WorldWideScience

Sample records for black body absorber

  1. Black phosphorus saturable absorber for ultrashort pulse generation

    International Nuclear Information System (INIS)

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics

  2. Black phosphorus saturable absorber for ultrashort pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370 (Poland); Macherzynski, W.; Paletko, P. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wroclaw 50-372 (Poland)

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  3. Flat Absorber Phosphorous Black Nickel Coatings for Space Applications

    Institute of Scientific and Technical Information of China (English)

    V. Maria Shalini; P. Arockiasamy; R. Urna Rani; A.K. Sharma

    2012-01-01

    A new process of flat absorber black nickel alloy coating tion from a bath containing nickel, zinc and ammonium was developed on stainless steel by electrodeposi- sulphates; thiocyanate and sodium hypophosphite for space applications. Coating process was optimized by investigating the effects of plating parameters, viz concentration of bath constituents, current density, temperature, pH and plating time on the optical properties of the black deposits. Energy dispersive X-ray spectroscopy showed the inclusion of about 6% phosphorous in the coating. The scanning electron microscopy studies revealed the amorphous nature of the coating. The corrosion resistance of the coatings was evaluated by the electrochemical impedance spectroscopy (EIS) and linear polarization (LP) techniques. The results revealed that, phosphorous addition confers better corro- sion resistance in comparison to conventional black nickel coatings. The black nickel coating obtained from hypophosphite bath provides high solar absorptance (αs) and infrared emittance (εIR) of the order of 0.93. Environmental stability to space applications was established by the humidity and thermal cycling tests.

  4. Destroying black holes with test bodies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Ted [Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111 (United States); Sotiriou, Thomas P, E-mail: jacobson@umd.ed, E-mail: T.Sotiriou@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-04-01

    If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.

  5. Overcoming black body radiation limit in free space: metamaterial superemitter

    Science.gov (United States)

    Maslovski, Stanislav I.; Simovski, Constantin R.; Tretyakov, Sergei A.

    2016-01-01

    Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff-Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices.

  6. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    Science.gov (United States)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  7. Influence of carbon black and indium tin oxide absorber particles on laser transmission welding

    Science.gov (United States)

    Aden, Mirko; Mamuschkin, Viktor; Olowinsky, Alexander

    2015-06-01

    For laser transmission welding of polypropylene carbon black and indium tin oxide (ITO) are used as absorber particles. Additionally, the colorant titanium dioxide is mixed to the absorbing part, while the transparent part is kept in natural state. The absorption coefficients of ITO and carbon black particles are obtained, as well as the scattering properties of polypropylene loaded with titanium dioxide (TiO2). At similar concentrations the absorption coefficient of ITO is an order of magnitude smaller than that of carbon black. Simulations of radiation propagation show that the penetration depth of laser light is smaller for carbon black. Therefore, the density of the released heat is higher. Adding TiO2 changes the distribution of heat in case of ITO, whereas for carbon black the effect is negligible. Thermal simulations reveal the influence of the two absorbers and TiO2 on the heat affected zone. The results of the thermal simulations are compared to tensile test results.

  8. Entanglement from thermal black body radiation

    OpenAIRE

    Braun, Daniel

    2005-01-01

    Two non--interacting quantum systems which couple to a common environment with many degrees of freedom initially in thermal equilibrium can become entangled due to the indirect interaction mediated through this heat bath. I examine here the dynamics of reservoir induced entanglement for a heat bath consisting of a thermal electro--magnetic radiation field, such as black body radiation or the cosmic microwave background, and show how the effect can be understood as result of an effective induc...

  9. Effects of body and organ size on absorbed dose: there is no standard patient

    International Nuclear Information System (INIS)

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patient does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient

  10. Reexamining Black-Body Shifts for Hydrogenlike Ions

    OpenAIRE

    Jentschura, U. D.; Haas, M.

    2008-01-01

    We investigate black-body induced energy shifts for low-lying levels of atomic systems, with a special emphasis on transitions used in current and planned high-precision experiments on atomic hydrogen and ionized helium. Fine-structure and Lamb-shift induced black-body shifts are found to increase with the square of the nuclear charge number, whereas black-body shifts due to virtual transitions decrease with increasing nuclear charge as the fourth power of the nuclear charge. We also investig...

  11. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-05-01

    Full Text Available Although the definition and measurement methods of atmospheric ''black carbon'' (''BC'' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black (''brown carbon, Cbrown'' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes directly from aerosol absorption measurements near specific combustion sources, from observations of spectral properties of water extracts of continental aerosol, from laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that these species may severely bias measurements of ''BC'' and ''EC'' over vast parts of the troposphere, where mass concentration of Cbrown is high relative to that of combustion soot. We also imply that due to the strongly skewed absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. The possible consequences of these effects on our understanding of tropospheric processes are discussed.

  12. Titanium-tin oxide protective films on a black cobalt photothermal absorber

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Enrique [Area de Ingenieria en Recursos Energeticos, Depto de IPH, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, 09340 Mexico D.F. (Mexico); Viveros, Tomas [Area de Ingenieria Quimica, Depto de IPH, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, 09340 Mexico D.F. (Mexico); Montoya, Ascencion [Gerencia de Catalizadores. Instituto Mexicano del Petroleo, Mexico D.F. (Mexico); Ruiz, Mireya [Area de Ingenieria. en Recursos Energeticos, Depto de IPH, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, 09340 Mexico D.F. (Mexico)

    1999-02-12

    We report the effect of covering an electrodeposited black cobalt absorber film with a Ti : Sn oxide film at various atomic ratios prepared by the sol-gel dip process. The resulting composite was characterized in its optical, structural and morphological properties. After thermal treatment at 400C, the uncoated black cobalt film is oxidized and Co{sub 3}O{sub 4} is formed. Samples covered with Ti : Sn films and thermally treated at the same temperature suffered lower oxidation maintaining in great extent the original metallic cobalt structure. The optical properties of the resulting material were affected by the presence of the Ti : Sn coating, and the best protective film obtained was a transparent Ti : Sn (8 : 2) atomic ratio oxide film, with a 210 nm thickness. This composite system exhibits an absorptance value of 0.91 and an emittance value of 0.34 after a 100 h, 400C thermal treatment. A photothermal material composed of a layer of black cobalt and a protective oxide film coating seems then a promising solar energy absorber capable of withstanding high operating temperatures (400C)

  13. Black Cr/α-Cr2O3 nanoparticles based solar absorbers

    International Nuclear Information System (INIS)

    Monodisperse spherical core–shell particles of Cr/α-Cr2O3 with high adhesion were successfully coated on rough copper substrates by a simple self-assembly-like method for the use in solar thermal absorbers. The structure and morphology of the core-shell particles of Cr/α-Cr2O3 were effectively controlled by deposition temperature and the pH of the initial precursor solution. Their characterizations were carried out with X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and attenuated total reflection, as well as UV–vis diffuse reflectance spectroscopy. The samples aged for more than 40 h at 75 °C exhibit the targeted high absorbing optical characteristic “Black chrome” while those aged for ≤40 h show a significant high UV–vis diffuse reflectance “green color”.

  14. Fermi golden rule for $N$-body systems in a black-body radiation

    CERN Document Server

    Ostilli, Massimo

    2016-01-01

    We review the calculation of the Fermi golden rule for a system of $N$-body dipoles, magnetic or electric, weakly interacting with a black-body radiation. By using the magnetic or electric field-field correlation function evaluated in the 1960s for the black body radiation, we deduce a general formula for the transition rates and study its limiting, fully coherent or fully incoherent, regimes.

  15. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  16. Dual band sensitivity enhancements of a VO(x) microbolometer array using a patterned gold black absorber.

    Science.gov (United States)

    Smith, Evan M; Panjwani, Deep; Ginn, James; Warren, Andrew P; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Nath, Janardan; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E; Shelton, David

    2016-03-10

    Infrared-absorbing gold black has been selectively patterned onto the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves much of gold black's high absorptance. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. For our fabricated devices, infrared responsivity is improved 22% in the long-wave IR and 70% in the mid-wave IR by the gold black coating, with no significant change in detector noise, using a 300°C blackbody and 80 Hz chopping rate. The increase in the time constant caused by the additional mass of gold black is ∼15%. PMID:26974804

  17. Black Hole Growth from Cosmological N-body Simulations

    CERN Document Server

    Micic, Miroslav; Sigurdsson, Steinn

    2008-01-01

    (Abridged) We use high resolution cosmological N-body simulations to study the growth of intermediate to supermassive black holes from redshift 49 to zero. We track the growth of black holes from the seeds of population III stars to black holes in the range of 10^3 < M < 10^7 Msun -- not quasars, but rather IMBH to low-mass SMBHs. These lower mass black holes are the primary observable for the Laser Interferometer Space Antenna (LISA). The large-scale dynamics of the black holes are followed accurately within the simulation down to scales of 1 kpc; thereafter, we follow the merger analytically from the last dynamical friction phase to black hole coalescence. We find that the merger rate of these black holes is R~25 per year between 8 < z < 11 and R = 10 per year at z=3. Before the merger occurs the incoming IMBH may be observed with a next generation of X-ray telescopes as a ULX source with a rate of about ~ 3 - 7 per year for 1 < z < 5. We develop an analytic prescription that captures the ...

  18. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    Science.gov (United States)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  19. Tidal interaction of black holes and Newtonian viscous bodies

    CERN Document Server

    Poisson, Eric

    2009-01-01

    The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations are strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k_2 \\tau of ``Love quantities'' that incorporate the details of the body's internal structure; k_2 is the tidal Love number, and \\tau is the viscosity-produced delay between the action of the tidal forces a...

  20. Multilayer black phosphorus as broadband saturable absorber for pulsed lasers from 1 to 2.7 {\\mu}m wavelength

    CERN Document Server

    Kong, Lingchen; Xie, Guoqiang; Guo, Zhinan; Zhang, Han; Yuan, Peng; Qian, Liejia

    2015-01-01

    It attracts wide interest to seek universe saturable absorber covering wavelengths from near infrared to mid-infrared band. Multilayer black phosphorus, with variable direct bandgap (0.3-2 eV) depending on the layer number, becomes a good alternative as a universe saturable absorber for pulsed lasers. In this contribution, we first experimentally demonstrated broadband saturable absorption of multilayer black phosphorus from 1 {\\mu}m to 2.7 {\\mu}m wavelength. With the as-fabricated black phosphorus nanoflakes as saturable absorber, stable Q-switching operation of bulk lasers at 1.03 {\\mu}m, 1.93 {\\mu}m, 2.72 {\\mu}m were realized, respectively. In contrast with large-bandgap semiconducting transition metal dichalcogenides, such as MoS2, MoSe2, multilayer black phosphorus shows particular advantage at the long wavelength regime thanks to its narrow direct bandgap. This work will open promising optoelectronic applications of black phosphorus in mid-infrared spectral region and further demonstrate that BP may fil...

  1. Emitter near an arbitrary body: Purcell effect, optical theorem and the Wheeler-Feynman absorber

    CERN Document Server

    Venkatapathi, Murugesan

    2012-01-01

    The altered spontaneous emission of an emitter near an arbitrary body can be elucidated using an energy balance of the electromagnetic field. From a classical point of view it is trivial to show that the field scattered back from any body should alter the emission of the source. But it is not at all apparent that the total radiative and non-radiative decay in an arbitrary body can add to the vacuum decay rate of the emitter (i.e.) an increase of emission that is just as much as the body absorbs and radiates in all directions. This gives us an opportunity to revisit two other elegant classical ideas of the past, the optical theorem and the Wheeler-Feynman absorber theory of radiation. It also provides us alternative perspectives of Purcell effect and generalizes many of its manifestations, both enhancement and inhibition of emission. When the optical density of states of a body or a material is difficult to resolve (in a complex geometry or a highly inhomogeneous volume) such a generalization offers new direct...

  2. Effective-one-body modeling of precessing black hole binaries

    Science.gov (United States)

    Taracchini, Andrea; Babak, Stanislav; Buonanno, Alessandra

    2016-03-01

    Merging black hole binaries with generic spins that undergo precessional motion emit complicated gravitational-wave signals. We discuss how such waveforms can be accurately modeled within an effective-one-body approach by (i) exploiting the simplicity of the signals in a frame that corotates with the orbital plane of the binary and (ii) relying on an accurate model of nonprecessing black hole binaries. The model is validated by extensive comparisons to 70 numerical relativity simulations of precessing black hole binaries and can generate inspiral-merger-ringdown waveforms for mass ratios up to 100 and any spin configuration. This work is an essential tool for studying and characterizing candidate gravitational-wave events in science runs of advanced LIGO.

  3. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser

    CERN Document Server

    Luo, Zhi-Chao; Guo, Zhi-Nan; Jiang, Xiao-Fang; Luo, Ai-Ping; Zhao, Chu-Jun; Yu, Xue-Feng; Xu, Wen-Cheng; Zhang, Han

    2015-01-01

    Few-layer black phosphorus (BP), as the most alluring graphene analogue owing to its similar structure as graphene and thickness dependent direct band-gap, has now triggered a new wave of research on two-dimensional (2D) materials based photonics and optoelectronics. However, a major obstacle of practical applications for few-layer BPs comes from their instabilities of laser-induced optical damage. Herein, we demonstrate that, few-layer BPs, fabricated through the liquid exfoliation approach, can be developed as a new and practical saturable absorber (SA) by depositing few-layer BPs with microfiber. The saturable absorption property of few-layer BPs had been verified through an open-aperture z-scan measurement at the telecommunication band and the microfiber-based BP device had been found to show a saturable average power of ~4.5 mW and a modulation depth of 10.9%, which is further confirmed through a balanced twin detection measurement. By further integrating this optical SA device into an erbium-doped fiber...

  4. Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber

    Science.gov (United States)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Harun, S. W.

    2016-09-01

    We experimentally demonstrate a passive mode-locked erbium-doped fiber laser (EDFL) using a multi-layer black phosphorus saturable absorber (BPSA). The BPSA is fabricated by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto scotch tape. A small piece of the tape is then placed between two ferrules and integrated into an EDFL cavity to achieve a self-started soliton mode-locked pulse operation at 1560.7 nm wavelength. The 3 dB bandwidth, pulse width, and repetition rate of the laser are 6.4 nm, 570 fs, and 6.88 MHz, respectively. The average output power is 5.1 mW at pump power of 140 mW and thus, the pulse energy and peak power are estimated at 0.74 nJ and 1.22 kW, respectively. The BPSA was constructed in a simple fabrication process and has a modulation depth of 7% to successfully produce the stable mode-locked fiber laser.

  5. Minimal length, maximal momentum and thermodynamics of black body radiation

    CERN Document Server

    Shababi, Homa

    2013-01-01

    In this paper we study thermodynamics of black body radiation in the presence of quantum gravitational effects through a Generalized Uncertainty Principle that admits both a minimal measurable length and a maximal momentum. We focus on quantum gravity induced modifications of thermodynamical quantities in this framework. Some important issues such as the generalized Planck distribution, Wien s law and Dulong Petit law are studied in this setup with details.

  6. Coupled-rearrangement-channels calculation of the three-body system under the absorbing boundary condition

    Directory of Open Access Journals (Sweden)

    Iwasaki M.

    2016-01-01

    Full Text Available We formulate the absorbing boundary condition (ABC in the coupled rearrangement-channels variational method (CRCVM for the three-body problem. The absorbing potential is introduced in the system of the identical three-bosons, on which the boson symmetry is explicitly imposed by considering the rearrangement channels. The resonance parameters and the strength of the monopole breakup are calculated by the CRCVM + ABC method, and the results are compared with the complex scaling method (CSM. We have found that the results of the ABC method are consistent with the CSM results. The effect of the boson symmetry, which is often neglected in the calculation of the triple α reactions, is also discussed.

  7. Parametric Study of Two-Body Floating-Point Wave Absorber

    Institute of Scientific and Technical Information of China (English)

    Atena Amiri; Roozbeh Panahi; Soheil Radfar

    2016-01-01

    In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter’s efficiency when considering specific conditions.

  8. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials.

    Science.gov (United States)

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D

    2016-08-01

    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength. PMID:27359341

  9. Thermalization of magnetized electrons from black body radiation

    International Nuclear Information System (INIS)

    We describe an interesting mechanism whereby an electron in a strong magnetic field can have both the parallel and perpendicular motions come into thermal equilibrium with black body radiation. The mechanism does not include any collisions with other particles and can overcome the extreme slowing of thermalization of highly magnetized particles at low temperatures. The mechanism depends upon the magnetic field strength having a spatial variation. We provide results from two example cases. This mechanism could affect the temperatures that can be achieved in experiments devoted to trapping antihydrogen

  10. Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers

    Science.gov (United States)

    Lee, Donghyun; Park, Kichul; Debnath, Pulak C.; Kim, Inho; Song, Yong-Won

    2016-09-01

    Recent studies of black phosphorus (BP) have shown its future potential in the field of photonics. We determined the optical damage threshold of BP at 21.8 dBm in a fiber ring laser cavity, and demonstrated the high-power operation capacity of an evanescent field interaction-based BP saturable absorber. The long-term stability of a passively mode-locked fiber laser with a saturable absorber operating at the optical power of 23.3 dBm was verified for 168 h without any significant performance degradation. The center wavelength, spectral width, and pulse width of the laser output are 1558.8 nm, 14.2 nm, and 805 fs, respectively.

  11. Body fat distribution and perception of desirable female body shape by young black men and women.

    Science.gov (United States)

    Singh, D

    1994-11-01

    The relation between body fat distribution as measured by waist-to-hip ratio (WHR) and perception of desirable female body shape was investigated in college-age black men and women. Subjects judged attractiveness, various personal qualities, and desirability for long-term relationships of 12 line drawings of female figures that represented three body weight categories (normal, underweight, and overweight) and four levels of WHRs (0.7, 0.8, 0.9, and 1.0). Judgments of attractiveness and desirability for long-term relationships were affected by body weight and the size of the WHR. Both male and female subjects ranked normal weight figures with 0.7 and 0.8 WHR as more attractive and desirable for long-term relationships; neither underweight nor overweight figures, irrespective of WHR size, were assigned high ranking for these variables. These findings do not support the notion that black young men and women find overweight female figures as desirable and attractive. PMID:7833963

  12. Energy shift due to anisotropic black body radiation

    CERN Document Server

    Flambaum, Victor V; Safronova, Marianna S

    2015-01-01

    In many applications a source of the black-body radiation (BBR) can be highly anisotropic. This leads to the BBR shift that depends on tensor polarizability and on the projection of the total angular momentum of ions and atoms in a trap. We derived formula for the anisotropic BBR shift and performed numerical calculations of this effect for Ca$^+$ and Yb$^+$ transitions of experimental interest. These ions used for a design of high-precision atomic clocks, fundamental physics tests such as search for the Lorentz invariance violation and space-time variation of the fundamental constants, and quantum information. Anisotropic BBR shift may be one of the major systematic effect in these experiments.

  13. Considering an affect regulation framework for examining the association between body dissatisfaction and positive body image in Black older adolescent females: does body mass index matter?

    Science.gov (United States)

    Webb, Jennifer B; Butler-Ajibade, Phoebe; Robinson, Seronda A

    2014-09-01

    The present study provided an initial evaluation of an affect regulation model describing the association between body dissatisfaction and two contemporary measures of positive body image among 247 Black college-bound older adolescent females. We further tested whether possessing a higher body mass index (BMI) would strengthen these associations. Self-reported height and weight were used to calculate BMI. Respondents also completed a culturally-sensitive figure rating scale along with assessments of body appreciation and body image flexibility. Results indicated a robust positive association between the two measures of positive body image; BMI was the strongest predictor of both body appreciation and body image flexibility with body size discrepancy (current minus ideal) contributing incremental variance to both models tested. Implications for improving our understanding of the association between positive and negative body image and bolstering positive body image to promote health-protective behaviors among Black young women at this developmental juncture are discussed. PMID:25079011

  14. Considering an affect regulation framework for examining the association between body dissatisfaction and positive body image in Black older adolescent females: does body mass index matter?

    Science.gov (United States)

    Webb, Jennifer B; Butler-Ajibade, Phoebe; Robinson, Seronda A

    2014-09-01

    The present study provided an initial evaluation of an affect regulation model describing the association between body dissatisfaction and two contemporary measures of positive body image among 247 Black college-bound older adolescent females. We further tested whether possessing a higher body mass index (BMI) would strengthen these associations. Self-reported height and weight were used to calculate BMI. Respondents also completed a culturally-sensitive figure rating scale along with assessments of body appreciation and body image flexibility. Results indicated a robust positive association between the two measures of positive body image; BMI was the strongest predictor of both body appreciation and body image flexibility with body size discrepancy (current minus ideal) contributing incremental variance to both models tested. Implications for improving our understanding of the association between positive and negative body image and bolstering positive body image to promote health-protective behaviors among Black young women at this developmental juncture are discussed.

  15. Numerical models of black body dominated GRBs: II. Emission properties

    CERN Document Server

    Cuesta-Martínez, Carlos F; Mimica, Petar; Thöne, Christina C; de Ugarte-Postigo, Antonio

    2014-01-01

    We extend an existing theoretical model to explain the class of Black-Body Dominated (BBD) gamma-ray bursts (GRBs), long lasting events characterized by the presence of a significant thermal component trailing the GRB prompt emission, and also by an absence of a traditional afterglow. GRB 101225A, the Christmas Burst, is a prototype of such class. It has been suggested that BBD-GRBs could be observed after a merger in a binary system consisting of a neutron star and a Helium core of a main sequence star. Using detailed relativistic hydrodynamic numerical simulations we model the propagation of ultrarelativistic jets through the environments created by such mergers. In this paper we focus on explaining the emission properties of the jet evolution computing the whole radiative signature (both thermal and non-thermal) of the jet dynamical evolution. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic spectra and light curves are compared with the observational data...

  16. Dynamical Casimir effect and the black body spectrum

    International Nuclear Information System (INIS)

    Creation of scalar massless particles in two-dimensional Minkowski space time-as predicted by the dynamical Casimir effect-is studied for the case of a semitransparent mirror initially at rest, then accelerating for some finite time, along a specified trajectory, and finally moving with constant velocity. When the reflection and transmission coefficients are those in the model proposed by Barton, Calogeracos and Nicolaevici [r(w) = -iα/(ω + iα) and s(w) = ω/(ω + iα), with α ≥ 0], the Bogoliubov coefficients on the back side of the mirror can be computed exactly. This allows us to prove that, when α is very large (case of an ideal, perfectly reflecting mirror) a thermal emission of scalar massless particles obeying Bose-Einstein statistics is radiated from the mirror (a black body radiation), in accordance with previous results in the literature. However, when α is finite (semitransparent mirror, a physically realistic situation) the striking result is obtained that the thermal emission of scalar massless particles obeys Fermi-Dirac statistics. Possible consequences of this result are envisaged. (fast track communication)

  17. Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber.

    Science.gov (United States)

    Yu, Hao; Zheng, Xin; Yin, Ke; Cheng, Xiang'ai; Jiang, Tian

    2015-12-01

    By coupling black phosphorus (BP) nanoplatelets (NPs) with a fiber-taper evanescent light field, a saturable absorber (SA) based on the BP NPs has been successfully fabricated and used in a thulium/holmium-doped fiber laser as the mode locker. The SA had a modulation depth of ∼9.8% measured at 1.93 μm. A stable mode-locking operation at 1898 nm was achieved with a pulse width of 1.58 ps and a fundamental mode-lock repetition rate of 19.2 MHz. By increasing the pump intensity, phenomena of multi-pulsing operations, including harmonic mode-locked states and soliton bunches, were obtained in the experiment, showing that the BP NPs possess an ultrafast optical response time. This work suggests that the BP NPs-based SA is potentially useful for ultrashort, pulsed laser operations in the eye-safe region of 2 μm. PMID:26836690

  18. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 {\\mu}m

    CERN Document Server

    Qin, Zhipeng; Zhang, Han; Zhao, Chujun; Yuan, Peng; Wen, Shuangchun; Qian, Liejia

    2015-01-01

    Black phosphorus, a newly emerged two-dimensional material, has attracted wide attention as novel photonic material. Here, multi-layer black phosphorus is successfully fabricated by liquid phase exfoliation method. By employing black phosphorus as saturable absorber, we demonstrate a passively Q-switched Er-doped ZBLAN fiber laser at the wavelength of 2.8 {\\mu}m. The modulation depth and saturation fluence of the black phosphorus saturable absorber are measured to be 15% and 9 {\\mu}J/cm2, respectively. The Q-switched fiber laser delivers a maximum average power of 485 mW with corresponding pulse energy of 7.7 {\\mu}J and pulse width of 1.18 {\\mu}s at repetition rate of 63 kHz. To the best of our knowledge, this is the first time to demonstrate that black phosphorus can realize Q-switching of 2.8-{\\mu}m fiber laser. Our research results show that black phosphorus is a promising saturable absorber for mid-infrared pulsed lasers.

  19. Computing precession and spin-curvature coupling for small bodies orbiting Kerr black holes

    Science.gov (United States)

    Hughes, Scott; Ruangsri, Uchupol; Vigeland, Sarah

    2016-03-01

    A non-spinning small body that orbits a Kerr black hole follows a trajectory that looks like a geodesic corrected by ``self force'' effects that drive inspiral and shift the small body's orbital frequencies. If the small body is spinning, then additional forces arise from the coupling of its spin to the curvature of the larger black hole. In this talk, I will describe recent work to compute the precession of this small body in the frequency domain for generic orbit geometries and generic small body orientations, and show how this result can be used to compute the spin-curvature force in a computationally effective way.

  20. Incongruence in body image and body mass index: A surrogate risk marker in Black women for type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Rynal Devanathan

    2013-01-01

    Full Text Available Background: Excess weight contributes to the development and progression of Type 2 diabetes mellitus (T2DM. Distorted body image amongst urban Black women and the perception that thinness is linked with HIV, may however be compounding the problem, particularly in areas with a high HIV burden.Objectives: This study aimed to compare the perception of body image in urban Black women with and without T2DM.Methods: A cross-sectional comparative study was conducted on 328 Black women systematically sampled into two groups (with and without T2DM. Body mass index (BMI (weight [kg]/height[m2] was determined and the adapted Stunkard Body Image Silhouettes for Black women was used to determine perceived body image (PBI.Results: Seventy-two per cent had T2DM and in this group 89% were obese, with a mean BMI of 39.5 kg/m2 (s.d. ± 8.5. In the non-diabetes group (NDG 44% were obese, with a mean BMIof 31.3 kg/m2 (s.d. ± 9.0 Black women underestimated their body image across all weight categories (p < 0.05. Both groups (99% of the study group also perceived thinness as being associated with HIV.Conclusions: This study identified an incongruence between PBI and actual BMI amongst urban Black women. This, combined with their belief that thinness is associated with HIV, places those with T2DM at risk of secondary complications arising from diabetes mellitus, and those without diabetes mellitus at a higher risk of developing T2DM. A discrepancy between PBI and BMI may therefore serve as a risk marker to alert clinicians to use a more ethno-cultural specific approach in engaging with urban Black women regarding weight loss strategies in the future.

  1. Ethnic Identity and Body Image among Black and White College Females

    Science.gov (United States)

    Baugh, Eboni; Mullis, Ron; Mullis, Ann; Hicks, Mary; Peterson, Gary

    2010-01-01

    Objective: This study examines ethnic identity and body image in black and white college females. Participants: Researchers surveyed 118 students at 2 universities, 1 traditionally white and 1 historically black. Methods: Correlations and multivariate analysis of variance (MANOVA) were used to investigate the relationship between race, ethnic…

  2. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation

    Science.gov (United States)

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-10-01

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.).

  3. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kichul; Lee, Young Tack; Choi, Won-Kook; Song, Yong-Won [Center for Opto-electronic Materials and Devices, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Junsu; Lee, Ju Han [School of Electrical and Computer Engineering, University of Seoul (Korea, Republic of)

    2015-12-15

    Black phosphorus, or BP, has found a lot of applications in recent years including photonics. The most recent studies have shown that the material has an excellent optical nonlinearity useful in many areas, one of which is in saturable absorption for passive mode-locking. A direct interaction scheme for mode-locking, however, has a potential to optically cause permanent damage to the already delicate material. Evanescent field interaction scheme has already been proven to be a useful method to prevent such danger for other 2-dimensional nanomaterials. In this report, we have utilized the evanescent field interaction to demonstrate that the optical nonlinear characteristics of BP is sufficiently strong to use in such an indirect interaction method. The successful demonstration of the passive mode-locking operation has generated pulses with the pulse duration, repetition rate, and time bandwidth product of 2.18 ps, 15.59 MHz, and 0.336, respectively. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Extended charge accumulation in ruthenium-4H-imidazole-based black absorbers: a theoretical design concept.

    Science.gov (United States)

    Kupfer, Stephan

    2016-05-11

    A theoretical-guided design concept aiming to achieve highly efficient unidirectional charge transfer and multi-charge separation upon successive photoexcitation for light-harvesting dyes in the scope of supramolecular photocatalysts is presented. Four 4H-imidazole-ruthenium(ii) complexes incorporating a biimidazole-based electron-donating ligand sphere have been designed based on the well-known 4H-imidazole-ruthenium(ii) polypyridyl dyes. The quantum chemical evaluation, performed at the density functional and time-dependent density functional level of theory, revealed extraordinary unidirectional charge transfer bands from the near-infrared to the ultraviolet region of the absorption spectrum upon multi-photoexcitation. Spectro-electrochemical simulations modeling photoexcited intermediates determined the outstanding multi-electron storage capacity for this novel class of black dyes. These remarkable photochemical and photophysical properties are found to be preserved upon site-specific protonation rendering 4H-imidazole-ruthenium(ii) biimidazole dyes ideal for light-harvesting applications in the field of solar energy conversion. PMID:27121270

  5. RELATIONSHIPS BETWEEN ULTRASONIC ESTIMATES OF CARCASS TRAITS AND BODY MEASUREMENTS OF JAPANESE BLACK BULL

    OpenAIRE

    Sri Rachma, Aprilita Bugiwati

    2008-01-01

    This experiment was done at 292 head of Japanese black bull at Kagoshima and Miyazaki Prefectural Experimental Stations Japan to find out the relationship between ultrasonic estimates of carcass traits and body measurements as one of criteria to select Japanese black bull. The carcass traits of 20 months of age were predicted using the ultrasonic machine. The body dimensions were measured at the end of performance test (12 months of age) and 16 months of age. The ultrasonic evaluati...

  6. Spin-multipole effects in binary black holes and the test-body limit

    CERN Document Server

    Vines, Justin

    2016-01-01

    We discuss the Hamiltonian for the conservative dynamics of generic-orbit arbitrary-mass-ratio spinning binary black holes, at the leading post-Newtonian orders at each order in an expansion in spins, to all orders in the spins. The leading-order couplings can all be obtained from a map to the motion of a test black hole (a test body with the spin-induced multipoles of a Kerr black hole) in the Kerr spacetime, as is confirmed with direct post-Newtonian calculations for arbitrary mass ratios. Furthermore, all of the couplings can be "deduced" from those of a pole-dipole test body in Kerr.

  7. Using a black phosphorus saturable absorber to generate dual wavelengths in a Q-switched ytterbium-doped fiber laser

    Science.gov (United States)

    Rashid, F. A. A.; Azzuhri, Saaidal R.; Salim, M. A. M.; Shaharuddin, R. A.; Ismail, M. A.; Ismail, M. F.; Razak, M. Z. A.; Ahmad, H.

    2016-08-01

    Using a few-layer black phosphorus (BP) thin film that acts as a saturable absorber (SA) in an ytterbium-doped fiber laser setup, we experimentally demonstrated a passively dual-wavelength Q-switching laser operation. The setup also incorporated a D-shaped polished fiber as a wavelength selective filter. As the SA was used in the ring cavity, a dual-wavelength Q-switch produced consistent outputs at 1038.68 and 1042.05 nm. A maximum pulse energy of 2.09 nJ with a shortest pulse width of 1.16 µs was measured for the achieved pulses. In addition, the repetition rate increased from 52.52 to 58.73 kHz with the increment of the pump level. Throughout the measurement process, the results were obtained consistently and this demonstrates that the BP film is a very good candidate to produce Q-switching pulses for the 1 micron region.

  8. Microwave Absorption Properties of Double-Layer RADAR Absorbing Materials Based on Doped Barium Hexaferrite/TiO2/Conducting Carbon Black

    Directory of Open Access Journals (Sweden)

    Sukanta Das

    2014-01-01

    Full Text Available In this report, we demonstrate microwave absorption properties of barium hexaferrite, doped barium hexaferrite, titanium dioxide and conducting carbon black based RADAR absorbing material for stealth application. Double-layer absorbers are prepared with a top layer consisting of 30% hexaferrite and 10% titanium dioxide while the bottom layer composed of 30% hexaferrite and 10% conducting carbon black, embedded in chloroprene matrix. The top and bottom layers are prepared as impedance matching layer and conducting layer, respectively, with a total thickness of 2 mm. Microwave absorption properties of all the composites were analyzed in X-band region. Maximum reflection loss of −32 dB at 10.64 GHz was observed for barium hexaferrite based double-layer absorber whereas for doped barium hexaferrite based absorber the reflection loss was found to be −29.56 dB at 11.7 GHz. A consistence reflection loss value (>−24 dB was observed for doped barium hexaferrite based RADAR absorbing materials within the entire bandwidth.

  9. Who's that Girl: Television's Role in the Body Image Development of Young White and Black Women

    Science.gov (United States)

    Schooler, Deborah; Ward, L. Monique; Merriwether, Ann; Caruthers, Allison

    2004-01-01

    Although findings indicate a connection between frequent media use and greater body dissatisfaction, little attention has focused on the role of race. Accordingly, this study investigates the relation between television viewing and body image among 87 Black and 584 White women. Participants reported monthly viewing amounts of mainstream and…

  10. Considering an Affect Regulation Framework for Examining the Association Between Body Dissatisfaction and Positive Body Image in Black Older Adolescent Females: Does Body Mass Index Matter?

    OpenAIRE

    Webb, Jennifer B.; Butler-Ajibade, Phoebe; Robinson, Seronda A.

    2014-01-01

    The present study provided an initial evaluation of an affect regulation model describing the association between body dissatisfaction and two contemporary measures of positive body image among 247 Black college-bound older adolescent females. We further tested whether possessing a higher body mass index (BMI) would strengthen these associations. Self-reported height and weight were used to calculate BMI. Respondents also completed a culturally-sensitive figure rating scale along with assessm...

  11. Spin-multipole effects in binary black holes and the test-body limit

    OpenAIRE

    Vines, Justin; Steinhoff, Jan

    2016-01-01

    We discuss the Hamiltonian for the conservative dynamics of generic-orbit arbitrary-mass-ratio spinning binary black holes, at the leading post-Newtonian orders at each order in an expansion in spins, to all orders in the spins. The leading-order couplings can all be obtained from a map to the motion of a test black hole (a test body with the spin-induced multipoles of a Kerr black hole) in the Kerr spacetime, as is confirmed with direct post-Newtonian calculations for arbitrary mass ratios. ...

  12. On the thermodynamics of the conversion of partially polarized black-body radiation

    OpenAIRE

    Badescu, V.

    1992-01-01

    This paper considers a model consisting of : (i) a source of partially polarized black-body radiation (the pump), (ii) a thermally radiative or non-radiative ambient sink and (iii) two energy converters. The first converter (RH) transforms the energy of the black-body radiation into heat, while the second one (HW) (which has a non-zero entropy generation rate) uses that heat to produce work. The entropy-generation rates in the two converters are non-negative only when some conditions are sati...

  13. Black Pete, "smug ignorance," and the value of the black body in postcolonial Netherlands

    NARCIS (Netherlands)

    Van Der Pijl, Yvon; Goulordava, Karina

    2014-01-01

    This article discusses the controversies over the blackface figure Black Pete (Zwarte Piet)-central to the popular Dutch Saint Nicholas holiday tradition-and the public uproar surrounding the Saint Nicholas feast in 2013. It combines history, social theory, and patchwork ethnography, and draws on th

  14. Black Sun: Ocular Invisibility of Relativistic Luminous Astrophysical Bodies

    CERN Document Server

    Lee, Jeffrey S

    2015-01-01

    The relativistic Doppler shifting of visible electromagnetic radiation to beyond the human ocular range reduces the incident radiance of the source. Consequently, luminous astrophysical bodies (LABs) can be rendered invisible with sufficient relativistic motion. This paper determines the proper distance as a function of relativistic velocity at which a luminous object attains ocular invisibility.

  15. Accurate Waveforms for Non-spinning Binary Black Holes using the Effective-one-body Approach

    Science.gov (United States)

    Buonanno, Alessandra; Pan, Yi; Baker, John G.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2007-01-01

    Using numerical relativity as guidance and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms of non-spinning binary black holes during the last stages of inspiral, merger and ringdown. Here, by successfully, we mean with phase differences black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasi-normal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the light-ring. The accurate EOB waveforms may be employed for coherent searches of gravitational waves emitted by non-spinning coalescing binary black holes with ground-based laser-interferometer detectors.

  16. Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: exact results

    CERN Document Server

    Fabbri, Alessandro; Anderson, Paul R

    2015-01-01

    A complete set of exact analytic solutions to the mode equation are found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate (BEC) acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low frequency limit.

  17. The Mirror of Television: A Comparison of Black and White Adolescents' Body Image.

    Science.gov (United States)

    Botta, Renee A.

    2000-01-01

    Finds that black adolescent girls were more satisfied with their bodies and had a larger personal ideal size than white adolescent girls, but engaged in no fewer eating-disordered behaviors and had no less drive to be thin; and these girls idealized television images equally and were as likely to compare themselves and their friends to television…

  18. Radiation from perfect mirrors starting from rest and accelerating forever and the black body spectrum

    CERN Document Server

    Calogeracos, A

    2002-01-01

    We address the question of radiation emission from a perfect mirror that starts from rest and follows the trajectory z=-ln(cosht) ad infinitum. We show that a correct derivation of the black body spectrum via the calculation of Bogolubov amplitudes requires consideration of the whole trajectory and not just of its asymptotic part.

  19. Radiation from perfect mirrors starting from rest and accelerating forever and the black body spectrum

    International Nuclear Information System (INIS)

    We address the question of radiation emission from a perfect mirror that starts from rest and follows the trajectory z=-ln(cosh t) until t→∞. We show that a correct derivation of the black body spectrum via the calculation of the Bogolubov amplitudes requires consideration of the whole trajectory and not just of its asymptotic part. (author)

  20. She Had a Name That God Didn’t Give Her: Thinking the Body through Atheistic Black Radical Feminism

    OpenAIRE

    Marquis Bey

    2015-01-01

    The article attempts to demonstrate the necessity of acknowledging the body when considering the current Black Lives Matter movement, give an account of Black female and trans erasure, and ultimately (re)affirm the lived embodiment of Black, female, and trans bodies, all through an atheistic lens. Atheism here, while indeed denying the existence of gods, has as its primary concern affirming life. Too often is theology, as theologian Anthony Pinn says, “a theology of no-body”; thus atheistic f...

  1. Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells

    OpenAIRE

    Lira-Cantú, Monica; Morales Sabio, Angel; Brustenga, Alex; Gómez-Romero, P.

    2005-01-01

    We report the electrochemical deposition of nanostructured nickel-based solar absorber coatings on stainless steel AISI type 316L. A sol–gel silica-based antireflection coating, from TEOS, was also applied to the solar surface by the dip-coating method. We report our initial results and analyze the influence of the stainless steel substrate on the final total reflectance properties of the solar absorber. The relation between surface morphology, observed by SEM and AFM, the comp...

  2. Gender and race matter: the importance of considering intersections in Black women's body image.

    Science.gov (United States)

    Capodilupo, Christina M; Kim, Suah

    2014-01-01

    Traditionally, body image literature has used race as a variable to explain ethnic-specific differences in body satisfaction and the prevalence of eating disorders. Instead of employing race as an explanatory variable, the present study utilized a qualitative method to explore the relationships among race, ethnicity, culture, discrimination, and body image for African American and Black women. The purpose of the study was to gain a deeper understanding of how race and gender interface with and inform body image. Women were recruited through community centers in a major metropolitan city and represented a diversity of ethnicities. In total, 26 women who identified racially as Black (mean age = 26 years) participated in 6 focus groups, which explored body ideals, societal messages, cultural values, racism, and sexism. Narrative data from the focus groups were analyzed using grounded theory. The central category, Body/Self Image, was informed by perceptions of and feelings about not only weight and shape but also hair, skin, and attitude. Three additional categories, each with multiple properties, emerged: Interpersonal Influences, Experiences of Oppression, and Media Messages. These categories interact to explain the central category of Body/Self Image, and an emergent theory is presented. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  3. Gender and race matter: the importance of considering intersections in Black women's body image.

    Science.gov (United States)

    Capodilupo, Christina M; Kim, Suah

    2014-01-01

    Traditionally, body image literature has used race as a variable to explain ethnic-specific differences in body satisfaction and the prevalence of eating disorders. Instead of employing race as an explanatory variable, the present study utilized a qualitative method to explore the relationships among race, ethnicity, culture, discrimination, and body image for African American and Black women. The purpose of the study was to gain a deeper understanding of how race and gender interface with and inform body image. Women were recruited through community centers in a major metropolitan city and represented a diversity of ethnicities. In total, 26 women who identified racially as Black (mean age = 26 years) participated in 6 focus groups, which explored body ideals, societal messages, cultural values, racism, and sexism. Narrative data from the focus groups were analyzed using grounded theory. The central category, Body/Self Image, was informed by perceptions of and feelings about not only weight and shape but also hair, skin, and attitude. Three additional categories, each with multiple properties, emerged: Interpersonal Influences, Experiences of Oppression, and Media Messages. These categories interact to explain the central category of Body/Self Image, and an emergent theory is presented. (PsycINFO Database Record (c) 2014 APA, all rights reserved). PMID:24188651

  4. She Had a Name That God Didn’t Give Her: Thinking the Body through Atheistic Black Radical Feminism

    Directory of Open Access Journals (Sweden)

    Marquis Bey

    2015-11-01

    Full Text Available The article attempts to demonstrate the necessity of acknowledging the body when considering the current Black Lives Matter movement, give an account of Black female and trans erasure, and ultimately (reaffirm the lived embodiment of Black, female, and trans bodies, all through an atheistic lens. Atheism here, while indeed denying the existence of gods, has as its primary concern affirming life. Too often is theology, as theologian Anthony Pinn says, “a theology of no-body”; thus atheistic feminist Blackness, as understood here, seeks to entrench the body rather than abstract it. Atheistic feminist Blackness reinscribes and affirms the subjectivity and humanity of Black, female, and trans bodies, countering hegemonic discourse that explicitly and implicitly states otherwise. The article’s emphasis of an atheistic posture stems from the prescient words of Catherine Keller: “atheist or agnostic feminists ignore the God-word at their own peril.” Therefore, the Black feminist ideological argument takes the “God-word” seriously, reckons with it, and offers an alternative to a theological tradition that often imbues the body with inherent flaw (sin, abstraction (soul, and erasure of the ontological value of Black, female, and noncisgendered bodies.

  5. Examining impulsivity as a moderator of the relationship between body shame and bulimic symptoms in Black and White young women.

    Science.gov (United States)

    Higgins, M K; Lin, Stacy L; Alvarez, Alexandra; Bardone-Cone, Anna M

    2015-06-01

    Impulsivity has been linked to bulimic symptomatology in a number of studies; however, few have examined this relationship among Black women. We investigated the correlations between impulsivity and bulimic symptoms, and tested impulsivity as a moderator of the body shame/bulimic symptoms relationship among a sample of female undergraduates (N=276; 97 Blacks, 179 Whites). These participants provided data on body shame, impulsivity, and bulimic symptoms (EDE-Q binge eating frequency, BULIT-R, EDI-Bulimia). Among Blacks, impulsivity was significantly positively associated with all bulimic symptoms measures; among Whites, impulsivity was only positively correlated with binge eating frequency. Furthermore, among Blacks, the combination of high body shame and high impulsivity was associated with the highest levels of bulimic symptoms; these findings were not observed among Whites. This study highlights the importance of impulsivity and body shame in identifying bulimic symptomatology among Black women. PMID:25867526

  6. N-Body Growth of a Bahcall-Wolf Cusp Around a Black Hole

    CERN Document Server

    Preto, M; Spurzem, R; Preto, Miguel; Merritt, David; Spurzem, Rainer

    2004-01-01

    We present a clear N-body realization of the growth of a Bahcall-Wolf f ~ E^0.25 (rho ~ 1/r^1.75) density cusp around a massive object ("black hole") at the center of a stellar system. Our N-body algorithm incorporates a novel implementation of Mikkola-Aarseth chain regularization to handle close interactions between star and black hole particles. Forces outside the chain were integrated on a GRAPE-6A/8 special-purpose computer with particle numbers up to N=0.25 x 10^6. We compare our N-body results with predictions of the isotropic Fokker-Planck equation and verify that the time dependence of the density (both configuration and phase-space) predicted by the Fokker-Planck equation is well reproduced by the N-body algorithm, for various choices of N and of the black hole mass. Our results demonstrate the feasibility of direct-force integration techniques for simulating the evolution of galactic nuclei on relaxation time scales.

  7. Supermassive Black Hole Growth and Merger Rates from Cosmological N-body Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Micic, Miroslav; /Penn State U., Astron. Astrophys.; Holley-Bockelmann, Kelly; /Penn State U.; Sigurdsson, Steinn; /Penn State U., Astron. Astrophys.; Abel, Tom; /SLAC

    2007-10-29

    Understanding how seed black holes grow into intermediate and supermassive black holes (IMBHs and SMBHs, respectively) has important implications for the duty-cycle of active galactic nuclei (AGN), galaxy evolution, and gravitational wave astronomy. Most studies of the cosmological growth and merger history of black holes have used semianalytic models and have concentrated on SMBH growth in luminous galaxies. Using high resolution cosmological N-body simulations, we track the assembly of black holes over a large range of final masses - from seed black holes to SMBHs - over widely varying dynamical histories. We used the dynamics of dark matter halos to track the evolution of seed black holes in three different gas accretion scenarios. We have found that growth of a Sagittarius A* - size SMBH reaches its maximum mass M{sub SMBH}={approx}10{sup 6}M{sub {circle_dot}} at z{approx}6 through early gaseous accretion episodes, after which it stays at near constant mass. At the same redshift, the duty-cycle of the host AGN ends, hence redshift z=6 marks the transition from an AGN to a starburst galaxy which eventually becomes the Milky Way. By tracking black hole growth as a function of time and mass, we estimate that the IMBH merger rate reaches a maximum of R{sub max}=55 yr{sup -1} at z=11. From IMBH merger rates we calculate N{sub ULX}=7 per Milky Way type galaxy per redshift in redshift range 2 {approx}< z {approx}< 6.

  8. Redshifting of cosmological black bodies in BSBM varying-alpha theories

    CERN Document Server

    Barrow, John D

    2014-01-01

    We analyse the behaviour of black-body radiation in theories of electromagnetism which allow the electron charge and the fine structure constant to vary in space and time. We show that such theories can be expressed as relativistic generalizations of a conventional dielectric. By making the appropriate definition of the vector potential and associated gauge transformations, we can identify the equivalent of the electric and displacement fields, $\\mathbf{E}$ and $\\mathbf{D}$, as well as the magnetic $ \\mathbf{B}$ and $\\mathbf{H}$ fields. We study the impact of such dielectrics on the propagation of light in the so-called BSBM theory and conclude that no changes are created to the standard cosmological evolution of the temperature and energy-density of black-body radiation.

  9. Black-body laws derived from a minimum knowledge of Physics

    OpenAIRE

    A. G. AgneseINFN; La Camera, M.; E. Recami(INFN)

    2015-01-01

    Starting from the knowledge of the four fundamental quantities length L, mass M, time T, absolute temperature $\\theta$ and accepting the validity of Gauss's law in all dimensions, we generalize, by the theory of physical dimensions, the expression of the Stephan-Boltzmann law and of the Planck's formula for the black-body radiation to a spacetime with one time and n spatial coordinates. In the particular case n=3 we shall recover the known results.

  10. A VARIATIONAL EXPECTATION-MAXIMIZATION METHOD FOR THE INVERSE BLACK BODY RADIATION PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Jiantao Cheng; Tie Zhou

    2008-01-01

    The inverse black body radiation problem, which is to reconstruct the area tempera-ture distribution from the measurement of power spectrum distribution, is a well-known ill-posed problem. In this paper, a variational expectation-maximization (EM) method is developed and its convergence is studied. Numerical experiments demonstrate that the variational EM method is more efficient and accurate than the traditional methods, in-cluding the Tikhonov regularization method, the Landweber method and the conjugate gradient method.

  11. Effects of Improvement for Carcass Quality on the Body Measurements and Reproductivity of Japanese Black Cows

    OpenAIRE

    Baco, Sudirman; Harada, Hiroshi; Fukuhara, Riichi

    1997-01-01

    Since the end of the 1970's, Wagyu producers in southern Kyushu have made efforts in order to improve not only carcass quantity but also carcass quality, introducing a number of AI sires which were produced in another districts that had a hight opinion on carcass quality. A study was conducted to examine effects of such an effort for carcass improvement on the body measurement and reproductivity of a local Japanese Black herd. The records of body measurements and reproductive traits of 1,189 ...

  12. Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Schwartz, Charles C.; Fortin, Jennifer K.; Teisberg, Justin E.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2013-01-01

    The Greater Yellowstone Ecosystem (GYE) has experienced changes in the distribution and availability of grizzly bear (Ursus arctos) food resources in recent decades. The decline of ungulates, fish, and whitebark pine seeds (Pinus albicaulis) has prompted questions regarding their ability to adapt. We examined body composition and diet of grizzly bears using bioelectrical impedance and stable isotopes to determine if 1) we can detect a change in diet quality associated with the decline in either ungulates or whitebark pine, and 2) the combined decline in ungulates, fish, and pine seeds resulted in a change in grizzly bear carrying capacity in the GYE. We contrasted body fat and mass in grizzly bears with a potential competitor, the American black bear (Ursus americanus), to address these questions. Grizzly bears assimilated more meat into their diet and were in better body condition than black bears throughout the study period, indicating the decline in ungulate resources did not affect grizzly bears more than black bears. We also found no difference in autumn fat levels in grizzly bears in years of good or poor pine seed production, and stable isotope analyses revealed this was primarily a function of switching to meat resources during poor seed-producing years. This dietary plasticity was consistent over the course of our study. We did not detect an overall downward trend in either body mass or the fraction of meat assimilated into the diet by grizzly bears over the past decade, but we did detect a downward trend in percent body fat in adult female grizzly bears after 2006. Whether this decline is an artifact of small sample size or due to the population reaching the ecological carrying capacity of the Yellowstone ecosystem warrants further investigation.

  13. Spinning test-body orbiting around Schwarzschild black hole: circular dynamics and gravitational-wave fluxes

    CERN Document Server

    Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro

    2016-01-01

    We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary-condition (SSC), the Pirani SSC and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of [Phys.~Rev.~D.90,~044018(2014)]. We analyze the four different dynamics in terms of the ISCO shifts and in terms of the coordinate invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational wave fluxes produced by the spinning body are computed by solving the inhomogeneous $(2+1)D$ Teukolsky equation and contrasted for the different cases. For small orbital frequencies $\\Omega$, all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, ${x \\equiv (M \\Omega)^{2/3} >0.1 }$, where $M$ is the black hole mass, and ...

  14. Study of durability of (molybdenum-copper)-black coatings in relation to their use as solar selective absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, K.M.; Smith, B.E. (Brunel Univ., Uxbridge (United Kingdom)); Jeynes, C. (Surrey Univ., Guildford (United Kingdom). Dept. of Electronic and Electrical Engineering)

    1994-08-01

    In this work (Mo-Cu)-black coatings on Ni-plated Cu substrates have been prepared by electrodeposition. Their stability and durability has been investigated. The durability tests were carried out in two forms; accelerated ageing, and weathering. Reflectance measurements were used to evaluate both solar absorptance ([alpha]) and thermal emittance ([epsilon]) of the coatings. The coatings have been characterised before and after durability testing, using spectrophotometry together with other techniques, such as electron microscopy, X-rays, and ion beam. The main degradation modes of these coatings are loss of water, diffusion of metal atoms, and oxidation. (Mo-Cu)-black coatings undergo some changes in [alpha] and [epsilon] outdoor ageing. (Author)

  15. Periastron Advance in Spinning Black Hole Binaries: Comparing Effective-One-Body and Numerical Relativity

    CERN Document Server

    Hinderer, Tanja; Mroué, Abdul H; Hemberger, Daniel A; Lovelace, Geoffrey; Pfeiffer, Harald P

    2013-01-01

    We compute the periastron advance using the effective-one-body formalism for binary black holes moving on quasi-circular orbits and having spins collinear with the orbital angular momentum. We compare the predictions with the periastron advance recently computed in accurate numerical-relativity simulations and find remarkable agreement for a wide range of spins and mass ratios. These results do not use any numerical-relativity calibration of the effective-one-body model, and stem from two key ingredients in the effective-one-body Hamiltonian: (i) the mapping of the two-body dynamics of spinning particles onto the dynamics of an effective spinning particle in a (deformed) Kerr spacetime, fully symmetrized with respect to the two-body masses and spins, and (ii) the resummation, in the test-particle limit, of all post-Newtonian (PN) corrections linear in the spin of the particle. In fact, even when only the leading spin PN corrections are included in the effective-one-body spinning Hamiltonian but all the test-p...

  16. Gyroscopes orbiting black holes: A frequency-domain approach to precession and spin-curvature coupling for spinning bodies on generic Kerr orbits

    OpenAIRE

    Ruangsri, Uchupol; Vigeland, Sarah J.; Hughes, Scott A.

    2015-01-01

    A small body orbiting a black hole follows a trajectory that, at leading order, is a geodesic of the black hole spacetime. Much effort has gone into computing "self force" corrections to this motion, arising from the small body's own contributions to the system's spacetime. Another correction to the motion arises from coupling of the small body's spin to the black hole's spacetime curvature. Spin-curvature coupling drives a precession of the small body, and introduces a "force" (relative to t...

  17. Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals

    International Nuclear Information System (INIS)

    Highlights: • A novel scheme for solar energy harvesting based on pyroelectric effect is proposed. • An optical system focusing solar radiation onto a LiNbO3 crystal is used. • Graphene and carbon black nano-composite polymer absorbers used as coating. • This configuration increases the amplitude of temperature variation experienced. • The whole solar spectrum is involved in the energy harvesting mechanism. - Abstract: A novel scheme for solar energy harvesting based on the pyro-electric effect has been demonstrated. The proposed harvester is based on an optical system focusing solar radiation onto a ferroelectric crystal (i.e. lithium niobate). The face exposed to the heating source is coated with a nanocomposite material (i.e. carbon black and graphene particles) that greatly improves the adsorption of solar radiation. The solar energy focused onto the crystal through a simple optical system allows one to induce a thermal gradient able to generate electric charges. Experiments have been carried out indoor as well as outdoor (in Pozzuoli, Naples, Italy, on December). Results show that two configurations appear to be preferable: (a) pyro-electric element with carbon black-based coating and a Fresnel lens (surface of about 100 cm2); (b) pyro-electric element with graphene-based coating and a Fresnel lens (surface of about 600 cm2). In both experimental arrangements the maximum temperature variation reached locally onto the lithium niobate substrate is relatively high with peaks greater than 250 °C. The maximum electrical power peak is of about 90 μW and about 50 μW for (a) and (b) respectively. The results of this first investigation are encouraging for further development of more efficient harvesting devices

  18. Tidal disruption rate of stars by supermassive black holes obtained by direct N-body simulations

    CERN Document Server

    Brockamp, M; Kroupa, P

    2011-01-01

    The disruption rate of stars by supermassive black holes (SMBHs) is calculated numerically with a modified version of Aarseth's NBODY6 code. The initial stellar distribution around the SMBH follows a S\\'{e}rsic n=4 profile representing bulges and early type galaxies. In order to infer relaxation driven effects and to increase the statistical significance, a very large set of N-body integrations with different particle numbers N, ranging from 10^{3} to 0.5 \\cdot 10^{6} particles, is performed. Three different black hole capture radii are taken into account, enabling us to scale these results to a broad range of astrophysical systems with relaxation times shorter than one Hubble time, i.e. for SMBHs up to M_bh \\approx 10^{7} M_sun. The computed number of disrupted stars are driven by diffusion in angular momentum space into the loss cone of the black hole and the rate scales with the total number of particles as dN/dt \\propto N^{b}, where b is as large as 0.83. This is significantly steeper than the expected sc...

  19. Dependence of the Black Body Force on Spacetime Geometry and Topology

    CERN Document Server

    Muniz, C R; Cunha, M S; Landim, R R; Filho, R N Costa

    2015-01-01

    In this manuscript we compute the corrections to the black body force due to spacetime geometry and topology. This recently discovered attractive force on neutral atoms is caused by the thermal radiation emitted from black bodies and here we investigate it in systems with spherical and cylindrical symmetries. For some astrophysical objects we find that the corrected force is greater than the flat case, showing that this kind of correction can be quite relevant when curved spaces are considered. Then we consider four cases: The Schwarzschild spacetime, the non-relativistic infinity cylinder, and both the static and stationary cosmic strings. For the spherically symmetric case we find that two corrections appear: One due to the gravitational modification of the temperature and the other due to the modification of the solid angle subtended by the atom. We apply the found results to a typical neutron star and to the Sun. For the cylindrical case, which is locally flat, no gravitational correction to the temperatu...

  20. Antler and Body Size in Black-Tailed Deer: An Analysis of Cohort Effects

    Directory of Open Access Journals (Sweden)

    Johanna C. Thalmann

    2015-01-01

    Full Text Available For long-lived species, environmental factors experienced early in life can have lasting effects persisting into adulthood. Large herbivores can be susceptible to cohort-wide declines in fitness as a result of decreases in forage availability, because of extrinsic factors, including extreme climate or high population densities. To examine effects of cohort-specific extrinsic factors on size of adults, we performed a retrospective analysis on harvest data of 450 male black-tailed deer (Odocoileus hemionus columbianus over 19 years in central California, USA. We determined that population density of females had a more dominant effect than did precipitation on body size of males. Harvest of female deer resulted in increases in the overall size of males, even though a 6-year drought occurred during that treatment period. Body size was most influenced by female population density early in life, while antler size was highly affected by both weather early in life and the year directly before harvest. This study provides insights that improve our understanding of the role of cohort effects in body and antler size by cervids; and, in particular, that reduction in female population density can have a profound effect on the body and antler size of male deer.

  1. Energy Crisis in Astrophysics (Black Holes vs. N-Body Metrics)

    CERN Document Server

    Alley, C O; Mizobuchi, Y; Yilmaz, H; Alley, Carroll O; Leiter, Darryl L; Mizobuchi, Yutaka; Yilmaz, Huseyin

    1999-01-01

    The recent observation of the gamma ray burster GRB 990123, requiring at least two solar masses of energy in gamma radiation alone, created an energy crisis in astrophysics (Schilling 1999). We discuss a theorem which states that, of all four-dimensional curved spacetime theories of gravity viable with respect to the four classical weak field tests, only one unique case, the Yilmaz theory, has interactive N-body (multiparticle) solutions and this unique case has no event horizons. The theorem provides strong theoretical support for Robertson's explanation of the large energy output of the gamma ray burster GRB 990123 (Robertson 1999b). This explanation requires a switch from black holes (a 1-body solution with horizon) to the case of horizon-free interactive N-body solutions. In addition to the good news that the long sought N-body solutions are found, this unique case enjoys further strong support from other areas of gravitational physics. This development does not rule out GRB models with beaming, which can...

  2. The Politics of “Being Too Fast”: Policing Urban Black Adolescent Female Bodies, Sexual Agency, Desire, and Academic Resilience

    OpenAIRE

    Stevenson, Stephanie Y

    2012-01-01

    Culturally produced dominant representations and discourses mark low-income, urban black girls’ bodies, thoughts, and actions as “fast (i.e. sexually promiscuous). This punitive label enforces regulatory systems where the girls can be policed and reprimanded. This paper closely examines political narratives, policies, ethnographic data from focus groups with urban black Baltimorean middle school girls, and online coverage of a Baltimore City teen school sex scandal. The author uses an interse...

  3. Measurement of neutron and gamma-ray absorbed doses inside human body in criticality accident situations using phantom and tissue-equivalent dosimeters

    International Nuclear Information System (INIS)

    Personal dosimeters provide a fundamental evaluation of external exposures to human bodies in radiation accidents. For emergency medical treatment to heavily exposed patients, the evaluation of dose distribution inside the body has been tried by computational simulations. Experimental data on dose distributions inside the body are necessary for accurate simulation of human dosimetry, particularly in complex radiation fields of neutrons and gamma-rays such as criticality accidents. A preliminary experiment on the human dosimetry was carried out at the Transient Experiment Critical Facility (TRACY) to acquire such experimental data in criticality accident situations. A combined use of two kinds of tissue-equivalent dosimeters together with a human phantom was employed to measure neutron and gamma-ray absorbed doses inside the body. The neutron and gamma-ray absorbed doses measured on the phantom were found to be in roughly the same level as those averaged over the phantom inside or those measured in free air. The dose distributions measured inside and on the phantom could be qualitatively interpreted from reflection an attenuation of neutrons and gamma-rays in the phantom, neutron-induced secondary gamma-rays emitted in the phantom, and so forth. (author)

  4. Hydrodynamics of triangular-grid arrays of floating point-absorber wave energy converters with inter-body and bottom slack-mooring connections

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, Pedro C.; Falcao, Antonio F. de O.; Gato, Luiz M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Justino, Paulo A.P. [Laboratorio Nacional de Energia e Geologia, 1649-038 Lisboa (Portugal)

    2009-07-01

    It may be convenient that dense arrays of floating point absorbers are spread-moored to the sea bottom through only some of their elements (possibly located in the periphery), while the other array elements are prevented from drifting and colliding with each other by connections to adjacent elements. An array of identical floating point absorbers located at the grid points of an equilateral triangular grid is considered in the paper. A spread set of slack-mooring lines connect the peripheric floaters to the bottom. A weight is located at the centre of each triangle whose function is o pull the three floaters towards each other and keep the inter-body moorings lines under tension. The whole system - buoys, moorings and power take-off systems - is assumed linear, so that a frequency domain analysis may be employed. Hydrodynamic interference between the oscillating bodies is neglected. Equations are presented for a set of three identical point absorbers. This is then extended to more complex equilateral iriangular grid arrays. Results from numerical simulations, with regular and irregular waves, are presented for the motions and power absorption of hemispherical converters in arrays of three and seven elements and different mooring and power take-off parameters, and wave incidence angles. Comparisons are given with the unmoored and independently-moored buoy situations.

  5. “My Body the Lesson”: Queering Black Women’s Subjectivities in The Street and Symptomatic

    OpenAIRE

    Quinn, Rachel Afi

    2008-01-01

    As twentieth-century black women writers, Ann Petry and Danzy Senna have used the form of the novel to construct multifaceted black women’s subjectivities through what Mae Henderson refers to as “simultaneity of discourse”. By including characters in their novels that inhabit non-normative bodies, both Petry with The Street(1946) and Senna with Symptomatic(2004) expand our notions of what it means to be female and black. This paper will theorize the “queer of color” identities of two particu...

  6. Forcing culture of 'Black beauty'-type eggplant [Solanum melongena] 'Kurowashi' under near-ultraviolet radiation absorbing vinyl film

    International Nuclear Information System (INIS)

    In a forcing culture of the 'Black Beauty'- type eggplant 'Kurowashi' (Solanum melongena var. esculentum (L.) Nees), comparisons were made in respect to growth and yield under near-ultraviolet radiation-100% absorbing vinyl film (UV100 film), and those under standard greenhouse vinyl film (standard film). Investigations were also made on the influence of the number of shoots and planting density. 1. Under UV100 film, shoot growth was the same as under standard film. The total number of flowers was somewhat increased, but the rate of harvested fruit decreased, and the yield of marketable fruit was less. On the other hand, there was little difference in the color of leaves or fruit skins; however, the green color of the shoots was lighter. 2. Under the UV100 film, when the planting system used a 180cm ridge width and a single row, the yield of marketable fruit with 2 shoots training (1,389 stocks/10a) was more than 4 shoots training (694 stocks/10a), when the numbers of shoots per unit area were the same. Moreover, with the 2 shoots training, the yield of marketable fruit for the 35cm intra-row spacing (1,587 stocks/10a) was more than the 40cm intra-row spacing (1,389 stocks/10a)

  7. Body adiposity indices are associated with hypertension in a black, urban Free State community

    Directory of Open Access Journals (Sweden)

    Ronette Lategan

    2014-01-01

    Full Text Available Background: Non-communicable diseases, including hypertension, are increasing rapidly in resource-poor, developing countries amongst populations transitioning from traditional to westernised lifestyles; and are associated with excess weight.Aim: To investigate the relationship between hypertension and various indices of body adiposity in a transitioning, urban, black population.Setting: Three hundred and thirty-nine adults (25–64 years from a larger cross-sectional study (Assuring Health for All in the Free State conducted in Mangaung, South Africa, were included.Methods: Standard techniques were used to determine blood pressure, HIV status, body mass index (BMI, waist-to-height ratio (WHtR and body adiposity index (BAI.Results: Approximately 40% of the sample was HIV-positive and 63.4% hypertensive, with the greatest risk of hypertension being amongst older men. Based on BMI, 23.0% were overweight and 32.1% obese. Waist-to-height ratio showed that 58.6% had increased cardiovascular risk. Mean BAI was 34.1%, whilst 76.3% had a body fat percentage in the overweight/obese category. Waist circumference representing increased cardiovascular risk was found in 44.3% of women and 3.9% of men. Significant positive correlations between mean arterial bloodpressure and BMI (r = 0.261; p < 0.001, WHtR (r = 0.357; p < 0.001 and BAI (r = 0.245; p <0.001 were found. WHtR was a stronger predictor of mean arterial pressure than BMI or BAI. HIV status showed an inverse correlation with all adiposity indices (p < 0.001.Conclusion: Our findings promote WHtR as a practical screening tool for increased hypertension risk in populations undergoing westernisation, and support weight loss as afirst-line intervention for the prevention and management of hypertension.

  8. Body adiposity indices are associated with hypertension in a black, urban Free State community

    Directory of Open Access Journals (Sweden)

    Ronette Lategan

    2014-05-01

    Full Text Available Background: Non-communicable diseases, including hypertension, are increasing rapidly in resource-poor, developing countries amongst populations transitioning from traditional to westernised lifestyles; and are associated with excess weight. Aim: To investigate the relationship between hypertension and various indices of body adiposity in a transitioning, urban, black population. Setting: Three hundred and thirty-nine adults (25–64 years from a larger cross-sectional study (Assuring Health for All in the Free State conducted in Mangaung, South Africa, were included. Methods: Standard techniques were used to determine blood pressure, HIV status, body mass index (BMI, waist-to-height ratio (WHtR and body adiposity index (BAI. Results: Approximately 40% of the sample was HIV-positive and 63.4% hypertensive, with the greatest risk of hypertension being amongst older men. Based on BMI, 23.0% were overweight and 32.1% obese. Waist-to-height ratio showed that 58.6% had increased cardiovascular risk. Mean BAI was 34.1%, whilst 76.3% had a body fat percentage in the overweight/obese category. Waist circumference representing increased cardiovascular risk was found in 44.3% of women and 3.9% of men. Significant positive correlations between mean arterial blood pressure and BMI (r = 0.261; p < 0.001, WHtR (r = 0.357; p < 0.001 and BAI (r = 0.245; p < 0.001 were found. WHtR was a stronger predictor of mean arterial pressure than BMI or BAI. HIV status showed an inverse correlation with all adiposity indices (p < 0.001. Conclusion: Our findings promote WHtR as a practical screening tool for increased hypertension risk in populations undergoing westernisation, and support weight loss as a first-line intervention for the prevention and management of hypertension.

  9. PREDICTION OF CARCASS TRAITS OF JAPANESE BLACK BULLS AT SEVERAL AGES USING BODY MEASUREMENTS AND ULTRASONIC ESTIMATE OF CARCASS TRAITS

    OpenAIRE

    Sri Rachma, Aprilita Bugiwati

    2008-01-01

    The present research aims to estimate the mathematical equations for predicting ultrasonic estimates of carcass traits at ten months after performance test (about 20 months of age) using body measurements and ultrasonic estimates of carcass traits at earlier stages of performance test of Japanese Black bulls. This research was done at Kagoshima and Miyazaki prefecture Livestock Experimental Stations Japan to collect the ultrasonic estimates of carcass traits and body measurements data of Jap...

  10. Inequalities Between Size and Charge for Bodies and the Existence of Black Holes Due to Concentration of Charge

    CERN Document Server

    Khuri, Marcus A

    2015-01-01

    A universal inequality that bounds the charge of a body by its size is presented, and is proven as a consequence of the Einstein equations in the context of initial data sets which satisfy an appropriate energy condition. We also present a general sufficient condition for the formation of black holes due to concentration of charge, and discuss the physical relevance of these results.

  11. Many body heat radiation and heat transfer in the presence of a non-absorbing background medium

    CERN Document Server

    Müller, Boris; Antezza, Mauro; Emig, Thorsten; Krüger, Matthias

    2016-01-01

    Heat radiation and near-field radiative heat transfer can be strongly manipulated by adjusting geometrical shapes, optical properties, or the relative positions of the objects involved. Typically these objects are considered as embedded in vacuum. By applying the methods of fluctuational electrodynamics, we derive general closed-form expressions for heat radiation and heat transfer in a system of $N$ arbitrary objects embedded in a passive non-absorbing background medium. Taking into account the principle of reciprocity, we explicitly prove the symmetry and positivity of transfer in any such system. Regarding applications, we find that the heat radiation of a sphere as well as the heat transfer between two parallel plates is strongly enhanced by the presence of a background medium. Regarding near- and far-field transfer through a gas like air, we show that a microscopic model (based on gas particles) and a macroscopic model (using a dielectric contrast) yield identical results. We also compare the radiative t...

  12. Effect of weight fraction of carbon black and number of plies of E-glass fiber to reflection loss of E-glass/ripoxy composite for radar absorbing structure (RAS)

    Science.gov (United States)

    Widyastuti, Ramadhan, Rizal; Ardhyananta, Hosta; Zainuri, Mochamad

    2013-09-01

    Nowadays, studies on investigating radar absorbing structure (RAS) using fiber reinforced polymeric (FRP) composite materials are becoming popular research field because the electromagnetic properties of FRP composites can be tailored effectively by just adding some electromagnetic powders, such as carbon black, ferrite, carbonyl iron, and etc., to the matrix of composites. The RAS works not only as a load bearing structure to hold the antenna system, but also has the important function of absorbing the in-band electromagnetic wave coming from the electromagnetic energy of tracking systems. In this study, E-glass fiber reinforced ripoxy resin composite was fabricated by blending the conductive carbon black (Ketjenblack EC300J) with the binder matrix of the composite material and maximizing the coefficient of absorption more than 90% (more than -10 dB) within the X-band frequency (8 - 12 GHz). It was measured by electrical conductivity (LCR meter) and vector network analyzer (VNA). Finally, the composite RAS with 0.02 weight fraction of carbon black and 4 plies of E-glass fiber showed thickness of 2.1 mm, electrical conductivity of 8.33 × 10-6 S/m, and maximum reflection loss of -27.123 dB, which can absorb more than 90% of incident EM wave throughout the entire X-band frequency range, has been developed.

  13. Crashworthy Energy Absorbing Car-body Design Method for Pass enger Train%客运列车耐冲击吸能车体设计方法

    Institute of Scientific and Technical Information of China (English)

    田红旗

    2001-01-01

    In order to reduce the losses suffered from collision between passenger trains,a new design method for the car body structure of motor car and trailer is advanced.Car body structures are made up of three parts with diffferen tstiffness,by carefully designed.The parts of the front and the end are the wea kstiffness structure to absorb energy through plastic deformation in the collision.The middle part,where only elastic deformation occurs,is an elastic deformati on structure with strong stiffness.As the passenger train runs normally,car body structure measure up to regulation of intensity and stiffness in the standards. Once collision accident occurred when the train is moving with fairly high speed ,the energy-absorbing structure produces large plastic deformation along the direction needed to absorb sufficient energy,at the same time,the deceleration must be controlled within the endurable limits to human body.%为了减轻客运列车碰撞事故造成的损失,实现被动安全保护,对组成列车的动车、客车车体结构提出了新的设计方法,重新分配车体各部分刚度,设计出具有合适吸能结构的耐冲击车体,车体结构均按前、中、后三种纵向刚度设置,前后 两部分为可以产生塑性变形的弱刚度吸能结构,中间部分为仅产生弹性变形的强刚度弹变结 构。当列车在正常运行时,车体有足够的强度和刚度,需要满足有关规范规定的强度、刚度 要求;在较高速下发生碰撞事故时,吸能结构能够沿所需方向产生塑性大变形吸收足够冲击 动能,保证机器间和乘客区不发生破坏,并延缓碰撞作用时间,降低碰撞瞬间最大减速度,使撞击减速度在人体承受范围内。

  14. Eating attitudes, body image satisfaction and self-esteem of South African Black and White male adolescents and their perception of female body silhouettes.

    Science.gov (United States)

    Gitau, Tabither M; Micklesfield, Lisa K; Pettifor, John M; Norris, Shane A

    2014-01-01

    This cross-sectional study of urban high schools in Johannesburg, South Africa, sought to examine eating attitudes, body image and self-esteem among male adolescents (n = 391). Anthropometric measurements, Eating Attitudes Test-26 (EAT-26), Rosenberg self-esteem, body image satisfaction and perception of females were collected at age 13, 15 and 17 years. Descriptive analysis was done to describe the sample, and non-parametric Wilcoxon Mann-Whitney test was used to test for significant differences between data that were not normally distributed (EAT-26). Spearman's rank correlation coefficient analyses were conducted to test for associations between self-esteem scores and eating attitudes, body mass indices and body image satisfaction scores. To assess the differences between groups that were normally distributed chi-square tests were carried out. Ethnic differences significantly affected adolescent boys' body mass index (BMI), eating attitudes and self-esteem; White boys had higher self-esteem, BMI and normal eating attitudes than the Black boys did. BMI was positively associated with self-esteem (p = 0.01, r = 0.134) and negatively with dieting behaviour in White boys (p = 0.004, r = -0.257), and with lower EAT-26 bulimic and oral control scores in Black boys. In conclusion, the findings highlight ethnic differences and a need to better understand cultural differences that influence adolescent attitudes and behaviour.

  15. Numerical models of black body dominated GRBs: I. Hydrodynamics and the origin of the thermal emission

    CERN Document Server

    Cuesta-Martínez, Carlos F; Mimica, Petar

    2014-01-01

    We extend an existing theoretical model to explain the class of Black-Body Dominated GRBs, namely long lasting events characterized by the presence of a notable thermal component trailing the GRB prompt emission, and a rather weak traditional afterglow. GRB 101225A, the Christmas Burst (CB), is a prototype of such class. It has been suggested that BBD-GRBs could result from the merger of a binary system formed by a neutron star and the Helium core of a main sequence star. We have modeled the propagation of ultrarelativistic jets through the environment left behind the merger by means of detailed relativistic hydrodynamic numerical simulations. In this paper, the output of our numerical models is further postprocessed to obtain the (thermal) radiative signature of the resulting outflow. The complete (thermal and non-thermal) output of our models is considered in a companion contribution. Here, we outline the most relevant dynamical details of the jet propagation and connect them to the generation of thermal ra...

  16. Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity

    CERN Document Server

    Babak, Stanislav; Buonanno, Alessandra

    2016-01-01

    In Ref. [1], the properties of the first gravitational wave detected by LIGO, GW150914, were measured by employing an effective-one-body (EOB) model of precessing binary black holes whose underlying dynamics and waveforms were calibrated to numerical-relativity (NR) simulations. Here, we perform the first extensive comparison of such EOBNR model to 70 precessing NR waveforms that span mass ratios from 1 to 5, dimensionless spin magnitudes up to 0.5, generic spin orientations, and length of about 20 orbits. We work in the observer's inertial frame and include all $\\ell=2$ modes in the gravitational-wave polarizations. We introduce new prescriptions for the EOB ringdown signal concerning its spectrum and time of onset. For total masses between 10Msun and 200Msun, we find that precessing EOBNR waveforms have unfaithfulness within about 3% to NR waveforms when considering the Advanced-LIGO design noise curve. This result is obtained without recalibration of the inspiral-plunge of the underlying nonprecessing EOBN...

  17. Improved approximate inspirals of test-bodies into Kerr black holes

    CERN Document Server

    Gair, J R; Gair, Jonathan R; Glampedakis, Kostas

    2006-01-01

    We present an improved version of the approximate scheme for generating inspirals of test-bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original "hybrid" scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semi-latus rectum p and eccentricity e) with approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle, iota, during the inspiral. Despite the fact that the resulting inspirals were overall well-behaved, certain pathologies remained for orbits in the strong field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. Firstly, we add certain corrections which ensure the correct behaviour of the fluxes in the limit of vanishing eccentricity and/or 90 degrees inclination. Secondly, we use higher order post-Newton...

  18. Transient fluid-structure interaction of elongated bodies by finite-element method using elliptical and spheroidal absorbing boundaries

    Science.gov (United States)

    Bhattacharyya, S. K.; Premkumar, R.

    2003-12-01

    In a domain method of solution of exterior scalar wave equation, the radiation condition needs to be imposed on a truncation boundary of the modeling domain. The Bayliss, Gunzberger, and Turkel (BGT) boundary dampers, which require a circular cylindrical and spherical truncation boundaries in two-(2D) and three-(3D)-dimensional problems, respectively, have been particularly successful in the analysis of scattering and radiation problems. However, for an elongated body, elliptical (2D) or spheroidal (3D) truncation boundaries have potential to reduce the size of modeling domain and hence computational effort. For harmonic problems, such extensions of the first- and second-order BGT dampers are available in the literature. In this paper, BGT dampers in both elliptical and spheroidal coordinate systems have been developed for transient problems involving acoustic radiation as well as fluid-structure interaction and implemented in the context of finite-element method based upon unsymmetric pressure-displacement formulation. Applications to elongated radiators and shells are reported using several numerical examples with excellent comparisons. It is demonstrated that significant computational economy can be achieved for elongated bodies with the use of these dampers.

  19. DOSE-Analyzer. A computer program with graphical user interface to analyze absorbed dose inside a body of mouse and human upon external neutron exposure

    International Nuclear Information System (INIS)

    DOSE-Analyzer is a computer program to retrieve the dose information from a database and generate a graph through a graphical user interface (GUI). The database is constructed for absorbed dose, fluence, and energy distribution inside a body of mouse and human exposed upon external neutrons, which is calculated by our developed Monte-Carlo simulation method using voxel-based phantom and particle transport code PHITS. The input configurations of irradiation geometry, subject, and energy are set by GUI. The results are tabulated at particle types, i.e. electron, proton, deuteron, triton, and alpha particle, and target organs on a data sheet of Microsoft Office ExcelTM. Simple analysis to compare the output values for two subjects is also performed on DOSE-Analyzer. This report is a user manual of DOSE-Analyzer. (author)

  20. Large-area surveys for black carbon and other light-absorbing impurities in snow: Arctic, Antarctic, North America, China (Invited)

    Science.gov (United States)

    Warren, S. G.; Doherty, S. J.; Hegg, D.; Dang, C.; Zhang, R.; Grenfell, T. C.; Brandt, R. E.; Clarke, A. D.; Zatko, M.

    2013-12-01

    Absorption of radiation by ice is extremely weak at visible and near-UV wavelengths, so small amounts of light-absorbing impurities (LAI) in snow can dominate the absorption of sunlight at these wavelengths, reducing the albedo relative to that of pure snow and leading to earlier snowmelt. Snow samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean, on tundra, glaciers, ice caps, sea ice, and frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack was accessible for sampling. Snow was also collected at 67 sites in western North America. Expeditions from Lanzhou University obtained black carbon (BC) amounts at 84 sites in northeast and northwest China. BC was measured at 3 locations on the Antarctic Plateau, and at 5 sites on East Antarctic sea ice. The snow is melted and filtered; the filters are analyzed in a spectrophotometer. Median BC mixing ratios in snow range over 4 orders of magnitude from 0.2 ng/g in Antarctica to 1000 ng/g in northeast China. Chemical analyses, input to a receptor model, indicate that the major source of BC in most of the Arctic is biomass burning, but industrial sources dominate in Svalbard and the central Arctic Ocean. Non-BC impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. In northeast China BC is the dominant LAI, but in Inner Mongolia soil dominates. When the snow surface layer melts, much of the BC is left at the top of the snowpack rather than carried away in meltwater, thus causing a positive feedback on snowmelt. This process was quantified through field studies in Greenland, Alaska, and Norway, where we found that only 10-30% of the BC is removed with meltwater. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air in Canada, Alaska, and Svalbard. Correspondingly, our recent BC

  1. One size does not fit all: using variables other than the thin ideal to understand Black women's body image.

    Science.gov (United States)

    Capodilupo, Christina M

    2015-04-01

    Very few empirical studies have investigated the effect that culturally relevant beauty ideals (such as long, straight hair and lighter skin tones) have on Black women's feelings about their physical appearance. The current investigation examined the direct effect of internalizing idealized media images on Black women's body esteem and appearance satisfaction. The indirect effects of: (a) the presumed influence of the media images on African American men, and (b) feelings of invisibility were also tested. Using an online survey, the sample included 230 women who identified as African American and/or Black American. Through structural equation modeling (SEM), findings reveal that participants' body esteem was directly negatively impacted by higher levels of internalization of idealized media images. Further, the findings support the idea that higher levels of internalization of media lead to a greater presumed influence of media on men, which leads to higher feelings of invisibility, ultimately leading to lower body esteem. Finally, there was evidence to suggest that appearance satisfaction was not directly negatively affected by internalization of media images but was negatively impacted when the images are presumed to have a higher influence on African American men. PMID:25150817

  2. Trajectories of body mass and self-concept in black and white girls: the lingering effects of stigma.

    Science.gov (United States)

    Mustillo, Sarah A; Hendrix, Kimber L; Schafer, Markus H

    2012-03-01

    As a stigmatizing condition, obesity may lead to the internalization of devalued labels and threats to self-concept. Modified labeling theory suggests that the effects of stigma may outlive direct manifestations of the discredited characteristic itself. This article considers whether obesity's effects on self-concept linger when obese youth enter the normal body mass range. Using longitudinal data from the National Growth and Health Study on 2,206 black and white girls, we estimated a parallel-process growth mixture model of body mass linked to growth models of body image discrepancy and self-esteem. We found that discrepancy was higher and self-esteem lower in formerly obese girls compared to girls always in the normal range and comparable to chronically obese girls. Neither body image discrepancy nor self-esteem rebounded in white girls despite reduction in body mass, suggesting that the effects of stigma linger. Self-esteem, but not discrepancy, did rebound in black girls. PMID:22382717

  3. Fishes of water bodies within the Ukrainian part of the Chernobyl exclusion zone: current levels of radioactive contamination and absorbed dose rate

    International Nuclear Information System (INIS)

    The results of studies of radioactive contamination of ichthyofauna of water bodies of the Chernobyl exclusion zone (ChEZ) during 2012-2013 are presented. The fish sampled from water bodies with different hydrological mode was used: (1) stagnant lakes (Vershyna, Glyboke, Azbuchyn, Daleke); (2) reservoir with slow water exchange (cooling pond of the Chernobyl NPP); (3) conditionally stagnant water bodies (separated from the main riverbed of the Pripyat River - Yanovsky and Novoshepelichesky Crawls and part of the Krasnensky former river bed); (4) semi-flowing water body (Krasnensky former river bed located outside of the dammed territory); (5) open crawls of the Pripyat river ('Schepochka' and Chernobylsky) and (6) waterway (riverbed sites of the Pripyat River). The highest levels of radionuclide concentrations were determined in fish of the stagnant water objects - 937-25907 Bq/kg (w.w.) of 137Cs and 1845-101220 Bq/kg of 90Sr. In fish of cooling pond the concentration of 137Cs registered in range 750-4200 and 90Sr - 41-512 Bq/kg. In ichthyofauna of water bodies which concern to the third group, specific activity of 137Cs and 90Sr fluctuated accordingly within range of 520-3385 and 722-6210, and in a semi-flowing reservoir - 573-2948 and 97-4484 Bq/kg. The concentrations of 137Cs in fish of the fifth and sixth groups were accordingly 25-159 and 11-224 as well as 90Sr - 36-174 and 3-14 Bq/kg. The ratio of specific activity of 90Sr/137Cs for pray fish from all studied groups of water bodies, except the second and the sixth ones, was in range 1.5-39.7. Thus intensity of water exchange is one of the defining factors, influencing on level of radionuclide specific activity in fish, especially 90Sr - the higher the flow age, the lower the level of radioactive contamination of fish inhabiting it. Calculation of the absorbed dose rate has shown that highest radiation dose was in fish inhabiting lake ecosystems where it makes for different species from 2.8 (pelagic fish) to

  4. Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code: internal electron emitters

    Science.gov (United States)

    Chao, T. C.; Xu, X. G.

    2001-04-01

    VIP-Man is a whole-body anatomical model newly developed at Rensselaer from the high-resolution colour images of the National Library of Medicine's Visible Human Project. This paper summarizes the use of VIP-Man and the Monte Carlo method to calculate specific absorbed fractions from internal electron emitters. A specially designed EGS4 user code, named EGS4-VLSI, was developed to use the extremely large number of image data contained in the VIP-Man. Monoenergetic and isotropic electron emitters with energies from 100 keV to 4 MeV are considered to be uniformly distributed in 26 organs. This paper presents, for the first time, results of internal electron exposures based on a realistic whole-body tomographic model. Because VIP-Man has many organs and tissues that were previously not well defined (or not available) in other models, the efforts at Rensselaer and elsewhere bring an unprecedented opportunity to significantly improve the internal dosimetry.

  5. Gyroscopes orbiting black holes: A frequency-domain approach to precession and spin-curvature coupling for spinning bodies on generic Kerr orbits

    CERN Document Server

    Ruangsri, Uchupol; Hughes, Scott A

    2015-01-01

    A small body orbiting a black hole follows a trajectory that, at leading order, is a geodesic of the black hole spacetime. Much effort has gone into computing "self force" corrections to this motion, arising from the small body's own contributions to the system's spacetime. Another correction to the motion arises from coupling of the small body's spin to the black hole's spacetime curvature. Spin-curvature coupling drives a precession of the small body, and introduces a "force" (relative to the geodesic) which shifts the small body's worldline. These effects scale with the small body's spin at leading order. If the smaller body is itself a black hole, this means spin-curvature effects scale as the small body's mass squared, the same mass scaling as the self force. In this paper, we show that the equations which govern spin-curvature coupling can be analyzed with a frequency-domain decomposition, at least to leading order in the small body's spin. We show how to compute the frequency of precession along generi...

  6. Onset of optical-phonon cooling in multilayer graphene revealed by RF noise and black-body radiation thermometries

    International Nuclear Information System (INIS)

    We report on electron cooling power measurements in few-layer graphene excited by Joule heating by means of a new setup combining electrical and optical probes of the electron and phonon baths temperatures. At low bias, noise thermometry allows us to retrieve the well known acoustic phonon cooling regimes below and above the Bloch-Grüneisen temperature, with additional control over the phonon bath temperature. At high electrical bias, we show the relevance of direct optical investigation of the electronic temperature by means of black-body radiation measurements. In this regime, the onset of new efficient relaxation pathways involving optical modes is observed. (paper)

  7. Role of the multipolar black-body radiation shifts in the atomic clocks at the 10-18 uncertainty level

    Indian Academy of Sciences (India)

    B K Sahoo

    2014-08-01

    We present here an overview of the role of the multipolar black-body radiation (BBR) shifts in the single ion atomic clocks to appraise the anticipated 10-18 uncertainty level. With an attempt to use the advanced technologies for reducing the instrumental uncertainties at the unprecedented low, it is essential to investigate contributions from the higher-order systematics to achieve the ambitious goal of securing the most precise clock frequency standard. In this context, we have analysed contributions to the BBR shifts from the multipolar polarizabilities in a few ion clocks.

  8. Black-body radiation shift of atomic energy-levels:The $ (Z \\alpha)^2\\alpha T^2/m $ correction

    OpenAIRE

    Zhou, Wanping; Mei, Xuesong; Lu, Jingjun; Qiao, Haoxue

    2016-01-01

    The next-to-leading order black-body radiation(BBR) shift to atomic energy-levels, namely $ (Z\\alpha)^2\\alpha T^2/m $ correction, was studied by using the nonrelativistic quantum electrodynamics(NRQED). We also estimate the one-loop contribution of quadrupole and the two-loop contributions of BBR-shift of the thermal(real) photon. These corrections have not been investigated before. The order of magnitude BBR-shift indicates the one-loop contribution of quadrupole is stronger than the previou...

  9. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  10. The metabolic syndrome in black hypertensive women - Waist circumference more strongly related than body mass index

    NARCIS (Netherlands)

    Rheeder, P; Stolk, RP; Veenhouwer, JF; Grobbee, DE

    2002-01-01

    Objective. To examine the association between measures of. obesity and features of the metabolic syndrome in treated. black female hypertensive subjects. Design. Cross-sectional study. Setting. An urban primary health care centre in Mamelodi, Pretoria. Subjects. Women with hypertension and without k

  11. The Relation of Standard Metabolic Rate to Water Temperature and Body Weight of Schlegels Black Rockfish (Sebastodes Fuscescens)

    Institute of Scientific and Technical Information of China (English)

    马志敏; 孙耀; 张波; 唐启升

    2004-01-01

    Standard metabolic rates of Schlegels black rockfish with different body weights are determined in laboratory by using the flow-through respirometer at 11.2 ℃, 14.7 ℃, 18.0℃ and 23.6 ℃. The results indicate that the standard metabolic rates increase with the increase of body weight at different temperatures. Relationship between them could be described as Rs = a InW b. The mean of standard metabolic rate is significantly different among groups, but the b values are not. The standard metabolic rates of amended standard body weights decrease with the increase of temperature, and the mean of standard metabolic rate is also significantly different among groups when the standard body weights are 48.6 g, 147.9 g, and 243.1 g.Relationship between them could be described as Rsw = me-bT . The relations of standard metabolic rate ( Rs ) or relative metabolic rate ( Rs ) to body weight and temperature yield the following equations: Rs = 1.160 W0.752 e-9.494/7 and Rs1= 1.160 W0.254e-9.494/7.

  12. Toward faithful templates for non-spinning binary black holes using the effective-one-body approach

    CERN Document Server

    Buonanno, Alessandra; Baker, John G; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T; van Meter, James R

    2007-01-01

    We present an accurate approximation of the full gravitational radiation waveforms generated in the merger of non-eccentric systems of two non-spinning black holes. Utilizing information from recent numerical relativity simulations and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms during the last stages of inspiral, merger and ringdown. By ``successfully'' here, we mean with phase differences < 8% of a gravitational-wave cycle accumulated by the end of the ringdown phase, maximizing only over time of arrival and initial phase. We obtain this result by simply adding a 4-post-Newtonian order correction in the EOB radial potential and determining the (constant) coefficient by imposing high-matching performances with numerical waveforms of mass ratios m1/m2 = 1, 3/2, 2 and 4, m1 and m2 being the individual black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are use...

  13. Changes of arterial blood pressure, heart rate, internal body temperature, and blood acido-basic balance in the unanaesthetized rabbit following whole-body gamma irradiation at a mean absorbed dose of 250 rads

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, R.; Court, L.

    1973-09-01

    The general effects of whole-body gamma -irradiation at a mean absorbed dose of 250 rads were studied simultaneously in the unanaesthetized rabbit for 48 hours. They occurred early, with the following characteristics: arterial blood pressure decreased steadily as early as the 2nd hour and reached its minimum value on the 5th hour with a decrease of about 14%; it remained low during the following two days. Heart rate increased during the first hour, was the highest by the end of the second hour, and resumed normal value on the 24th hour. Internal body temperature increased during the 1st hour and was maximum by the end of the 2nd hour, with a mean increase of 1.2 deg C; hyperthermia steadily decreased between the 4th and the 6th hours and had completely disappeared by the 24th hour. Respiratory alkalosis is shown in the acido-basic balance by a raise of pH, a decrease of PCO/sub 2/ and arterial blood bicarbonates. These various changes seem to indicate a double origin, both central and peripheral. (FR)

  14. N-body modeling of globular clusters: Masses, mass-to-light ratios and intermediate-mass black holes

    Science.gov (United States)

    Baumgardt, H.

    2016-10-01

    We have determined the masses and mass-to-light ratios of 50 Galactic globular clusters by comparing their velocity dispersion and surface brightness profiles against a large grid of 900 N-body simulations of star clusters of varying initial concentration, size and central black hole mass fraction. Our models follow the evolution of the clusters under the combined effects of stellar evolution and two-body relaxation allowing us to take the effects of mass segregation and energy equipartition between stars self-consistently into account. For a subset of 16 well observed clusters we also derive their kinematic distances. We find an average mass-to-light ratio of Galactic globular clusters of =1.98 ± 0.03, which agrees very well with the expected M/L ratio if the initial mass function (IMF) of the clusters was a standard Kroupa or Chabrier mass function. We do not find evidence for a decrease of the average mass-to-light ratio with metallicity. The surface brightness and velocity dispersion profiles of most globular clusters are incompatible with the presence of intermediate-mass black holes (IMBHs) with more than a few thousand M⊙ in them. The only clear exception is ω Cen, where the velocity dispersion profile provides strong evidence for the presence of a ˜40,000 M⊙ IMBH in the centre of the cluster.

  15. "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole

    CERN Document Server

    Babak, S; Gair, J R; Glampedakis, K; Hughes, S A; Babak, Stanislav; Fang, Hua; Gair, Jonathan R.; Glampedakis, Kostas; Hughes, Scott A.

    2006-01-01

    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such "extreme mass ratio inspiral" systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such "kludge" waveforms and describe ways to generate them. We assess performance of the introduced approximations by comparing "kludge" waveforms to accurate waveforms obtained by solving the Teukolsky...

  16. Home Bodies and Wanderers: Sympatric Lineages of the Deep-Sea Black Coral Leiopathes glaberrima

    OpenAIRE

    Dannise V Ruiz-Ramos; Miles Saunders; Fisher, Charles R.; Baums, Iliana B.

    2015-01-01

    Colonial corals occur in a wide range of marine benthic habitats from the shallows to the deep ocean, often defining the structure of their local community. The black coral Leiopathes glaberrima is a long-lived foundation species occurring on carbonate outcrops in the Northern Gulf of Mexico (GoM). Multiple color morphs of L. glaberrima grow sympatrically in the region. Morphological, mitochondrial and nuclear ribosomal markers supported the hypothesis that color morphs constituted a single b...

  17. The effects of solar radiation and black body re-radiation on thermal comfort.

    Science.gov (United States)

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  18. Gyroscopes orbiting black holes: A frequency-domain approach to precession and spin-curvature coupling for spinning bodies on generic Kerr orbits

    Science.gov (United States)

    Ruangsri, Uchupol; Vigeland, Sarah J.; Hughes, Scott A.

    2016-08-01

    A small body orbiting a black hole follows a trajectory that, at leading order, is a geodesic of the black hole spacetime. Much effort has gone into computing "self-force" corrections to this motion, arising from the small body's own contributions to the system's spacetime. Another correction to the motion arises from coupling of the small body's spin to the black hole's spacetime curvature. Spin-curvature coupling drives a precession of the small body, and introduces a "force" (relative to the geodesic) which shifts the small body's worldline. These effects scale with the small body's spin at leading order. In this paper, we show that the equations which govern spin-curvature coupling can be analyzed with a frequency-domain decomposition, at least to leading order in the small body's spin. We show how to compute the frequency of precession along generic orbits, and how to describe the small body's precession and motion in the frequency domain. We illustrate this approach with a number of examples. This approach is likely to be useful for understanding spin coupling effects in the extreme mass ratio limit, and may provide insight into modeling spin effects in the strong field for nonextreme mass ratios.

  19. Body Builder’s Nightmare: Black Market Steroid Injection Gone Wrong: a Case Report

    Science.gov (United States)

    Arad, Ehud; Ben Amotz, Oded

    2016-01-01

    Summary: In the pursuit of success in sports, some athletes are not deterred by health risks associated with the (mis)use of black market preparations of dubious origin as performance-enhancing agents. Several studies published in the recent years demonstrated that anabolic-androgenic steroids, but also stimulants and growth hormones, are misused by numerous recreational athletes from all over the world. Trenbolone is an anabolic steroid routinely used in the finishing phase of beef production to improve animal performance and feed efficiency. A 35-year-old male patient presented to our plastic surgery clinic after self-intramuscular administration of Trenbolone to the superior gluteal area bilaterally, which led to a full-thickness defect in a cone-like distribution. The wounds underwent surgical debridement and were treated locally with mafenide acetate irrigation and wound dressings. Closure was achieved by secondary intention healing. In this report, we discuss the first documented case of full-thickness skin and subcutaneous tissue necrosis after black market anabolic steroid injection. This illustrates a plastic complication and resolution of a widespread but seldom reported problem.

  20. Mass dynamics of wintering Pacific Black Brant: Body, adipose tissue, organ, and muscle masses vary with location

    Science.gov (United States)

    Mason, D.D.; Barboza, P.S.; Ward, D.H.

    2007-01-01

    We compared body size and mass of the whole body, organs, adipose tissue, and muscles of adult Pacific Black Brant (Branta bernicla nigricans (Lawrence, 1846)) collected concurrently in Alaska and Baja California during the fall, winter, and spring of 2002-2003. Head and tarsal lengths of males were similar between sites and slightly larger for females in Alaska than in Baja California. Brant appear to operate under similar physiological bounds, but patterns of nutrient allocation differ between sites. Birds wintering in Alaska lost similar amounts of adipose tissue during early winter as birds in Baja California gained during late winter before migration. Masses of the body, adipose tissue, and flight muscles during mid-winter were similar between sites. Seasonal adipose tissue deposition may, therefore, equally favor winter residency or long-distance migration. Gonad and liver masses increased in late winter for birds in Alaska but not for those in Baja California, suggesting birds wintering in Baja may delay reproductive development in favor of allocating reserves needed for migration. Phenotypic flexibility allows Brant to use widely divergent wintering sites. The wintering location of Brant likely depends more upon changes in environmental conditions and food availability, than upon physiological differences between the two wintering populations. ?? 2007 NRC.

  1. Usb Spectrometers and the Temperature of the Sun: Measuring Black Body Radiation in the Palm of your Hand

    Science.gov (United States)

    Zaleski, Daniel P.; Horrocks, Benjamin R.; Walker, Nick

    2015-06-01

    A new experiment appropriate for both general chemistry and physical chemistry students will be described. The experiment utilizes "pocket size" USB spectrometers (operating in the UV/vis region) coupled with fiber optic cables to record a solar spectrum. A further extension of the experiment involves recording spectra of a light bulb at several voltages (and thus resistances). Using provided software, students can fit black body distributions to their obtained spectra. The software will display the acquired spectrum, a simulation based on their guess temperature, a simulation based on their fit, and OMC2 for both. Students can then compare their results to the known temperature of the sun and the known temperature vs resistance curve of tungsten.

  2. 'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole

    International Nuclear Information System (INIS)

    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such 'extreme mass ratio inspiral' systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such kludge waveforms and describe ways to generate them. Different kinds of kludges have already been used to scope out data analysis issues for LISA. The models we study here are based on computing a particle's inspiral trajectory in Boyer-Lindquist coordinates, and subsequent identification of these coordinates with flat-space spherical polar coordinates. A gravitational waveform may then be computed from the multipole moments of the trajectory in these coordinates, using well-known solutions of the linearised gravitational perturbation equations in flat space time. We compute waveforms using a standard slow-motion quadrupole formula, a quadrupole/octupole formula, and a fast-motion, weak-field formula originally developed by Press. We assess these approximations by comparing to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these

  3. Thermal Characterization of Absorbing Coatings for Thermal Detectors of Radiation by Photopyroelectric Method

    OpenAIRE

    Bravina, Svetlana L.; Morozovsky, Nicholas V.; Dovbeshko, Galina I.; Obraztsova, Elena D.

    2006-01-01

    By photothermomodulatoin method the comparative study of thermal diffusivity of absorbing coating for sensitive elements of pyroelectric detectors of radiation formed from metal dispersion layer blacks, dielectric paint blacks and carbon nanotubes paint blacks has been performed. Prospects of using carbon nanotubes based black absorbing coatings for pyroelectric and other thermal detector application are shown.

  4. N-body modeling of globular clusters: Masses, mass-to-light ratios and intermediate-mass black holes

    CERN Document Server

    Baumgardt, Holger

    2016-01-01

    We have determined the masses and mass-to-light ratios of 50 Galactic globular clusters by comparing their velocity dispersion and surface brightness profiles against a large grid of 900 N-body simulations of star clusters of varying initial concentration, size and central black hole mass fraction. Our models follow the evolution of the clusters under the combined effects of stellar evolution and two-body relaxation allowing us to take the effects of mass segregation and energy equipartition between stars self-consistently into account. For a subset of 16 well observed clusters we also derive their kinematic distances. We find an average mass-to-light ratio of Galactic globular clusters of $=1.98 \\pm 0.03$, which agrees very well with the expected M/L ratio if the initial mass function of the clusters was a standard Kroupa or Chabrier mass function. We do not find evidence for a decrease of the average mass-to-light ratio with metallicity. The surface brightness and velocity dispersion profiles of most globul...

  5. Distribution of Bacteria Injected in Body of Giant Black Shrimp, Penaeus Monodon

    Institute of Scientific and Technical Information of China (English)

    GUO Zhixun(郭志勋); Karin van de Braak; Magriet Botterbloom

    2004-01-01

    Distribution of injected Vibrio anguillarum in body of Penaeus monodon was studied with immunohistochemical method. Bacteria could be detected throughout the experiment in some individuals; however in lymphoid tissue, gill, heart and haemolymph of all vibrio injected shrimp, the bacteria could be observed only 5 min after injection. The bacteria density in haemolymph, haemolymph of the hepatopancreas and gills decreased with time. In the lymphoid organ and heart, the bacteria density was the highest 48 h after injection, then decreased. Nodules could be formed in the heart, lymphoid organ and injection site.

  6. Home Bodies and Wanderers: Sympatric Lineages of the Deep-Sea Black Coral Leiopathes glaberrima.

    Directory of Open Access Journals (Sweden)

    Dannise V Ruiz-Ramos

    Full Text Available Colonial corals occur in a wide range of marine benthic habitats from the shallows to the deep ocean, often defining the structure of their local community. The black coral Leiopathes glaberrima is a long-lived foundation species occurring on carbonate outcrops in the Northern Gulf of Mexico (GoM. Multiple color morphs of L. glaberrima grow sympatrically in the region. Morphological, mitochondrial and nuclear ribosomal markers supported the hypothesis that color morphs constituted a single biological species and that colonies, regardless of color, were somewhat genetically differentiated east and west of the Mississippi Canyon. Ten microsatellite loci were used to determine finer-scale population genetic structure and reproductive characteristics. Gene flow was disrupted between and within two nearby (distance = 36.4 km hardground sites and two sympatric microsatellite lineages, which might constitute cryptic species, were recovered. Lineage one was outbred and found in all sampled locations (N = 5 across 765.6 km in the Northern Gulf of Mexico. Lineage two was inbred, reproducing predominantly by fragmentation, and restricted to sites around Viosca Knoll. In these sites the lineages and the color phenotypes occurred in different microhabitats, and models of maximum entropy suggested that depth and slope influence the distribution of the color phenotypes within the Vioska Knolls. We conclude that L. glaberrima is phenotypically plastic with a mixed reproductive strategy in the Northern GoM. Such strategy might enable this long-lived species to balance local recruitment with occasional long-distance dispersal to colonize new sites in an environment where habitat is limited.

  7. Home Bodies and Wanderers: Sympatric Lineages of the Deep-Sea Black Coral Leiopathes glaberrima.

    Science.gov (United States)

    Ruiz-Ramos, Dannise V; Saunders, Miles; Fisher, Charles R; Baums, Iliana B

    2015-01-01

    Colonial corals occur in a wide range of marine benthic habitats from the shallows to the deep ocean, often defining the structure of their local community. The black coral Leiopathes glaberrima is a long-lived foundation species occurring on carbonate outcrops in the Northern Gulf of Mexico (GoM). Multiple color morphs of L. glaberrima grow sympatrically in the region. Morphological, mitochondrial and nuclear ribosomal markers supported the hypothesis that color morphs constituted a single biological species and that colonies, regardless of color, were somewhat genetically differentiated east and west of the Mississippi Canyon. Ten microsatellite loci were used to determine finer-scale population genetic structure and reproductive characteristics. Gene flow was disrupted between and within two nearby (distance = 36.4 km) hardground sites and two sympatric microsatellite lineages, which might constitute cryptic species, were recovered. Lineage one was outbred and found in all sampled locations (N = 5) across 765.6 km in the Northern Gulf of Mexico. Lineage two was inbred, reproducing predominantly by fragmentation, and restricted to sites around Viosca Knoll. In these sites the lineages and the color phenotypes occurred in different microhabitats, and models of maximum entropy suggested that depth and slope influence the distribution of the color phenotypes within the Vioska Knolls. We conclude that L. glaberrima is phenotypically plastic with a mixed reproductive strategy in the Northern GoM. Such strategy might enable this long-lived species to balance local recruitment with occasional long-distance dispersal to colonize new sites in an environment where habitat is limited. PMID:26488161

  8. Investigating the retention of intermediate-mass black holes in star clusters using N-body simulations

    Science.gov (United States)

    Konstantinidis, Symeon; Amaro-Seoane, Pau; Kokkotas, Kostas D.

    2013-09-01

    Context. Unlike supermassive and stellar-mass black holes (SBHs), the existence of intermediate-mass black holes (IMBHs) with masses ranging between 102-5 M⊙ has not yet been confirmed. The main problem in the detection is that the innermost stellar kinematics of globular clusters (GCs) or small galaxies, the possible natural loci to IMBHs, are very difficult to resolve. However, if IMBHs reside in the centre of GCs, a possibility is that they interact dynamically with their environment. A binary formed with the IMBH and a compact object of the GC would naturally lead to a prominent source of gravitational radiation, detectable with future observatories. Aims: We use N-body simulations to study the evolution of GCs containing an IMBH and calculate the gravitational radiation emitted from dynamically formed IMBH-SBH binaries and the possibility that the IMBH escapes the GC after an IMBH-SBH merger. Methods: We ran for the first time direct-summation integrations of GCs with an IMBH including the dynamical evolution of the IMBH with the stellar system and relativistic effects, such as energy loss in gravitational waves (GWs) and periapsis shift, and gravitational recoil. Results: We find in one of our models an intermediate mass-ratio inspiral (IMRI), which leads to a merger with a recoiling velocity higher than the escape velocity of the GC. The GWs emitted fall in the range of frequencies that a LISA-like observatory could detect, like the European eLISA or with mission options considered in the recent preliminary mission study conducted in China. The merger has an impact on the global dynamics of the cluster, as an important heating source is removed when the merged system leaves the GC. The detection of one IMRI would constitute a test of GR, as well as an irrefutable proof of the existence of IMBHs.

  9. Black tea

    Science.gov (United States)

    ... product containing black tea extract plus green tea extract, asparagus, guarana, kidney bean, and mate along with a combination of kidney bean pods, garcinia, and chromium yeast for 12 weeks does not reduce body weight ...

  10. Black-body radiation shift of atomic energy-levels:The $ (Z \\alpha)^2\\alpha T^2/m $ correction

    CERN Document Server

    Zhou, Wanping; Lu, Jingjun; Qiao, Haoxue

    2016-01-01

    The next-to-leading order black-body radiation(BBR) shift to atomic energy-levels, namely $ (Z\\alpha)^2\\alpha T^2/m $ correction, was studied by using the nonrelativistic quantum electrodynamics(NRQED) at first. This $T^{2}$-dependent correction has not been investigated before, and only contains the contribution of eletric-dipole of thermal photon. In order to study the contribution of multipolar. We estimate the two-loop contributions of BBR-shift by using quantum electrodynamics approach(QED), and find both one-loop and two-loop diagram contribute to the $ (Z\\alpha)^2\\alpha T^2/m $ correction. Integrating the results which are obtained by these two approaches, the $ (Z\\alpha)^2\\alpha T^2/m $ correction we derived is in principle applicable to multi-electron atoms and contains the contribution of multipolar. The order of magnitude BBR-shift indicates this next-to-leading order BBR-shift may be as significant as the leading order in the multi-electron atoms or cold ones.

  11. Boosted Tidal Disruption by Massive Black Hole Binaries During Galaxy Mergers - In The View of N-Body Simulation

    CERN Document Server

    Li, Shuo; Berczik, Peter; Spurzem, Rainer

    2015-01-01

    Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between central SMBH and its host galaxy because the former plays very important roles on the formation and evolution of a galaxy. For this reason, the evolution of SMBHBs in merging galaxies is an essential problem. Since there are many discussions about SMBHB evolution in gas rich environment, we focus on the quiescent galaxy, using tidal disruption as a diagnostic tool. Our study is based on a series of numerical large particle number direct N-body simulations for dry major mergers. According to the simulation results, the evolution can be divided into three phases. In phase I, the tidal disruption rate for two well separated SMBHs in merging system has similar level to single SMBH in isolate galaxy. After two SMBHs getting close enough to form a bound binary in phase II, the disruption rate can be enhanced for ~ 2 order of magnitudes within a short time. This "boosted" dis...

  12. A Possible Cosmological Application of Some Thermodynamic Properties of the Black Body Radiation in n-Dimensional Euclidean Spaces

    Directory of Open Access Journals (Sweden)

    Julian Gonzalez-Ayala

    2015-06-01

    Full Text Available In this work, we present the generalization of some thermodynamic properties of the black body radiation (BBR towards an n-dimensional Euclidean space. For this case, the Planck function and the Stefan–Boltzmann law have already been given by Landsberg and de Vos and some adjustments by Menon and Agrawal. However, since then, not much more has been done on this subject, and we believe there are some relevant aspects yet to explore. In addition to the results previously found, we calculate the thermodynamic potentials, the efficiency of the Carnot engine, the law for adiabatic processes and the heat capacity at constant volume. There is a region at which an interesting behavior of the thermodynamic potentials arises: maxima and minima appear for the n—dimensional BBR system at very high temperatures and low dimensionality, suggesting a possible application to cosmology. Finally, we propose that an optimality criterion in a thermodynamic framework could be related to the 3—dimensional nature of the universe.

  13. A possible cosmological application of some thermodynamic properties of the black body radiation in $n-$dimensional Euclidean spaces

    CERN Document Server

    Gonzalez-Ayala, Julian; Cordero, Rubén; Angulo-Brown, F

    2015-01-01

    In this work we present the generalization of some thermodynamic properties of the black body radiation (BBR) towards an $n-$dimensional Euclidean space. For this case the Planck function and the Stefan-Boltzmann law have already been given by Landsberg and de Vos and some adjustments by Menon and Agrawal. However, since then no much more has been done on this subject and we believe there are some relevant aspects yet to explore. In addition to the results previously found we calculate the thermodynamic potentials, the efficiency of the Carnot engine, the law for adiabatic processes and the heat capacity at constant volume. There is a region at which an interesting behavior of the thermodynamic potentials arise, maxima and minima appear for the $n-d$ BBR system at very high temperatures and low dimensionality, suggesting a possible application to cosmology. Finally we propose that an optimality criterion in a thermodynamic framework could have to do with the $3-d$ nature of the universe.

  14. Black body models for liquid zirconium and thermophysical properties up to 4100 K (density, resistivity, specific heat capacity, emissivity)

    International Nuclear Information System (INIS)

    Full Text: There were fulfilled measurements of liquid zirconium density as a function of specific imparted energy, and then plotted as a function of temperature. Under heating, wire was flashed by a short laser pulse (6 ns). The shadow of Zr wire was registered by CCD camera. The method was checked by liquid iron density measurement and comparison with literature data. Dependencies of zirconium density and electrical resistivity up to 4100 K were obtained (for wire and foil specimens) an imparted energy and temperature. Specific heat capacity (cP) of liquid zirconium (from melting point up to 4100 K) was determined for flat surface and black body model. It reveals that in both cases over the narrow temperature range of 2150 - 2400 K (just after melting) cP diminishes up to usual values known from steady state measurements. Over the next wide temperature range of 2400 - 4100 K, a continuos increase of heat capacity is observed. Normal spectral emissivity (ελ) of liquid zirconium (at fast heating) depending on temperature (from 1800 K up to 4000 K) for λ = 855 nm was measured. Recommended data are given in the equation forms and in the table forms (step 10 K) of specific imparted energy, density, resistivity, heat capacity, and normal spectral emissivity of liquid zirconium against temperature up to 4100 K. Assessment of systematic errors of all measured values was fulfilled and standard deviations were calculated from average values. (author)

  15. Scattering experiments meet N-body I: a practical recipe for the evolution of massive black hole binaries in stellar environments

    CERN Document Server

    Sesana, Alberto

    2015-01-01

    The N-independence observed in the evolution of massive black hole binaries (MBHBs) in recent simulation of merging stellar bulges suggests a simple interpretation beyond complex time-dependent relaxation processes. We conjecture that the MBHB hardening rate is equivalent to that of a binary immersed in a field of unbound stars with density $\\rho$ and typical velocity $\\sigma$, provided that $\\rho$ and $\\sigma$ are the stellar density and the velocity dispersion at the influence radius of the MBHB. By comparing direct N-body simulations to an hybrid model based on 3-body scattering experiments, we verify this hypothesis: when normalized to the stellar density and velocity dispersion at the binary influence radius, the N-body MBHB hardening rate approximately matches that predicted by 3-body scatterings in the investigated cases. The eccentricity evolution obtained with the two techniques is also in reasonable agreement. This result is particularly practical because it allows to estimate the lifetime of MBHBs ...

  16. Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters; Verificacao das doses de radiacao absorvidas durante a tecnica de irradiacao de corpo inteiro nos transplantes de medula ossea, por meio de dosimetros termoluminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Giordani, Adelmo Jose; Segreto, Helena Cristina Comodo; Segreto, Roberto Araujo; Medeiros, Regina Bitelli; Oliveira, Jose Salvador R. de [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Setor de Radioterapia]. E-mail: adelmogiordani@ig.com.br

    2004-10-01

    The objective was to evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. Two-hundred CaSO{sub 4}:Dy + teflon tablets were calibrated in air and in 'phantom'. These tablets were randomly selected and divided in groups of five in the patients' body. The dosimetric readings were obtained using a Harshaw 4000A reader. Nine patients had their entire bodies irradiated in parallel and opposite laterals in a cobalt-60 Alcion II model, with a dose rate of 0.80 Gy/min at 80.5 cm, {l_brace}(10 ? 10) cm{sup 2} field. The dosimetry of this unit was performed using a Victoreen 500 dosimeter. For the determination of the mean dose at each point evaluated, the individual values of the tablets calibrated in air or 'phantom' were used, resulting in a build up of 2 mm to superficialize the dose at a distance of 300 cm. In 70% of the patients a variation of less than 5% in the dose was obtained. In 30% of the patients this variation was less than 10%, when values obtained were compared to the values calculated at each point. A mean absorption of 14% was seen in the head, and an increase of 2% of the administered dose was seen in the lungs. In patients with latero-lateral distance greater than 35 cm the variation between the calculated doses and the measured doses reached 30% of the desired dose, without the use of compensation filters. The measured values of the absorbed doses at the various anatomic points compared to the desired doses (theoretic) presented a tolerance of {+-} 10%, considering the existent anatomical differences and when using the individual calibration factors of the tablets. (author)

  17. Darker than black: radiation-absorbing metamaterial

    CERN Document Server

    Narimanov, E E; Barnakov, Yu A; Tumkur, T U; Noginov, M A

    2011-01-01

    We show that corrugated surfaces of hyperbolic metamaterials scatter light preferentially inside the media, resulting in a very low reflectance and ultimate dark appearance in the spectral range of hyperbolic dispersion. This phenomenon of fundamental importance, demonstrated experimentally in arrays of silver nanowires grown in alumina membranes, originates from a broad-band singularity in the density of photonic states. It paves the road to a variety of applications ranging from the stealth technology to high-efficiency solar cells and photodetectors.

  18. Comparative study of bone repair in mandibular body osteotomy between metallic and absorbable 2.0 mm internal fixation systems. Histological and histometric analysis in dogs: a pilot study.

    Science.gov (United States)

    Sverzut, C E; Kato, R B; Rosa, A L; Trivellato, A E; Sverzut, A T; da Silveira, K M; de Oliveira, P T

    2012-11-01

    The objective of this study was to compare the bone repair along a mandibular body osteotomy stabilized with 2.0 mm absorbable and metallic systems. 12 male, adult mongrel dogs were divided into two groups (metallic and absorbable) and subjected to unilateral osteotomy between the mandibular third and fourth premolars, which was stabilized by applying two 4-hole plates. At 2 and 18 weeks, three dogs from each group were killed and the osteotomy sites were removed and divided equally into three parts: the upper part was labelled the tension third (TT), the lower part the compression third (CT), and the part between the TT and CT the intermediary third (IT). Regardless of the treatment system, union between the fragments was observed at 18 weeks and the CT showed more advanced stages of bone repair than the TT. Histometric analysis did not reveal any significant differences among the 3 parts or systems in the distance between bone fragments at 2 weeks. Although at 18 weeks the proportions of newly formed bone did not differ among TT, IT and CT, significantly enhanced bone formation was observed in all sections for the metallic group. The patterns of repair were distinct between treatments.

  19. Fractal Absorbing Body Design and Its Application in Microstrip Antenna%分形吸波体设计及其在微带天线中的应用

    Institute of Scientific and Technical Information of China (English)

    商楷; 曹祥玉; 高军; 杨欢欢; 郑秋容

    2013-01-01

    基于Hilbert分形结构,设计了一种小型化、超薄、高吸波率以及无表面损耗层的超材料吸波体,该吸波体单元尺寸仅为0.071λ,厚度约0.02λ,吸波率达99.3%.将该吸波体与普通微带天线共形设计,制备了一种新型超材料天线.与初始天线相比,新天线的单站和双站带内雷达散射截面都有明显减缩,最大减缩达到7.2 dB,且天线辐射性能保持不变,证实了该吸波体具有良好的吸波效果.仿真和实测结果吻合得很好,表明该吸波体可以应用于微带天线的带内隐身.%A metamaterial absorber based on hilbert fractal structure is designed with miniaturization,slim,high absorptivity and no surface ullage layer.Its unit size is only 0.071λ,the thickness is about 0.02λ and the absorber can exhibit absorption of 99.3 %.It is conformed on microstrip antenna to preparation of a novel metamaterial antenna.Compared with the conventional microstrip antenna,the proposed antenna has a obvious monstatic and bistatic radar cross section reduction at the working frequency band.the greatest decrement can amounted to 7.2 dB,while the radiation performance is kept,which proves that the absorber had an excellent absorptivity.The simulation and measured resultes are in good agreement,indicating that the absorbing body can be applied to microstrip antennas to achieve in-band stealth.

  20. Black to Black

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2012-01-01

    Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as...

  1. The static and dynamic polarisability, and the Stark and black-body radiation frequency shifts of the molecular hydrogen ions H2+, HD+, and D2+

    CERN Document Server

    Schiller, Stephan; Bekbaev, Ashat K; Korobov, Vladimir I

    2014-01-01

    We calculate the DC Stark effect for three molecular hydrogen ions in the non-relativistic approximation. The effect is calculated both in dependence on the rovibrational state and in dependence on the hyperfine state. We discuss special cases and approximations. We also calculate the AC polarisabilities for several rovibrational levels, and therefrom evaluate accurately the black-body radiation shift, including the effects of excited electronic states. The results enable the detailed evaluation of certain systematic shifts of the transitions frequencies for the purpose of ultra-high-precision optical, microwave or radio-frequency spectroscopy in ion traps.

  2. The ALICE absorbers

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m.

  3. Dynamical evolution of massive black holes in galactic-scale N-body simulations - introducing the regularized tree code "rVINE"

    CERN Document Server

    Karl, S J; Naab, T; Haehnelt, M G; Spurzem, R

    2015-01-01

    We present a hybrid code combining the OpenMP-parallel tree code VINE with an algorithmic chain regularization scheme. The new code, called "rVINE", aims to significantly improve the accuracy of close encounters of massive bodies with supermassive black holes in galaxy-scale numerical simulations. We demonstrate the capabilities of the code by studying two test problems, the sinking of a single massive black hole to the centre of a gas-free galaxy due to dynamical friction and the hardening of a supermassive black hole binary due to close stellar encounters. We show that results obtained with rVINE compare well with NBODY7 for problems with particle numbers that can be simulated with NBODY7. In particular, in both NBODY7 and rVINE we find a clear N-dependence of the binary hardening rate, a low binary eccentricity and moderate eccentricity evolution, as well as the conversion of the galaxy's inner density profile from a cusp to a a core via the ejection of stars at high velocity. The much larger number of par...

  4. Body mass index and all-cause mortality in a large prospective cohort of white and black U.S. Adults.

    Directory of Open Access Journals (Sweden)

    Alpa V Patel

    Full Text Available Remaining controversies on the association between body mass index (BMI and mortality include the effects of smoking and prevalent disease on the association, whether overweight is associated with higher mortality rates, differences in associations by race and the optimal age at which BMI predicts mortality. To assess the relative risk (RR of mortality by BMI in Whites and Blacks among subgroups defined by smoking, prevalent disease, and age, 891,572 White and 38,119 Black men and women provided height, weight and other information when enrolled in the Cancer Prevention Study II in 1982. Over 28 years of follow-up, there were 434,400 deaths in Whites and 18,702 deaths in Blacks. Cox proportional-hazards regression was used to estimate multivariable-adjusted relative risks (RR and 95% confidence intervals (CI. Smoking and prevalent disease status significantly modified the BMI-mortality relationship in Whites and Blacks; higher BMI was most strongly associated with higher risk of mortality among never smokers without prevalent disease. All levels of overweight and obesity were associated with a statistically significantly higher risk of mortality compared to the reference category (BMI 22.5-24.9 kg/m2, except among Black women where risk was elevated but not statistically significant in the lower end of overweight. Although absolute mortality rates were higher in Blacks than Whites within each BMI category, relative risks (RRs were similar between race groups for both men and women (p-heterogeneity by race  = 0.20 for men and 0.23 for women. BMI was most strongly associated with mortality when reported before age 70 years. Results from this study demonstrate for the first time that the BMI-mortality relationship differs for men and women who smoke or have prevalent disease compared to healthy never-smokers. These findings further support recommendations for maintaining a BMI between 20-25 kg/m2 for optimal health and longevity.

  5. Body Mass Index and All-Cause Mortality in a Large Prospective Cohort of White and Black U.S. Adults

    Science.gov (United States)

    Patel, Alpa V.; Hildebrand, Janet S.; Gapstur, Susan M.

    2014-01-01

    Remaining controversies on the association between body mass index (BMI) and mortality include the effects of smoking and prevalent disease on the association, whether overweight is associated with higher mortality rates, differences in associations by race and the optimal age at which BMI predicts mortality. To assess the relative risk (RR) of mortality by BMI in Whites and Blacks among subgroups defined by smoking, prevalent disease, and age, 891,572 White and 38,119 Black men and women provided height, weight and other information when enrolled in the Cancer Prevention Study II in 1982. Over 28 years of follow-up, there were 434,400 deaths in Whites and 18,702 deaths in Blacks. Cox proportional-hazards regression was used to estimate multivariable-adjusted relative risks (RR) and 95% confidence intervals (CI). Smoking and prevalent disease status significantly modified the BMI-mortality relationship in Whites and Blacks; higher BMI was most strongly associated with higher risk of mortality among never smokers without prevalent disease. All levels of overweight and obesity were associated with a statistically significantly higher risk of mortality compared to the reference category (BMI 22.5–24.9 kg/m2), except among Black women where risk was elevated but not statistically significant in the lower end of overweight. Although absolute mortality rates were higher in Blacks than Whites within each BMI category, relative risks (RRs) were similar between race groups for both men and women (p-heterogeneity by race  = 0.20 for men and 0.23 for women). BMI was most strongly associated with mortality when reported before age 70 years. Results from this study demonstrate for the first time that the BMI-mortality relationship differs for men and women who smoke or have prevalent disease compared to healthy never-smokers. These findings further support recommendations for maintaining a BMI between 20–25 kg/m2 for optimal health and longevity. PMID:25295620

  6. Black Liquid Solar Collector Demonstrator.

    Science.gov (United States)

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  7. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  8. 黑人女性的身体诉求--酷读《秀拉》%Black Women’s Body Appeal:Interpretation of Sula

    Institute of Scientific and Technical Information of China (English)

    李雪梅

    2015-01-01

    人类社会的历史是一部对身体管控的历史,女性身体的物质化过程是建构异性恋男权社会制度的基础,从而制造了女性被压迫、被宰制的痛苦历史。异性恋男权社会确立了二元对立的性别观,规制了人类的性取向,通过物化女性的生育功能,贬损女性的身体,来限制和囚禁女性的性自由。美国当代黑人女作家托尼·莫里森的小说《秀拉》,描绘了祖孙三代黑人女性对黑人传统社会两性认识的否定,追求性的自由权利,抵制生育功能,通过这一系列身体抗争来诉求和抵御黑人社会对女性的压制,表达了对强制异性恋机制的不满和希望松动异性恋机制对黑人女性压迫的强烈愿望。%The human history is the history of body controlling;the materialization process of women’s body is the base of setting up the heterosexual hegemony,which creates women’s oppressed and exploited history.The heterosexual hegem-ony establishes the gender’s binary opposition view,regulates the human sexual orientation,derogates the women’s body by materializing the females’fertility function,and gets to the purpose of confining the women’s sexual freedom.Sula, the novel written by the American contemporary black novelist,Toni Morrison,tells the stories of three generations’re-sistance of the oppression by denying the traditional gender view,pursuing the right of free sexuality,and resisting the fertility in the black family,and expresses the resentment against heterosexuality mechanism and hopes to alleviate the oppression to black females.

  9. On the commodification of the black female body: the critical implications of the alienability of fetal tissue.

    Science.gov (United States)

    Bridges, Khiara M

    2002-01-01

    Recent scientific experimentation has revealed that fetal tissue yielded from abortions has remarkable therapeutic value. This Note posits that the demand for fetal tissue likely will expand to the point where the current supply no longer satisfies it. Therefore, in order to obtain tissue from women who would not otherwise donate their abortuses, should research organizations, pharmaceutical companies, and doctors be allowed to offer women a "financial incentive" for their fetal tissue? That is, should women be allowed to sell their fetal tissue? This Note explores the question from a Critical Race Theory perspective. It analyzes the impact that a market in fetal tissue will have on Black women, who are more likely to participate in such a market due to their precarious economic situation, their higher abortion rate, and the effects of internalized oppression. The Note concludes that because Black women will be disproportionately exploited, as well as disenfranchised from the benefits produced by a market in fetal tissue, fetal tissue should not be made market alienable. PMID:11973807

  10. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  11. Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats.

    Science.gov (United States)

    Wu, Tao; Guo, Yu; Liu, Rui; Wang, Kuan; Zhang, Min

    2016-05-18

    With the current changes in diet and living habits, obesity has become a global health problem. Thus, the weight-reducing function of tea has attracted considerable attention. This study investigated the anti-obesity effect and the mechanism of black tea (BT) polyphenols and polysaccharides in male Sprague-Dawley rats. The BT polyphenols and polysaccharides reduced the body weight, Lee's index, visceral fat weight, and fat cell size but improved the biochemical profile and increased the fecal fatty acid content, thereby preventing high-fat diet-induced obesity. A gene expression profile array was used to screen eight upregulated and five downregulated differentially expressed genes that affect fat metabolic pathways, such as glycerolipid and glycerophospholipid metabolism, fatty acid degradation, glycolysis and gluconeogenesis, bile and pancreatic secretion, the insulin signaling pathway, and steroid hormone secretion. The BT polyphenols and polysaccharides suppressed the formation and accumulation of fat and promoted its decomposition to prevent obesity. PMID:27161951

  12. Absorbing Outflows in AGN

    Science.gov (United States)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  13. Self-Reported Eating Disorders of Black, Low-Income Adolescents: Behavior, Body Weight Perceptions, and Methods of Dieting.

    Science.gov (United States)

    Balentine, Margaret; And Others

    1991-01-01

    Study identified African-American low-income adolescents who thought they had bulimia or anorexia nervosa, identified common behaviors, and compared actual and perceived body weight and dieting methods. About 12 percent suspected an eating disorder and perceived themselves as heavier more often than their peers. Fasting was the most common dieting…

  14. Cylinder light concentrator and absorber: theoretical description

    OpenAIRE

    Kildishev, Alexander V.; Prokopeva, Ludmila J.; Narimanov, Evgenii

    2010-01-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the d...

  15. Cardiometabolic Biomarkers in Young Black Girls: Relations to Body Fatness and Aerobic Fitness, and Effects of a Randomized Physical Activity Trial

    Directory of Open Access Journals (Sweden)

    Bernard Gutin

    2011-01-01

    Full Text Available There is little evidence from randomized trials showing that physical activity alone influences biomarker profiles in youths. This study tested two hypotheses: (i that elevated body fatness and poor fitness would be associated with unfavorable levels of cardiometabolic biomarkers in 8–12-y-old black girls (n=242 and (ii that a 10-mo PA intervention would have favorable effects on the fatness-related cardiometabolic biomarkers. At baseline, all fatness indices (i.e., percent body fat, visceral adipose tissue, BMI, and waist circumference were significantly (P<0.05 associated with unfavorable levels of insulin, glucose, systolic BP, diastolic BP, triglycerides, C-reactive protein (CRP, and fibrinogen. Aerobic fitness was significantly (P<0.05 associated with favorable levels of insulin, CRP, fibrinogen, and HDL2. The PA intervention had significant and favorable effects on fitness, fatness, and two biomarkers—resting heart rate and LDL cholesterol. More research is needed to clarify what types of interventions can enhance the cardiometabolic health of youths.

  16. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  17. Multiband terahertz metamaterial absorber

    Institute of Scientific and Technical Information of China (English)

    Gu Chao; Qu Shao-Bo; Pei Zhi-Bin; Xu Zhuo; Liu Jia; Gu Wei

    2011-01-01

    This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.

  18. Metasurface Broadband Solar Absorber

    OpenAIRE

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Milan Sykora; Nina R. Weisse-Bernstein; Luk, Ting S.; Antoinette J. Taylor; Dalvit, Diego A. R.; Hou-Tong Chen

    2016-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experiment...

  19. Perfect absorbers on curved surfaces and their potential applications.

    Science.gov (United States)

    Alaee, Rasoul; Menzel, Christoph; Rockstuhl, Carsten; Lederer, Falk

    2012-07-30

    Recently perfect metamaterial absorbers triggered some fascination since they permit the observation of an extreme interaction of light with a nanostructured thin film. For the first time we evaluate here the functionality of such perfect absorbers if they are applied on curved surfaces. We probe their optical response and discuss potential novel applications. Examples are the complete suppression of back-scattered light from the covered objects, rendering it cloaked in reflection, and their action as optical black holes. PMID:23038388

  20. Ten shades of black

    CERN Document Server

    Hod, Shahar

    2015-01-01

    The holographic principle has taught us that, as far as their entropy content is concerned, black holes in $(3+1)$-dimensional curved spacetimes behave as ordinary thermodynamic systems in flat $(2+1)$-dimensional spacetimes. In this essay we point out that the opposite behavior can also be observed in black-hole physics. To show this we study the quantum Hawking evaporation of near-extremal Reissner-Nordstr\\"om black holes. We first point out that the black-hole radiation spectrum departs from the familiar radiation spectrum of genuine $(3+1)$-dimensional perfect black-body emitters. In particular, the would be black-body thermal spectrum is distorted by the curvature potential which surrounds the black hole and effectively blocks the emission of low-energy quanta. Taking into account the energy-dependent gray-body factors which quantify the imprint of passage of the emitted radiation quanta through the black-hole curvature potential, we reveal that the $(3+1)$-dimensional black holes effectively behave as p...

  1. Unidirectional perfect absorber

    Science.gov (United States)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  2. Metasurface Broadband Solar Absorber

    CERN Document Server

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  3. Unidirectional perfect absorber.

    Science.gov (United States)

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  4. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  5. Solar absorber material stability under high solar flux

    Science.gov (United States)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  6. Solar concentrator/absorber

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  7. Strongly absorbed quiescent X-ray emission from the X-ray transient XTE J0421+56

    CERN Document Server

    Boirin, L; Lumb, D H; Orlandini, M; Schartel, N

    2002-01-01

    We have observed the soft X-ray transient XTE J0421+56 in quiescence with XMM-Newton. The observed spectrum is highly unusual being dominated by a broad feature at 6.5 keV and can be modeled by a strongly absorbed continuum. The spectra of X-ray transients observed so far are normally modeled using Advection Dominated Accretion Flow models, black-bodies, power-laws, or by the thermal emission from a neutron star surface. The strongly absorbed X-ray emission of XTE J0421+56 could result from the compact object being embedded within the dense circumstellar wind emitted from the supergiant B[e] companion star.

  8. 地铁车辆吸能装置耐碰撞性分析%Analysis of Crashworthiness of Energy-Absorbing Component in the Metro Vehicle Car-body

    Institute of Scientific and Technical Information of China (English)

    韩增盛; 马松花

    2012-01-01

    吸能装置是确保地铁列车具有良好耐碰撞性能的一种重要部件.为实现地铁车辆吸能装置的结构优化,采用有限元分析软件ANSYS/LS-DYNA对不同厚度、不同横截面形状的薄壁结构碰撞性进行了仿真分析,分析结果表明,吸能装置的性能与其横截面的形状、壁厚的选择紧密相关.条件相同时,吸能装置的吸能能力与壁厚成正比,但壁厚增加时,界面力也随之增大,在吸能结构的设计中,需综合考虑.以地铁头车为研究对象,对安装了吸能装置的地铁头车进行了碰撞仿真,得到车体吸能装置碰撞过程变形情况和碰撞能量-时间历程,结果表明该结构吸能装置具有良好的吸能特性.%Energy-absorbing structure is an important component to ensure that the metro train has a good crashworthiness. In order to realize the optimization of the energy-absorbing structure, finite element analysis software ANSYS/LS-DYNA is used to simulate the crash performance of thin-wall structures of various thickness, cross-section. The results show that the performance of energy-absorbing component is closely related to cross section and thickness. The same conditions, absorption capability of energy-absorbing component is proportional to thickness, however,interface force increases with the increase of thickness,therefore,in the design of energy-absorbing component,it is necessary to consider it fully. Take the metro vehicle for example,one metro vehicle equipped with the energy absorption component is put up to simulate the collision procedure, and the deformation of the energy-absorbing component and the collision energy-time course are obtained, the results show that this energy-absorbing component has good energy absorption performance.

  9. Negative impedance shunted electromagnetic absorber for broadband absorbing: experimental investigation

    International Nuclear Information System (INIS)

    The traditional tuned mass absorber is widely employed to control the vibration of a primary structure by transferring the vibrating energy to the absorber. However, the working band of the absorber is very narrow, which limits the application of broadband vibration control. This study presents a novel broadband electromagnetic absorber by first introducing two negative impedance shunts to improve broadband damping of the absorber. The electromagnetic absorber is modeled, and the corresponding electromagnetic coupling coefficient is tested. A cantilever beam is employed to verify the broadband vibration absorption of the negative resistance (NR) shunted electromagnetic absorber (NR absorber) and the negative inductance NR shunted electromagnetic absorber (NINR absorber). The governing equations of the beam with two absorbers are derived, and the experiments are set up. The results point out that the NR and NINR absorbers can attenuate the broadband vibration. The proposed absorbers do not need the feedback system and the real-time controller compared to the active absorber; hence, they have great application potential in aerospace and in submarine applications, as well as in civil and mechanical engineering. (paper)

  10. Cylinder light concentrator and absorber: theoretical description.

    Science.gov (United States)

    Kildishev, Alexander V; Prokopeva, Ludmila J; Narimanov, Evgenii E

    2010-08-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications--from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the desired ray-optical performance, can provide absorption efficiencies comparable to those of ideal devices with a smooth gradient in index. PMID:20721056

  11. 低温点源黑体关键技术及国内外发展现状%Key technologies and development of point-source black body working at low temperature

    Institute of Scientific and Technical Information of China (English)

    许杰; 杨林华; 李娜

    2011-01-01

    文章分析了低温点源黑体设备研制中的几项关键技术,包括3种常见发射腔腔形的特点,腔体发射率的计算方法,以及热管,恒温浴和液氮电加热3种恒温方式的原理和技术特性;比较了国内外典型低温黑体设备、产品的性能指标;并简述低温点源黑体设备在红外定标试验中的原理和应用.最后总结出现阶段低温点源黑体的发展水平以及未来的研究重点.%In this paper, some key technologies of point-source black body working at low temperature are analyzed, including the features of three kinds of black body cavities, the emissivity calculation methods, and the principle of maintaining the temperature of the cavity with heat pipe, water or oil bath, or liquid nitrogen and electric heater. The characteristics of the facilities developed in China and other countries are compared, the principle and applications of this kind of black body in the radiometric calibration experimentation are discussed in details. Finally, the development level and future concerns related with this kind of facilities are discussed.

  12. Metasurface Broadband Solar Absorber

    Science.gov (United States)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  13. Optimal Sound Absorbing Structures

    CERN Document Server

    Yang, Min; Fu, Caixing; Sheng, Ping

    2016-01-01

    Causal nature of the acoustic response, for any materials or structures, dictates an inequality that relates the absorption spectrum of the sample to its thickness. We present a general recipe for constructing sound-absorbing structures that can attain near-equality for the causal relation with very high absorption performance; such structures are denoted optimal. Our strategy involves using carefully designed acoustic metamaterials as backing to a thin layer of conventional sound absorbing material, e.g., acoustic sponge. By using this design approach, we have realized a 12 cm-thick structure that exhibits broadband, near-perfect flat absorption spectrum starting at around 400 Hz. From the causal relation, the calculated minimum sample thickness is 11.5 cm for the observed absorption spectrum. We present the theory that underlies such absorption performance, involving the evanescent waves and their interaction with a dissipative medium, and show the excellent agreement with the experiment.

  14. Universal metamaterial absorbe

    CERN Document Server

    Smaali, Rafik; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost resonant perfect absorption up to 99.8 % is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of $\\lambda/100$ thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal.

  15. Metasurface Broadband Solar Absorber.

    Science.gov (United States)

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  16. Ionized Absorbers in AGN

    Science.gov (United States)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  17. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  18. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al2O3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B4C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  19. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  20. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  1. Possible Effects of a Cosmological Constant on Black Hole Evolution

    OpenAIRE

    Adams, Fred C.; Mbonye, Manasse; Laughlin, Gregory

    1999-01-01

    We explore possible effects of vacuum energy on the evolution of black holes. If the universe contains a cosmological constant, and if black holes can absorb energy from the vacuum, then black hole evaporation could be greatly suppressed. For the magnitude of the cosmological constant suggested by current observations, black holes larger than $\\sim 4 \\times 10^{24}$ g would accrete energy rather than evaporate. In this scenario, all stellar and supermassive black holes would grow with time un...

  2. Sensing with THz metamaterial absorbers

    CERN Document Server

    Cong, Longqing

    2014-01-01

    Metamaterial perfect absorbers from microwaves to optical part of the electromagnetic spectrum has been intensely studied for its ability to absorb electromagnetic radiation. Perfect absorption of light by metamaterials have opened up new opportunities for application oriented functionalities such as efficient sensors and emitters. We present an absorber based sensing scheme at the terahertz frequencies and discuss optimized designs to achieve high frequency and amplitude sensitivities. The major advantage of a perfect metamaterial absorber as a sensor is the sensitive shift in the absorber resonance frequency along with the sharp change in the amplitude of the resonance due to strong interaction of the analyte with the electric and the magnetic fields at resonant perfect absorption frequency. We compare the sensing performance of the perfect metamaterial absorber with its complementary structural design and planar metasurface with identical structure. The best FoM values obtained for the absorber sensor here...

  3. Effective Field Theoretical Approach to Black Hole Production

    OpenAIRE

    Bilke, Sven; Lipartia, Edisher; Maul, Martin

    2002-01-01

    A field theoretical description of mini black hole production at TeV energies is given taking into account the quantization of black holes in discrete resonances. The unknown quantum gravitational effects are absorbed in effective couplings, black hole masses and the Hawking temperature. The evaporation is described in terms of thermal field theory.

  4. Inferring Absorbing Organic Carbon Content from AERONET Data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  5. Black Consciousness

    Science.gov (United States)

    Hraba, Joseph; Siegman, Jack

    1974-01-01

    Black militancy is treated as an instance of class consciousness with criteria and scales developed to measure black consciousness and "self-placement" into black consciousness. These dimensions are then investigated with respect to the social and symbolic participation in the ideology of the black movement on the part of a sample of black…

  6. Liquid Hydrogen Absorber for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  7. Microscopic modeling of nitride intersubband absorbance

    Science.gov (United States)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  8. Energy-absorbing effectiveness factor

    OpenAIRE

    Jones, Norman

    2010-01-01

    Abstract A study is reported on the energy-absorbing effectiveness factor which was introduced recently. The factor is defined as the quotient of the total energy, which can be absorbed in a system, to the maximum energy up to failure in a normal tensile specimen, which is made from the same volume of material. This dimensionless parameter allows comparisons to be made of the effectiveness of various geometrical shapes and of energy-absorbers made from different materials. The infl...

  9. The rat bowel of β-asaron absorbs the research

    Institute of Scientific and Technical Information of China (English)

    QI Yue; JIA Dong; YOU Xian-min; ZOU Gui-xin; JIANG Hong

    2008-01-01

    Objective Study the β-asaron under the condition that the bowel each segment of rat and be worth in the diffent medicine density and pH of the absorption dynamics characteristic, as to it's the rat absorbs the part in the body and it absorbs the mechanism to carry on the study, for the further design β-asaron settle release the product to provide the living creature medicine learn the basis. Methods Apply the rat to the body to infuse to flow the bowel absorption experiment investigation and absorption dynamics characteristic;adopt the HPLC method measurement β-asaron is in rat body the bowel absorbs the medicine density within the reflux liquid. Results It absorb the quantity and β-asaron of the medicine in the reflux liquid, the density of β-asaron becomes the direct proption, the absorption speed constant of the medicine is basic and constant within the scope of the 19 μg·mL-1- 57 μg·mL-1; In the pH is 5.6; 6.9; 8.0 three kinds of dissimilarities lie the absorption velocity constant of the quality and absorb the of percentage and also did not show the difference of salience;β-asaron is in the small intestines the lower part absorb better, absorbthe velocity to press to return to bowel, ileum, jejunum, duodenum, colon to descend one by one in order, absorb the velocity constant one by one in order is 0.402, 0.396, 0.385, 0.325 h-1. Conclusions β-asaron absorbs to present a class absorption dynamics characteristic in the bowel way, absorbing the mechanism as passive absorption; in order to return to ileum and jejunums, main absorption part there is certain absorption in the colon, too.

  10. Pyrolytic carbon coated black silicon.

    Science.gov (United States)

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-01-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm. PMID:27174890

  11. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    Science.gov (United States)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  12. Selective coating for solar panels. [using black chrome and black nickel

    Science.gov (United States)

    Mcdonald, G. E. (Inventor)

    1977-01-01

    The energy absorbing properties of solar heating panels are improved by depositing a black chrome coating of controlled thickness on a specially prepared surface of a metal substrate. The surface is prepared by depositing a dull nickel on the substrate, and the black chrome is plated on this low emittance surface to a thickness between 0.5 micron and 2.5 microns.

  13. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  14. Black holes and beyond

    International Nuclear Information System (INIS)

    's research councils have yet to put any real money behind these ideas. Black holes are best described by the general theory of relativity. However, general relativity is a classical theory of gravity, and although its predictions have been verified in many experiments, a quantum theory of gravity remains one of the holy grails of physics. One of the first physicists to make real progress in this quest to reconcile general relativity and quantum mechanics was Stephen Hawking. In 1974 Hawking calculated what would happen if a quantum fluctuation occurred near an event horizon. He concluded that the black hole would radiate, and that the amount of radiation would be inversely proportional to the mass of the black hole. However, black holes tend to be very heavy, so their output of Hawking radiation would be too low to detect experimentally. One intriguing exception could be much smaller primordial black holes created in the big bang: these should radiate observable amounts of gamma rays, but they have not been detected yet. This whole body of work - in which thermodynamic concepts such as temperature and entropy are also associated with the black hole - is Hawking's major achievement in physics. The detection of Hawking radiation is the ultimate goal of experiments on artificial black holes, although a lot of theoretical and experimental work has to be done first. The successful experiment is likely to involve a flowing Bose-Einstein condensate or a medium in which the speed of light can be reduced to zero. After years of groundwork, physicists have recently made rapid progress in both these fields. Meanwhile, the recent observation of neutrons in discrete quantum states in a gravitational potential shows that quantum gravity effects can be seen in the laboratory. All that is needed now is an act of faith. (U.K.)

  15. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  16. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-05-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  17. An electromagnetic black hole made of metamaterials

    CERN Document Server

    Cheng, Qiang

    2009-01-01

    Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

  18. Black Droplets

    CERN Document Server

    Santos, Jorge E

    2014-01-01

    Black droplets and black funnels are gravitational duals to states of a large N, strongly coupled CFT on a fixed black hole background. We numerically construct black droplets corresponding to a CFT on a Schwarzchild background with finite asymptotic temperature. We find two branches of such droplet solutions which meet at a turning point. Our results suggest that the equilibrium black droplet solution does not exist, which would imply that the Hartle-Hawking state in this system is dual to the black funnel constructed in \\cite{Santos:2012he}. We also compute the holographic stress energy tensor and match its asymptotic behaviour to perturbation theory.

  19. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  20. Brown carbon: a significant atmospheric absorber of solar radiation?

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2013-09-01

    Full Text Available Several recent observational studies have shown organic carbon aerosols to be a significant source of absorption of solar radiation. The absorbing part of organic aerosols is referred to as "brown" carbon (BrC. Using a global chemical transport model and a radiative transfer model, we estimate for the first time the enhanced absorption of solar radiation due to BrC in a global model. The simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE, increases from 0.9 for non-absorbing organic carbon to 1.2 (1.0 for strongly (moderately absorbing BrC. The calculated AAE for the strongly absorbing BrC agrees with AERONET spectral observations at 440–870 nm over most regions but overpredicts for the biomass burning-dominated South America and southern Africa, in which the inclusion of moderately absorbing BrC has better agreement. The resulting aerosol absorption optical depth increases by 18% (3% at 550 nm and 56% (38% at 380 nm for strongly (moderately absorbing BrC. The global simulations suggest that the strongly absorbing BrC contributes up to +0.25 W m−2 or 19% of the absorption by anthropogenic aerosols, while 72% is attributed to black carbon, and 9% is due to sulfate and non-absorbing organic aerosols coated on black carbon. Like black carbon, the absorption of BrC (moderately to strongly inserts a warming effect at the top of the atmosphere (TOA (0.04 to 0.11 W m−2, while the effect at the surface is a reduction (−0.06 to −0.14 W m−2. Inclusion of the strongly absorption of BrC in our model causes the direct radiative forcing (global mean of organic carbon aerosols at the TOA to change from cooling (−0.08 W m−2 to warming (+0.025 W m−2. Over source regions and above clouds, the absorption of BrC is higher and thus can play an important role in photochemistry and the hydrologic cycle.

  1. Black Eye

    Science.gov (United States)

    ... eyesight if not treated. If both eyes are black after a head injury, it could signify a skull fracture or other serious injury. Next Black Eye Symptoms Related Ask an Ophthalmologist Answers How ...

  2. The dynamics analysis of a ferrofluid shock absorber

    Science.gov (United States)

    Yao, Jie; Chang, Jianjun; Li, Decai; Yang, Xiaolong

    2016-03-01

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology.

  3. A Black feminist approach to nursing research.

    Science.gov (United States)

    Barbee, E L

    1994-10-01

    Despite the presence of a body of Black feminist literature, the growing body of nursing literature on feminism and the feminist approach to research remains narrowly focused on White feminist concerns. By essentially ignoring the realities of Black women, nursing has reproduced the errors of previous White feminists. This article demonstrates the relevance of the Black feminist approach to nursing by applying it in combination with general feminist research principles and anthropological theory in research concerned with low-income Black women's experiences with dysphoria and depression. The findings of the research suggest that a combination approach more clearly illuminates how context effects dysphoria in poor Black women.

  4. Absorbers: Definitions, properties and applications

    Directory of Open Access Journals (Sweden)

    G. Belitskii

    1998-01-01

    Full Text Available Roughly speaking, the absorber is a set, which includes, after finite number of initial states, each trajectory of a transformation of space into itself. This paper deals with the exact definition of absorbers for linear operators, the study of the properties, the applications to “classical” dynamics and to solvability of operator equations. It is expected that the description of the structure of absorbers will add new insights to the recent discussion of nature and content of notion of attractiveness for nonlinear dynamics.

  5. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    This paper reports that the selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth, compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts

  6. The Physicochemical Changes of Black Garlic during Thermal Processing

    Directory of Open Access Journals (Sweden)

    Mengmeng Lei

    2015-03-01

    Full Text Available To explore the physicochemical changes of black garlic during the thermal processing steps and further reveal the role of Maillard reaction in the formation mechanism of black garlic. The physicochemical changes including UV-Vis absorbance, fluorescence and color difference were determined. The UV absorbance at 294 nm and browning intensity at 420 nm gradually increased with increasing heating time, while the fluorescence intensity showed a maximum value at the heating time of 3 days. The color value of black garlic increased after heating at 70-80°C for 10 days. These results indicated Maillard reaction was primarily responsible for the formation of black garlic.

  7. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  8. Are ethnic and gender specific equations needed to derive fat free mass from bioelectrical impedance in children of South asian, black african-Caribbean and white European origin? Results of the assessment of body composition in children study.

    Directory of Open Access Journals (Sweden)

    Claire M Nightingale

    Full Text Available BACKGROUND: Bioelectrical impedance analysis (BIA is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. METHODS: Cross-sectional study of children aged 8-10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500. Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z; B: FFM = linear combination(height(2/Z; C: FFM = linear combination(height(2/Z+weight}. RESULTS: Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A. The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A. Consistent results were observed when the equations were applied to a large external data set. CONCLUSIONS: Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations

  9. The absorber hypothesis of electrodynamics

    OpenAIRE

    De Luca, Jayme

    2008-01-01

    We test the absorber hypothesis of the action-at-a-distance electrodynamics for globally-bounded solutions of a finite-particle universe. We find that the absorber hypothesis forbids globally-bounded motions for a universe containing only two charged particles, otherwise the condition alone does not forbid globally-bounded motions. We discuss the implication of our results for the various forms of electrodynamics of point charges.

  10. Ultramassive Black Hole Coalescence

    CERN Document Server

    Khan, Fazeel; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gr...

  11. The Physicochemical Changes of Black Garlic during Thermal Processing

    OpenAIRE

    Mengmeng Lei; Zesheng Zhang; Rui Liu; Min Zhang; Mengying Xu

    2015-01-01

    To explore the physicochemical changes of black garlic during the thermal processing steps and further reveal the role of Maillard reaction in the formation mechanism of black garlic. The physicochemical changes including UV-Vis absorbance, fluorescence and color difference were determined. The UV absorbance at 294 nm and browning intensity at 420 nm gradually increased with increasing heating time, while the fluorescence intensity showed a maximum value at the heating time of 3 days. The col...

  12. Dancing with black holes

    CERN Document Server

    Aarseth, Sverre J

    2007-01-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  13. Absorber materials in CANDU PHWRs

    International Nuclear Information System (INIS)

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in the relatively benign environment of low pressure, low temperature heavy water between neighbouring rows or columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a redesigned back-fit resolved the problem. (author). 3 refs, 8

  14. Melanin pigmentation gives rise to black spots on the wings of the silkworm Bombyx mori.

    Science.gov (United States)

    Ito, Katsuhiko; Yoshikawa, Manabu; Fujii, Takeshi; Tabunoki, Hiroko; Yokoyama, Takeshi

    2016-01-01

    Several mutants of the silkworm Bombyx mori show body color variation at the larval and adult stages. The Wild wing spot (Ws) mutant exhibits a phenotype in which the moth has a spot on the apex of the forewing. In this study, we investigated this trait to elucidate the molecular mechanism underlying the color pattern. Microscopy of the black spot of Ws mutants showed that the pigment emerges in the scales of the wing, and accumulation of the pigment becomes strong just before eclosion. We next examined the relationship between the black spot of the Ws mutant and melanin. The spectrophotometry using alkaline extracts from the black spot in the wing showed the highest absorption intensity at 405nm, which is the absorbance wavelength of melanin. Moreover, inhibition assays for enzymes implicated in melanin synthesis using 3-iodo-l-tyrosine (a tyrosine hydroxylase inhibitor) and L-α-methyl-DOPA (a dopa decarboxylase inhibitor) revealed that treatment with each inhibitor disrupted the pigmentation of the wing of the Ws mutant. On the basis of these results, we analyzed the expression pattern of five genes involved in melanin formation, and found that the expression levels of yellow and laccase2 were increased just before pigmentation, whereas those of DDC, tan, and TH were increased when the apex of the wing turned black. These results showed that melanin pigmentation gives rise to the black spot on the wing. PMID:27405010

  15. Center of Mass of Two or More Celestial Bodies as a Basis of Comets and «Black Holes» Mechanism

    OpenAIRE

    Eugeny F. Orlov

    2012-01-01

    The article considers the questions, arising during rendezvous of two celestial bodies with equal mass, one of which is the Earth and the consequences of such rendezvous to modern civilization, suggests the idea of centers of galaxies mass with anomalously large values of the gravitational fields, which allows to divide them into two types – material filled and hollow.

  16. Center of Mass of Two or More Celestial Bodies as a Basis of Comets and «Black Holes» Mechanism

    Directory of Open Access Journals (Sweden)

    Eugeny F. Orlov

    2012-04-01

    Full Text Available The article considers the questions, arising during rendezvous of two celestial bodies with equal mass, one of which is the Earth and the consequences of such rendezvous to modern civilization, suggests the idea of centers of galaxies mass with anomalously large values of the gravitational fields, which allows to divide them into two types – material filled and hollow.

  17. Mushroom plasmonic metamaterial infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji [Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661 (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  18. Carbon Absorber Retrofit Equipment (CARE)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Eric [Neumann Systems Group, Incorporated, Colorado Springs, CO (United States)

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  19. Black Culture

    Directory of Open Access Journals (Sweden)

    Angela Khristin Brown

    2013-07-01

    Full Text Available The migration of blacks in North America through slavery became united.  The population of blacks past downs a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape from poverty of enslavement and to establish a way of life through tradition. A way of personal freedoms was through getting a good education that lead to a better foundation and a better way of life. 

  20. Photon Black Holes

    CERN Document Server

    Hernández, X; Mendoza, S; Sussman, R A

    2005-01-01

    We study the relationship between the energy and entropy of a black body photon gas, within an idealised spherical adiabatic enclosure of radius R, as this is compressed into a self-gravitating regime. We show that this regime approximately coincides with the black hole regime for the system, i.e., R ~ R_{s}, where R_{s} denotes the Schwarzschild radius of the system. The entropy of this system is always below the suggested Holographic bound, even as R \\to R_{s}. A plausible quantum configuration for the photon gas at R \\to R_{s} is suggested, which satisfies all energy, entropy and temperature black hole conditions. Finally we examine our results from the point of view of recent Loop Quantum Gravity ideas.

  1. Waveform-dependent absorbing metasurfaces

    CERN Document Server

    Wakatsuchi, Hiroki; Rushton, Jeremiah J; Sievenpiper, Daniel F

    2014-01-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high power pulses but not for high power continuous waves (CWs), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e. CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  2. Anomalous Diffusion with Absorbing Boundary

    OpenAIRE

    Kantor, Yacov; Kardar, Mehran

    2007-01-01

    In a very long Gaussian polymer on time scales shorter that the maximal relaxation time, the mean squared distance travelled by a tagged monomer grows as ~t^{1/2}. We analyze such sub-diffusive behavior in the presence of one or two absorbing boundaries and demonstrate the differences between this process and the sub-diffusion described by the fractional Fokker-Planck equation. In particular, we show that the mean absorption time of diffuser between two absorbing boundaries is finite. Our res...

  3. Perfectly Reflectionless Omnidirectional Electromagnetic Absorber

    CERN Document Server

    Sainath, Kamalesh

    2014-01-01

    We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives, we introduce two new OEMA blueprints. While these two blueprints do not correspond to reflectionless media, they are effective in absorbing incident waves in a manner robust to incident wave diversity.

  4. Light Absorbing Aerosols in Mexico City

    Science.gov (United States)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  5. Life under a black sun

    CERN Document Server

    Opatrný, Tomáš; Bakala, Pavel

    2016-01-01

    Life is dependent on the income of energy with low entropy and the disposal of energy with high entropy. On Earth, the low-entropy energy is provided by solar radiation and the high-entropy energy is disposed as infrared radiation emitted into the cold space. Here we turn the situation around and assume cosmic background radiation as the low-entropy source of energy for a planet orbiting a black hole into which the high-entropy energy is disposed. We estimate the power that can be produced by thermodynamic processes on such a planet, with a particular interest in planets orbiting a fast rotating Kerr black hole as in the science fiction movie {\\em Interstellar}. We also briefly discuss a reverse Dyson sphere absorbing cosmic background radiation from the outside and dumping waste energy to a black hole inside.

  6. Hawking Radiation from Regular Black Hole as a Possible Probe for Black Hole Interior Structure

    CERN Document Server

    Deng, Yanbin

    2016-01-01

    The notion of the black hole singularity and the proof of the singularity theorem in general relativity were considered great successes in gravitational physics. On the other hand they also presented deep puzzles to physicists. Conceptual challenges were set up by the intractability of the singularity. The existence of black hole horizons which cover up the interior, including the singularity of the black hole from outside observers, builds an information curtain, further hindering physicists from understanding the nature of the singularity and the interior structure of black holes. The regular black hole is a concept produced out of multiple attempts to establish a tractable and understandable interior structure for black hole and to avoid the singularity inside the black hole body. A method is needed to check the correctness of the new constructions of black holes. After studying the Hawking radiation by fermion tunnelling from one type of regular black hole, structure dependent results were obtained. The r...

  7. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  8. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Science.gov (United States)

    Hader, J.; Yang, H.-J.; Scheller, M.; Moloney, J. V.; Koch, S. W.

    2016-02-01

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  9. The First Massive Black Hole Seeds and Their Hosts

    OpenAIRE

    Bellovary, Jillian; Volonteri, Marta; Governato, Fabio; Shen, Sijing; Quinn, Thomas; Wadsley, James

    2011-01-01

    We investigate the formation of the first massive black holes in high redshift galaxies, with the goal of providing insights to which galaxies do or do not host massive black holes. We adopt a novel approach to forming seed black holes in galaxy halos in cosmological SPH+N-body simulations. The formation of massive black hole seeds is dictated directly by the local gas density, temperature, and metallicity, and motivated by physical models of massive black hole formation. We explore seed blac...

  10. Educação, identidade negra e formação de professores/as: um olhar sobre o corpo negro e o cabelo crespo Education, black identity, and teacher education: a look upon the black body and hair

    Directory of Open Access Journals (Sweden)

    Nilma Lino Gomes

    2003-06-01

    aesthetics. For that, the text introduces the need to articulate education and non-education processes, to insert new themes and discussions into the field of teacher education. Following on the considerations made by the author in her doctoral thesis, the representations and notions about the black body and hair constructed inside and outside school are discussed, based on memories and testimonies of black men and women interviewed during an ethnographic study carried out in ethnic beauty shops in Belo Horizonte. For those people, the experience with the black body and hair is not restricted to the family environment, friendships, militancy or love life. The school appears in several testimonies as an important space in which the tense process of construction of the black identity also takes place. Sadly, the school is not often remembered as an institution where black people and their aesthetic standards are viewed positively. The appreciation of this context reveals that the body, as a support for the construction of the black identity, still has to be taken up as a theme of choice by the educational field, particularly in the studies on teacher education and ethnic-cultural diversity. It also shows that, when considering such diversity, this field of study will have to open itself to the dialogue with other spaces where black people also construct their identity, spaces such as beauty shops, many times regarded as unconventional in the field of education.

  11. Preview control of vehicle suspension system featuring MR shock absorber

    International Nuclear Information System (INIS)

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  12. Black/White Differences in Perceived Weight and Attractiveness among Overweight Women

    OpenAIRE

    Chithambo, Taona P.; Stanley J. Huey

    2013-01-01

    Numerous studies have reported that Black women are more satisfied with their bodies than White women. The buffering hypothesis suggests that aspects of Black culture protect Black women against media ideals that promote a slender female body type; therefore, Black women are expected to exhibit higher body esteem than White women. To test this hypothesis, the current study aimed to assess the influence of race on weight perception, perceived attractiveness, and the interrelations between body...

  13. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  14. Optical trapping of absorbing particles

    CERN Document Server

    Rubinsztein-Dunlop, H; Friese, M E J; Heckenberg, N R

    1998-01-01

    Radiation pressure forces in a focussed laser beam can be used to trap microscopic absorbing particles against a substrate. Calculations based on momentum transfer considerations show that stable trapping occurs before the beam waist, and that trapping is more effective with doughnut beams. Such doughnut beams can transfer angular momentum leading to rotation of the trapped particles. Energy is also transferred, which can result in heating of the particles to temperatures above the boiling point of the surrounding medium.

  15. Optimum thickness of Mossbauer absorber

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    If recoilless fraction fa is available, the optimum absorber thickness dopt can be calculated by maximizing the signal to noise ratio or Q factor. In this work,an approach presented is to get experimental Qexp as a function of the thickness, and then fitting Qexp by its theoretical expression gives fa value. At last the dopt value is deduced from a maximum on the fitted curve. In such a way, thicknesses of six specimens with quadrupole or magnetic hyperfine splitting were optimized.

  16. Black psyllium

    Science.gov (United States)

    ... block your throat or esophagus and may cause choking. Do not take this product if you have ... take enough water. Otherwise, black psyllium might cause choking. Take at least 150 mL water for each ...

  17. Black tea

    Science.gov (United States)

    ... heartburn, dizziness, ringing in the ears, convulsions, and confusion. Also, people who drink black tea or other ... glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), chlorpropamide (Diabinese), glipizide (Glucotrol), tolbutamide ( ...

  18. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    Science.gov (United States)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  19. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    instance, the UK's research councils have yet to put any real money behind these ideas. Black holes are best described by the general theory of relativity. However, general relativity is a classical theory of gravity, and although its predictions have been verified in many experiments, a quantum theory of gravity remains one of the holy grails of physics. One of the first physicists to make real progress in this quest to reconcile general relativity and quantum mechanics was Stephen Hawking. In 1974 Hawking calculated what would happen if a quantum fluctuation occurred near an event horizon. He concluded that the black hole would radiate, and that the amount of radiation would be inversely proportional to the mass of the black hole. However, black holes tend to be very heavy, so their output of Hawking radiation would be too low to detect experimentally. One intriguing exception could be much smaller primordial black holes created in the big bang: these should radiate observable amounts of gamma rays, but they have not been detected yet. This whole body of work - in which thermodynamic concepts such as temperature and entropy are also associated with the black hole - is Hawking's major achievement in physics. The detection of Hawking radiation is the ultimate goal of experiments on artificial black holes, although a lot of theoretical and experimental work has to be done first. The successful experiment is likely to involve a flowing Bose-Einstein condensate or a medium in which the speed of light can be reduced to zero. After years of groundwork, physicists have recently made rapid progress in both these fields. Meanwhile, the recent observation of neutrons in discrete quantum states in a gravitational potential shows that quantum gravity effects can be seen in the laboratory. All that is needed now is an act of faith. (U.K.)

  20. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang; Zhang, Deyuan [Bionic and Micro/Nano/Bio-Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Cai, Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio-Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Yuan, Liming; Zhang, Wenqiang [Bionic and Micro/Nano/Bio-Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2013-02-15

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1-18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum -11.85 dB at 1.5 mm and -15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band. - Highlights: Black-Right-Pointing-Pointer The added GP increased the permittivity and permeability of composites filled with CIPs. Black-Right-Pointing-Pointer The enhancement was owing to interactions of the two absorbents and the fabrication process. Black-Right-Pointing-Pointer The coating process decreased the effective eccentricity of the particles, and increased the conductivity of the composites. Black-Right-Pointing-Pointer The composites to which CIPs/GP were added in coating process had excellent absorbing properties in the L-band.

  1. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel;

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  2. Glueing of solar absorbers; Solarabsorber kleben

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-04-20

    Bonding technologies in absorber fabrication are evolving. After soldering, ultrasonic welding and laser welding, glueing is the latest development. The Go Innovate AG company developed a process for glueing the most varied absorber materials.

  3. Nanoarchitecture in the black wings of Troides magellanus: a natural case of absorption enhancement in photonic materials

    CERN Document Server

    Herman, Aline; Deparis, Olivier; Simonis, Priscilla; Vigneron, Jean Pol

    2013-01-01

    The birdwings butterfly Troides magellanus possesses interesting properties for light and thermal radiation management. The black wings of the male exhibit strong (98%) absorption of visible light as well as two strong absorption peaks in the infrared both due to chitin. These peaks are located in the spectral region where the black body emits at 313K. The study of absorption enhancement in this butterfly could be helpful to design highly absorbent biomimetic materials. Observations of the wings using a scanning electron microscope (SEM) reveal that the scales covering the wings are deeply nanostructured. A periodic three-dimensional (3D) model of the scale nanoarchitecture is elaborated and used for numerical transfer-matrix simulations of the absorption spectrum. The complex refractive index of the wing material is approximated by a multi-oscillator Lorentz model, leading to a broad absorption in the visible range as well as two peaks in the infrared. The absorption peak intensities turn out to be dependent...

  4. Experimental and Theoretical Study for Performance Enhancement of Air Solar Collectors by Using Different Absorbers

    Directory of Open Access Journals (Sweden)

    Ahmed A. Mohammad Saleh

    2016-09-01

    Full Text Available An experimental and theoretical study has been done to investigate the thermal performance of different types of air solar collectors, In this work air solar collector with a dimensions of (120 cm x90 cm x12 cm , was tested under climate condition of Baghdad city with a (43° tilt angel by using the absorber plate (1.45 mm thickness, 115 cm height x 84 cm width, which was manufactured from iron painted with a black matt. The experimental test deals with five types of absorber:- Conventional smooth flat plate absorber , Finned absorber , Corrugated absorber plate, Iron wire mesh on absorber And matrix of porous media on absorber . The hourly and average efficiency of the collectors were investigated for three values of mass flow rates (0.016 kg/s to 0.027 kg/s for each type of collector and then the porosity for the last collector type was tested by changing the porosity of porous media. A typical air solar collector has been studied Theoretically to build a standard software for testing any type of air solar collectors with local weather data . From the experimental study it can be seen by using some obstacle material to the air flow (fins, corrugated absorber plate, iron wire mesh porous media on the absorber could be enhanced the efficiencies not less than 4 % for finned type and 8 % for corrugated and 25 % for mesh and 30 % for porous media comparing with flat plate (smooth collector . Theoretically, the results showed that the collector with high convention heat transfer coefficient porous media has high hourly efficiency about (η = 56 % and iron wire mesh on absorber ( η = 52 % , on the other side the minimum performance occurred in the flat plate absorber (η = 28 %. Comparison of results reveals that the theoretical predictions agree reasonably well with experimental results. And the difference between the theoretical and experimental efficiency in general was between (1─ 15 %.

  5. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк

    2013-07-01

    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  6. White Dwarfs, Neutron Stars and Black Holes

    Science.gov (United States)

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  7. Black holes

    CERN Document Server

    Chrúsciel, P T

    2002-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...

  8. Topics in General Relativity theory: Gravitational-wave measurements of black-hole parameters; gravitational collapse of a cylindrical body; and classical-particle evolution in the presence of closed, timelike curves

    Science.gov (United States)

    Echeverria, Fernando

    I study three different topics in general relativity. The first study investigates the accuracy with which the mass and angular momentum of a black hole can be determined by measurements of gravitational waves from the hole, using a gravitational-wave detector. The black hole is assumed to have been strongly perturbed and the detector measures the waves produced by its resulting vibration and ring-down. The uncertainties in the measured parameters arise from the noise present in the detector. It is found that the faster the hole rotates, the more accurate the measurements will be, with the uncertainty in the angular momentum decreasing rapidly with increasing rotation speed. The second study is an analysis of the gravitational collapse of an infinitely long, cylindrical dust shell, an idealization of more realistic, finite-length bodies. It is found that the collapse evolves into a naked singularity in finite time. Analytical expressions for the variables describing the collapse are found at late times, near the singularity. The collapse is also followed, with a numerical simulation, from the start until very close to the singularity. The singularity is found to be strong, in the sense that an observer riding on the shell will be infinitely stretched in one direction and infinitely compressed in another. The gravitational waves emitted from the collapse are also analyzed. The last study focuses on the consequences of the existence of closed time like curves in a worm hole space time. One might expect that such curves might cause a system with apparently well-posed initial conditions to have no self-consistent evolution. We study the case of a classical particle with a hard-sphere potential, focusing attention on initial conditions for which the evolution, if followed naively, is self-inconsistent: the ball travels to the past through the worm hole colliding with its younger self, preventing itself from entering the worm hole. We find, surprisingly, that for all

  9. A Model For The Absorption Of Thermal Radiation By Gold-Black

    OpenAIRE

    Quinlan, Brendan Robert

    2015-01-01

    The work presented here addresses an important topic in thermal radiation detection when gold-black is used as an absorber. Sought is a model to simulate the absorption of thermal radiation by gold-black. Fractal geometry is created to simulate the topology of gold-black. Then electrical circuits based on the topology are identified that capture the physics of the interaction between the gold-black material and incident electro-magnetic radiation. Parameters of the model are then adj...

  10. Mining the XRT archive to probe the X-ray absorber structure in the AGN population

    CERN Document Server

    Ballo, L; Moretti, A; Della Ceca, R; Andreon, S; Caccianiga, A; Braito, V; Campana, S; Vignali, C

    2015-01-01

    One of the key ingredients of the Unified Model of Active Galactic Nuclei (AGN) is the presence of a torus-like optically thick medium composed by dust and gas around the putative supermassive black hole. However, the structure, size and composition of this circumnuclear medium are still matter of debate. To this end, the search for column density variations through X-ray monitoring on different timescales (months, weeks and few days) is fundamental to constrain size, kinematics and location of the X-ray absorber(s). Here we describe our project of mining the Swift-XRT archive to assemble a sample of AGN with extreme column density variability and determining the physical properties of the X-ray absorber(s). We also present the results obtained from a daily-weekly Swift-XRT follow-up monitoring recently performed on one of the most interesting new candidates for variability discovered so far, Mrk 915.

  11. Shape of black holes

    CERN Document Server

    Clement, María E Gabach

    2015-01-01

    It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.

  12. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  13. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  14. Fast ionized X-ray absorbers in AGNs

    Science.gov (United States)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  15. Thermal radiation absorbed by dairy cows in pasture

    Science.gov (United States)

    da Silva, Roberto Gomes; Guilhermino, Magda Maria; de Morais, Débora Andréia E. Façanha

    2010-01-01

    The goal of the present paper was to assess a method for estimating the thermal radiation absorbed by dairy cows (0.875 Holstein-0.125 Guzerath) on pasture. A field test was conducted with 472 crossbred dairy cows in three locations of a tropical region. The following environmental data were collected: air temperature, partial vapour pressure, wind speed, black globe temperature, ground surface temperature and solar radiation. Average total radiation absorbed by animals was calculated as {R_{abs}} = 640.0 ± 3.1 W.{m^{ - 2}} . Absorbed short-wave radiation (solar direct, diffuse and reflected) averaged 297.9 ± 2.7 W m-2; long wave (from the sky and from terrestrial surfaces) averaged 342.1 ± 1.5 W m-2. It was suggested that a new environmental measurement, the effective radiant heat load (ERHL), could be used to assess the effective mean radiant temperature ( {T_{mr}^* } ) . Average T_{mr}^* was 101.4 ± 1.2°C, in contrast to the usual mean radiant temperature, {T_{mr}} = 65.1 ± 0.5° C . Estimates of T_{mr}^* were considered as more reliable than those of T mr in evaluating the thermal environment in the open field, because T mr is almost totally associated only with long wave radiation.

  16. Black Holes and Gravitational Properties of Antimatter

    CERN Document Server

    Hajdukovic, D

    2006-01-01

    We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.

  17. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  18. Fischer Black

    OpenAIRE

    Robert C. Merton; Myron S. Scholes

    2013-01-01

    ReprintThis article was originally published by Wiley for the American Finance Association (Merton RC, Scholes MS. 1995. Fischer Black. J. Finance 50(5):1359–70). It is reprinted with permission from John Wiley and Sons © 1995. Reference formatting was updated to facilitate linking.

  19. KINIK, Absorber Rod Calibration Kinetics

    International Nuclear Information System (INIS)

    1 - Description of program or function: KINIK is an inverse kinetic code that solves the inverse form of the point kinetic equations using the Runge-Kutta method. An optimization procedure is involved to control the time step and to reduce the running time. Up to 24 delayed neutron groups of different types (in case of heavy water as moderator or beryllium as reflector) are considered. KINIK is commonly applied to determine reactivity worths and to calibrate absorber rods. Following a rod drop, neutron flux or power is recorded as a function of time and used as input. 2 - Method of solution: The inverse point kinetic equations are numerically solved for each time step using the Runge-Kutta method. The input data resulting from measurements are first approximated by polynomials of maximum degree 10 using a least-squares approach

  20. Black hole entropy and the renormalization group

    CERN Document Server

    Satz, Alejandro

    2013-01-01

    Four decades after its first postulation by Bekenstein, black hole entropy remains mysterious. It has long been suggested that the entanglement entropy of quantum fields on the black hole gravitational background should represent at least an important contribution to the total Bekenstein-Hawking entropy, and that the divergences in the entanglement entropy should be absorbed in the renormalization of the gravitational couplings. In this talk, we describe how an improved understanding of black hole entropy is obtained by combining these notions with the renormalization group. By introducing an RG flow scale, we investigate whether the total entropy of the black hole can be partitioned in a "gravitational" part related to the flowing gravitational action, and a "quantum" part related to the unintegrated degrees of freedom. We describe the realization of this idea for free fields, and the complications and qualifications arising for interacting fields.

  1. Reconceptualizing Successful Aging Among Black Women and the Relevance of the Strong Black Woman Archetype

    OpenAIRE

    Baker, Tamara A.; Buchanan, NiCole T.; Mingo, Chivon A.; Roker, Rosalyn; Brown, Candace S

    2014-01-01

    Although there are multiple pathways to successful aging, little is known of what it means to age successfully among black women. There is a growing body of literature suggesting that black women experience a number of social challenges (sexism and racism) that may present as barriers to aging successfully. Applying aspects of the Strong Black Women ideal, into theoretical concepts of successful aging, may be particularly relevant in understanding which factors impair or promote the ability o...

  2. Nonlocal Effects in Black Body Radiation

    CERN Document Server

    Bremm, G N

    2016-01-01

    Nonlocal electrodynamics is a formalism developed to include nonlocal effects in the measurement process caused by the non-inertial state of the observers. This theory modifies Maxwell's electrodynamics by eliminating the hypothesis of locality that assumes an accelerated observer simultaneously equivalent to a comoving inertial frame of reference. In this scenario, the transformation between an inertial and accelerated observer is generalized which affects the properties of physical fields. In particular, we analyze how an uniformly accelerated observer perceives a homogeneous and isotropic blackbody radiation. We show that all nonlocal effects are transient and most relevant in the first period of acceleration.

  3. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  4. Verificação das doses de radiação absorvidas durante a técnica de irradiação de corpo inteiro nos transplantes de medula óssea, por meio de dosímetros termoluminescentes Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters

    Directory of Open Access Journals (Sweden)

    Adelmo José Giordani

    2004-10-01

    Full Text Available OBJETIVO: Avaliar a precisão das doses de radiação absorvidas na terapia de transplantes de medula óssea durante a técnica de irradiação de corpo inteiro. MATERIAIS E MÉTODOS: Utilizaram-se 200 pastilhas de sulfato de cálcio com disprósio compactado com teflon (CaSO4 + teflon, calibradas no ar e no "phantom", selecionadas aleatoriamente e dispostas em grupos de cinco no corpo dos pacientes. As leituras dosimétricas foram efetuadas pela leitora Harshaw 4000A. Nove pacientes foram irradiados no corpo inteiro em paralelos e em opostos laterais, utilizando-se unidade de cobalto-60, modelo Alcion II, com taxa de dose de 0,80 Gy/min a 80,5 cm, {campo (10 × 10 cm²}. A dosimetria dessa unidade foi realizada com dosímetro Victoreen 500. Para a determinação da dose média em cada ponto avaliado usaram-se os fatores individuais de calibração das pastilhas no ar e no "phantom", colocando-se um "build up" de 2 mm para superficializar a dose à distância de 300 cm. RESULTADOS: Em 70% dos pacientes obteve-se variação de dose menor que 5% e em 30% dos pacientes essa variação foi inferior a 10%, quando comparados os valores medidos com aqueles calculados em cada ponto. Na cabeça ocorre absorção, em média, de 14% da dose administrada, e nos pulmões, acréscimo de 2% na dose administrada. Nos pacientes com distância látero-lateral maior que 35 cm as variações entre as doses calculadas e medidas podem chegar a 30% da dose desejada, sem o uso de filtros compensadores. CONCLUSÃO: Os valores medidos das doses absorvidas nos diversos pontos anatômicos, comparados aos valores desejados (teóricos, apresentam tolerância de ±10%, considerando-se as diferenças anatômicas existentes, quando utilizados os fatores de calibração individuais das pastilhas.OBJECTIVE: To evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. MATERIALS AND METHODS: Two-hundred CaSO4:Dy + teflon

  5. Planar Metamaterial Absorber Based on Lumped Elements

    Institute of Scientific and Technical Information of China (English)

    GU Chao; QU Shao-Bo; PEI Zhi-Bin; ZHOU Hang; XU Zhuo; BAI Peng; PENG Wei-Dong; LIN Bao-Qin

    2010-01-01

    @@ We present the design of a planar metamaterial absorber based on lumped elements,which shows a wide-band polarization-insensitive and wide-angle strong absorption.This absorber consists of metal electric resonators,the dielectric substrate,the metal film and lumped elements.The simulated absorbances under two different loss conditions indicate that high absorbance in the absorption band is mainly due to lumped resistances.The simulated absorbances under three different load conditions indicate that the local resonance circuit(lumped resistance and capacitance)could boost up the resonance of the whole RLC circuit.The simulated voltage in lumped elements indicates that the transformation efficiency from electromagnetic energy to electric energy in the absorption band is high,and electric energy is subsequently consumed by lumped resistances.This absorber may have potential applications in many military fields.

  6. Research on Simulation and Test of the Nonlinear Responses for the Hydraulic Shock Absorber

    Institute of Scientific and Technical Information of China (English)

    张建武; 刘延庆

    2003-01-01

    Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.

  7. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  8. A Six-Fold Symmetric Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Humberto Fernández Álvarez

    2015-04-01

    Full Text Available A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  9. Diagonalizing the Black Hole Information Retrieval Process

    CERN Document Server

    Hooft, Gerard t

    2015-01-01

    The mechanism by which black holes return the absorbed information to the outside world is reconsidered, and described in terms of a set of mutually non-interacting modes. Our mechanism is based on the mostly classical gravitational back-reaction. The diagonalized formalism is particularly useful for further studies of this process. Although no use is made of string theory, our analysis appears to point towards an ensuing string-like interaction. It is shown how black hole entropy can be traced down to classical gravitational back-reaction.

  10. black cat

    Institute of Scientific and Technical Information of China (English)

    杜铁梅

    2016-01-01

    The black cat is a masterpiece of short fiction of Poe. He successfully solved the problem of creating of the horror effect by using scene description, symbol, repetition and first-person narrative methods. And created a complete and unified mysterious terror, achieved the effect of shocking. This paper aims to discuss the mystery in-depth and to enrich the research system in Poe’s novels.

  11. Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber

    Energy Technology Data Exchange (ETDEWEB)

    Akman, O. [Physics Department, Gebze Institute of Technology (GYTE), 41400 Gebze-Kocaeli (Turkey); Department of Physics, Sakarya University, 54100, Sakarya (Turkey); Kavas, H. [Department of Physics Engineering, Faculty of Sciences, Istanbul Medeniyet University, 34720 Istanbul (Turkey); Baykal, A., E-mail: hbaykal@fatih.edu.tr [Department of Chemistry, Fatih University, 34500, B. Cekmece-Istanbul (Turkey); Toprak, M.S. [Functional Materials Division, KTH Royal Institute of Technology, SE-16440 Stockholm (Sweden); Yildirim Beyazit University, Department of Materials Science and Engineering, Ulus-Ankara (Turkey); Coruh, Ali [Department of Physics, Sakarya University, 54100, Sakarya (Turkey); Aktas, B., E-mail: aktas@gyte.edu.tr [Physics Department, Gebze Institute of Technology (GYTE), 41400 Gebze-Kocaeli (Turkey)

    2013-02-15

    Polyacrylonitrile (PAN) textiles with 2 mm thickness are coated with magnetic nanoparticles in coating baths with Ni, Co and their alloys via an electroless metal deposition method. The crystal structure, morphology and magnetic nature of composites are investigated by X-ray Powder diffraction, Scanning Electron Microscopy, and dc magnetization measurement techniques. The frequency dependent microwave absorption measurements have been carried out in the frequency range of 12.4-18 GHz (X and P bands). Diamagnetic and ferromagnetic properties are also investigated. Finally, the microwave absorption of composites is found strongly dependent on the coating time. One absorption peak is observed between 14.3 and 15.8 GHz with an efficient absorption bandwidth of 3.3-4.1 GHz (under -20 dB reflection loss limit). The Reflection loss (RL) can be achieved between -30 and -50 dB. It was found that the RL is decreasing and absorption bandwidth is decreasing with increasing coating time. While absorption peak moves to lower frequencies in Ni coated PAN textile, it goes higher frequencies in Co coated ones. The Ni-Co alloy coated composites have fluctuating curve of absorption frequency with respect to coating time. These results encourage further development of magnetic nanoparticle coated textile absorbers for broadband applications. - Highlights: Black-Right-Pointing-Pointer Ni, Co and Ni-Co alloyed coatings on PAN were successfully prepared. Black-Right-Pointing-Pointer The incorporation of magnetic nanoparticles leads to interfacial polarization. Black-Right-Pointing-Pointer The composite prepared in Ni bath at 0.5 min leads to a wider absorption bandwidth and minimum coefficient of reflection. Black-Right-Pointing-Pointer About of -42 dB, more than 99.99% of the microwave absorption.

  12. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm3). 15 references, 7 figures, 6 tables

  13. Synthesis of dis-azo black dyes for electrowetting displays

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yifen, E-mail: carol.chiang@jintex.com.tw [Institute of Organic and Polymer Materials, National Taipei University of Technology, 1, Sec. 3, Chung-hsiao E. Rd., Taipei 10608, Taiwan, ROC (China); Chao, Yuchou, E-mail: ycchao@ntut.edu.tw [Institute of Organic and Polymer Materials, National Taipei University of Technology, 1, Sec. 3, Chung-hsiao E. Rd., Taipei 10608, Taiwan, ROC (China)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer The electrowetting technology with high reflectivity, high contrast, and fast response speed. Black-Right-Pointing-Pointer Color electrowetting display is manufactured by using black oil ink as an absorbing switch. Black-Right-Pointing-Pointer Conventional dis-azo black dyes possess poor solubility in linear alkanes. Black-Right-Pointing-Pointer Previous researches have focused on designing of electrowetting devices. Black-Right-Pointing-Pointer These dis-azo black dyes were resulted in having high solubility and neutral hue. - Abstract: This study was to design and synthesize a series of dis-azo dyes derived from p-n-alkyl aniline by introducing different alkyl group resulted in having high solubility in linear alkanes solvents, even absorption intensity of visible wavelengths. Results indicated that elementary properties of black oil ink were (1) non-polar; (2) low viscosity (<3.0 cps); (3) specified surface tension (<30 mN/m); (4) intensity of visible absorption uniformly covering 400-800 nm; (5) FoM equal to 100-1000; (6) hue close to standard black (L = 0, a = 0, b = 0). We can conclude that dis-azo black dyes fulfills elementary conditions of colored oil ink for electrowetting display.

  14. Comments on liquid hydrogen absorbers for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  15. 21 CFR 872.6050 - Saliva absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  16. Reconceptualizing successful aging among black women and the relevance of the strong black woman archetype.

    Science.gov (United States)

    Baker, Tamara A; Buchanan, NiCole T; Mingo, Chivon A; Roker, Rosalyn; Brown, Candace S

    2015-02-01

    Although there are multiple pathways to successful aging, little is known of what it means to age successfully among black women. There is a growing body of literature suggesting that black women experience a number of social challenges (sexism and racism) that may present as barriers to aging successfully. Applying aspects of the Strong Black Women ideal, into theoretical concepts of successful aging, may be particularly relevant in understanding which factors impair or promote the ability of black women to age successfully. The Strong Black Women archetype is a culturally salient ideal prescribing that black women render a guise of self-reliance, selflessness, and psychological, emotional, and physical strength. Although this ideal has received considerable attention in the behavioral sciences, it has been largely absent within the gerontology field. Nevertheless, understanding the dynamics of this cultural ideal may enhance our knowledge while developing an appreciation of the black woman's ability to age successfully. Rather than summarize the social, physical, and mental health literature focusing on health outcomes of black women, this conceptual review examines the Strong Black Women archetype and its application to the lived experiences of black women and contributions to current theories of successful aging. Focusing on successful aging exclusively among black women enhances our understanding of this group by considering their identity as women of color while recognizing factors that dictate their ability to age successfully. PMID:25416685

  17. A Unified View of X-ray Absorbers in AGNs and XRBs with MHD Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Behar, Ehud; Contopoulos, John

    2016-01-01

    The presence of UV and X-ray absorbers (aka. warm absorbers or WAs) has been long known for decades from extensive spectroscopic studies across diverse AGN populations such as nearby Seyfert galaxies and distant quasars. Furthermore, another class of seemingly distinct type of absorbers, ultra-fast outflows or UFOs, is becoming increasingly known today. Nonetheless, a physical identification of such absorbers, such as geometrical property and physical conditions, is very elusive to date despite the recent state-of-the-art observations. We develop a coherent scenario in which the detected absorbers are driven primarily (if not exclusively) by the action of global magnetic fields originating from a black hole accretion disk. In the context of MHD disk-wind of density profile of n~1/r, it is found that the properties of the observed WAs/UFOs are successfully described assuming a characteristic SED. As a case study, we analyze PG1211+143 and GRO J1655-40 to demonstrate that our wind model can systematically unify apparently diverse absorbers in both AGNs and XRBs in terms of explaining their global behavior as well as individual spectral lines.

  18. Structured Metal Film as Perfect Absorber

    Science.gov (United States)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  19. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop AL 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce RF impedance and to provide pumping access for the high local gas load

  20. Spacetime and orbits of bumpy black holes

    Science.gov (United States)

    Vigeland, Sarah J.; Hughes, Scott A.

    2010-01-01

    Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced “bumpy black holes”: objects that are almost, but not quite, general relativity’s black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes—objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime’s bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime’s multipoles deviate from the black hole expectation.

  1. Do black-furred animals compensate for high solar absorption with smaller hairs? A test with a polymorphic squirrel species

    Directory of Open Access Journals (Sweden)

    Melanie A. FRATTO, Andrew K. DAVIS

    2011-12-01

    Full Text Available In polymorphic mammalian species that display multiple color forms, those with dark, or melanic pelage would be prone to overheating, especially if they live in warm climates, because their fur absorbs solar energy at a higher rate. However, experimental studies indicate that certain physical properties of fur of dark individuals appear to prevent, or minimize heat stress, although it is not clear what properties do so. Here, we tested the possibility that black-furred individuals simply have shorter or thinner hair fibers, which would create a lighter (in terms of weight coat or one that allows greater air flow for evaporative coo- ling. We examined museum specimens of eastern fox squirrels Sciurus niger, a species native to the United States and one that displays brown, grey or all-black pelage color, and used image analysis procedures to quantify hairs from the dorsal surface and tail. From examination of 43 specimens (19 brown, 9 black and 15 grey, and 1,720 hairs, we found no significant difference in hair lengths across color morphs, but significant differences in hair fiber widths. Black squirrels had thinner body hairs than other forms (7% thinner, but thicker tail hairs (9% thicker than the others. Given that the dorsal surface would be directly exposed to solar radiation, we interpret this to be an adaptation to prevent heat stress during the day. The thicker tail hairs may be an adaptation for nighttime thermoregulation, since squirrels sleep with their tails wrapped around their bodies. These results add to a growing literature body of the functional significance of mammalian pelage [Current Zoology 57 (6: 731–736, 2011].

  2. Do black-furred animals compensate for high solar absorption with smaller hairs? A test with a polymorphic squirrel species

    Institute of Scientific and Technical Information of China (English)

    Melanie A. FRATTO; Andrew K. DAVIS

    2011-01-01

    In polymorphic mammalian species that display multiple color forms,those with dark,or melanic pelage would be prone to overheating,especially if they live in warm climates,because their fur absorbs solar energy at a higher rate.However,experimental studies indicate that certain physical properties of fur of dark individuals appear to prevent,or minimize heat stress,although it is not clear what properties do so.Here,we tested the possibility that black-furred individuals simply have shorter or thinner hair fibers,which would create a lighter (in terms of weight) coat or one that allows greater air flow for evaporative cooling.We examined museum specimens of eastern fox squirrels Sciurus niger,a species native to the United States and one that displays brown,grey or all-black pelage color,and used image analysis procedures to quantify hairs from the dorsal surface and tail.From examination of 43 specimens (19 brown,9 black and 15 grey),and 1,720 hairs,we found no significant difference in hair lengths across color morphs,but significant differences in hair fiber widths.Black squirrels had thinner body hairs than other forms (7% thinner),but thicker tail hairs (9% thicker) than the others.Given that the dorsal surface would be directly exposed to solar radiation,we interpret this to be an adaptation to prevent heat stress during the day.The thicker tail hairs may be an adaptation for nighttime thermoregulation,since squirrels sleep with their tails wrapped around their bodies.These results add to a growing literature body of the functional significance of mammalian pelage [Current Zoology 57 (6):731-736,2011].

  3. Relationship between biologic tissue heterogeneity and absorbed dose distribution in therapy of oncologic patients with cyclotron U-120 fast neutrons

    International Nuclear Information System (INIS)

    Effect of biological tissue heterogeneity on the absorbed dose distribution of U-120 cyclotron fast neutron beam was studied by estimation and experimental method. It was found that adipose and bone tissues significantly changes the pattern of neutron absorbed dose distribution in patient body. Absorbed dose in adipose layer increase by 20% as compared to the dose in soft biological tissue. Approximation method for estimation of the absorbed dose distribution of fast neutrons in heterogeneities was proposed which could be applied in the dosimetric planning of U-120 cyclotron neutron therapy of neoplasms

  4. Black supernovae and black holes in non-local gravity

    Science.gov (United States)

    Bambi, Cosimo; Malafarina, Daniele; Modesto, Leonardo

    2016-04-01

    In a previous paper, we studied the interior solution of a collapsing body in a non-local theory of gravity super-renormalizable at the quantum level. We found that the classical singularity is replaced by a bounce, after which the body starts expanding. A black hole, strictly speaking, never forms. The gravitational collapse does not create an event horizon but only an apparent one for a finite time. In this paper, we solve the equations of motion assuming that the exterior solution is static. With such an assumption, we are able to reconstruct the solution in the whole spacetime, namely in both the exterior and interior regions. Now the gravitational collapse creates an event horizon in a finite comoving time, but the central singularity is approached in an infinite time. We argue that these black holes should be unstable, providing a link between the scenarios with and without black holes. Indeed, we find a non catastrophic ghost-instability of the metric in the exterior region. Interestingly, under certain conditions, the lifetime of our black holes exactly scales as the Hawking evaporation time.

  5. Strain- and twist-engineered optical absorption of few-layer black phosphorus

    Science.gov (United States)

    Jia, Qian; Kong, XiangHua; Qiao, JingSi; Ji, Wei

    2016-09-01

    Density functional and many-body perturbation theories calculations were carried out to investigate fundamental and optical bandgap, exciton binding energy and optical absorption property of normal and strain- and twist-engineered few-layer black phosphorus (BP). We found that the fundamental bandgaps of few layer BP can be engineered by layer stacking and in-plane strain, with linear relationships to their associated exciton binding energies. The strain-dependent optical absorption behaviors are also anisotropic that the position of the first absorption peak monotonically blue-shifts as the strain applies to either direction for incident light polarized along the armchair direction, but this is not the case for that along the zigzag direction. Given those striking properties, we proposed two prototype devices for building potentially more balanced light absorbers and light filter passes, which promotes further applications and investigations of BP in nanoelectronics and optoelectronics.

  6. CO2在仿生物型吸收剂和其他吸收剂中的溶解度%SOLUBILITIES OF CO2 IN BIOMIMETIC AND OTHER ABSORBENTS

    Institute of Scientific and Technical Information of China (English)

    龚刚立; 王祥云; 张志炳

    2001-01-01

    Biomimetic CO2 Absorbent is a novel solvent for CO2 removal, which is derived from the key group of respiratory enzyme in animal bodies.The solubility performance of this substance is between physical and chemical absorbents and is suitable for process conditions which physical or chemical absorbents cannot match ideally.In this paper, CO2 solubilities in several typical absorbents including pure biomimetic absorbent, mixed biomimetic absorbent, AMP solution and NMP have been measured.The results show that the pure biomimetic and mixed biomimetic absorbents have good thermodynamic performance and prospective industrial application.

  7. Black-White Health Inequalities in Canada.

    Science.gov (United States)

    Veenstra, Gerry; Patterson, Andrew C

    2016-02-01

    Little is known about Black-White health inequalities in Canada or the applicability of competing explanations for them. To address this gap, we used nine cycles of the Canadian Community Health Survey to analyze multiple health outcomes in a sample of 3,127 Black women, 309,720 White women, 2,529 Black men and 250,511 White men. Adjusting for age, marital status, urban/rural residence and immigrant status, Black women and men were more likely than their White counterparts to report diabetes and hypertension, Black women were less likely than White women to report cancer and fair/poor mental health and Black men were less likely than White men to report heart disease. These health inequalities persisted after controlling for education, household income, smoking, physical activity and body-mass index. We conclude that high rates of diabetes and hypertension among Black Canadians may stem from experiences of racism in everyday life, low rates of heart disease and cancer among Black Canadians may reflect survival bias and low rates of fair/poor mental health among Black Canadian women represent a mental health paradox similar to the one that exists for African Americans in the United States. PMID:25894533

  8. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    A method is described for recovering UF6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  9. Specific absorbed fraction of X-ray in tissues from human organs

    International Nuclear Information System (INIS)

    Full text: X- rays are widely used in medical imaging and radiation therapy. The user of radioisotopes must have knowledge about how radiation interacts with matter, especially with the human body, because when photons enter the medium/body, they degrade their energy and build up in the medium, giving rise to secondary radiation. Calculations of the energy absorbed in a medium include not only the contribution of the uncollided photons from the source, but must also include the contributions from collided and secondary photons. In practice, this is done by multiplying the contribution of the uncollided photons by the energy absorption buildup factor. An accurate absorbed dose calculation needs specific absorbed fraction of energy. Geometric progression (GP) fitting method has been used to compute energy absorption build-up factor of Human organs such as brain, breast, eye lens, GI track, heart, kidney, liver, lung, lymph, ovary, pancreas, testis and skeleton-femur. The computed absorption build-up factor is used to estimate specific absorbed fraction of energy. The thickness of the medium up to 10mm and with penetration depth up to 40 mean free paths considered. The dependence of specific absorbed fraction of energy on incident photon energy, penetration and the thickness of the medium have also been studied. The specific absorbed fraction of energy increases up to the Epe and then decreases. Here Epe is the energy value at which the photo electric interaction coefficients matches with Compton interaction coefficients for a given value of effective atomic number (Zeff). The variation of specific absorbed fractions with energy is due to dominance of photoelectric absorption in the lower end and dominance of pair production in the higher photon energy region. In the lower energy end photoelectric absorption is dominant photon interaction process; hence specific absorbed fractions values minimum. As the energy of incident photon increases, Compton scattering overtakes

  10. Radionic nonuniform black strings

    Science.gov (United States)

    Tamaki, Takashi; Kanno, Sugumi; Soda, Jiro

    2004-01-01

    Nonuniform black strings in the two-brane system are investigated using the effective action approach. It is shown that the radion acts as a nontrivial hair of the black strings. From the brane point of view, the black string appears as the deformed dilatonic black hole which becomes a dilatonic black hole in the single brane limit and reduces to the Reissner-Nordström black hole in the close limit of two-branes. The stability of solutions is demonstrated using catastrophe theory. From the bulk point of view, the black strings are proved to be nonuniform. Nevertheless, the zeroth law of black hole thermodynamics still holds.

  11. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  12. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  13. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  14. CO2 Absorbing Capacity of MEA

    OpenAIRE

    José I Huertas; Gomez, Martin D.; Nicolas Giraldo; Jessica Garzón

    2015-01-01

    We describe the use of a gas bubbler apparatus in which the gas phase is bubbled into a fixed amount of absorbent under standard conditions as a uniform procedure for determining the absorption capacity of solvents. The method was systematically applied to determine the CO2 absorbing capacity of MEA (Ac) at several aqueous MEA (β) and gas-phase CO2 concentrations. Ac approached the nominal CO2 absorbing capacity of MEA (720 g CO2/kg MEA) at very low β levels, increasing from 447.9±18.1 to 581...

  15. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim;

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  16. Design and application of functional absorbers

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2004-01-01

    This paper gives an overview of the research at Institute of Acoustics, Tongji University, on functional absorbers and experience acquired in practical applications over the past three decades. Experiments and analysis of the absorption characteristics of three different geometrical forms of functional absorbers, i.e., panels, cubes and tubes, were conducted with different arrangements. The resulting esthetical effects are illustrated with pictures. Several non-fiber materials are used to compose functional absorbers with advantages both in acoustic properties and in architectural features. Cost effectiveness analysis is also given in order to provide design guidelines.

  17. Black Hole Entropy from Entropy of Hawking Radiation

    CERN Document Server

    Aghapour, Sajad

    2016-01-01

    We provide a simple way for calculating the entropy of a Schwarzschild black hole from the entropy of its Hawking radiation. To this end, we show that if a thermodynamic system loses its energy only through the black body radiation, its loss of entropy is always 3/4 of the entropy of the emitted radiation. This proposition enables us to relate the entropy of an evaporating black hole to the entropy of its Hawking radiation. Explicitly, by calculating the entropy of the Hawking radiation emitted in the full period of evaporation of the black hole, we find the Bekenstein-Hawking entropy of the initial black hole.

  18. Black holes and the Universe

    International Nuclear Information System (INIS)

    The superstrong gravitational field is the protagonist of this book. This gravitation is the power that warps space and time into a funnel and generates a black hole when a cosmic body undergoes catastrophic collapse. This superstrong gravitation reigns in the Universe, controlling the motion of infinitely large masses. The book describes natural phenomena caused by superstrong gravitation but perceived as nothing short of miracles, but it also explains how these miracles are studied and understood. (author)

  19. Black Urine

    Directory of Open Access Journals (Sweden)

    Rahim Vakili

    2016-06-01

    Full Text Available A 2-year-old boy was born at term of healthy, non-consanguineous Iranian parents. His mother attended in the clinic with the history of sometimes discoloration of diapers after passing urine. She noticed that first at the age of one month with intensified in recent months. His Physical examination and growth parameters were normal. His mother denied taking any medication (sorbitol, nitrofurantoin, metronidazole, methocarbamol, sena and methyldopa (5. Qualitative urine examination showed dark black discoloration. By this history, alkaptonuria was the most clinical suspicious. A 24-hour-urine sample was collected and sent for quantitative measurements. The urine sample was highly positive for homogentisic acid and negative for porphyrin metabolites.

  20. Cassini states for black hole binaries

    OpenAIRE

    Correia, Alexandre C. M.

    2015-01-01

    Cassini states correspond to the equilibria of the spin axis of a body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black hole binary systems base...

  1. Design of a magnetorheological automotive shock absorber

    Science.gov (United States)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  2. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue;

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented...

  3. Space Compatible Radar Absorbing Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate novel radar absorbing materials (RAM) for use in space or simulated space environments. These materials are lightweight...

  4. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  5. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping...... of a specific mode. The motion of the point of attachment of the tuned mass absorber to the structure has not only a contribution from the targeted mode, but also a background contribution from other non-resonant modes. Similarly, the force provided by the tuned mass absorber is distributed between the targeted...... with the desired maximum amplification, from which the device damper, mass and stiffness are determined, accounting for the background flexibility. Examples demonstrate the influence of the flexibility effect and the efficiency of the proposed procedure....

  6. Study on buffering characteristics of hydraulic absorber

    International Nuclear Information System (INIS)

    Control rod hydraulic drive mechanism (CRHDM) is a new type of in-vessel control rod drive technology. Hydraulic absorber is one of the key parts of control rod hydraulic drive line. It is used to buffer control rod when the rod scrams to prevent the cross-blades of control rod from deformation and damage. Based on the working process of the hydraulic absorber, a theoretical model of the buffering process was established. Calculation results of the theoretical model agree well with the experiment results. The trend of pressure change in absorber cylinder, the displacement and velocity of the piston and buffering force during the buffering process were obtained from the calculation results of the theoretical model. Then influence parameters about cushioning characteristics were analyzed, which laid foundation for optimal design of the hydraulic absorber. (authors)

  7. Directed percolation with an absorbing boundary

    OpenAIRE

    Lauritsen, K. B.; K. Sneppen; Markosova, M.; Jensen, M. H.

    1997-01-01

    We consider directed percolation with an absorbing boundary in 1+1 and 2+1 dimensions. The distribution of cluster lifetimes and sizes depend on the boundary. The new scaling exponents can be related to the exponents characterizing standard directed percolation in 1+1 dimension. In addition, we investigate the backbone cluster and red bonds, and calculate the distribution of living sites along the absorbing boundary.

  8. Taming electromagnetic metamaterials for isotropic perfect absorbers

    Directory of Open Access Journals (Sweden)

    Doan Tung Anh

    2015-07-01

    Full Text Available Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  9. Absorbing Boundary Conditions for Hyperbolic Systems

    Institute of Scientific and Technical Information of China (English)

    Matthias Ehrhardt

    2010-01-01

    This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.

  10. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  11. Perfect terahertz absorber using fishnet based metafilm

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Shchegolkov, Dmitry Yu [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Smirnova, E I [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  12. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  13. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io;

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  14. Performance Analysis of Manet Before and After Black Hole Attack

    Directory of Open Access Journals (Sweden)

    Ms.Heena Bhalla

    2012-01-01

    Full Text Available A Mobile ad-hoc network is a temporary network set up by wireless mobile computers (or nodes moving arbitrary in the places that have no network infrastructure. Due to security vulnerabilities of the routing protocols, wireless ad-hoc networks are unprotected to attacks of the malicious nodes. One of the prominent attacks is the Black Hole Attack which absorbs all data packets in the network. Since the data packets do not reach the destination node on account of this attack, data loss will occur. In this paper we simulated MANETs with and without Black Hole to study the effects of Black hole attack on network performance. Because of Black Hole Attack the average packet drop increased form 0.25% to 90.69% . The throughput of the network decreased 93.56% due to Black Hole effect.

  15. Noncommutative black holes

    International Nuclear Information System (INIS)

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole

  16. Black Entrepreneurship in America.

    Science.gov (United States)

    Green, Shelley; Pryde, Paul

    The economic condition of black Americans is discussed, proceeding from the assumption that black economic progress does not depend on a renewed struggle for unobtained civil rights, but rather on the creative response of black Americans to economic opportunity and problems. In the long run, black economic development must rely on the…

  17. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    Science.gov (United States)

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  18. Ethnic Differences in Women's Body Satisfaction: An Experimental Investigation.

    Science.gov (United States)

    Henriques, Gregg R.; And Others

    1996-01-01

    Investigates the influence of ethnic differences on women's body satisfaction. Summarizes a study where white and black female undergraduates received bogus positive and negative social feedback. The feedback resulted in corresponding changes in the white females' body satisfaction. Black women were unaffected by the feedback. (MJP)

  19. On the definition of absorbed dose

    Science.gov (United States)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  20. CCN activation of pure and coated carbon black particles.

    Science.gov (United States)

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  1. Irreversible gravitational collapse: black stars or black holes?

    CERN Document Server

    Corda, Christian

    2011-01-01

    It is well known that the concept of black hole has been considered very fascinating by scientists even before the introduction of Einstein's general relativity. They should be the final result of an irreversible gravitational collapse of very massive bodies. However, an unsolved problem concerning such objects is the presence of a space-time singularity in their core. Such a problem was present starting by the first historical papers concerning black holes. It is a common opinion that this problem could be solved when a correct quantum gravity theory will be, finally, constructed. In this work we review a way to remove black hole singularities at a classical level i.e. without arguments of quantum gravity. By using a particular non-linear electrodynamics Lagrangian, an exact solution of Einstein field equations is shown. The solution prevents the collapsing object to reach the gravitational radius, thus the final result becomes a black star, i.e. an astrophysical object where both of singularities and event ...

  2. A Planck-like problem for quantum charged black holes

    OpenAIRE

    A. FabbriBologna U. and INFN; Navarro, D. J.; Navarro-Salas, J.

    2001-01-01

    Motivated by the parallelism existing between the puzzles of classical physics at the beginning of the XXth century and the current paradoxes in the search of a quantum theory of gravity, we give, in analogy with Planck's black body radiation problem, a solution for the exact Hawking flux of evaporating Reissner-Nordstrom black holes. Our results show that when back-reaction effects are fully taken into account the standard picture of black hole evaporation is significantly ...

  3. Massive particle radiation from Gibbons-Maeda black hole

    Institute of Scientific and Technical Information of China (English)

    Fang Heng-Zhong

    2010-01-01

    This paper investigated the massive particle radiation from Gibbous-Maeda black hole by using a semi-classical method. The calculations showed that, if the self-gravitation of the radiated particle is taken into account, the radiation spectrum deviates from exact black body spectrum and the rate of tunneling equals precisely the exponent of the difference of the black hole entropies before and after emission. The conclusion supports the viewpoint of information conservation.

  4. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  5. Black supernovae and black holes in non-local gravity

    CERN Document Server

    Bambi, Cosimo; Modesto, Leonardo

    2016-01-01

    In a previous paper, we studied the interior solution of a collapsing body in a non-local theory of gravity super-renormalizable at the quantum level. We found that the classical singularity is replaced by a bounce, after which the body starts expanding. A black hole, strictly speaking, never forms. The gravitational collapse does not create an event horizon but only an apparent one for a finite time. In this paper, we solve the equations of motion assuming that the exterior solution is static. With such an assumption, we are able to reconstruct the solution in the whole spacetime, namely in both the exterior and interior regions. Now the gravitational collapse creates an event horizon in a finite comoving time, but the central singularity is approached in an infinite time. We argue that these black holes should be unstable, providing a link between the scenarios with and without black holes. Indeed, we find a non catastrophic ghost-instability of the metric in the exterior region. Interestingly, under certai...

  6. Ultrathin flexible dual band terahertz absorber

    Science.gov (United States)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  7. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop Al 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce rf impedance and to provide pumping access for the high local gas load. 3 refs., 4 figs., 2 tabs

  8. The Black Black Woman and the Black Middle Class.

    Science.gov (United States)

    Jeffers, Trellie

    1981-01-01

    Reprint of a 1973 article that describes the discrimination that particularly dark-skinned Black women suffer, especially at the hands of a color-conscious Black middle class. Calls for dark women to look to the African appearance and working-class roots as sources of pride and strength. (GC)

  9. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  10. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  11. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  12. Broadband plasmonic absorber for photonic integrated circuits

    CERN Document Server

    Xiong, Xiao; Ren, Xi-Feng; Guo, Guang-Can

    2013-01-01

    The loss of surface plasmon polaritons has long been considered as a fatal shortcoming in information transport. Here we propose a plasmonic absorber utilizing this "shortcoming" to absorb the stray light in photonic integrated circuits (PICs). Based on adiabatic mode evolution, its performance is insensitive to incident wavelength with bandwidth larger than 300nm, and robust against surrounding environment and temperature. Besides, the use of metal enables it to be very compact and beneficial to thermal dissipation. With this 40um-long absorber, the absorption efficiency can be over 99.8% at 1550nm, with both the reflectivity and transmittance of incident light reduced to less than 0.1%. Such device may find various applications in PICs, to eliminate the residual strong pump laser or stray light.

  13. A Novel Burnable Absorber Concept for PWR: BigT (Burnable Absorber-Integrated Guide Thimble)

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohdsyukri; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chung, Chang Kyu [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    This paper presents the essential BigT design concepts and its lattice neutronic characteristics. Neutronic performance of a newly-proposed BA concept for PWR named BigT is investigated in this study. Preliminary lattice analyses of the BigT absorber-loaded WH 17x17 fuel assembly show a high potential of the concept as it performs relatively well in comparison with commercial burnable absorber technologies, especially in managing reactivity depletion and peaking factor. A sufficiently high control rod worth can still be obtained with the BigT absorbers in place. It is expected that with such performance and design flexibilities, any loading pattern and core management objective, including a soluble boron-free PWR, can potentially be fulfilled with the BigT absorbers. Future study involving full 3D reactor core simulations with the BigT absorbers shall hopefully verify this hypothesis. A new burnable absorber design for Pressurized Water Reactor (PWR) named 'Burnable absorber-Integrated control rod Guide Thimble' (BigT) was recently proposed. Unlike conventional burnable absorber (BA) technologies, the BigT integrates BA materials directly into the guide thimble but still allows insertion of control rod (CR). In addition, the BigT offers a variety of design flexibilities such that any loading pattern and core management objective can potentially be fulfilled.

  14. The influence of soft spectral components on the structure and stability of warm absorbers in AGN

    CERN Document Server

    Chakravorty, Susmita; Elvis, Martin; Kembhavi, Ajit K; Ferland, Gary

    2012-01-01

    The radiation from the central regions of active galactic nuclei, including that from the accretion disk surrounding the black hole, is likely to peak in the extreme ultraviolet $\\sim 13 -100 \\ev$. However, due to Galactic absorption, we are limited to constraining the physical properties - black hole mass and accretion rate - from what observations we have below $\\sim 10 \\ev$ or above $\\sim 100 \\ev$. In this paper we predict the thermal and ionization states of warm absorbers as a function of the shape of the unobservable continuum. In particular we model an accretion disk at $kT_{in} \\sim 10 \\ev$ and a {\\it soft excess} at $kT_{se} \\sim 150 \\ev$. The warm absorber, which is the highly ionized gas along the line of sight to the continuum, shows signatures in the $\\sim 0.3 - 2 \\kev$ energy range consisting of numerous absorption lines and edges of various ions, some of the prominent ones being H- and He-like oxygen, neon, magnesium and silicon. We find that the properties of the warm absorber are significantl...

  15. The MIRD method of estimating absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine.

  16. PT-symmetric laser-absorber

    OpenAIRE

    Longhi, Stefano

    2010-01-01

    In a recent work, Y.D. Chong et al. [Phys. Rev. Lett. {\\bf 105}, 053901 (2010)] proposed the idea of a coherent perfect absorber (CPA) as the time-reversed counterpart of a laser, in which a purely incoming radiation pattern is completely absorbed by a lossy medium. The optical medium that realizes CPA is obtained by reversing the gain with absorption, and thus it generally differs from the lasing medium. Here it is shown that a laser with an optical medium that satisfies the parity-time $(\\m...

  17. Spin Particle in an Absorbing Environment

    Science.gov (United States)

    Amooshahi, M.

    2015-10-01

    The quantum dynamics of a localized spin Particle interacting with an absorbing environment is investigated. The quantum Langevin-Schrödinger equation for spin is obtained. The susceptibility function of the environment is calculated in terms of the coupling function of the spin and the environment. it is shown that the susceptibility function satisfies the Kramers-Kronig relations. Spontaneous emission and the shift frequency of the spin is obtained in terms of the imaginary part of the susceptibility function in frequency domain. Some transition probabilities between the spin states are calculated when the absorbing environment is in the thermal state.

  18. Extreme Gravitational Lensing near Rotating Black Holes

    CERN Document Server

    Beckwith, K; Beckwith, Kris; Done, Chris

    2004-01-01

    We describe a new approach to calculating photon trajectories and gravitational lensing effects in the strong gravitational field of the Kerr black hole. These techniques are applied to explore both the imaging and spectral properties of photons that perform multiple orbits of the central mass before escaping to infinity. Viewed at large inclinations, these higher order photons contribute $\\sim 20 %$ of the total luminosity of the system for a Schwarzschild hole, whilst for an extreme Kerr black hole this fraction rises to $\\sim 60 %$. In more realistic models these photons will be re-absorbed by the disc at large distances from the hole, but this returning radiation could provide a physical mechanism to resolve the discrepancy between the predicted and observed optical/UV colours in AGN. Conversely, at low inclinations, higher order images re-intercept the disc plane close to the black hole, so need not be absorbed by the disc if this is within the plunging region. These photons form a bright ring carrying a...

  19. Impacts of Snow Darkening by Absorbing Aerosols on Eurasian Climate

    Science.gov (United States)

    Kim, Kyu-Myong; Lau, William K M.; Yasunari, Teppei J.; Kim, Maeng-Ki; Koster, Randal D.

    2016-01-01

    The deposition of absorbing aerosols on snow surfaces reduces snow-albedo and allows snowpack to absorb more sunlight. This so-called snow darkening effect (SDE) accelerates snow melting and leads to surface warming in spring. To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating is particularly pronounced in Eurasian regions where significant depositions of dust transported from the North African deserts, and black carbon from biomass burning from Asia and Europe occur. In these regions, the surface heating due to SDE increases surface skin temperature by 3-6 degrees Kelvin near the snowline in spring. Surface energy budget analysis indicates that SDE-induced excess heating is associated with a large increase in surface evaporation, subsequently leading to a significant reduction in soil moisture, and increased risks of drought and heat waves in late spring to early summer. Overall, we find that rainfall deficit combined with SDE-induced dry soil in spring provide favorable condition for summertime heat waves over large regions of Eurasia. Increased frequency of summer heat waves with SDE and the region of maximum increase in heat-wave frequency are found along the snow line, providing evidence that early snowmelt by SDE may increase the risks of extreme summer heat wave. Our results suggest that climate models that do not include SDE may significantly underestimate the effect of global warming over extra-tropical continental regions.

  20. Extremely efficient and recyclable absorbents for oily pollutants enabled by ultrathin-layered functionalization.

    Science.gov (United States)

    Wang, Qianqian; Wang, Hanghua; Xiong, Sen; Chen, Rizhi; Wang, Yong

    2014-11-12

    Oils and organic solvents that leak into water bodies must be promptly removed to avoid ecological disasters, for example, by selective absorption using oleophilic absorbents. However, it remains a challenge for the low-cost synthesis of efficient and recyclable absorbents for oily pollutants. By surface functionalization to inexpensive polyurethane (PU) foams, we synthesize oil absorbents exhibiting the highest absorption capacity and the best recyclability among all polymeric absorbents. The synthesis is enabled by atomic layer deposition of ∼5 nm-thick Al2O3 transition layer onto the skeleton surface of PU foams, followed by coupling a single-molecule layer of silanes to the Al2O3 layer. The sub-10 nm functionalization layer provides the PU foam an outstanding water-repelling and oil-absorbing functionality without compromising its high porosity and elasticity. The functionalized foam is able to quickly absorb oily pollutants spread on water surfaces or precipitated in water with a capacity more than 100 times its own weight. This ultrathin-layer-functionalization method is also applicable to renewable porous biomaterials, providing a sustainable solution for oil spills. Moreover, we propose devices than can continuously operate to efficiently collect oil spills from water surfaces based on the functionalized PU foam developed in this work. PMID:25315285

  1. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects

    International Nuclear Information System (INIS)

    Radiation absorbed doses from rubidium-82 injected intravenously were determined in two young men, aged 23 and 27, using a dynamic conjugate counting technique to provide data for the net organ integrated time-activity curves in five organs: kidneys, lungs, liver, heart, and testes. This technique utilized a tungsten collimated Anger camera and the accuracy was validated in a prestwood phantom. The data for each organ were compared with conjugate count rates of a reference Ge-68/Ga-68 standard which had been calibrated against the Rb-82 injected. The effects of attenuation in the body were eliminated. The MIRD method was used to calculate the organ self absorbed doses and the total organ absorbed doses. The mean total absorbed doses were as follows (mrads/mCi injected): kidneys 30.9, heart walls 7.5, lungs 6.0, liver 3.0, testes 2.0 (one subject only), red marrow 1.3, remainder of body 1.3 and, extrapolating to women, ovaries 1.2. This absorbed dose to the kidney is significantly less than the pessimistic estimate of 59.4 mrads/mCi, made assuming instantaneous uptake and complete extraction of activity with no excretion by the kidneys, which receive 20% of the cardiac output. Further, in a 68 year old man the renal self absorbed dose was approximately 40% less than the mean renal self absorbed dose of the younger men. This decrease is probably related to the decline in renal blood flow which occurs with advancing age but other factors may also contribute to the observed difference. 14 references, 4 figures, 2 tables

  2. Unmasking the Inequitable Discipline Experiences of Urban Black Girls: Implications for Urban Educational Stakeholders

    Science.gov (United States)

    Blake, Jamilia J.; Butler, Bettie Ray; Lewis, Chance W.; Darensbourg, Alicia

    2011-01-01

    There is a large body of research examining the discipline experiences of Black males (Lewis et al. in "Souls: A Critical Journey of Black Politics, Culture, and Society," 2009; Skiba et al. in "The Urban Review," 34, 317-348, 2002); however, less is known about the types of behavioral infractions Black female students exhibit and the discipline…

  3. Teaching and Learning Color Consciousness in Black Families: Exploring Family Processes and Women's Experiences with Colorism

    Science.gov (United States)

    Wilder, JeffriAnne; Cain, Colleen

    2011-01-01

    Family is regarded as a powerful force in the lives of Black Americans. Often-times, families function as an agent of socialization that counters racism. At the same time, however, Black families can perpetuate skin tone consciousness and bias, or "colorism." Although there is an extensive body of revisionist literature on Black families and a…

  4. High Blood Pressure (Hypertension): The Most Serious Health Problem Faced by Blacks in America

    Science.gov (United States)

    Robinson, Dolores

    1975-01-01

    Argues that, for reasons that remain to be fully determined, blacks are particularly prone to hypertension. Some scientists theorize, it is stated, that the pressure of being black is enough to cause the disease; blacks are subjected to encounters that involve greater stress, each of which acts on the body's internal functioning. (Author)

  5. Effect of the secondary organic aerosol coatings on black carbon water uptake, cloud condensation nuclei activity, and particle collapse

    Science.gov (United States)

    The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...

  6. Are Ethnic and Gender Specific Equations Needed to Derive Fat Free Mass from Bioelectrical Impedance in Children of South Asian, Black African-Caribbean and White European Origin? Results of the Assessment of Body Composition in Children Study

    OpenAIRE

    Nightingale, Claire M; Rudnicka, Alicja R; Owen, Christopher G; Donin, Angela S.; Newton, Sian L.; Furness, Cheryl A.; Emma L Howard; Gillings, Rachel D.; Jonathan C K Wells; Cook, Derek G.; Whincup, Peter H.

    2013-01-01

    BACKGROUND: Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. METHODS: Cross-sectional study of children aged 8-10 years in London Primary schools including 325 ...

  7. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  8. Technology and assessment of neutron absorbing materials

    International Nuclear Information System (INIS)

    The present review assesses more recent developments in the technology and application of those absorber materials which are considered to be established or to have shown potential in reactor control. Emphasis is placed on physical, chemical and metallurgical properties and upon irradiation behaviour. (author)

  9. Timing the warm absorber in NGC 4051

    CERN Document Server

    Silva, Catia; Costantini, Elisa

    2016-01-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ~ 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051, whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas due to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed ...

  10. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  11. On Delayed Choice and Contingent Absorber Experiments

    OpenAIRE

    Kastner, R. E.

    2012-01-01

    It is pointed out that a slight variation on the Wheeler Delayed Choice Experiment presents the same challenge to orthodox quantum mechanics as Maudlin-type contingent absorber experiments present to the Transactional Interpretation (TI). Therefore, the latter cannot be used as a basis for refutation of TI.

  12. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  13. The Black Studies Boondoggle

    Science.gov (United States)

    Long, Richard A.

    1970-01-01

    Indicates tendencies dangerous to the basic purpose of Black Studies, and identifies four external challeges--imperialism, paternalism, nihilism, and materialism. An internal challenge is considered to be the use of European and Establishment constructs to analyze black reality. (DM)

  14. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    Science.gov (United States)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency reduced from 73% to 54% when operating

  15. Absorbed fractions for electrons in ellipsoidal volumes

    Science.gov (United States)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  16. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  17. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  18. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  19. FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. I. ULTRAVIOLET AND X-RAY ABSORBERS

    Energy Technology Data Exchange (ETDEWEB)

    Crenshaw, D. M. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Kraemer, S. B., E-mail: crenshaw@chara.gsu.edu [Institute for Astrophysics and Computational Sciences, Department of Physics, Catholic University of America, Washington, DC 20064 (United States)

    2012-07-01

    We present an investigation into the impact of feedback from outflowing UV and X-ray absorbers in nearby (z < 0.04) active galactic nuclei (AGNs). From studies of the kinematics, physical conditions, and variability of the absorbers in the literature, we calculate the possible ranges in the total mass outflow rate (M-dot{sub out}) and kinetic luminosity (L{sub KE}) for each AGN, summed over all of its absorbers. These calculations make use of values (or limits) for the radial locations of the absorbers determined from variability, excited-state absorption, and other considerations. From a sample of 10 Seyfert 1 galaxies with detailed photoionization models for their absorbers, we find that 7 have sufficient constraints on the absorber locations to determine M-dot{sub out} and L{sub KE}. For the low-luminosity AGN NGC 4395, these values are low, although we do not have sufficient constraints on the X-ray absorbers to make definitive conclusions. At least five of the six Seyfert 1s with moderate bolometric luminosities (L{sub bol} = 10{sup 43} - 10{sup 45} erg s{sup -1}) have mass outflow rates that are 10-1000 times the mass accretion rates needed to generate their observed luminosities, indicating that most of the mass outflow originates from outside the inner accretion disk. Three of these (NGC 4051, NGC 3516, and NGC 3783) have L{sub KE} in the range 0.5%-5% L{sub bol}, which is the range typically required by feedback models for efficient self-regulation of black hole and galactic bulge growth. At least two of the other three (NGC 5548, NGC 4151, and NGC 7469) have L{sub KE} {approx}> 0.1%L{sub bol}, although these values may increase if radial locations can be determined for more of the absorbers. We conclude that the outflowing UV and X-ray absorbers in moderate-luminosity AGNs have the potential to deliver significant feedback to their environments.

  20. Black Nuns as Educators.

    Science.gov (United States)

    Rector, Theresa A.

    1982-01-01

    Traces the contributions of Black Roman Catholic nuns to Black education in the United States since the early 1800s. Also shows that, despite declining membership, the three existing religious orders continue to be active in Black education and social change. (GC)

  1. Marketing for Black Alums.

    Science.gov (United States)

    Harris, Tracy A.

    1994-01-01

    Considers need for colleges and universities to develop effective marketing plan for recruitment of black students. Highlights advantages of designing marketing plan for recruitment of black alumni to assist in recruitment and retention of black students. Identifies key indicators that often hinder institutions in their recruitment of black…

  2. Influence of radioactive contaminants on absorbed dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Several popular radiopharmaceutical products contain low levels of radioactive contaminants. These contaminants increase the radiation absorbed dose to the patient without any increased benefit and, in some cases, with a decrease in image quality. The importance of a contaminant to the radiation dosimetry picture is a function of 1) the contaminant level, 2) the physical half-life of the contaminant, 3) the organ uptake and the biological half-time of the contaminant in the various body systems, and 4) the decay mode, energy, etc. of the contaminant. The general influence of these parameters is discussed in this paper; families of curves are included that reflect the changing importance of contaminant dosimetry with respect to the primary radionuclide as a function of these variables. Several specific examples are also given of currently used radiopharmaceutical products which can contain radioactive contaminants (I-123, In-111, Tl-201, Ir-191m, Rb-82, Au-195m). 7 references, 8 figures, 4 tables

  3. A High Resolution View of the Warm Absorber in the Quasar MR2251-178

    CERN Document Server

    Reeves, J N; Braito, V; Gofford, J; Nardini, E; Turner, T J; Crenshaw, D M; Kraemer, S B

    2013-01-01

    High resolution X-ray spectroscopy of the warm absorber in the nearby quasar, MR2251-178 (z = 0.06398) is presented. The observations were carried out in 2011 using the Chandra High Energy Transmission Grating and the XMM-Newton Reflection Grating Spectrometer, with net exposure times of approximately 400 ks each. A multitude of absorption lines from C to Fe are detected, revealing at least 3 warm absorbing components ranging in ionization parameter from log(\\xi/erg cm s^-1) = 1-3 and with outflow velocities < 500 km/s. The lowest ionization absorber appears to vary between the Chandra and XMM-Newton observations, which implies a radial distance of between 9-17 pc from the black hole. Several broad soft X-ray emission lines are strongly detected, most notably from He-like Oxygen, with FWHM velocity widths of up to 10000 km/s, consistent with an origin from Broad Line Region (BLR) clouds. In addition to the warm absorber, gas partially covering the line of sight to the quasar appears to be present, of typic...

  4. Black/White Differences in Perceived Weight and Attractiveness among Overweight Women

    Directory of Open Access Journals (Sweden)

    Taona P. Chithambo

    2013-01-01

    Full Text Available Numerous studies have reported that Black women are more satisfied with their bodies than White women. The buffering hypothesis suggests that aspects of Black culture protect Black women against media ideals that promote a slender female body type; therefore, Black women are expected to exhibit higher body esteem than White women. To test this hypothesis, the current study aimed to assess the influence of race on weight perception, perceived attractiveness, and the interrelations between body mass index (BMI and perceived attractiveness among overweight and obese women. Participants were 1,694 respondents of Wave IV of the National Longitudinal Study on Adolescent Health ( years. Black ( or White ( obese or overweight women were included in the current study. As expected, Black women reported lower perceived weight and higher attractiveness than White women, despite higher body mass for Black women. Furthermore, race moderated the relationship between BMI and perceived attractiveness; for White women, a negative relationship existed between BMI and attractiveness, whereas for Black women, BMI and attractiveness were not related. The study findings provide further support for the buffering hypothesis, indicating that despite higher body mass, overweight Black women are less susceptible to thin body ideals than White women.

  5. Evaporation of large black holes in AdS

    International Nuclear Information System (INIS)

    The AdS/CFT correspondence offers a new perspective on the long-standing black hole information paradox. However, to be able to use the available gauge/gravity machinery one is forced to consider so-called 'large' black holes in AdS, and these objects are thermodynamically stable - they do not evaporate. We describe a simple toy model that allows large AdS black holes to decay, by coupling the emitted radiation to an external scalar field propagating in an auxiliary space. This effectively changes the properties of the boundary of AdS, making it partly absorbing. We demonstrate that the evaporation process never ceases by explicitly presenting (a) the transmission coefficient for a wave scattering from the bulk into auxiliary space and (b) the greybody factor for a black 3-brane in an AdS background. Therefore, the model provides an interesting framework to address the information paradox using AdS/CFT techniques.

  6. Black-on-white polymer-stabilized cholesteric formulations

    Science.gov (United States)

    West, John L.; Magyar, Gregory R.; Francl, James J.; Nixon, Christine M.

    1995-08-01

    Recent research by Doane, Yang, and Chien demonstrated the use of cholesteric liquid crystals in multiplexed, high resolution, reflective diplays. These materials utilize the bistability of the cholesteric planar and focal conic states for displays with a colored image on a black background. Many commercial applications of these materials, such as electronic books and newspapers, portable faxes and personal data assistants, require, or at least prefer, black-on- white images. We report on relatively high polymer content (equalsV 20% by weight) dispersions of cholesteric liquid crystals that produce a white, reflecting, planar state. The polymer network appears to form cholesteric domains with varying pitch lengths resulting in planar states that reflect in the red, green, and blue portions of the spectrum. Utilizing a black absorbing layer behind a display using these materials offers white images on a black background, or vice-versa.

  7. Body Hygiene

    Science.gov (United States)

    ... Home Diaper-Changing Steps for Childcare Settings Body Hygiene Dental Hygiene Water Fluoridation Facial Cleanliness Fish Pedicures and ... spread of hygiene-related diseases . Topics for Body Hygiene Facial Cleanliness Dental Hygiene Water Fluoridation Fish Pedicures and Fish Spas ...

  8. Body Image

    Science.gov (United States)

    ... Help your child have a healthy body image Cosmetic surgery Breast surgery Botox Liposuction Varicose or spider veins Body dysmorphic disorder (BDD) Eating disorders Anorexia nervosa Binge eating ... nervosa Cosmetics and your health Depression during and after pregnancy ...

  9. Body Basics

    Science.gov (United States)

    ... about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  10. Body embellishment

    OpenAIRE

    Zellweger, Christoph

    2015-01-01

    The exhibition Body Embellishment explores the most innovative artistic expression in the 21st-century international arenas of body extension, augmentation, and modification, focusing on jewelry, tattoos, nail arts, and fashion. The areas of focus are jewelry, tattoos, nail arts, and fashion. Avant-garde jewelry consciously engages the body by intersecting and expanding the planes of the human form. Tattoos are at once on and in the body. Nail art, from manicures to pedicures, has humble ...

  11. Body Clock

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2000-01-01

    Body clocks” are biological methods of controling body activities.Every living thing has one. In humans, a body clock controls normal periods of sleeping and waking. It controls the time swhen you are most likely to feel pain.Eating, sleeping and exercising at about the same time each day will help keep body activities normal. But changes in your life, a new job, for example, destroy the balance and thus cause health problems.

  12. Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of Central Tibet

    Institute of Scientific and Technical Information of China (English)

    Jing Ming; Pengling Wang; Shuyu Zhao; Pengfei Chen

    2013-01-01

    A field observation on the albedo of the snowpack in Central Tibet was conducted in the Nam Co region in the winter of 2011.Snow properties,including grain size and density,were measured in the field,and surface-layer snow samples (down to 5 cm) were collected.The average concentrations of black carbon and dust were 72 ppbm (close to that in the glaciers of Mt.Nyainqentanglha) and 120 ppmm,respectively.Inverse trends were found to exist between the albedo of the snowpack and light-absorbing aerosols (LAAs) as well as grain size growth.Modeling showed that black carbon,dust,and grain growth in the winter snowpack can reduce the broadband albedo by 11%,28%,and 61%,respectively.

  13. Space radiation absorbed dose distribution in a human phantom.

    Science.gov (United States)

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  14. Specific absorbed fraction in bone tissue and bone marrow resulting from photons distributed in the skeleton

    International Nuclear Information System (INIS)

    The computer code 'ALGAM: Monte Carlo Estimation of Internal Dose from Gamma -ray Sources in a Phanton Man' only provides for an average dose to bone marrow resulting from a photon source distributed in the human body. Since there is no realistic model for the separation of these doses in the present phantom, some modifications were performed in the ALGAM code in order to introduce an heterogeneous skeleton and through this new model it was possible to make the estimation of dose in bone marrow. The specific absorbed fraction resulting from running the new program for 12 monoenergetic photon sources distributed in three source organs - skeleton, red marrow and yellow marrow is presented. The results obtained show that for low photon energies, the old model overestimates the specific absorbed fraction in bone marrow up to a factor of 4; while in bone, it underestimates the specific absorbed fractions up to a factor of 1.6. (Author)

  15. Stuffed Black Holes

    CERN Document Server

    Arbona, A; Carot, J; Mas, L; Massó, J; Stela, J

    1998-01-01

    Initial data corresponding to spacetimes containing black holes are considered in the time symmetric case. The solutions are obtained by matching across the apparent horizon different, conformally flat, spatial metrics. The exterior metric is the vacuum solution obtained by the well known conformal imaging method. The interior metric for every black hole is regular everywhere and corresponds to a positive energy density. The resulting matched solutions cover then the whole initial (Cauchy) hypersurface, without any singularity, and can be useful for numerical applications. The simpler cases of one black hole (Schwarzschild data) or two identical black holes (Misner data) are explicitly solved. A procedure for extending this construction to the multiple black hole case is also given, and it is shown to work for all time symmetric vacuum solutions obtained by the conformal imaging method. The numerical evolution of one such 'stuffed' black hole is compared with that of a pure vacuum or 'plain' black hole in the...

  16. A sound absorbing metasurface with coupled resonators

    Science.gov (United States)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  17. Absorbing Software Testing into the Scrum Method

    Science.gov (United States)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  18. Ultra-broadband terahertz metamaterial absorber

    Science.gov (United States)

    Zhu, Jianfei; Ma, Zhaofeng; Sun, Wujiong; Ding, Fei; He, Qiong; Zhou, Lei; Ma, Yungui

    2014-07-01

    We demonstrated an ultra-broadband, polarization-insensitive, and wide-angle metamaterial absorber for terahertz (THz) frequencies using arrays of truncated pyramid unit structure made of metal-dielectric multilayer composite. In our design, each sub-layer behaving as an effective waveguide is gradually modified in their lateral width to realize a wideband response by effectively stitching together the resonance bands of different waveguide modes. Experimentally, our five layer sample with a total thickness 21 μm is capable of producing a large absorptivity above 80% from 0.7 to 2.3 THz up to the maximum measurement angle 40°. The full absorption width at half maximum of our device is around 127%, greater than those previously reported for THz frequencies. Our absorber design has high practical feasibility and can be easily integrated with the semiconductor technology to make high efficient THz-oriented devices.

  19. High-performance THz metamaterial absorber

    CERN Document Server

    Zhu, Jianfei; Sun, Wujiong; Ding, Fei; He, Qiong; Zhou, Lei; Ma, Yungui

    2014-01-01

    We demonstrated an ultra-broadband, polarization-insensitive and wide-angle metamaterial absorber for terahertz (THz) frequencies using arrays of truncated pyramid unit structure made of metal-dielectric multilayer composite. In our design each sub-layer behaving as an effective waveguide is gradually modified in their lateral width to realize a wideband response by effectively stitching together the resonance bands of different waveguide modes. Experimentally, our five layer sample with a total thickness 21um is capable of producing a large absorptivity above 80% from 0.7 to 2.3 THz up to the maximum measurement angle 40{\\deg}. The full absorption width at half maximum (FWHM) of our device is around 127%, greater than those previously reported for THz frequencies. Our absorber design has high practical feasibility and can be easily integrated with the semiconductor technology to make high efficient THz-oriented devices.

  20. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    The invention concerns an absorber rod drive for Boiling Water Reactors, in which a mechanical drive is combined with a hydraulic drive working separately from it, so that both drives are situated concentric within an overall length. The driving torque of a motor is transmitted to a threaded spindle, which moves a free adjacent hollow piston vertically via a fixed nut. The same means are used for the hydraulic liquid which is used as coolant or moderator and there are nozzles, annular gaps and/or bores between the hydraulic system and the reactor pressure vessel for the purpose of pressure compensation. All the components of the absorber rod drive except the sealing housing and the setting drive are situated in one casing tube taking the differential pressure. (orig./HP)

  1. Imaging highly absorbing nanoparticles using photothermal microscopy

    Science.gov (United States)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  2. Black holes in a box: towards the numerical evolution of black holes in AdS

    CERN Document Server

    Witek, Helvi; Herdeiro, Carlos; Nerozzi, Andrea; Sperhake, Ulrich; Zilhao, Miguel

    2010-01-01

    The evolution of black holes in "confining boxes" is interesting for a number of reasons, particularly because it mimics the global structure of Anti-de Sitter geometries. These are non-globally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data is supplemented by boundary conditions at the time-like conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirror-like boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is only observed in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing bound...

  3. Phase separation in systems with absorbing states

    OpenAIRE

    Munoz, M. A.; Marconi, U. Marini Bettolo; Cafiero, R.

    1998-01-01

    We study the problem of phase separation in systems with a positive definite order parameter, and in particular, in systems with absorbing states. Owing to the presence of a single minimum in the free energy driving the relaxation kinetics, there are some basic properties differing from standard phase separation. We study analytically and numerically this class of systems; in particular we determine the phase diagram, the growth laws in one and two dimensions and the presence of scale invaria...

  4. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  5. Black Carbon Measurements of Flame-Generated Soot as Determinedby Optical, Thermal-Optical, Direct Absorption,and Laser Incandescence Methods

    Science.gov (United States)

    Black carbon (BC), light absorbing particles emitted primarily from incomplete combustion, is operationally defined through a variety of instrumental measurements rather than with a universal definition set forth by the research or regulatory communities. To examine the consiste...

  6. Broadband metasurface absorber for solar thermal applications

    Science.gov (United States)

    Wan, C.; Chen, L.; Cryan, M. J.

    2015-12-01

    In this paper we propose a broadband polarization-independent selective absorber for solar thermal applications. It is based on a metal-dielectric-metal metasurface structure, but with an interlayer of absorbing amorphous carbon rather than a low loss dielectric. Optical absorbance results derived from finite difference time domain modelling are shown for ultra-thin carbon layers in air and on 200 nm of gold for a range of carbon thicknesses. A gold-amorphous carbon-gold trilayer with a top layer consisting of a 1D grating is then optimised in 2D to give a sharp transition from strong absorption up to 2 μm to strong reflection above 2 μm resulting in good solar selective performance. The gold was replaced by the high-melting-point metal tungsten, which is shown to have very similar performance to the gold case. 3D simulations then show that the gold-based structure performs well as a square periodic array of squares, however there is low absorption around 400 nm. A cross-based structure is found to increase this absorption without significantly reducing the performance at longer wavelengths.

  7. Preparation of perlite-based carbon dioxide absorbent.

    Science.gov (United States)

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  8. Black-Hole Polarization and Cosmic Censorship

    CERN Document Server

    Hod, S

    1999-01-01

    The destruction of the black-hole event horizon is ruled out by both cosmic censorship and the generalized second law of thermodynamics. We test the consistency of this prediction in a (more) `dangerous' version of the gedanken experiment suggested by Bekenstein and Rosenzweig. A $U(1)$-charged particle is lowered {\\it slowly} into a near extremal black hole which is not endowed with a $U(1)$ gauge field. The energy delivered to the black hole can be {\\it red-shifted} by letting the assimilation point approach the black-hole horizon. At first sight, therefore, the particle is not hindered from entering the black hole and removing its horizon. However, we show that this dangerous situation is excluded by a combination of {\\it two} factors not considered in former gedanken experiments: the effect of the spacetime curvature on the electrostatic {\\it self-interaction} of the charged system (the black-hole polarization), and the {\\it finite} size of the charged body.

  9. Phenomenology of quantum gravity black holes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolini, Piero [Johann Wolfgang Goethe Universitaet, Frankfurt am Main (Germany); Mureika, Jonas [Loyola Marymount University, Los Angeles, CA (United States); Spallucci, Euro [Universita di Trieste (Italy); INFN, Trieste (Italy); Winstanley, Elizabeth [University of Sheffield, Sheffield (United Kingdom)

    2012-07-01

    In this contribution we present a new scenario for the production and the evaporation of microscopic black holes in the presence of a quantum gravity induced fundamental length. After a brief analysis of the existing families of quantum gravity improved black hole geometries, we focus on their common thermodynamic behavior, namely the presence of a phase transition to a positive heat capacity cooling down in the final stages of the evaporation even in the non-rotating, neutral case. This fact has important repercussions of the evaporation spectra in terms of new profiles of grey body factors. Quantum gravity black holes would emit soft particles mainly on the brane, a distinctive signatures in marked contrast to results obtained with classical metrics. Then we present a first step in modeling black hole production in a post-semiclassical limit, by employing an effective ultraviolet cut off. We show that the new cross sections approach the usual ''black disk'' form at high energy, while they differ significantly near the fundamental scale. If this behavior is confirmed by all the class of quantum gravity black holes, such novel phenomenology is beyond the reach of current accelerators experiments, but is still potentially observable in ultra-high energy cosmic ray collisions.

  10. The role of black holes in galaxy formation and evolution.

    Science.gov (United States)

    Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L

    2009-07-01

    Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies. PMID:19587763

  11. The role of black holes in galaxy formation and evolution

    CERN Document Server

    Cattaneo, A; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L

    2009-01-01

    Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.

  12. A study on absorbed dose in the breast tissue using geant4 simulation for mammography

    International Nuclear Information System (INIS)

    As the breast cancer rate is increasing fast in Korean women, people pay more attention to mammography and number of mammography have been increasing dramatically over the last few years. Mammography is the only means to diagnose breast cancer early, but harms caused by radiation exposure shouldn't be overlooked. Therefore, it is important to calculate the radiation dose being absorbed into the breast tissue during the process of mammography for a protective measure against radiation exposure. Because it is impossible to directly measure the radiation dose being absorbed into the human body, statistical calculation methods are commonly used, and most of them are supposed to simulate the interaction between radiation and matter by describing the human body internal structure with anthropomorphic phantoms. However, a simulation using Geant4 Code of Monte Carlo Method, which is well-known as most accurate in calculating the absorbed dose inside the human body, helps calculate exact dose by recreating the anatomical human body structure as it is through the DICOM file of CT. To calculate the absorbed dose in the breast tissue, therefore, this study carried out a simulation using Geant4 Code, and by using the DICOM converted file provided by Geant4, this study changed the human body structure expressed on the CT image data into geometry needed for this simulation. Besides, this study attempted to verify if the dose calculation of Geant4 interlocking with the DICOM file is useful, by comparing the calculated dose provided by this simulation and the measured dose provided by the PTW ion chamber. As a result, under the condition of 28kVp/190mAs, the Difference(%) between the measured dose and the calculated dose was found to be 0.08 %∼0.33 %, and at 28 kVp/70 mAs, the Difference(%) of dose was 0.01 %∼0.16 %, both of which showed results within 2%, the effective difference range. Therefore, this study found out that calculation of the absorbed dose using Geant4

  13. Effect of low-Z absorber's thickness on gamma-ray shielding parameters

    International Nuclear Information System (INIS)

    Gamma ray shielding behaviour of any material can be studied by various interaction parameters such as total mass attenuation coefficient (μm); half value layer (HVL); tenth value layer (TVL); effective atomic number (Zeff), electron density (Nel), effective atomic weight (Aeff) and buildup factor. For gamma rays, the accurate measurements of μm (cm2 g−1) theoretically require perfect narrow beam irradiation geometry. However, the practical geometries used for the experimental investigations deviate from perfect-narrowness thereby the multiple scattered photons cause systematic errors in the measured values of μm. Present investigation is an attempt to find the optimum value of absorber thickness (low-Z) for which these errors are insignificant and acceptable. Both experimental and theoretical calculations have been performed to investigate the effect of absorber's thickness on μm of six low-Z (10black; cement-white; clay; red-mud; lime-stone and plaster of paris) at gamma-ray energies 661.66 keV, 1173.24 keV and 1332.50 keV. A computer program (GRIC2-toolkit) was designed for theoretical evaluation of shielding parameters of any material. Good agreement of theoretical and measured values of μm was observed for all absorbers with thickness ≤0.5 mean free paths, thus considered it as optimum thickness for low-Z materials in the selected energy range. White cement was found to possess maximum shielding effectiveness for the selected gamma rays. - Highlights: • Optimum thickness value is 0.5 mfp for low-Z absorbers in energy range 662–1332 keV. • For accurate measurement of μm absorber's thickness should be ≤optimum thickness. • GRIC2-toolkit is useful for γ-ray shielding analysis of composite materials

  14. A HIGH RESOLUTION VIEW OF THE WARM ABSORBER IN THE QUASAR MR 2251-178

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, J. N.; Gofford, J.; Nardini, E. [Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, ST5 5BG (United Kingdom); Porquet, D. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Braito, V. [INAF - Osservatorio Astronomico di Brera, Via Bianchi 46 I-23807 Merate (Italy); Turner, T. J. [Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Crenshaw, D. M. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Kraemer, S. B., E-mail: j.n.reeves@keele.ac.uk [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States)

    2013-10-20

    High resolution X-ray spectroscopy of the warm absorber in a nearby quasar, MR 2251-178 (z = 0.06398), is presented. The observations were carried out in 2011 using the Chandra High Energy Transmission Grating (HETG) and the XMM-Newton Reflection Grating Spectrometer, with net exposure times of approximately 400 ks each. A multitude of absorption lines from C to Fe are detected, revealing at least three warm absorbing components ranging in ionization parameter from log (ξ/erg cm s{sup –1}) = 1-3 with outflow velocities ∼< 500 km s{sup –1}. The lowest ionization absorber appears to vary between the Chandra and XMM-Newton observations, which implies a radial distance of between 9 and 17 pc from the black hole. Several broad soft X-ray emission lines are strongly detected, most notably from He-like oxygen, with FWHM velocity widths of up to 10,000 km s{sup –1}, consistent with an origin from broad-line region (BLR) clouds. In addition to the warm absorber, gas partially covering the line of sight to the quasar appears to be present, with a typical column density of N{sub H} = 10{sup 23} cm{sup –2}. We suggest that the partial covering absorber may arise from the same BLR clouds responsible for the broad soft X-ray emission lines. Finally, the presence of a highly ionized outflow in the iron K band from both the 2002 and 2011 Chandra HETG observations appears to be confirmed, which has an outflow velocity of –15600 ± 2400 km s{sup –1}. However, a partial covering origin for the iron K absorption cannot be excluded, resulting from low ionization material with little or no outflow velocity.

  15. Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared.

    Science.gov (United States)

    Wang, Kangpeng; Szydłowska, Beata M; Wang, Gaozhong; Zhang, Xiaoyan; Wang, Jing Jing; Magan, John J; Zhang, Long; Coleman, Jonathan N; Wang, Jun; Blau, Werner J

    2016-07-26

    The recent progress on black phosphorus makes it a promising candidate material for broadband nanophotonic devices, especially operating in the mid-infrared spectral region. Here, the excited carrier dynamics and nonlinear optical response of unoxidized black phosphorus nanosheets and their wavelength dependence were systematically studied from 800 nm to 2.1 μm. The wavelength-dependent relaxation times of black phosphorus nanosheets are determined to be 360 fs to 1.36 ps with photon energies from 1.55 to 0.61 eV. In a comparative study with graphene, we found that black phosphorus has a faster carrier relaxation in near- and mid-infrared region. With regard to nonlinear optical absorption, the response of black phosphorus significantly increases from near- to mid-infrared, and black phosphorus is also confirmed to be better as saturable absorber to MoS2 in infrared region. PMID:27281449

  16. Complexity of culture: the role of identity and context in bicultural individuals' body ideals.

    Science.gov (United States)

    Guan, Mei; Lee, Fiona; Cole, Elizabeth R

    2012-07-01

    Culture plays an important role in shaping body image, and people from different cultures have different beliefs about what constitutes the "ideal" body type. This study examines the relationship between culture and body ideals in Asian-American and Black-American women. Results from two studies show that subjective cultural identity and situational cultural cues had different relationships with body ideals. Among Asian-American women, identification with Asian culture was related to a thinner body ideal, but exposure to Asian cultural cues (relative to American cultural cues) was related to a thicker body ideal. Among Black-American women, identification with Black culture was related to a thicker body ideal, but exposure to Black cultural cues (relative to American cultural cues) was related to a thinner body ideal. These results have theoretical and practical implications for understanding how internal and external manifestations of culture can differentially influence body image.

  17. Slow and Fast Light in an Electro-Absorber

    DEFF Research Database (Denmark)

    Öhman, Filip; Bermejo Ramirez, Andres; Sales, Salvador;

    2006-01-01

    We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated....

  18. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    Science.gov (United States)

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  19. Optimization of spectrally-selective coatings for solar absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Orel, Z.C.; Gunde, M.K. [National Inst. of Chemistry, Ljubljana (Slovenia)

    2000-07-01

    The inexpensive selective surfaces for solar absorbers were prepared by application of black paint on the high-reflective substrate. The layers have to be transparent in the infrared in order to support the low thermal emittance of the substrate. For this purpose, the optical properties of coatings have to be optimized to minimize the expense of the final product. The selectivity was attained by the mutual effect of a highly absorptive black paint layer and low emitting (i.e., infrared reflecting) metal substrate. Optimized paint coatings are not thicker than a few micrometers and exhibit high opacity, leading to energy-efficient selective coatings for solar collector applications. The painted samples are characterized by high absorption, finite sample thickness, nonideal support material, and smooth front surface. These properties distinguish our samples from those of other studies in this field. To design a functional pigmented layer, the optical properties of all constituents have to be known separately. Due to this reason the diffuse reflectance of black thickness-sensitive spectrally selective (TSSS) paints was analyzed. For theoretical consideration of paint layers, the simple Kubelka-Munk (KM) theory was used. It is the almost universally applied theoretical approach within the color using industry (1). It relates diffuse reflectance of a pigmented layer to two phenomenological coefficients, absorption (K) and scattering (S), thickness of the layer, and reflectance of the substrate. The optical properties of layer material are involved in both coefficients. This enables optimal thickness calculation (2), i.e. the theoretical prediction of the best thickness value that will give the highest solar absorptance and simultaneously, the lowest thermal emittance of the respective paint. The KM coefficients depend also upon addition of fumed silica (dispersive agent). Applying KM theory, the degree of pigment dispersion was quantified (3). This approach was an

  20. Stimulated Black Hole Evaporation

    CERN Document Server

    Spaans, Marco

    2016-01-01

    Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.

  1. Extremal Hairy Black Holes

    CERN Document Server

    Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko

    2014-01-01

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.

  2. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  3. Cosmic Black Holes

    OpenAIRE

    Ahn, Eun-Joo; Cavaglia, Marco

    2003-01-01

    Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...

  4. The New Black

    OpenAIRE

    Lettman-Hicks, Sharon

    2014-01-01

    The New Black is a documentary that tells the story of how the African American community is grappling with the gay rights issue in light of the recent gay marriage movement and the fight over Civil Rights. The film documents activities, families and clergy on both sides of the campaign to legalize gay marriage and examines homophobia in the Black community's institutional pillar, the Black church, and reveals the Christian right wing's strategy of exploiting this phenomenon in order to pursu...

  5. Perturbations around black holes

    CERN Document Server

    Wang, B

    2005-01-01

    Perturbations around black holes have been an intriguing topic in the last few decades. They are particularly important today, since they relate to the gravitational wave observations which may provide the unique fingerprint of black holes' existence. Besides the astrophysical interest, theoretically perturbations around black holes can be used as testing grounds to examine the proposed AdS/CFT and dS/CFT correspondence.

  6. Black Branes as Piezoelectrics

    CERN Document Server

    Armas, Jay; Obers, Niels A

    2012-01-01

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  7. Black branes as piezoelectrics.

    Science.gov (United States)

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six. PMID:23368298

  8. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a...

  9. A MICROGAP SURGE ABSORBER FABRICATED USING CONVENTIONAL SEMICONDUCTOR TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    李宏; 阮航宇

    2001-01-01

    A new type microgap surge absorber fabricated by only semiconductor technique has in it a special structure silicon chip which forms microgaps for gas discharge with electrodes, and has advantages such as small size, low cost, suitability for mass production besides the desirable characteristics that common microgap surge absorbers have. Applications of this absorber in communication facilities are discussed.

  10. 21 CFR 868.5310 - Carbon dioxide absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  11. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2013-01-01

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers....

  12. Piston-rotaxanes as molecular shock absorbers.

    Science.gov (United States)

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response. PMID:20158174

  13. Optical momentum transfer to absorbing mie particles.

    Science.gov (United States)

    Kemp, Brandon A; Grzegorczyk, Tomasz M; Kong, Jin Au

    2006-09-29

    The momentum transfer to absorbing particles is derived from the Lorentz force density without prior assumption of the momentum of light in media. We develop a view of momentum conservation rooted in the stress tensor formalism that is based on the separation of momentum contributions to bound and free currents and charges consistent with the Lorentz force density. This is in contrast with the usual separation of material and field contributions. The theory is applied to predict a decrease in optical momentum transfer to Mie particles due to absorption, which contrasts the common intuition based on the scattering and absorption by Rayleigh particles. PMID:17026034

  14. A novel broadband waterborne acoustic absorber

    Science.gov (United States)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  15. Acoustical model of a Shoddy fibre absorber

    Science.gov (United States)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  16. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede

    2012-01-01

    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... work shows experimental results on this and presents a new technique to measure the swelling of SAP particles. This new technique is compared with existing techniques that have been recently proposed for the measurement of pore fluid absorption by superabsorbent polymers. It is seen...

  17. Single-mode cavity with HOMs absorber

    International Nuclear Information System (INIS)

    We present a new 500 MHz cavity which has a simple damped structure for the 1.5 GeV high-brilliant VUV ring. The feature of the cavity design is that higher-order modes (HOMs) propagate out from the cavity through the beam duct with a large diameter and are absorbed in resistive parts in the duct. A low power measurement on a prototype model of the cavity was carried out and the Q-values of HOMs were confirmed to strongly reduce. Thus the coupled-bunch instabilities due to HOMs are expected to be sufficiently suppressed. (author)

  18. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-01-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  19. Evidence for black holes.

    Science.gov (United States)

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138

  20. Asymptotic Black Holes

    CERN Document Server

    Ho, Pei-Ming

    2016-01-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  1. Black stain - a review.

    Science.gov (United States)

    Ronay, Valerie; Attin, Thomas

    2011-01-01

    The purpose of this review was to summarise the fundamentals about black stain, its diagnosis and possible differential diagnoses as well as its microbiology and therapy. In addition, various studies investigating the relationship between black stain and dental caries are examined. Many studies report lower caries prevalence in children with black stain, but this finding could not be confirmed by all authors. Also, a negative relation between degree of staining and caries severity has been described. Reasons for these results are not yet clear but it was speculated that they are related to the specific oral microflora described in black stain-affected individuals. PMID:21594205

  2. A Black Hole Levitron

    CERN Document Server

    Arsiwalla, Xerxes D

    2009-01-01

    We study the problem of spatially stabilising four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes kept in external fields we find that taking a continuum limit of Denef et al's multi-center solutions provides a supergravity description of such backgrounds within which a black hole can be trapped in a given volume. This is realised by levitating a black hole over a magnetic dipole base. We comment on how such a construction resembles a mechanical Levitron.

  3. Deforming regular black holes

    CERN Document Server

    Neves, J C S

    2015-01-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  4. Effects of Absorbing Aerosols on Accelerated Melting of Snowpack in the Tibetan-Himalayas Region

    Science.gov (United States)

    Lau, William K. M.

    2011-01-01

    The impacts of absorbing aerosol on melting of snowpack in the Hindu-Kush-Tibetan-Himalayas (HKTH) region are studied using NASA satellite and GEOS-5 GCM. Results from GCM experiments shows that a 8-10% in the rate of melting of snowpack over the western Himalayas and Tibetan Plateau can be attributed to the aerosol elevated-heat-pump (EHP) feedback effect (Lau et al. 2008), initiated by the absorption of solar radiation by absorbing aerosols accumulated over the Indo-Gangetic Plain and Himalayas foothills. On the other hand, deposition of black carbon on snow surface was estimated to give rise to a reduction in snow surface albedo of 2 - 5%, and an increased annual runoff of 9-24%. From case studies using satellite observations and re-analysis data, we find consistent signals of possible impacts of dust and black carbon aerosol in blackening snow surface, in accelerating spring melting of snowpack in the HKHT, and consequentially in influencing shifts in long-term Asian summer monsoon rainfall pattern.

  5. Variations in absorbed doses from 59Fe in different diseases

    International Nuclear Information System (INIS)

    The biokinetics of radiopharmaceuticals administered in vivo may vary considerably with changes in organ functions. They studied the variations in absorbed doses from 59Fe in 207 patients with different diseases, in whom ferrokinetic investigations were performed for diagnostic purposes. Radiation doses to the bone marrow were highest in patients with deserythropoietic anemias (mean 38 nSv/Bq, range 19 - 57 nSv/Bq) and in hemolytic anemias (mean 21 nSv/Bq, range 7 - 35 nSv/Bq), whereas lower and rather constant values were found in other diseases (mean values between 9 and 13 nSv/Bq). The highest organ doses, the greatest differences with respect to diagnosis and also the largest variations within each group of patients were found for liver and spleen (e. g. in aplastic anemia; liver: 66 nSv/Bq, range 29 - 104 nSv/Bq; spleen: 57 nSv/Bq, range 34 - 98 nSv/Bq. In iron deficiency; liver: 13 nSv/Bq range 12 - 14 nSv/q; spleen: 19 nSv/Bq, range 18 - 20 nSv/Bq). Lower organ doses and smaller variations within and between the groups of patients were found for the gonads (means 3 - 7 nSv/Bq), the kidneys (means 10 - 13 nSv/Bq), the bone (means 4 - 7 nSv/Bq), the lung (means 8 - 12 nSv/Bq), and the total body (means 6 - 8 nSv/Bq). In patients with chronic bleeding absorbed doses decrease concomitantly to the extent of blood loss. The D/sub E/ is not markedly affected by the variations in organ doses but is fairly constant for different diseases. 16 references, 1 figure, 3 tables

  6. Body punk

    DEFF Research Database (Denmark)

    Mogensen, Kevin

    BODYPUNK - A Treatise on male body builders and the meaning of the body in the shadow of an Anti Doping Campaign Based on a qualitative study, the thesis investigates the visual representation of the male bodybuilder found in the national anti doping campaign: ‗ "The hunt has begun" along...... with an analysis of the embodied meaning of men‘s bodybuilding....

  7. Body punk

    DEFF Research Database (Denmark)

    Mogensen, Kevin

    BODYPUNK - A Treatise on male body builders and the meaning of the body in the shadow of an Anti Doping Campaign Based on a qualitative study, the thesis investigates the visual representation of the male bodybuilder found in the national anti doping campaign: ‗ "The hunt has begun" along with an...... analysis of the embodied meaning of men‘s bodybuilding....

  8. Body Language

    Institute of Scientific and Technical Information of China (English)

    JosephDeVeto

    2004-01-01

    When we speak,we use much more than just words. We also communicate with our face. our hands,and even our own body. This Kind of communication ean be called “body language” or “non-verbal eommunieation”. Non-verbal

  9. Body Weight and Body Image

    OpenAIRE

    McFarlane Traci; Olmsted Marion P

    2004-01-01

    Abstract Health Issue Body weight is of physical and psychological importance to Canadian women; it is associated with health status, physical activity, body image, and self-esteem. Although the problems associated with overweight and obesity are indeed serious, there are also problems connected to being underweight. Weight prejudice and the dieting industry intensify body image concerns for Canadian women and can have a major negative impact on self-esteem. Key Findings Women have lower BMIs...

  10. Consumption of Green Coffee Reduces Blood Pressure and Body Composition by Influencing 11β-HSD1 Enzyme Activity in Healthy Individuals: A Pilot Crossover Study Using Green and Black Coffee

    Directory of Open Access Journals (Sweden)

    R. Revuelta-Iniesta

    2014-01-01

    Full Text Available Dietary polyphenols may have a protective role against the development of CVD. Thus, we aimed to investigate the effects of green coffee (GC, rich in chlorogenic acid, and black coffee (BC on cardiovascular markers. A randomised pilot crossover study was performed on healthy subjects who consumed both coffees for 2 weeks. We measured anthropometry, blood pressure, and arterial elasticity after each intervention and collected urine samples to monitor antioxidant capacity. Free cortisol and cortisone levels were obtained from urine and analysed by specific ELISA methods. Systolic blood pressure (P=0.018 and arterial elasticity (P=0.001 were significantly reduced after GC. BMI (P=0.04 for BC; P=0.01 for GC and abdominal fat (P=0.01 for BC; P=0.009 for GC were also significantly reduced with no changes in energy intake. Urinary free cortisol was significantly reduced from 125.6±85.9 nmol/day to 76.0±54.9 nmol/day following GC and increased to 132.1±89.1 nmol/day after BC. Urinary free cortisone increased by 18% following BC and 9% following GC (nonsignificant. Cortisol/cortisone ratio (indicating 11β-HSD1 activity was reduced after GC (from 3.5±1.9 to 1.7±1.04, P=0.002. This suggests that GC can play a role in reducing cardiovascular risk factors. Further research including hypertensive and overweight individuals will now be justified to clarify whether GC could have a therapeutic role in CVD.

  11. Consumption of green coffee reduces blood pressure and body composition by influencing 11β-HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee.

    Science.gov (United States)

    Revuelta-Iniesta, R; Al-Dujaili, E A S

    2014-01-01

    Dietary polyphenols may have a protective role against the development of CVD. Thus, we aimed to investigate the effects of green coffee (GC), rich in chlorogenic acid, and black coffee (BC) on cardiovascular markers. A randomised pilot crossover study was performed on healthy subjects who consumed both coffees for 2 weeks. We measured anthropometry, blood pressure, and arterial elasticity after each intervention and collected urine samples to monitor antioxidant capacity. Free cortisol and cortisone levels were obtained from urine and analysed by specific ELISA methods. Systolic blood pressure (P = 0.018) and arterial elasticity (P = 0.001) were significantly reduced after GC. BMI (P = 0.04 for BC; P = 0.01 for GC) and abdominal fat (P = 0.01 for BC; P = 0.009 for GC) were also significantly reduced with no changes in energy intake. Urinary free cortisol was significantly reduced from 125.6 ± 85.9 nmol/day to 76.0 ± 54.9 nmol/day following GC and increased to 132.1 ± 89.1 nmol/day after BC. Urinary free cortisone increased by 18% following BC and 9% following GC (nonsignificant). Cortisol/cortisone ratio (indicating 11β-HSD1 activity) was reduced after GC (from 3.5 ± 1.9 to 1.7 ± 1.04, P = 0.002). This suggests that GC can play a role in reducing cardiovascular risk factors. Further research including hypertensive and overweight individuals will now be justified to clarify whether GC could have a therapeutic role in CVD.

  12. Warm absorbers in active galactic nuclei

    CERN Document Server

    Reynolds, C S; Reynolds, C S; Fabian, A C

    1995-01-01

    Recent {\\it ASCA} observations confirm the presence of X-ray absorption due to partially ionized gas in many Seyfert 1 galaxies; the so-called warm absorber. Constraints on the location of the warm material are presented with the conclusion that this material lies at radii coincident with, or just outside, the broad-line region. The stability of this warm material to isobaric perturbations under the assumptions of thermal and photoionization equilibrium is also studied. It is shown that there is a remarkably small range of ionization parameter, \\xi, for which the warm absorber state is stable. The robustness of this result to changes in the shape of the primary continuum, the assumed density and optical depth is investigated. Given the constraints on the location and the stability properties of the material, several models for the environments of Seyfert nuclei are discussed. These attempt to explain the presence of significant amounts of partially ionized material. In particular, various models of the broad-...

  13. Metamaterial perfect absorber based hot electron photodetection.

    Science.gov (United States)

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  14. An Energy Absorber with Force Modificator

    Institute of Scientific and Technical Information of China (English)

    SU Hao; ZHANG Xiaowei; YU Tongxi

    2006-01-01

    Thin-walled tubes are extensively applied in engineering,especially in vehicle structures to resist axial or traversal impact loads,for their excellent energy absorbing capacity.However,in the axial deformation mode,the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures,cargo and environment.Aiming to develop energy absorbers with impact-force modificator,square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube.A small device is designed to serve as an impact-force modificator,which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube,so as to reduce the peak force.Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption.The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube.With future improvements,it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.

  15. Art and the Body Image: about Self and Stereotypes

    OpenAIRE

    Oliveira, Mónica

    2015-01-01

    Today's man is socially absorbed by problematic body issues and everything that this means and involves. Literature, publicity, science, technology and medicine compound these issues in a form of this theme that has never been seen before. In the artistic framework, body image is constantly suffering modifications. Body image in sculpture unfolds itself, assuming different messages and different forms. The body is a synonym of subject, an infinite metaphorical history of our looks...

  16. Associative study of Absorbing Aerosol Index (AAI) and precipitation in India during monsoon season (2005 to 2014)

    Science.gov (United States)

    Dubey, Shivali; Mehta, Manu; Singh, Ankit

    2016-05-01

    Based on their interaction with solar radiations, aerosols may be categorized as absorbing or scattering in nature. The absorbing aerosols are coarser and influence precipitation mainly due to microphysical effect (participating in the formation of Cloud Condensation Nuclei) and radiative forcing (by absorbing electromagnetic radiations). The prominent absorbing aerosols found in India are Black Carbon, soil dust, sand and mineral dust. Their size, distribution, and characteristics vary spatially and temporally. This paper aims at showing the spatio-temporal variation of Absorbing Aerosol Index (AAI) and precipitation over the four most polluted zones of Indian sub-continent (Indo-Gangetic plains 1, Indo-Gangetic plains 2, Central and Southern India) for monsoon season (June, July, August, September) during the last decade (2005 to 2014). Zonal averages AAI have been found to be exhibiting an increasing trend, hence region-wise correlations have been computed between AAI and precipitation during monsoon. Daily Absorption Aerosol Index (AAI) obtained from Aura OMI Aerosol Global Gridded Data Product-OMAEROe (V003) and monthly precipitation from TRMM 3B42-V7 gridded data have been used.

  17. Tracking Performances of Several Front-Absorber Designs

    CERN Document Server

    Lautridou, P; CERN. Geneva; Métivier, V; Rahmani, A; Ramillien, V; Reposeur, T; Morsch, Andreas; Cussonneau, J P

    1998-01-01

    The tracking performances of the ALICE forward muon spectrometer are investigated for several front-absorbers designs. The obtained mass resolution is compared to the one of the absorber proposed in the LOI. Out of punchthrough considerations, two absorbers compositions, including a Carbon+Concrete sandwich design, allow to reach the requested mass resolution for the Y's. Almost identical behaviours are observed versus rapidity and transverse momentum of resonances for both new candidates. These proposed designs improve the mass resolution performances and could stand as suitable absorber options for the forward muon spectrometer of ALICE. The Carbon+Concrete absorber has been retained for the Technical Proposal [1].

  18. The effect of absorbing aerosols on Indian monsoon circulation and rainfall: A review

    Science.gov (United States)

    Sanap, S. D.; Pandithurai, G.

    2015-10-01

    Aerosol, an uncertain component of the climate system, has attracted wide attention among the researchers due to its role in hydrological cycle and radiation budget in a changing climate. According to IPCC 5th assessment report, current understanding of aerosol-cloud-precipitation interaction is low to moderate, as a result they are not well represented in the climate models, and in turn are recognized as major uncertainties in the future climate projections. In South Asian monsoon regions, the aerosol forcing response to water cycle is even more complicated. Substantial amount of transported dust from Middle East countries and adjacent deserts get accumulated over Indian subcontinent (mainly North India and Indo Gangetic Plains; IGP) and further coated with black carbon (BC) produced from local emission, which make the atmospheric physics and chemistry of the aerosol more complex over the region. Here we review earlier studies and recapitulate our current understanding of absorbing aerosols on Indian monsoon circulation and rainfall from observational evidences and variety of numerical model simulations. This review begins with current understanding of the absorbing aerosols and interactions with Indian summer monsoon, followed by discussion on various working hypotheses, observational and modeling perspective, local and remote impacts. The key open questions and suggestions for future research priorities are delineated to improve the current understanding about the relationship between absorbing aerosols and Indian summer monsoon.

  19. Evolution of massive black holes

    OpenAIRE

    Volonteri, Marta

    2007-01-01

    Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...

  20. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  1. Nano-Composite Superfine Nickel Powder Double Absorbent Coating Designing

    Institute of Scientific and Technical Information of China (English)

    LU Yan-hong; WANG Zhi-hui; HUANG Dong-zhen; HU Chuan-xin; ZHANG Chen-jia; LI Wan-zhi; LIANG Wen-ting

    2004-01-01

    We adopt a definite procedure to compound traditional absorbing material-superfine powder nickel and nano -SiC powder to obtain the nano-composite nickel powder, then testing the absorbing speciality of the composite powder. In virtue of computer assistant designing, we apply double-deck absorbent structure to improve absorbent effect and widen wave band. The experiment indicated that it is possible to achieve the anticipative object to improve the absorbing capability by adopting nano-composite absorbing material, but each component of the composite material must have matched electromagnetic parameter with another. For matching double-coating structure, it ought to modulate the correlativity of each factor to achieve the most matching in order to optimise the absorbent speciality.

  2. Carbon black recovery

    International Nuclear Information System (INIS)

    A process and apparatus for recovering carbon black from hot smoke which comprises passing the smoke through a cyclone separation zone following cooling, then through aggregate filter beds and regeneration of filter beds with clean off-gas which is recycled to the carbon black reaction zone as quench

  3. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  4. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  5. Arbitrators, Blacks and Discipline

    Science.gov (United States)

    Jennings, Kenneth

    1975-01-01

    A discussion of the handling of disciplinary problems of black employees concludes that management should be concerned because of the effect that grievance resolution may have on the company's overall employee discipline program and the additional appeal alternatives available to the black employee. (Author/EA)

  6. Noncommutative Singular Black Holes

    International Nuclear Information System (INIS)

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  7. Noncommutative Singular Black Holes

    Science.gov (United States)

    Hamid Mehdipour, S.

    2010-11-01

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  8. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  9. Black Craftsmen Through History.

    Science.gov (United States)

    Myers, Robin

    This report traces the evolution of the black craftsmen from ancient Egypt to the present. Special attention is given to the restricted use of black craftsmen under slavery, and the added problems they faced after being freed. Business and union discimination is described, along with recent government and private efforts to achieve equal…

  10. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    International Nuclear Information System (INIS)

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al27, C12, B11, B10 and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B10 content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B10 content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B10 content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B10 content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 1010 order, however, usual neutron flux from spent fuel is 108 order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B10 content is little decreased, so, initial neutron absorbing ability could be kept continuously

  11. Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM

    Directory of Open Access Journals (Sweden)

    N. Goldenson

    2012-09-01

    Full Text Available The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1 now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We investigate the model response to the deposition of black carbon and dust to both snow and sea ice. For these purposes we employ a slab ocean version of CESM1, using the Community Atmosphere Model version 4 (CAM4, run to equilibrium for year 2000 levels of CO2 and fixed aerosol deposition. We construct experiments with and without aerosol deposition, with dust or black carbon deposition alone, and with varying quantities of black carbon and dust to approximate year 1850 and 2000 deposition fluxes. The year 2000 deposition fluxes of both dust and black carbon cause 1–2 °C of surface warming over large areas of the Arctic Ocean and sub-Arctic seas in autumn and winter and in patches of Northern land in every season. Atmospheric circulation changes are a key component of the surface-warming pattern. Arctic sea ice thins by on average about 30 cm. Simulations with year 1850 aerosol deposition are not substantially different from those with year 2000 deposition, given constant levels of CO2. The climatic impact of particulate impurities deposited over land exceeds that of particles deposited over sea ice. Even the surface warming over the sea ice and sea ice thinning depends more upon light-absorbing particles deposited over land. For CO2 doubled relative to year 2000 levels, the climate impact of particulate impurities in snow and sea ice is substantially lower than for the year 2000 equilibrium simulation.

  12. SSPM在蓝宝石光纤黑体腔瞬态高温传感器中的应用%Application of the SSPM in Sapphire Fiber Black-Body Cavity Transient High Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    潘保武; 郝晓剑; 李伟; 周汉昌

    2011-01-01

    介绍了一种基于黑体全辐射原理的蓝宝石光纤黑体腔高温传感器,从黑体腔制作和微光信号探测方面进行了分析,测试了固态光电倍增管(Solid-State Photomultiplier,SSPM)的输入输出特性,并给出了实验结果.实验结果表明:由于采用新型光电探测器和膜层材料,大大提高了传感器的测温范围和信噪比.该高温传感器的测试范围上限大于2000 C,响应时间小于100 ms,能够满足科研和工业生产中特殊环境下的温度测量.%Sapphire fiber blackbody cavity transient high temperature sensor based on a whole blank-body radiation theory was introduced, and blank-body cavity production and weak photoelectric signal detection was analyzed. Testing results of input and output characteristics for the solid-state photomultiplier(SSPM) were also given. The experimental results show that the temperature range and signal to noise ratio of the sensor are increased using new photoelectric detector and film material. The temperature sensor measuring range upper limit is greater than 2 000 C and the response time less than 100 ms. It can meet the research and industrial production with some specific environment for temperature measurement.

  13. Bog bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2015-01-01

    the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma...... and shrink, leading to potential pitfalls in paleopathological diagnostics. Bog bodies have in several instances been crucial in determining the last meal, as gut contents may be preserved, and thus augment our knowledge on pre-historic diet by adding to, for example, stable isotope analyses. This article...

  14. Black holes and quasiblack holes: Some history and remarks

    CERN Document Server

    Lemos, José P S

    2011-01-01

    A brief reference to the two Schwarzschild solutions and what Petrov had to say about them is given. Comments on how the Schwarzschild vacuum solution describes a black hole are also provided. Then we compare the properties, differences and similarities between black holes and quasiblack holes. Black holes are well known. Quasiblack hole is a new concept. A quasiblack hole, either nonextremal or extremal, can be broadly defined as the limiting configuration of a body when its boundary approaches the body's own gravitational radius (the quasihorizon). They are objects that are on the verge of being black holes but actually are distinct from them in many ways. We display some of their properties: there are infinite redshift whole regions; the curvature invariants remain perfectly regular everywhere, in the quasiblack hole limit; a free-falling observer finds in his own frame infinitely large tidal forces in the whole inner region, showing some form of degeneracy; outer and inner regions become mutually impenetr...

  15. Fluctuating Black Hole Horizons

    CERN Document Server

    Mei, Jianwei

    2013-01-01

    In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.

  16. Lifshitz Topological Black Holes

    CERN Document Server

    Mann, R B

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  17. Propionate absorbed from the colon acts as gluconeogenic substrate in a strict carnivore, the domestic cat (Felis catus)

    DEFF Research Database (Denmark)

    Verbrugghe, A; Hesta, M; Daminet, S;

    2012-01-01

    In six normal-weight and six obese cats, the metabolic effect of propionate absorbed from the colon was assessed. Two colonic infusions were tested in a crossover design with intervals of 4 weeks. The test solution contained 4 mmol sodium propionate per kg ideal body weight in a 0.2% NaCl solution...

  18. Dark Spinors Hawking Radiation in String Theory Black Holes

    Directory of Open Access Journals (Sweden)

    R. T. Cavalcanti

    2016-01-01

    Full Text Available The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is derived, in the context of dark spinors tunnelling across the horizon. Since a black hole has a well defined temperature, it should radiate in principle all the standard model particles, similar to a black body at that temperature. We investigate the tunnelling of mass dimension one spin-1/2 dark fermions, which are beyond the standard model and are prime candidates to the dark matter. Their interactions with the standard model matter and gauge fields are suppressed by at least one power of unification scale, being restricted just to the Higgs field and to the graviton likewise. The tunnelling method for the emission and absorption of mass dimension one particles across the event horizon of Kerr-Sen axion-dilaton black holes is shown here to provide further evidence for the universality of black hole radiation, further encompassing particles beyond the standard model.

  19. Acoustic black holes: recent developments in the theory and applications.

    Science.gov (United States)

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air.

  20. Studies on black anodic coatings for spacecraft thermal control applications

    Energy Technology Data Exchange (ETDEWEB)

    Uma Rani, R.; Subba Rao, Y.; Sharma, A.K. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group

    2011-10-15

    An inorganic black colouring process using nickel sulphate and sodium sulphide was investigated on anodized aluminium alloy 6061 to provide a flat absorber black coating for spacecraft thermal control applications. Influence of colouring process parameters (concentration, pH) on the physico-optical properties of black anodic film was investigated. The nature of black anodic film was evaluated by the measurement of film thickness, micro hardness and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy studies confirmed the presence of nickel and sulphur in the black anodic coating. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion resistance of the coating. The environmental tests, namely, humidity, corrosion resistance, thermal cycling and thermo vacuum performance tests were used to evaluate the space worthiness of the coating. Optical properties of the film were measured before and after each environmental test to ascertain its stability in harsh space environment. The black anodic films provide higher thermal emittance ({proportional_to} 0.90) and solar absorptance ({proportional_to} 0.96) and their high stability during the environmental tests indicated their suitability for space and allied applications. (orig.)

  1. Acoustic black holes: recent developments in the theory and applications.

    Science.gov (United States)

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air. PMID:25073137

  2. Evaluation of absorbed doses in voxel-based and simplified models for small animals

    International Nuclear Information System (INIS)

    Internal dosimetry in non-human biota is desirable from the viewpoint of radiation protection of the environment. The International Commission on Radiological Protection (ICRP) proposed Reference Animals and Plants using simplified models, such as ellipsoids and spheres and calculated absorbed fractions (AFs) for whole bodies. In this study, photon and electron AFs in whole bodies of voxel-based rat and frog models have been calculated and compared with AFs in the reference models. It was found that the voxel-based and the reference frog (or rat) models can be consistent for the whole-body AFs within a discrepancy of 25 %, as the source was uniformly distributed in the whole body. The specific absorbed fractions (SAFs) and S values were also evaluated in whole bodies and all organs of the voxel-based frog and rat models as the source was distributed in the whole body or skeleton. The results demonstrated that the whole-body SAFs reflect SAFs of all individual organs as the source was uniformly distributed per mass within the whole body by about 30 % uncertainties with exceptions for body contour (up to -40 %) for both electrons and photons due to enhanced radiation leakages, and for the skeleton for photons only (up to +185 %) due to differences in the mass attenuation coefficients. For nuclides such as 90Y and 90Sr, which were concentrated in the skeleton, there were large differences between S values in the whole body and those in individual organs, however the whole-body S values for the reference models with the whole body as the source were remarkably similar to those for the voxel-based models with the skeleton as the source, within about 4 and 0.3 %, respectively. It can be stated that whole-body SAFs or S values in simplified models without internal organs are not sufficient for accurate internal dosimetry because they do not reflect SAFs or S values of all individual organs as the source was not distributed uniformly in whole body. Thus, voxel-based models

  3. Unexpected Attraction of Polarotactic Water-Leaving Insects to Matt Black Car Surfaces: Mattness of Paintwork Cannot Eliminate the Polarized Light Pollution of Black Cars

    OpenAIRE

    Miklos Blaho; Tamas Herczeg; Gyorgy Kriska; Adam Egri; Denes Szaz; Alexandra Farkas; Nikolett Tarjanyi; Laszlo Czinke; Andras Barta; Gabor Horvath

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt ...

  4. Creating a urine black hole

    Science.gov (United States)

    Hurd, Randy; Pan, Zhao; Meritt, Andrew; Belden, Jesse; Truscott, Tadd

    2015-11-01

    Since the mid-nineteenth century, both enlisted and fashion-conscious owners of khaki trousers have been plagued by undesired speckle patterns resulting from splash-back while urinating. In recent years, industrial designers and hygiene-driven entrepreneurs have sought to limit this splashing by creating urinal inserts, with the effectiveness of their inventions varying drastically. From this large assortment of inserts, designs consisting of macroscopic pillar arrays seem to be the most effective splash suppressers. Interestingly this design partially mimics the geometry of the water capturing moss Syntrichia caninervis, which exhibits a notable ability to suppress splash and quickly absorb water from impacting rain droplets. With this natural splash suppressor in mind, we search for the ideal urine black hole by performing experiments of simulated urine streams (water droplet streams) impacting macroscopic pillar arrays with varying parameters including pillar height and spacing, draining and material properties. We propose improved urinal insert designs based on our experimental data in hopes of reducing potential embarrassment inherent in wearing khakis.

  5. Radiating black holes in Einstein-Maxwell-dilaton theory

    CERN Document Server

    Aniceto, Pedro; Rocha, Jorge V

    2015-01-01

    We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a=1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null dust and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a=1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, we prove that an electrically charged black hole in this theory cannot be overcharged by bombarding it with a stream of electrically charged null dust. This provides an example of cosmic censorship observance in a string theory setting.

  6. Body Language

    Institute of Scientific and Technical Information of China (English)

    王芳

    2008-01-01

    @@ For Teachers: The Wordless Language Spoken by Everyone by Pamela Osment An old saying goes:"Actions speak louder than words."That's true according to communication experts.Some studies show that up to 90 percent of communication is nonverbal.Though you might say one thing,your body movements may indicate something entirely different.This nonverbal way of communicating is called body language.The Universal(通用的)Language

  7. Perfect plasmonic absorbers for photovoltaic applications

    International Nuclear Information System (INIS)

    A novel regime of perfect absorption in a thin plasmonic layer corresponds to a collective mode of an array of plasmonic nanospheres. In our theoretical study we show that the absorption of the incident light occurs mainly in the semiconductor material hosting plasmonic nanospheres, whereas the absorption in the metal is very small. The regime survives when the uniform host layer is replaced by a practical photovoltaic cell. Trapping the light allows the thickness of the doped semiconductor to be reduced to values for which the degradation under light exposure should be insufficient. The light-trapping regime is compatible with both the metal-backed variant of the photovoltaic cell and its semitransparent variant when both electrodes are preformed of a conductive oxide. Negligible parasitic losses, a variety of design solutions and a reasonable operational band make our perfect plasmonic absorbers promising for photovoltaic applications. (paper)

  8. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  9. A variable passive low-frequency absorber

    DEFF Research Database (Denmark)

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders

    2005-01-01

    Multi-purpose concert halls face a dilemma. They can host classical music concerts, rock concerts and spoken word performances in a matter of a short period. These different performance types require significantly different acoustic conditions in order to provide the best sound quality to both...... the performers and the audience. A recommended reverberation time for classical music may be in the range of 1.5–2 s for empty halls, where rock music sounds best with a reverberation time around 0.8-1 s. Modern rhythmic music often contains high levels of sound energy in the low frequency bands but still...... typically been too expensive or requires too much space to be practical for multi-purpose halls. Measurements were made on a variable low-frequency absorber to develop a practical solution to the dilemma. The paper will present the results of the measurements as well as a possible design....

  10. Corundum-based transparent infrared absorbers

    KAUST Repository

    Schwingenschlögl, Udo

    2009-10-01

    Hypothetical corundum-based compounds are studied by electronic structure calculations. One quarter of the Al atoms in Al2O3 is replaced by a 3d transition metal from the M = Ti, ..., Zn (d1, ..., d9) series. Structure optimisations are performed for all the M-Al2O3 compounds and the electronic states are evaluated. Due to the M substitutes, narrow partially filled bands are formed at the Fermi energy. Beyond, for M = Ni and M = Cu the optical properties of Al2O3 in the visible range are conserved, while for M = Ti, ..., Co the systems form high accuracy optical filters. Since the compounds absorb the infrared radiation, the M = Ni and M = Cu systems are good candidates for heat-protective coatings. © 2009 Elsevier B.V. All rights reserved.

  11. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  12. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  13. Absorbing layers for the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Olivier, E-mail: pinaud@math.colostate.edu

    2015-05-15

    This work is devoted to the construction of perfectly matched layers (PML) for the Dirac equation, that not only arises in relativistic quantum mechanics but also in the dynamics of electrons in graphene or in topological insulators. While the resulting equations are stable at the continuous level, some care is necessary in order to obtain a stable scheme at the discrete level. This is related to the so-called fermion doubling problem. For this matter, we consider the numerical scheme introduced by Hammer et al. [19], and combine it with the discretized PML equations. We state some arguments for the stability of the resulting scheme, and perform simulations in two dimensions. The perfectly matched layers are shown to exhibit, in various configurations, superior absorption than the absorbing potential method and the so-called transport-like boundary conditions.

  14. Gravitational waves from binary black holes

    Indian Academy of Sciences (India)

    Bala R Iyer

    2011-07-01

    It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar’s contribution to the subject is first presented. The current status of the experimental search for gravitational waves and the attendant theoretical insights into the two-body problem in general relativity arising from computations of gravitational waves from binary black holes are then broadly reviewed.

  15. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  16. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  17. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  18. Black Youth Unemployment and the Black Family.

    Science.gov (United States)

    Hoskins, Linus A.

    This paper analyzes the results of a survey conducted to ascertain the attitudes of 400 employers, youth, and academic/community professionals in Los Angeles, Chicago and Washington, D.C., toward an approach to Black youth unemployment centered on the creation of jobs and training among minority businesses in selected metropolitan areas. Minority…

  19. Black Hole Critical Phenomena Without Black Holes

    CERN Document Server

    Liebling, S L

    2000-01-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  20. Massive Black Hole Recoil in High Resolution Hosts

    OpenAIRE

    Guedes, Javiera; Diemand, Jürg; Zemp, Marcel; Kuhlen, Michael; Madau, Piero; Mayer, Lucio; Stadel, Joachim

    2008-01-01

    The final inspiral and coalescence of a black hole binary can produce highly beamed gravitational wave radiation. To conserve linear momentum, the black hole remnant can recoil with "kick" velocity as high as 4000 km/s. We present two sets of full N-body simulations of recoiling massive black holes (MBH) in high-resolution, non-axisymmetric potentials. The host to the first set of simulations is the main halo of the Via Lactea I simulation (Diemand et al. 2007). The nature of the resulting or...

  1. A Liquid Model Analogue for Black Hole Thermodynamics

    CERN Document Server

    Hochberg, D; Hochberg, David; Pérez-Mercader, Juan

    1996-01-01

    We are able to characterize a 2--dimensional classical fluid sharing some of the same thermodynamic state functions as the Schwarzschild black hole. This phenomenological correspondence between black holes and fluids is established by means of the model liquid's pair-correlation function and the two-body atomic interaction potential. These latter two functions are calculated exactly in terms of the black hole internal (quasilocal) energy and the isothermal compressibility. We find the existence of a ``screening" like effect for the components of the liquid.

  2. On the Charter Question: Black Marxism and Black Nationalism

    Science.gov (United States)

    Stern, Mark; Hussain, Khuram

    2015-01-01

    This article brings two black intellectual traditions to bear on the question of charter schools: black Marxism and black nationalism. The authors examine the theoretical and rhetorical devices used to talk about charters schools by focusing on how notions of "black liberation" are deployed by the charter movement, and to what end. The…

  3. Internal radiation absorbed dose estimation in human brain due to technetium-99m and iodine-131

    International Nuclear Information System (INIS)

    Internal dosimetry is a branch of medical physics that deals with the measurement of the internally absorbed dose by an organ after applying isotopes. In this study, internal radiation absorbed dose has been calculated for 99mTc and 131I, which are frequently used for functioning tests and therapeutic treatments of thyroid, respectively in these cases, some amount of isotopes are accumulated in other tissues like brain, which are very soft and cannot be regenerated if they are damaged. Using ionizing radiation inside the body and to ensure the safety of brain, the internal radiation absorbed dose has been calculated applying direct counting measurement. Accumulation of isotopes to target organ has been measured and this target organ is considered as primary target organ; also this organ is considered as source with respect to other organs. These organ counts have, been measured by computer-based scintillation system. The amount of exposure in brain has been measured with the help of the data obtained from the special set-up equipment, including NaI detector, radiation survey meter and water phantoms of various sizes. Absorbed dose in brain for each isotope has been calculated by applying time-activity curve analysis. Finally, these results have been compared with the data in ICRP l Reports 53 and 71. (author)

  4. Body contact and body language

    DEFF Research Database (Denmark)

    Winther, Helle Dagmar

    2008-01-01

    ­ment psychology and education provide potential for intense personal develop­ment as well as for social and cultural learning processes. This performative research project originates from the research project entitled, Movement Psy­chol­ogy: The Language of the Body and the Psy­chol­ogy of Movement based...... on the Dance Therapy Form Dansergia. The author, who is a practi­tioner-researcher, is methodologically inspir­ed by phenomenology, performative methods and a narrative and auto-ethnographic approach. The project will be presented in an organic, cre­at­ive and performative way. Through a moving dia......Body contact and body language are unique and existential and, although culturally dependent and socially embodied, they are also universal communication forms. For small children all over the world, warm, close and nourishing body contact is fundamental to their embodied experi­ence of themselves...

  5. Atmospheric black carbon and warming effects influenced by the source and absorption enhancement in central Europe

    NARCIS (Netherlands)

    Nordmann, S.; Cheng, Y.F.; Carmichael, G.R.; Yu, M.; Denier Van Der Gon, H.A.C.; Zhang, Q.; Saide, P.E.; Pöschl, U.; Su, H.; Birmili, W.; Wiedensohler, A.

    2014-01-01

    Particles containing black carbon (BC), a strong absorbing substance, exert a rather uncertain direct and indirect radiative forcing in the atmosphere. To investigate the mass concentration and absorption properties of BC particles over central Europe, the model WRF-Chem was used at a resolution of

  6. Scalarized Hairy Black Holes

    CERN Document Server

    Kleihaus, Burkhard; Yazadjiev, Stoytcho

    2015-01-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  7. Noncommutative Solitonic Black Hole

    CERN Document Server

    Chang-Young, Ee; Lee, Daeho; Lee, Youngone

    2012-01-01

    We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  8. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  9. Scalarized hairy black holes

    Directory of Open Access Journals (Sweden)

    Burkhard Kleihaus

    2015-05-01

    Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  10. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  11. Scalarized hairy black holes

    International Nuclear Information System (INIS)

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn

  12. Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension

    Science.gov (United States)

    Shen, Yujie; Chen, Long; Yang, Xiaofeng; Shi, Dehua; Yang, Jun

    2016-01-01

    Inerter is a recently proposed mechanical element with two terminals. The novelty of this paper is to present the improved design which aims to add traditional dynamic vibration absorber to the vehicle body by using the inerter. Based on this background, a new vehicle suspension structure called ISD suspension, including the inerter, spring and damper has been created. A dual-mass vibration model including the ISD suspension is considered in this study. Parameters are obtained by using the genetic optimizing algorithm. The frequency-domain simulation confirms that the ISD suspension can effectively improve the damping performance of the suspension system, especially at the offset frequency of the vehicle body, which is consistent with the feature of the dynamic vibration absorber added to the vehicle body mass. At last, a prototype ball screw inerter has been designed and the bench test of a quarter-car model has been undertaken. Under the conditions of the random road input, the vehicle ride comfort evaluation of body acceleration RMS value decreases by 4% at most, the suspension deflection RMS value decreases by 16% at most, the tire dynamic load RMS value decreases by 6% at most. Power spectral density results also indicate that the ISD suspension has superior damping performance than passive suspension which proves that the proposed ISD suspension is deemed effective.

  13. Heat and mass transfer characteristics of a small helical absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung-In [College of Engineering, School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of); Kwon, Oh-Kyung [KITECH, 35-3 Hongchon-ri, Ipjang-meon, Chonan, Chungnam 330-825 (Korea, Republic of); Bansal, P.K. [Department of Mechanical Engineering, The University of Auckland, Private bag 92019, Auckland (New Zealand); Moon, Choon-Geun; Lee, Ho-Saeng [Department of Refrigeration and Air-conditioning Engineering, Graduate School, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of)

    2006-02-01

    This paper presents experimental results of heat and mass transfer investigation of the falling film absorber (with strong lithium bromide solution) for a small household absorption chiller/heater. Various components (e.g. low temperature generator, absorber and evaporator) were arranged concentrically in cylindrical form such that the helical-arrangement of the heat exchangers allowed the system to be more compact than the conventional system. Measurements from the helical absorber were compared with data from the literature. The comparison revealed that the heat and mass transfer performance of the helical absorber tube is similar to the existing tube bundle absorber. As a result, the proposed helical absorber shows a good potential due its reduced size and weight for the future designs of small capacity absorption chillers/heaters. (author)

  14. Large area bismuth absorbers for X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, J.E. E-mail: vaillancourt@wisp.physics.wisc.edu; Allen, C.A.; Brekosky, R.; Dosaj, A.; Galeazzi, M.; Kelley, R.; Liu, D.; McCammon, D.; Porter, F.S.; Rocks, L.E.; Sanders, W.T.; Stahle, C.K

    2004-03-11

    Two challenges facing the use of large area (2 mmx2 mm) bismuth absorbers for microcalorimetry are uncertainties in the heat capacity of bismuth and the effects of lateral heat conduction and position dependence due to the absorber's large size. We have measured the heat capacity of three Bi samples to be 0.3-0.6 J K{sup -1} m{sup -3} at 100 mK. These absorbers also exhibit response variations as phonons created by an X-ray event at an absorber edge will take longer to propagate to the thermometer attachment point than those at the absorber center. This effect may degrade the detector's energy resolution if the propagation time is not very short compared to the thermometer time constant. We show that the response of the largest absorber varies by {approx}4% across its area.

  15. Environmental hazards and distribution of radioactive black sand along the Rosetta coastal zone in Egypt using airborne spectrometric and remote sensing data

    International Nuclear Information System (INIS)

    High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. - Highlights: • Spatial and temporal distributions of the black sand were

  16. Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry

    Science.gov (United States)

    da Silveira, Michely C.; Sampaio, Francisco G. A.; Petchevist, Paulo C. D.; de Oliveira, André L.; Almeida, Adelaide de

    2011-12-01

    Radiotherapy uses ionizing radiation to destroy tumor cells. The absorbed dose control in the target volume is realized through radiation sensors, such as Fricke dosimeters and radiochromic film, which permit to realize bi-dimensional evaluations at once and because of that, they will be used in this study as well. Among the several types of cancer suitable for ionizing radiation treatment, the Mycosis Fungoides, a lymphoma that spreads on the skin surface and depth, requires for its treatment total body irradiation by high-energy electrons. In this work the Fricke xylenol gel (FXG) was used in order to obtain information about the absorbed dose distribution induced by the electron interactions with the irradiated tissues and to control this type of treatment. FXG can be considered as an alternative dosimeter, since up to now only films have been used. FXG sample cuvettes, simulating two selected tomos (cranium and abdomen) of the Rando anthropomorphic phantom, were positioned along with radiochromic films for comparison. The phantom was subjected to Stanford total body irradiation using 6 MeV electrons. Tomographic images were acquired for both dosimeters and evaluated through horizontal and vertical profiles along the tomographic centers. These profiles were obtained through a Matlab routine developed for this purpose. From the obtained results, one could infer that, for a superficial and internal patient irradiation, the FXG dosimeter showed an absorbed dose distribution similar to the one of the film. These results can validate the FXG dosimeter as an alternative dosimeter for the Mycosis Fungoides treatment planning.

  17. Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Michely C. da [FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Sampaio, Francisco G.A., E-mail: francisampaio@pg.ffclrp.usp.br [FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Petchevist, Paulo C.D., E-mail: petchevist12@yahoo.com.br [FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Instituto de Radioterapia e Megavoltagem, Ribeirao Preto, Sao Paulo (Brazil); Oliveira, Andre L. de [Servico de Radioterapia do Hospital das Clinicas da Unicamp, Campinas, Sao Paulo (Brazil); Almeida, Adelaide de, E-mail: dalmeida@ffclrp.usp.br [FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2011-12-15

    Radiotherapy uses ionizing radiation to destroy tumor cells. The absorbed dose control in the target volume is realized through radiation sensors, such as Fricke dosimeters and radiochromic film, which permit to realize bi-dimensional evaluations at once and because of that, they will be used in this study as well. Among the several types of cancer suitable for ionizing radiation treatment, the Mycosis Fungoides, a lymphoma that spreads on the skin surface and depth, requires for its treatment total body irradiation by high-energy electrons. In this work the Fricke xylenol gel (FXG) was used in order to obtain information about the absorbed dose distribution induced by the electron interactions with the irradiated tissues and to control this type of treatment. FXG can be considered as an alternative dosimeter, since up to now only films have been used. FXG sample cuvettes, simulating two selected tomos (cranium and abdomen) of the Rando anthropomorphic phantom, were positioned along with radiochromic films for comparison. The phantom was subjected to Stanford total body irradiation using 6 MeV electrons. Tomographic images were acquired for both dosimeters and evaluated through horizontal and vertical profiles along the tomographic centers. These profiles were obtained through a Matlab routine developed for this purpose. From the obtained results, one could infer that, for a superficial and internal patient irradiation, the FXG dosimeter showed an absorbed dose distribution similar to the one of the film. These results can validate the FXG dosimeter as an alternative dosimeter for the Mycosis Fungoides treatment planning.

  18. The Price of "Black Dominance."

    Science.gov (United States)

    Hoberman, John

    2000-01-01

    Discusses the harmful effects of stereotyping black males as athletes, noting that over-identification with athletes and the world of physical performance limits black children's development by discouraging academic achievement. Examines the negative influence of mass media focus on black athletes, rappers, and stylized ghetto blackness. Discusses…

  19. On Noncommutative Black Holes Thermodynamics

    CERN Document Server

    Faizal, Mir; Ulhoa, S C

    2015-01-01

    In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.

  20. The Thermodynamics of Black Holes

    Directory of Open Access Journals (Sweden)

    Wald Robert M.

    2001-01-01

    Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.