distributions with a scanning mobility particle sizer spectrometer (SMPS), and black carbon (eBC) with an aethalometer. BC data from this campaign have been submitted to the ARM Data Archive. Black carbon (BC) is the predominant light-absorbing aerosol constituent in the atmosphere, and is estimated to exert a positive radiative forcing second only to CO

  16. Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ho; Kim, Dae Su [Chungbuk National University, Cheongju (Korea, Republic of)

    2013-10-15

    Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surface-modified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

  17. Synthesis of multiwalled carbon nanotube from different grades of carbon black using arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Neha, E-mail: n4neha31@gmail.com [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Sharma, N. N. [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Director, School of Automobile, Mechanical & Mechatronics, Manipal University,Jaipur,India (India)

    2016-04-13

    This paper describes the synthesis of nanotube from different grades (Tread * A(non-ASTM), N134,N121,N660 and N330)of carbon black using DC arc discharge method at 40A current for 60sec. Carbon black samples of different grades were procured from industry (Aditya Birla Science and Technology Limited, India). Scanning Electron Micrographs (SEM) of the deposited carbon nanostructures suggests that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.The result formed indicates the N330 grade of carbon black gets converted to MWCNTs (Multiwall Carbon nanotube) as compared to other grades.

  18. Artificial black opal fabricated from nanoporous carbon spheres.

    Science.gov (United States)

    Yamada, Yuri; Ishii, Masahiko; Nakamura, Tadashi; Yano, Kazuhisa

    2010-06-15

    A nanocasting method via chemical vapor deposition of acetonitrile was successfully employed to fabricate porous carbon colloidal crystal using colloidal crystal from monodispersed mesoporous silica spheres (MMSS) as a sacrificial scaffold. The mesostructure as well as periodic arrays within (111) plane of MMSS were replicated for the carbon colloidal crystal (black opal) with the length scale in the centimeter range. Brilliant iridescent colors were clearly observed for the first time on the black carbon colloidal crystal fabricated from porous carbon spheres, and they changed dramatically in accordance with the observation angle, like natural black opals. Reflection spectra measurements based on 2D surface diffraction and Bragg diffraction in the mirror mode were conducted for the fabricated carbon periodic arrays. The periodicity in the (111) plane as well as in the direction perpendicular to the (111) plane of the colloidal crystal was evaluated by comparing the results obtained from these two measurements. It was found that the periodicity in the direction perpendicular to the (111) surface is not high for the obtained black carbon opal. On the other hand, the relationship between the incident angles and the peak wavelengths of the reflection spectra, collected in the condition where the incident light and the reflected light pass through in the same direction, is governed by an approximation based on 2D surface diffraction. The results imply that the origin of the iridescent colors on the fabricated black carbon opal is derived from the periodicity not in the direction perpendicular to the (111) plane but within the (111) plane.

  19. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    refractory black carbon, such as absorption enhancement by lensing.

  20. Rethinking the distinction between black and brown carbon

    Science.gov (United States)

    Adler, G. A.; Franchin, A.; Lamb, K. D.; Manfred, K.; Middlebrook, A. M.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.

    2017-12-01

    Aerosol radiative properties contribute large uncertainty to modeling of the earth's radiative budget. Black carbon (BC) aerosols originate from combustion processes and substantially contribute to warming and uncertainty - ongoing efforts are focused on reducing their anthropogenic emissions even as their emissions from biomass burning sources, such as wildfire, may increase in the future. Quantifying the radiative effect of BC is challenging, in part due to its association with other light absorbing materials including Brown carbon organic aerosol (BrC) that absorbs primarily blue and ultraviolet light while BC absorbs broadly across the visible. Conventionally BrC is thought of a low volatility spherical particles, distinguishing it from BC, which has a distinctive agglomerate morphology and is refractory at high temperatures. However, the separation of BC and BrC is often operationally defined and dependent on the measurement method. Using measurements of aerosol morphology, mass, absorption, and refractory BC mass content we were able to identify a light absorbing contribution from biomass burning aerosol that does not correspond to either BC or BrC as conventionally defined. Our measurements were collected from realistic biomass burning fires at the Missoula Fire Sciences Laboratory as part of the NOAA FIREX project (2016) and from extensive natural wildfire sampled aloft during NASA SEAC4RS field study (2013). We coin the term Dark Brown Carbon (DBrC) to describe this material, which absorbs broadly across the visible and survives thermal denuding at 250°C but does not incandesce in laser induced incandesce (LII) measurements. DBrC may be an intermediate burning stage product between polycyclic aromatic hydrocarbons (PAHs) and the mature soot. DBrC deserves further study to quantify its abundance and aging in ambient biomass burning plumes, and its relationship to tar balls. Our findings show that more than half of the light absorption in biomass burning

  1. Black Carbon Radiative Forcing over the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  2. A Community Network of 100 Black Carbon Sensors

    Science.gov (United States)

    Preble, C.; Kirchstetter, T.; Caubel, J.; Cados, T.; Keeling, C.; Chang, S.

    2017-12-01

    We developed a low-cost black carbon sensor, field tested its performance, and then built and deployed a network of 100 sensors in West Oakland, California. We operated the network for 100 days beginning mid-May 2017 to measure spatially resolved black carbon concentrations throughout the community. West Oakland is a San Francisco Bay Area mixed residential and industrial community that is adjacent to regional port and rail yard facilities and surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we deployed the black carbon monitoring network outside of residences and business, along truck routes and arterial streets, and at upwind locations. The sensor employs the filter-based light transmission method to measure black carbon and has good precision and correspondence with current commercial black carbon instruments. Throughout the 100-day period, each of the 100 sensors transmitted data via a cellular network. A MySQL database was built to receive and manage the data in real-time. The database included diagnostic features to monitor each sensor's operational status and facilitate the maintenance of the network. Spatial and temporal patterns in black carbon concentrations will be presented, including patterns around industrial facilities, freeways, and truck routes, as well as the relationship between neighborhood concentrations and the BAAQMD's monitoring site. Lessons learned during this first of its kind black carbon monitoring network will also be shared.

  3. Trade and the Future of China's Black Carbon Emissions

    Science.gov (United States)

    Persad, G.; Oppenheimer, M.; Naik, V.

    2016-12-01

    Emissions of black carbon aerosols in China have increased by over 200% during the last 50 years, with negative implications both for human health and for regional and global climate. The Representative Concentration Pathway (RCP) emissions scenarios all assume that China's future black carbon emissions will decrease. However, this decline partially depends on the assumption that the evolution of future pollutant emissions in developing nations will match the observed historical relationship between air quality and income in developed nations. Recent research has demonstrated that a substantial portion of China's current black carbon emissions are driven by the production of goods exported for consumption elsewhere. This constitutes an external demand for black carbon-emitting activity in China that is much smaller in the developed nations on which the historical air quality/income relationship is based. We here show using integrated assessment model output, general circulation modeling, and emissions and economic data that (1) China must achieve a faster technological and regulatory evolution than did developed countries in order achieve the same air quality/income trajectory; (2) China's uniquely large share of export-related black carbon-emitting activities and their potential growth are a plausible explanation for this disparity; and (3) the climate and health implications of these export-related black carbon emissions, if unmitigated, are of interest from a policy perspective. Together these results indicate that the production of goods for export will steepen the mitigation curve for China relative to developed nations, if China is to achieve the future black carbon emissions reductions assumed in the RCPs.

  4. Regional Responses to Black Carbon Aerosols: The Importance of Air-Sea Interaction

    Science.gov (United States)

    Gnanadesikan, A.; Scott, A. A.; Pradal, M.-A.; Seviour, W. J. M.; Waugh, D. W.

    2017-12-01

    The impact of modern black carbon aerosols on climate via their changes in radiative balance is studied using a coupled model where sea surface temperatures (SSTs) are allowed to vary and an atmosphere-only version of the same model where SSTs are held fixed. Allowing the ocean to respond is shown to have a profound impact on the pattern of temperature change. Particularly, large impacts are found in the North Pacific (which cools by up to 1 K in the coupled model) and in north central Asia (which warms in the coupled simulation and cools in the fixed SST simulation). Neither set of experiments shows large changes in surface temperatures in the Southeast Asian region where the atmospheric burden of black carbon is highest. These results are related to the stabilization of the atmosphere and changes in oceanic heat transport. Over the North Pacific, atmospheric stabilization results in an increase in stratiform clouds. The resulting shading reduces evaporation, freshening the surface layer of the ocean and reducing the inflow of warm subtropical waters. Over the land, a delicate balance between greater atmospheric absorption, shading of the surface and changes in latent cooling of the surface helps to determine whether warming or cooling is seen. Our results emphasize the importance of coupling in determining the response of the climate system to black carbon and suggest that black carbon may play an important role in modulating climate change over the North Pacific.

  5. A Multi-Instrument Study of the Optical Properties of Various Mixing-States of Black Carbon

    Science.gov (United States)

    Hillyard, P.; Scarnato, B. V.; Strawa, A. W.; Kirchstetter, T. W.

    2011-12-01

    The study of black carbon and its aging processes remains an area where advancement is needed in order to better understand how black carbon influences climate. After emission to the atmosphere, black carbon (BC) becomes increasingly internally mixed with other aerosol constituents. Several studies have demonstrated an increase in the mass absorption efficiency of BC when it becomes internally mixed with non-absorbing organic compounds (1,2). Recent work in our lab has quantified this absorption enhancement of BC coated with succinic acid using a DMT photoacoustic instrument and compared the results to Mie Theory calculations. The data and theory both show a sharp increase in absorption at lower coating thickness, which continues to rise and eventually seems to plateau at large coating thickness (the ratio of total particle diameter to core diameter of about 2). A comparison of theory with experimental measurement generally shows the same trend but is not definitive. In order to more fully elucidate the relationship between optical properties and black carbon aging, we studied various forms of black carbon including soot generated from an inverted diffusion flame, flame soot nebulized from an aqueous suspension, glassy carbon spheres, and fullerene soot. Further, we have investigated optical properties associated with various types of organic and inorganic coatings. We have used a full suite of optical instruments to ascertain the absolute optical properties of these particles as well as the properties of coated black carbon relative to its uncoated form. The instruments include the Ames Aerosol Instrument (AAI), a homebuilt instrument based on reciprocal nephelometry and cavity ringdown spectroscopy, as well as commercial instruments, including the TSI nephelometer, PSAP, DMT SP2, DMT PASS3, and Aerodyne CAPS. SEM and TEM images have been taken to correlate optical properties with particle morphology.

  6. Tests of intestinal absorption using carbon-14-labeled isotopes

    International Nuclear Information System (INIS)

    Fromm, H.; Sarva, R.P.

    1983-01-01

    Beta radiation-emitting isotopes are being used increasingly in diagnostic gastroenterology for the study of absorption. The major reason for the popularity of radioisotopes is that their use is convenient for patient and physician alike. They often obviate naso- or orointestinal intubation and the collection, storage, and analysis of stool. The radioactivity used for the studies of digestive and absorptive processes is small and is not hazardous. In spite of the safety of the radiolabeled compounds, their use is restricted in children and pregnant women. Therefore, for most tests, promising alternative methods that make use of the stable isotope of carbon, /sup 13/C, instead of the radioactive /sup 14/C have been developed. The analysis of stable isotopes requires more sophisticated technology than that of radioactive compounds, however. Only a few centers presently are equipped and staffed to analyze stable isotopes on a routine basis. In contrast, the analysis of radioactive isotopes has become a routine procedure in almost ever major laboratory. The last decade has brought the development of several radioactive absorption tests. The clinically most useful tests relate to the study of bile acid, fat, lactose, and xylose absorption. All of these tests utilize the excretion rate of /sup 14/CO/sub 2/ in breath after ingestion of a /sup 14/C-labeled compound as a measure of the rate of its absorption or malabsorption

  7. Black carbon and organic matter stabilization in soil

    Science.gov (United States)

    Lehmann, J.; Liang, B.; Sohi, S.; Gaunt, J.

    2007-12-01

    Interaction with minerals is key to stabilization of organic matter in soils. Stabilization is commonly perceived to occur due to entrapment in pore spaces, encapsulation within aggregates or interaction with mineral surfaces. Typically only interactions between organic matter and minerals are considered in such a model. Here we demonstrate that black carbon may act very similar to minerals in soil in that it enhances the stabilization of organic matter. Mineralization of added organic matter was slower and incorporation into intra-aggregate fractions more rapid in the presence of black carbon. Added double-labeled organic matter was recovered in fractions with high amounts of black carbon. Synchrotron-based near-edge x-ray fine structure (NEXAFS) spectroscopy coupled to scanning transmission x-ray microscopy (STXM) suggested a possible interaction of microorganisms with black carbon surfaces and metabolization of residues. These findings suggest a conceptual model that includes carbon-carbon interactions and by-passing for more rapid stabilization of litter into what is commonly interpreted as stable carbon pools.

  8. Gravimetric determination of the iodine number of carbon black

    International Nuclear Information System (INIS)

    Murphy, L.J. Jr.

    1991-01-01

    This paper discusses a gravimetric method for the determination of the iodine adsorption number of carbon black. It comprises determining the concentration of an accurately weighed iodine blank solution by adding a standardized titrant to the iodine solution until a titration endpoint is reached and determining the concentration of the iodine solution by accurately weighing the amount of the standardized titrant necessary to reach the endpoint, accurately weighing an amount of carbon black and adding an appropriate amount of an accurately weighed portion of the iodine solution, equilibrating the carbon black-iodine solution mixture, adding the standardized titrant to an accurately weighed portion of the supernatant from the carbon black-iodine mixture until a titration endpoint is reached and determining the concentration of the supernatant by accurately weighing the amount of the standardized titrant necessary to reach the endpoint, wherein the titration endpoint of the supernatant is obtained using an indicating and a reference electrode, and calculating the iodine adsorption number of the carbon black based on the gravimetrically determined concentration of the titrant, the iodine solution, and the supernatant

  9. Bounding the Role of Black Carbon in the Climate System: a Scientific Assessment

    Science.gov (United States)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Bernsten, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Karcher, B.; Koch, D.; hide

    2013-01-01

    Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg/yr in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W/sq m with 90% uncertainty bounds of (+0.08, +1.27)W/sq m. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W/sq m. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W/sq m with 90% uncertainty bounds of +0.17 to +2.1 W/sq m. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing

  10. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.; Forster, Piers; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, Steven J.; Karcher, B.; Koch, Dorothy; Kinne, Stefan; Kondo, Yutaka; Quinn, P. K.; Sarofim, Marcus; Schultz, Martin; Schulz, M.; Venkataraman, C.; Zhang, Hua; Zhang, Shiqiu; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, Joshua P.; Shindell, Drew; Storelvmo, Trude; Warren, Stephen G.; Zender, C. S.

    2013-06-06

    Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second

  11. Absorption of carbon dioxide and isotope exchange rate of carbon in a reaction system between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1985-01-01

    The performance of isotope separation of carbon-13 by chemical exchange between carbon dioxide and carbamic acid was studied. The working fluid used in the study was a solution of DNBA, (C 4 H 9 ) 2 NH and n-octane mixture. Factors related to the isotope exchange rate were measured, such as the absorption rate of carbon dioxide into the solution of DNBA and n-octane, the isotope exchange rate and the separation factor in the reaction between CO 2 and carbamic acid. The absorption of CO 2 into the working fluid was the sum of chemical absorption by DNBA and physical absorption by n-octane. The absorption of carbon dioxide into the working fluid was negligible at temperatures over 90 0 C, but increased gradually at lower temperatures. Carbon dioxide was absorbed into DNBA by chemical absorption, and DNBA was converted to carbamic acid by the reaction. The reaction for synthesis and decomposition of carbamic acid was reversible. The separation factor in equilibrium reached a large value at lower temperatures. The isotope exchange rate between gas and liquid was proportional to the product of the concentration of carbamic acid and the concentration of CO 2 by physical absorption. The isotope separation of carbon by chemical exchange reaction is better operated under the conditions of lower temperature and higher pressure. (author)

  12. Water requirements of the carbon-black industry

    Science.gov (United States)

    Conklin, Howard L.

    1956-01-01

    Carbon blacks include an important group of industrial carbons used chiefly as a reinforcing agent in rubber tires. In 1953 more than 1,610 million pounds of carbon black was produced, of which approximately 1,134 million pounds was consumed by the rubber industry. The carbon-black industry uses small quantities of water as compared to some industries; however, the water requirements of the industry are important because of the dependence of the rubber-tire industry on carbon black.Two methods are used in the manufacture of carbon black - contact and furnace. The only process use of water in the contact method is that used in pelleting. Water is used also in the plant washhouse and for cleaning, and sometimes the company camp may be supplied by the plant. A survey made during the last quarter of 1953 showed that the average values of unit water use at contact plants for process use, all plant uses, and all uses including company camps are 0.08, 0.14, and 0.98 gallon of water per pound of carbon black respectively.In addition to use in wet pelleting, large quantities of water are required in continuous and cyclic furnace methods to reduce the temperature of the gases of decomposition in order to separate and collect the entrained carbon black. The 22 furnace plants in operation in 1953 used a total of 12.4 million gallons per day for process use. Four furnace plants generate electric power for plant use; condenser-cooling water for one such plant may nearly equal the requirements of the entire industry for process use. The average values of unit water use at furnace plants for process use, all plant uses and all uses including company camps but excluding power generation are 3.26, 3.34, and 3.45 gallons of water per pound of carbon black respectively.Carbon-black plants in remote, sparsely settled areas often must maintain company camps for employees. Twenty-one of twenty-seven contact plants surveyed in 1953 had company camps. These camps used large quantities of

  13. Bounding the role of black carbon in the climate system: A scientific assessment

    Science.gov (United States)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Kärcher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S.

    2013-06-01

    carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m-2 with 90% uncertainty bounds of (+0.08, +1.27) W m-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m-2 with 90% uncertainty bounds of +0.17 to +2.1 W m-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm

  14. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  15. Aerosol organic carbon to black carbon ratios: Analysis ofpublished data and implications for climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

    2005-07-11

    Measurements of organic carbon (OC) and black carbon (BC)concentrations over a variety of locations worldwide, have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3to 2.4, appear relatively constant and are generally unaffected by seasonality, sources or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of two lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  16. Intestinal absorption of 5 chromium compounds in young black ducks (Anas rubripes)

    Science.gov (United States)

    Eastin, W.C.; Haseltine, S.D.; Murray, H.C.

    1980-01-01

    An in vivo intestinal perfusion technique was used to measure the absorption rates of five Cr compounds in black ducks. Cr was absorbed from saline solutions of KCr(SO4 )2 and CrO3 at a rate about 1.5 to 2.0 times greater than from solutions of Cr, Cr(NO3 )3, and Cr(C5H7O2)3. These results suggest the ionic form of Cr in solution may be an important factor in determining absorption of Cr compounds from the small intestine.

  17. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; A. Frank Seibert; J. Tim Cullinane; Terraun Jones

    2003-01-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. The rigorous Electrolyte Non-Random Two-Liquid (electrolyte-NRTL) model has been regressed to represent CO{sub 2} solubility in potassium carbonate/bicarbonate solutions. An analytical method for piperazine has been developed using a gas chromatograph. Funding has been obtained and equipment has been donated to provide for modifications of the existing pilot plant system with stainless steel materials.

  18. Brown Carbon and Black Carbon in the Smoky Atmosphere during Boreal Forest Fires

    Science.gov (United States)

    Gorchakov, G. I.; Karpov, A. V.; Pankratova, N. V.; Semoutnikova, E. G.; Vasiliev, A. V.; Gorchakova, I. A.

    2017-12-01

    We have investigated the variability of smoke aerosol absorbing ability with variations in the content of brown carbon (BrC) and black carbon (BC). Using monitoring data on radiative characteristics of smoke aerosol at AERONET stations and the spatial distribution of aerosol optical depth (AOD) obtained by the MODIS spectrometer ( Terra satellite), we have detected large-scale smokes during boreal forest fires in Russia and Canada (1995-2012). The spatial distribution (50°-70° N, 95°-125° W) and temporal variability (at AERONET station Fort McMurray) of AOD during the smoking of a part of Canada in July 2012 have been analyzed. AOD probability distributions for July 14-18, 2012, and an estimate of aerosol radiative forcing of smoke aerosol at the upper boundary of the atmosphere have been obtained. We have proposed a technique for the diagnostics of BrC and BC in smoke aerosol particles from the spectral dependence of the imaginary part of the refractive index. At a wavelength of 440 nm, the contributions of BrC and BC to the smokeaerosol absorbing abitity can be comparable in magnitude. In many cases, the absorption spectra of smoke aerosol can be adequately approximated by either power or exponential functions. The presence of BrC in smoke-aerosol particles highly extends the variety of observed absorption spectra in a smoky atmosphere and spectral dependences of single scattering albedo. In the spectral range of 440-1020 nm, the radiative characteristics of smoke aerosol are largely contributed by its fine mode.

  19. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    Science.gov (United States)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  20. Electrical conductivity of short carbon fibers and carbon black-reinforced chloroprene rubber

    International Nuclear Information System (INIS)

    Khoshniat, A. R.; MirAli, M.; Hemmati, M.; Afshar Taromi, F.; Katbab, A.

    2002-01-01

    Elastomers and plastics are intrinsically insulating materials, but by addition of some conductive particles such as conductive carbon black, carbon fibers and metals, they can change to conductive form. Conductivity of these composites are due to formation of the lattices of conductive filler particles in polymer chains. In this report, conductivity of chloroprene rubber filled with carbon black and carbon fibers as a function of temperature and pressure are studied. Electrical conductivity of chloroprene in a function of temperature and pressure are studied. Electrical conductivity of chloroprene in the presence of carbon black with proper mixing conditions increases to the conductivity level of semiconductors and even in the presence of carbon fibers it increases to the level of a conductor material. Meanwhile, the sensitivity of this compound to heat and pressure rises. Thus these composites have found various applications in the manufacture of heat and pressure sensitive sensors

  1. Synthesis and luminescence of nanodiamonds from carbon black

    International Nuclear Information System (INIS)

    Hu Shengliang; Tian Fei; Bai Peikang; Cao Shirui; Sun Jing; Yang Jing

    2009-01-01

    Dispersed nanodiamonds just several nanometers in diameter have been successfully synthesized using carbon black as the carbon source by a long-pulse-width laser irradiation in water at room temperature and normal pressure. The produced nanodiamonds can emit strong visible light after simple surface passivation. The light emission is attributed to the surface states related to linkage groups formed on nanodiamond surface. The surface-passivated nanodiamonds with stable photoluminescence have high potential application in bioimaging and medicine

  2. Optics of Water Cloud Droplets Mixed with Black-Carbon Aerosols

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Cairns, Brian; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to calculate scattering and absorption properties of micrometer-sized water droplets contaminated by black carbon. Our numerically exact results reveal that, depending on the mode of soot-water mixing, the soot specific absorption can vary by a factor exceeding 6.5. The specific absorption is maximized when the soot material is quasi-uniformly distributed throughout the droplet interior in the form of numerous small monomers. The range of mixing scenarios captured by our computations implies a wide range of remote sensing and radiation budget implications of the presence of black carbon in liquid-water clouds. We show that the popular Maxwell-Garnett effective-medium approximation can be used to calculate the optical cross sections, single-scattering albedo, and asymmetry parameter for the quasi-uniform mixing scenario, but is likely to fail in application to other mixing scenarios and in computations of the elements of the scattering matrix.

  3. Carbon and black carbon in Yosemite National Park soils: sources, prescribed fire impacts, and policies

    Science.gov (United States)

    Shrestha, G.; Traina, S. J.

    2012-12-01

    We investigated the chemical and radiocarbon properties of black carbon recently deposited and accumulated in surface soils of six sites along an altitudinal gradient in Yosemite National Park, central California. The effect of prescribed (or controlled) forest burning on existing carbon and black carbon in surface soils was assessed to illuminate the role of this forest management and wildfire control strategy in the soil carbon cycle. The proportional contribution of fossil fuel or radiocarbon dead carbon versus biomass sources on these black carbon materials was analyzed to elucidate their origin, estimate their ages and explore the possible effects of prescribed burning on the amount of black carbon produced recently as well as historically. Supplementing these field results, we conducted a comparative spatial analysis of recent prescribed burn and wildfire coverage in Central California's San Joaquin Valley to approximate the effectiveness of prescribed burning for wildfire prevention. Federal and California policies pertaining to prescribed forest fires and/or black carbon were then evaluated for their effectiveness, air quality considerations, and environmental benefits. 13C NMR spectrum of soil surface char from study sites Prescribed burn coverage versus wildfires in central California

  4. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    We present here a proof of concept for a novel fabrication method of vertically aligned carbon nanotube forests, utilizing black silicon nanograss (a forest of silicon nanometer-sized spikes created with reactive ion etching) coated with titanium tungsten diffusion barrier as a template. The method...

  5. Characterisation of organic carbon in black shales of the Kachchh ...

    Indian Academy of Sciences (India)

    46

    probably in a lagoonal/marsh/swamp environment. ..... depositional environment of the Jhuran black shale along the northern part of mainland is ... of contamination. Hence, we consider that higher organic carbon in both the areas might have been derived from a common source and the samples have witnessed negligible ...

  6. Highly Loaded Carbon Black Supported Pt Catalysts for Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Vít, Zdeněk; Šolcová, Olga; Soukup, Karel; Koštejn, Martin; Bonde, J.L.; Maixnerová, Lucie; Odgaard, M.

    2015-01-01

    Roč. 256, NOV 1 (2015), s. 375-383 ISSN 0920-5861 R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * fuell cell * electrocatalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.312, year: 2015

  7. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Sci., Vol. 36, No. 4, August 2013, pp. 563–573. c Indian Academy of Sciences. Sulfonated carbon black-based composite membranes for fuel cell applications .... All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR ...

  8. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    C/min under nitrogen atmosphere. All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR spectra were recorded for mem- branes using Perkin Elmer Pyris 1 FTIR spectrophoto- meter. Membrane and carbon black ...

  9. Energy Absorption in Chopped Carbon Fiber Compression Molded Composites

    International Nuclear Information System (INIS)

    Starbuck, J.M.

    2001-01-01

    In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. The carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified

  10. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  11. Snow darkening caused by black carbon emitted from fires

    Science.gov (United States)

    Engels, Jessica; Kloster, Silvia; Bourgeois, Quentin

    2014-05-01

    We implemented the effect of snow darkening caused by black carbon (BC) emitted from forest fires into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM) to estimate its potential climate impact of present day fire occurrence. Considerable amounts of black carbon emitted from fires are transported into snow covered regions. Already very small quantities of black carbon reduce the snow reflectance, with consequences for snow melting and snow spatial coverage. Therefore, the SNICAR (SNow And Ice Radiation) model (Flanner and Zender (2005)) is implemented in the land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at the MPI-M. The SNICAR model includes amongst other processes a complex calculation of the snow albedo depending on black carbon in snow and snow grain growth depending on water vapor fluxes for a five layer snow scheme. For the implementation of the SNICAR model into the one layer scheme of ECHAM6-JSBACH, we used the SNICAR-online version (http://snow.engin.umich.edu). This single-layer simulator provides the albedo of snow for selectable combinations of impurity content (e.g. black carbon), snow grain size, and incident solar flux characteristics. From this scheme we derived snow albedo values for black carbon in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) and for different snow grain sizes for the visible (0.3 - 0.7 µm) and near infrared range (0.7 - 1.5 µm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 µm). Here, a radius of 50 µm corresponds to new snow, whereas a radius of 1000 µm corresponds to old snow. The required snow age is taken from the BATS (Biosphere Atmosphere Transfer Scheme, Dickinson et al. (1986)) snow albedo implementation in ECHAM6-JSBACH. Here, we will present an extended evaluation of the model including a comparison of modeled black carbon in snow concentrations to observed

  12. Emission factors and light absorption properties of brown carbon from household coal combustion in China

    Science.gov (United States)

    Sun, Jianzhong; Zhi, Guorui; Hitzenberger, Regina; Chen, Yingjun; Tian, Chongguo; Zhang, Yayun; Feng, Yanli; Cheng, Miaomiao; Zhang, Yuzhe; Cai, Jing; Chen, Feng; Qiu, Yiqin; Jiang, Zhiming; Li, Jun; Zhang, Gan; Mo, Yangzhi

    2017-04-01

    Brown carbon (BrC) draws increasing attention due to its effects on climate and other environmental factors. In China, household coal burned for heating and cooking purposes releases huge amounts of carbonaceous particles every year; however, BrC emissions have rarely been estimated in a persuasive manner due to the unavailable emission characteristics. Here, seven coals jointly covering geological maturity from low to high were burned in four typical stoves as both chunk and briquette styles. The optical integrating sphere (IS) method was applied to measure the emission factors (EFs) of BrC and black carbon (BC) via an iterative process using the different spectral dependence of light absorption for BrC and BC and using humic acid sodium salt (HASS) and carbon black (CarB) as reference materials. The following results have been found: (i) the average EFs of BrC for anthracite coal chunks and briquettes are 1.08 ± 0.80 and 1.52 ± 0.16 g kg-1, respectively, and those for bituminous coal chunks and briquettes are 8.59 ± 2.70 and 4.01 ± 2.19 g kg-1, respectively, reflecting a more significant decline in BrC EFs for bituminous coals than for anthracites due to briquetting. (ii) The BrC EF peaks at the middle of coal's geological maturity, displaying a bell-shaped curve between EF and volatile matter (Vdaf). (iii) The calculated BrC emissions from China's residential coal burning amounted to 592 Gg (1 Gg = 109 g) in 2013, which is nearly half of China's total BC emissions. (iv) The absorption Ångström exponents (AAEs) of all coal briquettes are higher than those of coal chunks, indicating that the measure of coal briquetting increases the BrC / BC emission ratio and thus offsets some of the climate cooling effect of briquetting. (v) In the scenario of current household coal burning in China, solar light absorption by BrC (350-850 nm in this study) accounts for more than a quarter (0.265) of the total absorption. This implies the significance of BrC to climate

  13. Bird specimens track 135 years of atmospheric black carbon and environmental policy

    Science.gov (United States)

    DuBay, Shane G.; Fuldner, Carl C.

    2017-10-01

    Atmospheric black carbon has long been recognized as a public health and environmental concern. More recently, black carbon has been identified as a major, ongoing contributor to anthropogenic climate change, thus making historical emission inventories of black carbon an essential tool for assessing past climate sensitivity and modeling future climate scenarios. Current estimates of black carbon emissions for the early industrial era have high uncertainty, however, because direct environmental sampling is sparse before the mid-1950s. Using photometric reflectance data of >1,300 bird specimens drawn from natural history collections, we track relative ambient concentrations of atmospheric black carbon between 1880 and 2015 within the US Manufacturing Belt, a region historically reliant on coal and dense with industry. Our data show that black carbon levels within the region peaked during the first decade of the 20th century. Following this peak, black carbon levels were positively correlated with coal consumption through midcentury, after which they decoupled, with black carbon concentrations declining as consumption continued to rise. The precipitous drop in atmospheric black carbon at midcentury reflects policies promoting burning efficiency and fuel transitions rather than regulating emissions alone. Our findings suggest that current emission inventories based on predictive modeling underestimate levels of atmospheric black carbon for the early industrial era, suggesting that the contribution of black carbon to past climate forcing may also be underestimated. These findings build toward a spatially dynamic emission inventory of black carbon based on direct environmental sampling.

  14. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL... CATEGORY Carbon Black Lamp Process Subcategory § 458.40 Applicability; description of the carbon black lamp...

  15. Aqueous carbon black dispersions prepared with steam jet-cooked corn starch

    Science.gov (United States)

    The utilization of jet-cooked waxy and normal corn starch to prepare aqueous dispersions of hydrophobic carbon black (Vulcan XC-72R) is reported. Blending carbon black (CB) into aqueous jet-cooked dispersions of starch followed by high pressure homogenization produced stable aqueous carbon black di...

  16. On the black carbon problem and its solutions

    Science.gov (United States)

    Jacobson, M. Z.

    2010-12-01

    Black carbon (BC) warms air temperatures in at least seven major ways: (a) directly absorbing downward solar radiation, (b) absorbing upward reflected solar radiation when it is situated above bright surfaces, such as snow, sea ice, and clouds, (c) absorbing some infrared radiation, (d) absorbing additional solar and infrared radiation upon obtaining a coating, (e) absorbing radiation multiply reflected within clouds when situated interstitially between cloud drops, (f) absorbing additional radiation when serving as CCN or scavenged inclusions within cloud drops, and (g) absorbing solar radiation when deposited on snow and sea ice, reducing the albedos of both. Modeling of the climate effects of BC requires treatment of all these processes in detail. In particular, treatment of BC absorption interstitially between cloud drops and from multiply-dispersed cloud drop BC inclusions must be treated simultaneously with treatment of cloud indirect effects to determine the net effects of BC on cloud properties. Here, results from several simulations of the effects of BC from fossil fuel and biofuel sources on global and regional climate and air pollution health are summarized. The simulations account for all the processes mentioned. Results are found to be statistically significant relative to chaotic variability in the climate system. Over time and in steady state, fossil-fuel soot plus biofuel soot are found to enhance warming more than methane. The sum of the soots causes less steady-state warming but more short term warming than does carbon dioxide. Thus eliminating soot emissions from both sources may be the fastest method of reducing rapid climate warming and possibly the only method of saving the Arctic ice. Eliminating such emissions may also reduce over 1.5 million deaths worldwide, particularly in developing countries. Short term mitigation options include the targeting of fossil-fuel and biofuel BC sources with particle traps, new stove technologies, and rural

  17. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    Science.gov (United States)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  18. Scattering of Hawking photons as a barrier to particle absorption by black holes

    International Nuclear Information System (INIS)

    Funkhouser, Scott

    2011-01-01

    Electromagnetic scattering interactions between photons emanating from a Schwarzschild black hole and an incident charged particle should generate a repulsive force between the particle and black hole. The net scattering cross-section is calculated here as a function of the mass M of the black hole and the mass m of the particle for scenarios in which the particle is point-like and initially stationary, with proper energy ε=m, at some location far from the black hole. It follows from comparing the repulsive scattering force to the corresponding gravitational force that, in order for the particle to be drawn to the black hole, ε/T bh must be greater than a certain lower bound that is of the order 10 -3 for spin-1/2 or spin-0 particles with unit-charge. Although the scattering restriction is weaker than the requirement ε/T bh >>1 obtained independently from field-theoretic and thermodynamic treatments, the recurrence of a lower bound on the Boltzmann factor ε/T bh in limitations on particle absorption suggests a physical unity whose nature is fundamentally thermodynamic.

  19. Comparative Investigation of the Efficiency of Absorption of Solar Energy by Carbon Composite Materials

    Science.gov (United States)

    Prikhod‧ko, N. G.; Smagulova, G. T.; Rakhymzhan, N. B.; Kim, S.; Lesbaev, B. T.; Nazhipkyzy, M.; Mansurov, Z. A.

    2017-01-01

    This paper presents the results of research on the efficiency of absorption of solar energy by various carbon materials (soot, carbonized apricot pits and rice husks, and carbon nanotubes in the form of a ″forest″), as well as by composites based on them with inclusions of metal oxide nanoparticles. An analysis of the efficiency of absorption of solar energy by various carbon materials has demonstrated the advantage of the carbon material from carbonized apricot pits. The results of the comparative investigation of the absorptivity of apricot pits with that of the coating of a production prototype of solar collector are presented.

  20. Characterization of Black Carbon Mixing State Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Davidovits, P. [Boston College, Chestnut Hill, MA (United States); Lewis, E. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Onasch, T. B. [Aerodyne Research, Billerica, MA (United States)

    2016-04-01

    Interpreting the temporal relationship between the scattering and incandescence signals recorded by the Single Particle Soot Photometer (SP2), Sedlacek et al. (2012) reported that 60% of the refractory black carbon containing particles in a plume containing biomass burning tracers exhibited non-core-shell structure. Because the relationship between the rBC (refractory black carbon) incandescence and the scattering signals had not been reported in the peer-reviewed literature, and to further evaluate the initial interpretation by Sedlacek et al., a series of experiments was undertaken to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance to characterize this signal relationship. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermochemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources. This work was communicated in a 2015 publication (Sedlacek et al. 2015)

  1. Suspensions of Carbon Black in Polybutadiene: Causes of Thermal Aging.

    Science.gov (United States)

    von Meerwall, E.; Massey, J. C.; Mahmood, N.; Hong, M. P.; Kelley, F. N.

    1999-04-01

    Hydroxyl-terminated polybutadiene containing carbon black is used as liner in solid rocket motors, chemically cured after application. To study its undesirable pre-cure viscosity decrease with thermal aging at 60^oC we varied preparation and measurement conditions and measured weight loss, settling (centrifuging), NMR relaxation and diffusion, electrical volume resistivity, black aggregate structure (microscopy), and used surface-active agents. Viscosity in black-filled specimens depends on shear rate (shear thinning) and strongly on black concentration. Polymer molecular mobility and bulk electrical resistivity depend only weakly on aging, and no change in black aggregate structure is found. But preventing the evaporation of volatile components eliminates the slow viscosity reduction to a lower asymptote. This 60^oC aging behavior is seen in measurements made at 60^oC but not at 25^oC, an effect not well understood. Viscosity thermal aging is thought to be related to emulsification of the polymer by water adsorbed on black particle surfaces, mediated by other volatile or reactive molecular species.

  2. Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics

    Science.gov (United States)

    E.S. Kane; W.C. Hockaday; M.R. Turetsky; C.A. Masiello; D.W. Valentine; B.P. Finney; J.A. Badlock

    2010-01-01

    There is still much uncertainty as to how wildfire affects the accumulation of burn residues (such as black carbon [BC]) in the soil, and the corresponding changes in soil organic carbon (SOC) composition in boreal forests. We investigated SOC and BC composition in black spruce forests on different landscape positions in Alaska, USA. Mean BC stocks in surface mineral...

  3. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amornvadee Veawab

    2006-09-30

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Ethylenediamine was detected in a degraded solution of MEA/PZ solution, suggesting that piperazine is subject to oxidation. Stripper modeling has demonstrated that vacuum strippers will be more energy efficient if constructed short and fat rather than tall and skinny. The matrix stripper has been identified as a configuration that will significantly reduce energy use. Extensive measurements of CO{sub 2} solubility in 7 m MEA at 40 and 60 C have confirmed the work by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 to 181 mpy in lean solutions of 6.2 m MEA/PZ as piperazine increases from 0 to 3.1 m.

  4. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

    2006-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

  5. CO{sub 2} CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; J.Tim Cullinane; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas

    2005-01-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Thermodynamic modeling predicts that the heat of desorption of CO{sub 2} from 5m K+/2.5 PZ from 85 kJ/mole at 40 C to 30 kJ/mole at 120 C. Mass transfer modeling of this solvent suggests that carbonate and general salt concentration play a major role in catalyzing the rate of reaction of CO{sub 2} with piperazine. Stripper modeling suggests that with the multipressure stripper, the energy consumption with a generic solvent decreases by 15% as the heat of desorption is decreased from 23.8 to 18.5 kcal/gmol. A second pilot plant campaign with 5m K+/2.5 PZ was successfully completed.

  6. Black carbon measurements in the boundary layer over western and northern Europe

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2010-10-01

    Full Text Available Europe is a densely populated region that is a significant global source of black carbon (BC aerosol, but there is a lack of information regarding the physical properties and spatial/vertical distribution of rBC in the region. We present the first aircraft observations of sub-micron refractory BC (rBC aerosol concentrations and physical properties measured by a single particle soot photometer (SP2 in the lower troposphere over Europe. The observations spanned a region roughly bounded by 50° to 60° N and from 15° W to 30° E. The measurements, made between April and September 2008, showed that average rBC mass concentrations ranged from about 300 ng m−3 near urban areas to approximately 50 ng m−3 in remote continental regions, lower than previous surface-based measurements. rBC represented between 0.5 and 3% of the sub-micron aerosol mass. Black carbon mass size distributions were log-normally distributed and peaked at approximately 180 nm, but shifted to smaller diameters (~160 nm near source regions. rBC was correlated with carbon monoxide (CO but had different ratios to CO depending on location and air mass. Light absorption coefficients were measured by particle soot absorption photometers on two separate aircraft and showed similar geographic patterns to rBC mass measured by the SP2. We summarize the rBC and light absorption measurements as a function of longitude and air mass age and also provide profiles of rBC mass concentrations and size distribution statistics. Our results will help evaluate model-predicted regional rBC concentrations and properties and determine regional and global climate impacts from rBC due to atmospheric heating and surface dimming.

  7. Void morphology in polyethylene/carbon black composites

    Energy Technology Data Exchange (ETDEWEB)

    Marr, D.W.M. [Colorado School of Mines, Golden, CO (United States). Chemical Engineering and Petroleum Refining Dept.; Wartenberg, M.; Schwartz, K.B. [Raychem Corp., Menlo Park, CA (United States)] [and others

    1996-12-31

    A combination of small angle neutron scattering (SANS) and contrast matching techniques is used to determine the size and quantity of voids incorporated during fabrication of polyethylene/carbon black composites. The analysis used to extract void morphology from SANS data is based on the three-phase model of microcrack determination via small angle x-rayscattering (SAXS) developed by W.Wu{sup 12} and applied to particulate reinforced composites.

  8. Black carbon and particulate matter optical properties from agricultural residue burning in the Pacific Northwest United States

    Science.gov (United States)

    Holder, A. L.; Aurell, J.; Urbanski, S. P.; Hays, M. D.; Gullett, B.

    2014-12-01

    Burning of agricultural residues in field is a common management practice that is used to quickly clear fields of post-harvest vegetation and to stimulate seed production in some grass species. Although cropland burning contributes only a minor fraction to the United States particulate matter and black carbon emissions, it can have substantial impacts on local and regional air quality and visibility. During the 2013 burning season in the Pacific Northwest United States emissions were measured from a series of burns carried out on cropland. Kentucky bluegrass residues (Poa pratensis), winter wheat stubble (Triticum aestivum), and chemically fallowed winter wheat stubble were burned in field. Particulate matter, light absorption and scattering, and black carbon concentrations were measured at ground level downwind of the field. Although particulate emissions varied substantially by fuel type and even among fields of the same fuel with different treatments (i.e., light versus heavy residues) the black carbon fraction of particulate matter was consistently less than 5% and accordingly single scattering albedos were above 0.9. The emissions exhibited strong spectral variation, with absorption angstrom exponents in the range of 3 - 5 in the wavelength range of 405 to 532 nm. Laboratory burns with residues collected from the fields produced emissions that were considerably more absorbing with single scattering albedos near 0.65 and lower absorption angstrom exponents of 1 - 2.

  9. Mechanochemical Functionalization of Carbon Black at Room Temperature

    Directory of Open Access Journals (Sweden)

    Desirée Leistenschneider

    2018-02-01

    Full Text Available Carbon nanomaterials such as carbon blacks are intrinsically hydrophobic with limited wettability in aqueous media, thus restricting their potential applications. To improve their hydrophilicity, common methods tend to utilize harmful chemicals and conditions, such as a mixture of KMnO4 and H2SO4 or a complex and expensive synthesis setup. In our work, we report a simple method to improve the wettability of these materials by a mechanochemical treatment completed within 1 h at room-temperature utilizing a NH3 solution. Besides increasing the specific surface area of the carbon black from 67 m2·g−1 up to 307 m2·g−1, our process also incorporates nitrogen- and oxygen-containing functional groups into the carbon. This reduces the contact angle from 80° to 30°, confirming an enhanced wettability. Our work presents an easy, fast, and straightforward pathway towards the functionalization of carbon nanomaterials and can be of use in various applications where aqueous wettability is advantageous.

  10. Black carbon over the Amazon during SAMBBA: it gets everywhere

    Science.gov (United States)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Liu, D.; Szpek, K.; Langridge, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2014-12-01

    Biomass burning represents a major source of Black Carbon (BC) aerosol to the atmosphere, which can result in major perturbations to weather, climate and ecosystem development. Large uncertainties in these impacts prevail, particularly on regional scales. One such region is the Amazon Basin, where large, intense and frequent burning occurs on an annual basis during the dry season. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to BC aerosol properties. Results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by a DMT Single Particle Soot Photometer (SP2) and an Aerodyne Aerosol Mass Spectrometer (AMS). The physical, chemical and optical properties of BC-containing particles across the region will be characterised, with particular emphasis on the vertical distribution. BC was ubiquitous across the region, with measurements extending from heavily deforested regions in the Western Amazon Basin, through to agricultural fires in the Cerrado (Savannah-like) region and more pristine areas over the Amazon Rainforest. Measurements in the vicinity of Manaus (a city located deep into the jungle) were also conducted. BC concentrations peaked within the boundary layer at a height of around 1.5km. BC-containing particles were found to be rapidly coated in the near-field, with little evidence for additional coating upon advection and dilution. Biomass burning layers within the free troposphere were routinely observed. BC-containing particles within such layers were typically associated with less coating than those within the boundary layer, suggestive of wet removal of more coated BC particles. The importance of such properties in relation to the

  11. Contribution of Black Carbon Aerosol to Drying of the Mediterranean

    Science.gov (United States)

    Tang, T.; Shindell, D. T.; Samset, B. H.; Boucher, O.; Forster, P.; Hodnebrog, Ø.; Myhre, G.; Sillmann, J.; Voulgarakis, A.; Andrews, T.; Faluvegi, G.; Fläschner, D.; Iverson, T.; Kasoar, M.; Kharin, V. V.; Kirkevag, A.; Lamarque, J. F.; Olivié, D.; Richardson, T.; Stjern, C.; Takemura, T.; Zwiers, F. W.

    2017-12-01

    Atmospheric aerosols affect cloud properties, radiative balance and thus, the hydrological cycle. Many studies have reported that precipitation has decreased in the Mediterranean since the mid-20th century, and investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare observed Mediterranean precipitation trends during 1951-2010 with responses to individual forcing in a set of state-of-the-art global climate models. Our analyses suggest that nearly one-third (30%) of the observed precipitation decrease may be attributable to black carbon forcing. The remainder is most strongly linked to forcing of well-mixed greenhouse gases (WMGHGs), with scattering sulfate aerosols having negligible impacts. Black carbon caused an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. This SLP change diverted the jet stream and storm tracks further northward, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. The results from this study suggest that future black carbon emissions may significantly affect regional water resources, agricultural practices, ecosystems, and economy in the Mediterranean region.

  12. Personal exposure to Black Carbon in transport microenvironments

    Science.gov (United States)

    Dons, Evi; Int Panis, Luc; Van Poppel, Martine; Theunis, Jan; Wets, Geert

    2012-08-01

    We evaluated personal exposure of 62 individuals to the air pollutant Black Carbon, using 13 portable aethalometers while keeping detailed records of their time-activity pattern and whereabouts. Concentrations encountered in transport are studied in depth and related to trip motives. The evaluation comprises more than 1500 trips with different transport modes. Measurements were spread over two seasons. Results show that 6% of the time is spent in transport, but it accounts for 21% of personal exposure to Black Carbon and approximately 30% of inhaled dose. Concentrations in transport were 2-5 times higher compared to concentrations encountered at home. Exposure was highest for car drivers, and car and bus passengers. Concentrations of Black Carbon were only half as much when traveling by bike or on foot; when incorporating breathing rates, dose was found to be twice as high for active modes. Lowest 'in transport' concentrations were measured in trains, but nevertheless these concentrations are double the concentrations measured at home. Two thirds of the trips are car trips, and those trips showed a large spread in concentrations. In-car concentrations are higher during peak hours compared to off-peak, and are elevated on weekdays compared to Saturdays and even more so on Sundays. These findings result in significantly higher exposure during car commute trips (motive 'Work'), and lower concentrations for trips with motive 'Social and leisure'. Because of the many factors influencing exposure in transport, travel time is not a good predictor of integrated personal exposure or inhaled dose.

  13. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2013-08-01

    Full Text Available Helical carbon nanofibers (HCNFs coated-carbon fibers (CFs were fabricated by catalytic chemical vapor deposition method. TEM and Raman spectroscopy characterizations indicate that the graphitic layers of the HCNFs changed from disorder to order after high temperature annealing. The electromagnetic parameters and microwave absorption properties were measured at 2–18 GHz. The maximum reflection loss is 32 dB at 9 GHz and the widest bandwidth under −10 dB is 9.8 GHz from 8.2 to 18 GHz for the unannealed HCNFs coated-CFs composite with 2.5 mm in thickness, suggesting that HCNFs coated-CFs should have potential applications in high performance microwave absorption materials.

  14. Arctic Black Carbon Initiative: Reducing Emissions of Black Carbon from Power & Industry in Russia

    Science.gov (United States)

    Cresko, J.; Hodson, E. L.; Cheng, M.; Fu, J. S.; Huang, K.; Storey, J.

    2012-12-01

    Deposition of black carbon (BC) on snow and ice is widely considered to have a climate warming effect by reducing the surface albedo and promoting snowmelt. Such positive climate feedbacks in the Arctic are especially problematic because rising surface temperatures may trigger the release of large Arctic stores of terrestrial carbon, further amplifying current warming trends. Recognizing the Arctic as a vulnerable region, the U.S. government committed funds in Copenhagen in 2009 for international cooperation targeting Arctic BC emissions reductions. As a result, the U.S. Department of State has funded three research and demonstration projects with the goal to better understand and mitigate BC deposition in the Russian Arctic from a range of sources. The U.S. Department of Energy's (DOE) Arctic BC initiative presented here is focused on mitigating BC emissions resulting from heat and power generation as well as industrial applications. A detailed understanding of BC sources and its transport and fate is required to prioritize efforts to reduce BC emissions from sources that deposit in the Russian Arctic. Sources of BC include the combustion of fossil fuels (e.g. coal, fuel oil, diesel) and the combustion of biomass (e.g. wildfires, agricultural burning, residential heating and cooking). Information on fuel use and associated emissions from the industrial and heat & power sectors in Russia is scarce and difficult to obtain from the open literature. Hence, our project includes a research component designed to locate Arctic BC emissions sources in Russia and determine associated BC transport patterns. We use results from the research phase to inform a subsequent assessment/demonstration phase. We use a back-trajectory modeling method (potential source contribution function - PSCF), which combines multi-year, high-frequency measurements with knowledge about atmospheric transport patterns. The PSCF modeling allows us to map the probability (by season and year) at course

  15. Online single particle measurements of black carbon coatings, structure and optical properties

    Science.gov (United States)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain

  16. Investigations of carbon dioxide absorption into aqueous potassium carbonate solutions containing primary and secondary alkanolamines

    Directory of Open Access Journals (Sweden)

    Bińczak Grzegorz

    2016-03-01

    Full Text Available In the paper the results of measurements of CO2 absorption rate in aqueous potassium carbonate solutions containing cyclohexylamine, diethanolamine, 2-methylaminoethanol and triethylenetetramine as activators have been presented. Enhnancement mass transfer factors as well as reaction rate constants have been determined. Results show that among the tested activators triethylenetetramine and 2-methyl-aminoethanol may be used (instead of diethanolamine as new promotors in a modified BENFLIELD process.

  17. The production of carbon dioxide from flue gas by membrane gas absorption

    NARCIS (Netherlands)

    Feron, P.H.M.; Jansen, A.E.

    1997-01-01

    The use of membrane gas absorption for carbon dioxide production from flue gases is discussed with special reference to the combined supply of heat and carbon dioxide to greenhouses. Novel absorption liquids are introduced which show an improved performance in terms of system stability and mass

  18. Characterization of black carbon in an urban-rural fringe area of Beijing.

    Science.gov (United States)

    Ji, Dongsheng; Li, Liang; Pang, Bo; Xue, Peng; Wang, Lili; Wu, Yunfei; Zhang, Hongliang; Wang, Yuesi

    2017-04-01

    Measuring black carbon (BC) is critical to understand the impact of combustion aerosols on air quality and climate change. In this study, BC was measured in 2014 at a unique community formed with rapid economic development and urbanization in an urban-rural fringe area of Beijing. Hourly BC concentrations were 0.1-33.5 μg/m 3 with the annual average of 4.4 ± 3.7 μg/m 3 . BC concentrations had clear diurnal, weekly, and seasonal variations, and were closely related with atmospheric visibility. The absorption coefficient of aerosols increased while its contribution to extinction coefficient decreased with the enhancement of PM 2.5 concentration. The high mass absorption efficiency (MAE) of EC was attributed to a combination of coal combustion, vehicular emission and rapidly coating by water-soluble ions and organic carbon (OC). BC concentrations followed a typical lognormal pattern, with over 88% samples in 0.1-10.0 μg/m 3 . Low BC levels were mostly bounded up with winds from north and northwest. Coal combustion and biomass burning were closely associated with severe haze pollution events. Firework discharge had significant UV absorption contribution. During the Asia-Pacific Economic Cooperation (APEC) forum in November 2014, air quality obviously improved due to various control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China

    Science.gov (United States)

    Cheng, Y.; He, K.-B.; Zheng, M.; Duan, F.-K.; Du, Z.-Y.; Ma, Y.-L.; Tan, J.-H.; Yang, F.-M.; Liu, J.-M.; Zhang, X.-L.; Weber, R. J.; Bergin, M. H.; Russell, A. G.

    2011-11-01

    The mass absorption efficiency (MAE) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45±1.71 and 9.41±1.92 m2 g-1 during winter and summer respectively. The daily variation of MAE was found to coincide with the abundance of organic carbon (OC), especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA) or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent-MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent-MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., below 2.7 m2 g-1 for two Indian cities). Results from source samples (including diesel exhaust samples and biomass smoke samples) also demonstrated that emissions from biomass burning would decrease the MAE of EC. Moreover, optical properties of water-soluble organic carbon (WSOC) in Beijing were presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ-7, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm) was 1.79±0.24 and 0.71±0.20 m2 g-1 during winter and summer respectively. The large discrepancy between the MAE of WSOC during winter and summer was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs) should be more important as the precursors of SOA in winter. The MAE of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study

  20. Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City

    Science.gov (United States)

    Retama, A.; Baumgardner, D.; Raga, G. B.; McMeeking, G. R.; Walker, J. W.

    2015-08-01

    The Mexico City metropolitan area (MCMA) is a region that continues to grow in population and vehicular traffic as well as being the largest source of short-lived climate pollutants (SLCP) in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e., ozone (O3) and carbon monoxide (CO), but particulate matter (PM2.5 and PM10) and black carbon (BC) have shown a less positive response to mitigation strategies that have been in place for almost 3 decades. For the first time, extended measurements of equivalent black carbon (eBC), derived from light absorption measurements, have been made using a Photoacoustic Extinctiometer (PAX) over a 13 month period from March 2013 through March 2014. The daily trends in workdays (Monday through Saturday) and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in the MCMA: rainy, cold and dry and warm and dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, P emissions over a 14 year period. This suggests that new methods may need to be developed that can decrease potentially toxic levels of this particulate pollutant.

  1. Toxicity assessment of carbon black waste: A by-product from oil refineries

    International Nuclear Information System (INIS)

    Zhen, Xu; Ng, Wei Cheng; Fendy; Tong, Yen Wah; Dai, Yanjun; Neoh, Koon Gee; Wang, Chi-Hwa

    2017-01-01

    Highlights: • Carbon black waste extract decreased cell viability in a dose and time-dependent manner. • Apoptosis of human cell lines was induced by carbon black waste extract. • Carbon black waste extract elicited oxidative stress by increasing intracellular ROS generation. • Carbon black waste extract impaired antioxidant enzymatic activities of human cell lines. • The high toxicity of carbon black waste extract could be attributed mainly to the effect of vanadium. - Abstract: In Singapore, approximately 30 t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with

  2. Toxicity assessment of carbon black waste: A by-product from oil refineries

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Xu; Ng, Wei Cheng [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Fendy; Tong, Yen Wah [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Carbon black waste extract decreased cell viability in a dose and time-dependent manner. • Apoptosis of human cell lines was induced by carbon black waste extract. • Carbon black waste extract elicited oxidative stress by increasing intracellular ROS generation. • Carbon black waste extract impaired antioxidant enzymatic activities of human cell lines. • The high toxicity of carbon black waste extract could be attributed mainly to the effect of vanadium. - Abstract: In Singapore, approximately 30 t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with

  3. Constraining Primordial Black Holes with the EDGES 21-cm Absorption Signal arXiv

    CERN Document Server

    Hektor, Andi; Marzola, Luca; Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi

    The EDGES experiment has recently measured an anomalous global 21-cm spectrum due to hydrogen absorptions at redshifts of about $z\\sim 17$. Model independently, the unusually low temperature of baryons probed by this observable sets strong constraints on any physical process that transfers energy into the baryonic environment at such redshifts. Here we make use of the 21-cm spectrum to derive bounds on the energy injection due to a possible population of ${\\cal O}(1-100) M_\\odot$ primordial black holes, which induce a wide spectrum of radiation during the accretion of the surrounding gas. After calculating the total radiative intensity of a primordial black hole population, we estimate the amount of heat and ionisations produced in the baryonic gas and compute the resulting thermal history of the Universe with a modified version of RECFAST code. Finally, by imposing that the temperature of the gas at $z\\sim 17$ does not exceed the indications of EDGES, we constrain the possible abundance of primordial black h...

  4. Black Carbon in Arctic Snow: Preliminary Results from Recent Field Measurements

    Science.gov (United States)

    Warren, S. G.; Grenfell, T. C.; Radionov, V. F.; Clarke, A. D.

    2007-12-01

    Annual snowpacks act to amplify variations in regional solar heating of the surface due to positive feedback processes associated with areal melting and precipitation. Small amounts of black carbon (BC) in the snow can reduce the albedo and modulate shortwave absorption and transmission affecting the onset of melt and heating of the snow pack. The effect of black carbon on the albedo of snow in the Arctic is estimated to be up to a few percent. The only prior survey of arctic snow was that of Clarke and Noone in 1983-84. We have begun a wide- area survey of the BC content of arctic snow in order to update and expand the 1983/84 survey. Samples of snow have been collected in mid to late spring when the entire winter snowpack was accessible. The samples have been melted and filtered, and the filters analyzed for absorptive impurities. To date, sites in Alaska, Canada, Greenland, and in the Arctic Basin have been sampled. In March and April 2007 we also carried out a field program at four sites in northwestern Russia as part of the International Polar Year. Preliminary results based on visual comparison with the standard filters indicate that the snow cover in arctic North America and the Beaufort Sea have lower BC concentrations now than 20 years ago while levels in Greenland are about the same. Background levels of BC in Russia are approximately twice those in North America consistent with modeling predictions of Flanner et al., 2007. More accurate values of absorption will be obtained by measurement of spectral transmission of the filters, which will also allow the relative contributions of BC and soil dust to be determined.

  5. Roles of black carbon on the fate of heavy metals and agrochemicals in soil

    Science.gov (United States)

    Char(coal) and other black carbon materials can comprise up to 35% of total organic carbon in US agricultural soils, and are known to strongly and often irreversibly bind contaminants including heavy metals. Black carbon has received renewed interests in recent years as a solid co-product formed du...

  6. Multifunctional superhydrophobic polymer/carbon nanocomposites: graphene, carbon nanotubes, or carbon black?

    Science.gov (United States)

    Asthana, Ashish; Maitra, Tanmoy; Büchel, Robert; Tiwari, Manish K; Poulikakos, Dimos

    2014-06-11

    Superhydrophobic surfaces resisting water penetration into their texture under dynamic impact conditions and offering simultaneously additional functionalities can find use in a multitude of applications. We present a facile, environmentally benign, and economical fabrication of highly electrically conductive, polymer-based superhydrophobic coatings, with impressive ability to resist dynamic water impalement through droplet impact. To impart electrical conductivity, the coatings were prepared by drop casting suspensions with loadings of different kinds of carbon nanoparticles, namely, carbon black (CB), carbon nanotubes (CNT), graphene nanoplatelets (GNP) and their combinations, in a fluoropolymer dispersion. At 50 wt % either CB or CNT, the nanocomposite coatings resisted impalement by water drops impacting at 3.7 m/s, the highest attainable speed in our setup. However, when tested with 5 vol % isopropyl alcohol-water mixture, i.e., a lower surface tension liquid posing a stiffer challenge with respect to impalement, only the CB coatings retained their impalement resistance behavior. GNP-based surfaces featured very high conductivity ∼1000 S/m, but the lowest resistance to water impalement. The optimal performance was obtained by combining the carbon fillers. Coatings containing CB:GNP:polymer = 1:1:2 showed both excellent impalement resistance (up to 3.5 m/s with 5 vol % IPA-water mixture drops) and electrical conductivity (∼1000 S/m). All coatings exhibited superhydrophobic and oleophilic behavior. To exemplify the additional benefit coming from this property, the CB and the optimal, combined CB/GNP coatings were used to separate mineral oil and water through filtration of their mixture.

  7. Centennial black carbon turnover observed in a Russian steppe soil

    Directory of Open Access Journals (Sweden)

    K. Hammes

    2008-09-01

    Full Text Available Black carbon (BC, from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m−2, or about 7–10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182–541 years, much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene polycarboxylic acids (BPCA as molecular markers. The proportions of less-condensed (and thus more easily degradable BC structures decreased, whereas the highly condensed (and more recalcitrant BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  8. Centennial black carbon turnover observed in a Russia steppe soil

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I.

    2008-09-15

    Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  9. Mesozoic black shales, source mixing and carbon isotopes

    Science.gov (United States)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  10. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  11. Sensitive method for dosing carboxylic functions of carbons and its application to the study of thermally processed carbon blacks

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    This research thesis reports the development of a sensitive method for the dosing of carboxylic functions present at the surface of carbon blacks, and the use of this method to study the evolution of a carbon black during heat treatments. After a brief description of modes of fabrication of carbon blacks and of their structure, the author proposes an overview of knowledge on their oxidation and functional analysis. After having outlined that existing methods do not allow the measurement of function quantities less than ten micro-equivalent per gram of carbon, the author reports the development of a method which allows such measurements. By using this method, the author shows that carboxylic groups of a carbon black, oxidized by air or not, decompose during degassing by forming carbon dioxide, and that, reciprocally, the released carbon dioxide is exclusively produced by the decomposition of carboxylic groups [fr

  12. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    Science.gov (United States)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  13. Few-Layer Black Phosphorus Carbide Field-Effect Transistor via Carbon Doping.

    Science.gov (United States)

    Tan, Wee Chong; Cai, Yongqing; Ng, Rui Jie; Huang, Li; Feng, Xuewei; Zhang, Gang; Zhang, Yong-Wei; Nijhuis, Christian A; Liu, Xinke; Ang, Kah-Wee

    2017-06-01

    Black phosphorus carbide (b-PC) is a new family of layered semiconducting material that has recently been predicted to have the lightest electrons and holes among all known 2D semiconductors, yielding a p-type mobility (≈10 5 cm 2 V -1 s -1 ) at room temperature that is approximately five times larger than the maximum value in black phosphorus. Here, a high-performance composite few-layer b-PC field-effect transistor fabricated via a novel carbon doping technique which achieved a high hole mobility of 1995 cm 2 V -1 s -1 at room temperature is reported. The absorption spectrum of this material covers an electromagnetic spectrum in the infrared regime not served by black phosphorus and is useful for range finding applications as the earth atmosphere has good transparency in this spectral range. Additionally, a low contact resistance of 289 Ω µm is achieved using a nickel phosphide alloy contact with an edge contacted interface via sputtering and thermal treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The absorption of carbon monoxide in COSORB solutions: absorption rate and capacity

    NARCIS (Netherlands)

    Hogendoorn, Kees; van Swaaij, Willibrordus Petrus Maria; Versteeg, Geert

    1995-01-01

    Absorption rate experiments and equilibrium experiments were carried out for the COSORB reaction at 300 K. The equilibrium data at 300 K could reasonably well be described with the following relation: [...] Determination of the kinetics and mechanism of a chemical reaction by means of absorption

  15. Relating black carbon content to reduction of snow albedo

    Science.gov (United States)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction. Our radiative transfer model uses the discrete ordinates algorithm DISORT 2.0. We have chosen a representative BC size distribution and optical constants, and have incorporated those of mineral dust as well. While a given mass of BC causes over an order of magnitude more snow albedo reduction compared to dust, a snowpack containing dust mutes the albedo-reducing effect of BC. Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates into the snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation

  16. Climatic Effects of Black Carbon Aerosols Over the Tibetan Plateau

    Science.gov (United States)

    He, Cenlin

    Black carbon (BC), also known as soot, has been identified as the second most important anthropogenic emissions in terms of global climate forcing in the current atmosphere. Ample evidence has shown that BC deposition is an important driver of rapid snow melting and glacier retreat over the Tibetan Plateau, which holds the largest snow/ice mass outside polar regions. However, the climatic effects of BC over the Tibetan Plateau have not been thoroughly investigated in such a manner as to understand, quantify, and reduce large uncertainties in the estimate of radiative and hydrological effects. Thus, this Ph.D. study seeks to understand and improve key processes controlling BC life cycle in global and regional models and to quantify BC radiative effects over the Tibetan Plateau. First, the capability of a state-of-the-art global chemical transport model (CTM), GEOS-Chem, and the associated model uncertainties are systematically evaluated in simulating BC over the Tibetan Plateau, using in situ measurements of BC in surface air, BC in snow, and BC absorption optical depth. The effects of three key factors on the simulation are also delineated, including Asian anthropogenic emissions, BC aging process, and model resolution. Subsequently, a microphysics-based BC aging scheme that accounts for condensation, coagulation, and heterogeneous chemical oxidation processes is developed and examined in GEOS-Chem by comparing with aircraft measurements. Compared to the default aging scheme, the microphysical scheme reduces model-observation discrepancies by a factor of 3, particularly in the middle and upper troposphere. In addition, a theoretical BC aging-optics model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage

  17. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    Science.gov (United States)

    Hunt, R. D.; Johnson, J. A.; Collins, J. L.; McMurray, J. W.; Reif, T. J.; Brown, D. R.

    2018-01-01

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC2), which is UC1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UC2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90-92% of TD with full conversion of UC to UC2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC2. The selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.

  18. Black Carbon, Aerosol optical depth and Angstrom Exponent in São Paulo, Brazil

    Science.gov (United States)

    Miranda, R. M.; Perez-Martinez, P. J.; Andrade, M. D. F.

    2017-12-01

    Black carbon (BC) is a major absorber of solar radiation, and its impact on the radiative balance is therefore considered important. Fossil fuel combustion processes and biomass burning result in the emission of BC. Black carbon is being monitored since 2014 with a Multi-Angle Absorption Photometer-MAAP (5012; Thermo Scientific) in the East Zone of São Paulo, Brazil. São Paulo Metropolitan Area with more than 19 million inhabitants, 7 million vehicles, has high concentrations of air pollutants, especially in the winter. Vehicles can be considered the principal source of particles emitted to the atmosphere. Concentration of the pollutant had an average of 1.95 ug.m-3 ± 2.06 and a maximum value of 19.93 ug.m-3. These large variations were due to meteorological effects and to the influence of anthropogenic activities, since samples were collected close to important highways. Winds coming from the East part predominate. Higher concentrations were found in the winter months (June, July and August). Optical data from AERONET (Aerosol Optical Depth-AOD 550 nm and Angstrom Exponent 440-675 nm) were related to BC concentrations for the period from August, 2016. Average values of AOD at 500 nm and Angstrom Parameter (440-675nm) were 0.16±0.11 and 1.44±0.23, respectively. Higher BC concentrations were related to lower Angstrom values.

  19. High Black Carbon (BC) Concentrations along Indian National Highways

    Science.gov (United States)

    Kumar, S.; Singh, A. K.; Singh, R. P.

    2015-12-01

    Abstract:Black carbon (BC), the optically absorbing component of carbonaceous aerosol, has direct influence on radiation budget and global warming. Vehicular pollution is one of the main sources for poor air quality and also atmospheric pollution. The number of diesel vehicles has increased on the Indian National Highways during day and night; these vehicles are used for the transport of goods from one city to another city and also used for public transport. A smoke plume from the vehicles is a common feature on the highways. We have made measurements of BC mass concentrations along the Indian National Highways using a potable Aethalometer installed in a moving car. We have carried out measurements along Varanasi to Kanpur (NH-2), Varanasi to Durgapur (NH-2), Varanasi to Singrauli (SH-5A) and Varanasi to Ghazipur (NH-29). We have found high concentration of BC along highways, the average BC mass concentrations vary in the range 20 - 40 µg/m3 and found high BC mass concentrations up to 600 μg/m3. Along the highways high BC concentrations were characteristics of the presence of industrial area, power plants, brick kilns and slow or standing vehicles. The effect of increasing BC concentrations along the National Highways and its impact on the vegetation and human health will be presented. Key Words: Black Carbon; Aethalometer; mass concentration; Indian National Highways.

  20. Birchwood biochar as partial carbon black replacement in styrene-butadiene rubber composites

    Science.gov (United States)

    Birchwood feedstock was used to make slow pyrolysis biochar that contained 89% carbon and butadiene rubber. Composites made from blended fillers of 25/75 biochar/carbon black were equivalent to or superior to their 100% carbo...

  1. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  2. Measurements of black carbon and its impact over Southwest Greenland Ice Sheet from 2016 to 2017.

    Science.gov (United States)

    Cintron, I.; Leidman, S. Z.; Rennermalm, A. K.; Mazurek, M.

    2017-12-01

    Black carbon (BC) is recognized as the second most important anthropogenic atmospheric warming species, only after carbon dioxide (CO2), since its radiative forcing has been estimated to +0.4 W m-2. Light absorbing aerosols, such as BC, have a significant impact on snow reflectivity decline, which contributes to the accelerated melting seen in recent years in the region. In Greenland, the ice sheet mass loss has tripled since the mid 1950s in concert with sharply lowered albedo and increased absorption of solar radiation enhancing surface melt. Presence of BC is likely to enhance solar absorption, yet the impact is not well understood partly due to scarce availability of direct measurements of BC in the Greenland accumulation zone. Here, we are investigating how much of the change in the observed snowmelt in the southwest GrIS can be attributed to deposition of light absorbing aerosols, such as BC. To this end we collected snow samples at different depths, in five different sites on the southwest GrIS and applied the Snow, Ice, and Aerosol Radiative (SNICAR) model. Finally, results from BC mass annual concentration distribution and mixing state using the Single Particle Soot Photometer (SP2) will be discussed.

  3. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  4. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marus Hiilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2006-12-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion rate in 5 M MEA/1,2M PZ is 22 mpy. With 1 wt% heat stable salt, the corrosion rate increases by 50% to 160% in the order: thiosulfate< oxalatecarbonate is ineffective in the absence of oxygen, but 50 to 250 ppm reduces corrosion to less than 2 mpy in the presence of oxygen.

  5. Water vapor absorption of carbon dioxide laser radiation

    Science.gov (United States)

    Shumate, M. S.; Menzies, R. T.; Margolis, J. S.; Rosengren, L.-G.

    1976-01-01

    An optoacoustic detector or spectrophone has been used to perform detailed measurements of the absorptivity of mixtures of water vapor in air. A (C-12) (O-16)2 laser was used as the source, and measurements were made at forty-nine different wavelengths from 9.2 to 10.7 microns. The details of the optoacoustic detector and its calibration are presented, along with a discussion of its performance characteristics. The results of the measurements of water vapor absorption show that the continuum absorption in the wavelength range covered is 5-10% lower than previous measurements.

  6. An evaluation of three methods for measuring black carbon in Alert, Canada

    Science.gov (United States)

    Sharma, Sangeeta; Leaitch, W. Richard; Huang, Lin; Veber, Daniel; Kolonjari, Felicia; Zhang, Wendy; Hanna, Sarah J.; Bertram, Allan K.; Ogren, John A.

    2017-12-01

    Absorption of sunlight by black carbon (BC) warms the atmosphere, which may be important for Arctic climate. The measurement of BC is complicated by the lack of a simple definition of BC and the absence of techniques that are uniquely sensitive to BC (e.g., Petzold et al., 2013). At the Global Atmosphere Watch baseline observatory in Alert, Nunavut (82.5° N), BC mass is estimated in three ways, none of which fully represent BC: conversion of light absorption measured with an Aethalometer to give equivalent black carbon (EBC), thermal desorption of elemental carbon (EC) from weekly integrated filter samples to give EC, and measurement of incandescence from the refractory black carbon (rBC) component of individual particles using a single particle soot photometer (SP2). Based on measurements between March 2011 and December 2013, EBC and EC are 2.7 and 3.1 times higher than rBC, respectively. The EBC and EC measurements are influenced by factors other than just BC, and higher estimates of BC are expected from these techniques. Some bias in the rBC measurement may result from calibration uncertainties that are difficult to estimate here. Considering a number of factors, our best estimate of BC mass in Alert, which may be useful for evaluation of chemical transport models, is an average of the rBC and EC measurements with a range bounded by the rBC and EC combined with the respective measurement uncertainties. Winter-, spring-, summer-, and fall-averaged (± atmospheric variability) estimates of BC mass in Alert for this study period are 49 ± 28, 30 ± 26, 22 ± 13, and 29 ± 9 ng m-3, respectively. Average coating thicknesses estimated from the SP2 are 25 to 40 % of the 160-180 nm diameter rBC core sizes. For particles of approximately 200-400 nm optical diameter, the fraction containing rBC cores is estimated to be between 10 and 16 %, but the possibility of smaller undetectable rBC cores in some of the particles cannot be excluded. Mass absorption coefficients

  7. Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey)

    Science.gov (United States)

    Ersoy, Hakan; Yalçinalp, Bülent; Arslan, Mehmet; Babacan, Ali Erden; Çetiner, Gözde

    2016-11-01

    Turkey located in the Alpine-Himalayan Mountain Belt has 35% of the natural stone reserves of the world and has good quality marble, limestone, travertine and onyx reserves especially in the western regions of the country. The eastern Black Sea Region with a 1.4 million meters cubes reserve has a little role on the natural stone production in the country. For this reason, this paper deals with investigation on the potential of carbonate stone in the region and determination of the geological and geo-mechanical properties of these rocks in order to provide economic contribution to the national economy. While the study sites are selected among the all carbonate rock sites, the importance as well as the representative of the sites were carefully considered for the region. After representative samples were analyzed for major oxide and trace element compositions to find out petrochemical variations, the experimental program conducted on rock samples for determination of both physical and strength properties of the carbonate rocks. The results of the tests showed that there are significant variations in the geo-mechanical properties of the studied rock groups. The density values vary from 2.48 to 2.70 gr/cm3, water absorption by weight values range from 0.07 to 1.15% and the apparent porosity of the carbonate rocks are between 0.19 and 3.29%. However, the values of the UCS shows variation from 36 to 80 MPa. Tensile and bending strength values range from 3.2 to 7.5 MPa and 6.0-9.2 MPa respectively. Although the onyx samples have the lowest values of apparent porosity and water absorption by weight, these samples do not have the highest values of UCS values owing to occurrence of the micro-cracks. The UCS values of the rock samples were also found after cycling tests However, the limestone samples have less than 5% deterioration after freezing-thawing and wetting-drying tests, but travertine and onyx samples have more than 15% deterioration. Exception of the apparent

  8. Plasma polymerization surface modification of Carbon black and its effect in elastomers

    NARCIS (Netherlands)

    Mathew, T.; Datta, Rabin; Dierkes, Wilma K.; Talma, Auke; Ooij, W.J.; Noordermeer, Jacobus W.M.

    2011-01-01

    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known

  9. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver

    DEFF Research Database (Denmark)

    Bourdon, Julie A; Saber, Anne T; Jacobsen, Nicklas R

    2012-01-01

    Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo.......Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo....

  10. Transition between laser absorption dominated regimes in carbon-based plasma

    Directory of Open Access Journals (Sweden)

    K. Hajisharifi

    2017-09-01

    Full Text Available In this work, we investigate the energy absorption enhancement of a laser by adding a variety of light ion species to a primarily carbon-based plasma during the high-power laser interaction with the finite size targets. A developed Particle-In-Cell simulation code is used to study the reduction of laser reflectivity (stimulated backward scatterings in both Brillouin- and Raman-dominated regimes. The simulation is performed in various Carbon-light ion plasmas such as Carbon-Hydrogen, Carbon-Helium, Carbon-Deuterium, and Carbon-Tritium. The results show that, in the optimized condition, the inclusion of light Hydrogen ions into the Carbon-based plasma up to 50%-50% mixture enhances the laser absorption exceeding 20% in the Brillouin regime due to the suppression of laser reflectivity in contract to 4% in the Raman-dominated regime. Moreover, the absorption dominated regime switches from Raman to Brillouin regime by adding 50% of Hydrogen ions to a purely carbon target. The results of this investigation will be applicable to the laser-plasma experiments so long as the laser energy absorption in the Carbon plasma target, the most readily available material in laboratory, is concerned.

  11. Synthesis of Carbon Blacks from HDPE plastic by 3-phase AC thermal plasma

    OpenAIRE

    Fabry, Frédéric; Fulcheri, Laurent

    2017-01-01

    International audience; This paper reviews the last results obtained on the 3-phase AC plasma technology developed at the Centre PERSEE, MINES ParisTech, PSL for the treatment ofdomiciliary and industrial wastes for nanomaterial synthesis with a special focus on preliminary results obtained for the production of carbon blacks from plastics (HDPE pellets). Carbon blacks obtained from HDPE have shown a highly nanostructured organization very similar to those of acetylene black.

  12. Correlation between rheological and mechanical properties of black PE100 compounds – Effect of carbon black masterbatch

    Directory of Open Access Journals (Sweden)

    G. Pircheraghi

    2017-08-01

    Full Text Available Black PE100 compounds were prepared using a co-rotating twin screw extruder by addition of carbon black masterbatches containing 35–40 wt% carbon black and different polymer carriers to a pipe grade PE100 material with bimodal molecular weight distribution. Different properties of carbon black masterbatches and PE100 black compounds were evaluated using thermal, rheological and mechanical tests. Rheological results indicated an inverse correlation between melt flow index (MFI of masterbatch samples and storage modulus, complex viscosity and shear viscosity of black compounds, while flow instabilities of compounds were also postponed to higher shear rates. TGA indicated that masterbatch with highest value of MFI contained highest amount of low molecular weight lubricants which resulted in inhibition of strain hardening behavior in tensile test of its respective black compound unlike all other samples, reflecting possible suppressing of its long term resistance to slow crack growth. This behavior is attributable to facilitated crystallization and chain folding of longer chains in the presence of low molecular weight lubricants in this sample and consequently formation of thicker lamellas as confirmed by DSC, hence lowering density of entanglements in amorphous area and inhibition of strain hardening.

  13. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    Science.gov (United States)

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  14. Formation of bamboo-shaped carbon nanotubes on carbon black in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Kinshuk, E-mail: kdg@barc.gov.in [Bhabha Atomic Research Centre, Materials Group (India); Sen, D. [Bhabha Atomic Research Centre, Solid State Physics Division (India); Mazumdar, T. [Bhabha Atomic Research Centre, Research Reactor Services Division (India); Lenka, R. K.; Tewari, R. [Bhabha Atomic Research Centre, Materials Group (India); Mazumder, S. [Bhabha Atomic Research Centre, Solid State Physics Division (India); Joshi, J. B., E-mail: jb.joshi@ictmumbai.edu.in [Institute of Chemical Technology, Department of Chemical Engineering (India); Banerjee, S. [Homi Bhabha National Institute (India)

    2012-03-15

    For the first time, bamboo-shaped multiwalled carbon nanotubes, having diameter of the order of 50 nm, have been grown on carbon black in a fluidized bed in bulk amount. The activation energy for the synthesis of the product was found out to be around 33 kJ/mol in the temperature range of 700-900 Degree-Sign C. The carbon nanotubes were separated from the carbon black by preferential oxidation of the later, the temperature of which was determined by thermogravimetry. The transmission electron microscopy revealed different features of the nanotubes such as 'Y' junction, bend, and catalyst filling inside the nanotubes. Small angle neutron scattering was performed on the nanotubes synthesized at different temperatures. The data were fitted into a suitable model in order to find out the average diameter, which decreases with increase in synthesis temperature. The Monte Carlo simulation predicts the same behavior. Based on the above observations, a possible growth mechanism has been predicted. The oscillation in carbon saturation value inside the catalyst in the fluidized bed has been indicated as the responsible factor for the bamboo-shaped structure.

  15. Formation of bamboo-shaped carbon nanotubes on carbon black in a fluidized bed

    Science.gov (United States)

    Dasgupta, Kinshuk; Sen, D.; Mazumdar, T.; Lenka, R. K.; Tewari, R.; Mazumder, S.; Joshi, J. B.; Banerjee, S.

    2012-03-01

    For the first time, bamboo-shaped multiwalled carbon nanotubes, having diameter of the order of 50 nm, have been grown on carbon black in a fluidized bed in bulk amount. The activation energy for the synthesis of the product was found out to be around 33 kJ/mol in the temperature range of 700-900 °C. The carbon nanotubes were separated from the carbon black by preferential oxidation of the later, the temperature of which was determined by thermogravimetry. The transmission electron microscopy revealed different features of the nanotubes such as "Y" junction, bend, and catalyst filling inside the nanotubes. Small angle neutron scattering was performed on the nanotubes synthesized at different temperatures. The data were fitted into a suitable model in order to find out the average diameter, which decreases with increase in synthesis temperature. The Monte Carlo simulation predicts the same behavior. Based on the above observations, a possible growth mechanism has been predicted. The oscillation in carbon saturation value inside the catalyst in the fluidized bed has been indicated as the responsible factor for the bamboo-shaped structure.

  16. Formation of bamboo-shaped carbon nanotubes on carbon black in a fluidized bed

    International Nuclear Information System (INIS)

    Dasgupta, Kinshuk; Sen, D.; Mazumdar, T.; Lenka, R. K.; Tewari, R.; Mazumder, S.; Joshi, J. B.; Banerjee, S.

    2012-01-01

    For the first time, bamboo-shaped multiwalled carbon nanotubes, having diameter of the order of 50 nm, have been grown on carbon black in a fluidized bed in bulk amount. The activation energy for the synthesis of the product was found out to be around 33 kJ/mol in the temperature range of 700−900 °C. The carbon nanotubes were separated from the carbon black by preferential oxidation of the later, the temperature of which was determined by thermogravimetry. The transmission electron microscopy revealed different features of the nanotubes such as “Y” junction, bend, and catalyst filling inside the nanotubes. Small angle neutron scattering was performed on the nanotubes synthesized at different temperatures. The data were fitted into a suitable model in order to find out the average diameter, which decreases with increase in synthesis temperature. The Monte Carlo simulation predicts the same behavior. Based on the above observations, a possible growth mechanism has been predicted. The oscillation in carbon saturation value inside the catalyst in the fluidized bed has been indicated as the responsible factor for the bamboo-shaped structure.

  17. Black Carbon and West African Monsoon precipitation: observations and simulations

    Directory of Open Access Journals (Sweden)

    J. Huang

    2009-11-01

    Full Text Available We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC. From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear.

  18. Electrical properties of foamed polypropylene/carbon black composites

    Science.gov (United States)

    Iliev, M.; Kotzev, G.; Vulchev, V.

    2016-02-01

    Polypropylene composites containing carbon black fillers were produced by vibration assisted extrusion process. Solid (unfoamed) composite samples were molded by conventional injection molding method, while structural foams were molded by a low pressure process. The foamed samples were evidenced to have a solid skin-foamed core structure which main parameters were found to depend on the quantity of material injected in the mold. The average bubbles' sizes and their distribution were investigated by scanning electron microscopy. It is established that the conductivity of the foamed samples gradually decreases when reducing the sample density. Nevertheless, the conductivity is found to be lower than the conductivity of the unfoamed samples both being of the same order. The flexural properties of the composites were studied and the results were discussed in the context of the structure parameters of the foamed samples.

  19. Black carbon and West African Monsoon precipitation. Observations and simulations

    International Nuclear Information System (INIS)

    Huang, J.; Adams, A.; Zhang, C.; Wang, C.

    2009-01-01

    We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear. (orig.)

  20. DOUBLE-SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    International Nuclear Information System (INIS)

    OGDEN DM; KIRCH NW

    2007-01-01

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed

  1. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  2. Black carbon concentrations and mixing state in the Finnish Arctic

    Science.gov (United States)

    Raatikainen, T.; Brus, D.; Hyvärinen, A.-P.; Svensson, J.; Asmi, E.; Lihavainen, H.

    2015-06-01

    Atmospheric aerosol composition was measured using a Single Particle Soot Photometer (SP2) in the Finnish Arctic during winter 2011-2012. The Sammaltunturi measurement site at the Pallas GAW (Global Atmosphere Watch) station receives air masses from different source regions including the Arctic Ocean and continental Europe. SP2 is a unique instrument that can give detailed information about mass distributions and mixing state of refractory black carbon (rBC). As expected, the measurements showed widely varying rBC mass concentrations (0-120 ng m-3), which were related to varying contributions of different source regions and aerosol removal processes. The log-normally distributed rBC core size was relatively constant with an average geometric mass mean diameter of 194 nm. On the average, the number fraction of particles containing rBC was 0.24 and the average rBC core size in these particles was half of the total size (coated to core diameter ratio was 2.0). These numbers mean that the core was larger and had a significantly thicker coating than in typical particles closer to their source regions. Comparison of the measured rBC mass concentration with that of the optically detected equivalent black carbon (eBC) showed a factor of five difference, which could not be fully explained without assuming that a part of the absorbing material is non-refractory. Finally, climate implications of five different rBC mixing state representations were quantified using the Mie approximation and simple direct radiative forcing efficiency calculations. These calculations showed that the observed mixing state (separate non-absorbing and coated rBC particles) means significantly lower warming effect or even a net cooling effect when compared with that of an homogenous aerosol containing the same amounts of rBC and non-absorbing material.

  3. The absorption of carbon monoxide in COSORB solutions : absorption rate and capacity

    NARCIS (Netherlands)

    Hogendoorn, J.A.; Swaaij, W.P.M. van; Versteeg, G.F.

    1995-01-01

    Absorption rate experiments and equilibrium experiments were carried out for the COSORB reaction at 300 K. The equilibrium data at 300 K could reasonably well be described with the following relation: Keq=3.4×10^3=([CuAlCl4.tol.CO][tol])/([CO][CuAlCl4.tol2]) Determination of the kinetics and

  4. Seasonal trends in black carbon properties and co-pollutants in Mexico City

    Science.gov (United States)

    Retama, A.; Baumgardner, D.; Raga, G. B.; McMeeking, G. R.; Walker, J. W.

    2015-04-01

    The Mexico City Metropolitan Area (MCMA) is a region that continues to grow in population and vehicular traffic as well as being the largest source of short lived climate pollutants (SLCP) in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e. ozone (O3) and carbon monoxide (CO), but particulate matter (PM2.5 and PM10) and black carbon (BC) have shown little response to mitigation strategies that have been in place for more than two decades. For the first time, extended measurements have been made of equivalent black carbon (eBC), derived from light absorption measurements made with a Photoacoustic Extinctiometer (PAX), over a 13 month period from March 2013 through March 2014. The daily trends in workday (Monday through Saturday) and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in that region: rainy, cold-dry and warm-dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, Pemissions. The other co-pollutant concentrations are also significantly less on weekends except for O3 that shows no change in maximum values from workday to Sunday. As has been noted in previous studies, this lack of change is a result of the balancing effects of lower precursor gases, i.e. VOCs, offset by lower NOx that is an O3 inhibitor. A comparison of average, maximum values of eBC measured during the one year period of the current study with maximum values measured in short field campaigns in 2000 and 2006 show that there has been no significant change in the eBC emissions over a 14 year period. This suggests that the current pollution mitigation strategy will need to be evaluated to develop new methods than can decrease potentially toxic levels of this particulate pollutant.

  5. Observation of black carbon, ozone and carbon monoxide in the Kali Gandaki Valley Nepal

    Science.gov (United States)

    Dhungel, S.; Panday, A. K.; Kathayat, B.

    2014-12-01

    The increased melting of snow and ice in the arctic and the Himalaya is a growing concern for all of the earth's population. Deposition of black carbon (BC) on the snow and ice surface accelerates melting by absorbing the radiative energy and directly transferring all that energy onto the underlying surface. During pre-monsoon season, satellite images show a thick layer of haze covering the Indo-Gangetic plain (IGP) and the Himalayan foothills. Sub-micron particles are transported to the Himalaya from the IGP predominantly driven by the thermal valley wind system. The Himalayas consist of some of the tallest mountain ranges in the world, over 8000m tall that reach the stratosphere. The Kali Gandaki Valley in Nepal is one of the deepest gorges in the world, and has some of the highest up-valley winds in the world. It is also one of the most open connecting points for air from IGP to reach the Tibetan Plateau. In 2010 the University of Virginia, in collaboration with ICIMOD and Nepal Wireless, established an atmospheric research station in Jomsom, Nepal (28.78N, 83.42E, 2900 m.a.s.l.) half-way along the Kali Gandaki valley. The station is equipped to measure black carbon (BC), carbon monoxide (CO), and ozone concentrations. It also has an automated weather station, a filter sampler, and a NASA Aeronet Sunphotometer. Here we present our observations of black carbon, ozone, carbon monoxide at Jomsom to show the diurnal and seasonal variability of the pollutants. The results show diurnal patterns in the concentration of these pollutants and also episodes of high pollutant transport along the valley. These transport episodes are more common during the pre-monsoon season which indicates that deep mountain valleys like the Kali Gandaki valley facilitate the transport of pollutants and thus promote snow and glacial melting.

  6. Characterization of black carbon in the ambient air of Agra, India: Seasonal variation and meteorological influence

    Science.gov (United States)

    Gupta, Pratima; Singh, Shalendra Pratap; Jangid, Ashok; Kumar, Ranjit

    2017-09-01

    This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin. The mean black carbon concentration is 9.5 μg m-3 and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter (December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate (1-2 m s-1) wind speed, as compared to calm or turbulent atmospheric conditions.

  7. Accounting for black carbon lowers estimates of blue carbon storage services.

    Science.gov (United States)

    Chew, Swee Theng; Gallagher, John B

    2018-02-07

    The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO 2 , is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.

  8. GIS based approach for atmospheric carbon absorption strategies through forests development in Indian situations

    International Nuclear Information System (INIS)

    Yadav, Surendra Kumar

    2013-01-01

    Geographical information system (GIS) play important role in forest management. An effective strategy for enhancement of atmospheric carbon absorption productivity is through forests development in degraded forest areas and waste lands. Forestry sector has significant emissions removal capability which can further be enhanced by operationalizing major afforestation and reforestation initiatives like National Mission for a Green India besides continued strengthening of the present protection regime of forests. Secondary data was collected and analyzed. Different types of waste lands require different strategies for their development into forest areas; but few waste lands like rocky regions, glacier regions etc. cannot be developed into forest areas. Atmospheric carbon management is major problem before world community in present circumstances to control environmental pollution. Various forest ecosystems play significant role in carbon absorption. The diffusional net absorption rate of anthropogenic carbon to the biosphere is some unknown function of the atmospheric partial pressure of carbon dioxide. Estimations reveal that the average carbon absorption of the forests was around 1,240 grams (1.240 Kg) of carbon per square meter of canopy area. To stabilize atmospheric CO 2 , role of forestry depends on harvesting and disturbance rates, expectations of future forest productivity, and the ability to deploy technology and forest practices to increase the retention of sequestered CO 2 . There is a considerable self-damping effect that will moderate the future increase of the atmospheric carbon dioxide concentration. Capacity of the ocean to absorb carbon dioxide is limited; but atmospheric carbon absorption potentiality of India forests can be increased tremendously through reforestation, afforestation and development of degraded forest areas and waste lands. About 60 % of Indian waste lands can be developed to increase forest cover with reasonable efforts. When

  9. Conduction noise absorption by fiber-reinforced epoxy composites with carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Ok Hyoung; Kim, Sung-Soo; Lim, Yun-Soo

    2011-01-01

    Nearly all electronic equipment is susceptible to malfunction as a result of electromagnetic interference. In this study, glass fiber, and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave. - Research Highlights: → In this study, glass fiber and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes (CNTs) were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. → In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave.

  10. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs

  11. Black carbon emissions in Russia: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; Denysenko, Artur; Smith, Steven J.; Staniszewski, Aaron; Hao, Wei Min; Liu, Liang; Bond, Tami C.

    2017-08-01

    Russia has a particularly important role regarding black carbon (BC) emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. This study presents a comprehensive review of BC estimates from a range of studies. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russian associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 689 Gg in 2014, with an uncertainty range between (407-1,416), while OC emissions are 9,228 Gg (with uncertainty between 5,595 and 14,728). Wildfires dominated and contributed about 83% of the total BC emissions, however the effect on radiative forcing is mitigated by OC emissions. We also present an adjusted estimate of Arctic forcing from Russian OC and BC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.

  12. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  13. Absorption and scattering properties of organic carbon versus sulfate dominant aerosols at Gosan climate observatory in Northeast Asia

    Science.gov (United States)

    Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y. J.

    2014-08-01

    Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan Climate Observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately 2 to 4 days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and pyrolized

  14. Absorption and scattering properties of organic carbon vs. sulfate dominant aerosols at Gosan climate observatory in Northeast Asia

    Science.gov (United States)

    Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y.

    2013-12-01

    Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan climate observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 nm and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately two to four days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 nm and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and

  15. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.

    Science.gov (United States)

    Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying

    2017-08-30

    The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

  16. Accelerated Global Warming by Black Carbon due to its Burnoff of Clouds

    Science.gov (United States)

    Jacobson, M. Z.

    2012-12-01

    This study examines the impact of black carbon (BC) on global and Arctic climate primarily through its impacts on clouds. BC influences clouds in three major ways: (1) through cloud absorption effects (CAEs) I and II, which are the effects on cloud heating of absorbing inclusions in cloud particles and of absorbing aerosol particles interstitially between cloud particles at the cloud's actual relative humidity (RH), respectively; (2) through the semi-direct effect, which is the change in cloudiness due to the decrease in near-cloud RH and increase in atmospheric stability caused by absorbing aerosol particles below, within, or above a cloud; and (3) through indirect effects, which are the increase in cloud reflectivity (first indirect effect) and decrease in precipitation thus increase in cloud liquid water content and lifetime (second indirect effects) due to the addition of anthropogenic aerosol particles to an evolving cloud. Simulations with the 3-D model GATOR-GCMOM were first run to calculate the hydrometeor mass absorption coefficient (HMAC) due to BC inclusions within cloud particles. The globally-averaged HMAC was ~17.7 (10.6-19) m2/g, ~9.3% higher than the globally-averaged mass-absorption coefficient of aged, externally- plus internally-mixed aerosol BC, which itself was ~2.4 (2-2.9) times higher than that of externally-mixed BC. Aerosol absorption optical depths were compared globally with OMI and AERONET data. Further simulations were run that found that BC inclusions in cloud drops (CAE I) can triple a cloud's heating rate. Interstitial BC at the RH of the cloud (CAE II) can increase the heating rate by ~30% compared with aged BC in the clear sky. These results suggested a greater potential for BC inclusions to burn off clouds than previously recognized since previous global studies had not considered the absorption of BC interstitially between drops at the RH of the cloud or solved radiative transfer through a cloud while the cloud was shrinking

  17. Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation

    Science.gov (United States)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Kothe, Erika; Gleixner, Gerd

    2011-05-01

    Weathering of ancient organic matter contributes significantly to biogeochemical carbon cycles over geological times. The principle role of microorganisms in this process is well recognized. However, information is lacking on the contribution of individual groups of microorganisms and on the effect of labile carbon sources to the degradation process. Therefore, we investigated the contribution of fungi, Gram-positive and Gram-negative bacteria in the degradation process using a column experiment. Investigations were performed on low metamorphic black slates. All columns contained freshly crushed, sieved (0.63-2 mm), not autoclaved black slates. Two columns were inoculated with the lignite-degrading fungus Schizophyllum commune and received a culture medium containing 13C labeled glucose, two columns received only this culture medium and two control columns received only water. The total mass balance was calculated from all carbon added to the slate and the CO 2 and DOC losses. Phospholipid fatty acids (PLFA) were extracted to investigate microbial communities. We used both the compound specific 14C and 13C signal of the PLFA to quantify carbon uptake from black slates and the glucose of the culture medium, respectively. The total carbon loss in these columns exceeded the amount of added carbon by approximately 60%, indicating that black slate carbon has been used. PLFA associated with Gram-positive bacteria dominated the indigenous community and took up 22% of carbon from black slate carbon, whereas PLFA of Gram-negative bacteria used only 8% of carbon from the slates. PLFA of Gram-negative bacteria and fungi were both mostly activated by the glucose addition. The added Schizophyllum did not establish well in the columns and was overgrown by the indigenous microbial community. Our results suggest that especially Gram-positive bacteria are able to live on and degrade black slate material. They also benefit from easy degradable carbon from the nutrient broth. In

  18. Black carbon and mineral dust in snow cover on the Tibetan Plateau

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Sprenger, Michael; Cong, Zhiyuan; Gao, Tanguang; Li, Chaoliu; Tao, Shu; Li, Xiaofei; Zhong, Xinyue; Xu, Min; Meng, Wenjun; Neupane, Bigyan; Qin, Xiang; Sillanpää, Mika

    2018-02-01

    Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g-1, 491 to 13 880 ng g-1, and 22 to 846 µg g-1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ˜ 50 % in the southern TP to ˜ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

  19. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  20. Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa

    Science.gov (United States)

    Euphinia Chiloane, Kgaugelo; Beukes, Johan Paul; Gideon van Zyl, Pieter; Maritz, Petra; Vakkari, Ville; Josipovic, Miroslav; Derick Venter, Andrew; Jaars, Kerneels; Tiitta, Petri; Kulmala, Markku; Wiedensohler, Alfred; Liousse, Catherine; Vuyisile Mkhatshwa, Gabisile; Ramandh, Avishkar; Laakso, Lauri

    2017-05-01

    After carbon dioxide (CO2), aerosol black carbon (BC) is considered to be the second most important contributor to global warming. This paper presents equivalent black carbon (eBC) (derived from an optical absorption method) data collected from three sites in the interior of South Africa where continuous measurements were conducted, i.e. Elandsfontein, Welgegund and Marikana, as well elemental carbon (EC) (determined by evolved carbon method) data at five sites where samples were collected once a month on a filter and analysed offline, i.e. Louis Trichardt, Skukuza, Vaal Triangle, Amersfoort and Botsalano.Analyses of eBC and EC spatial mass concentration patterns across the eight sites indicate that the mass concentrations in the South African interior are in general higher than what has been reported for the developed world and that different sources are likely to influence different sites. The mean eBC or EC mass concentrations for the background sites (Welgegund, Louis Trichardt, Skukuza, Botsalano) and sites influenced by industrial activities and/or nearby settlements (Elandsfontein, Marikana, Vaal Triangle and Amersfoort) ranged between 0.7 and 1.1, and 1.3 and 1.4 µg m-3, respectively. Similar seasonal patterns were observed at all three sites where continuous measurement data were collected (Elandsfontein, Marikana and Welgegund), with the highest eBC mass concentrations measured from June to October, indicating contributions from household combustion in the cold winter months (June-August), as well as savannah and grassland fires during the dry season (May to mid-October). Diurnal patterns of eBC at Elandsfontein, Marikana and Welgegund indicated maximum concentrations in the early mornings and late evenings, and minima during daytime. From the patterns it could be deduced that for Marikana and Welgegund, household combustion, as well as savannah and grassland fires, were the most significant sources, respectively.Possible contributing sources were

  1. Effects of Aggregate Morphology and Size on SP2 Measurements of Black Carbon

    Science.gov (United States)

    Bambha, R.; Michelsen, H. A.

    2015-12-01

    We have used a Single-Particle Soot Photometer (SP2) to measure time-resolved laser-induced incandescence (LII) and laser scatter from combustion-generated mature soot with a fractal dimension of 1.88 extracted from a burner. We have also made measurements on restructured mature-soot particles with a fractal dimension of 2.4. The soot samples were size selected using a differential mobility analyzer and characterized with a scanning mobility particle sizer and centrifugal particle mass analyzer. We reproduced the LII and scattering temporal profiles with an energy- and mass-balance model, which accounted for heating of particles passed through a CW-laser beam over laser-particle interaction times of ~10 microseconds. The results demonstrate a strong influence of aggregate size and morphology on LII and scattering signals. Conductive cooling competes with absorptive heating on these time scales; the effects are reduced with increasing aggregate size and fractal dimension. These effects can lead to a significant delay in the onset of the LII signal, which could be mistaken for a coating effect. These effects may also explain an apparent low bias in the SP2 measurements for small particle sizes, particularly for fresh, mature soot. The results additionally reveal significant perturbations to the measured scattering signal from LII interference and suggest swelling or popping of the aggregates during sublimation. We are characterizing black carbon measurement techniques prior to deployment of instrumentation in Barrow, Alaska for a project focused on measurements and modeling of black carbon in the Arctic.

  2. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Terraun Jones

    2003-04-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been developed with a stand-alone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Parameters have been developed for use of the electrolyte NRTL model in AspenPlus. Analytical methods have been developed using gas chromatography and ion chromatography. The heat exchangers for the pilot plant have been ordered.

  3. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Babatunde Oyenekan; Terraun Jones

    2003-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Gas chromatography has been used to measure the oxidative degradation of piperazine. The heat exchangers for the pilot plant have been received. The modifications are on schedule for start-up in November 2003.

  4. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; A. Frank Seibert

    2002-10-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. A simple thermodynamic model has been developed to represent the CO{sub 2} vapor pressure and speciation of the new solvent. A rate model has been formulated to predict the CO{sub 2} flux with these solutions under absorber conditions. A process and instrumentation diagram and process flow diagram have been prepared for modifications of the existing pilot plant system.

  5. Carbon dioxide laser absorption spectra of toxic industrial compounds

    International Nuclear Information System (INIS)

    Loper, G.L.; Sasaki, G.R.; Stamps, M.A.

    1982-01-01

    CO 2 laser absorption cross-section data are reported for acrolein, styrene, ethyl acrylate, trichloroethylene, vinyl bromide, and vinylidene chloride. These data indicate that sub parts per billion level, interference-free detection limits should be possible for these compounds by the CO 2 laser photoacoustic technique. Photoacoustic detectabilities below 40 ppb should be possible for these compounds in the presence of ambient air concentrations of water vapor and other anticipated interferences. These compounds are also found not to be important inerference in the detection of toxic hydrazine-based rocket fuels by CO 2 laser spectroscopic techniques

  6. Morphology and mixing of black carbon particles collected in central California during the CARES field study

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2016-11-01

    Full Text Available Aerosol absorption is strongly dependent on the internal heterogeneity (mixing state and morphology of individual particles containing black carbon (BC and other non-absorbing species. Here, we examine an extensive microscopic data set collected in the California Central Valley during the CARES 2010 field campaign. During a period of high photochemical activity and pollution buildup, the particle mixing state and morphology were characterized using scanning transmission X-ray microscopy (STXM at the carbon K-edge. Observations of compacted BC core morphologies and thick organic coatings at both urban and rural sites provide evidence of the aged nature of particles, highlighting the importance of highly aged particles at urban sites during periods of high photochemical activity. Based on the observation of thick coatings and more convex BC inclusion morphology, either the aging was rapid or the contribution of fresh BC emissions at the urban site was relatively small compared to background concentrations. Most particles were observed to have the BC inclusion close to the center of the host. However, host particles containing inorganic rich inclusions had the BC inclusion closer to the edge of the particle. These measurements of BC morphology and mixing state provide important constraints for the morphological effects on BC optical properties expected in aged urban plumes.

  7. Morphology and mixing of black carbon particles collected in central California during the CARES field study

    Science.gov (United States)

    Moffet, Ryan C.; O'Brien, Rachel E.; Alpert, Peter A.; Kelly, Stephen T.; Pham, Don Q.; Gilles, Mary K.; Knopf, Daniel A.; Laskin, Alexander

    2016-11-01

    Aerosol absorption is strongly dependent on the internal heterogeneity (mixing state) and morphology of individual particles containing black carbon (BC) and other non-absorbing species. Here, we examine an extensive microscopic data set collected in the California Central Valley during the CARES 2010 field campaign. During a period of high photochemical activity and pollution buildup, the particle mixing state and morphology were characterized using scanning transmission X-ray microscopy (STXM) at the carbon K-edge. Observations of compacted BC core morphologies and thick organic coatings at both urban and rural sites provide evidence of the aged nature of particles, highlighting the importance of highly aged particles at urban sites during periods of high photochemical activity. Based on the observation of thick coatings and more convex BC inclusion morphology, either the aging was rapid or the contribution of fresh BC emissions at the urban site was relatively small compared to background concentrations. Most particles were observed to have the BC inclusion close to the center of the host. However, host particles containing inorganic rich inclusions had the BC inclusion closer to the edge of the particle. These measurements of BC morphology and mixing state provide important constraints for the morphological effects on BC optical properties expected in aged urban plumes.

  8. The Evolution of Black Carbon Physicochemical Properties in Soils

    Science.gov (United States)

    Muñiz, Y.; Pyle, L. A.; Masiello, C. A.

    2016-12-01

    Black Carbon (BC) is a unique product of the incomplete combustion of biomass that occurs during wildfires. BC is a partially combusted solid residue of plant tissue that is highly porous, a source of soil organic carbon, and degrades more slowly than other forms of organic matter. A recent study by Westerling et al. 2006 showed that regional changes in climate led to increased wildfire activity over recent decades. One implication of this is that as the climate changes, increasing wildfire rates may increase production of BC. We analyzed how the physical and chemical properties of BC particles change over time in order to assess the stability of BC in soils. BC used in this study came from soils collected in Silas Little Experimental Forest (SLEF) which is a US Forest Service Site in the New Jersey Pine Barrens. This area has historical and geographical records on occurrences of fire events beginning in 1935. This allows us to simulate an almost 85 year study by looking at a range of BC particles of very different ages spanning the years between 1935 and 2015. BC particles from five different locations within SLEF were selected to represent the years 1930, 1963, 1995, and 2015. We used pycnometry to measure skeletal density where volume of pores is excluded and envelope density where volume of pores is included. Density of BC particles is important because it impacts BC mobility and interaction with soil and water which can affect whether BC will get stored in soils or be weathered away. We also used an elemental analyzer to measure the weight percent of carbon, hydrogen, and nitrogen of the BC particles to identify relative mineral and organic contributions. Pycnometry results revealed an overall increase in the skeletal density of aged BC particles from 1.64 to 1.70 g/cm3, and that BC particles from the O horizon had a lower skeletal density (1.60-1.71 g/cm3) than those from the A horizon (1.68- 1.77 g/cm3). Elemental analysis revealed a weight percent increase

  9. Higher Atmosphere Heating due to black carbon Over the Northern Part of India

    Science.gov (United States)

    Tiwari, S.; Singh, S., , Dr

    2017-12-01

    Light-absorbing, atmospheric particles have gained greater attention in recent years because of their direct and indirect impacts on regional and global climate. Atmospheric black carbon (BC) aerosol (also called soot particle) is a leading climate warming agent, yet uncertainties in the global direct aerosol radiative forcing remain large. Based on a year of aerosol absorption measurements at seven wavelengths, BC concentrations were investigated in Dhanbad, the coal capital of India. Coal is routinely burned for cooking and residential heat as well as in small industries. The mean daily concentrations of ultraviolet-absorbing black carbon measured at 370 nm (UVBC) and black carbon measured at 880 nm (BC) were 9.8 ± 5.7 and 6.5 ± 3.8 μg m-3, respectively. The difference between UVBC and BC, Delta-C, is an indicator of biomass or residential coal burning and averaged 3.29 ± 4.61 μg m-3. An alternative approach uses the calculation of the Angstrom Exponent (AE) to estimate the amounts of biomass/coal and traffic BC. Biomass/coal burning contributed 87% and fossil fuel combustion contributed 13% to the annual average BC concentration. In the post-monsoon season, potential source contribution function analysis showed that air masses came from the central and northwestern Indo-Gangetic Plains resulting in mean UVBC values of 10.9 μg m-3 and BC of 7.2 μg m-3. The mean winter UVBC and BC concentrations were 15.0 and 10.1 μg m-3, respectively. These highest values were largely driven by local sources under conditions of poor dispersion. The direct radiative forcing (DRF) due to UVBC and BC at the surface (SFC) and the top of the atmosphere (TOA) were calculated. The mean atmospheric heating rates due to UVBC and BC were estimated to be 1.40°K day-1 and 1.18°K day-1, respectively. This high heating rate may affect the monsoon circulation in this region.

  10. Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys

    Science.gov (United States)

    Gandolfi, Ilaria; Curci, Gabriele; Falasca, Serena; Ferrero, Luca

    2017-04-01

    Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys Ilaria Gandolfi1,2, Gabriele Curci1,2, Serena Falasca1,2, Luca Ferrero3 1 Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy 2 Center of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy 3 POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy Last decades were characterized by a growing interest in aerosols: mainly for their effect on human health and on the energy balance of solar and planetary radiation, thus their role in climate change. In this study, we analyze the evolution of vertical profile of black carbon (BC) through tethered balloon observations and chemistry-transport modelling. Black carbon is regarded as the second most important anthropogenic climate forcing agent and its concentration varies significantly depending on the altitude and the sources on the territory. In winter of 2010 University Of Milan Bicocca conducted three intensive measurements campaigns over three Italian basin valleys (Terni, Po Valley, Passiria Valley). The choice of the valleys was made taking into consideration the orography and the river basin structure. The measurement campaign was based on a helium-filled tethered balloon, on which the instrumentation for the analysis has been mounted; the instrumentation consisted on a meteorological station, an OPC, a cascade impactor and a micro-Aethalometer. Subsequently, at University of L'Aquila simulations were produced to help interpretation of these vertical aerosol profiles (mass, composition and distribution) and related optical properties (scattering, absorption) using a chemistry-transport model (WRF-CHIMERE) at high horizontal resolution (1 km). The analysis focused primarily on the calculation of the heating rate and of the Direct Radiative Effect (DRE), and on the analysis of the

  11. Electrochemical, atomic force microscopy and infrared reflection absorption spectroscopy studies of pre-formed mussel adhesive protein films on carbon steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fanzhang@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Pan, Jinshan [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Claesson, Per Martin [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Institute for Surface Chemistry, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Brinck, Tore [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Physical Chemistry, Division of Physical Chemistry, Teknikringen 36, SE-10044 Stockholm (Sweden)

    2012-10-01

    Electrochemical measurements, in situ and ex situ atomic force microscopy (AFM) experiments and infrared reflection absorption spectroscopy (IRAS) analysis were performed to investigate the formation and stability as well as corrosion protection properties of mussel adhesive protein (Mefp-1) films on carbon steel, and the influence of cross-linking by NaIO{sub 4} oxidation. The in situ AFM measurements show flake-like adsorbed protein aggregates in the film formed at pH 9. The ex situ AFM images indicate multilayer-like films and that the film becomes more compact and stable in NaCl solution after the cross-linking. The IRAS results reveal the absorption bands of Mefp-1 on carbon steel before and after NaIO{sub 4} induced oxidation of the pre-adsorbed protein. Within a short exposure time, a certain corrosion protection effect was noted for the pre-formed Mefp-1 film in 0.1 M NaCl solution. Cross-linking the pre-adsorbed film by NaIO{sub 4} oxidation significantly enhanced the protection efficiency by up to 80%. - Highlights: Black-Right-Pointing-Pointer Mussel protein was tested as 'green' corrosion protection strategy for steel. Black-Right-Pointing-Pointer At pH 9, the protein adsorbs on carbon steel and forms a multilayer-like film. Black-Right-Pointing-Pointer NaIO{sub 4} leads to structural changes and cross-linking of the protein film. Black-Right-Pointing-Pointer Cross-linking results in a dense and compact film with increased stability. Black-Right-Pointing-Pointer Cross-linking of preformed film significantly enhances the corrosion protection.

  12. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, T.; Murakami, K.

    1995-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  13. Synthesis, characterization and microwave absorption of carbon-coated Cu nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Maanshan, (China); Feng, Chao; Liu, Xianguo; Jin, Chuangui, E-mail: liuxianguohugh@gmail.com [School of Materials Science and Engineering, Anhui University of Technology, Maanshan (China); Or, Siu Wing [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, (Hong Kong)

    2014-03-15

    The microstructure and microwave absorption of carbon-coated Cu nanocapsules have been investigated. Carbon-coated Cu nanocapsules have been synthesized by an arc-discharge method. The paraffin-Cu/C nanocapsules composite shows excellent electromagnetic (EM) absorption properties. An optimal reflection loss (RL) value of –40.0 dB is reached at 10.52 GHz for a layer 1.9 mm thickness. RL exceeding –20 dB can be realized in any interval within the 1-18 GHz range by choosing an appropriate thickness of the absorbent layer between 1.1 and 10.0 mm. Theoretical simulation for the microwave absorption using the transmission line theory agrees reasonably well with the experimental results. The EM-wave absorption properties of nanocapsules materials are illustrated by means of an absorption-tube-map. The carbon-coated Cu nano capsule is an attractive candidate for EM-wave absorption, which significantly enriches the family of EM-wave nano absorbents. (author)

  14. Radiative impact of mixing state of black carbon aerosol in Asian outflow

    Science.gov (United States)

    Shiraiwa, M.; Kondo, Y.; Moteki, N.; Takegawa, N.; Sahu, L. K.; Takami, A.; Hatakeyama, S.; Yonemura, S.; Blake, D. R.

    2008-12-01

    The radiative impact of the mixing state of black carbon (BC) aerosol is investigated in Asian outflow. The mixing state and size distribution of BC aerosol were measured with a ground-based single-particle soot photometer at a remote island (Fukue) in Japan in spring 2007. The mass concentration of BC in Asian continental air masses reached 0.5 μg m-3, with a mass median diameter of 200-220 nm. The median value of the shell/core diameter ratio increased to ˜1.6 in Asian continental and maritime air masses with a core diameter of 200 nm, while in free tropospheric and Japanese air masses it was 1.3-1.4. On the basis of theoretical calculations using the size distribution and mixing state of BC aerosol, scattering and absorption properties of PM1 aerosols were calculated under both dry and ambient conditions, considering the hygroscopic growth of aerosols. It was estimated that internal mixing enhanced the BC absorption by a factor of 1.5-1.6 compared to external mixing. The calculated absorption coefficient was 2-3 times higher in Asian continental air masses than in clean air. Coatings reduced the single-scattering albedo (SSA) of PM1 aerosol by 0.01-0.02, which indicates the importance of the mixing state of BC aerosol in evaluating its radiative influence. The SSA was sensitive to changes in air mass type, with a value of ˜0.98 in Asian continental air masses and ˜0.95 in Japanese and free tropospheric air masses under ambient conditions.

  15. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  16. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  17. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    , Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance...... spectroscopy (EIS). Catalytic activity was evaluated as a function of various physical characteristics of doped ceria and manganese-based materials....

  18. Enhanced microwave absorption properties of Ni-doped ordered mesoporous carbon/polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Wang, Liuding; Wu, Hongjing; Shen, Zhongyuan; Guo, Shaoli; Wang, Yiming

    2012-01-01

    Highlights: ► OMC-Ni/PANI nanocomposites were prepared by in situ polymerization method. ► The effective absorption bandwidth was 4.7 GHz for OMC-Ni0.15/PANI. ► OMC-Ni/PANI showed excellent microwave absorption with respect to OMC-Ni. ► This effect could be mainly attributed to the improvement of impendence matching. - Abstract: We propose and demonstrate a new scheme to improve microwave absorption property through polyaniline (PANI)-functionalized Ni-doped ordered mesoporous carbon (OMC) by in situ polymerization method. The polymer-functionalized nanocomposites, embedding polyaniline within ordered mesoporous carbon, exhibit strong and broadband microwave absorption due to its better dielectric loss characteristic. OMC-Ni0.15/PANI exhibits an effective absorption bandwidth (i.e., reflection loss (RL) ≤ −10 dB) of 4.7 GHz and an absorption peak of −51 dB at 9.0 GHz. The absorption peak intensity and position can be tuned by controlling the thickness of the coating.

  19. Arctic Black Carbon Loading and Profile Using the Single-Particle Soot Photometer (SP2) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. However given the pronounced sensitivity of the polar regions to radiative balance perturbations, it is incumbent upon our community to better understand and quantify these perturbations, and their unique feedbacks, so that robust model predictions of this region can be realized. One class of under-measured radiative forcing agents in the polar region is the absorbing aerosol—black carbon and brown carbon. Black carbon (BC; also referred to as light-absorbing carbon [LAC], refractory black carbon [rBC], and soot) is second only to CO2 as a positive forcing agent. Roughly 60% of BC emissions can be attributed to anthropogenic sources (fossil fuel combustion and open-pit cooking), with the remaining fraction being due to biomass burning. Brown carbon (BrC), a major component of biomass burning, collectively refers to non-BC carbonaceous aerosols that typically possess minimal light absorption at visible wavelengths but exhibit pronounced light absorption in the near-ultraviolet (UV) spectrum. Both species can be sourced locally or be remotely transported to the Arctic region and are expected to perturb the radiative balance. The work conducted in this field campaign addresses one of the more glaring deficiencies currently limiting improved quantification of the impact of BC radiative forcing in the cryosphere: the paucity of data on the vertical and spatial distributions of BC. By expanding the Gulfstream aircraft (G-1) payload for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility-sponsored ACME-V campaign to include the Single-Particle Soot Photometer (SP2)) and leveraging the ACME-V campaign

  20. Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

    International Nuclear Information System (INIS)

    Wang Hai-Hua; Sun Xian-Ming

    2012-01-01

    The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models. The internal mixing model is modeled with a two-layered sphere (water cloud droplets containing black carbon (BC) inclusions), and the single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz—Mie theory. The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally. The multiple scattering characteristics are computed by using the Monte Carlo method. The results show that when the size of the BC aerosol is small, the reflection intensity of the internal mixing model is bigger than that of the external mixing model. However, if the size of the BC aerosol is big, the absorption of the internal mixing model will be larger than that of the external mixing model. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Epoxy resin/carbon black composites below the percolation threshold.

    Science.gov (United States)

    Macutkevic, J; Kuzhir, P; Paddubskaya, A; Maksimenko, S; Banys, J; Celzard, A; Fierro, V; Stefanutti, E; Cataldo, A; Micciulla, F; Bellucci, S

    2013-08-01

    A set of epoxy resin composites filled with 0.25-2.0 wt.% of commercially available ENSACO carbon black (CB) of high and low surface area (CBH and CBL respectively) has been produced. The results of broadband dielectric spectroscopy of manufactured CB/epoxy below the percolation threshold in broad temperature (200 K to 450 K) and frequency (20 Hz to 1 MHz) ranges are reported. The dielectric properties of composites below the percolation threshold are mostly determined by alpha relaxation in pure polymer matrix. The glass transition temperature for CB/epoxy decreases in comparison with neat epoxy resin due to the extra free volume at the polymer-filler interface. At room temperature, the dielectric permittivity is higher for epoxy loaded with CBH additives. In contrast, at high temperature, the electrical conductivity was found to be higher for composites with CBL embedded. The established influence of the CB surface area on the broadband dielectric characteristics can be exploited for the production of effective low-cost antistatic paints and coatings working at different temperatures.

  2. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  3. Black carbon emissions from biomass and coal in rural China

    Science.gov (United States)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640 ± 245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42 ± 13%, 36 ± 15%, and 22 ± 10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households.

  4. Daily personal exposure to black carbon: A pilot study

    Science.gov (United States)

    Williams, Ryan D.; Knibbs, Luke D.

    2016-05-01

    Continuous personal monitoring is the benchmark for air pollution exposure assessment. Black carbon (BC) is a strong marker of primary combustion like vehicle and biomass emissions. There have been few studies that quantified daily personal BC exposure and the contribution that different microenvironments make to it. In this pilot study, we used a portable aethalometer to measure BC concentrations in an individual's breathing zone at 30-s intervals while he performed his usual daily activities. We used a GPS and time-activity diary to track where he spent his time. We performed twenty 24-h measurements, and observed an arithmetic mean daily exposure concentration of 603 ng/m3. We estimated that changing commute modes from bus to train reduced the 24-h mean BC exposure concentration by 29%. Switching from open windows to closed windows and recirculated air in a car led to a reduction of 32%. Living in a home without a wood-fired heater caused a reduction of 50% compared with a wood-heated home. Our preliminary findings highlight the potential utility of simple approaches to reduce a person's daily BC exposure.

  5. Black carbon emissions from biomass and coal in rural China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640±245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42±13%, 36±15%, and 22±10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households

  6. Black carbon aerosols and the third polar ice cap

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  7. Organic Carbon--water Concentration Quotients (IIsocS and [pi]pocS): Measuring Apparent Chemical Disequilibria and Exploring the Impact of Black Carbon in Lake Michigan

    Science.gov (United States)

    When black carbon (bc) and biologically derived organic carbon (bioc) phases are present in sediments or suspended particulates, both forms of carbon act additively to sorb organic chemicals but the bc phase has more sorption capacity per unit mass. . . .

  8. Radiative Absorption by Light Absorbing Carbon: Uncertainty, Temporal and Spatial Variation in a Typical Polluted City in Yangtze River Delta

    Science.gov (United States)

    Chen, D.; Zhao, Y.; Lyu, R.

    2017-12-01

    The optical properties of light absorbing carbon (LAC) in atmospheric aerosols, including their uncertainties, temporal change and spatial pattern were studied at suburban, urban and industrial sites in Nanjing, a typical polluted city in Yangtze River Delta (YRD). The optical properties of black carbon (BC) and the uncertainty in radiative absorption of BC were quantified combining cavity attenuated phase shift (CAPS) and thermal-optical techniques. It was found that applying a constant value from previous studies for multiple scattering factor could not well represent the actual absorption characteristics of aerosols in Nanjing. The relative deviation between calculated and measured absorption coefficient of BC was up to 56 ± 34%. A significant positive correlation (R2=0.95) was found between multiple scattering factor (C*) and the mixing state of EC (ECopt/EC) within the ECopt/EC ranged 0.43 0.92 (C*=1.64(ECopt/EC)+1.47, 0.43opt/ECbiogenic volatile organic compounds (BVOCs) was higher in summer (5.8%) than that in autumn (0.5%). Brown carbon (BrC) associated with anthropogenic precursors was stronger in light absorption than that from biogenic sources, thus precursors of secondary organic aerosol (SOA) was probably the main reason for seasonal variation in MAE of BrC. At industrial site, linear positive correlation (R=0.87) was found between measured MSOC and secondary organic carbon (SOC), suggesting SOA formation was the major source of MSOC in this area. The lower MAE values of MSOC indicated that BrC generated from secondary sources might demonstrate weaker light absorbing ability than that from primary emissions. Furthermore, quantitative analysis showed that MAE BrC, 365 reduced by 0.26 m2/g when SOC increased by 1μgC/m3. This study provided insights into a more comprehensive understanding of LAC aerosol in cities with heavy particle pollution, since MSOC served as a surrogate for BrC and EC was measured with reliable and effective methods.

  9. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-07-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

  10. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Amorvadee Veawab

    2005-01-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. In Campaign 3 of the pilot plant, the overall mass transfer coefficient for the stripper with 7 m MEA decreased from 0.06 to 0.01 mol/(m{sup 3}.s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO{sub 2}/mol MEA. Anion chromatography has demonstrated that nitrate and nitrite are major degradation products of MEA and PZ with pure oxygen. In measurements with the high temperature FTIR in 7 m MEA the MEA vapor pressure varied from 2 to 20 Pa at 35 to 70 C. In 2.5 m PZ the PZ vapor pressure varied from 0.2 to 1 Pa from 37 to 70 C.

  11. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees

    2005-07-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The baseline campaign with 30% MEA has given heat duties from 40 to 70 kcal/gmol CO{sub 2} as predicted by the stripper model. The Flexipak 1Y structured packing gives significantly better performance than IMTP 40 duped packing in the absorber, but in the stripper the performance of the two packings is indistinguishable. The FTIR analyzer measured MEA volatility in the absorber represented by an activity coefficient of 0.7. In the MEA campaign the material balance closed with an average error of 3.5% and the energy balance had an average error of 5.9.

  12. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2005-04-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Stripper modeling suggests the energy requirement with a simple stripper will be about the same for 5 m K{sup +}/2.5 m PZ and 7 m MEA. Modeling with a generic solvent shows that the optimum heat of CO{sub 2} desorption to minimize heat duty lies between 15 and 25 kcal/gmol. On-line pH and density measurements are effective indicators of loading and total alkalinity for the K+/PZ solvent. The baseline pilot plant campaign with 30% MEA has been started.

  13. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Daniel Ellenberger

    2005-10-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Modeling of stripper performance suggests that vacuum stripping may be an attractive configuration for all solvents. Flexipac 1Y structured packing performs in the absorber as expected. It provides twice as much mass transfer area as IMTP No.40 dumped packing. Independent measurements of CO{sub 2} solubility give a CO{sub 2} loading that is 20% lower than that Cullinane's values with 3.6 m PZ at 100-120 C. The effective mass transfer coefficient (K{sub G}) in the absorber with 5 m K/2.5 m PZ appears to be 0 to 30% greater than that of 30 wt% MEA.

  14. Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing

    Science.gov (United States)

    Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei

    2017-04-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.

  15. Black Carbon Inclusive Multichemical Modeling of PBDE and PCB Biomagnification and -Transformation in Estuarine Food Webs

    NARCIS (Netherlands)

    Paolo, C.; Gandhi, N.; Bhavsar, S.; Heuvel-Greve, van den M.J.; Koelmans, A.A.

    2010-01-01

    Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order

  16. The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa

    DEFF Research Database (Denmark)

    Oelofse, Myles; Birch-Thomsen, Torben; Magid, Jakob

    2016-01-01

    Black wattle (Acacia mearnsii, De Wild.) is a fast growing tree species introduced into South Africa in the nineteenth century for commercial purposes. While being an important source of timber and firewood for local communities, black wattle is an aggressive invasive species and has pervasive...... demonstrate the importance of considering changes in soil carbon when evaluating ecosystem effects of invasive species....

  17. Combined Effect of Temperature and pKa on the Kinetics of Absorption of Carbon Dioxide in Aqueous Alkanolamine and Carbonate Solutions with Carbonic Anhydrase

    NARCIS (Netherlands)

    Penders-Van Elk, Nathalie J M C; Oversteegen, S. Martijn; Versteeg, Geert F.

    2016-01-01

    In present work the absorption of carbon dioxide in aqueous N-methyldiethanolamine, N,N-dimethylethanolamine, and triisopropanolamine solutions with and without the enzyme carbonic anhydrase has been studied in a stirred cell reactor at temperatures varying between 278 and 313 K, at an alkanolamine

  18. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or

  19. Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland

    Science.gov (United States)

    Liu, D.; Flynn, M.; Gysel, M.; Targino, A.; Crawford, I.; Bower, K.; Choularton, T.; Jurányi, Z.; Steinbacher, M.; Hüglin, C.; Curtius, J.; Kampus, M.; Petzold, A.; Weingartner, E.; Baltensperger, U.; Coe, H.

    2010-08-01

    The refractory black carbon (rBC) mass, size distribution (190-720 nm) and mixing state in sub-micron aerosols were characterized from late February to March 2007 using a single particle incandescence method at the high alpine research station Jungfraujoch (JFJ), Switzerland (46.33° N, 7.59° E, 3580 m a.s.l.). JFJ is a ground based location, which is at times exposed to continental free tropospheric air. A median mass absorption coefficient (MAC) of 10.2±3.2 m2 g-1 at λ=630 nm was derived by comparing single particle incandescence measurements of black carbon mass with continuous measurements of absorption coefficient. This value is comparable with other estimates at this location. The aerosols measured at the site were mostly well mixed and aged during transportation via the free troposphere. Pollutant sources were traced by air mass back trajectories, trace gases concentrations and the mass loading of rBC. In southeasterly wind directions, mixed or convective weather types provided the potential to vent polluted boundary layer air from the southern Alpine area and industrial northern Italy, delivering enhanced rBC mass loading and CN concentrations to the JFJ. The aerosol loadings at this site were also significantly influenced by precipitation, which led to the removal of rBC from the atmosphere. Precipitation events were shown to remove about 65% of the rBC mass from the free tropospheric background reducing the mean loading from 13±5 ng m-3 to 6±2 ng m-3(corrected to standard temperature and pressure). Overall, 40±15% of the observed rBC particles within the detectable size range were mixed with large amounts of non-refractory materials present as a thick coating. The growth of particle size into the accumulation mode was positively linked with the degree of rBC mixing, suggesting the important role of condensable materials in increasing particle size and leading to enhanced internal mixing of these materials with rBC. It is the first time that BC mass

  20. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    Science.gov (United States)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  1. Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere

    Science.gov (United States)

    Blake, David F.; Kato, Katharine

    1995-01-01

    Black carbon soot from the upper troposphere and lower stratosphere has been systematically collected at latitudes from 90 deg N to 45 deg S. The measured latitudinal distribution of this soot at 10 to 11 km altitude is found to covary with commercial air traffic fuel use, suggesting that aircraft fuel combustion at altitude is the principal source. In addition, at latitudes where the commercial air traffic is high, measured black carbon soot values are high even at 20 km altitude, suggesting that aircraft-generated soot injected just above the tropopause may be transported to higher altitudes. During the volcanically influenced period in which these samples were collected, the number abundances, total mass, and calculated total surface area of black carbon soot are 2-3 orders of magnitude lower than similar measures of sulfuric acid aerosol. During volcanically quiescent periods, the calculated total surface area of black carbon soot aerosol is of the same order of magnitude as that of the background sulfuric acid aerosol. It appears from this comparison that black carbon soot is only capable of influencing lower stratosphere or upper troposphere chemistry during periods when the aerosol budget is not dominated by volcanic activity. It remains to determine the extent to which black carbon soot particles act as nuclei for sulfuric acid aerosol formation. However, mass balance calculations suggest that aircraft soot injected at altitude does not represent a significant source of condensation nuclei for sulfuric acid aerosols.

  2. The Effectiveness of the Regulatory Regime for Black Carbon Mitigation in the Arctic

    Directory of Open Access Journals (Sweden)

    Daria Shapovalova

    2016-11-01

    Full Text Available In addition to being a hazardous air pollutant, Black Carbon is the second-largest contributor to Arctic warming. Its mitigation is being addressed at the international regulatory level by the Arctic Council and the Convention on Long-Range Transboundary Air Pollution (CLRTAP. Whilst the Convention and its protocols are binding documents, the Black Carbon regulation under their framework appears to have ‘soft law’ characteristics. At the same time, the voluntary Black Carbon and Methane Framework, adopted by the Arctic Council, demonstrates positive compliance and follow-up dynamics compared to earlier norm-creating attempts. This paper argues that the nature of the norm (binding or non-binding is not the decisive factor regarding effective implementation in the Arctic region. Current efforts to mitigate Black Carbon by means of a non-binding Arctic Council Black Carbon and Methane Framework represent an improvement in the Council's normative function and may have more effect on the behaviour of Arctic States than relevant provisions under the Gothenburg Protocol to the CLRTAP. To support this argument, the first section presents an overview of the Arctic Council as an actor in Arctic policy-making. It then provides an assessment of current efforts to combat Black Carbon carried out by the Arctic Council and the CLRTAP.

  3. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-11-08

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The stripper model with Aspen Custom Modeler and careful optimization of solvent rate suggests that 7 m MEA and 5 m K+/2.5 m PZ will be practically equivalent in energy requirement and optimum solution capacity. The multipressure stripper reduces energy consumption by 15% with a maximum pressure of 5 atm. The use of vanadium as a corrosion inhibitor will carry little risk of long-term environmental or health effects liability, but the disposal of solvent with vanadium will be subject to regulation, probably as a hazardous waste. Analysis of the pilot plant data from Campaign 1 has given values of the mass transfer coefficient consistent with the rate data from the wetted wall column. With a rich end pinch, 30% MEA should provide a capacity of 1.3-1.4 mole CO{sub 2}/kg solvent.

  4. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Amorvadee Veawab

    2006-04-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The final campaign of the pilot plant was completed in February 2006 with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ using Flexipac AQ Style 20. The new cross-exchanger reduced the approach temperature to less than 9 C. Stripper modeling has demonstrated that a configuration with a ''Flashing Feed'' requires 6% less work that a simple stripper. The oxidative degradation of piperazine proceeds more slowly than that of monoethanolamine and produces ethylenediamine and other products. Uninhibited 5 m KHCO{sub 3}/2.5 m PZ corrodes 5 to 6 times faster that 30% MEA with 0.2 mol CO{sub 2}/mol MEA.

  5. Comparison of lung damage in mice exposed to black carbon particles and ozone-oxidized black carbon particles.

    Science.gov (United States)

    Chu, Hongqian; Shang, Jing; Jin, Ming; Li, Qian; Chen, Yueyue; Huang, Hongpeng; Li, Yuan; Pan, Yao; Tao, Xi; Cheng, Zhiyuan; Meng, Qinghe; Jia, Guang; Zhu, Tong; Wei, Xuetao; Hao, Weidong

    2016-12-15

    Black carbon (BC) is a key component of atmospheric particles and has a significant effect on human health. Oxidation could change the characteristics of BC and increase its toxicity. The comparison of lung damage in mice exposed to BC and ozone-oxidized BC (oBC) particles is investigated in this study. Mice which were intratracheally instilled with particles have a higher expression of IL-1β, IL-6 and IL-33 in bronchoalveolar lavage fluid (BALF). Also, the IL-6, IL-33 mRNA expression in the lung tissue of mice instilled with oBC was higher than that of mice instilled with BC. The expression of CD3 in the lung tissue of mice intratracheally instilled with oBC was higher than the mice distilled with BC. The pathology results showed that the lung tissue of mice instilled with oBC particles have much more inflammatory cells infiltration than that of mice treated with BC. It is believed that the PI3K-AKT pathway might be involved in the oBC particles caused lung damage. Results indicated that oBC particles in the atmosphere may cause more damage to health. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Zhao, Shuhui; Zheng, Mei; Mu, Chao; Du, Ke

    2016-03-15

    Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. ABSORPTION OF GASES INTO ACTIVATED CARBON WATER SLURRIES IN A STIRRED CELL

    NARCIS (Netherlands)

    TINGE, JT; DRINKENBURG, AAH

    A surface-aerated stirred cell with a flat liquid surface was used to investigate the absorption of propane and ethene gas into slurries of activated carbon and water. Slurries with a solids concentration up to 4% by weight and particle diameters up to 565-mu-m were used. The experimental mass

  8. Discovery of carbon radio recombination lines in absorption towards Cygnus A

    NARCIS (Netherlands)

    Oonk, J.B.R.; et al., [Unknown; Alexov, A.; Hessels, J.W.T.; van der Horst, A.; van Leeuwen, J.; Markoff, S.; Miller-Jones, J.C.A.; Swinbank, J.; Wijers, R.A.M.J.

    2014-01-01

    We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33-57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse,

  9. Discovery of carbon radio recombination lines in absorption towards Cygnus A

    NARCIS (Netherlands)

    Oonk, J. B. R.; van Weeren, R. J.; Salgado, F.; Morabito, L. K.; Tielens, A. G. G. M.; Rottgering, H. J. A.; Asgekar, A.; White, G. J.; Alexov, A.; Anderson, J.; Avruch, I. M.; Batejat, F.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Brentjens, M.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; van Enst, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Horneffer, A.; van der Horst, A.; Iacobelli, M.; Jackson, N. J.; Juette, E.; Karastergiou, A.; Klijn, W.; Kohler, J.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Mann, G.; Markoff, S.; McKean, J. P.; Mevius, M.; Miller-Jones, J. C. A.; Mol, J. D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Scaife, A. M. M.; Schoenmakers, A.; Schwarz, D.; Shulevski, A.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Veen, S. ter; Thoudam, S.; Toribio, C.; van Nieuwpoort, R.; Vermeulen, R.; Vocks, C.; Vogt, C.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33-57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse,

  10. CO2 absorption in carbonate/bicarbonate solutions : The Danckwerts-criterion revisited

    NARCIS (Netherlands)

    Cents, A. H. G.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    In industrial applications CO2 is frequently removed from gas streams at elevated pressures by absorption and subsequent chemical reaction in carbonate/bicarbonate solutions (e.g. Benfield process). The criterion that determines whether or not this reaction can be regarded as pseudo-first order is

  11. Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China

    Science.gov (United States)

    Pu, Wei; Wang, Xin; Wei, Hailun; Zhou, Yue; Shi, Jinsen; Hu, Zhiyuan; Jin, Hongchun; Chen, Quanliang

    2017-05-01

    A large field campaign was conducted and 284 snow samples were collected at 38 sites in Xinjiang Province and 6 sites in Qinghai Province across northwestern China from January to February 2012. A spectrophotometer combined with chemical analysis was used to measure the insoluble light-absorbing particles (ILAPs) and chemical components in seasonal snow. The results indicate that the cleanest snow was found in northeastern Xinjiang along the border of China, and it presented an estimated black carbon (CBCest) of approximately 5 ng g-1. The dirtiest snow presented a CBCest of approximately 450 ng g-1 near industrial cities in Xinjiang. Overall, the CBCest of most of the snow samples collected in this campaign was in the range of 10-150 ng g-1. Vertical variations in the snowpack ILAPs indicated a probable shift in emission sources with the progression of winter. An analysis of the fractional contributions to absorption implied that organic carbon (OC) dominated the 450 nm absorption in Qinghai, while the contributions from BC and OC were comparable in Xinjiang. Finally, a positive matrix factorization (PMF) model was run to explore the sources of particulate light absorption, and the results indicated an optimal three-factor/source solution that included industrial pollution, biomass burning, and soil dust.

  12. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.

    Science.gov (United States)

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng

    2014-05-27

    Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  13. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  14. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin Peng [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Tianjin Binhai New Area Finance Bureau, Tianjin 300450 (China); Wang, Cheng Guo, E-mail: sduwangchg@gmail.com [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Wang, Wen [Norinco Group China North Material Science and Engineering Technology Group Corporation, Jinan 250031 (China); Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-09-01

    Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2–18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<−10 dB) was observed in a large frequency range of 7.5–18 GHz with the absorber thickness of 2.0–3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around −40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C. - Highlights: • High-performance electromagnetic wave absorption materials were fabricated conveniently and economically. • The materials are composites with micro-sized magnetic particles dispersed in porous amorphous carbon. • The influences of temperature on phase composition and electromagnetic wave absorption properties were investigated. • The composites heated up to 750 °C and 800 °C had good electromagnetic wave absorption property.

  15. Cellphones as a Distributed Platform for Black Carbon Data Collection

    Science.gov (United States)

    Ramanathan, N.; Ramana, M.; Lukac, M. L.; Siva, P.; Ahmed, T.; Kar, A.; Rehman, I.; Ramanathan, V.

    2010-12-01

    Black carbon (BC), the visible component of soot that gives emissions such as diesel engine exhaust their dark color, has come to be recognized as a major contributor to global warming, and a frontline concern for climate change strategies (Ramanathan 2001, Jacobson 2010). We have developed a new low-cost instrument for gathering and measuring atmospheric BC concentrations that leverages cellphones to transmit data from an air filtration unit to a centralized database for analysis. Our new system relies on image processing techniques, as opposed to other more expensive optical methods, to interpret images of filters captured with a cellphone camera. As a result, the entire system costs less than $500 (and is orders of magnitude cheaper than an Aethalometer, the prevailing method for measuring atmospheric BC). We are working with three community groups in Los Angeles, and will recruit three groups in the San Francisco Bay Area, to enable 40 citizens to be actively engaged in monitoring BC across California. We are working with The Energy Resources Institute, an international NGO based in India, to deploy this instrument with 60 people in conjunction with Project Surya, which aims to deploy clean cookstoves and rigorously evaluate their impact on BC emissions. Field tests of this new instrument performed in California report an average error of 0.28 µg/m3 when compared with an Aethelometer. These excellent results hold the promise of making large-scale data collection of BC feasible and relatively easy to reproduce (Ramanathan et al., forthcoming). The use of cellphones for data collection permits monitoring of BC to occur on a greater, more comprehensive scale not previously possible, and serves as a means of instituting more precise, variation-sensitive evaluations of emissions. By storing the data in a publicly available repository, our system will provide real-time access to mass-scale BC measurements to researchers and the public. Through our pilot

  16. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya, E-mail: keya@pu.ac.in [Department of Physics, Panjab University, Chandigarh (India); Kaur, Ramneek; Raina, K. K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala (India); Avasthi, D. K. [Materials Science Group, Inter University Accelerator Centre, ArunaAsaf Ali Marg, NewDelhi (India); Jeet, Kiran [Electron Microscopy and Nanoscience laboratory, Punjab Agriculture University, Ludhiana (India)

    2015-08-28

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.

  17. Linear and nonlinear absorption properties of diamond-like carbon doped with cu nanoparticles

    DEFF Research Database (Denmark)

    Tamulevičius, Sigitas; Peckus, Domantas; Tamulevičius, Tomas

    2017-01-01

    Ultrafast relaxation processes in diamond-like carbon (DLC) thin films with embedded Cu nanoparticles (DLC:Cu nanocomposites) were investigated by means of transient absorption spectroscopy focusing on localized surface plasmon resonance (LSPR) of photoexcited Cu nanoparticles. Absorption spectra...... of the composite films correspond to the sum of absorption spectra of DLC matrix and Cu nanoparticles; however, Cu nanoparticles strongly dominate in the transient differential absorption. Excitations of DLC matrix and of Cu nanoparticles relax independently revealing no strong interaction. High sensitivity...... measurements enabled to obtain the hot electron relaxation dynamics in Cu nanoparticles in the low excitation intensity conditions. The relaxation time was found to be independent of the excitation intensity up to tens of microjoule per square centimeter per pulse and to increase at higher intensities...

  18. Increased fire frequency optimization of black carbon mixing and storage

    Science.gov (United States)

    Pyle, Lacey; Masiello, Caroline; Clark, Kenneth

    2016-04-01

    Soil carbon makes up a substantial part of the global carbon budget and black carbon (BC - produced from incomplete combustion of biomass) can be significant fraction of soil carbon. Soil BC cycling is still poorly understood - very old BC is observed in soils, suggesting recalcitrance, yet in short term lab and field studies BC sometimes breaks down rapidly. Climate change is predicted to increase the frequency of fires, which will increase global production of BC. As up to 80% of BC produced in wildfires can remain at the fire location, increased fire frequency will cause significant perturbations to soil BC accumulation. This creates a challenge in estimating soil BC storage, in light of a changing climate and an increased likelihood of fire. While the chemical properties of BC are relatively well-studied, its physical properties are much less well understood, and may play crucial roles in its landscape residence time. One important property is density. When BC density is less than 1 g/cm3 (i.e. the density of water), it is highly mobile and can easily leave the landscape. This landscape mobility following rainfall may inflate estimates of its degradability, making it crucial to understand both the short- and long term density of BC particles. As BC pores fill with minerals, making particles denser, or become ingrown with root and hyphal anchors, BC is likely to become protected from erosion. Consequently, how quickly BC is mixed deeper into the soil column is likely a primary controller on BC accumulation. Additionally the post-fire recovery of soil litter layers caps BC belowground, protecting it from erosional forces and re-combustion in subsequent fires, but still allowing bioturbation deeper into the soil column. We have taken advantage of a fire chronosequence in the Pine Barrens of New Jersey to investigate how density of BC particles change over time, and how an increase in fire frequency affects soil BC storage and soil column movement. Our plots have

  19. Techno-economic assessment of membrane gas absorption for the production of carbon dioxide from flue gas

    NARCIS (Netherlands)

    Feron, P.H.M.; Jansen, A.E.

    1998-01-01

    Membrane gas absorption for carbon dioxide production from flue gases is discussed with special reference to the economics of the supply of carbon dioxide to greenhouses in the Netherlands. Novel absorption liquids have been introduced which show as excellent performance in terms of system stability

  20. Absorbing Aerosols: Field and Laboratory Studies of Black Carbon and Dust

    Science.gov (United States)

    Aiken, A. C.; Flowers, B. A.; Dubey, M. K.

    2011-12-01

    Currently, absorbing aerosols are thought to be the most uncertain factor in atmospheric climate models (~0.4-1.2 W/m2), and the 2nd most important factor after CO2 in global warming (1.6 W/m2; Ramanathan and Carmichael, Nature Geoscience, 2008; Myhre, Science, 2009). While most well-recognized atmospheric aerosols, e.g., sulfate from power-plants, have a cooling effect on the atmosphere by scattering solar radiation, black carbon (BC or soot) absorbs sunlight strongly which results in a warming of the atmosphere. Dust particles are also present globally and can absorb radiation, contributing to a warmer and drier atmosphere. Direct on-line measurements of BC and hematite, an absorbing dust aerosol, can be made with the Single Particle Soot Photometer (SP2), which measures the mass of the particles by incandescence on an individual particle basis. Measurements from the SP2 are combined with absorption measurements from the three-wavelength photoacoustic soot spectrometer (PASS-3) at 405, 532, and 781 nm and the ultraviolet photoacoustic soot spectrometer (PASS-UV) at 375 nm to determine wavelength-dependent mass absorption coefficients (MACs). Laboratory aerosol samples include flame-generated soot, fullerene soot, Aquadag, hematite, and hematite-containing dusts. Measured BC MAC's compare well with published values, and hematite MAC's are an order of magnitude less than BC. Absorbing aerosols measured in the laboratory are compared with those from ambient aerosols measured during the Las Conchas fire and BEACHON-RoMBAS. The Las Conchas fire was a wildfire in the Jemez Mountains of New Mexico that burned over 100,000 acres during the Summer of 2011, and BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) is a field campaign focusing on biogenic aerosols at the Manitou Forest Observatory near Colorado Springs, CO in Summer 2011. Optical properties and size

  1. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves

    DEFF Research Database (Denmark)

    Sondergaard, T.; Novikov, S. M.; Holmgaard, T.

    2012-01-01

    Excitation of localized and delocalized surface plasmon resonances can be used for turning excellent reflectors of visible light, such as gold and silver, into efficient absorbers, whose wavelength, polarization or angular bandwidths are however necessarily limited owing to the resonant nature......) absorption of unpolarized light, reaching an average level of 96%. Efficient absorption of visible light by nanostructured metal surfaces open new exciting perspectives within plasmonics, especially for thermophotovoltaics....... of surface plasmon excitations involved. Nonresonant absorption has so far been achieved by using combined nano- and micro-structural surface modifications and with composite materials involving metal nanoparticles embedded in dielectric layers. Here we realize nonresonant light absorption in a well...

  2. Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption

    Science.gov (United States)

    Yu, Lujun; Zhu, Yaofeng; Fu, Yaqin

    2018-01-01

    Polyaniline (PANI) nanorod arrays were facilely grown on the surface of carbon microspheres via a simple dilute polymerization. The as-synthesized carbon@polyaniline nanorod arrays microspheres (C@PANI) show specific waxberry-like shape, and exhibit superior microwave absorption capacities compared with pure PANI and carbon microsphere. The minimum reflection loss (RL) value of C@PANI microspheres reaches -59.6 dB at 15.5 GHz with a thin thickness of 2.2 mm and the effective bandwidth (reflection loss values of less than -10 dB) is as wide as 5.4 GHz (from 12.6 to 18 GHz). The in-depth analyses of the geometrical shape and composition relationship demonstrate that the enhanced microwave absorption properties of C@PANI microspheres was mainly correlate with the unique PANI nanorod arrays and synergistic effect.

  3. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  4. Characterization and Scaling of Black Carbon Aerosol Concentration with City Population Based on In-Situ Measurements and Analysis

    Science.gov (United States)

    Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.

    2010-12-01

    The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.

  5. Dynamac molecular structure of plant biomass-derived black carbon (Biochar)

    Science.gov (United States)

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration (“biochar”). Here we present a molecular-level assessment o...

  6. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    Science.gov (United States)

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  7. Absorbing properties of α-manganese dioxide/carbon black double-layer composites

    International Nuclear Information System (INIS)

    Duan Yuping; Yang Yang; He Ma; Liu Shunhua; Cui Xiaodong; Chen Huifeng

    2008-01-01

    In order to improve the absorbing properties of the electromagnetic wave absorbing plate, double-layer wave absorbing materials, which are composed of a matching layer and an absorbing layer, were devised. The matching layer is a surface layer of the wave absorbing sample, from which most of the incident waves easily enter the sample, and the absorbing layer is a second layer under the matching layer, which plays an important role in incident wave attenuation. The total thickness of the double-layer composites is the sum of the thicknesses of the matching layer and the absorbing layer. In this paper, α-manganese dioxide and carbon black (CB) were used as absorbents in the matching layer and the absorbing layer respectively. Meanwhile, the structure of the α-manganese dioxide and the CB particles were analysed by x-ray diffraction and transmission electron microscopy, and the dielectric property and absorbing mechanics were also studied. The results showed that, in the case of the mass fraction of CB in the absorbing layer being 30% and the thickness of the absorbing layer being 3 mm, the effectual absorption band (below -10 dB) of the double-layer wave absorbing materials reaches 8.6 GHz and 7.6 GHz in the testing frequency range between 8 GHz and 18 GHz, respectively, when the mass fraction of α-MnO 2 in the matching layer was 10% and the thicknesses of the matching layer were 2 mm and 1 mm, respectively, and the effectual absorption band (below -10 dB) reaches 8.7 GHz in 8-18 GHz when the mass fraction of α-MnO 2 in the matching layer was 20% and the thickness of the matching layer was 2 mm

  8. Aerosol black carbon characteristics over a high-altitude Western Ghats location in Southern India

    Directory of Open Access Journals (Sweden)

    C. Udayasoorian

    2014-10-01

    Full Text Available Aerosol black carbon (BC mass concentrations were continuously monitored over a period of 2 years (April 2010 to May 2012 from a high-altitude location Ooty in the Nilgiris Mountain range in southern India to characterize the distinct nature of absorbing aerosols and their seasonality. Despite being remote and sparsely inhabited, BC concentrations showed significant seasonality with higher values (~ 0.96 ± 0.35 μg m−3 in summer (March to May, attributed to increased vertical transport of effluents in the upwind valley regions, which might have been confined to the surrounding valley regions within the very shallow winter boundary layer. The local atmospheric boundary layer (ABL influence in summer was further modulated by the long-range transported aerosols from the eastern locations of Ooty. During monsoon (June–August, the concentrations were far reduced (~ 0.23 ± 0.06 μg m−3 due to intense precipitation. Diurnal variations were found conspicuous mainly during summer season associated with local ABL. The spectral absorption coefficients (αabs depicted, in general, flatter distribution (mostly abs in summer.

  9. Retention and radiative forcing of black carbon in eastern Sierra Nevada snow

    Directory of Open Access Journals (Sweden)

    K. M. Sterle

    2013-02-01

    Full Text Available When contaminated by absorbing particles, such as refractory black carbon (rBC and continental dust, snow's albedo decreases and thus its absorption of solar radiation increases, thereby hastening snowmelt. For this reason, an understanding of rBC's affect on snow albedo, melt processes, and radiation balance is critical for water management, especially in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the eastern Sierra Nevada of California during the snow accumulation and ablation seasons of 2009 show that concentrations of rBC were enhanced sevenfold in surface snow (~25 ng g–1 compared to bulk values in the snowpack (~3 ng g–1. Unlike major ions, which were preferentially released during the initial melt, rBC and continental dust were retained in the snow, enhancing concentrations well into late spring, until a final flush occurred during the ablation period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m−2 during April and May, with dust likely contributing a greater share of the forcing.

  10. Characterization of long-term and seasonal variations of black carbon (BC concentrations at Neumayer, Antarctica

    Directory of Open Access Journals (Sweden)

    R. Weller

    2013-02-01

    Full Text Available Continuous black carbon (BC observations were conducted from 1999 through 2009 by an Aethalometer (AE10 and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP at Neumayer Station (NM under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng m−3 compared to the AE10 results (1.6 ± 2.1 ng m−3. Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of ω550 = 0.992 ± 0.0090 (median: 0.994 at a wavelength of 550 nm with a range of values from 0.95 to 1.0.

  11. Enhanced Microwave Absorption Properties of α-Fe2O3-Filled Ordered Mesoporous Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Liuding Wang

    2013-04-01

    Full Text Available A novel kind of α-Fe2O3-filled ordered mesoporous carbon nanorods has been synthesized by a facial hydrothermal method. Compared with dendritic α-Fe2O3 micropines, both a broader effective absorption range—from 10.5 GHz to 16.5 GHz with reflection loss (RL less than −10 dB—and a thinner matching thickness of 2.0 mm have been achieved in the frequency range 2–18 GHz. The enhanced microwave absorption properties evaluated by the RL are attributed to the enhanced dielectric loss resulting from the intrinsic physical properties and special structures.

  12. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    DEFF Research Database (Denmark)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-01-01

    samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmoll−1 in freshwater to 222μmoll−1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC......The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87...

  13. Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole or slow-motion approximation

    International Nuclear Information System (INIS)

    Poisson, Eric

    2004-01-01

    The first objective of this work is to obtain practical prescriptions to calculate the absorption of mass and angular momentum by a black hole when external processes produce gravitational radiation. These prescriptions are formulated in the time domain (in contrast with the frequency-domain formalism of Teukolsky and Press) within the framework of black-hole perturbation theory. Two such prescriptions are presented. The first is based on the Teukolsky equation and it applies to general (rotating) black holes. The second is based on the Regge-Wheeler and Zerilli equations and it applies to nonrotating black holes. The second objective of this work is to apply the time-domain absorption formalisms to situations in which the black hole is either small or slowly moving; the mass of the black hole is then assumed to be much smaller than the radius of curvature of the external spacetime in which the hole moves. In the context of this small-hole/slow-motion approximation, the equations of black-hole perturbation theory can be solved analytically, and explicit expressions can be obtained for the absorption of mass and angular momentum. The changes in the black-hole parameters can then be understood in terms of an interaction between the tidal gravitational fields supplied by the external universe and the hole's tidally-induced mass and current quadrupole moments. For a nonrotating black hole the quadrupole moments are proportional to the rate of change of the tidal fields on the hole's world line. For a rotating black hole they are proportional to the tidal fields themselves. When placed in identical environments, a rotating black hole absorbs more energy and angular momentum than a nonrotating black hole

  14. Carbonation Coefficients from Concrete Made with High-Absorption Limestone Aggregate

    Directory of Open Access Journals (Sweden)

    Eric I. Moreno

    2013-01-01

    Full Text Available Normal aggregates employed in concrete have absorption levels in the range of 0.2% to 4% for coarse aggregate and 0.2 to 2% for fine aggregate. However, some aggregates have absorption levels above these values. As the porosity of concrete is related to the porosity of both the cement paste and the aggregate and the carbonation rate is a function, among other things, of the porosity of the material, there is concern about the effect of this high porosity material in achieving good quality concrete from the durability point of view. Thus, the objective of this investigation was to study the carbonation rates of concrete specimens made with high-absorption limestone aggregate. Four different water/cement ratios were used, and cylindrical concrete specimens were exposed to accelerated carbonation. High porosity values were obtained for concrete specimens beyond the expected limits for durable concrete. However, carbonation coefficients related to normal quality concrete were obtained for the lowest water/cement ratio employed suggesting that durable concrete may be obtained with this material despite the high porosity.

  15. Brown carbon absorption in the red and near infrared spectral region

    OpenAIRE

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Chung, Chul Eddy; Gelencsér, András

    2017-01-01

    Black carbon aerosols (BC) have been conventionally assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that contrary to the conventional belief tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near infrared radiation significantly. Tar balls were produced in a laboratory experiment and their chemical and optical properties were measured. ...

  16. Brown carbon absorption in the red and near infrared spectral region

    OpenAIRE

    Hoffer, A.; Tóth, A.; Pósfai, M.; Chung, C. E.; Gelencsér, A.

    2016-01-01

    Black carbon aerosols have been conventionally assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that contrary to the conventional belief tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near infrared radiation significantly. Tar balls were produced in a laboratory experiment and their chemical and optical properties were measured. The a...

  17. Effects of airborne black carbon pollution on maize

    Science.gov (United States)

    Illes, Bernadett; Anda, Angela; Soos, Gabor

    2013-04-01

    The black carbon (BC) changes the radiation balance of the Earth and contributes to global warming. The airborne BC deposited on the surface of plant, changing the radiation balance, water balance and the total dry matter (TDM) content of plant. The objective of our study was to investigate the impact of soot originated from motor vehicle exhaust on maize. The field experiment was carried out in Keszthely Agrometeorological Research Station (Hungary) in three consecutive years (2010, 2011, 2012) of growing season. The test plant was the maize hybrid Sperlona (FAO 340) with short growing season. The BC was chemically "pure", which means that it is free any contaminants (e.g. heavy metals). The BC was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where used that for improve the wear resistance of tires. We used a motorised sprayer of SP 415 type to spray the BC onto the leaf surface. The leaf area index (LAI) was measured each week on the same 12 sample maize in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala), what we placed the middle of the plot of 0.3 ha. The effects of BC were studied under two different water supplies: evapotranspirometers of Thornthwaite type were used for "ad libitum" treatment and rainfed treatment in field plots. In 2010 and 2012, a big difference was not observed in the case of LAI in the effects of BC. However, in 2011 there was a significant difference. The LAI of the BC polluted maize was higher (10-15%, PIrrigation could be the solution against the harmful effects of soot. This article was made under the projects TÁMOP-4.2.2/B-10/1-2010-0025 and TÁMOP-4.2.4. A/2-11-1-2012-0001. These projects are supported by the European Union and co-financed by the European Social Fund.

  18. Black carbon and the Himalayan cryosphere: A review

    Science.gov (United States)

    Gertler, Charles G.; Puppala, Siva Praveen; Panday, Arnico; Stumm, Dorothea; Shea, Joseph

    2016-01-01

    The Himalayan cryosphere borders global hotspots for emissions of black carbon (BC), a carbonaceous aerosol with a short atmospheric lifespan and potentially significant impacts on glaciers and snow cover. BC in the atmosphere absorbs radiation efficiently, leading to localized positive climate forcing. BC may also be deposited onto snow and ice surfaces, thereby changing their albedo. This review presents up-to-date observational data of BC in the atmosphere and in snow and ice, as well as its effects on the cryosphere in the Hindu-Kush-Himalayan (HKH) region along the northern edge of South Asia. Significant spatial variation exists in the measured concentrations of BC in the atmosphere and cryosphere. A strong seasonal pattern exists, with highest concentrations in the pre-monsoon and lowest during the monsoon. Existing observations show bias towards certain areas, with a noticeable lack of measurements on the south side of the Himalaya. Significant uncertainty persists in the emissions estimates of BC in the HKH region, with a standard deviation of regional emissions from various emission inventories of 0.5150 × 10-9 kg m-2 s-1, or 47.1% of the mean (1.0931 × 10-9 kg m-2 s-1). This and other uncertainties, including poor model resolution, imprecision in deposition modeling, and incongruities among measurement types, propagate through simulations of BC concentration in atmosphere and cryosphere. Modeled atmospheric concentrations can differ from observations by as much as a factor of three with no systematic bias, and modeled concentrations in snow and ice can differ from observations by a factor of 60 in certain regions. In the Himalaya, estimates of albedo change due to BC range from about 2 to 10%, estimates of direct radiative forcing due to BC in the atmosphere from (-2)-7 W m-2, and surface forcing estimates from 0 to 28 W m-2, though every forcing estimate uses its own definition, with varying degrees of complexity and numbers of feedbacks. We find the

  19. Effect of carbon dioxide on the rate of iodine vapor absorption by aqueous solution of sodium hydroxide

    International Nuclear Information System (INIS)

    Eguchi, Wataru; Adachi, Motonari; Miyake, Yoshikazu

    1978-01-01

    There is always carbon dioxide in the atmosphere as an impurity. Since this is an acid gas similar to iodine, each absorption rate seems to be affected by the other due to the coexistence of these two. Experiments have been conducted to clarify the absorption rate and absorption mechanism of iodine in the simultaneous absorption of iodine and carbon dioxide. Carbon dioxide coexisting with gas phases as an impurity decreases the absorption rate of iodine in the removal by washing with water of iodine mixed in the air. The first cause of this is that the diffusion coefficient of iodine in gas phase decreases with the carbon dioxide content in the gas phase. The second cause is that coexistent carbon dioxide is an acid gas, dissociates by dissolving into the absorbing solution, increases hydrogen ion concentration together with the formation of negative ions of bicarbonate and carbonate, and reduces hydroxyl ion concentration as a result. It is more important that existence of iodine has a catalytic effect to the rate of basic catalytic hydrolysis of carbon dioxide simultaneously dissolved in water phase, and accelerates this reaction rate. The mechanism of catalytic effect of iodine for the hydrolysis of carbon dioxide can not be clarified in detail only by this experiment, but the simultaneous absorption rate of iodine and carbon dioxide can be explained satisfactorily. (Wakatsuki, Y

  20. Low temperature absorption of hydrogen isotopes on potassium-graphite intercalation compounds prepared from carbon fibers and HOPG

    International Nuclear Information System (INIS)

    Akuzawa, N.; Amemiya, T.; Terai, T.; Takahashi, Y.

    1984-01-01

    Hydrogen absorption behavior of potassium-carbon intercalation compounds (KCsub(x)), prepared from PAN based carbon fiber, benzene derived vapor grown carbon fiber and highly oriented pyrolytic graphite, was investigated by measuring the isotherms of hydrogen- and deuterium-gas absorption and the H 2 - D 2 isotopic partition coefficient at 77 K. The absorption behavior was somewhat different from those of KCsub(x) prepared from natural or artificial graphite powders: The rate of absorption was very slow, especially at the early stage of experiment, and equilibrium absorption was attained only after several runs of absorption-desorption cycles. For KC 21 prepared from HOPG, a remarkable exfoliation was observed by the release of absorbed hydrogen. The isotopic partition coefficients of these samples were not very different from those of other KCsub(x) samples. (author)

  1. Estimation of Black Carbon Emissions from Dry Dipterocarp Forest Fires in Thailand

    Directory of Open Access Journals (Sweden)

    Ubonwan Chaiyo

    2014-12-01

    Full Text Available This study focused on the estimation of black carbon emissions from dry dipterocarp forest fires in Thailand. Field experiments were set up at the natural forest, Mae Nam Phachi wildlife sanctuary, Ratchaburi Province, Thailand. The dead leaves were the main component consumed of the surface biomass with coverage higher than 90% in volume and mass. The dead leaves load was 342 ± 190 g∙m−2 and followed by a little mass load of twig, 100 g∙m−2. The chemical analysis of the dead leaves showed that the carbon content in the experimental biomass fuel was 45.81 ± 0.04%. From the field experiments, it was found that 88.38 ± 2.02% of the carbon input was converted to carbon released to the atmosphere, while less than 10% were left in the form of residues, and returned to soil. The quantity of dead leaves consumed to produce each gram of carbon released was 2.40 ± 0.02 gdry biomass burned. From the study, the emissions factor of carbon dioxide, carbon monoxide, particulate matter (PM2.5 and black carbon amounted 1329, 90, 26.19 and 2.83 g∙kg−1dry biomass burned, respectively. In Thailand, the amount of black carbon emissions from dry dipterocarp forest fires amounted 17.43 tonnes∙y−1.

  2. Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic

    Science.gov (United States)

    Svensson, Jonas; Ström, Johan; Kivekäs, Niku; Dkhar, Nathaniel B.; Tayal, Shresth; Sharma, Ved P.; Jutila, Arttu; Backman, John; Virkkula, Aki; Ruppel, Meri; Hyvärinen, Antti; Kontu, Anna; Hannula, Henna-Reetta; Leppäranta, Matti; Hooda, Rakesh K.; Korhola, Atte; Asmi, Eija; Lihavainen, Heikki

    2018-03-01

    Light-absorbing impurities (LAIs) deposited in snow have the potential to substantially affect the snow radiation budget, with subsequent implications for snow melt. To more accurately quantify the snow albedo, the contribution from different LAIs needs to be assessed. Here we estimate the main LAI components, elemental carbon (EC) (as a proxy for black carbon) and mineral dust in snow from the Indian Himalayas and paired the results with snow samples from Arctic Finland. The impurities are collected onto quartz filters and are analyzed thermal-optically for EC, as well as with an additional optical measurement to estimate the light-absorption of dust separately on the filters. Laboratory tests were conducted using substrates containing soot and mineral particles, especially prepared to test the experimental setup. Analyzed ambient snow samples show EC concentrations that are in the same range as presented by previous research, for each respective region. In terms of the mass absorption cross section (MAC) our ambient EC surprisingly had about half of the MAC value compared to our laboratory standard EC (chimney soot), suggesting a less light absorptive EC in the snow, which has consequences for the snow albedo reduction caused by EC. In the Himalayan samples, larger contributions by dust (in the range of 50 % or greater for the light absorption caused by the LAI) highlighted the importance of dust acting as a light absorber in the snow. Moreover, EC concentrations in the Indian samples, acquired from a 120 cm deep snow pit (possibly covering the last five years of snow fall), suggest an increase in both EC and dust deposition. This work emphasizes the complexity in determining the snow albedo, showing that LAI concentrations alone might not be sufficient, but additional transient effects on the light-absorbing properties of the EC need to be considered and studied in the snow. Equally as imperative is the confirmation of the spatial and temporal representativeness

  3. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  4. On the low temperature microwave absorption anomaly in single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Karsa, Anita; Quintavalle, Dario; Simon, Ferenc [Budapest University of Technology and Economics, Budapest (Hungary). Inst. of Physics; Hungarian Academy of Sciences, Budapest (Hungary). Condensed Matter Research Group; Forro, Laszlo [Institute of Physics of Complex Matter, FBS Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2012-12-15

    The low temperature microwave absorption anomaly reported by Corzilius et al. [Phys. Rev. B 75, 235416 (2007)] in single-wall carbon nanotubes (SWCNTs) is revisited. It was originally reported that the microwave absorption of CVD grown SWCNTs shows an unexpected increase below {proportional_to}20 K (using flow cryostats) which depends on the microwave power. The original observation was made using the microwave cavity perturbation method while sweeping the microwave frequency. We reproduced this effect on arc-discharge based SWCNTs, using static cryogenic conditions with cooled microwave cavities, and employing a stable frequency source locked to the cavity resonance. Our observation shows that the microwave absorption anomaly is robust against the tube type and the experimental conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Absorption of carbon dioxide in aqueous solutions of imidazolium ionic liquids with carboxylate anions

    International Nuclear Information System (INIS)

    Baj, Stefan; Krawczyk, Tomasz; Dabrowska, Aleksandra; Siewniak, Agnieszka; Sobolewski, Aleksander

    2015-01-01

    The solubility of carbon dioxide at atmospheric pressure in aqueous mixtures of 1,3-alkyl substituted imidazolium ionic liquids (ILs) containing carboxylic anions was studied. The ILs showed increased solubility of CO 2 with decreasing water concentration. The relationship between the CO 2 concentration in solution and the mole fraction of water in the ILs describes a sigmoidal curve. The regression constants of a logistic function were used to quantitatively assess the absorbent capacity and the effect of water on CO 2 absorption. ILs containing the most basic anions, such as pivalate, propionate and acetate, had the best properties. It was observed that the impact of water on absorption primarily depended on the cation structure. The best absorption performance was observed for 1,3-dibutylimidazolium pivalate and 1-butyl-3-methyl imidazolium acetate.

  6. Parametric uncertainties in global model simulations of black carbon column mass concentration

    Science.gov (United States)

    Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham

    2016-04-01

    Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m-2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10-9 g cm-2 in remote marine regions and 1.25 x 10-6 g cm-2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary comparisons of

  7. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    Science.gov (United States)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  8. Nonlinear absorption and optical damage threshold of carbon-based nanostructured material embedded in a protein

    Science.gov (United States)

    Janulewicz, K. A.; Hapiddin, A.; Joseph, D.; Geckeler, K. E.; Sung, J. H.; Nickles, P. V.

    2014-12-01

    Physical processes in laser-matter interaction used to be determined by generation of fast electrons resulting from efficient conversion of the absorbed laser radiation. Composite materials offer the possibility to control the absorption by choice of the host material and dopants. Reported here strong absorption of ultrashort laser pulse in a composite carbon-based nanomaterial including single-walled carbon nanotubes (SWCNTs) or multilayer graphene was measured in the intensity range between 1012 and 1016 W cm-2. A protein (lysozyme) was used as the host. The maximum absorption of femtosecond laser pulse has reached 92-96 %. The optical damage thresholds of the coatings were registered at an intensity of (1.1 ± 0.5) × 1013 W cm-2 for the embedded SWCNTs and at (3.4 ± 0.3) × 1013 W cm-2 for the embedded graphene. Encapsulated variant of the dispersed nanomaterial was investigated as well. It was found that supernatant protein in the coating material tends to dominate the absorption process, independently of the embedded nanomaterial. The opposite was observed for the encapsulated material.

  9. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon

    Science.gov (United States)

    Li, Bin Peng; Wang, Cheng Guo; Wang, Wen; Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan

    2014-09-01

    Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2-18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<-10 dB) was observed in a large frequency range of 7.5-18 GHz with the absorber thickness of 2.0-3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around -40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C.

  10. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    Directory of Open Access Journals (Sweden)

    T. C. Bond

    2011-02-01

    12 additional models. We outline a framework for combining a large number of simple models with a smaller number of enhanced models that have greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed. Emitting regions with more deep convection have greater model diversity. Our best estimate of global-mean SFP is +1.03 ± 0.52 GJ g−1 for direct atmosphere forcing of black carbon, +1.15 ± 0.53 GJ g−1 for black carbon including direct and cryosphere forcing, and −0.064 (−0.02, −0.13 GJ g−1 for organic matter. These values depend on the region and timing of emission. The lowest OM:BC mass ratio required to produce a neutral effect on top-of-atmosphere direct forcing is 15:1 for any region. Any lower ratio results in positive direct forcing. However, important processes, particularly cloud changes that tend toward cooling, have not been included here.

    Global-average SFP for energy-related emissions can be converted to a 100-year GWP of about 740 ± 370 for BC without snow forcing, and 830 ± 440 with snow forcing. 100-year GWP for OM is −46 (−18, −92. Best estimates of atmospheric radiative impact (without snow forcing by black and organic matter are +0.47 ± 0.26 W m−2 and −0.17 (−0.07, −0.35 W m−2 for BC and OM, respectively, assuming total emission rates of 7.4 and 45 Tg yr−1. Anthropogenic forcing is +0.40 ± 0.18 W m−2 and −0.13 (−0.05, −0.25 W m−2 for BC and OM, respectively, assuming anthropogenic emission rates of 6.3 and 32.6 Tg yr−1. Black carbon forcing is only 18% higher than that given by the Intergovernmental Panel on Climate Change (IPCC, although the value presented here includes enhanced absorption due to internal mixing.

  11. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain

    Science.gov (United States)

    Becerril-Valle, M.; Coz, E.; Prévôt, A. S. H.; Močnik, G.; Pandis, S. N.; Sánchez de la Campa, A. M.; Alastuey, A.; Díaz, E.; Pérez, R. M.; Artíñano, B.

    2017-11-01

    A one-year black carbon (BC) experimental study was performed at three different locations (urban traffic, urban background, rural) in Spain with different equivalent BC (eBC) source characteristics by means of multi-wavelength Aethalometers. The Aethalometer model was used for the source apportionment study, based on the difference in absorption spectral dependence of emissions from biomass burning (bb) and fossil fuel (ff) combustion. Most studies use a single bb and ff absorption Ångström exponent (AAE) pair (AAEbb and AAEff), however in this work we use a range of AAE values associated with fossil fuel and biomass burning based on the available measurements, which represents more properly all conditions. A sensitivity analysis of the source specific AAE was carried out to determine the most appropriate AAE values, being site dependent and seasonally variable. Here we present a methodology for the determination of the ranges of AAEbb and AAEff by evaluating the correlations between the source apportionment of eBC using the Aethalometer model with four biomass burning tracers measured at the rural site. The best combination was AAEbb = [1.63-1.74] and AAEff = [0.97-1.12]. Mean eBC values (±SD) obtained during the period of study were 3.70 ± 3.73 μg m-3 at the traffic urban site, 2.33 ± 2.96 μg m-3 at the urban background location, and 2.61 ± 5.04 μg m-3 in the rural area. High contributions of eBC to the PM10 mass were found (values up to 21% in winter), but with high eBC/PM10 variability. The hourly mean eBCff and eBCbb concentrations varied from 0 to 51 μg m-3 and from 0 to 50 μg m-3 at the three sites, respectively, exhibiting distinct seasonal and daily patterns. The fossil fuel combustion was the dominant eBC source at the urban sites, while biomass burning dominated during the cold season (88% of eBCbb) in the rural area. Daily PM2.5 and PM10 samples were collected using high-volume air samplers and analyzed for OC and EC. Analysis of biomass

  12. Co-milled silica and coppiced wood biochars improve elongation and toughness in styrene-butadiene elastomeric composites while replacing carbon black

    Science.gov (United States)

    Carbon black is a petroleum byproduct with a million-ton market in the US tire industry. Finding renewable substitutes for carbon black reduces dependence on oil and alleviates global warming. Biochar is a renewable source of carbon that has been studied previously as a replacement for carbon black ...

  13. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Lopez, S; Vigueras-Santiago, E [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA) Facultad de Quimica, Paseo Colon Esquina con Paseo Tollocan, s/n, CP 50000, Toluca (Mexico); Mayorga-Rojas, M; Reyes-Contreras, D, E-mail: eviguerass@uaemex.m [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. Av. Instituto Literario 100 Ote. C. P. 50000, Toluca (Mexico)

    2009-05-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30{mu}m, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T{sub g} of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T{sub g}, producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 mu m thickness sample the hysteresis loop was lost after four cycles.

  14. Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst.

    Science.gov (United States)

    Karousos, Dionysios S; Desdenakis, Kostantinos I; Sakkas, Petros M; Sourkouni, Georgia; Pollet, Bruno G; Argirusis, Christos

    2017-03-01

    Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-10-01

    Full Text Available Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  16. Synthesis of silicon–carbon black composite as anode material for lithium ion battery

    Science.gov (United States)

    Kim, Hanvin; Yun, Yongsub; Lee, Young-Chan; Lee, Myeong-Hoon; Saito, Nagahiro; Kang, Jun

    2018-01-01

    Silicon has been attracting attention as an anode material that can be used for the design of high-capacity lithium ion batteries (LIB). However, the long-term cycling performance of silicon is limited owing to exfoliation from the current collector, resulting from volumetric expansion upon alloying with lithium in the charging process. However, carbon black is an agglomerate of primary particles that form a network and can incorporate a sufficient void space between network structures to accommodate the volumetric expansion of silicon. In this study, we propose the possibility of preventing the volume expansion and exfoliation of silicon by capturing silicon nanoparticles in the void space of the carbon black network. A silicon–carbon black composite material with this structure was successfully synthesized by solution plasma processing.

  17. Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties

    International Nuclear Information System (INIS)

    Abdul Khalil, H.P.S.; Firoozian, P.; Bakare, I.O.; Akil, Hazizan Md.; Noor, Ahmad Md.

    2010-01-01

    Carbon blacks (CB), derived from bamboo stem (BS-CB), coconut shells (CNS-CB) and oil palm empty fiber bunch (EFB-CB), were obtained by pyrolysis of fibers at 700 o C, characterized and used as filler in epoxy composites. The results obtained showed that the prepared carbon black possessed well-developed porosities and are predominantly made up of micropores. The BS-CB, CNS-CB and EFB-CB filled composites were prepared and characterized using scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). The SEM showed that the fractured surface of the composite indicates its high resistance to fracture. The CBs-epoxy composites exhibited better flexural properties than the neat epoxy, which was attributed to better adhesion between the CBs and the epoxy resin. TGA showed that there was improvement in thermal stability of the carbon black filled composites compared to the neat epoxy resin.

  18. Effect of part replacement of silica sand with carbon black on composite properties

    International Nuclear Information System (INIS)

    Adeosun, B.F.; Olaofe, O.

    2003-01-01

    We have reported the properties of natural rubber filled with locally available materials (Adu et al 2000). The effect of local clay, limestone, silica sand and charcoal on the properties of natural rubber has been examined. Results have shown detrimental effects of silica sand on the properties of natural rubber compound. It has been reported that when silica is used as a part for part replacement of carbon black, the heat build up the composite decreased whilst tear resistance improved. Results revealed that within the filler content range used in the present work, the hardness, modulus, and tensile strength of composites loaded with silica sand/carbon black showed enhanced magnitude over the composite loaded singly with silica sand. These parameters generally increased with increasing carbon black content in the composite. New area of use requiring moderate level of tensile strength, hardness and modulus (as in soles of shoes and engine mounts) is therefore opened up for silica sand.(author)

  19. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®.

    Science.gov (United States)

    Cinti, Stefano; Mazzaracchio, Vincenzo; Cacciotti, Ilaria; Moscone, Danila; Arduini, Fabiana

    2017-10-03

    Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M ® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  20. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    International Nuclear Information System (INIS)

    Hernandez-Lopez, S; Vigueras-Santiago, E; Mayorga-Rojas, M; Reyes-Contreras, D

    2009-01-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30 μm, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T g of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T g , producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 μ m thickness sample the hysteresis loop was lost after four cycles.

  1. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    Science.gov (United States)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  2. SP2 Deployment at Boston College—Aerodyne-Led Coated Black Carbon Study (BC4) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Onasch, T. B. [Aerodyne Research, Inc., Billerica, MA (United States); Sedlacek, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The main objective of the Boston College-Aerodyne led laboratory study (BC4) was to measure the optical properties of black carbon (BC) particles from a diffusion flame directly and after being coated with secondary organic and inorganic material and to achieve optical closure with model predictions. The measurements of single particle BC mass and population mixing states provided by a single particle soot photometer (SP2) was central to achieving the laboratory-based study’s objective. Specifically, the DOE ARM SP2 instrument participated in the BC4 project to address the following scientific questions: 1. What is the mass-specific absorption coefficient as a function of secondary organic and inorganic material coatings? 2. What is the spread in the population mixing states within our carefully generated laboratory particles? 3. How does the SP2 instrument respond to well-characterized, internally mixed BC-containing particles?

  3. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars).

    Science.gov (United States)

    Harvey, Omar R; Kuo, Li-Jung; Zimmerman, Andrew R; Louchouarn, Patrick; Amonette, James E; Herbert, Bruce E

    2012-02-07

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  4. Universality, maximum radiation, and absorption in high-energy collisions of black holes with spin.

    Science.gov (United States)

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; Pretorius, Frans

    2013-07-26

    We explore the impact of black hole spins on the dynamics of high-energy black hole collisions. We report results from numerical simulations with γ factors up to 2.49 and dimensionless spin parameter χ=+0.85, +0.6, 0, -0.6, -0.85. We find that the scattering threshold becomes independent of spin at large center-of-mass energies, confirming previous conjectures that structure does not matter in ultrarelativistic collisions. It has further been argued that in this limit all of the kinetic energy of the system may be radiated by fine tuning the impact parameter to threshold. On the contrary, we find that only about 60% of the kinetic energy is radiated for γ=2.49. By monitoring apparent horizons before and after scattering events we show that the "missing energy" is absorbed by the individual black holes in the encounter, and moreover the individual black-hole spins change significantly. We support this conclusion with perturbative calculations. An extrapolation of our results to the limit γ→∞ suggests that about half of the center-of-mass energy of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and spin energy.

  5. ESR study on the interaction between carbon blacks and oxygen molecules; ESR ho ni yoru carbon black to sanso bunshi tono sogo sayo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, M.; Toriyama, K.; Konishi, Y. [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    2000-02-24

    Interaction between carbon blacks and oxygen molecules has been studied by means of electron spin resonance (ESR) spectroscopy. The ESR spectra of the carbon blacks appears at the g-value of free spin, which are contributed by both isolated electrons and conduction electrons. Upon introducing oxygen to the system the ESR linewidth was broadened in proportion to the partial pressure of oxygen. In case of lampblack (LB 101, Degussa) the interaction was not so strong that it took a tong time at 77K for the linewidth to reach the maxmum value. In case of gassblack (P 140 V, Degussa), on the other hand, the oxygen was easily adsorbed at 298K and the linewidth at 77K became its maximum immediately after cooling. The number of unpaired electrons decreased when the system was kept at 298 K and the decrease was prominent for the local spins. These phenomena have been explained with a simple band model for the electron. (author)

  6. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    Science.gov (United States)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  7. End of the Little Ice Age in the Alps forced by industrial black carbon

    OpenAIRE

    Painter, Thomas H.; Flanner, Mark G.; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A.; Abdalati, Waleed

    2013-01-01

    The end of the Little Ice Age in the European Alps has long been a paradox to glaciology and climatology. Glaciers in the Alps began to retreat abruptly in the mid-19th century, but reconstructions of temperature and precipitation indicate that glaciers should have instead advanced into the 20th century. We observe that industrial black carbon in snow began to increase markedly in the mid-19th century and show with simulations that the associated increases in absorbed sunlight by black carbon...

  8. Modification of pure oxygen absorption equipment for concurrent stripping of carbon dioxide

    Science.gov (United States)

    Watten, B.J.; Sibrell, P.L.; Montgomery, G.A.; Tsukuda, S.M.

    2004-01-01

    The high solubility of carbon dioxide precludes significant desorption within commercial oxygen absorption equipment. This operating characteristic of the equipment limits its application in recirculating water culture systems despite its ability to significantly increase allowable fish loading rates (kg/(L min)). Carbon dioxide (DC) is typically removed by air stripping. This process requires a significant energy input for forced air movement, air heating in cold climates and water pumping. We developed a modification for a spray tower that provides for carbon dioxide desorption as well as oxygen absorption. Elimination of the air-stripping step reduces pumping costs while allowing dissolved nitrogen to drop below saturation concentrations. This latter response provides for an improvement in oxygen absorption efficiency within the spray tower. DC desorption is achieved by directing head-space gases from the spray tower (O2, N2, CO2) through a sealed packed tower scrubber receiving a 2 N NaOH solution. Carbon dioxide is selectively removed from the gas stream, by chemical reaction, forming the product Na 2CO3. Scrubber off-gas, lean with regard to carbon dioxide but still rich with oxygen, is redirected through the spray tower for further stripping of DC and absorption of oxygen. Make-up NaOH is metered into the scrubbing solution sump on an as needed basis as directed by a feedback control loop programmed to maintain a scrubbing solution pH of 11.4-11.8. The spent NaOH solution is collected, then regenerated for reuse, in a batch process that requires relatively inexpensive hydrated lime (Ca(OH)2). A by-product of the regeneration step is an alkaline filter cake, which may have use in bio-solids stabilization. Given the enhanced gas transfer rates possible with chemical reaction, the required NaOH solution flow rate through the scrubber represents a fraction of the spray tower water flow rate. Further, isolation of the water being treated from the atmosphere (1

  9. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.

    Science.gov (United States)

    Khalizov, Alexei F; Xue, Huaxin; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-02-12

    Light absorption by carbon soot increases when the particles are internally mixed with nonabsorbing materials, leading to increased radiative forcing, but the magnitude of this enhancement is a subject of great uncertainty. We have performed laboratory experiments of the optical properties of fresh and internally mixed carbon soot aerosols with a known particle size, morphology, and the mixing state. Flame-generated soot aerosol is size-selected with a double-differential mobility analyzer (DMA) setup to eliminate multiply charged particle modes and then exposed to gaseous sulfuric acid (10(9)-10(10) molecule cm(-3)) and water vapor (5-80% relative humidity, RH). Light extinction and scattering by fresh and internally mixed soot aerosol are measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively, and the absorption is derived as the difference between extinction and scattering. The optical properties of fresh soot are independent of RH, whereas soot internally mixed with sulfuric acid exhibits significant enhancement in light absorption and scattering, increasing with the mass fraction of sulfuric acid coating and relative humidity. For soot particles with an initial mobility diameter of 320 nm and a 40% H(2)SO(4) mass coating fraction, absorption and scattering are increased by 1.4- and 13-fold at 80% RH, respectively. Also, the single scattering albedo of soot aerosol increases from 0.1 to 0.5 after coating and humidification. Additional measurements with soot particles that are first coated with sulfuric acid and then heated to remove the coating show that both scattering and absorption are enhanced by irreversible restructuring of soot aggregates to more compact globules. Depending on the initial size and density of soot aggregates, restructuring acts to increase or decrease the absorption cross-section, but the combination of restructuring and encapsulation always results in an increased absorption for

  10. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  11. Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption.

    Science.gov (United States)

    Xu, Hailong; Yin, Xiaowei; Zhu, Meng; Han, Meikang; Hou, Zexin; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2017-02-22

    In this work, mesoporous carbon hollow microspheres (PCHMs) with designable mesoporous shell and interior void are constructed by a facile in situ stöber templating approach and a pyrolysis-etching process. The PCHMs are characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectra, Raman spectroscopy, and nitrogen adsorption and desorption system. A uniform mesoporous shell (pore size 4.7 nm) with a thickness of 55 nm and a cavity size of 345 nm is realized. The composite of paraffin mixed with 20 wt % PCHMs exhibits a minimum reflection coefficient (RC min ) of -84 dB at 8.2 GHz with a sample thickness of 3.9 mm and an effective absorption bandwidth (EAB) of 4.8 GHz below -10 dB (>90% electromagnetic wave is attenuated). Moreover, the composite of phenolic resin mixed with 20 wt % PCHMs exhibits an ultrawide EAB of 8 GHz below -10 dB with a thinner thickness of 2.15 mm. Such excellent electromagnetic wave absorption properties are ascribed to the large carbon-air interface in the mesoporous shell and interior void, which is favorable for the matching of characteristic impedance as compared with carbon hollow microspheres and carbon solid microspheres. Considering the excellent performance of PCHMs, we believe the as-fabricated PCHMs can be promising candidates as highly effective microwave absorbers, and the design philosophy can be extended to other spherical absorbers.

  12. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    Science.gov (United States)

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in

  13. Light absorption properties of brown carbon over the southeastern Tibetan Plateau.

    Science.gov (United States)

    Zhu, Chong-Shu; Cao, Jun-Ji; Huang, Ru-Jin; Shen, Zhen-Xing; Wang, Qi-Yuan; Zhang, Ning-Ning

    2018-06-01

    We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326m above sea level) in the southeastern Tibetan Plateau during the period 2015-2016. The light absorption coefficients at 365nm (b abs365 ) of WS-BrC and MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5 times higher at 365nm compared to WS-BrC. The absorption at 550nm appears lower compared to that of 365nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Ångström exponent (AAE, 365-550nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption cross section at 365nm (MAC 365 ) indicated that BrC in winter absorbs UV-visible light more efficiently than in monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region. The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies for the climate effects and transport of BrC in the Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    Energy Technology Data Exchange (ETDEWEB)

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  15. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  16. O2 electrocatalysis in acid media on iron naphthalocyanine impregnations. Effect of nitric acid treatment on different carbon black supports

    NARCIS (Netherlands)

    Coowar, F.; Contamin, O.; Savy, M.; Scarbeck, G.; van den Ham, D.; Riga, J.; Verbist, J.J.

    1991-01-01

    O2 electrocatalysis on (2,3)FeNPc impregnations on different carbon blacks was investigated in H2SO4 medium. The effect of nitric acid treatment on the carbon black support is to enhance both the activity and stability of the catalyst. Moreover, as seen by XPS, the dissolution of iron is impeded by

  17. Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The effects of carbon blacks on vulcanization and mechanical properties of filled ethylene-propylene-diene rubber (EPDM are investigated, by comparing with five types of rubber-grade carbon blacks. Curing kinetics is studied by rheometer and the results indicate that the curing characteristics are influenced by combination of surface area of carbon black and sulphur content on the filler surface, because the former one enhances the physical cross-linking and the latter one introduces the additional chemical cross-linking. Both the degree of cross-linking and cure rate increase with increasing surface area and sulphur content, whereas the optimum cure time and scorch time decrease. The reinforcing nature of the carbon black is assessed from mechanical measurements. It is suggested that the surface area of carbon blacks strongly affects the physical properties of EPDM/carbon black composites. Conductive carbon black (N472 can be used as desirable reinforcing filler due to the higher degree of cross-linking of EPDM with N472 than other EPDM/carbon black composites. The morphology and distribution of particles are studied by using scanning electron microscope. The sound reinforcing ability of N472 is also supported by scanning electron microscope due to the notable dispersibility of N472 within EPDM matrix. N472 ensures the EPDM/N472 composite the most conductive sample among the five composites.

  18. Scanning Imaging Absorption Spectrometer for Atmospheric Chartography carbon monoxide total columns: Statistical evaluation and comparison with chemistry transport model results

    NARCIS (Netherlands)

    Laat, de A.T.J.; Gloudemans, A.M.S.; Aben, I.; Krol, M.C.; Meirink, J.F.; Werf, van der G.R.; Schrijver, H.

    2007-01-01

    This paper presents a detailed statistical analysis of one year (September 2003 to August 2004) of global Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) carbon monoxide (CO) total column retrievals from the Iterative Maximum Likelihood Method (IMLM) algorithm,

  19. Black carbon emissions from biomass and fossil fuels in rural India

    Directory of Open Access Journals (Sweden)

    I. H. Rehman

    2011-07-01

    Full Text Available Black carbon (BC emission from biofuel cooking in South Asia and its radiative forcing is a significant source of uncertainty for health and climate impact studies. Quantification of BC emissions in the published literature is either based on laboratory or remote field observations far away from the source. For the first time under Project Surya, we use field measurements taken simultaneously inside rural households, ambient air and vehicular emissions from highways in a rural area in the Indo-Gangetic-Plains region of India to establish the role of both solid biomass based cooking in traditional stoves and diesel vehicles in contributing to high BC and organic carbon (OC, and solar absorption. The major finding of this study is that BC concentrations during cooking hours, both indoors and outdoors, have anomalously large twice-daily peak concentrations reaching 60 μg m−3 (median 15-min average value for indoor and 30 μg m−3 (median 15-min average value for outdoor during the early morning (05:00 to 08:00 and early evening (17:00 to 19:00 hours coinciding with the morning and evening cooking hours. The BC during the non-cooking hours were also large, in the range of 2 to 30 μg m−3. The peak indoor BC concentrations reached as high as 1000 μg m−3. The large diurnal peaks seen in this study lead to the conclusion that satellite based aerosol studies that rely on once- daily daytime measurements may severely underestimate the BC loading of the atmosphere. The concentration of OC was a factor of 5 larger than BC and furthermore optical data show that absorbing brown carbon was a major component of the OC. The imprint of the cooking hour peaks were seen in the outdoor BC both in the village as well as in the highway. The results have significant implications for climate and epidemiological studies.

  20. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    Science.gov (United States)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  1. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  2. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.

    Science.gov (United States)

    Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing

    2012-11-01

    A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Photodoping and enhanced visible light absorption in single-walled carbon nanotubes functionalized with a wide band gap oligomer.

    Science.gov (United States)

    Bunes, Benjamin R; Xu, Miao; Zhang, Yaqiong; Gross, Dustin E; Saha, Avishek; Jacobs, Daniel L; Yang, Xiaomei; Moore, Jeffrey S; Zang, Ling

    2015-01-07

    Carbon nanotubes feature excellent electronic properties but narrow absorption bands limit their utility in certain optoelectronic devices, including photovoltaic cells. Here, the addition of a wide-bandgap gap oligomer enhances light absorption in the visible spectrum. Furthermore, the oligomer interacts with the carbon nanotube through a peculiar charge transfer, which provides insight into Type II heterojunctions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Improvement of the Rotary Dryers of Wet Pelletized Oil-Furnace Carbon Blacks

    Directory of Open Access Journals (Sweden)

    Zečević, M

    2010-05-01

    Full Text Available Due to the demand for higher production capacity and natural-gas energy savings, improvements were made to the rotary dryers in the drying process of wet pelletized oil-furnace carbon blacks. Since the rotary dryers were originally designed for drying semi-wet pelletized oil-furnace carbon blacks, they did not entirely satisfy optimal conditions for drying wet pelletized oil-furnace carbon blacks. Figure 1 shows the drying principle with key dimensions. The energy for drying the wet pelletized oil-furnace carbon blacks was provided by natural gas combustion in an open-furnace system with an uncontrolled feed of combustion air. Improvements on the rotary dryers were carried out by adjusting the excess oxygen in the gases passing through the butterfly valve on the dryer exhaust stack. By regulating the butterfly valve on the dryer exhaust stack, and applying the prescribed operations for drying wet pelletized oil furnace carbon blacks, the excess oxygen in the tail gases was adjusted in the range of φ = 3.0 % and 5.0 %, depending on the type of oil-furnace carbon blacks. Suggested also is installation of a direct-reverse automatic butterfly valve on the dryer exhaust stack to automatically determine the volume fraction of oxygen in the tail gas, and the volume flow rate of natural gas for combustion. The results the improvements carried out are shown in Tables 3 to 5. Table 2 shows the thermal calculations for the hood of the rotary dryer. Preheating of the process water in the temperature range of 70 °C and 80 °C is also recommended using the net heat from the oil-furnace process for wet pelletization. The results of preheating the process water are shown in Table 1. Depending on the type of oil-furnace carbon black, the aforementioned improvements resulted in natural gas energy savings ranging from 25 % to 35 % in relation to the average natural gas requirement in the drying process, and thus a reduction in carbon emissions of up to 40

  5. Effect of carbon black on electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate composites

    Directory of Open Access Journals (Sweden)

    H. Oxfall

    2015-01-01

    Full Text Available The effect of adding carbon black on the electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate copolymer composites produced via melt or solution mixing was studied. By adding a small amount of low- or high-structured carbon black to the nanocomposite, the electrical percolation threshold decreased and the final conductivity (at higher filler contents increased. The effect on the percolation threshold was significantly stronger in case of the high-structured carbon black where replacing 10 wt% of the total filler content with carbon black instead of graphite nanoplatelets reduced the electrical percolation threshold from 6.9 to 4.6 vol%. Finally, the solution mixing process was found to be more efficient leading to a lower percolation threshold. For the composites containing high-structured carbon black, graphite nanoplatelets and their hybrids there was a quite reasonable correlation between the electrical and rheological percolation thresholds.

  6. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows......; however, CRC samples graphitised =2800 °C did not exhibit this same behaviour. Highlights ¿ We quantitatively determine electrooxidation of carbon support materials. ¿ We can distinguish between the total and partial electrooxidation. ¿ Non or mildly heat treated carbon forms passivating layer. ¿ Heat...

  7. Pole-to-Pole Distribution of Stratospheric Black Carbon (Soot) Aerosol from Aircraft

    Science.gov (United States)

    Pueschel, R. F.; Ferry, G. V.; Verma, S.; Howard, S. D.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    The distribution of black carbon (soot) aerosol (BCA) in the atmosphere is of interest for several reasons: (1) Because BCA has the highest absorption cross section of any compound known, it can absorb solar radiation to cause atmospheric warming. (2) Because it is a strong adsorber of gases, it can catalyze heterogeneous reactions to change the chemical composition of the atmosphere.(3) If aircraft are a major source of BCA, it is an important tracer of aircraft emissions. Analysis for BCA of impactor samples from Arctic and Antarctic deployments, utilizing particle morphology of scanning electron microscopy images, permits the following conclusions: (1) The BCA concentration in the northern stratosphere varies between 0 and 2.6 ng m-3 averaging 0.6 ng/cu m. (2) This BCA loading is commensurate with estimated fuel consumptions in the stratosphere by the current commercial fleet and an emission index E=0.03 g BCA per kg fuel burnt which was measured in jet exhaust at al titude.Thus, most stratospheric BCA in the northern stratosphere results from aircraft emissions. The background BCA concentration in the southern stratosphere varies between 0 and 0.6 ng cu m averaging 0.1 ng/cu m. This strong meridional gradient implies that stratospheric BCA residence time- is shorter than are mixing times between hemispheres. Projected annual fuel consumption of a future supersonic commercial fleet is 7E13 g. This fleet would increase stratospheric BCA loadings by a factor of 2-3, because almost all fuel would be burnt above the tropopause. An improved EI(BCA) by a factor of ten would result in an increase of stratospheric BCA loadings by approximately 50 %.

  8. Source attribution of Arctic black carbon constrained by aircraft and surface measurements

    Science.gov (United States)

    Xu, Jun-Wei; Martin, Randall V.; Morrow, Andrew; Sharma, Sangeeta; Huang, Lin; Leaitch, W. Richard; Burkart, Julia; Schulz, Hannes; Zanatta, Marco; Willis, Megan D.; Henze, Daven K.; Lee, Colin J.; Herber, Andreas B.; Abbatt, Jonathan P. D.

    2017-10-01

    Black carbon (BC) contributes to Arctic warming, yet sources of Arctic BC and their geographic contributions remain uncertain. We interpret a series of recent airborne (NETCARE 2015; PAMARCMiP 2009 and 2011 campaigns) and ground-based measurements (at Alert, Barrow and Ny-Ålesund) from multiple methods (thermal, laser incandescence and light absorption) with the GEOS-Chem global chemical transport model and its adjoint to attribute the sources of Arctic BC. This is the first comparison with a chemical transport model of refractory BC (rBC) measurements at Alert. The springtime airborne measurements performed by the NETCARE campaign in 2015 and the PAMARCMiP campaigns in 2009 and 2011 offer BC vertical profiles extending to above 6 km across the Arctic and include profiles above Arctic ground monitoring stations. Our simulations with the addition of seasonally varying domestic heating and of gas flaring emissions are consistent with ground-based measurements of BC concentrations at Alert and Barrow in winter and spring (rRMSE stations in summer, especially at Barrow.Our adjoint simulations indicate pronounced spatial heterogeneity in the contribution of emissions to the Arctic BC column concentrations, with noteworthy contributions from emissions in eastern China (15 %) and western Siberia (6.5 %). Although uncertain, gas flaring emissions from oilfields in western Siberia could have a striking impact (13 %) on Arctic BC loadings in January, comparable to the total influence of continental Europe and North America (6.5 % each in January). Emissions from as far as the Indo-Gangetic Plain could have a substantial influence (6.3 % annually) on Arctic BC as well.

  9. Emissions of Black Carbon Particles from Biomass Burning and Their Physical and Chemical Properties

    Science.gov (United States)

    Kondo, Y.; Sahu, L.; Moteki, N.; Takegawa, N.; Zhao, Y.; Vay, S. A.; Diskin, G. S.; Wisthaler, A.; Huey, L. G.; Jimenez, J. L.

    2009-12-01

    Large amounts of aerosol, including black carbon (BC), are emitted from biomass burning. It is therefore important to understand the chemical composition, rate of emissions, and mixing state of aerosols generated by this combustion process to estimate the impacts of aerosols on climate. Thus far, these physical and chemical quantities have been compiled by combining the data from laboratory and field experiments, but the data from the Arctic region are still very limited. These parameters were measured by an SP2 instrument based on the laser-induced incandescence technique on board the NASA DC-8 during the ARCTAS campaign. Aircraft sampling was made in plumes emitted by wildfires in Canada and the USA, and in those transported over long distances from Russia. First, we extract biomass burning plumes using CH3CN and SO2 data. Then, we derived the slopes of the CO-CO2-CH3CN-aerosol correlations for each burning plume. Based on this, we derive the average CO/CO2, CH3CN/CO2, BC/CO2, and BC/CO ratios together with their variability in the plumes strongly influenced by forest fires over Siberia, California, and Canada. A similar analysis is made for light-scattering particles. Using these relationships, the transport efficiencies of BC particles from the boundary layer to the free troposphere are also estimated. It is found that the BC particles were thickly coated upon emission. From comparison with AMS measurements, the coating materials are found to be mainly composed of organic compounds. This indicates the importance of the enhanced light absorption by BC particles emitted by biomass burning.

  10. Top-down estimates of biomass burning emissions of black carbon in the western United States

    Science.gov (United States)

    Y. H. Mao; Q. B. Li; D. Chen; L. Zhang; W. -M. Hao; K.-N. Liou

    2014-01-01

    We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May-October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS...

  11. CARBON BLACK DISPERSION PRE-PLATING TECHNOLOGY FOR PRINTED WIRE BOARD MANUFACTURING

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction, and economic issues involved in replacing electroless copper with a carbon black dispersion technology. McCurdy Circuits of Orange County, California, currently has both processes in operation. McCurdy has found that...

  12. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    NARCIS (Netherlands)

    Margolin, A.R.; Gerringa, L.J.A.; Hansell, D.A.; Rijkenberg, M.J.A.

    2016-01-01

    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms

  13. The electrochemical performance of super P carbon black in reversible Li/Na ion uptake

    NARCIS (Netherlands)

    Peng, B.; Xu, Y.; Wang, Xiaoqun; Shi, Xinghua; Mulder, F.M.

    2017-01-01

    Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and electrochemical properties for Li/Na ion uptake, though it is important to

  14. Effects of prenatal exposure to nanoparticles titanium dioxide and carbon black on female germline DNA stability

    DEFF Research Database (Denmark)

    Boisen, Anne Mette Zenner

    are actively dividing. The aim of this PhD study was to determine if two widely used nanoparticles titanium dioxide UV-Titan and carbon black Printex 90 induce ESTR mutations in the germ cells of prenatally exposed females. Pregnant generation P mice were exposed to ~42 mg UV-Titan/m3/1 h/d during gestation...

  15. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments

    NARCIS (Netherlands)

    Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.

    2017-01-01

    We investigated the determinants of personal exposure concentrations of commuters’ to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of

  16. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods

    NARCIS (Netherlands)

    Poot, A.; Quik, J.T.K.; Veld, H.; Koelmans, A.A.

    2009-01-01

    Black Carbon (BC) quantification methods are reviewed, including new Rock-Eval 6 data on BC reference materials. BC has been reported to have major impacts on climate, human health and environmental quality. Especially for risk assessment of persistent organic pollutants (POPs) it is important to

  17. Amazonian Dark Earth and its Black Carbon Particles Harbor Different Fungal Abundance and Diversity

    NARCIS (Netherlands)

    Reis Lucheta, Adriano; Souza Cannavan, F.S.; Tsai, S.M.; Kuramae, E.E.

    2017-01-01

    Amazonian Dark Earth (ADE) is a highly fertile soil of anthropogenic origin characterized by higher amount of charred black carbon (BC). ADE is considered a fertility model, however knowledge about the fungal community structure and diversity inhabiting ADE and BC is scarce. Fungal community

  18. Black carbon concentrations in a goods-movement neighborhood of Philadelphia, PA

    Science.gov (United States)

    Michelle C. Kondo; Chris Mizes; John Lee; Igor. Burstyn

    2014-01-01

    Communities along the Delaware River in Philadelphia, USA such as Port Richmond, are subject to traffic associated with goods movement to and from port facilities and local industry. Air pollution associated with this traffic poses an environmental health concern in this and other urban areas. Our study measures black carbon (BC) in Port Richmond and examines its...

  19. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice

    DEFF Research Database (Denmark)

    Modrzynska, Justyna; Berthing, Trine; Ravn-Haren, Gitte

    2018-01-01

    Background Little is known about the mechanism underlying the genotoxicity observed in the liver following pulmonary exposure to carbon black (CB) nanoparticles (NPs). The genotoxicity could be caused by the presence of translocated particles or by circulating inflammatory mediators released during...

  20. Projection of SO2, NOx, NMVOC, particulate matter and black carbon emissions - 2015-2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Hjelgaard, Katja Hossy

    This report contains a description of models and background data for projection of SO2, NOX, NMVOC, PM2.5 and black carbon for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts...

  1. Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets

    NARCIS (Netherlands)

    Dai, Yufei; Niu, Yong; Duan, Huawei; Bassig, Bryan A; Ye, Meng; Zhang, Xiao; Meng, Tao; Bin, Ping; Jia, Xiaowei; Shen, Meili; Zhang, Rong; Hu, Wei; Yang, Xiaofa; Vermeulen, Roel; Silverman, Debra; Rothman, Nathaniel; Lan, Qing; Yu, Shanfa; Zheng, Yuxin

    2016-01-01

    The International Agency for Research on Cancer has classified carbon black (CB) as a possible (Group 2B) human carcinogen. Given that most CB manufacturing processes result in the emission of various types of chemicals, it is uncertain if the adverse health effects that have been observed in

  2. Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline

    DEFF Research Database (Denmark)

    Paul, Subham; Thomsen, Kaj

    2012-01-01

    The absorption of carbon dioxide (CO2) into aqueous solution of potassium prolinate (KPr) are studied at 303, 313, and 323K within the salt concentration range of 0.5–3.0kmolm−3 using a wetted wall column absorber. The experimental results are used to interpret the kinetics of the reaction of CO2...... with KPr for the above mentioned concentration and temperature range. Following the reaction mechanism of CO2 with primary and secondary alkanolamies, the reaction of CO2 with KPr is also described using zwitterionic mechanism. Based on the pseudo-first-order condition for the CO2 absorption, the reaction...... rate parameters are determined from the kinetic measurements and presented at each experimental condition. The reaction order is found to be in between 1.36 and 1.40 with respect to KPr for the above mentioned concentration range. The second-order rate constants, k2, are obtained as 118,914, 203...

  3. Higher atmospheric levels and contribution of black carbon in soil-air partitioning of organochlorines in Lesser Himalaya.

    Science.gov (United States)

    Ali, Usman; Sweetman, Andrew James; Jones, Kevin C; Malik, Riffat Naseem

    2018-01-01

    Due to influence of wind patterns (monsoon and westerlies) and anthropogenic activities, lower stretch of Himalaya is at direct exposure to persistent organic pollutants (POPs). Current study was designed to monitor atmospheric concentrations of long lived organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) using polyurethane passive air sampling in the Lesser Himalayan Region (LHR) of Pakistan. Levels of ∑HCHs, ∑DDTs and ∑PCBs were observed in a range between 3 and 210 pg m -3 , 0.75-67.1 pg m -3 and 8.49-458 pg m -3 , respectively. Though, air mass trajectories over LHR indicated long range transport as atmospheric source input which was further explained by Clausius-Clapeyron plots between ln P and inverse of temperature (1000/T; K) where all OCPs and most of the PCBs have shown insignificant relationship (r 2  = 5E-06-0.41; p-value = 0.06-0.995). However, local source emissions and valley transport may also implicate based on spatial distribution and altitudinal patterns. Additionally, soil-air partitioning of organochlorines was assessed using octanol-air partition (K OA ) and black carbon-air partition (K BC ) based models. Regression results indicated combined influence of both organic matter (r 2  = 0.298-0.85) and black carbon (r 2  = 0.31-0.86) via absorption and adsorption, respectively in soil-air partitioning of OCs in LHR. This paper sheds light on the atmospheric concentrations of OCs and help in better understanding of the processes involved in fate and transport of organic pollutants in Himalayan region. Further investigations are required to understand the role of carbon moieties in fate and transport of other groups of organic pollutants at higher altitudes of Himalayan region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of carbon black nanoparticles on methane/air explosions: Influence at low initial turbulence

    Science.gov (United States)

    Torrado, David; Glaude, Pierre-Alexandre; Dufaud, Olivier

    2017-06-01

    Nanoparticles are widely used in industrial applications as additives to modify materials properties such as resistance, surface, rheology or UV-radiation. As a consequence, the quantification and characterization of nanoparticles have become almost compulsory, including the understanding of the risks associated to their use. Since a few years ago, several studies of dust explosion properties involving nano-sized powder have been published. During the production and industrial use of nanoparticles, simultaneous presence of gas / vapor / solvents and dispersed nanoparticles mixtures might be obtained, increasing the risk of a hybrid mixture explosion. The aim of this work is to study the severity of the explosion of carbon black nanoparticles/methane mixtures and understand the influence of adding nanopowders on the behavior of the gas explosions. These results are also useful to understand the influence of soot on the efficiency of the gas combustion. Two grades of carbon black nanoparticles (ranging from 20 to 300 nm average diameter) have been mixed with methane. Tests have been performed on these mixtures in a standard 20 L explosion sphere. Regarding the scale precision, the lowest concentration of carbon black nanoparticles was set at 0.5 g.m-3. Tests were also performed at 2.5 g.m-3, which is still far below 60 g.m-3, the minimum explosive concentration of such powders previously determined in our laboratory. The influence of carbon black particles on the severity of the explosions has been compared to that of pure gas. It appears that the use of carbon black nanoparticles increases the explosion overpressure for lean methane mixtures at low initial turbulences by c. 10%. Similar results were obtained for high initial turbulent systems. Therefore, it seems that carbon black nanoparticles have an impact on the severity of the explosion even for quiescent systems, as opposed to systems involving micro-sized powders that require dispersion at high turbulence

  5. Temperature Coefficients of Electrical Conductivity and Conduction Mechanisms in Butyl Rubber-Carbon Black Composites

    Science.gov (United States)

    Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.

    2018-02-01

    Electrical properties of butyl rubber filled with General Purpose Furnace (GPF) carbon black were studied. The carbon black concentration ( X) in the compound was X = 40, 60, 70, 80, and 100 parts by weight per hundred parts by weight of rubber (phr). The corresponding volume fractions of GPF carbon black were 0.447 ± 0.022, 0.548 ± 0.027, 0.586 ± 0.029, 0.618 ± 0.031 and 0.669 ± 0.034, respectively. The concentration dependence of conductivity ( σ ) at constant temperature showed that σ follows a percolation theory; σ ∝ ( {X - Xo } )^{γ } , where X o is the concentration at percolation threshold. The exponent γ was found as 6.6 (at room temperature 30°C). This value agrees with other experimental values obtained by many authors for different rubber-carbon black systems. Electron tunneling between the aggregates, which are dispersed in the insulator rubber, was mainly the conduction process proposed at constant temperature in the butyl-GPF carbon black composites. Temperature dependence of conductivity was investigated in the temperature range from 30°C up to 120°C. All samples exhibit negative temperature coefficients of conductivity (NTCC). The values obtained are - 0.130°C-1, - 0.019°C-1, - 0.0082°C-1, - 0.0094°C-1, and - 0.072°C-1 for carbon black concentrations of 40 phr, 60 phr, 70 phr, 80 phr, and 100 phr, respectively. The samples of concentrations 40 phr and 60 phr have also positive temperature coefficients of conductivity (PTCC) of values + 0.031 and + 0.013, respectively. Electrical conduction at different temperatures showed various mechanisms depending on the carbon black concentration and/or the interval of temperature. The hopping conduction mechanism was noticed at the lower temperature region while carrier thermal activation mechanisms were recorded at the higher temperature range.

  6. Extended x-ray absorption fine structure investigation of annealed carbon expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas L.; Somers, Marcel A. J.

    2012-01-01

    Carbon expanded austenite synthesized through carburizing of austenitic stainless steel powder at 380°C was annealed at 470°C and investigated with extended X-ray absorption fine structure (EXAFS) and synchrotron powder diffraction (SPD). SPD showed that the samples consisted of carbon expanded...... austenite and Hägg carbide, Ξ-M5C2. EXAFS showed that the Cr atoms were mainly present in environments similar to the carbides Hägg Ξ-M5C2 and M23C6. The environments of the Fe and Ni atoms were concluded to be largely metallic austenite. Light optical micrograph of stainless steel AISI 316 gas......-carburized in a temperature regime around 470°C. The surface zone is converted into carbon expanded austenite; the high interstitial content of carbon dissolved in the surface results in highly favorable materials properties. In the present article the local atomic environment of (annealed) carbon expanded austenite...

  7. Comparing black carbon types in sequestering polybrominated diphenyl ethers (PBDEs) in sediments

    International Nuclear Information System (INIS)

    Jia, Fang; Gan, Jay

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely found in sediments, especially congeners from the penta-BDE formula. Due to their strong affinity for black carbon (BC), bioavailability of PBDEs may be decreased in BC-amended sediments. In this study, we used a matrix-SPME method to measure the freely dissolved concentration (C free ) of PBDEs as a parameter of their potential bioavailability and evaluated the differences among biochar, charcoal, and activated carbon. Activated carbon displayed a substantially greater sequestration capacity than biochar or charcoal. At 1% amendment rate in sediment with low organic carbon (OC) content (0.12%), C free of six PBDEs was reduced by 47.5–78.0%, 47.3–77.5%, and 94.1–98.3% with biochar, charcoal, and activated carbon, respectively, while the sequestration was more limited in sediment with high OC content (0.87%). Therefore, it is important to consider the type and properties of the BC and the sediment in BC-based remediation or mitigation. -- Highlights: • A matrix-SPME method was developed for measuring C free of PBDEs in sediment porewater. • Different black carbon types differed greatly in their ability to decrease C free of PBDEs in sediments. • Activated carbon was much more efficient in sequestering PBDEs than biochar or charcoal. • The effect of black carbon was more pronounced in sediment with lower indigenous OC content. -- Biochar, charcoal, and activated carbon have been compared for their efficacy in sequestering PBDEs in sediments by using a matrix-SPME method

  8. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Science.gov (United States)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  9. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals

    KAUST Repository

    Chen, X.

    2011-01-20

    When used as a photocatalyst, titanium dioxide (TiO 2) absorbs only ultraviolet light, and several approaches, including the use of dopants such as nitrogen, have been taken to narrow the band gap of TiO 2. We demonstrated a conceptually different approach to enhancing solar absorption by introducing disorder in the surface layers of nanophase TiO 2 through hydrogenation. We showed that disorder-engineered TiO 2 nanocrystals exhibit substantial solar-driven photocatalytic activities, including the photo-oxidation of organic molecules in water and the production of hydrogen with the use of a sacrificial reagent.

  10. Terapi Sel Punca Mesenkimal Sumsum Tulang Tikus dalam Meregenerasi Sel Sitotrofoblas Nekrosis yang Dipapar Carbon Black (RAT BONE MARROW MESENCHYMAL STEM CELL THERAPY IN REGENERATING NECROTIC CYTOTROPHOBLAST CELL FOLLOWING EXPOSED TO CARBON BLACK

    Directory of Open Access Journals (Sweden)

    Widjiati .

    2015-08-01

    Full Text Available The objective of this study is to find out the potency of Rat Bone Marrow Mesenchymal Stem Cell(RBMMSC in regenerating necrotic cytotrophoblast cells of rats (Rattusnorvegicus following exposure tocarbon black at day 6 of gestation at different time of exposure (6 days and 12 days. This study usedrandomized factorial design with two factors (gestation day and treatment. Forty-eight gravid femalerats were divided into six treatment groups i.e. (i animals at day 6-11 gestation and not expose to carbonblack; (ii 6-11 days gestation animals + 532mg/m3 carbon black for 4 hours; (iii 6-11 days gestationanimals + 532mg/m3 carbon black for 4 hours +1x107/0.1ml RBMMSC intravenously; (iv animals at day6-17 gestation and not expose to carbon black; (v 6-17 days gestation animals + 532mg/m3 carbon blackfor 4 hours; (vi 6-17 days gestation animals + 532mg/m3 carbon black for 4 hours +1x107/0.1ml RBMMSCintravenously, respectively. Data were analyzed using univariat analysis and analysis of variance. Theresults showed that there were no significance differences in regenerating necrotic cytotrophoblast betweenthe groups treated with RBMMSC and carbon black exposure. The results indicated that the stem celltherapy following exposure to carbon black was incapable in regenerating the necrotic cytotrophoblastcells.

  11. Computational Fluid Dynamics Simulation Study of a Novel Membrane Contactor for Simultaneous Carbon Dioxide Absorption and Stripping

    Directory of Open Access Journals (Sweden)

    Hsuan Chang

    2017-08-01

    Full Text Available Physical absorption is a potential technology for economic carbon capture due to its low energy consumption, however, the absorption efficiency of current systems must be improved. In this study, novel hybrid absorption/stripping membrane contactors (HASMCs for physical solvent carbon capture are proposed. The simultaneous absorption and stripping within one module provides instant regeneration of the solvent and results in the enhancement of absorption. HASMCs with parallel-flow and cross-flow configurations and using empty or spacer-filled channels are investigated by rigorous computational fluid dynamics simulation. The internal profiles of transmembrane mass fluxes reveal that cross-flow HASMCs are much more effective than the parallel-flow ones and the modules using spacer-filled channels give better performance than the ones using empty channels. The mass transfer coefficients of HASMCs are much higher than predicted by correlations in the literature.

  12. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario

    Science.gov (United States)

    Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.

    2017-07-01

    Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment

  13. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  14. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni-Zn ferrite and carbon formulation in polyurethane matrix

    Science.gov (United States)

    Gupta, K. K.; Abbas, S. M.; Goswami, T. H.; Abhyankar, A. C.

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni-Zn ferrite (Ni 0.5Zn0.5Fe2O4) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8-18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6-1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2-12.4 GHz) and Ku (12-18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense.

  15. Impact of carbon nanotube geometrical volume on nonlinear absorption and scattering properties

    Science.gov (United States)

    Nair, Vijayakumar Sadasivan; Pusala, Aditya; Hatamimoslehabadi, Maryam; Yelleswarapu, Chandra S.

    2017-11-01

    Nonlinear optical (NLO) properties of carbon nanostructures are of great interest due to their broadband spectral response. As carbon nanotubes (CNTs) can be synthesized with various lengths, thicknesses, and numbers of layers, their optical properties can also be different. We have performed side-by-side comparative studies of the relationship between the geometrical volume and NLO properties of CNTs. The real and imaginary components of the third order optical nonlinearity are obtained using well-known Z-scan technique. While the transmission and scattered light are detected using photodiodes, the generated photoacoustic signal is recorded simultaneously using an ultrasonic transducer. Results show an inverse relationship between the volume of CNTs and their NLO properties. This can be attributed to the availability of more nanoparticles within the laser beam profile and concurrent generation of scattering sites upon the absorption of incident radiation.

  16. Platinum-carbon black-titanium dioxide nanocomposite ...

    Indian Academy of Sciences (India)

    Administrator

    The higher charge transfer resistance of SIDCAT catalysts was attributed to differences in the carbon base between the TKK and. SIDCAT electrocatalysts and to the influence of addition of TiO2 support, which is not an effective catalyst for ORR, on the activity of Pt. The increase in TiO2 content from 5% (SIDCAT 451) to 10%.

  17. PM2.5 and Black carbon enhancement at Socheongcho Ocean Research Station in the Yellow Sea

    Science.gov (United States)

    Jeon, H.; Rhee, H.; Lee, M.; JinYong, J.; Min, I.; Shim, J.

    2017-12-01

    Socheongcho Ocean Research Station (SORS) has been established in northern Yellow Sea by the Korea Institute of Ocean Science and Technology (KIOST). At SORS, PM2.5 and Black carbon (BC) were measured every 10 minutes during October 2014 June 2017 using beta-ray absorption method (FH62C14, Thermo. Inc, USA) and Multi Angle Absorption Photometer (MAAP; Model 5012, Thermo. Inc, USA), respectively. In addition, CO, CO2 and CH4 were determined by Cavity Ring Down Spectroscopy (CRDS; Model G2401, Picarro. Inc, USA). Measurements were intermittently interrupted for SORS maintenance reasons. For BC and PM2.5, the mean, 90th %tile and maximum concentrations were 1.16, 2.29, and 20.07 ug/m3 and 25, 48, and 177 ug/m3, respectively. There was no clear diurnal variation observed for both species. PM2.5 and BC concentrations were higher in cold seasons than in warm seasons. The highest PM2.5 and BC concentrations (>99th %tile) were more frequently observed in winter. Particularly, the extremely high BC were sporadically observed and lasted for no longer than 1 hour. The possible sources of PM2.5 and BC were examined using Conditional Probability Function (CPF), Potential Source Contribution (PSCF), and Concentration Weighted Trajectory (CWT) analysis. The results suggest the dominant influence from China, particularly for high concentrations.

  18. Effects of porous carbon additives on the CO{sub 2} absorption performance of lithium orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Jeoung, Sungeun; Lee, Jae Hwa [Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Kim, Ho Young [Department of Chemical Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Moon, Hoi Ri, E-mail: hoirimoon@unist.ac.kr [Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919 (Korea, Republic of)

    2016-08-10

    Highlights: • Composites of Li{sub 4}SiO{sub 4} and porous carbon materials were prepared for CO{sub 2} absorbents. • The kinetic parameters of the composites were examined. • The pores of CMK-3 in Li{sub 4}SiO{sub 4} aid the diffusion of CO{sub 2}. - Abstract: Lithium orthosilicate (Li{sub 4}SiO{sub 4}) is an attractive high-temperature CO{sub 2} sorbent (>650 °C) because of its large theoretical absorption capacity of up to 36.7 wt%. However, slow kinetics and partial reactions with CO{sub 2} hinder its proper operation as a sorbent under practical conditions. To allow the use of this sorbent at lower operation temperatures, the present studies explored the way to improve the CO{sub 2} absorption kinetics and increase the degree of reaction of Li{sub 4}SiO{sub 4}. Porous carbon materials such as CMK-3 were introduced into the sorbent to provide an internal gas pathway. Upon calcination conditions, the carbon amount was controlled in the composites (Li{sub 4}SiO{sub 4}@CMK-X%, where X represents the amounts of CMK-3). In Li{sub 4}SiO{sub 4}@CMK-1.8%, CMK-3 is distributed over the whole solid; in contrast, the additive in Li{sub 4}SiO{sub 4}@CMK-0.5% is mainly observed near the surface of the solid. CO{sub 2} gas sorption study of the composites showed that pores of CMK-3 in Li{sub 4}SiO{sub 4} aid the diffusion of CO{sub 2}. In addition, we found that the incorporation of porous carbon provides more active sites for interactions with CO{sub 2} through the formation of cavities between Li{sub 4}SiO{sub 4} and CMK-3. Li{sub 4}SiO{sub 4}@CMK-1.8% had an increased CO{sub 2} absorption capacity (35.4 wt%) and rate (15.2 wt% for the first 5 min) at 600 °C, compared to the CO{sub 2} absorption capacity (16.3 wt%) and rate (5.1 wt% for the first 5 min) of pristine Li{sub 4}SiO{sub 4} (p-Li{sub 4}SiO{sub 4}). To confirm the influence of porous carbon on the CO{sub 2} absorption properties, multi-walled carbon nanotube (MWCNT) was also examined as an additive

  19. Effect of carbon black on thermal properties of charcoal and salacca leafstalk briquettes

    Science.gov (United States)

    Thassana, Chewa; Nuleg, Witoon

    2017-08-01

    In this work, the effect of a carbon black (CB) on the thermal properties of briquettes produced from the charcoal and the salacca leafstalk with and without CB have been investigated. Four thermal properties of a briquettes compose of the burning time, the calorific value, the percentage moisture (PMC) and an percentage ash content (PAC) were analyzed using standard laboratory methods. Our results were indicated that the sallacca leafstalk mix a carbon black is the long burning times, high heating but a few ash content. Results shown that the burning time and the calorific value of a charcoal, a charcoal with CB, the salacca leafstalk and the salacca leafstalk with carbon black particles is about 58, 63, 76, 81 minutes, and 10.33, 12.96, 13.12, 14.63 MJ/kg, respectively. In addition, the PMC and PAC were in range of 11.6 - 8.14% and 9.33 - 5.42%. So, we can conclude that a cabon black affect on the thermal properties of a briquettes and salacca leaftstalk mixed CB has been most suited for briquetting.

  20. Effect of pKa on the kinetics of carbon dioxide absorption in aqueous alkanolamine solutions containing carbonic anhydrase at 298K

    NARCIS (Netherlands)

    Penders-van Elk, Nathalie J M C; Fradette, Sylvie; Versteeg, Geert F.

    2015-01-01

    The absorption of carbon dioxide in various aqueous alkanolamine solutions have been studied with and without carbonic anhydrase respectively in a stirred cell reactor at 298K. The examined alkanolamines were: N,N-diethylethanolamine (DEMEA), N,N-dimethylethanolamine (DMMEA), monoethanolamine (MEA),

  1. Design and synthesis of palladium/graphitic carbon nitride/carbon black hybrids as high-performance catalysts for formic acid and methanol electrooxidation

    Science.gov (United States)

    Qian, Huayu; Huang, Huajie; Wang, Xin

    2015-02-01

    Here we report a facile two-step method to synthesize high-performance palladium/graphitic carbon nitride/carbon black (Pd/g-C3N4/carbon black) hybrids for electrooxidizing formic acid and methanol. The coating of g-C3N4 on carbon black surface is realized by a low-temperature heating treatment, followed by the uniform deposition of palladium nanoparticles (Pd NPs) via a wet chemistry route. Owning to the significant synergistic effects of the individual components, the preferred Pd/g-C3N4/carbon black electrocatalyst exhibits exceptional forward peak current densities as high as 2155 and 1720 mA mg-1Pd for formic acid oxidation in acid media and methanol oxidation in alkaline media, respectively, far outperforming the commercial Pd-C catalyst. The catalyst also shows reliable stability, demonstrating that the newly-designed hybrids have great promise in constructing high-performance portable fuel cell systems.

  2. Observational and laboratory studies of optical properties of black and brown carbon particles in the atmosphere using spectroscopic techniques

    Science.gov (United States)

    Nakayama, Tomoki; Matsumi, Yutaka

    2015-04-01

    Light absorption and scattering by aerosols are as an important contributor to radiation balance in the atmosphere. Black carbon (BC) is considered to be the most potent light absorbing material in the visible region of the spectrum, although light absorbing organic carbon (brown carbon or BrC) and mineral dust may also act as sources of significant absorption, especially in the ultraviolet (UV) and shorter visible wavelength regions. The optical properties of such particles depend on wavelength, particle size and shape, morphology, coating, and complex refractive index (or chemical composition), and therefore accurate in situ measurements of the wavelength dependence of the optical properties of particles are needed. Recently, cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS) have been used for the direct measurements of extinction and absorption coefficients of particles suspended in air. We have applied these techniques to the observational studies of optical properties of BC and BrC in an urban site in Japan and to the laboratory studies of optical properties of secondary organic aerosols (SOAs) generated from a variety of biogenic and anthropogenic volatile organic compounds and those of diesel exhaust particles (DEPs). In the presentation, the basic principles of these techniques and the results obtained in our studies and in the recent literatures will be overviewed. References Guo, X. et al., Measurement of the light absorbing properties of diesel exhaust particles using a three-wavelength photoacoustic spectrometer, Atmos. Environ., 94, 428-437 (2014). Nakayama, T. et al., Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy: Comparison with conventional techniques, Atmos. Environ., 44, 3034-3042 (2010). Nakayama, T. et al., Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of alpha

  3. Electromagnetic wave absorption properties of cement based composites using helical carbon fibers as absorbent

    Science.gov (United States)

    Xie, Shuai; Wang, Jing; Wang, Wufeng; Hou, Guoyan; Li, Bin; Shui, Zhonghe; Ji, Zhijiang

    2018-02-01

    In order to develop a cement based composites with high electromagnetic (EM) wave absorbing performance, helical carbon fibers (HCFs) were added into the cement matrix as an absorbent. The reflection loss (RL) of the prepared HCFs/cement based composites was studied by arched testing method in the frequency ranges of 1–8 GHz and 8–18 GHz. The results show that the EM wave absorption properties of the cement based composites can be evidently enhanced by the addition of HCFs. The composites with 1.5% HCFs exhibits optimum EM wave absorption performance in the frequency range of 1–8 GHz. However, in 8–18 GHz frequency range, the EM wave absorption performance of the cement composites with 1% HCFs is much better than others. The RL values of the prepared HCFs/cement based composites are less than ‑5 dB in the whole testing frequency regions, which can be attributed to the strong dielectric loss ability and unique chiral structure of HCFs.

  4. Recent Results From, and Future Plans for the JPL Carbon Dioxide Laser Absorption Spectrometer

    Science.gov (United States)

    Spiers, G. D.; Menzies, R.; Geier, S.; Phillips, M.

    2009-12-01

    The Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) is an aircraft based Integrated Path Differential Absorption (IPDA) Spectrometer operating in the 2 micron wavelength range that we have been developing at JPL to evaluate the measurement of the column integrated carbon dioxide concentration beneath the aircraft. The IPDA measurement technique is based on an approach first used for the measurement of ozone in the 1970s. This past year the instrument has flown on two sets of flights aboard a Twin Otter, DH-6 aircraft. The initial pair of flights, conducted in April, were flown over the El Mirage dry lake bed in the Mojave desert as an engineering checkout flight. The second set of four flights were flown over the Southern Great Plains Atmospheric Research Monitoring Site during early August and were part of a larger coordinated field experiment conducted jointly with aircraft instruments from NASA LaRC and NASA GSFC in support of the development of the ASCENDS mission as called for by the NRC Earth Science Decadal Survey. We will present a brief overview of the instrument and measurement concept, review and discuss the results of our experiments and conclude with an outline of our plans for the future.

  5. Electromagnetic wave absorption properties of carbon nanocoil composites in the millimeter waveband

    Science.gov (United States)

    Suda, Yoshiyuki; Matsuo, Ryusei; Yoshii, Takamasa; Yasudomi, Shingo; Tanimoto, Tsuyoshi; Harigai, Toru; Takikawa, Hirofumi; Setaka, Toshiya; Matsuda, Ken-ichi; Suizu, Koji; Shima, Hiroyuki

    2018-01-01

    Carbon nanocoil (CNC) is a carbon nanofiber with helical shape. In this study, we fabricated CNC-based composites endowed with electromagnetic wave absorption property. CNCs were synthesized by chemical vapor deposition using acetylene as a precursor and Fe and SnO2 particles as catalysts. The composites were produced by dispersing CNCs into epoxy resin or paraffin by ultrasonication, and then hardening a droplet of the solution on an aluminum substrate with ca. 2mm in specimen thickness. Paraffin was used as a solvent when producing the composites with the CNC concentration higher than or equal to 5wt.%; otherwise epoxy was used. The reflection ratio of the composites with different concentrations were measured by the free space method using lens antennas in frequency ranges of 5.6-40 and 67-110 GHz. The CNCs/epoxy composites of 0.1-1.0 wt.% showed poor reflection losses. The 10 wt.% CNCs/paraffin composite achieved a reflection loss of -32 dB at 79.2 GHz. Its bandwidth corresponding to the reflection loss below -20 dB was 4.85 GHz. The CNCs/paraffin composite also turned out to show a good absorption property in W band frequencies (75- 110 GHz).

  6. Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yongqi; Rostam-Abadi, Massoud; Ye, Xinhuai; Zhang, Shihan; Ruhter, David; Khodayari, Arezoo; Rood, Mark

    2012-04-30

    This project was aimed at obtaining process engineering and scale-up data at a laboratory scale to investigate the technical and economic feasibility of a patented post-combustion carbon dioxide (CO{sub 2}) capture process?the Integrated Vacuum Carbonate Absorption Process (IVCAP). Unique features of the IVCAP include its ability to be fully-integrated with the power plant?s steam cycle and potential for combined sulfur dioxide (SO{sub 2}) removal and CO{sub 2} capture. Theoretical and experimental studies of this project were aimed at answering three major technical questions: 1) What additives can effectively reduce the water vapor saturation pressure and energy requirement for water vaporization in the vacuum stripper of the IVCAP? 2) What catalysts can promote CO{sub 2} absorption into the potassium carbonate (PC) solution to achieve an overall absorption rate comparable to monoethanolamine (MEA) and are the catalysts stable at the IVCAP conditions and in the flue gas environment? 3) Are any process modifications needed to combine SO{sub 2} and CO{sub 2} removal in the IVCAP? Lab-scale experiments and thermodynamic and process simulation studies performed to obtain detailed information pertinent to the above three technical questions produced the following results: 1) Two additives were identified that lower the saturation pressure of water vapor over the PC solution by about 20%. 2) The carbonic anhydrase (CA) enzyme was identified as the most effective catalyst for promoting CO{sub 2} absorption. The absorption rate into the CO{sub 2}-lean PC solution promoted with 300 mg/L CA was several times slower than the corresponding 5 M MEA solution, but absorption into the CO{sub 2}-rich PC solution was comparable to the CO{sub 2}-rich MEA solution. The tested CA enzymes demonstrated excellent resistance to major flue gas impurities. A technical-grade CA enzyme was stable at 40{degrees}C (104{degrees}F) over a six-month test period, while its half-life was about two

  7. DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice

    DEFF Research Database (Denmark)

    Kyjovska, Zdenka O.; Jacobsen, Nicklas R.; Saber, Anne T.

    2015-01-01

    We previously observed genotoxic effects of carbon black nanoparticles at low doses relative to the Danish Occupational Exposure Limit (3.5 mg/m3). Furthermore, DNA damage occurred in broncho-alveolar lavage (BAL) cells in the absence of inflammation, indicating that inflammation is not required...... for the genotoxic effects of carbon black. In this study, we investigated inflammatory and acute phase response in addition to genotoxic effects occurring following exposure to nanoparticulate carbon black (NPCB) at even lower doses. C57BL/6JBomTac mice were examined 1, 3, and 28 days after a single instillation...

  8. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  9. Sediment pore water distribution coefficients of PCB congeners in enriched black carbon sediment

    International Nuclear Information System (INIS)

    Martinez, Andres; O'Sullivan, Colin; Reible, Danny; Hornbuckle, Keri C.

    2013-01-01

    More than 2300 sediment pore water distribution coefficients (K PCBids ) of 93 polychlorinated biphenyls (PCBs) were measured and modeled from sediments from Indiana Harbor and Ship Canal. K PCBids were calculated from previously reported bulk sediment values and newly analyzed pore water. PCBs in pore waters were measured using SPME PDMS-fiber and ∑PCB ranged from 41 to 1500 ng L −1 . The resulting K PCBids were ∼1 log unit lower in comparison to other reported values. A simple model for the K PCBid consisted of the product of the organic carbon fraction and the octanol–water partition coefficient and provided an excellent prediction for the measured values, with a mean square error of 0.09 ± 0.06. Although black carbon content is very high in these sediments and was expected to play an important role in the distribution of PCBs, no improvement was obtained when a two-carbon model was used. -- Highlights: •PCB sediment-pore water distribution coefficients were measured and modeled. •Distribution coefficients were lower in comparison to other reported values. •Organic carbon fraction times the K OW yielded the best prediction model. •The incorporation of black carbon into a model did not improve the results. -- The organic carbon fraction times the octanol–water partition coefficient yielded the best prediction model for the sediment pore water distribution coefficient of PCBs

  10. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments

    International Nuclear Information System (INIS)

    Oen, Amy M.P.; Cornelissen, Gerard; Breedveld, Gijs D.

    2006-01-01

    Distributions of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAH) were investigated in different particle size fractions for four Norwegian harbor sediments. The total PAH (16-EPA) concentrations ranged from 2 to 113 mg/kg dry weight with the greatest fraction of PAH mass in the sand fraction for three of the four sediments. TOC contents ranged from 0.84% to 14.2% and BC contents from 0.085% to 1.7%. This corresponds to organic carbon (OC = TOC - BC) contents in the range of 0.81-14% and BC:TOC ratios of 1.3-18.1%. PAH isomer ratios suggested that the PAH in all four sediments were of pyrogenic origin. Furthermore, stronger correlations between PAH versus BC (r 2 = 0.85) than versus OC (r 2 = 0.15) were found. For all size fractions and bulk sediments, the PAH-to-BC ratios for the total PAHs were on average 6 ± 3 mg PAH/g BC. These results suggest that PAH distributions were dominated by the presence of BC, rather than OC. As sorption to BC is much stronger than sorption to OC, this may result in significantly lower dissolved concentrations of PAH than expected on the basis of organic carbon partitioning alone. - PAH contents correlated better with black carbon than organic carbon for four Norwegian harbor sediments

  11. Studies of hydrogen incorporation in hydrogenated amorphous carbon films by infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Alameh, R.; Bounouh, Y.; Sadki, A.; Naud, C.; Theye, M.L.

    1997-01-01

    Author.Hydrogenated amorphous carbon (a-C:H) films presently attract considerable interest because of their potential applications in the domain of multifunctional coatings: transparent in the infrared, very hard, chemically inert, etc...This material is rather complex since it contains C atoms in both sp 3 (diamond) and sp 2 (graphite) electronic configurations, as well as a large concentration of H atoms. Its properties are strongly dependent on the deposition conditions which determine the film microstructure, i.e. the relative proportions of sp 3 and sp 2 C sites, their connection in the network and the hydrogen bonding modes. It has been suggested that the sp 2 C sites tend to cluster into unsaturated chains ans rings, which are then embedded in the sp 3 C sites m atrix . Hydrogen incorporation plays a crucial role in this intrinsic microheterogeneity, which determines the electronic properties, and especially the gap value, of a-C:H. We here present and discuss the results of Fourrier transform infrared absorption spectroscopy measurements performed on a-C:H films prepared under different conditions and submitted to controlled annealing cycles, which exhibit quite different optical gap values (from 1 to 2.5 eV). We carefully analyze the absorption bands detected in the 400-7500 cm -1 spectral range in terms of the vibration modes of C-H and C-C bonds in different local environments and we interpret the results in relation with the film microstructure and optical properties. Special attention is also paid to the absorption background and to the variations of the whole absorption spectra with measurement temperature

  12. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    Science.gov (United States)

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  13. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

  14. UV absorption investigation of ferromagnetically filled ultra-thick carbon onions, carriers of the 217.5 nm Interstellar Absorption Feature

    Science.gov (United States)

    Boi, Filippo S.; Zhang, Xiaotian; Ivaturi, Sameera; Liu, Qianyang; Wen, Jiqiu; Wang, Shanling

    2017-12-01

    Carbon nano-onions (CNOs) are fullerene-like structures which consist of quasi-spherical closed carbon shells. These structures have become a subject of great interest thanks to their characteristic absorption feature of interstellar origin (at 217.5 nm, 4.6 μm-1). An additional extinction peak at 3.8 μm-1 has also been reported and attributed to absorption by graphitic residues between the as-grown CNOs. Here, we report the ultraviolet absorption properties of ultra-thick CNOs filled with FePt3 crystals, which also exhibit two main absorption peaks—features located at 4.58 μm-1 and 3.44 μm-1. The presence of this additional feature is surprising and is attributed to nonmagnetic graphite flakes produced as a by-product in the pyrolysis experiment (as confirmed by magnetic separation methods). Instead, the feature at 4.58 μm-1 is associated with the π-plasmonic resonance of the CNOs structures. The FePt3 filled CNOs were fabricated in situ by an advanced one-step fast process consisting in the direct sublimation and pyrolysis of two molecular precursors, namely, ferrocene and dichloro-cyclooctadiene-platinum in a chemical vapour deposition system. The morphological, structural, and magnetic properties of the as-grown filled CNOs were characterized by a means of scanning and transmission electron microscopy, X-ray diffraction, and magnetometry.

  15. Development and synthesis of novel polymers for the absorption of carbon dioxide; Aufbau und Synthese neuartiger Polymere zur Absorption von Kohlenstoffdioxid

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, Johannes

    2015-10-20

    During the dissertation novel amine containing polymers on the basis of polyethylenimine and polyvinylphosphonates were synthesised and developed. Due to the thermo- and pH-responsive properties of these polymers the regeneration of these aqueous polymer solutions after the absorption of carbon dioxide was drastically improved. The LCST behaviour of these polymers is a ''green'' tool to face the high efficiency loss in standard CO{sub 2} capturing processes.

  16. Black carbon aerosol and its radiative impact at a high-altitude remote site on the southeastern Tibet Plateau

    Science.gov (United States)

    Zhao, Zhuzi; Wang, Qiyuan; Xu, Baiqing; Shen, Zhenxing; Huang, Rujin; Zhu, Chongshu; Su, Xiaoli; Zhao, Shuyu; Long, Xin; Liu, Suixin; Cao, Junji

    2017-05-01

    Aerosol black carbon (BC) was measured with an Aethalometer™ at Lulang, a high-altitude station in southeastern Tibetan Plateau (TP), from July 2008 to August 2009. Daily mean BC loadings varied from 57.7 to 5368.9 ng m-3 (grand average ± standard deviation = 496.5 ± 521.2 ng m-3), indicating a significant BC burden even at free tropospheric altitudes. BC loadings were highest during the premonsoon and lowest during the monsoon, and peaks in BC were coincident with high atmospheric boundary layers. Daily peaks in BC occurred from 08:00 to 10:00 local time with minor fluctuations at other times. The BC mass absorption efficiency (MAE) was calculated from elemental carbon concentrations obtained from a thermal/optical reflectance method and absorption coefficients from the Aethalometer™, and values ranged from 6.1 to 31.7 m2 g-1 (average = 16.6 ± 5.7 m2 g-1). Strong variations in the MAEs during the monsoon can be ascribed to large uncertainties due to low BC and babs and possibly coatings on the BC. High MAEs during premonsoon pollution events were likely due to internal mixing during transport. The mean direct surface radiative forcing (DRF) estimated from a radiation model was -19.9 (±7.4) W m-2 for the full aerosol population and -3.9 (±1.8) W m-2 for a BC only scenario. The BC DRF during a case study (-36.0 W m-2) was much stronger than the typical, and the BC contribution to the forcing was higher ( 50%) than usual ( 20%). These results show that BC can at times account for a relatively large fraction of the aerosol surface heating over the southeast TP, which may affect both climate and hydrological cycles.

  17. A Light-Emitting Diode- (LED-) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide.

    Science.gov (United States)

    Thurmond, Kyle; Loparo, Zachary; Partridge, William; Vasu, Subith S

    2016-06-01

    A sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3-5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics of the LED emissions. Measurements of CO and CO2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring. © The Author(s) 2016.

  18. Black carbon aerosol in winter northeastern Qinghai-Tibetan Plateau, China: the source, mixing state and optical property

    Science.gov (United States)

    Wang, Q. Y.; Huang, R.-J.; Cao, J. J.; Tie, X. X.; Ni, H. Y.; Zhou, Y. Q.; Han, Y. M.; Hu, T. F.; Zhu, C. S.; Feng, T.; Li, N.; Li, J. D.

    2015-11-01

    Black carbon (BC) aerosol at high altitudes of the Qinghai-Tibetan Plateau has potential effects on the regional climate and hydrological cycle. An intensive measurement campaign was conducted at Qinghai Lake (~ 3200 m above sea level) at the edge of the northeastern Qinghai-Tibetan Plateau during winter using a ground-based single particle soot photometer (SP2) and a photoacoustic extinctiometer (PAX). The average concentration of refractory BC (rBC) and number fraction of coated rBC were found to be 160 ± 190 ng m-3 and 59 % for the entire campaign, respectively. Significant enhancements of rBC loadings and number fraction of coated rBC were observed during a pollution episode, with an average value of 390 ng m-3 and 65 %, respectively. The mass size distribution of rBC particles showed log-normal distribution, with a peak diameter of ~ 187 nm regardless of the pollution level. Five-day backward trajectory analysis suggests that the air masses from north India contributed to the increased rBC loadings during the campaign. The potential source contribution function (PSCF) model combined with the fire counts map further proves that biomass burning from north India is an important potential source influencing the northeastern Qinghai-Tibetan Plateau during the pollution episode. The rBC mass absorption cross section (MACrBC) at λ = 532 nm was slightly larger in clean days (14.9 m2 g-1) than during the pollution episode (9.3 m2 g-1), likely due to the effects of brown carbon and the uncertainty of the MACrBC calculation. The MACrBC was positively correlated with number fraction of coated rBC during the pollution episode with an increasing rate of 0.18 (m2 g-1) %-1. The number fraction of coated rBC particles showed positive correlation with light absorption, suggesting that the increase of coated rBC particles will enhance the light absorption. Compared to rBC mass concentration, rBC mixing sate is more important in determining absorption during the pollution

  19. Black Carbon from Biomass Burning Emissions: New Mexico Wildfires and Controlled Laboratory Burns of Fuels Found in the Southwestern US

    Science.gov (United States)

    Aiken, A. C.; Dubey, M.; Liu, S.; McMeeking, G. R.; Gorkowski, K.; Arata, C.; Mazzoleni, C.; China, S.; Kreidenweis, S. M.; DeMott, P. J.; Yokelson, R. J.; Robinson, A. L.

    2013-12-01

    Black carbon (BC) is currently considered the second most important global warming factor behind CO2 and is thought to be underestimated by a factor of two in most global models (Bond et al., 2013). Approximately half of BC comes from biomass burning (BB) sources, which are estimated to contribute up to ~0.6 W/m2 warming of the atmosphere. Organic carbon (OC) from fires condenses on and/or mixes with the BC, lowering the overall forcing from BB to 0.03 × 0.12 Wm-2. This reduction depends strongly on the composition and mixing state of OC and BC, which is dependent on fire conditions, e.g. modified combustion efficiency. Models and laboratory measurements indicate that a BC core coated with a non-absorbing layer can enhance absorption by 2, although it has yet to be observed in ambient data to this degree (Cappa et al., 2012). Direct on-line measurements of BC are made with the single particle soot photometer (SP2) from "fresh" and "aged" BB. We investigate BC in concentrated BB plumes from the two largest wildfires in New Mexico's history with different ages and compare them to BC from indoor generation from single-source fuels, e.g. ponderosa pine, juniper, sawgrass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). FLAME-IV includes direct emissions, well-mixed samples, and aging studies. Aerosol optical properties were measured using photoacoustic spectrometry for absorption and nephelometry for scattering with the 3-wavelength and single-wavelength Photoacoustic Soot Spectrometers (PASS-3: 405 nm, 532 nm, 781 nm; PASS: 375 nm) and for the first time are compared with the new Photoacoustic Extinctiometer (PAX; 870 nm) during FLAME-IV. Las Conchas Fire (July-August, 2011) BC was sampled after only a few hours of aging and exhibits mostly core-shell structure. Whitewater Baldy Fire (May-June, 2012) BC was sampled after an aging period of 10-20 hours and includes partially coated BC in addition to thickly coated core-shell BC. Partially coated BC is

  20. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events.

    Science.gov (United States)

    Hall, J.; Loboda, T. V.

    2017-12-01

    Short lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic region. However, accurate monitoring of cropland burning from existing active fire and burned area products is limited, thereby leading to an underestimation in black carbon emissions from cropland burning. This research focuses on 1) assessing the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia through low-level transport, and 2) identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions to the Arctic. Specifically, atmospheric blocking events present a potential mechanism that could act to enhance the likelihood of transport or accelerate the transport of pollutants to the snow-covered Arctic from Russian cropland burning based on their persistent wind patterns. This research study confirmed the importance of Russian cropland burning as a potential source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Based on the successful transport pathways, this study identified the potential transport of black carbon from Russian cropland burning beyond 80°N which has important implications for permanent sea ice cover. Further, based on the persistent wind patterns of blocking events, this study identified that blocking events are able to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during spring when the impact on the snow/ice albedo is at its highest. The

  1. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Inam

    2014-01-01

    Full Text Available A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB and epoxy – 0.2 vol% carbon nanotube (CNT nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by indentation. For comprehensive comparison, fracture toughness and percolation threshold were analysed as well. Because of the systematically induced indentation damage, a sharp decrease of 89% was observed in the electrical conductivity of epoxy – CNT nanocomposite as compared to 25% in the electrical conductivity of epoxy – CB nanocomposite. CNTs impart superior damage sensing capability in brittle nanocomposite structures, in comparison to CB, due to their high aspect ratio (fibrous nature and high electrical conductivity.

  2. The structure of carbon black-elastomer composites by small-angle neutron scattering and the method of contrast variation

    International Nuclear Information System (INIS)

    Hjelm, R.P.; Wampler, W.; Gerspacher, M.

    1996-01-01

    We have been exploring the use of small-angle neutron scattering and the method of contrast variation to give a new look at a very old problem: reinforcement of elastomers by carbon black in durable rubber products. Carbon black has a hierarchy of structures consisting of particles covalently bound into aggregates, which in turn associate by weak interactions into agglomerates. We found that in one carbon black, HSA, the aggregates are rodlike, containing an average of 4-6 particles. The aggregates have an outer graphitic shell and an inner core of lower density carbon. The core is continuous throughout the carbon black aggregate. Contrast variation of swollen HSA-polyisoprene gels shows that the HSA is completely embedded in polyisoprene and that the agglomerates are formed predominantly by end on associations of the rodlike aggregates. The surface structure of the carbon black appears smooth over length scales above about 10 angstrom. Further studies using production carbon blacks suggest that these structural characteristics are generally present in commercial rubber composites

  3. Effect of irradiation on PTC performances of carbon black filled polymer composites

    International Nuclear Information System (INIS)

    Chen Xinfang; Jia Wentao; Tang Hao; Yang Huali; Li Shuhua.

    1995-01-01

    The influences of irradiation on Positive Temperature Coefficient (PTC) functions of polymer-carbon black composites are studied systematically, using HDPE, LDPE, PE/EPDM, PE/EEA as polymer matrixes and carbon black as conductive fillers. The results show that under a certain radiation dose, a remarkable improvement of the PTC intensity and the reproducibility of PTC curves of most polymer blends can be achieved, and Negative Temperature Coefficient (NTC) effects are decreased or eliminated. The mechanism of crosslinking structure on improving and stabilizing the PTC functions of polymer blends is also discussed through modern structural analysis methods. In this paper, an interesting and significant phenomenon is discovered. The PTC curve of PE/EPDM/CB composite presents an obvious NTC phenomenon as the dose exceeding 2 MGy. (author)

  4. Incentives for small clubs of Arctic countries to limit black carbon and methane emissions

    Science.gov (United States)

    Aakre, Stine; Kallbekken, Steffen; Van Dingenen, Rita; Victor, David G.

    2018-01-01

    Although addressing climate change will ultimately require global cooperation, substantial progress may be achieved through small clubs of countries, where it is easier to forge and implement deals needed for policy coordination. Here we quantify the gains from cooperation in the Arctic region and find that nearly 90% of the potential for abating black carbon can be reached by countries acting in self-interest alone because soot, the main source of black carbon, causes severe harm to human health along with warming. Abating methane, by contrast, requires more cooperation because impacts are more diffused geographically. Well-designed clubs with as few as four members can realize more than 80% of the full group cooperation potential for reducing these pollutants. The pivotal player in every effective club is Russia—most other members of the Arctic Council, the institution most focused on advancing the collective interests of the region, offer little leverage on the problems at hand.

  5. Carbon black reinforced polymethyl methacrylate (PMMA)-based composite particles: preparation, characterization, and application

    Science.gov (United States)

    Liang, Tian; Yan, Chunjie; Zhou, Sen; Zhang, Yonghan; Yang, Bipeng

    2017-10-01

    Carbon black (CB) is an excellent filler to reinforce polymers because of its unique thermal and mechanical properties. Thus, a type of modified carbon black (MCB) was developed, which led to reduced filler aggregation in methyl methacrylate (MMA) monomers and resulted in homogeneous dispersion in the polymethyl methacrylate (PMMA) substrate. The PMMA-MCB composite particles that were prepared in this work possessed remarkable and stable properties. Therefore, they can be used as an ultra-lightweight proppant (ULWP). Fourier transform infrared spectroscopy showed that CB was successfully modified and the MCB was well dispersed in the PMMA matrix. Results of crushing rate and differential scanning calorimetry demonstrated that MCB could significantly enhance the thermal and mechanical performance of the ULWP. Heat treatment of the ULWP under a nitrogen atmosphere could also clearly enhance its performance in various aspects. The process of modifying CB, the approach of synthesizing PMMA-MCB composite particles, and their mechanism were systematically investigated in this work.

  6. Mechanical properties and mophology natural rubber blend with bentonit and carbon black

    Science.gov (United States)

    Ginting, E. M.; Bukit, N.; Muliani; Frida, E.

    2017-07-01

    Purpose of this study was to determine the mechanical properties and morphology of composite natural rubber and natural bentonite with addition of Na-bentonite filler and carbon black to natural rubber. The method is carried material mixed with filler composition variations (0,10,20,30) phr using open mill for 6 min. Results of the open mill is vulcanized at a temperature of 170°C. Further testing mechanical properties and morphology. Results showed that the addition of Na-bentonite filler and carbon black influence on the mechanical properties of tensile strength, elongation at break, modulus of elasticity, hardness, and strong tear. Morphological results showed cavities in the rubber compound and the occurrence agglomeration.

  7. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon.

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-12

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a -1 ) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.

  8. Modelling black spruce primary production and carbon allocation in the Quebec boreal forest

    Science.gov (United States)

    Gennaretti, Fabio; Guiot, Joel; Berninger, Frank; Boucher, Etienne; Gea-Izquierdo, Guillermo

    2017-04-01

    Boreal ecosystems are crucial carbon stores that must be urgently quantified and preserved. Their future evolution is extremely important for the global carbon budget. Here, we will show the progresses achieved with the MAIDEN forest ecophysiological model in simulating carbon fluxes of black spruce (Picea mariana (Mill.) B.S.P.) forests, the most representative ecosystem of the North American boreal biome. Starting from daily minimum-maximum air temperature, precipitation and CO2 atmospheric concentration, MAIDEN models the phenological (5 phenological phases are simulated each year) and meteorological controls on gross primary production (GPP) and carbon allocation to stem. The model is being calibrated on eddy covariance and tree-ring data. We will discuss the model's performance and the modifications introduced in MAIDEN to adapt the model to temperature sensitive forests of the boreal region.

  9. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Donaldson Ken

    2005-12-01

    Full Text Available Abstract Background Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2 to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. Results Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2 as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. Conclusion The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s released by the

  10. Specific and non-specific interactions on non-porous carbon black surfaces

    OpenAIRE

    Andreu, A.; Stoeckli, Fritz; Bradleya, R. H.

    2008-01-01

    The interactions which occur between methanol, ethanol or propanol and the surfaces of non-porous carbon blacks with increasing levels of oxygen chemistry have been studied using adsorption isotherm analysis and immersion calorimetry. Surface oxygen has been controlled by ozone treatment and characterised using X-ray photoelectron spectroscopy, which gives a direct and quantitative measure of surface composition from first-principles, and has not yet been extensively employed in detailed carb...

  11. How useful is the mid-infrared spectroscopy in the assessment of black carbon in soils

    OpenAIRE

    Rosa Arranz, José M. de la; González-Vila, Francisco Javier; González-Pérez, José Antonio; Almendros Martín, Gonzalo; Hernández, Zulimar; López Martín, María; Knicker, Heike

    2013-01-01

    Black carbon (BC), the recalcitrant continuum of products from incomplete combustion, includes char, charcoal and soot, being considered an important component of the global C cycle. However due to measurement uncertainties, the magnitude and distribution of BC is hardly known. In this study, a rapid and inexpensive spectroscopic technique, as it is mid-infrared spectroscopy in combination with oxidation procedures is proposed to quantify the recalcitrant aromatic fraction res...

  12. Fuel Cell Platinum Catalysts Supported on Mediate Surface Area Carbon Black Supports

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Odgaard, M.

    2015-01-01

    Roč. 43, č. 2015 (2015), s. 913-918 ISSN 1974-9791. [International Conference on Chemical and Process Engineering - ICheaP12 /12./. Milano, 19.05.2015-22.05.2015] R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * platinum catalyst * fuel cell Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  13. Patterns of total ecosystem carbon storage with changes in soil temperature in boreal black spruce forests

    Science.gov (United States)

    E.S. Kane; J.G. Vogel

    2009-01-01

    To understand how carbon (C) pools in boreal ecosystems may change with warming, we measured above- and belowground C pools and C increment along a soil temperature gradient across 16 mature upland black spruce (Picea mariana Mill. [B•S.P]) forests in interior Alaska. Total spruce C stocks (stand and root C) increased from 1.3 to 8.5 kg C m

  14. Sorption of As(V) from aqueous solution using acid modified carbon black.

    Science.gov (United States)

    Borah, Dipu; Satokawa, Shigeo; Kato, Shigeru; Kojima, Toshinori

    2009-03-15

    The sorption performance of a modified carbon black was explored with respect to arsenic removal following batch equilibrium technique. Modification was accomplished by refluxing the commercial carbon black with an acid mixture comprising HNO(3) and H(2)SO(4). Modification resulted in the substantial changes to the inherent properties like surface chemistry and morphology of the commercial carbon black to explore its potential as sorbent. The suspension pH as well as the point of zero charge (pH(pzc)) of the material was found to be highly acidic. The material showed excellent sorption performance for the removal of arsenic from a synthetic aqueous solution. It removed approximately 93% arsenic from a 50mg/L solution at equilibration time. The modified carbon black is capable of removing arsenic in a relatively broad pH range of 3-6, invariably in the acidic region. Both pseudo-first-order and second-order kinetics were applied to search for the best fitted kinetic model to the sorption results. The sorption process is best described by the pseudo-second-order kinetic. It has also been found that intra-particle diffusion is the rate-controlling step for the initial phases of the reaction. Modelling of the equilibrium data with Freundlich and Langmuir isotherms revealed that the correlation coefficient is more satisfactory with the Langmuir model although Freundlich model predicted a good sorption process. The sorption performance has been found to be strongly dependent on the solution pH with a maximum display at pH of 5.0. The temperature has a positive effect on sorption increasing the extent of removal with temperature up to the optimum temperature. The sorption process has been found to be spontaneous and endothermic in nature, and proceeds with the increase in randomness at the solid-solution interface. The spent sorbent was desorbed with various acidic and basic extracting solutions with KOH demonstrating the best result ( approximately 85% desorption).

  15. 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing

    OpenAIRE

    McConnell, J. R; Edwards, R.; Kok, G. L; Flanner, M. G; Zender, C. S; Saltzman, E. S; Banta, J. R; Pasteris, D. R; Carter, M. M; Kahl, J. D. W

    2007-01-01

    Black carbon (BC) from biomass and fossil fuel combustion alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about its emission or deposition histories. Measurements of BC, vanillic acid, and non–sea-salt sulfur in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly since 1788 as a result of boreal forest fires and industrial activities. Beginning about 1850, industrial emissions resulted in a sevenfold...

  16. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available resin-CB composites (with 70wt% loading). Keywords: Polydimethylsiloxane (PDMS); Polymer nanocomposite, Carbon black; Thermal conductivity; Thermal stability; Fuel cell Biographical notes: Hao Chen received his bachelor degree honours in physics... initiative (SANi), his current main research focus is related to smart and engineered nano-materials for photonics and renewable energy applications. Prof. V. Vasudeva Rao holds Bachelors Degree in Mechanical Engineering, Masters Degree...

  17. Size distribution and source of black carbon aerosol in urban Beijing during winter haze episodes

    Science.gov (United States)

    Wu, Yunfei; Wang, Xiaojia; Tao, Jun; Huang, Rujin; Tian, Ping; Cao, Junji; Zhang, Leiming; Ho, Kin-Fai; Han, Zhiwei; Zhang, Renjian

    2017-06-01

    Black carbon (BC) has important impact on climate and environment due to its light absorption ability, which greatly depends on its physicochemical properties including morphology, size and mixing state. The size distribution of the refractory BC (rBC) was investigated in urban Beijing in the late winter of 2014, during which there were frequent haze events, through analysis of measurements obtained using a single-particle soot photometer (SP2). By assuming void-free rBC with a density of 1.8 g cm-3, the mass of the rBC showed an approximately lognormal distribution as a function of the volume-equivalent diameter (VED), with a peak diameter of 213 nm. Larger VED values of the rBC were observed during polluted periods than on clean days, implying an alteration in the rBC sources, as the size distribution of the rBC from a certain source was relative stable, and VED of an individual rBC varied little once it was emitted into the atmosphere. The potential source contribution function analysis showed that air masses from the south to east of the observation site brought higher rBC loadings with more thick coatings and larger core sizes. The mean VED of the rBC presented a significant linear correlation with the number fraction of thickly coated rBC, extrapolating to be ˜ 150 nm for the completely non-coated or thinly coated rBC. It was considered as the typical mean VED of the rBC from local traffic sources in this study. Local traffic was estimated to contribute 35 to 100 % of the hourly rBC mass concentration with a mean of 59 % during the campaign. Lower local traffic contributions were observed during polluted periods, suggesting increasing contributions from other sources (e.g., coal combustion and biomass burning) to the rBC. Thus, the heavy pollution in Beijing was greatly influenced by other sources in addition to the local traffic.

  18. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone.

    Science.gov (United States)

    Allen, Robert J; Sherwood, Steven C; Norris, Joel R; Zender, Charles S

    2012-05-16

    Observational analyses have shown the width of the tropical belt increasing in recent decades as the world has warmed. This expansion is important because it is associated with shifts in large-scale atmospheric circulation and major climate zones. Although recent studies have attributed tropical expansion in the Southern Hemisphere to ozone depletion, the drivers of Northern Hemisphere expansion are not well known and the expansion has not so far been reproduced by climate models. Here we use a climate model with detailed aerosol physics to show that increases in heterogeneous warming agents--including black carbon aerosols and tropospheric ozone--are noticeably better than greenhouse gases at driving expansion, and can account for the observed summertime maximum in tropical expansion. Mechanistically, atmospheric heating from black carbon and tropospheric ozone has occurred at the mid-latitudes, generating a poleward shift of the tropospheric jet, thereby relocating the main division between tropical and temperate air masses. Although we still underestimate tropical expansion, the true aerosol forcing is poorly known and could also be underestimated. Thus, although the insensitivity of models needs further investigation, black carbon and tropospheric ozone, both of which are strongly influenced by human activities, are the most likely causes of observed Northern Hemisphere tropical expansion.

  19. The theory-practice gap of black carbon mitigation technologies in rural China

    Science.gov (United States)

    Zhang, Weishi; Li, Aitong; Xu, Yuan; Liu, Junfeng

    2018-02-01

    Black carbon mitigation has received increasing attention for its potential contribution to both climate change mitigation and air pollution control. Although different bottom-up models concerned with unit mitigation costs of various technologies allow the assessment of alternative policies for optimized cost-effectiveness, the lack of adequate data often forced many reluctant explicit and implicit assumptions that deviate away from actual situations of rural residential energy consumption in developing countries, where most black carbon emissions occur. To gauge the theory-practice gap in black carbon mitigation - the unit cost differences that lie between what is estimated in the theory and what is practically achieved on the ground - this study conducted an extensive field survey and analysis of nine mitigation technologies in rural China, covering both northern and southern regions with different residential energy consumption patterns. With a special focus on two temporal characteristics of those technologies - lifetimes and annual utilization rates, this study quantitatively measured the unit cost gaps and explain the technical as well as sociopolitical mechanisms behind. Structural and behavioral barriers, which have affected the technologies' performance, are discussed together with policy implications to narrow those gaps.

  20. In vitro cytotoxicity of carbon black nanoparticles synthesized from solution plasma on human lung fibroblast cells

    Science.gov (United States)

    Panomsuwan, Gasidit; Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Ueno, Tomonaga; Saito, Nagahiro

    2018-01-01

    Carbon black nanoparticles (CB-NPs) have been synthesized from liquid benzene by a solution plasma method at room temperature and atmospheric pressure. The morphological observation by scanning electron microscopy revealed the agglomeration of aggregated fine particles. The synthesized CB-NPs were predominantly amorphous as confirmed by X-ray diffraction. The in vitro cytotoxicity of CB-NPs on the human lung fibroblast (MRC-5) cell line was assessed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and systematically compared with those of two types of commercial carbon blacks (i.e., Vulcan XC-72 and Ketjenblack EC-600JD). Cell viabilities were studied at different concentrations of 32.5, 65, 125, and 250 µg/mL. It was found that the CB-NPs derived from solution plasma exhibited a lower cytotoxicity on the MRC-5 cells than the other two comparative carbon blacks. The viability of MRC-5 cells exposed to CB-NPs remained higher than 90% even at a high concentration of 250 µg/mL. This result preliminarily confirmed the biosafety and potential use of CB-NPs in the field of biological applications.

  1. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    Science.gov (United States)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  2. The Properties of SBR/ENR50 Blend Containing Nanoclay/Carbon Black Dual Filler System Cured by Electron Beam

    Directory of Open Access Journals (Sweden)

    Sima Ahmadi-Shooli

    2017-05-01

    Full Text Available Nanocomposites based on an SBR/ENR50 rubber blend with the blend ratio of 50/50 using Cloisite 15A nanoclay (5 and 10 phr and carbon black (20 phr were prepared by melt mixing process. The rubber compounds were crosslinked by electron beam irradiation process at 50 and 100 kGy doses. A reference sample containing carbon black at 35 phr was prepared using a conventional sulphur curing system. The gel content of the samples was specified using gel fraction measurement. The results showed the maximum gel content for the sample having 5 phr nanoclay and 20 phr carbon black. The dynamic mechanical properties, including the storage modulus, loss modulus, and loss factor, of the nanocomposites were evaluated using dynamic mechanical analysis (DMA tests. The results indicated that, in spite of a well dispersed nanoclay in samples containing 10 phr nanoclay and 20 phr carbon black, a minimum loss factor was observed in the sample containing 5 phr nanoclay and 20 phr carbon black at 100 kGy. On the other hand, the storage modulus of the reference sample was found to be higher than that of the sample with 5 phr nanoclay and 20 phr carbon black. The mechanical properties, including the tensile strength, stress at 100%, 200%, and 300% elongation and the percentage of elongation were measured by a tensile machine. The results showed an increase in tensile strength and the stress at different elongations for a sample with 5 phr nanoclay and 20 phr carbon black compared to the reference sample. In the corresponding SEM images of the samples having nanoclay and carbon black irradiated at 100 kGy a significantly higher surface roughness was observed.

  3. Retracted-Enhanced X-Ray Absorption Property of Gold-Doped Single Wall Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Alimin Alimin

    2015-11-01

    Full Text Available Enhanced X-ray absorption property of single wall carbon nanotube (SWCNT through gold (Au doping (Au@SWCNT has been studied. Mass attenuation coefficient of SWCNT increased 5.2-fold after Au doping treatment. The use of ethanol in the liquid phase adsorption could produce Au nanoparticles as confirmed by the X-ray Diffraction (XRD patterns. The possibility of gold nanoparticles encapsulated in the internal tube space of SWCNT was observed by transmission electron microscope technique. A significant decrease of nitrogen uptakes and upshifts of Radial Breathing Mode (RBM of Au@SWCNT specimen suggest that the nanoparticles might be encapsulated in the internal tube spaces of the nanotube. In addition, a decrease intensity of XRD pattern of Au@SWCNT at around 2θ ≈ 2.6° supports the suggestion that Au nanoparticles are really encapsulated into SWCNT.

  4. Determination of molybdenum in silicates through atomic absorption spectrometry using pre-concentration by active carbon

    International Nuclear Information System (INIS)

    Boaventura, G.R.; Rocha Hirson, J. da; Santelli, R.E.

    1989-01-01

    An analytical procedure for molybdenum determination in geological materials through Atomic Absorption Spectrometry, after pre-concentration of the Mo-APDC complex in activated carbon, has been developed, which is needed in order to reduce the dilution effect in the sample decomposition. During the development of this method the influence of pH, the amount of APDC for complexation of Mo and the interference of Fe, Ca, Mn, Al, K, Na, Mg and Ti were tested. It was shown that none of these causes any significant effect on the Mo determination proposed. The results of the analysis at the international geochemical reference samples JB-1 (basalt) and GH (granite) were very accurate and showed that the detection limit in rocks (1,00g) is 0,6 ppm, when using sample dilution of 1 ml and microinjection techniques. (author) [pt

  5. X-Ray Absorption in Carbon Ions Near the K-Edge

    Science.gov (United States)

    Hasoglu, M. F.; Abdel-Naby, Sh. A.; Nikolic, D.; Gorczyca, T. W.; McLaughlin, B. M.

    2007-06-01

    K-shell photoabsorption calculations are important for determining the elemental abundances of the interstellar medium (ISM) from observed X-ray absorption spectra. Previously, we performed reliable K-shell photoabsorption calculations for oxygen [1-3] and neon [4,5] ions. We have executed detailed R-matrix calculations for carbon ions, including Auger broadening, by using an optical potential, and relaxation effects, by using pseudoorbitals with the necessary pseudoresonance elimination. This work was funded by NASA's Astronomy Physics Research and Analysis (APRA) and Solar and Heliospheric Physics (SHP) Supporting Research and Technology (SR&T) programs. References: [1] T. W. Gorczyca and B. M. McLaughlin. J Phys. B. 33 L859 (2000) [2] A. M. Juett, et al., Astrophys. J. 612, 308 (2004) [3] J. Garcia et al., Astrophys. J. Supp. S. 158, 68 (2005) [4] T. W. Gorczyca., Phys. Rev. A. 61, 024702 (2000) [5] A. M. Juett, et al., Astrophys. J. 648, 1066 (2006)

  6. [Carbon monoxide gas detection system based on mid-infrared spectral absorption technique].

    Science.gov (United States)

    Li, Guo-Lin; Dong, Ming; Song, Nan; Song, Fang; Zheng, Chuan-Tao; Wang, Yi-Ding

    2014-10-01

    Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 μm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc.

  7. Remote sensing of soot carbon – Part 2: Understanding the absorption Ångström exponent

    Directory of Open Access Journals (Sweden)

    G. L. Schuster

    2016-02-01

    Full Text Available Recently, some authors have suggested that the absorption Ångström exponent (AAE can be used to deduce the component aerosol absorption optical depths (AAODs of carbonaceous aerosols in the AERONET database. This AAE approach presumes that AAE ≪ 1 for soot carbon, which contrasts the traditional small particle limit of AAE = 1 for soot carbon. Thus, we provide an overview of the AERONET retrieval, and we investigate how the microphysics of carbonaceous aerosols can be interpreted in the AERONET AAE product. We find that AAE ≪ 1 in the AERONET database requires large coarse mode fractions and/or imaginary refractive indices that increase with wavelength. Neither of these characteristics are consistent with the current definition of soot carbon, so we explore other possibilities for the cause of AAE ≪ 1. AAE is related to particle size, and coarse mode particles have a smaller AAE than fine mode particles for a given aerosol mixture of species. We also note that the mineral goethite has an imaginary refractive index that increases with wavelength, is very common in dust regions, and can easily contribute to AAE ≪ 1. We find that AAE ≪ 1 can not be caused by soot carbon, unless soot carbon has an imaginary refractive index that increases with wavelength throughout the visible and near-infrared spectrums. Finally, AAE is not a robust parameter for separating carbonaceous absorption from dust aerosol absorption in the AERONET database.

  8. Absorption and Reflectance Spectra of Microwave Radiation by an Epoxy Resin Composite with Multi-Walled Carbon Nanotubes

    Science.gov (United States)

    Komarov, F. F.; Milchanin, O. V.; Parfimovich, I. D.; Grinchenko, M. V.; Parhomenko, I. N.; Tkachev, A. G.; Bychanok, D. S.

    2017-09-01

    A procedure for dispersing multi-walled carbon nanotubes in the two-component polymer SpeciFix-20 (epoxy resin + hardener) using combined hydromechanical and ultrasonic mixing was developed. New composites with carbon nanotubes were produced. Their structures and optical and electrophysical characteristics were studied. The propagation of microwave radiation (26-38 GHz) in experimental composite samples was investigated. It was shown that the strong absorption of the composites appeared only with significant additions of multi-walled carbon nanotubes and was caused by the resulting electrical conductivity of the composites. A size effect of the additive on the optical characteristics of the produced composites was established. Equal absorption coefficients for microwave radiation could be achieved by using a smaller amount of carbon nanotubes with smaller diameters and greater specific surface areas in the composite.

  9. Phosphorus burial in sediments of the sulfidic deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis

    Science.gov (United States)

    Kraal, Peter; Dijkstra, Nikki; Behrends, Thilo; Slomp, Caroline P.

    2017-05-01

    Sedimentary burial of the essential nutrient phosphorus (P) under anoxic and sulfidic conditions is incompletely understood. Here, we use chemical and micro-scale spectroscopic methods to characterize sedimentary P burial along a water column redox transect (six stations, 78-2107 m water depth) in the Black Sea from the shelf with its oxygenated waters to the anoxic and sulfidic deep basin. Organic P is an important P pool under all redox regimes, accounting for up to 60% of P burial. We find a general down-core increase in the relative importance of organic P, especially on the shelf where P bound to iron (Fe) and manganese (Mn) (oxyhydr)oxides is abundant in the uppermost sediment but rapidly declines in concentration with sediment depth. Our chemical and spectroscopic data indicate that the carbonate-rich sediments (Unit I, ∼3000 years, ∼0-30 cm depth) of the sulfidic deep Black Sea contain three major P pools: calcium phosphate (apatite), organic P and P that is strongly associated with CaCO3 and possibly clay surfaces. Apatite concentrations increase from 5% to 25% of total P in the uppermost centimeters of the deep basin sediments, highlighting the importance of apatite formation for long-term P burial. Iron(II)-associated P (ludlamite) was detected with X-ray absorption spectroscopy but was shown to be a minor P pool (∼5%), indicating that lateral Fe-P transport from the shelf ("shuttling") likely occurs but does not impact the P burial budget of the deep Black Sea. The CaCO3-P pool was relatively constant throughout the Unit I sediment interval and accounted for up to 55% of total P. Our results highlight that carbonate-bound P can be an important sink for P in CaCO3-rich sediments of anoxic, sulfidic basins and should also be considered as a potential P sink (and P source in case of CaCO3 dissolution) when reconstructing past ocean P dynamics from geological records.

  10. Size distribution, mixing state and source apportionments of black carbon aerosols in London during winter time

    Science.gov (United States)

    Liu, D.; Allan, J. D.; Young, D. E.; Coe, H.; Beddows, D.; Fleming, Z. L.; Flynn, M. J.; Gallagher, M. W.; Harrison, R. M.; Lee, J.; Prevot, A. S. H.; Taylor, J. W.; Yin, J.; Williams, P. I.; Zotter, P.

    2014-06-01

    Black carbon aerosols (BC) at a London urban site were characterized in both winter and summer time 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorization (PMF) factors of organic aerosol mass spectra measured by a high resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However the size distribution of Dc (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC-AMS-PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), or easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm, and 169 ± 29 nm respectively. The corresponding bulk relative coating thickness of BC (coated particle size / BC core - Dp / Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0

  11. Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime

    Science.gov (United States)

    Liu, D.; Allan, J. D.; Young, D. E.; Coe, H.; Beddows, D.; Fleming, Z. L.; Flynn, M. J.; Gallagher, M. W.; Harrison, R. M.; Lee, J.; Prevot, A. S. H.; Taylor, J. W.; Yin, J.; Williams, P. I.; Zotter, P.

    2014-09-01

    Black carbon aerosols (BC) at a London urban site were characterised in both winter- and summertime 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorisation (PMF) factors of organic aerosol mass spectra measured by a high-resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However, the size distribution of sf (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different sf distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC-AMS-PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), and easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm and 169 ± 29 nm, respectively. The corresponding bulk relative coating thickness of BC (coated particle size/BC core - Dp/Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0

  12. Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the effect of meteorological conditions.

    Science.gov (United States)

    Kucbel, Marek; Corsaro, Agnieszka; Švédová, Barbora; Raclavská, Helena; Raclavský, Konstantin; Juchelková, Dagmar

    2017-12-01

    Black carbon - a primary component of particulate matter emitted from an incomplete combustion of fossil fuels, biomass, and biofuels - has been found to have a detrimental effect on human health and the environment. Since black carbon emissions data are not readily available, no measures are implemented to reduce black carbon emissions. The temporal and seasonal variations of black carbon concentrations were evaluated during 2012-2014. The data were collected in the highly polluted European city - Ostrava, Czech Republic, surrounded by major highways and large industries. Significantly higher black carbon concentrations were obtained in Ostrava, relative to other European cities and the magnitude was equivalent to the magnitude of black carbon concentrations measured in Poland and China. The data were categorized to heating and non-heating seasons based on the periodic pattern of daily and monthly average concentrations of black carbon. A higher black carbon concentration was obtained during heating season than non-heating season and was primarily associated with an increase in residential coal burning and meteorological parameters. The concentration of black carbon was found to be negatively correlated with temperature and wind speed, and positively correlated with the relative humidity. Other black carbon sources potentially included emissions from vehicle exhaust and the local steel-producing industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Historical record of black carbon in urban soils and its environmental implications

    International Nuclear Information System (INIS)

    He Yue; Zhang Ganlin

    2009-01-01

    Energy use in urbanization has fundamentally changed the pattern and fluxes of carbon cycling, which has global and local environmental impacts. Here we have investigated organic carbon (OC) and black carbon (BC) in six soil profiles from two contrast zones in an ancient city (Nanjing) in China. BC in soils was widely variable, from 0.22 to 32.19 g kg -1 . Its average concentration in an ancient residential area (Zone 1) was, 0.91 g kg -1 , whereas in Zone 2, an industrial and commercial area, the figure was 8.62 g kg -1 . The ratio of BC/OC ranged from 0.06 to 1.29 in soil profiles, with an average of 0.29. The vertical distribution of BC in soil is suggested to reflect the history of BC formation from burning of biomass and/or fossil fuel. BC in the surface layer of soils was mainly from traffic emission (especially from diesel vehicles). In contrast, in cultural layers BC was formed from historical coal use. The contents of BC and the ratio of BC/OC may reflect different human activities and pollution sources in the contrasting urban zones. In addition, the significant correlation of heavy metals (Cu, Pb, and Zn) with BC contents in some culture layers suggests the sorption of the metals by BC or their coexistence resulted from the coal-involved smelting. - Soil black carbon can reflect the pollution history of a city during urbanization.

  14. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    International Nuclear Information System (INIS)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.R.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to aggregation or degradation, and MCNP burial in deeper sediment layers. The resultant steady state MCNP levels are compared with BCNP levels calculated from soot levels in sediments and weight fractions of nanosized fractions of these soot particles. MCNP/BCNP ratios range from 10 -7 to 10 -4 (w:w). This suggests that the often acclaimed effect of MCNPs on organic pollutant binding and bioavailability will likely be below the level of detection if natural BCNPs are present, even if binding to MCNP is one to two orders of magnitude stronger than to BCNPs. Furthermore, exposure and toxic effects of MCNPs in sediments and soils will be negligible compared to that of BCNPs. - Concentrations of manufactured carbon-based nanoparticles in sediments and soils will be negligible compared to levels of black carbon (soot) nanoparticles

  15. Black Carbon Aerosol in Rome (Italy: Inference of a Long-Term (2001–2017 Record and Related Trends from AERONET Sun-Photometry Data

    Directory of Open Access Journals (Sweden)

    Antonio Di Ianni

    2018-02-01

    Full Text Available Surface concentration of black carbon (BC is a key factor for the understanding of the impact of anthropogenic pollutants on human health. The majority of Italian cities lack long-term measurements of BC concentrations since such a metric is not regulated by EU legislation. This work attempts a long-term (2001–2017 inference of equivalent black carbon (eBC concentrations in the city of Rome (Italy based on sun-photometry data. To this end, aerosol light absorption coefficients at the surface are inferred from the ”columnar” aerosol aerosol light absorption coefficient records from the Rome Tor Vergata AERONET sun-photometer. The main focus of this work is to rescale aerosol light absorption columnar data (AERONET to ground-level BC data. This is done by using values of mixing layer height (MLH derived from ceilometer measurements and then by converting the absorption into eBC mass concentration through a mass–to–absorption conversion factor, the Mass Absorption Efficiency (MAE. The final aim is to obtain relevant data representative of the BC aerosol at the surface (i.e., in-situ–so within the MLH– and then to infer a long-term record of “surface” equivalent black carbon mass concentration in Rome. To evaluate the accuracy of this procedure, we compared the AERONET-based results to in-situ measurements of aerosol light absorption coefficients ( α abs collected during some intensive field campaigns performed in Rome between 2010 and 2017. This analysis shows that different measurement methods, local emissions, and atmospheric conditions (MLH, residual layers are some of the most important factors influencing differences between inferred and measured α abs. As a general result, ”inferred” and ”measured” α abs resulted to reach quite a good correlation (up to r = 0.73 after a screening procedure that excludes one of the major cause of discrepancy between AERONET inferred and in-situ measured α abs: the presence of

  16. Quasinormal modes and absorption probabilities of spin-3 /2 fields in D -dimensional Reissner-Nordström black hole spacetimes

    Science.gov (United States)

    Chen, C.-H.; Cho, H. T.; Cornell, A. S.; Harmsen, G.; Ngcobo, X.

    2018-01-01

    In this paper we consider spin-3 /2 fields in a D -dimensional Reissner-Nordström black hole spacetime. As these spacetimes are not Ricci flat, it is necessary to modify the covariant derivative to the supercovariant derivative, by including terms related to the background electromagnetic fields, so as to maintain the gauge symmetry. Using this supercovariant derivative we arrive at the corresponding Rarita-Schwinger equation in a charged black hole background. As in our previous works, we exploit the spherical symmetry of the spacetime and use the eigenspinor vectors on an N sphere to derive the radial equations for both nontransverse-traceless (non-TT) modes and TT modes. We then determine the quasinormal mode and absorption probabilities of the associated gauge-invariant variables using the WKB approximation and the asymptotic iteration method. We then concentrate on how these quantities change with the charge of the black hole, especially when they reach the extremal limits.

  17. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Preble, Chelsea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Hadley, Odelle [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Gadgil, Ashok [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions. This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.

  18. Analysis of the Interphase on Carbon Black Formed in High Voltage Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Scipioni, Roberto

    2015-01-01

    Carbon black (CB) additives commonly used to increase the electrical conductivity of electrodes in Li-ion batteries are generally believed to be electrochemically inert additives in cathodes. Decomposition of electrolyte in the surface region of CB in Li-ion cells at high voltages up to 4.9 V...... is here studied using electrochemical measurements as well as structural and surface characterizations. LiPF6 and LiClO4 dissolved in ethylene carbonate:diethylene carbonate (1:1) were used as the electrolyte to study irreversible charge capacity of CB cathodes when cycled between 4.9 V and 2.5 V....... Synchrotron-based soft X-ray photoelectron spectroscopy (SOXPES) results revealed spontaneous partial decomposition of the electrolytes on the CB electrode, without applying external current or voltage. Depth profile analysis of the electrolyte/cathode interphase indicated that the concentration of decomposed...

  19. Physico-mechanical and electrical properties of conductive carbon black reinforced chlorosulfonated polyethylene vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available The present work deals with the effect of conductive carbon black (Ensaco 350G on the physico-mechanical and electrical properties of chlorosulfonated polyethylene (CSM rubber vulcanizates. The physico-mechanical properties like tensile strength, tear strength, elongation at break, compression set, hardness and abrasion resistance have been studied before and after heat ageing. Up to 30 parts per hundred rubber (phr filler loading both tensile and tear strength increases beyond which it shows a decreasing trend whereas modulus gradually increases with the filler loading. Incorporation of carbon black increases the hysteresis loss of filled vulcanizates compared to gum vulcanizates. Unlike gum vulcanizate, in filled vulcanizates the rate of relaxation shows increasing trend. The bound rubber content is found to increase with increase in filler loading. Dielectric relaxation spectra were used to study the relaxation behavior as a function of frequency (100 to 106 Hz at room temperature. Variation in real and imaginary parts of electric modulus has been explained on the basis of interfacial polarization of fillers in the polymer medium. The percolation limit of the conductive black as studied by ac conductivity measurements has also been reported.

  20. A Global Emission Inventory of Black Carbon and Primary Organic Carbon from Fossil-Fuel and Biofuel Combustion

    Science.gov (United States)

    Bond, T. C.; Streets, D. G.; Nelson, S. M.

    2001-12-01

    Regional and global climate models rely on emission inventories of black carbon and organic carbon to determine the climatic effects of primary particulate matter (PM) from combustion. The emission of primary carbonaceous particles is highly dependent on fuel type and combustion practice. Therefore, simple categories such as "domestic" or "industrial" combustion are not sufficient to quantify emissions, and the black-carbon and organic-carbon fractions of PM vary with combustion type. We present a global inventory of primary carbonaceous particles that improves on previous "bottom-up" tabulations (e.g. \\textit{Cooke et al.,} 1999) by considering approximately 100 technologies, each representing one combination of fuel, combustion type, and emission controls. For fossil-fuel combustion, we include several categories not found in previous inventories, including "superemitting" and two-stroke vehicles, steel-making. We also include emissions from waste burning and biofuels used for heating and cooking. Open biomass burning is not included. Fuel use, drawn from International Energy Agency (IEA) and United Nations (UN) data, is divided into technologies on a regional basis. We suggest that emissions in developing countries are better characterized by including high-emitting technologies than by invoking emission multipliers. Due to lack of information on emission factors and technologies in use, uncertainties are high. We estimate central values and uncertainties by combining the range of emission factors found in the literature with reasonable estimates of technology divisions. We provide regional totals of central, low and high estimates, identify the sources of greatest uncertainty to be targeted for future work, and compare our results with previous emission inventories. Both central estimates and uncertainties are given on a 1\\deg x1\\deg grid. As we have reported previously for the case of China (\\textit{Streets et al.,} 2001), low-technology combustion

  1. CO2 capture by biomimetic adsorption: enzyme mediated co2 absorption for post-combustion carbon sequestration and storage process

    NARCIS (Netherlands)

    Russo, M.E.; Olivieri, G.; Salatino, P.; Marzocchella, A.

    2013-01-01

    The huge emission of greenhouse gases from fossil-fuelled power plants is emphasizing the need for efficient Carbon Capture and Storage (CCS) technologies. The biomimetic CO2 absorption in aqueous solutions has been recently investigated as a promising innovative alternative for post-combustion CCS.

  2. Influence of temperature on the kinetics absorption of carbon dioxide in aqueous of enzyme catalysed MDEA solutions

    NARCIS (Netherlands)

    Penders-van Elk, Nathalie J. M. C.; van Aken, Coen; Versteeg, Geert F.

    In the present work the absorption of carbon dioxide in 1000 mol m(-3) N-methyldiethanolamine (MDEA) solutions with and without enzyme has been studied in a stirred cell reactor in the temperature range 278-343 K and enzyme concentrations ranging from 0 to 1600 gm(-3). During this study a new type

  3. CALCIUM CARBONATE REDUCES IRON ABSORPTION FROM IRON SULFATE, BUT NOT WHEN IRON IS PRESENTED AS AN ORGANIC COMPLEX

    Directory of Open Access Journals (Sweden)

    E. C. CONCEIÇÃO

    2008-09-01

    Full Text Available

    Experimental and epidemiological evidences have demonstrated that calcium inhibits iron absorption; calcium carbonate being one of the most effective calcium sources to reduce iron absorption from dietary origin or from iron sulfate. In the present work, the short-term effect of calcium from calcium carbonate on iron absorption was studied in rats, using different iron compounds (monosodium ferric EDTA, iron-bys-glicine, iron peptide complex with iron sulfate as a control. Eighty (80 animals were divided into groups of 10 animals each with homogeneous weight. After 18h fast, the animals received by gavage 5 mL of a dispersion containing one of the iron compounds (1mg Fe/kg body weight, concomitantly or not with calcium carbonate at a molar ratio of 150:1 (Ca/Fe. Two hours after the administration, the animals were sacrificed and blood was collected for serum iron determination (iron transfer rate from intestinal lumen to blood compartment. Additionally, the intestines were collected for soluble iron determination (available iron. The results demonstrated that calcium ion from calcium carbonate inhibits the iron absorption from iron sulfate, but not from organic iron (di- or trivalent complexes.

  4. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil

    International Nuclear Information System (INIS)

    Wang Ping; Wang Haizhen; Wu Laosheng; Di Hongjie; He Yan; Xu Jianming

    2012-01-01

    Biodegradation processes and changes in microbial community structure were investigated in black carbon (BC) amended soils in a laboratory experiment using two soils (black soil and red soil). We applied different percentages of charcoal as BC (0%, 0.5% and 1% by weight) with 100 mg kg −1 of phenanthrene. Soil samples were collected at different incubation times (0, 7, 15, 30, 60, 120 d). The amendment with BC caused a marked decrease in the dissipation (ascribed to mainly degradation and/or sequestration) of phenanthrene residues from soil. Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil, 0.5% BC amendments were higher. There were significant changes in the PLFA pattern in phenanthrene-spiked soils with time but BC had little effect on the microbial community structure of phenanthrene-spiked soils, as indicated by principal component analysis (PCA) of the PLFA signatures. - Highlights: ► Extracted phenanthrene increased substantially as the BC amount increased. ► Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil. ► BC caused a marked decrease in the dissipation of phenanthrene from soil. ► PLFA pattern in phenanthrene-spiked soils with time had significant changes. - BC amendments on phenanthrene extraction were different for two soils and time was a more effective factor in microbial community changes.

  5. Electrochemical properties of arc-black and carbon nano-balloon as electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Sato, T; Suda, Y; Uruno, H; Takikawa, H; Tanoue, H; Ue, H; Aoyagi, N; Okawa, T; Shimizu, K

    2012-01-01

    In this study, we used two types of carbon nanomaterials, arc-black (AcB) which has an amorphous structure and carbon nano-balloon (CNB) which has a graphitic structure as electrochemical capacitor electrodes. We made a coin electrode from these carbon materials and fabricated an electric double-layer capacitor (EDLC) that sandwiches a separator between the coin electrodes. On the other hand, RuO 2 was loaded on these carbon materials, and we fabricated a pseudo-capacitor that has an ion insertion mechanism into RuO 2 . For