WorldWideScience

Sample records for bla cb1 receptor

  1. The role of CB1 receptors in psychostimulant addiction

    NARCIS (Netherlands)

    Wiskerke, J.; Pattij, T.; Schoffelmeer, A.N.M.; de Vries, T.J.

    2008-01-01

    Recent studies have implicated the endocannabinoid (eCB) system in the neuronal mechanisms underlying substance dependence. Here, we review results of studies using cannabinoid receptor subtype 1 (CB1) knockout mice as well as CB1 antagonists to elucidate the role of this neurotransmitter system in

  2. CB1 receptor signaling regulates social anxiety and memory.

    Science.gov (United States)

    Litvin, Y; Phan, A; Hill, M N; Pfaff, D W; McEwen, B S

    2013-07-01

    The endocannabinoid (eCB) system regulates emotion, stress, memory and cognition through the cannabinoid type 1 (CB1 ) receptor. To test the role of CB1 signaling in social anxiety and memory, we utilized a genetic knockout (KO) and a pharmacological approach. Specifically, we assessed the effects of a constitutive KO of CB1 receptors (CB1 KOs) and systemic administration of a CB1 antagonist (AM251; 5 mg/kg) on social anxiety in a social investigation paradigm and social memory in a social discrimination test. Results showed that when compared with wild-type (WT) and vehicle-treated animals, CB1 KOs and WT animals that received an acute dose of AM251 displayed anxiety-like behaviors toward a novel male conspecific. When compared with WT animals, KOs showed both active and passive defensive coping behaviors, i.e. elevated avoidance, freezing and risk-assessment behaviors, all consistent with an anxiety-like profile. Animals that received acute doses of AM251 also showed an anxiety-like profile when compared with vehicle-treated animals, yet did not show an active coping strategy, i.e. changes in risk-assessment behaviors. In the social discrimination test, CB1 KOs and animals that received the CB1 antagonist showed enhanced levels of social memory relative to their respective controls. These results clearly implicate CB1 receptors in the regulation of social anxiety, memory and arousal. The elevated arousal/anxiety resulting from either total CB1 deletion or an acute CB1 blockade may promote enhanced social discrimination/memory. These findings may emphasize the role of the eCB system in anxiety and memory to affect social behavior. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  3. Loss of cannabinoid receptor CB1 induces preterm birth.

    Directory of Open Access Journals (Sweden)

    Haibin Wang

    2008-10-01

    Full Text Available Preterm birth accounting approximate 10% of pregnancies in women is a tremendous social, clinical and economic burden. However, its underlying causes remain largely unknown. Emerging evidence suggests that endocannabinoid signaling via cannabinoid receptor CB1 play critical roles in multiple early pregnancy events in both animals and humans. Since our previous studies demonstrated that loss of CB1 defers the normal implantation window in mice, we surmised that CB1 deficiency would influence parturition events.Exploiting mouse models with targeted deletion of Cnr1, Cnr2 and Ptgs1 encoding CB1, CB2 and cyclooxygenase-1, respectively, we examined consequences of CB1 or CB2 silencing on the onset of parturition. We observed that genetic or pharmacological inactivation of CB1, but not CB2, induced preterm labor in mice. Radioimmunoassay analysis of circulating levels of ovarian steroid hormones revealed that premature birth resulting from CB1 inactivation is correlated with altered progesterone/estrogen ratios prior to parturition. More strikingly, the phenotypic defects of prolonged pregnancy length and parturition failure in mice missing Ptgs1 were corrected by introducing CB1 deficiency into Ptgs1 null mice. In addition, loss of CB1 resulted in aberrant secretions of corticotrophin-releasing hormone and corticosterone during late gestation. The pathophysiological significance of this altered corticotrophin-releasing hormone-driven endocrine activity in the absence of CB1 was evident from our subsequent findings that a selective corticotrophin-releasing hormone antagonist was able to restore the normal parturition timing in Cnr1 deficient mice. In contrast, wild-type females receiving excessive levels of corticosterone induced preterm birth.CB1 deficiency altering normal progesterone and estrogen levels induces preterm birth in mice. This defect is independent of prostaglandins produced by cyclooxygenase-1. Moreover, CB1 inactivation resulted in

  4. Induction of CB1 cannabinoid receptor by inflammation in primary afferent neurons facilitates antihyperalgesic effect of peripheral CB1 agonist.

    Science.gov (United States)

    Amaya, Fumimasa; Shimosato, Goshun; Kawasaki, Yasuhiko; Hashimoto, Satoru; Tanaka, Yoshifumi; Ji, Ru-Rong; Tanaka, Masaki

    2006-09-01

    Cannabinoids act on various regions in the nervous system to modulate neuronal activity including nociception. Here, we investigated CB1 receptor expression in primary afferent neurons in the dorsal root ganglion (DRG) and the efficacy of a local (intraplantar) application of the selective CB1 agonist, 2-arachidonyl-2-chloroethylamide (ACEA), on inflammatory thermal hyperalgesia. In situ hybridization showed normal CB1 mRNA expression in 28% of DRG neurons. Peripheral inflammation by CFA (complete Freund's adjuvant) significantly increased the ratio of CB1 mRNA-positive neurons to 43%, primarily with increase in NF200-negative C-fiber nociceptors. Furthermore, CB1 and TRPV1 (transient potential receptor vanilloid subtype-1) co-localization was increased from 41% before inflammation to 67% two days after inflammation. Inflammation also increased CB1 immunoreactivity in DRG neurons and in nerve fibers of the hindpaw dermis, indicating increased CB1 transport from the cell body to the peripheral nerve. The intraplantar application of ACEA attenuated CFA-induced thermal hyperalgesia. The antinociceptive properties of ACEA became more prominent at 2 days after inflammation, compared with those in non-inflamed and inflamed animals at 8 h. These results suggest that CB1 expression in primary afferent neurons is increased by inflammation and that the subsequent increase in CB1 transport to peripheral axons contributes to the increased antihyperalgesic efficacy of locally administered CB1 agonist.

  5. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    , the ghrelin receptor, neuropeptide Y, adiponectin and proopiomelanocortin. We investigated whether the expression of these factors was affected in rats chronically treated with the antipsychotic risperidone. METHODS: Male Sprague-Dawley rats were treated with risperidone (1.0 mg/kg/day) or vehicle (20......% hydroxypropyl beta-cyclodextrin) for 28 days. Expression of the aforementioned factors were examined together with plasma prolactin and ghrelin levels. RESULTS: No difference in body weight gained during treatment was observed between risperidone and vehicle treated rats, but plasma risperidone levels...... positively correlated with visceral fat mass. Risperidone treatment increased CB(1) receptor binding in the arcuate nucleus (40%), hippocampus (25-30%) and amygdala (35%) without concurrent alterations in the CB(1) receptor mRNA. Risperidone treatment increased adiponectin mRNA. CONCLUSION: The present study...

  6. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala.

    Science.gov (United States)

    Ratano, Patrizia; Everitt, Barry J; Milton, Amy L

    2014-10-01

    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.

  7. CB1 receptor-mediated respiratory depression by endocannabinoids.

    Science.gov (United States)

    Iring, András; Hricisák, László; Benyó, Zoltán

    2017-06-01

    Endocannabinoids (ECs) are bioactive lipid mediators acting on two distinct cannabinoid receptors (CB1 and CB2), which are ubiquitously expressed in many tissues including the respiratory system. Despite numerous experimental data showing that cannabinomimetics influence respiration, the role of endogenously produced ECs in respiratory control has not been verified yet. Pulse oximetry was used in the present study to directly measure changes in respiratory parameters during elevation of EC levels. The cannabinoid reuptake inhibitor AM-404 (10mgkg -1 , i.v.), but not its vehicle, induced a transient reduction of respiratory rate with a concomitant depression of arterial oxygen saturation and increase in breath distension in wild-type mice. In contrast, CB1 knock-out mice showed no alteration in any of these parameters upon administration of AM-404. Our results imply that the EC system has an important role in the physiological control of respiration by modulating the respiratory rate and consequently influencing arterial oxygen saturation. Furthermore, this mechanism is entirely dependent on CB1 receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor.

    Science.gov (United States)

    Laprairie, R B; Bagher, A M; Kelly, M E M; Denovan-Wright, E M

    2015-10-01

    Cannabidiol has been reported to act as an antagonist at cannabinoid CB1 receptors. We hypothesized that cannabidiol would inhibit cannabinoid agonist activity through negative allosteric modulation of CB1 receptors. Internalization of CB1 receptors, arrestin2 recruitment, and PLCβ3 and ERK1/2 phosphorylation, were quantified in HEK 293A cells heterologously expressing CB1 receptors and in the STHdh(Q7/Q7) cell model of striatal neurons endogenously expressing CB1 receptors. Cells were treated with 2-arachidonylglycerol or Δ(9)-tetrahydrocannabinol alone and in combination with different concentrations of cannabidiol. Cannabidiol reduced the efficacy and potency of 2-arachidonylglycerol and Δ(9)-tetrahydrocannabinol on PLCβ3- and ERK1/2-dependent signalling in cells heterologously (HEK 293A) or endogenously (STHdh(Q7/Q7)) expressing CB1 receptors. By reducing arrestin2 recruitment to CB1 receptors, cannabidiol treatment prevented internalization of these receptors. The allosteric activity of cannabidiol depended upon polar residues being present at positions 98 and 107 in the extracellular amino terminus of the CB1 receptor. Cannabidiol behaved as a non-competitive negative allosteric modulator of CB1 receptors. Allosteric modulation, in conjunction with effects not mediated by CB1 receptors, may explain the in vivo effects of cannabidiol. Allosteric modulators of CB1 receptors have the potential to treat CNS and peripheral disorders while avoiding the adverse effects associated with orthosteric agonism or antagonism of these receptors. © 2015 The British Pharmacological Society.

  9. Cannabinoid Receptors CB1 and CB2 Form Functional Heteromers in Brain*

    Science.gov (United States)

    Callén, Lucía; Moreno, Estefanía; Barroso-Chinea, Pedro; Moreno-Delgado, David; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Lanciego, José Luis; Franco, Rafael; Lluis, Carmen; Canela, Enric I.; McCormick, Peter J.

    2012-01-01

    Exploring the role of cannabinoid CB2 receptors in the brain, we present evidence of CB2 receptor molecular and functional interaction with cannabinoid CB1 receptors. Using biophysical and biochemical approaches, we discovered that CB2 receptors can form heteromers with CB1 receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB1-CB2 receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB1 and CB2 receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB1-CB2 receptor heteromers consists of both the ability of CB1 receptor antagonists to block the effect of CB2 receptor agonists and, conversely, the ability of CB2 receptor antagonists to block the effect of CB1 receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB2 receptors can negatively modulate CB1 receptor function. PMID:22532560

  10. A restricted population of CB1 cannabinoid receptors with neuroprotective activity

    Science.gov (United States)

    Chiarlone, Anna; Bellocchio, Luigi; Blázquez, Cristina; Resel, Eva; Soria-Gómez, Edgar; Cannich, Astrid; Ferrero, José J.; Sagredo, Onintza; Benito, Cristina; Romero, Julián; Sánchez-Prieto, José; Lutz, Beat; Fernández-Ruiz, Javier; Galve-Roperh, Ismael; Guzmán, Manuel

    2014-01-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies. PMID:24843137

  11. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Directory of Open Access Journals (Sweden)

    Juan Mendizabal-Zubiaga

    2016-10-01

    Full Text Available The cannabinoid type 1 (CB1 receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1, where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahidrocannabinol (Δ9-THC concentrations (100 nM or 200 nM was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12% and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant

  12. Basolateral amygdala CB1 cannabinoid receptors are involved in cross state-dependent memory retrieval between morphine and ethanol.

    Science.gov (United States)

    Ofogh, Sattar Norouzi; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2016-09-01

    Ethanol and morphine are largely co-abused and affect memory formation. The present study intended to investigate the involvement of cannabinoid CB1 receptors of the basolateral amygdala (BLA) in cross state-dependent memory retrieval between morphine and ethanol. Adult male Wistar rats received bilateral cannulation of the BLA, and memory retrieval was measured in step-through type passive avoidance apparatus. Our results showed that post-training intraperitoneal (i.p.) administration of morphine (6mg/kg) induced amnesia. Pre-test administration of ethanol (0.5g/kg, i.p.) significantly improved morphine-induced memory impairment, suggesting that there is cross state-dependent memory retrieval between morphine and ethanol. It should be considered that pre-test administration of ethanol (0.1 and 0.5g/kg, i.p.) by itself had no effect on memory retrieval in the passive avoidance task. Interestingly, pre-test intra-BLA microinjection of different doses of WIN55,212-2 (0.1, 0.2 and 0.3μg/rat), a non-selective CB1/CB2 receptor agonist, plus an ineffective dose of ethanol (0.1g/kg, i.p.) improved morphine-induced memory impairment. Intra-BLA microinjection of AM251 (0.4-0.6ng/rat), a selective CB1 receptor antagonist, inhibited the improved effect of ethanol (0.5g/kg, i.p.) on morphine response. Pre-test intra-BLA microinjection of WIN55,212-2 or AM251 had no effect on memory retrieval or morphine-induced amnesia. Taken together, it can be concluded that morphine and ethanol can induce state-dependent memory retrieval. In addition, the BLA endocannabinoid system mediates via CB1 receptors the functional interaction of morphine and ethanol state-dependent memory retrieval which may depend on the rewarding effects of the drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex.

    Science.gov (United States)

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A

    2016-04-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim, Ahn, and Kendall, The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416(Ct)-Leu472(Ct)). Based on the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416(Ct), Asp423(Ct), Asp428(Ct), and Arg444(Ct) of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. © 2016 Wiley Periodicals, Inc.

  14. A peripherally selective diphenyl purine antagonist of the CB1 receptor

    Science.gov (United States)

    Fulp, Alan; Bortoff, Katherine; Zhang, Yanan; Mathews, James; Snyder, Rodney; Fennell, Tim; Marusich, Julie A.; Wiley, Jenny L.; Seltzman, Herbert; Maitra, Rangan

    2014-01-01

    Antagonists of the CB1 receptor can be useful in the treatment of several diseases including obesity, diabetes, and liver disease. However, to date, the only clinically approved CB1 receptor antagonist, rimonabant, was withdrawn due to adverse CNS related side effects such as depression and suicidal ideation. Since rimonabant’s withdrawal, several groups have begun pursuing peripherally selective CB1 antagonists. These compounds are expected to be devoid of undesirable CNS related effects but maintain efficacy through antagonism of peripherally expressed CB1 receptors within target tissues. Reported here are our latest results toward development of a peripherally selective analog of the diphenyl purine CB1 antagonist otenabant 1. Compound 9 (N-{1-[8-(2-Chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]piperidin-4-yl}pentanamide) is a potent, orally absorbed antagonist of the CB1 receptor that is >50-fold selective for CB1 over CB2, highly selective for the periphery in a rodent model, and without efficacy in a series of in vivo assays designed to evaluate its ability to mitigate the central effects of Δ9-THC through the CB1 receptor. PMID:24041123

  15. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery?

    OpenAIRE

    Smith, Tricia H; Sim-Selley, Laura J; Selley, Dana E

    2010-01-01

    The main pharmacological effects of marijuana, as well as synthetic and endogenous cannabinoids, are mediated through G-protein-coupled receptors (GPCRs), including CB1 and CB2 receptors. The CB1 receptor is the major cannabinoid receptor in the central nervous system and has gained increasing interest as a target for drug discovery for treatment of nausea, cachexia, obesity, pain, spasticity, neurodegenerative diseases and mood and substance abuse disorders. Evidence has accumulated to sugge...

  16. Deficits in Sensory-Specific Devaluation Task Performance Following Genetic Deletions of Cannabinoid (CB1) Receptor

    Science.gov (United States)

    Crombag, Hans S.; Johnson, Alexander W.; Zimmer, Anne M.; Zimmer, Andreas; Holland, Peter C.

    2010-01-01

    Cannabinoid CB1 receptor is abundantly expressed throughout the CNS and is implicated in numerous physiological and behavioral functions, including appetite and feeding. In the present study, wild-type and CB1 heterozygous and homozygous knockout mice were tested on an instrumental outcome-selective devaluation task to assess changes in acquired…

  17. Association of cannabis use during adolescence, prefrontal CB1 receptor signaling and schizophrenia

    Directory of Open Access Journals (Sweden)

    Adriana eCaballero

    2012-05-01

    Full Text Available The cannabinoid receptor 1 (CB1R is the G-protein coupled receptor responsible for the majority of the endocannabinoid signaling in the human brain. It is widely distributed in the limbic system, basal ganglia, and cerebellum, which are areas responsible for cognition, memory, and motor control. Because of this widespread distribution, it is not surprising that drugs that co-opt CB1R have expected behavioral outcomes consistent with dysregulated signaling from these areas (e.g. memory loss, cognitive deficits, etc. In the context of this review, we present evidence for the role of CB1R signaling in the prefrontal cortex (PFC, an area involved in executive functions, with emphasis on the developmental regulation of CB1R signaling in the acquisition of mature PFC function. We further hypothesize how alterations of CB1R signaling specifically during adolescent maturation might confer liability to psychiatric disorders.

  18. CB1 receptor antagonism increases hippocampal acetylcholine release: site and mechanism of action.

    Science.gov (United States)

    Degroot, Aldemar; Köfalvi, Attila; Wade, Mark R; Davis, Richard J; Rodrigues, Ricardo J; Rebola, Nelson; Cunha, Rodrigo A; Nomikos, George G

    2006-10-01

    Evidence indicates that blockade of cannabinoid receptors increases acetylcholine (ACh) release in brain cortical regions. Although it is assumed that this type of effect is mediated through CB1 receptor (CB1R) antagonism, several in vitro functional studies recently have suggested non-CB1R involvement. In addition, neither the precise neuroanatomical site nor the exact mechanisms underlying this effect are known. We thoroughly examined these issues using a combination of systemic and local administration of CB1R antagonists, different methods of in vivo microdialysis, CB1R knockout (KO) mice, tissue measurements of ACh, and immunochemistry. First, we showed that systemic injections of the CB1R antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR-141716A) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) dose-dependently increased hippocampal ACh efflux. Likewise, local hippocampal, but not septal, infusions of SR141716A or AM251 increased hippocampal ACh release. It is noteworthy that the stimulatory effects of systemically administered CB1R antagonists on hippocampal ACh release were completely abolished in CB1R KO mice. CB1R KO mice had similar basal but higher stress-enhanced hippocampal ACh levels compared with wild-type controls. It is interesting that dopamine D1 receptor antagonism counteracted the stimulatory effect of CB1R blockade on hippocampal ACh levels. Finally, immunohistochemical methods revealed that a high proportion of CB1R-positive nerve terminals were found in hippocampus and confirmed the colocalization of CB1 receptors with cholinergic and dopaminergic nerve terminals. In conclusion, hippocampal ACh release may specifically be controlled through CB1Rs located on both cholinergic and dopaminergic neuronal projections, and CB1R antagonism increases hippocampal ACh release, probably through both a direct

  19. Novel sulfenamides and sulfonamides based on pyridazinone and pyridazine scaffolds as CB1receptor ligand antagonists.

    Science.gov (United States)

    Murineddu, Gabriele; Deligia, Francesco; Ragusa, Giulio; García-Toscano, Laura; Gómez-Cañas, María; Asproni, Battistina; Satta, Valentina; Cichero, Elena; Pazos, Ruth; Fossa, Paola; Loriga, Giovanni; Fernández-Ruiz, Javier; Pinna, Gerard A

    2018-01-01

    A series of sulfenamide and sulfonamide derivatives was synthesized and evaluated for the affinity at CB 1 and CB 2 receptors. The N-bornyl-S-(5,6-di-p-tolylpyridazin-3-yl)-sulfenamide, compound 11, displayed good affinity and high selectivity for CB 1 receptors (K i values of 44.6 nM for CB 1 receptors and >40 μM for CB 2 receptors, respectively). The N-isopinocampheyl-sulfenamide 12 and its sulfonamide analogue 22 showed similar selectivity for CB 1 receptors with K i values of 75.5 and 73.2 nM, respectively. These novel compounds behave as antagonists/inverse agonists at CB 1 receptor in the [ 35 S]-GTPγS binding assays, and none showed adequate predictive blood-brain barrier permeation, exhibiting low estimated LD 50 . However, testing compound 12 in a supraspinal analgesic test (hot-plate) revealed that it was as effective as the classic CB 1 receptor antagonist rimonabant, in reversing the analgesic effect of a cannabinoid agonist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    Science.gov (United States)

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders.

  1. CB1 receptor mediates the effects of glucocorticoids on AMPK activity in the hypothalamus.

    Science.gov (United States)

    Scerif, Miski; Füzesi, Tamás; Thomas, Julia D; Kola, Blerina; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-10-01

    AMP-activated protein kinase (AMPK), a regulator of cellular and systemic energy homeostasis, can be influenced by several hormones. Tissue-specific alteration of AMPK activity by glucocorticoids may explain the increase in appetite, the accumulation of lipids in adipose tissues, and the detrimental cardiac effects of Cushing's syndrome. Endocannabinoids are known to mediate the effects of various hormones and to influence AMPK activity. Cannabinoids have central orexigenic and direct peripheral metabolic effects via the cannabinoid receptor type 1 (CB1). In our preliminary experiments, WT mice received implants of a corticosterone-containing pellet to establish a mouse model of Cushing's syndrome. Subsequently, WT and Cb1 (Cnr1)-knockout (CB1-KO) littermates were treated with corticosterone and AMPK activity in the hypothalamus, various adipose tissues, liver and cardiac tissue was measured. Corticosterone-treated CB1-KO mice showed a lack of weight gain and of increase in hypothalamic and hepatic AMPK activity. In adipose tissues, baseline AMPK activity was higher in CB1-KO mice, but a glucocorticoid-induced drop was observed, similar to that observed in WT mice. Cardiac AMPK levels were reduced in CB1-KO mice, but while WT mice showed significantly reduced AMPK activity following glucocorticoid treatment, CB1-KO mice showed a paradoxical increase. Our findings indicate the importance of the CB1 receptor in the central orexigenic effect of glucocorticoid-induced activation of hypothalamic AMPK activity. In the periphery adipose tissues, changes may occur independently of the CB1 receptor, but the receptor appears to alter the responsiveness of the liver and myocardial tissues to glucocorticoids. In conclusion, our data suggest that an intact cannabinoid pathway is required for the full metabolic effects of chronic glucocorticoid excess.

  2. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha

    2016-01-01

    ) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB......The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells......-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function....

  3. Hepatic expression of cannabinoid receptors CB1 and CB2 correlate with fibrogenesis in patients with chronic hepatitis B

    Directory of Open Access Journals (Sweden)

    Erhei Dai

    2017-06-01

    Conclusions: The hepatic expression of CB1 and CB2 plays an important role during the progression of fibrosis induced by CHB. Endogenous activation of CB1 receptors in patients with CHB enhances fibrogenesis by direct effect on activated HSCs.

  4. Cannabinoid-1 receptor (CB1R) blockers as medicines: beyond obesity and cardiometabolic disorders to substance abuse/drug addiction with CB1R neutral antagonists.

    Science.gov (United States)

    Janero, David R

    2012-03-01

    Addiction to chemical substances with abuse potential presents medical needs largely unsolved by extant therapeutic strategies. Signal transmission through the cannabinoid-1 receptor (CB1R) in the central nervous system (CNS) modulates neurotransmitters/neuronal pathways contributing to the rewarding properties and hedonic effects of certain nondrug stimuli (e.g., food) and many prototypical addictive drugs, promoting excessive intake and its pathological consequences. Typical CB1R antagonists/inverse agonists reduce the rewarding effects and normalize behavioral phenotypes associated with food and abused drugs, but carry an unacceptable adverse-event profile that may reflect, at least partly, their intrinsic ability to alter basal homeostatic CB1R signaling in the CNS and elicit a negative efficacy response. Alternatively, peripherally biased CB1R inverse agonists with limited CNS permeability and putative CB1R neutral antagonists expressing modest (if any) inverse-agonist efficacy are garnering attention for treating obesity and related cardiometabolic complications with a potentially enhanced benefit-to-risk profile. This mini-review calls attention to the proposition that CB1R neutral antagonists offer attractive opportunities for pharmacotherapeutic exploitation in the substance abuse/drug addiction space, whereas the restricted CNS accessibility of peripherally biased CB1R inverse agonists circumscribes their therapeutic utility for this indication. The unique preclinical pharmacology, efficacy profiles, and reduced adverse-event risk of CB1R neutral antagonists make them worthy of translational study for their potential therapeutic application beyond obesity/cardiometabolic disease to include substance-abuse/drug-addiction disorders.

  5. Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: Comparison of schizophrenia and major depressive disorder.

    Science.gov (United States)

    Eggan, Stephen M; Stoyak, Samuel R; Verrico, Christopher D; Lewis, David A

    2010-09-01

    We recently showed that measures of cannabinoid 1 receptor (CB1R) mRNA and protein were significantly reduced in dorsolateral prefrontal cortex (DLPFC) area 9 in schizophrenia subjects relative to matched normal comparison subjects. However, other studies have reported unaltered or higher measures of CB1R levels in schizophrenia. To determine whether these discrepancies reflect differences across brain regions or across subject groups (eg, presence of depression, cannabis exposure, etc), we used immunocytochemical techniques to determine whether lower levels of CB1R immunoreactivity are (1) present in another DLPFC region, area 46, in the same subjects with schizophrenia, (2) present in area 46 in a new cohort of schizophrenia subjects, (3) present in major depressive disorder (MDD) subjects, or (4) attributable to factors other than a diagnosis of schizophrenia, including prior cannabis use. CB1R immunoreactivity levels in area 46 were significantly 19% lower in schizophrenia subjects relative to matched normal comparison subjects, a deficit similar to that observed in area 9 in the same subjects. In a new cohort of subjects, CB1R immunoreactivity levels were significantly 20 and 23% lower in schizophrenia subjects relative to matched comparison and MDD subjects, respectively. The lower levels of CB1R immunoreactivity in schizophrenia subjects were not explained by other factors such as cannabis use, suicide, or pharmacological treatment. In addition, CB1R immunoreactivity levels were not altered in monkeys chronically exposed to haloperidol. Thus, the lower levels of CB1R immunoreactivity may be common in schizophrenia, conserved across DLPFC regions, not present in MDD, and not attributable to other factors, and thus a reflection of the underlying disease process.

  6. CB1Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal.

    Science.gov (United States)

    Saravia, Rocio; Flores, África; Plaza-Zabala, Ainhoa; Busquets-Garcia, Arnau; Pastor, Antoni; de la Torre, Rafael; Di Marzo, Vincenzo; Marsicano, Giovanni; Ozaita, Andrés; Maldonado, Rafael; Berrendero, Fernando

    2017-04-01

    Tobacco withdrawal is associated with deficits in cognitive function, including attention, working memory, and episodic memory. Understanding the neurobiological mechanisms involved in these effects is crucial because cognitive deficits during nicotine withdrawal may predict relapse in humans. We investigated in mice the role of CB 1 cannabinoid receptors (CB 1 Rs) in memory impairment and spine density changes induced by nicotine withdrawal precipitated by the nicotinic antagonist mecamylamine. Drugs acting on the endocannabinoid system and genetically modified mice were used. Memory impairment during nicotine withdrawal was blocked by the CB 1 R antagonist rimonabant or the genetic deletion of CB 1 R in forebrain gamma-aminobutyric acidergic (GABAergic) neurons (GABA-CB 1 R). An increase of 2-arachidonoylglycerol (2-AG), but not anandamide, was observed during nicotine withdrawal. The selective inhibitor of 2-AG biosynthesis O7460 abolished cognitive deficits of nicotine abstinence, whereas the inhibitor of 2-AG enzymatic degradation JZL184 did not produce any effect in cognitive impairment. Moreover, memory impairment was prevented by the selective mammalian target of rapamycin inhibitor temsirolimus and the protein synthesis inhibitor anisomycin. Mature dendritic spines on CA1 pyramidal hippocampal neurons decreased 4 days after the precipitation of nicotine withdrawal, when the cognitive deficits were still present. Indeed, a correlation between memory performance and mature spine density was found. Interestingly, these structural plasticity alterations were normalized in GABA-CB 1 R conditional knockout mice and after subchronic treatment with rimonabant. These findings underline the interest of CB 1 R as a target to improve cognitive performance during early nicotine withdrawal. Cognitive deficits in early abstinence are associated with increased relapse risk. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. CB1 - cannabinoid receptor antagonist effects on cortisol in cannabis-dependent men.

    Science.gov (United States)

    Goodwin, Robert S; Baumann, Michael H; Gorelick, David A; Schwilke, Eugene; Schwope, David M; Darwin, William D; Kelly, Deanna L; Schroeder, Jennifer R; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A

    2012-01-01

    The endocannabinoid system modulates the hypothalamic-pituitary-adrenal (HPA) axis, but the effect of cannabinoid type 1 (CB1) receptor antagonism following chronic CB1 receptor stimulation in humans is unknown. To evaluate effects of the CB1 receptor antagonist rimonabant on the HPA axis in cannabis-dependent individuals. Fourteen daily cannabis smokers received increasingly frequent 20 mg oral Δ9-tetrahydrocannabinol (THC) doses (60-120 mg/day) over 8 days to standardize cannabis tolerance. Concurrent with the last THC dose, double-blind placebo or rimonabant (20 or 40 mg) was administered. Cannabinoid, rimonabant, and cortisol plasma concentrations were measured 1.5 hours prior to rimonabant administration and 2.0, 5.5, and 12.5 hours post-dose. Ten participants completed before premature study termination due to rimonabant's withdrawal from development. Five participants received 20 mg, three received 40 mg, and two placebo. There was a significant positive association between rimonabant concentration and change in cortisol concentration from baseline (r = .53, p 40 mg might elicit cortisol changes, confirming a role for CB1 receptors in modulating the HPA axis in humans.

  8. Pyrazole antagonists of the CB1 receptor with reduced brain penetration.

    Science.gov (United States)

    Fulp, Alan; Zhang, Yanan; Bortoff, Katherine; Seltzman, Herbert; Snyder, Rodney; Wiethe, Robert; Amato, George; Maitra, Rangan

    2016-03-01

    Type 1 cannabinoid receptor (CB1) antagonists might be useful for treating obesity, liver disease, metabolic syndrome, and dyslipidemias. Unfortunately, inhibition of CB1 in the central nervous system (CNS) produces adverse effects, including depression, anxiety and suicidal ideation in some patients, which led to withdrawal of the pyrazole inverse agonist rimonabant (SR141716A) from European markets. Efforts are underway to produce peripherally selective CB1 antagonists to circumvent CNS-associated adverse effects. In this study, novel analogs of rimonabant (1) were explored in which the 1-aminopiperidine group was switched to a 4-aminopiperidine, attached at the 4-amino position (5). The piperidine nitrogen was functionalized with carbamates, amides, and sulfonamides, providing compounds that are potent inverse agonists of hCB1 with good selectivity for hCB1 over hCB2. Select compounds were further studied using in vitro models of brain penetration, oral absorption and metabolic stability. Several compounds were identified with predicted minimal brain penetration and good metabolic stability. In vivo pharmacokinetic testing revealed that inverse agonist 8c is orally bioavailable and has vastly reduced brain penetration compared to rimonabant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    2016-01-01

    Full Text Available The expression patterns of the cannabinoid receptor type 1 (CB1R and the cannabinoid receptor type 2 (CB2R are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells and CB2R is exclusively found in the retinal glia (Müller cells. However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp. in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.

  10. Elevated Brain Cannabinoid CB1 Receptor Availability in Posttraumatic Stress Disorder: A Positron Emission Tomography Study

    Science.gov (United States)

    Neumeister, Alexander; Normandin, Marc D.; Pietrzak, Robert H.; Piomelli, Daniele; Zheng, Ming-Qiang; Gujarro-Anton, Ana; Potenza, Marc N.; Bailey, Christopher R.; Lin, Shu-fei; Najafzadeh, Soheila; Ropchan, Jim; Henry, Shannan; Corsi-Travali, Stefani; Carson, Richard E.; Huang, Yiyun

    2013-01-01

    Endocannabinoids and their attending cannabinoid type 1 receptor (CB1) have been implicated in animal models of posttraumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma controls [TC]) and those without such histories (healthy controls [HC]). Untreated individuals with PTSD (N=25) with non-combat trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance (MR) imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [11C]OMAR, which measures volume of distribution (VT) linearly related to CB1 receptor availability. Peripheral levels of anandamide, 2-arachidonoylglycerol (2-AG), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and cortisol were also assessed. In the PTSD group, relative to the HC and TC groups, we found elevated brain-wide [11C]OMAR VT values (F(2,53)=7.96, p=.001; 19.5% and 14.5% higher, respectively) which were most pronounced in women (F(1,53)=5.52, p=.023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the HC group. Three biomarkers examined collectively—OMAR VT, anandamide, and cortisol—correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder. PMID:23670490

  11. Memory Encoding in Hippocampal Ensembles is Negatively Influenced by Cannabinoid CB1 Receptors

    OpenAIRE

    Hampson, Robert E.; Sweatt, Andrew J.; Goonawardena, Anushka V.; Song, Dong; Chan, Rosa H.M.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2011-01-01

    It has been previously demonstrated that the detrimental effect on performance of a delayed nonmatch to sample (DNMS) memory task by exogenously administered cannabinoid CB1 receptor agonist, WIN 55212-2 (WIN), is reversed by the receptor antagonist Rimonabant (Rmbt). In addition Rmbt administered alone elevates DNMS performance, presumably via suppression of negative modulation by released endocannabinoids during normal task performance. Other investigations have shown that Rmbt enhances enc...

  12. Effects of caffeine on striatal neurotransmission: focus on cannabinoid CB1 receptors.

    Science.gov (United States)

    Rossi, Silvia; De Chiara, Valentina; Musella, Alessandra; Mataluni, Giorgia; Sacchetti, Lucia; Siracusano, Alberto; Bernardi, Giorgio; Usiello, Alessandro; Centonze, Diego

    2010-04-01

    Caffeine is the most commonly self-administered psychoactive substance worldwide. At usual doses, the effects of caffeine on vigilance, attention, mood and arousal largely depend on the modulation of central adenosine receptors. The present review article describes the action of caffeine within the striatum, to provide a possible molecular mechanism at the basis of the psychomotor and reinforcing properties of this pharmacological agent. The striatum is in fact a subcortical area involved in sensorimotor, cognitive, and emotional processes, and recent experimental findings showed that chronic caffeine consumption enhances the sensitivity of striatal GABAergic synapses to the stimulation of cannabinoid CB1 receptors. The endocannabinoid system is involved in the psychoactive effects of many compounds, and adenosine A2A receptors (the main receptor target of caffeine) elicit a permissive effect towards CB1 receptors, thus suggesting that A2A-CB1 receptor interaction plays a major role in the generation and maintenance of caffeine reinforcing behavior. Aim of this review is to describe the effects of caffeine on striatal neurotransmission with special reference to the modulation of the endocannabinoid system.

  13. Cannabinoid CB1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB1 transmembrane helix 6 and anandamide in a phospholipid bilayer

    Science.gov (United States)

    Lynch, Diane L.; Reggio, Patricia H.

    2006-08-01

    The phospholipid bilayer plays a central role in the lifecycle of the endogenous cannabinoid, N-arachidonoylethanolamine (anandamide, AEA). Therefore, the orientation and location of AEA in the phospholipid bilayer with respect to key membrane associated proteins, is a central issue in understanding the mechanism of endocannabinoid signaling. In this paper, we report a test of the hypothesis that a βXX β motif (formed by beta branching amino acids, V6.43 and I6.46) on the lipid face of the cannabinoid CB1 receptor in its inactive state may serve as an initial CB1 interaction site for AEA. Eight 6 ns NAMD2 molecular dynamics simulations of AEA were conducted in a model system composed of CB1 transmembrane helix 6 (TMH6) in a 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) bilayer. In addition, eight 6 ns NAMD2 molecular dynamics simulations of a low CB1 affinity (20:2, n-6) analog of AEA were conducted in the same model system. AEA was found to exhibit a higher incidence of V6.43/I6.46 groove insertion than did the (20:2, n-6) analog. In certain cases, AEA established a high energy of interaction with TMH6 by first associating with the V6.43/I6.46 groove and then molding itself to the lipid face of TMH6 to establish a hydrogen bonding interaction with the exposed backbone carbonyl of P6.50. Based upon these results, we propose that the formation of this hydrogen bonded AEA/TMH6 complex may be the initial step in CB1 recognition of AEA in the lipid bilayer.

  14. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage II microsatellite stable colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Sofia B Gustafsson

    Full Text Available BACKGROUND: There is good evidence in the literature that the cannabinoid system is disturbed in colorectal cancer. In the present study, we have investigated whether CB(1 receptor immunoreactive intensity (CB(1IR intensity is associated with disease severity and outcome. METHODOLOGY/PRINCIPAL FINDINGS: CB(1IR was assessed in formalin-fixed, paraffin-embedded specimens collected with a consecutive intent during primary tumour surgical resection from a series of cases diagnosed with colorectal cancer. Tumour centre (n = 483 and invasive front (n = 486 CB(1IR was scored from 0 (absent to 3 (intense staining and the data was analysed as a median split i.e. CB(1IR <2 and ≥2. In microsatellite stable, but not microsatellite instable tumours (as adjudged on the basis of immunohistochemical determination of four mismatch repair proteins, there was a significant positive association of the tumour grade with the CB(1IR intensity. The difference between the microsatellite stable and instable tumours for this association of CB(1IR was related to the CpG island methylation status of the cases. Cox proportional hazards regression analyses indicated a significant contribution of CB(1IR to disease-specific survival in the microsatellite stable tumours when adjusting for tumour stage. For the cases with stage II microsatellite stable tumours, there was a significant effect of both tumour centre and front CB(1IR upon disease specific survival. The 5 year probabilities of event-free survival were: 85±5 and 66±8%; tumour interior, 86±4% and 63±8% for the CB(1IR<2 and CB(1IR≥2 groups, respectively. CONCLUSIONS/SIGNIFICANCE: The level of CB(1 receptor expression in colorectal cancer is associated with the tumour grade in a manner dependent upon the degree of CpG hypermethylation. A high CB(1IR is indicative of a poorer prognosis in stage II microsatellite stable tumour patients.

  15. Cannabinoid CB1 receptor antagonist rimonabant disrupts nicotine reward-associated memory in rats.

    Science.gov (United States)

    Fang, Qin; Li, Fang-Qiong; Li, Yan-Qin; Xue, Yan-Xue; He, Ying-Ying; Liu, Jian-Feng; Lu, Lin; Wang, Ji-Shi

    2011-10-01

    Exposure to cues previously associated with drug intake leads to relapse by activating previously acquired memories. Based on previous findings, in which cannabinoid CB(1) receptors were found to be critically involved in specific aspects of learning and memory, we investigated the role of CB(1) receptors in nicotine reward memory using a rat conditioned place preference (CPP) model. In Experiment 1, rats were trained for CPP with alternating injections of nicotine (0.5mg/kg, s.c.) and saline to acquire the nicotine-conditioned memory. To examine the effects of rimonabant on the reconsolidation of nicotine reward memory, rats were administered rimonabant (0, 0.3, and 3.0mg/kg, i.p.) immediately after reexposure to the drug-paired context. In Experiment 2, rats were trained for CPP similarly to Experiment 1. To examine the effects of rimonabant on the reinstatement of nicotine reward memory, rimonabant (0, 0.3, and 3.0mg/kg, i.p.) was administered before the test of nicotine-induced CPP reinstatement. In Experiment 3, to evaluate whether rimonabant itself produces a reward memory, rats were trained for CPP with alternating injections of different doses of rimonabant (0, 0.3, and 3.0mg/kg) and saline. Rimonabant at a dose of 3.0mg/kg significantly disrupted the reconsolidation of nicotine memory and significantly blocked the reinstatement of nicotine-induced CPP. However, rimonabant itself did not produce CPP. These findings provide clear evidence that CB(1) receptors play a role in nicotine reward memory, suggesting that CB(1) receptor antagonists may be a potential target for managing nicotine addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Memory Encoding in Hippocampal Ensembles is Negatively Influenced by Cannabinoid CB1 Receptors

    Science.gov (United States)

    Hampson, Robert E.; Sweatt, Andrew J.; Goonawardena, Anushka V.; Song, Dong; Chan, Rosa H.M.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2011-01-01

    It has been previously demonstrated that the detrimental effect on performance of a delayed nonmatch to sample (DNMS) memory task by exogenously administered cannabinoid CB1 receptor agonist, WIN 55212-2 (WIN), is reversed by the receptor antagonist Rimonabant (Rmbt). In addition Rmbt administered alone elevates DNMS performance, presumably via suppression of negative modulation by released endocannabinoids during normal task performance. Other investigations have shown that Rmbt enhances encoding of DNMS task-relevant information on a trial-by-trial, delay-dependent basis. In the current study these reciprocal pharmacological actions were fully characterized by long-term, chronic intrahippocampal infusion of both agents (WIN and Rmbt) in successive 2 week intervals. Such long-term exposure allowed extraction and confirmation of task-related firing patterns where Rmbt reversed effects of CB1 agonists. This information was then utilized to artificially impose the facilitatory effects of Rmbt and reverse the effects of WIN on DNMS performance, by delivering multichannel electrical stimulation in the same firing patterns to the same hippocampal regions. Direct comparison of normal and WIN injected animals, in which Rmbt injections and ensemble firing facilitated performance, verified reversal of the modulation of hippocampal memory processes by CB1 receptor agonists, including released endocannabinoids. PMID:21558844

  17. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1 show modestly enhanced alcohol preference and consumption.

    Directory of Open Access Journals (Sweden)

    David J Marcus

    Full Text Available We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6% but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg, morphine (10 mg/kg, and cocaine (10 mg/kg, demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.

  18. Cannabinoid CB1 Receptor Activation Mediates the Opposing Effects of Amphetamine on Impulsive Action and Impulsive Choice

    Science.gov (United States)

    Wiskerke, Joost; Stoop, Nicky; Schetters, Dustin; Schoffelmeer, Anton N. M.; Pattij, Tommy

    2011-01-01

    It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior. PMID:22016780

  19. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey, E-mail: carey.pope@okstate.edu

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  20. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus

    DEFF Research Database (Denmark)

    Soni, Neeraj; Satpathy, Shankha; Kohlmeier, Kristi Anne

    2014-01-01

    Marijuana, which acts within the endocannabinoid (eCB) system as an agonist of the cannabinoid type 1 receptor (CB1R), exhibits addictive properties and has powerful actions on the state of arousal of an organism. The laterodorsal tegmental nucleus (LDT), as a component of the reticular activating...... the firing frequency and synaptic activity of neurons in this nucleus. Therefore, endogenous eCB transmission could play a role in processes involving the LDT, such as cortical activation and motivated behaviours and, further, behavioural actions of marijuana are probably mediated, in part, via cellular...

  1. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  2. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  3. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Müller Anke

    2010-06-01

    Full Text Available Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC and Cannabidiol (CBD fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1 deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail. Results THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX-expressing intermediate progenitor cells. Conclusion CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.

  4. Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation?

    Science.gov (United States)

    Zlebnik, Natalie E; Cheer, Joseph F

    2016-07-08

    The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy.

  5. Interactions of CB1 and mGlu5 receptor antagonists in food intake, anxiety and memory models in rats.

    Science.gov (United States)

    Varga, Balázs; Kassai, Ferenc; Gyertyán, István

    2012-12-01

    CB(1) receptor antagonists proved to be effective anti-obesity drugs, however, their depressive and anxiogenic effects became also evident. Finding solution to overcome these psychiatric side effects is still in focus of research. Based on the available clinical and preclinical results we hypothesized that the combination of CB(1) and mGlu(5) receptor antagonisms may result in a pharmacological intervention, where the anxiolytic mGlu(5) receptor inhibition may counteract the anxiogenic psychiatric side effects of CB(1) antagonism, while CB(1) antagonism may ameliorate the memory impairing effect of mGlu(5) receptor antagonism. Further, the two components will synergistically interact in blocking food-intake and reducing obesity. For testing the interaction of mGlu(5) and CB(1) receptor antagonism MTEP [3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pridine; SIB-1757, 6-methyl-2-(phenylazo)-3-pyridinol)] (mGlu(5) antagonist) and rimonabant [(5-(4-Chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide)hydrochloride] (CB(1) antagonist) were used. All experiments were carried out in rats. Effects of the compounds on anxiety were tested in two foot shock induced ultrasonic vocalization paradigms, appetite suppression was assessed in the food intake test, while memory effects were tested in a context conditioned ultrasonic vocalization setup. MTEP abolished the anxiogenic effect of rimonabant, while there was an additive cooperation in suppressing appetite. However, rimonabant did not ameliorate the memory impairing effect of MTEP. By combination of CB(1) and mGluR5 antagonism, anxiety related side effects might be attenuated, appetite suppression maintained, nevertheless, the possible emergence of unwanted memory impairments can overshadow its therapeutic success. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Acute induction of anxiety in humans by delta-9-tetrahydrocannabinol related to amygdalar cannabinoid-1 (CB1) receptors.

    Science.gov (United States)

    Bhattacharyya, Sagnik; Egerton, Alice; Kim, Euitae; Rosso, Lula; Riano Barros, Daniela; Hammers, Alexander; Brammer, Michael; Turkheimer, Federico E; Howes, Oliver D; McGuire, Philip

    2017-11-03

    Use of Cannabis, the most widely used illicit drug worldwide, is associated with acute anxiety, and anxiety disorders following regular use. The precise neural and receptor basis of these effects have not been tested in man. Employing a combination of functional MRI (fMRI) and positron emission tomography (PET), we investigated whether the effects of delta-9-tetrahydrocannabinol (delta-9-THC), the main psychoactive ingredient of cannabis, on anxiety and on amygdala response while processing fearful stimuli were related to local availability of its main central molecular target, cannabinoid-1 (CB1) receptors in man. Fourteen healthy males were studied with fMRI twice, one month apart, following an oral dose of either delta-9-THC (10 mg) or placebo, while they performed a fear-processing task. Baseline availability of the CB1 receptor was studied using PET with [ 11 C]MePPEP, a CB1 inverse agonist radioligand. Relative to the placebo condition, delta-9-THC induced anxiety and modulated right amygdala activation while processing fear. Both these effects were positively correlated with CB1 receptor availability in the right amygdala. These results suggest that the acute effects of cannabis on anxiety in males are mediated by the modulation of amygdalar function by delta-9-THC and the extent of these effects are related to local availability of CB1 receptors.

  7. Effects of cannabinoid CB1 receptor antagonist rimonabant in consolidation and reconsolidation of methamphetamine reward memory in mice.

    Science.gov (United States)

    Yu, Lu-lu; Wang, Xue-yi; Zhao, Mei; Liu, Yu; Li, Yan-qin; Li, Fang-qiong; Wang, Xiaoyi; Xue, Yan-xue; Lu, Lin

    2009-06-01

    Previous studies have shown that cannabinoid CB1 receptors play an important role in specific aspects of learning and memory, yet there has been no systematic study focusing on the involvement of cannabinoid CB1 receptors in methamphetamine-related reward memory. The purpose of this study was to examine whether rimonabant, a cannabinoid CB1 receptor antagonist, would disrupt the consolidation and reconsolidation of methamphetamine-related reward memory, using conditioned place preference paradigm (CPP). Separate groups of male Kunming mice were trained to acquire methamphetamine CPP. Vehicle or rimonabant (1 mg/kg or 3 mg/kg, i.p.) was given at different time points: immediately after each CPP training session (consolidation), 30 min before the reactivation of CPP (retrieval), or immediately after the reactivation of CPP (reconsolidation). Methamphetamine CPP was retested 24 h and 1 and 2 weeks after rimonabant administration. Rimonabant at doses of 1 and 3 mg/kg significantly inhibited the consolidation of methamphetamine CPP. Only high-dose rimonabant (3 mg/kg) disrupted the retrieval and reconsolidation of methamphetamine CPP. Rimonabant had no effect on methamphetamine CPP in the absence of methamphetamine CPP reactivation. Our findings suggest that cannabinoid CB1 receptors play a major role in methamphetamine reward memory, and cannabinoid CB1 receptor antagonists may be a potential pharmacotherapy to manage relapse associated with drug-reward-related memory.

  8. Mapping CB1 cannabinoid receptors with [3H]OMAR in the Flinders rodent model of depression

    DEFF Research Database (Denmark)

    Nahimi, A.; Gjedde, A.; Wong, D. F.

    2012-01-01

    Background: The endocannabinoid system regulates cognitive and emotional processes and pathology of this system is implicated in psychiatric disorders, including depression and schizophrenia. The precise role of the endocannabinoid system in psychiatric disorders remains unclear, but changes...... in expression of CB1 receptors and subsequent altered modulation of monoamines is suggested in depression (Esteban & Garcia-Sevilla, 2011). CB1 receptor agonists, such as WIN55,212-2 and CP55,940 regulate synthesis and release of monoamines and are suggested as a novel therapy in the treatment of depression....... However, further studies are needed to identify the precise mechanisms of action and pathology of the endocannabinoid system in depression. The hypothesis that depressive-like traits are related to altered CB1 receptor expression were tested in in-vitro autoradiography experiments, measuring binding of [3...

  9. The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins

    OpenAIRE

    Lauckner, Jane E.; Hille, Bertil; Mackie, Ken

    2005-01-01

    Central nervous system responses to cannabis are primarily mediated by CB1 receptors, which couple preferentially to Gi/o G proteins. Here, we used calcium photometry to monitor the effect of CB1 activation on intracellular calcium concentration. Perfusion with 5 μM CB1 aminoalkylindole agonist, WIN55,212-2 (WIN), increased intracellular calcium by several hundred nanomolar in human embryonic kidney 293 cells stably expressing CB1 and in cultured hippocampal neurons. The increase was blocked ...

  10. Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1Receptor Heteromers in the Dorsal Striatum.

    Science.gov (United States)

    Moreno, Estefanía; Chiarlone, Anna; Medrano, Mireia; Puigdellívol, Mar; Bibic, Lucka; Howell, Lesley A; Resel, Eva; Puente, Nagore; Casarejos, María J; Perucho, Juan; Botta, Joaquín; Suelves, Nuria; Ciruela, Francisco; Ginés, Silvia; Galve-Roperh, Ismael; Casadó, Vicent; Grandes, Pedro; Lutz, Beat; Monory, Krisztina; Canela, Enric I; Lluís, Carmen; McCormick, Peter J; Guzmán, Manuel

    2018-04-01

    The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A 2A receptor (A 2A R) and cannabinoid CB 1 receptor (CB 1 R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A 2A R and CB 1 R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A 2A R-CB 1 R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically modified animal models, together with biochemical and pharmacological approaches, we provide a high-resolution expression map and a detailed functional characterization of A 2A R-CB 1 R heteromers in the dorsal striatum. Specifically, our data unveil that the A 2A R-CB 1 R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington's disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases.

  11. Activation of type 1 cannabinoid receptor (CB1R promotes neurogenesis in murine subventricular zone cell cultures.

    Directory of Open Access Journals (Sweden)

    Sara Xapelli

    Full Text Available The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive, neurons and astrocytes. Stimulation of the CB1R by (R-(+-Methanandamide (R-m-AEA increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation, at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca(2+]i in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.

  12. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    Directory of Open Access Journals (Sweden)

    Eleftheria Lakiotaki

    2015-01-01

    Full Text Available The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2, their endogenous ligands (endocannabinoids, and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins’ expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n=43 and malignant (n=44 lesions and was statistically analyzed with clinicopathological parameters, follicular cells’ proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p=0.0010 and p=0.0005, resp.. Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p=0.0097 and p=0.0110, resp.. In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p=0.0301. Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p=0.1165, lymphatic (p=0.1989, and vascular invasion (p=0.0555, as well as in those with increased risk of recurrence rate (p=0.1165, at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.

  13. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions.

    Science.gov (United States)

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.

  14. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Paul L. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M. [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Ford, Benjamin M.; Franks, Lirit N. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Radominska-Pandya, Anna, E-mail: RadominskaAnna@uams.edu [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States)

    2013-11-15

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  15. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    International Nuclear Information System (INIS)

    Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M.; Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna

    2013-01-01

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  16. The cannabinoid receptor CB1 contributes to the development of ectopic lesions in a mouse model of endometriosis.

    Science.gov (United States)

    Sanchez, Ana-Maria; Quattrone, Federica; Pannese, Maria; Ulisse, Adele; Candiani, Massimo; Diaz-Alonso, Javier; Velasco, Guillermo; Panina-Bordignon, Paola

    2017-01-01

    Does signaling via the cannabinoid (CB 1 ) receptor play a role in the pathogenesis of endometriosis in a mouse model? Mice treated with a CB 1 agonist developed larger ectopic lesions, while less severe lesions developed in the absence of functional CB 1 expression. The expression of components of the endocannabinoid system has been demonstrated in both mouse and human uteri. CB 1 receptors are expressed in human epithelial and stromal cell lines derived from eutopic endometrium and deep infiltrating endometriosis nodules. This was a randomized study in a mouse model of endometriosis. In a first set of experiments, mice with endometriosis were treated with the CB 1 receptor agonist methanandamide (MET) (5 mg/kg, n = 20) on Days 1-5 and 8-12. In a second set of experiments, endometriosis development was evaluated in CB 1 -/- mice and in their wild-type (WT) littermates. Endometriosis-like lesions were induced in Balb/c and C57/Bl6 mice. Two weeks after disease induction, the lesions were counted, measured and either included for immunohistochemistry analysis or frozen for gene expression profiling by semi-quantitative real-time PCR. To limit the role of chance, the experiments were conducted under standardized laboratory conditions with appropriate controls. The lesion total volume was significantly higher in MET-treated compared with vehicle-treated mice (P endometriosis in a mouse model. However, the relative contribution of the CB 1 -mediated signaling pathways active in inflammatory, uterine and peritoneal cells remains to be ascertained. Since the study was performed in a mouse model, the significance of the findings in the human system warrants further investigation. Clarifying the function and regulation of CB 1 and its molecular interactions with endogenous ligands, and how endocannabinoids levels are regulated in women with endometriosis, represent critical areas of research for the potential development of a novel medical treatment of the disease. A

  17. Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes.

    Science.gov (United States)

    Lu, Dai; Dopart, Rachel; Kendall, Debra A

    2016-01-01

    Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM). The endocannabinoid system is composed of at least two Gprotein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2). Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors. Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity. Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists. Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes. This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.

  18. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro

    Science.gov (United States)

    Thomas, A; Baillie, G L; Phillips, A M; Razdan, R K; Ross, R A; Pertwee, R G

    2007-01-01

    Background and purpose: A nonpsychoactive constituent of the cannabis plant, cannabidiol has been demonstrated to have low affinity for both cannabinoid CB1 and CB2 receptors. We have shown previously that cannabidiol can enhance electrically evoked contractions of the mouse vas deferens, suggestive of inverse agonism. We have also shown that cannabidiol can antagonize cannabinoid receptor agonists in this tissue with a greater potency than we would expect from its poor affinity for cannabinoid receptors. This study aimed to investigate whether these properties of cannabidiol extend to CB1 receptors expressed in mouse brain and to human CB2 receptors that have been transfected into CHO cells. Experimental approach: The [35S]GTPγS binding assay was used to determine both the efficacy of cannabidiol and the ability of cannabidiol to antagonize cannabinoid receptor agonists (CP55940 and R-(+)-WIN55212) at the mouse CB1 and the human CB2 receptor. Key results: This paper reports firstly that cannabidiol displays inverse agonism at the human CB2 receptor. Secondly, we demonstrate that cannabidiol is a high potency antagonist of cannabinoid receptor agonists in mouse brain and in membranes from CHO cells transfected with human CB2 receptors. Conclusions and implications: This study has provided the first evidence that cannabidiol can display CB2 receptor inverse agonism, an action that appears to be responsible for its antagonism of CP55940 at the human CB2 receptor. The ability of cannabidiol to behave as a CB2 receptor inverse agonist may contribute to its documented anti-inflammatory properties. PMID:17245363

  19. A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation.

    Directory of Open Access Journals (Sweden)

    Alessandro Tozzi

    Full Text Available BACKGROUND: Cocaine increases the level of endogenous dopamine (DA in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.

  20. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors

    International Nuclear Information System (INIS)

    Jäntti, Maria H.; Mandrika, Ilona; Kukkonen, Jyrki P.

    2014-01-01

    Highlights: • OX 1 and OX 2 orexin and CB 1 cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX 1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB 1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX 1 , OX 2 and CB 1 receptors, C-terminally fused with either Renilla luciferase or GFP 2 green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB 1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP 2 to CB 1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX 1 –OX 2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB 1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations

  1. Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB1 receptors using positron emission tomography

    International Nuclear Information System (INIS)

    Terry, Garth E.; Hirvonen, Jussi; Liow, Jeih-San; Seneca, Nicholas; Morse, Cheryl L.; Pike, Victor W.; Innis, Robert B.; Tauscher, Johannes T.; Schaus, John M.; Phebus, Lee; Felder, Christian C.; Halldin, Christer

    2010-01-01

    Cannabinoid subtype 1 (CB 1 ) receptors are found in nearly every organ in the body, may be involved in several neuropsychiatric and metabolic disorders, and are therefore an active target for pharmacotherapy and biomarker development. We recently reported brain imaging of CB 1 receptors with two PET radioligands: 11 C-MePPEP and 18 F-FMPEP-d 2 . Here we describe the biodistribution and dosimetry estimates for these two radioligands. Seven healthy subjects (four men and three women) underwent whole-body PET scans for 120 min after injection with 11 C-MePPEP. Another seven healthy subjects (two men and five women) underwent whole-body PET scans for 300 min after injection with 18 F-FMPEP-d 2 . Residence times were acquired from regions of interest drawn on tomographic images of visually identifiable organs for both radioligands and from radioactivity excreted in urine for 18 F-FMPEP-d 2 . The effective doses of 11 C-MePPEP and 18 F-FMPEP-d 2 are 4.6 and 19.7 μSv/MBq, respectively. Both radioligands demonstrated high uptake of radioactivity in liver, lung, and brain shortly after injection and accumulated radioactivity in bone marrow towards the end of the scan. After injection of 11 C-MePPEP, radioactivity apparently underwent hepatobiliary excretion only, while radioactivity from 18 F-FMPEP-d 2 showed both hepatobiliary and urinary excretion. 11 C-MePPEP and 18 F-FMPEP-d 2 yield an effective dose similar to other PET radioligands labeled with either 11 C or 18 F. The high uptake in brain confirms the utility of these two radioligands to image CB 1 receptors in brain, and both may also be useful to image CB 1 receptors in the periphery. (orig.)

  2. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism

    Science.gov (United States)

    Hill, T D M; Cascio, M-G; Romano, B; Duncan, M; Pertwee, R G; Williams, C M; Whalley, B J; Hill, A J

    2013-01-01

    BACKGROUND AND PURPOSE Epilepsy is the most prevalent neurological disease and is characterized by recurrent seizures. Here, we investigate (i) the anticonvulsant profiles of cannabis-derived botanical drug substances (BDSs) rich in cannabidivarin (CBDV) and containing cannabidiol (CBD) in acute in vivo seizure models and (ii) the binding of CBDV BDSs and their components at cannabinoid CB1 receptors. EXPERIMENTAL APPROACH The anticonvulsant profiles of two CBDV BDSs (50–422 mg·kg−1) were evaluated in three animal models of acute seizure. Purified CBDV and CBD were also evaluated in an isobolographic study to evaluate potential pharmacological interactions. CBDV BDS effects on motor function were also investigated using static beam and grip strength assays. Binding of CBDV BDSs to cannabinoid CB1 receptors was evaluated using displacement binding assays. KEY RESULTS CBDV BDSs exerted significant anticonvulsant effects in the pentylenetetrazole (≥100 mg·kg−1) and audiogenic seizure models (≥87 mg·kg−1), and suppressed pilocarpine-induced convulsions (≥100 mg·kg−1). The isobolographic study revealed that the anticonvulsant effects of purified CBDV and CBD were linearly additive when co-administered. Some motor effects of CBDV BDSs were observed on static beam performance; no effects on grip strength were found. The Δ9-tetrahydrocannabinol and Δ9-tetrahydrocannabivarin content of CBDV BDS accounted for its greater affinity for CB1 cannabinoid receptors than purified CBDV. CONCLUSIONS AND IMPLICATIONS CBDV BDSs exerted significant anticonvulsant effects in three models of seizure that were not mediated by the CB1 cannabinoid receptor and were of comparable efficacy with purified CBDV. These findings strongly support the further clinical development of CBDV BDSs for the treatment of epilepsy. PMID:23902406

  3. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism.

    Science.gov (United States)

    Hill, T D M; Cascio, M-G; Romano, B; Duncan, M; Pertwee, R G; Williams, C M; Whalley, B J; Hill, A J

    2013-10-01

    Epilepsy is the most prevalent neurological disease and is characterized by recurrent seizures. Here, we investigate (i) the anticonvulsant profiles of cannabis-derived botanical drug substances (BDSs) rich in cannabidivarin (CBDV) and containing cannabidiol (CBD) in acute in vivo seizure models and (ii) the binding of CBDV BDSs and their components at cannabinoid CB1 receptors. The anticonvulsant profiles of two CBDV BDSs (50-422 mg·kg(-1) ) were evaluated in three animal models of acute seizure. Purified CBDV and CBD were also evaluated in an isobolographic study to evaluate potential pharmacological interactions. CBDV BDS effects on motor function were also investigated using static beam and grip strength assays. Binding of CBDV BDSs to cannabinoid CB1 receptors was evaluated using displacement binding assays. CBDV BDSs exerted significant anticonvulsant effects in the pentylenetetrazole (≥100 mg·kg(-1) ) and audiogenic seizure models (≥87 mg·kg(-1) ), and suppressed pilocarpine-induced convulsions (≥100 mg·kg(-1) ). The isobolographic study revealed that the anticonvulsant effects of purified CBDV and CBD were linearly additive when co-administered. Some motor effects of CBDV BDSs were observed on static beam performance; no effects on grip strength were found. The Δ(9) -tetrahydrocannabinol and Δ(9) -tetrahydrocannabivarin content of CBDV BDS accounted for its greater affinity for CB1 cannabinoid receptors than purified CBDV. CBDV BDSs exerted significant anticonvulsant effects in three models of seizure that were not mediated by the CB1 cannabinoid receptor and were of comparable efficacy with purified CBDV. These findings strongly support the further clinical development of CBDV BDSs for the treatment of epilepsy. © 2013 The British Pharmacological Society.

  4. Reduced Noradrenergic Signaling in the Spleen Capsule in the Absence of CB1and CB2Cannabinoid Receptors.

    Science.gov (United States)

    Simkins, Tyrell J; Fried, David; Parikh, Kevin; Galligan, James J; Goudreau, John L; Lookingland, Keith J; Kaplan, Barbara L F

    2016-12-01

    The spleen is a visceral organ that contracts during hypoxia to expel erythrocytes and immune cells into the circulation. Spleen contraction is under the control of noradrenergic sympathetic innervation. The activity of noradrenergic neurons terminating in the spleen capsule is regulated by α2-adrenergic receptors (AR). Interactions between endogenous cannabinoid signaling and noradrenergic signaling in other organ systems suggest endocannabinoids might also regulate spleen contraction. Spleens from mice congenitally lacking both CB 1 and CB 2 cannabinoid receptors (Cnr1 -/- /Cnr2 -/- mice) were used to explore the role of endocannabinoids in spleen contraction. Spleen contraction in response to exogenous norepinephrine (NE) was found to be significantly lower in Cnr1 -/- /Cnr2 -/- mouse spleens, likely due to decreased expression of capsular α1AR. The majority of splenic Cnr1 mRNA expression is by cells of the spleen capsule, suggestive of post-synaptic CB 1 receptor signaling. Thus, these studies demonstrate a role for CB 1 and/or CB 2 in noradrenergic splenic contraction.

  5. Involvement of cannabinoid CB1 receptors in drug addiction: effects of rimonabant on behavioral responses induced by cocaine.

    Science.gov (United States)

    Filip, Małgorzata; Gołda, Anna; Zaniewska, Magdalena; McCreary, Andrew C; Nowak, Ewa; Kolasiewicz, Wacław; Przegaliński, Edmund

    2006-01-01

    A lot of evidence indicate that endocannabinoids and cannabinoid CB(1) receptors are implicated in drug addiction. In the present study, we investigated the effect of the cannabinoid CB(1) receptor antagonist/partial agonist rimonabant on the cocaine-maintained reinforcement and relapse to cocaine seeking as well as on the cocaine challenge-induced hyperactivity in sensitized rats and on discriminative stimulus effects of cocaine in rats. We found that endocannabinoids were not involved in maintenance of cocaine reinforcement and its subjective effects since pharmacological blockade of cannabinoid CB(1) receptors altered neither self-administration nor discriminative stimulus effects of cocaine. On the other hand, withdrawal from repeated access or exposure to cocaine and then a reinstatement of cocaine-seeking behavior or a sensitized locomotor response to a single cocaine challenge, respectively, was potently reduced by pretreatment with rimonabant. The latter observations may show that repeated cocaine treatment and the drug withdrawal produce--apart from behavioral effects--also different neural consequences in the endocannabinoid systems in rats.

  6. Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors.

    Science.gov (United States)

    Mollica, Adriano; Pelliccia, Sveva; Famiglini, Valeria; Stefanucci, Azzurra; Macedonio, Giorgia; Chiavaroli, Annalisa; Orlando, Giustino; Brunetti, Luigi; Ferrante, Claudio; Pieretti, Stefano; Novellino, Ettore; Benyhe, Sandor; Zador, Ferenc; Erdei, Anna; Szucs, Edina; Samavati, Reza; Dvrorasko, Szalbolch; Tomboly, Csaba; Ragno, Rino; Patsilinakos, Alexandros; Silvestri, Romano

    2017-12-01

    Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH 2 . The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.

  7. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin

    Science.gov (United States)

    Pertwee, R G

    2007-01-01

    Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (−)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), (−)-cannabidiol (CBD) and (−)-trans-Δ9-tetrahydrocannabivarin (Δ9-THCV), interact with cannabinoid CB1 and CB2 receptors. Δ9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Δ9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Δ9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by Δ9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which Δ9-THC, CBD and Δ9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids. PMID:17828291

  8. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord.

    Science.gov (United States)

    Garcia-Ovejero, Daniel; Arevalo-Martin, Angel; Paniagua-Torija, Beatriz; Sierra-Palomares, Yolanda; Molina-Holgado, Eduardo

    2013-01-01

    The cells surrounding the central canal of the spinal cord are a source of stem/precursor cells that may give rise to neurons, astrocytes, or oligodendrocytes. However, they are a heterogeneous population that remains poorly understood. Here we describe a subpopulation characterized by their strong expression of the CB(1) cannabinoid receptor, oval/round soma, apical nucleus, a variable number of cilia (0, 1, or 2), and the presence of a single short and occasionally ramified basal process. These cells are mainly located in the lateral and dorsal central canal throughout the spinal cord. These CB(1)(HIGH) cells are closely related to the basal lamina labyrinths or fractones derived from subependymal microglia. In addition, CB(1)(HIGH) cells express some stem/precursor cell markers, including vimentin, nestin, Sox2, Sox9, and GLAST, but not others such as CD15 or GFAP. In addition, this cell population does not proliferate in the intact adult spinal cord, although up to 50% of these cells express the proliferation marker Ki67 in newly born rats or after a spinal cord contusion. The present findings contribute to our understanding of the spinal cord central canal structure and reveal the targets for endocannabinoids inside this neurogenic niche. Copyright © 2012 Wiley Periodicals, Inc.

  9. Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

    Directory of Open Access Journals (Sweden)

    Rodríguez-Muñoz María

    2009-03-01

    Full Text Available Abstract Background Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated. Results Intracerebroventricular (icv administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than

  10. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function.

    Science.gov (United States)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    2017-01-01

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CB 1 receptor agonist WIN55,212-2 (WIN) in rats. Lister Hooded male rats were treated intramuscularly with nandrolone (15mg/kg) or vehicle for 14 consecutive days, and then allowed to self-administer WIN (12.5μg/kg/infusion) intravenously. After reaching stable drug intake, self-administration behavior was extinguished to examine drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Other behavioral parameters presumed to influence drug-taking and drug-seeking behaviors were examined to gain more insight into the behavioral specificity of nandrolone treatment. Finally, animals were sacrificed for analysis of CB 1 receptor density and function in selected brain areas. We found that nandrolone-treated rats self-administered up to 2 times more cannabinoid than vehicle-treated rats, but behaved similarly to control rats when tested for drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Enhanced cannabinoid intake by nandrolone-treated rats was not accompanied by changes in locomotor activity, sensorimotor gating, or memory function. However, our molecular data show that after chronic WIN self-administration nandrolone-treated rats display altered CB 1 receptor density and function in selected brain areas. We hypothesize that increased cannabinoid self-administration in nandrolone-treated rats results from a nandrolone-induced decrease in reward function, which rats seem to compensate by voluntarily increasing their cannabinoid intake. Altogether, our findings corroborate the hypothesis that chronic exposure to anabolic-androgenic steroids induces dysfunction of the reward pathway in rats and might represent a potential risk factor for abuse of

  11. CB1 receptor antagonism in the granular insular cortex or somatosensory area facilitates consolidation of object recognition memory.

    Science.gov (United States)

    O'Brien, Lesley D; Sticht, Martin A; Mitchnick, Krista A; Limebeer, Cheryl L; Parker, Linda A; Winters, Boyer D

    2014-08-22

    Cannabinoid agonists typically impair memory, whereas CB1 receptor antagonists enhance memory performance under specific conditions. The insular cortex has been implicated in object memory consolidation. Here we show that infusions of the CB1 receptor antagonist SR141716 enhances long-term object recognition memory in rats in a dose-dependent manner (facilitation with 1.5, but not 0.75 or 3 μg/μL) when administered into the granular insular cortex; the SR141716 facilitation was seen with a memory delay of 72 h, but not when the delay was shorter (1 h), consistent with enhancement of memory consolidation. Moreover, a sub-group of rats with cannulas placed in the somatosensory area were also facilitated. These results highlight the robust potential of cannabinoid antagonists to facilitate object memory consolidation, as well as the capacity for insular and somatosensory cortices to contribute to object processing, perhaps through enhancement of tactile representation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Cannabinoid CB1 receptors in distinct circuits of the extended amygdala determine fear responsiveness to unpredictable threat.

    Science.gov (United States)

    Lange, M D; Daldrup, T; Remmers, F; Szkudlarek, H J; Lesting, J; Guggenhuber, S; Ruehle, S; Jüngling, K; Seidenbecher, T; Lutz, B; Pape, H C

    2017-10-01

    The brain circuits underlying behavioral fear have been extensively studied over the last decades. Although the vast majority of experimental studies assess fear as a transient state of apprehension in response to a discrete threat, such phasic states of fear can shift to a sustained anxious apprehension, particularly in face of diffuse cues with unpredictable environmental contingencies. Unpredictability, in turn, is considered an important variable contributing to anxiety disorders. The networks of the extended amygdala have been suggested keys to the control of phasic and sustained states of fear, although the underlying synaptic pathways and mechanisms remain poorly understood. Here, we show that the endocannabinoid system acting in synaptic circuits of the extended amygdala can explain the fear response profile during exposure to unpredictable threat. Using fear training with predictable or unpredictable cues in mice, combined with local and cell-type-specific deficiency and rescue of cannabinoid type 1 (CB1) receptors, we found that presynaptic CB1 receptors on distinct amygdala projections to bed nucleus of the stria terminalis (BNST) are both necessary and sufficient for the shift from phasic to sustained fear in response to an unpredictable threat. These results thereby identify the causal role of a defined protein in a distinct brain pathway for the temporal development of a sustained state of anxious apprehension during unpredictability of environmental influences, reminiscent of anxiety symptoms in humans.

  13. CB1 Receptor Activation on VgluT2-Expressing Glutamatergic Neurons Underlies Δ9-Tetrahydrocannabinol (Δ9-THC)-Induced Aversive Effects in Mice.

    Science.gov (United States)

    Han, Xiao; He, Yi; Bi, Guo-Hua; Zhang, Hai-Ying; Song, Rui; Liu, Qing-Rong; Egan, Josephine M; Gardner, Eliot L; Li, Jing; Xi, Zheng-Xiong

    2017-09-26

    Cannabis can be rewarding or aversive. Cannabis reward is believed to be mediated by activation of cannabinoid CB1 receptors (CB1Rs) on GABAergic neurons that disinhibit dopaminergic neurons in the ventral tegmental area (VTA). However, little is known about the mechanisms underlying cannabis aversion in rodents. In the present study, CB1Rs are found not only on VTA GABAergic neurons, but also on VTA glutamatergic neurons that express vesicular glutamate transporter 2 (VgluT2). We then used Cre-Loxp transgenic technology to selectively delete CB1Rs in VgluT2-expressing glutamatergic neurons (VgluT2-CB1 -/- ) and Cre-dependent viral vector to express light-sensitive channelrhodopsin-2 into VTA glutamatergic neurons. We found that photoactivation of VTA glutamatergic neurons produced robust intracranial self-stimulation (ICSS) behavior, which was dose-dependently blocked by DA receptor antagonists, but enhanced by cocaine. In contrast, Δ 9 -tetrahydrocannabinol (Δ 9 -THC), the major psychoactive component of cannabis, produced dose-dependent conditioned place aversion and a reduction in the above optical ICSS in VgluT2-cre control mice, but not in VgluT2-CB1 -/- mice. These findings suggest that activation of CB1Rs in VgluT2-expressing glutamate neurons produces aversive effects that might explain why cannabinoid is not rewarding in rodents and might also account for individual differences in the hedonic effects of cannabis in humans.

  14. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1 Are Neither Obese Nor Diabetic.

    Directory of Open Access Journals (Sweden)

    David J Marcus

    Full Text Available Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45% and low fat (10% chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast.

  15. AAV-mediated overexpression of the CB1 receptor in the mPFC of adult rats alters cognitive flexibility, social behavior and emotional reactivity

    Directory of Open Access Journals (Sweden)

    Matthias eKlugmann

    2011-07-01

    Full Text Available The endocannabinoid (ECB system is strongly involved in the regulation of cognitive processing and emotional behavior and evidence indicates that ECB signaling might affect these behavioral abilities by modulations of prefrontal cortical functions. The aim of the present study was to examine the role of the CB1 receptor in the medial prefrontal cortex (mPFC on cognitive flexibility and emotional behavior. Therefore, the CB1 receptor was overexpressed by adeno-associated virus (AAV vector-mediated gene transfer specifically in the mPFC of adult Wistar rats. Animals were then tested in different anxiety-related paradigms for emotional reactivity (e.g. elevated plus maze (EPM, light/dark emergence test (EMT, social interaction and the attentional set shift task (ASST - an adaptation of the human Wisconsin card sorting test - for cognitive abilities and behavioral flexibility. A subtle increase in exploratory behavior was found in CB1 receptor overexpressing animals (CB1-R compared to empty vector injected controls (Empty in the EMT and EPM, although general locomotor activity did not differ between the groups. During social interaction testing, social contact behavior towards the unknown conspecific was found to be decreased, whereas social withdrawal was increased in CB1-R animals and they showed an inadequate increase in exploratory behavior compared to control animals. In the ASST, impaired reversal learning abilities were detected in CB1-R animals compared to controls, indicating reduced behavioral flexibility. In conclusion, upregulation of the CB1 receptor specifically in the rat mPFC induces alterations in emotional reactivity, leads to inadequate social behavior and impairs cognitive flexibility. These findings might be relevant for neuropsychiatric disorders, since higher cortical CB1 receptor expression levels as well as similar behavioral impairments as observed in the present study have been described in schizophrenic patients.

  16. Detection of Heteromers Formed by Cannabinoid CB1, Dopamine D2, and Adenosine A2A G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    2008-01-01

    Full Text Available Functional interactions in signaling occur between dopamine D2 (D2R and cannabinoid CB1 (CB1R receptors, between CB1R and adenosine A2A (A2AR receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells.

  17. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors.

    Science.gov (United States)

    Gaffal, E; Cron, M; Glodde, N; Tüting, T

    2013-08-01

    ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors. We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro. Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner. Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice.

    Science.gov (United States)

    Kruk-Slomka, Marta; Biala, Grażyna

    2016-03-15

    The endocannabinoid system, through the cannabinoid type 1 (CB1) and 2 (CB2) receptors modulates many physiological functions, including different aspects of memory-related processes. The aim of the present experiments was to explore the role of the endocannabinoid system, through CB1 receptors in the different stages of short-term (acquisition, retention and retrieval) and long-term (acquisition, consolidation and retrieval) memory-related responses, using the inhibitory avoidance (IA) test in mice. Our results revealed that an acute injection of oleamide (10 and 20mg/kg), a CB1 receptor agonist, impairs the short-term or/and long-term acquisition, retention/consolidation, retrieval memory and learning processes in the IA test in mice. In turn, in this test an acute injection of AM 251 (1 and 3mg/kg), a CB1 receptor antagonist, improves the short-term or/and long-term memory stages, described above. Moreover, this memory impairment induced by effective dose of oleamide (20mg/kg) is reversed by non-effective dose of AM 251 (0.25mg/kg) in the IA task, which proves the selectivity of oleamide to CB1 receptors and confirms that the CB1 receptor-related mechanism is one of the possible mechanisms, responsible for memory and learning responses. Obtained results provide clear evidence that the endocannabinoid system, through CB1 receptors, participates in the different stages of short- and long-term memory-related behavior. This knowledge may open in the future new possibilities for the development of CB-based therapies, especially for memory impairment human disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Attenuation of Cocaine-Induced Conditioned Place Preference and Motor Activity via Cannabinoid CB2 Receptor Agonism and CB1 Receptor Antagonism in Rats

    Science.gov (United States)

    Delis, Foteini; Polissidis, Alexia; Poulia, Nafsika; Justinova, Zuzana; Nomikos, George G.; Goldberg, Steven R.

    2017-01-01

    Abstract Background: Studies have shown the involvement of cannabinoid (CB) receptors in the behavioral and neurobiological effects of psychostimulants. Most of these studies have focused on the role of CB1 receptors in the psychostimulant effects of cocaine, while very few have investigated the respective role of CB2 receptors. Further studies are warranted to elucidate the extent of CB receptor involvement in the expression of cocaine-induced effects. Methods: The role of CB1 and CB2 receptors in the rewarding and motor properties of cocaine was assessed in conditioned place preference, conditioned motor activity, and open field activity in rats. Results: The CB1 receptor antagonist rimonabant (3 mg/kg) decreased the acquisition and the expression of conditioned place preference induced by cocaine (20 mg/kg). Rimonabant inhibited cocaine-elicited conditioned motor activity when administered during the expression of cocaine-induced conditioned place preference. Rimonabant decreased ambulatory and vertical activity induced by cocaine. The CB2 receptor agonist JWH-133 (10 mg/kg) decreased the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 inhibited cocaine-elicited conditioned motor activity when administered during the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 decreased ambulatory activity and abolished vertical activity induced by cocaine. The effects of JWH-133 on cocaine conditioned and stimulated responses were abolished when the CB2 receptor antagonist/inverse agonist AM630 (5 mg/kg) was preadministered. Conclusions: Cannabinoid CB1 and CB2 receptors modulate cocaine-induced rewarding behavior and appear to have opposite roles in the regulation of cocaine’s reinforcing and psychomotor effects. PMID:27994006

  20. Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and "triptan" receptors: implications in migraine.

    Science.gov (United States)

    Akerman, Simon; Holland, Philip R; Lasalandra, Michele P; Goadsby, Peter J

    2013-09-11

    Activation and sensitization of trigeminovascular nociceptive pathways is believed to contribute to the neural substrate of the severe and throbbing nature of pain in migraine. Endocannabinoids, as well as being physiologically analgesic, are known to inhibit dural trigeminovascular nociceptive responses. They are also involved in the descending modulation of cutaneous-evoked C-fiber spinal nociceptive responses from the brainstem. The purpose of this study was to determine whether endocannabinoids are involved in the descending modulation of dural and/or cutaneous facial trigeminovascular nociceptive responses, from the brainstem ventrolateral periaqueductal gray (vlPAG). CB1 receptor activation in the vlPAG attenuated dural-evoked Aδ-fiber neurons (maximally by 19%) and basal spontaneous activity (maximally by 33%) in the rat trigeminocervical complex, but there was no effect on cutaneous facial receptive field responses. This inhibitory vlPAG-mediated modulation was inhibited by specific CB1 receptor antagonism, given via the vlPAG, and with a 5-HT1B/1D receptor antagonist, given either locally in the vlPAG or systemically. These findings demonstrate for the first time that brainstem endocannabinoids provide descending modulation of both basal trigeminovascular neuronal tone and Aδ-fiber dural-nociceptive responses, which differs from the way the brainstem modulates spinal nociceptive transmission. Furthermore, our data demonstrate a novel interaction between serotonergic and endocannabinoid systems in the processing of somatosensory nociceptive information, suggesting that some of the therapeutic action of triptans may be via endocannabinoid containing neurons in the vlPAG.

  1. The case for cannabinoid CB1 receptors as a target for bronchodilator therapy for β-agonist resistant asthma.

    Science.gov (United States)

    Ashton, John; Hancox, Robert J

    2017-06-15

    Although b2-receceptor agonists are powerful bronchodilators and are at the forefront of asthma symptom relief, patients who use them frequently develop partial resistance to them. This can be a particularly serious problem during severe attacks, where high dose b2-agonist treatment is the front line therapy. Alternative bronchodilators are urgently needed. In this article we review the evidence for the bronchodilator effects of the cannabinoid CB1 receptor tetrahydrocannabinol (THC) and suggest that the mechanism of action for these effects are sufficiently independent of the mechanisms of standard bronchodilators to warrant clinical investigation. Specifically, clinical trials testing the bronchodilator effects of THC in b2 agonist resistant asthmatic patients would show whether THC could fill the role of rescue bronchodilator in cases of b2 agonist resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Pyrolysis of UR-144, a synthetic cannabinoid, augments an affinity to human CB1receptor and cannabimimetic effects in mice.

    Science.gov (United States)

    Kaizaki-Mitsumoto, Asuka; Hataoka, Kyoko; Funada, Masahiko; Odanaka, Yuki; Kumamoto, Hiroki; Numazawa, Satoshi

    2017-01-01

    Drug abusers most often smoke 'herbal incense' as a cigarette or inhale it using a smoking tool. Smoking may cause pyrolysis of the drug and produce decomposed products of which biological effect has never been investigated. The synthetic cannabinoid UR-144 is known to undergo thermal degradation, giving a ring-opened isomer, so-called UR-144 degradant. The present study demonstrates by using UR-144 as a model drug that the smoke of burned UR-144 contains the UR-144 degradant. The UR-144 degradant showed approximately four fold higher agonist activity to human CB 1 receptor and augmented hypothermic and akinetic actions in mice compared to UR-144. These results indicate that smoking behavior may increase psychological actions of the certain synthetic cannabinoids.

  3. Contrasting effects of lithium chloride and CB1 receptor blockade on enduring changes in the valuation of reward.

    Directory of Open Access Journals (Sweden)

    Giovanni eHernandez

    2011-09-01

    Full Text Available When an organism has been trained to respond for a reward, its learned behavior can be characterized as goal-directed or habitual based on whether or not it is susceptible to reward devaluation. Here, we evaluated whether instrumental responding for brain stimulation reward (BSR can devalued using a paradigm traditionally used for natural rewards. Rats were trained to lever press for BSR. Subsequently, BSR was paired with either lithium chloride (LiCl, 5 mg/kg, i.p, a pro-emetic, or AM251, a CB1 receptor antagonist (3 mg/kg, i.p.. Pairings of BSR with these two compounds or their respective vehicle were performed in a novel environment so that only unconditional effects of BSR were affected by the pharmacological manipulations. Subsequently, in a probe test, all rats were returned in the drug-free state to the boxes where they had received training instrumental responding was reassessed in the absence of BSR delivery. LiCl produced enduring decreases in the number of responses during the test session, whereas AM251 had no effect. These results show that instrumental responding for BSR is susceptible to devaluation, in accord with the proposal that this behavior is supported at least in part by associations between the response and the rewarding outcome. Furthermore, they suggest that the reward modulation observed in studies involving the use of CB1 receptor antagonists arises from changes in the organism’s motivation rather than due to drug-induced changes in the intrinsic value of reward.

  4. Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress.

    Science.gov (United States)

    Rabasa, Cristina; Pastor-Ciurana, Jordi; Delgado-Morales, Raúl; Gómez-Román, Almudena; Carrasco, Javier; Gagliano, Humberto; García-Gutiérrez, María S; Manzanares, Jorge; Armario, Antonio

    2015-08-01

    There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  5. Endocannabinoid activation of CB1receptors contributes to long-lasting reversal of neuropathic pain by repetitive spinal cord stimulation.

    Science.gov (United States)

    Sun, L; Tai, L; Qiu, Q; Mitchell, R; Fleetwood-Walker, S; Joosten, E A; Cheung, C W

    2017-05-01

    Spinal cord stimulation (SCS) has been shown to be effective in the management of certain neuropathic pain conditions, however, the underlying mechanisms are incompletely understood. In this study, we investigated repetitive SCS in a rodent neuropathic pain model, revealing long-lasting and incremental attenuation of hyperalgesia and a mechanism of action involving endocannabinoids. Animals were implanted with monopolar electrodes at the time of partial sciatic nerve injury. Dorsal columns at spinal segments T12/13 were stimulated 3 days later (early SCS), and again at day 7 (late SCS) using low-frequency parameters. Hypersensitivity to cutaneous mechanical stimuli was assessed using von Frey filaments. Pharmacological agents, selected to identify endocannabinoid and opioid involvement, were administered intraperitoneally, 10 min before SCS. Early SCS caused partial reversal of mechanical hypersensitivity with corresponding changes in the biomarker of central sensitization, [phospho-Tyr 1472 ]-GluN2B. The partial reversal of hyperalgesia by early SCS was amplified by co-administration of LY 2183240, an inhibitor of endocannabinoid reuptake/breakdown. This amplification was inhibited by a CB 1 R antagonist, AM251, but not by a CB 2 R antagonist, AM630. Early SCS-induced reversal of hyperalgesia was attenuated by naloxone, indicating a role for opioids. Late SCS resulted in an incremental level of reversal of hyperalgesia, which was inhibited by AM251, but not by CB 2 or opioid receptor antagonists. The endocannabinoid system, and in particular the CB 1 R, plays a pivotal role in the long-lasting and incremental reversal of hyperalgesia induced by repetitive SCS in a neuropathic pain model. Alternative parameters for repetitive spinal cord stimulation (SCS) at 25/10 Hz elicit particularly long-lasting and incremental reversal of hyperalgesia in a neuropathic pain model through a mechanism involving endocannabinoids. © 2017 European Pain Federation - EFIC®.

  6. Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure-specific plasticity process in 6-OHDA lesioned rats.

    Directory of Open Access Journals (Sweden)

    Gabriela P Chaves-Kirsten

    Full Text Available The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson's Disease (PD. Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP, internal globus pallidus (IGP and substantia nigra pars reticulata (SNpr of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH, parvalbumin, calbindin and glutamic acid decarboxylase (GAD expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model.

  7. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    Science.gov (United States)

    Viñals, Xavier; Moreno, Estefanía; Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I; McCormick, Peter J; Maldonado, Rafael; Robledo, Patricia

    2015-07-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  8. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    Directory of Open Access Journals (Sweden)

    Xavier Viñals

    2015-07-01

    Full Text Available Activation of cannabinoid CB1 receptors (CB1R by delta9-tetrahydrocannabinol (THC produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  9. The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins.

    Science.gov (United States)

    Lauckner, Jane E; Hille, Bertil; Mackie, Ken

    2005-12-27

    Central nervous system responses to cannabis are primarily mediated by CB(1) receptors, which couple preferentially to G(i/o) G proteins. Here, we used calcium photometry to monitor the effect of CB(1) activation on intracellular calcium concentration. Perfusion with 5 microM CB(1) aminoalkylindole agonist, WIN55,212-2 (WIN), increased intracellular calcium by several hundred nanomolar in human embryonic kidney 293 cells stably expressing CB(1) and in cultured hippocampal neurons. The increase was blocked by coincubation with the CB(1) antagonist, SR141716A, and was absent in nontransfected human embryonic kidney 293 cells. The calcium rise was WIN-specific, being essentially absent in cells treated with other classes of cannabinoid agonists, including Delta(9)-tetrahydrocannabinol, HU-210, CP55,940, 2-arachidonoylglycerol, methanandamide, and cannabidiol. The increase in calcium elicited by WIN was independent of G(i/o), because it was present in pertussis toxin-treated cells. Indeed, pertussis toxin pretreatment enhanced the potency and efficacy of WIN to increase intracellular calcium. The calcium increases appeared to be mediated by G(q) G proteins and phospholipase C, because they were markedly attenuated in cells expressing dominant-negative G(q) or treated with the phospholipase C inhibitors U73122 and ET-18-OCH(3) and were accompanied by an increase in inositol phosphates. The calcium increase was blocked by the sarco/endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin, the inositol trisphosphate receptor inhibitor xestospongin D, and the ryanodine receptor inhibitors dantrolene and 1,1'-diheptyl-4,4'-bipyridinium dibromide, but not by removal of extracellular calcium, showing that WIN releases calcium from intracellular stores. In summary, these results suggest that WIN stabilizes CB(1) receptors in a conformation that enables G(q) signaling, thus shifting the G protein specificity of the receptor.

  10. The great divide: Separation between in vitro and in vivo effects of PSNCBAM-based CB1receptor allosteric modulators.

    Science.gov (United States)

    Gamage, Thomas F; Farquhar, Charlotte E; Lefever, Timothy W; Thomas, Brian F; Nguyen, Thuy; Zhang, Yanan; Wiley, Jenny L

    2017-10-01

    While allosteric modulators of the cannabinoid type-1 receptor (CB 1 ) continue to be developed and characterized, the gap between the in vitro and in vivo data is widening, raising questions regarding translatability of their effects and biological relevance. Among the CB 1 allosteric modulators, PSNCBAM-1 has received little attention regarding its effects in vivo. Recently, pregnenolone was reported to act as an allosteric modulator of CB 1 , blocking THC's effects in vitro and in vivo, highlighting the potential of CB 1 allosteric modulators for treatment of cannabis intoxication. We investigated the pharmacological effects of PSNCBAM-1 and two structural analogs, RTICBM-15 and -28, as well as pregnenolone, in both signaling and behavioral assays including [ 35 S]GTPγS binding, the cannabinoid tetrad and drug discrimination. While the CB 1 allosteric modulator PSNCBAM-1 attenuated THC-induced anti-nociception and its structural analog RTICBM-28 reduced THC's potency in drug discrimination, most cannabinoid effects in mice were unaffected. In contrast to the mouse studies, PSNCBAM-1 and analogs insurmountably antagonized CP55,940- and THC-stimulated [ 35 S]GTPγS binding and exhibited negative binding cooperativity with [ 3 H]SR141716 with similar apparent affinities. Notably, RTICBM-28, which contains a cyano substitution at the 4-chlorophenyl position of PSNCBAM-1, exhibited enhanced binding cooperativity with CP55,940. In contrast to previous findings, pregnenolone did not block THC's effects in drug discrimination or [ 35 S]GTPγS. These data further highlight the difficulty in translating pharmacological effects of CB 1 allosteric modulators in vivo but confirm the established pharmacology of PSNCBAM-1 and analogs in molecular assays of CB 1 receptor function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2007-07-01

    Full Text Available Characterization of intrinsic and extrinsic factors regulating the self-renewal/division and differentiation of stem cells is crucial in determining embryonic stem (ES cell fate. ES cells differentiate into multiple hematopoietic lineages during embryoid body (EB formation in vitro, which provides an experimental platform to define the molecular mechanisms controlling germ layer fate determination and tissue formation.The cannabinoid receptor type 1 (CB1 and cannabinoid receptor type 2 (CB2 are members of the G-protein coupled receptor (GPCR family, that are activated by endogenous ligands, the endocannabinoids. CB1 receptor expression is abundant in brain while CB2 receptors are mostly expressed in hematopoietic cells. However, the expression and the precise roles of CB1 and CB2 and their cognate ligands in ES cells are not known. We observed significant induction of CB1 and CB2 cannabinoid receptors during the hematopoietic differentiation of murine ES (mES-derived embryoid bodies. Furthermore, mES cells as well as ES-derived embryoid bodies at days 7 and 14, expressed endocannabinoids, the ligands for both CB1 and CB2. The CB1 and CB2 antagonists (AM251 and AM630, respectively induced mES cell death, strongly suggesting that endocannabinoids are involved in the survival of mES cells. Treatment of mES cells with the exogenous cannabinoid ligand Delta(9-THC resulted in the increased hematopoietic differentiation of mES cells, while addition of AM251 or AM630 blocked embryoid body formation derived from the mES cells. In addition, cannabinoid agonists induced the chemotaxis of ES-derived embryoid bodies, which was specifically inhibited by the CB1 and CB2 antagonists.This work has not been addressed previously and yields new information on the function of cannabinoid receptors, CB1 and CB2, as components of a novel pathway regulating murine ES cell differentiation. This study provides insights into cannabinoid system involvement in ES cell

  12. The effect of BLA GABAB receptors in anxiolytic-like effect and aversive memory deficit induced by ACPA

    Directory of Open Access Journals (Sweden)

    Katayoon Kangarlu Haghighi

    2016-07-01

    Full Text Available Background: As a psychoactive plant, Cannabis sativa (Marijuana is widely used throughout the world. Several investigations have indicated that administration of Marijuana affects various cognitive and non-cognitive behaviors. These include anxiety-like behaviors and learning and memory deficit. It has been shown that three main cannabinoid receptors [i.e. CB1, CB2 and CB3 are involved in cannabinoids’ functions. CB1 receptors are abundantly expressed in the central nervous system regions such as hippocampus, amygdala, cerebellum and the cortex. Therefore, the neuropsychological functions of endocannabinoids are thought to be more linked to CB1 receptors. Among other brain regions, CB1 is highly expressed in the amygdala which is an integral component of the limbic circuitry. The amygdala plays a major role in the control of emotional behavior, including conditioned fear and anxiety. In present study we examined the possible roles of basolateral amygdala (BLA GABAB receptors in arachydonilcyclopropylamide (ACPA-induced anxiolytic-like effect and aversive memory deficit in adult male mice. Methods: This experimental study was conducted from September 2013 to December 2014 in Institute for Studies in Theoretical Physics and Mathematics, School of Cognitive Sciences, Tehran and Male albino NMRI mice (Pasture Institute, Iran, weighting 27-30 g, were used. Bilateral guide-cannulae were implanted to allow intra BLA microinjection of the drugs. We used Elevated Plus Maze (EPM to examine memory and anxiety behavior (test-retest protocol. ACPA administrate intra-peritoneal and GABAB agonist and antagonist administrated intra-amygdala. Results: Data showed that pre-test treatment with ACPA induced anxiolytic-like and aversive memory deficit The results revealed that pre-test intra-BLA infusion of baclofen (GABAB receptor agonist impaired the aversive memory while phaclofen (GABAB receptor antagonist improved it. Interestingly, pretreatment with a sub

  13. Evaluation of cannabinoid CB1 and CB2 receptors expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients' survival.

    Science.gov (United States)

    Theocharis, Stamatios; Giaginis, Constantinos; Alexandrou, Paraskevi; Rodriguez, Jose; Tasoulas, Jason; Danas, Eugene; Patsouris, Efstratios; Klijanienko, Jerzy

    2016-03-01

    Cannabinoid receptors (CB1R and CB2R) constitute essential members of the endocannabinoid system (ECS) which participates in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to assess the clinical significance of CB1R and CB2R protein expression in mobile tongue squamous cell carcinoma (SCC). CB1R and CB2R expression was assessed immunohistochemically on 28 mobile tongue SCC tissue samples and was analyzed in relation with clinicopathological characteristics and overall and disease-free patients' survival. CB1R, CB2R, and concomitant CB1R/CB2R expression was significantly increased in older compared to younger mobile tongue SCC patients (p = 0.0243, p = 0.0079, and p = 0.0366, respectively). Enhanced CB2R and concomitant CB1R/CB2R expression was significantly more frequently observed in female compared to male mobile tongue SCC patients (p = 0.0025 and p = 0.0016, respectively). Elevated CB2R expression was significantly more frequently observed in mobile tongue SCC patients presenting well-defined tumor shape compared to those with diffuse (p = 0.0430). Mobile tongue SCC patients presenting enhanced CB1R, CB2R, or concomitant CB1R/CB2R expression showed significantly longer overall (log-rank test, p = 0.004, p = 0.011, p = 0.018, respectively) and disease-free (log-rank test, p = 0.003, p = 0.007, p = 0.027, respectively) survival times compared to those with low expression. In multivariate analysis, CB1R was identified as an independent prognostic factor for disease-free patients' survival (Cox-regression analysis, p = 0.032). The present study provides evidence that CB1R and CB2R may play a role in the pathophysiological aspects of the mobile tongue SCC and even each molecule may constitute a potential target for the development of novel anti-cancer drugs for this type of malignancy.

  14. Role of orexin-2 and CB1 receptors within the periaqueductal gray matter in lateral hypothalamic-induced antinociception in rats.

    Science.gov (United States)

    Esmaeili, Mohammad-Hossein; Reisi, Zahra; Ezzatpanah, Somayeh; Haghparast, Abbas

    2017-02-01

    Orexin plays an important role in pain modulation. Orexin-1 and orexin-2 receptors (Ox1r and Ox2r) are found at high density in the ventrolateral periaqueductal gray matter (vlPAG). Our previous study showed that chemical stimulation of the lateral hypothalamus with carbachol induces antinociception in the tail-flick test, a model of acute pain, and Ox1r-mediated antinociception in the vlPAG is modulated by the activity of vlPAG CB1 receptors. In the current study, TCS OX2 29, an Ox2r antagonist (5, 15, 50, 150, and 500 nmol/l), was microinjected into the vlPAG 5 min before the administration of carbachol (125 nmol/l). TCS OX2 29 dose dependently reduced carbachol-induced antinociception. In a second set of experiments, animals were treated with carbachol 5 min after intra-vlPAG administration of 15 nmol/l TCS OX2 29 and 1 nmol/l AM251 (a selective CB1 receptor antagonist), or 150 nmol/l TCS OX2 29 and 10 nmol/l AM251. The findings showed that the antinociceptive effect of orexin is partially mediated by activation of vlPAG Ox2 receptors. Furthermore, the administration of ineffective doses of Ox2 and CB1 receptor antagonists reduced the lateral hypothalamus-induced antinociception. It seems that Ox2 and CB1 receptors act through different pathways and Ox2r-mediated antinociception is not dependent on CB1 receptor activity.

  15. Arachidonic acid mediates non-capacitative calcium entry evoked by CB1-cannabinoid receptor activation in DDT1 MF-2 smooth muscle cells

    NARCIS (Netherlands)

    Demuth, D.G.; Gkoumassi, Effimia; Droge, M.J.; Dekkers, B.G.J.; Esselink, H.J.; van Ree, Rutger; Parsons, M.E.; Zaagsma, Hans; Molleman, A; Nelemans, Herman

    2005-01-01

    Cannabinoid CB1-receptor stimulation in DDT1 MF-2 smooth muscle cells induces a rise in [Ca2+](i), which is dependent on extracellular Ca2+ and modulated by thapsigargin-sensitive stores, suggesting capacitative Ca2+ entry (CCE), and by MAP kinase. Non-capacitative Ca2+ entry (NCCE) stimulated by

  16. Tetrahydrocannabinol-induced neurotoxicity depends on CB1 receptor-mediated c-Jun N-terminal kinase activation in cultured cortical neurons

    Science.gov (United States)

    Downer, Eric J; Fogarty, Marie P; Campbell, Veronica A

    2003-01-01

    Δ9-Tetrahydrocannabinol (THC), the main psychoactive ingredient of marijuana, induces apoptosis in cultured cortical neurons. THC exerts its apoptotic effects in cortical neurons by binding to the CB1 cannabinoid receptor. The CB1 receptor has been shown to couple to the stress-activated protein kinase, c-Jun N-terminal kinase (JNK). However, the involvement of specific JNK isoforms in the neurotoxic properties of THC remains to be established. The present study involved treatment of rat cultured cortical neurons with THC (0.005–50 μM), and combinations of THC with the CB1 receptor antagonist, AM 251 (10 μM) and pertussis toxin (PTX; 200 ng ml−1). Antisense oligonucleotides (AS) were used to deplete neurons of JNK1 and JNK2 in order to elucidate their respective roles in THC signalling. Here we report that THC induces the activation of JNK via the CB1 receptor and its associated G-protein, Gi/o. Treatment of cultured cortical neurons with THC resulted in a differential timeframe of activation of the JNK1 and JNK2 isoforms. Use of specific JNK1 and JNK2 AS identified activation of caspase-3 and DNA fragmentation as downstream consequences of JNK1 and JNK2 activation. The results from this study demonstrate that activation of the CB1 receptor induces JNK and caspase-3 activation, an increase in Bax expression and DNA fragmentation. The data demonstrate that the activation of both JNK1 and JNK2 isoforms is central to the THC-induced activation of the apoptotic pathway in cortical neurons. PMID:14522843

  17. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB 1 receptor antagonist AM251, but not with the selective CB 2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB 1 receptor, but not by the CB 2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB 1 receptor, but not by the CB 2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB 1 receptors

  18. The Combined Inhibitory Effect of the Adenosine A1 and Cannabinoid CB1 Receptors on cAMP Accumulation in the Hippocampus Is Additive and Independent of A1 Receptor Desensitization

    OpenAIRE

    Serpa, Andr?; Correia, Sara; Ribeiro, Joaquim A.; Sebasti?o, Ana M.; Cascalheira, Jos? F.

    2015-01-01

    Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3?30??M) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6 ? 2.7??M and an E max? of 31% ? 2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10?150?nM), an EC50 of 35 ? 19?nM, an...

  19. Activation of Both CB1 and CB2 Endocannabinoid Receptors Is Critical for Masculinization of the Developing Medial Amygdala and Juvenile Social Play Behavior.

    Science.gov (United States)

    Argue, Kathryn J; VanRyzin, Jonathan W; Falvo, David J; Whitaker, Allison R; Yu, Stacey J; McCarthy, Margaret M

    2017-01-01

    Juvenile social play behavior is a shared trait across a wide variety of mammalian species. When play is characterized by the frequency or duration of physical contact, males usually display more play relative to females. The endocannabinoid system contributes to the development of the sex difference in social play behavior in rats. Treating newborn pups with a nonspecific endocannabinoid agonist, WIN55,212-2, masculinizes subsequent juvenile rough-and-tumble play behavior by females. Here we use specific drugs to target signaling through either the CB1 or CB2 endocannabinoid receptor (CB1R or CB2R) to determine which modulates the development of sex differences in play. Our data reveal that signaling through both CB1R and CB2R must be altered neonatally to modify development of neural circuitry regulating sex differences in play. Neonatal co-agonism of CB1R and CB2R masculinized play by females, whereas co-antagonism of these receptors feminized rates of male play. Because of a known role for the medial amygdala in the sexual differentiation of play, we reconstructed Golgi-impregnated neurons in the juvenile medial amygdala and used factor analysis to identify morphological parameters that were sexually differentiated and responsive to dual agonism of CB1R and CB2R during the early postnatal period. Our results suggest that sex differences in the medial amygdala are modulated by the endocannabinoid system during early development. Sex differences in play behavior are loosely correlated with differences in neuronal morphology.

  20. Interactive effects of morphine and nicotine on memory function depend on the central amygdala cannabinoid CB1 receptor function in rats.

    Science.gov (United States)

    Tirgar, Fatemeh; Rezayof, Ameneh; Alijanpour, Sakineh; Yazdanbakhsh, Nima

    2018-03-02

    The present study investigated the possible involvement of the central amygdala (CeA) cannabinoid receptors type-1 (CB1Rs) in the interactive effects of morphine and nicotine on memory formation in a passive avoidance learning task. Our results showed that systemic administration of morphine (3 and 6mg/kg, s.c.) immediately after training phase impaired memory consolidation and induced amnesia. Administration of nicotine (0.3 and 0.6mg/kg, s.c.) before testing phase significantly restored morphine-induced amnesia, suggesting a cross state-dependent learning between morphine and nicotine. The results showed that while the administration of the lower dose of nicotine (0.1mg/kg, s.c.) per se did not induce a significant effect on morphine-induced amnesia, intra-CeA injection of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor agonist (3 and 4ng/rat), significantly potentiated the nicotine response. Furthermore, the blockade of the CeA cannabinoid CB1 receptors by the injection of AM251 (0.75 and 1ng/rat) reversed the potentiative effect of nicotine (0.6mg/kg, s.c.) on morphine-induced amnesia. It should be considered that bilateral injection of the same doses of ACPA or AM251 (0.5-1ng/rat) into the CeA by itself had no effect on morphine response in a passive avoidance learning task. Confirmed by the cubic interpolation planes, the dose-response data revealed a cross-state-dependent learning between morphine and nicotine which may be mediated by the CeA endocannabinoid system via CB1 receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones.

    Science.gov (United States)

    Castelli, Maria Paola; Fadda, Paola; Casu, Angelo; Spano, Maria Sabrina; Casti, Alberto; Fratta, Walter; Fattore, Liana

    2014-01-01

    Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats.

  2. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors.

    Science.gov (United States)

    Irie, Tomohiko; Kikura-Hanajiri, Ruri; Usami, Makoto; Uchiyama, Nahoko; Goda, Yukihiro; Sekino, Yuko

    2015-08-01

    Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Activation of CB1receptors by 2-arachidonoylglycerol attenuates vasoconstriction induced by U46619 and angiotensin II in human and rat pulmonary arteries.

    Science.gov (United States)

    Karpińska, Olga; Baranowska-Kuczko, Marta; Kloza, Monika; Ambroz Ewicz, Ewa; Kozłowski, Tomasz; Kasacka, Irena; Malinowska, Barbara; Kozłowska, Hanna

    2017-06-01

    Recent evidence suggests that endocannabinoids acting via cannabinoid CB 1 receptors may modulate vascular responses of various vasoconstrictors in the rodent systemic vasculature. The aim of the study was to investigate whether endocannabinoids modulate the contractile responses evoked by a thromboxane A 2 analog (U46619), angiotensin II (ANG II), serotonin (5-HT), and phenylephrine, which stimulate distinct G q/11 protein-coupled receptors (thromboxane, ANG II type 1, 5-HT 2 , and α 1 -adrenergic receptors) in isolated endothelium-intact human and rat pulmonary arteries (hPAs and rPAs, respectively). The CB 1 receptor antagonist AM251 (1 μM) and diacylglycerol lipase (2-arachidonoylglycerol synthesis enzyme) inhibitor RHC80267 (40 μM) enhanced contractions induced by U46619 in hPAs and rPAs and by ANG II in rPAs in an endothelium-dependent manner. AM251 did not influence vasoconstrictions induced by 5-HT or phenylephrine in rPAs. The monoacylglycerol lipase (2-arachidonoylglycerol degradation enzyme) inhibitor JZL184 (1 μM), but not the fatty acid amide hydrolase (anandamide degradation enzyme) inhibitor URB597 (1 μM), attenuated contractions evoked by U46619 in hPAs and rPAs and ANG II in rPAs. 2-Arachidonoylglycerol concentration-dependently induced relaxation of hPAs, which was inhibited by endothelium denudation or AM251 and enhanced by JZL184. Expression of CB 1 receptors was confirmed in hPAs and rPAs using Western blotting and immunohistochemistry. The present study shows the protective interaction between the endocannabinoid system and vasoconstriction in response to U46619 and ANG II in the human and rat pulmonary circulation. U46619 and ANG II may stimulate rapid endothelial release of endocannabinoids (mainly 2-arachidonoylglycerol), leading to CB 1 receptor-dependent and/or CB 1 receptor-independent vasorelaxation, which in the negative feedback mechanism reduces later agonist-induced vasoconstriction. Copyright © 2017 the American Physiological

  4. Major dorsoventral differences in the modulation of the local CA1 hippocampal network by NMDA, mGlu5, adenosine A2A and cannabinoid CB1 receptors.

    Science.gov (United States)

    Kouvaros, S; Papatheodoropoulos, C

    2016-03-11

    Recent research points to diversification in the local neuronal circuitry between dorsal (DH) and ventral (VH) hippocampus that may be involved in the large-scale functional segregation along the long axis of the hippocampus. Here, using CA1 field recordings from rat hippocampal slices, we show that activation of N-methyl-d-aspartate receptors (NMDARs) reduced excitatory transmission more in VH than in DH, with an adenosine A1 receptor-independent mechanism, and reduced inhibition and enhanced postsynaptic excitability only in DH. Strikingly, co-activation of metabotropic glutamate receptor-5 (mGluR5) with NMDAR, by CHPG and NMDA respectively, strongly potentiated the effects of NMDAR in DH but had not any potentiating effect in VH. Furthermore, the synergistic actions in DH were occluded by blockade of adenosine A2A receptors (A2ARs) by their antagonist ZM 241385 demonstrating a tonic action of these receptors in DH. Exogenous activation of A2ARs by 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680) did not change the effects of mGluR5-NMDAR co-activation in either hippocampal pole. Importantly, blockade of cannabinoid CB1 receptors (CB1Rs) by their antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM 281) restricted the synergistic actions of mGluR5-NMDARs on excitatory synaptic transmission and postsynaptic excitability and abolished their effect on inhibition. Furthermore, AM 281 increased the excitatory transmission only in DH indicating that CB1Rs were tonically active in DH but not VH. Removing the magnesium ions from the perfusion medium neither stimulated the interaction between mGluR5 and NMDAR in VH nor augmented the synergy of the two receptors in DH. These findings show that the NMDAR-dependent modulation of fundamental parameters of the local neuronal network, by mGluR5, A2AR and CB1R, markedly differs between DH and VH. We

  5. Evaluation of selective cannabinoid CB(1) and CB(2) receptor agonists in a mouse model of lipopolysaccharide-induced interstitial cystitis.

    Science.gov (United States)

    Tambaro, Simone; Casu, Maria Antonietta; Mastinu, Andrea; Lazzari, Paolo

    2014-04-15

    Interstitial cystitis is a debilitating bladder inflammation disorder. To date, the understanding of the causes of interstitial cystitis remains largely fragmentary and there is no effective treatment available. Recent experimental results have shown a functional role of the endocannabinoid system in urinary bladder. In this study, we evaluated the anti-inflammatory effect of selective cannabinoid CB1 and CB2 receptor agonists in a mouse model of interstitial cystitis. Bladder inflammation was induced in mice by lipopolysaccharide (LPS) and whole bladders were removed 24h later. LPS induced a significant increase of the contractile amplitude in spontaneous activity and a hypersensitivity to exogenous acetylcholine-induced contraction of whole-isolated bladder. Next, we evaluated the anti-inflammatory activity of cannabinoidergic compounds by pretreating mice with CB1 or CB2 selective agonist compounds, respectively ACEA and JWH015. Interestingly, JWH015, but not ACEA, antagonized LPS-induced bladder inflammation. Additionally, anti-inflammatory activity was studied by evaluation, leukocytes mucosa infiltration, myeloperoxidase activity, and mRNA expression of pro-inflammatory interleukin (IL-1α and IL-1β), tumor necrosis factor-alpha (TNF-α) and cannabinoid CB1 and CB2 receptors. JWH015 significantly decreased leukocytes infiltration in both submucosa and mucosa, as well as the myeloperoxydase activity, in LPS treated mice. JWH015 reduced mRNA expression of IL-1α, IL-1β, and TNF-α. LPS treatment increased expression of bladder CB2 but not CB1 mRNA. Taken together, these findings strongly suggest that modulation of the cannabinoid CB2 receptors might be a promising therapeutic strategy for the treatment of bladder diseases and conditions characterized by inflammation, such as interstitial cystitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex-Possible involvement of 5-HT1A and CB1 receptors.

    Science.gov (United States)

    Sartim, A G; Guimarães, F S; Joca, S R L

    2016-04-15

    Systemic administration of cannabidiol (CBD), the main non-psychotomimetic constituent of Cannabis sativa, induces antidepressant-like effects. The mechanism of action of CBD is thought to involve the activation of 5-HT1A receptors and the modulation of endocannabinoid levels with subsequent CB1 activation. The brain regions involved in CBD-induced antidepressant-like effects remain unknown. The ventral medial prefrontal cortex (vmPFC), which includes the infralimbic (IL) and prelimbic (PL) subregions, receives dense serotonergic innervation and plays a significant role in stress responses. To test the hypothesis that the administration of CBD into the IL or PL would induce an antidepressant-like effect through 5-HT1A and CB1 activation. Rats received intra-IL or -PL microinjections of CBD (10-60 nmol/side), 8-OH-DPAT (5-HT1A agonist, 5-10 nmol/side), anandamide (AEA, 0.5 pmol/side) or vehicle (0.2 μl/side) and were submitted to the forced swimming (FST) or to the open field (OFT) tests. Independent CBD-treated groups were pre-treated with WAY100635 (10, 30 nmol/side, 5-HT1A antagonist) or AM251 (10 pmol/side, CB1 antagonist) and submitted to the same tests. An additional group was treated with WAY100635 followed by anandamide. CBD (PL: 10-60 nmol; IL:45-60 nmol) and 8-OH-DPAT (10 nmol) administration significantly reduced the immobility time in the FST, without changing locomotor activity in the OFT. WAY100635 (30 nmol) did not induce effect per se but blocked CBD, 8-OH-DPAT and AEA effects. Additionally, AM251 blocked CBD-effects. administration of CBD into the vmPFC induces antidepressant-like effects possibly through indirect activation of CB1 and 5-HT1A receptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Functional interaction between orexin-1 and CB1 receptors in the periaqueductal gray matter during antinociception induced by chemical stimulation of the lateral hypothalamus in rats.

    Science.gov (United States)

    Esmaeili, M H; Reisi, Z; Ezzatpanah, S; Haghparast, A

    2016-11-01

    Chemical stimulation of the lateral hypothalamus (LH) with carbachol induces antinociception which is antagonized by blockade of orexin receptors in some pain modulatory sites in the tail-flick test. In this study, we evaluated the role of orexin-1 and CB1 receptors in the periaqueductal gray matter (PAG), a critical pain modulatory site, in mediation of antinociceptive responses induced by LH stimulation in rats. One hundred thirty-two adult male albino Wistar rats weighing 180-250 g were unilaterally implanted with two separate cannulae into the LH and ventrolateral PAG (vlPAG). Intra-vlPAG administration of SB334867, as a selective orexin-1 receptor antagonist (0.5, 1.5, 5, 15 and 50 nM), or AM251, as a selective CB1 receptor antagonist (1, 3, 10, 30 and 100 nM), was performed just 5 min before carbachol (125 nM) microinjection into the LH. Our findings showed that SB334867 or AM251 administration dose dependently prevented the development of LH-induced antinociception in rats. Treatment with two antagonists at the same time could not intensify their effects in comparison with separate administration of antagonists. It seems that antinociceptive effect of intra-LH administration of carbachol is mediated, at least partially, through the activation of orexin-1 and CB1 receptors in the vlPAG. This work demonstrates a pain modulatory role of the orexinergic system via the PAG in hypothalamic-mediated analgesia suggesting that orexins can be advantageously targeted to achieve analgesia. WHAT DOES THIS STUDY ADD?: OX1 receptor antagonist (SB334867) administration into the ventrolateral periaqueductal gray matter (vlPAG) dose dependently blocked the carbachol-induced antinociception. CB1 receptor antagonist (AM251) microinjection in the vlPAG prevented carbachol-induced antinociception in a dose-dependent manner. Concurrent administration of SB334867 and AM251 into the vlPAG did not reinforce the antinociceptive responses. © 2016 European Pain Federation - EFIC®.

  8. Chronic Δ9-Tetrahydrocannabinol during Adolescence Differentially Modulates Striatal CB1 Receptor Expression and the Acute and Chronic Effects on Learning in Adult Rats.

    Science.gov (United States)

    Weed, Peter F; Filipeanu, Catalin M; Ketchum, Myles J; Winsauer, Peter J

    2016-01-01

    The purpose of this study was to determine whether chronic administration of Δ(9)-tetrahydrocannabinol (THC) during adolescence would (1) modify any sex-specific effects of THC on learning and (2) affect the development of tolerance to THC as an adult. Male and female rats received daily injections of saline or 5.6 mg/kg of THC from postnatal day 35-75, yielding four groups (female/saline, female/THC, male/saline, and male/THC). Rats were then trained on a procedure that assayed both learning and performance behavior and administered 0.32-18 mg/kg of THC acutely as adults (experiment 1). THC produced rate-decreasing and error-increasing effects in both sexes; however, female rats were more sensitive than male rats were to the rate-decreasing effects. Rats were then chronically administered 10 mg/kg of THC (experiment 2). Rats that received THC during adolescence developed tolerance to the rate-decreasing effects more slowly and less completely than did rats that received saline; in addition, females developed tolerance to the error-increasing effects of THC slower than males did. Western blot analysis of brain tissue indicated long-term changes in hippocampal and striatal cannabinoid type-1 receptor (CB1R) levels despite levels that were indistinguishable immediately after chronic treatment during adolescence. Striatal CB1R levels were increased in adult rats that received THC during adolescence; hippocampal CB1R levels varied by sex. In summary, female rats were more sensitive than male rats were to the acute and chronic effects of THC, and chronic administration of THC during adolescence produced long-term changes in CB1R levels that correlated with decreased tolerance development to the rate-decreasing effects of THC. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Early endogenous activation of CB1 and CB2 receptors after spinal cord injury is a protective response involved in spontaneous recovery.

    Directory of Open Access Journals (Sweden)

    Angel Arevalo-Martin

    Full Text Available Spinal cord injury (SCI induces a cascade of processes that may further expand the damage (secondary injury or, alternatively, may be part of a safeguard response. Here we show that after a moderate-severe contusive SCI in rats there is a significant and very early increase in the spinal cord content of the endocannabinoids 2-arachidonoylglycerol (2-AG and arachidonoyl ethanolamide (anandamide, AEA. Since 2-AG and AEA act through CB1 and CB2 cannabinoid receptors, we administered at 20 minutes after lesion a single injection of their respective antagonists AM281 and AM630 alone or in combination to block the effects of this early endocannabinoid accumulation. We observed that AM281, AM630 or AM281 plus AM630 administration impairs the spontaneous motor recovery of rats according to the Basso-Beattie-Bresnahan (BBB locomotor scale. However, blockade of CB1, CB2 or both receptors produced different effects at the histopathological level. Thus, AM630 administration results at 90 days after lesion in increased MHC-II expression by spinal cord microglia/monocytes and reduced number of serotoninergic fibres in lumbar spinal cord (below the lesion. AM281 exerted the same effects but also increased oedema volume estimated by MRI. Co-administration of AM281 and AM630 produced the effects observed with the administration of either AM281 or AM630 and also reduced white matter and myelin preservation and enhanced microgliosis in the epicentre. Overall, our results suggest that the endocannabinoids acting through CB1 and CB2 receptors are part of an early neuroprotective response triggered after SCI that is involved in the spontaneous recovery after an incomplete lesion.

  10. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1and CB2receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia.

    Science.gov (United States)

    Navarro, Gemma; Borroto-Escuela, Dasiel; Angelats, Edgar; Etayo, Íñigo; Reyes-Resina, Irene; Pulido-Salgado, Marta; Rodríguez-Pérez, Ana I; Canela, Enric I; Saura, Josep; Lanciego, José Luis; Labandeira-García, José Luis; Saura, Carlos A; Fuxe, Kjell; Franco, Rafael

    2018-01-01

    Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB 1 and CB 2 receptors, which may form heteromeric complexes (CB 1 -CB 2 Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB 1 and circa 20 fold for CB 2 ), whereas receptor levels were similar for CB 1 and markedly upregulated for CB 2 ; CB 1 -CB 2 Hets were also upregulated. Unlike in resting cells, CB 2 receptors became robustly coupled to G i in activated cells, in which CB 1 -CB 2 Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß 1-42 ). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APP Sw,Ind ) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APP Sw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB 1 -CB 2 Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB 1 -CB 2 Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB 1 -CB 2 heteroreceptor complex in activated microglia have potential as targets in the

  11. Rapid glucocorticoid-induced activation of TRP and CB1 receptors causes biphasic modulation of glutamate release in gastric-related hypothalamic preautonomic neurons

    Directory of Open Access Journals (Sweden)

    Carie R. Boychuk

    2013-01-01

    Full Text Available Glucocorticoids rapidly regulate synaptic input to neuroendocrine cells in the hypothalamic paraventricular nucleus (PVN by inducing the retrograde release of endogenous messengers. Here we investigated the rapid effects of dexamethasone (DEX on excitatory synaptic input to feeding-related, preautonomic PVN neurons using whole-cell patch-clamp recordings. In ~50% of identified gastric-related preautonomic PVN neurons, DEX elicited a biphasic synaptic response characterized by an initial rapid and transient increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs, followed by a decrease in mEPSC frequency within 9 min; remaining cells displayed only a decrease in mEPSC frequency. The late-phase decrease in mEPSC frequency was mimicked by the cannabinoid receptor agonists anandamide and WIN 55,212-2, and it was blocked by the CB1 receptor antagonist AM251. The biphasic DEX effect was mimicked by anandamide (AEA. The early increase in mEPSCs was mimicked by activation of transient receptor potential vanilloid type 1 (TRPV1 receptors with capsaicin and by activation of TRPV4 receptors with 4-α-PDD. The increase was reduced, but not blocked, by selective TRPV1 antagonists and in TRPV1-knockout mice; it was blocked completely by the broad-spectrum TRPV antagonist ruthenium red and by combined application of selective TRPV1 and TRPV4 antagonists. The DEX effects were prevented entirely by intracellular infusion of the G-protein inhibitor, GDPβS. Thus, DEX biphasically modulates synaptic glutamate onto a subset of gastric-related PVN neurons, which is likely mediated by induction of a retrograde messenger. The effect includes a TRPV1/4 receptor-mediated transient increase and subsequent CB1 receptor-mediated suppression of glutamate release. Multiphasic modulation of glutamate input to PVN neurons represents a previously unappreciated complexity of control of autonomic output by glucocorticoids and eCBs.

  12. Involvement of Endocannabinoids in Alcohol "Binge" Drinking: Studies of Mice with Human Fatty Acid Amide Hydrolase Genetic Variation and After CB1 Receptor Antagonists.

    Science.gov (United States)

    Zhou, Yan; Huang, Ted; Lee, Francis; Kreek, Mary Jeanne

    2016-03-01

    The endocannabinoid system has been found to play an important role in modulating alcohol intake. Inhibition or genetic deletion of fatty acid amide hydrolase (FAAH; a key catabolic enzyme for endocannabinoids) leads to increased alcohol consumption and preference in rodent models. A common human single-nucleotide polymorphism (SNP; C385A, rs324420) in the FAAH gene is associated with decreased enzymatic activity of FAAH, resulting in increased anandamide levels in both humans and FAAH C385A knock-in mice. As this FAAH SNP has been reported to be associated with altered alcohol abuse, the present study used these genetic knock-in mice containing the human SNP C385A to determine the impact of variant FAAH gene on alcohol "binge" drinking in the drinking-in-the-dark (DID) model. We found that the FAAH(A/A) mice had greater alcohol intake and preference than the wild-type FAAH(C/C) mice, suggesting that increased endocannabinoid signaling in FAAH(A/A) mice led to increased alcohol "binge" consumption. The specificity on alcohol vulnerability was suggested by the lack of any FAAH genotype difference on sucrose or saccharin intake. Using the "binge" DID model, we confirmed that selective CB1 receptor antagonist AM251 reduced alcohol intake in the wild-type mice. These data suggest that there is direct and selective involvement of the human FAAH C385A SNP and CB1 receptors in alcohol "binge" drinking. Copyright © 2016 by the Research Society on Alcoholism.

  13. Peripheral CB1 Receptor Neutral Antagonist, AM6545, Ameliorates Hypometabolic Obesity and Improves Adipokine Secretion in Monosodium Glutamate Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Haiming Ma

    2018-03-01

    Full Text Available Effect of peripheral cannabinoid receptor 1 (CB1R blockade by AM6545 in the monosodium glutamate (MSG-induced hypometabolic and hypothalamic obesity was observed, and the impact on intraperitoneal adipose tissue and adipokines was investigated. The MSG mice is characterized by excessive abdominal obesity, and combined with dyslipidemia and insulin resistance. 3-Week AM6545 treatment dose-dependently decreased the body weight, intraperitoneal fat mass, and rectified the accompanied dyslipidemia include elevated serum triglyceride, total cholesterol, free fatty acids, and lowered LDLc level. Glucose intolerance and hyperinsulinemia were also alleviated. But AM6545 didn’t affect the food-intake consistently through the experiment. In line with the reduction on fat mass, the size of adipocyte was reduced markedly. Most interestingly, AM6545 showed significant improvement on levels of circulating adipokines including lowering leptin, asprosin and TNFα, and increasing HMW adiponectin. Correspondingly, dysregulated gene expression of lipogenesis, lipolysis, and adipokines in the adipose tissue were nearly recovered to normal level after AM6545 treatment. Additionally, western blot analysis revealed that AM6545 corrected the elevated CB1R and PPARγ protein expression, while increased the key energy uncoupling protein UCP1 expression in adipose tissue. Taken together, the current study indicates that AM6545 induced a comprehensive metabolic improvement in the MSG mice including counteracting the hypometabolic and hypothalamic obesity, and improving the accompanied dyslipidemia and insulin resistance. One key underlying mechanism is related to ameliorate on the metabolic deregulation of adipose tissue, the synthesis and secretion of adipokines were thus rectified, and finally the catabolism was increased and the anabolism was reduced in intraperitoneal adipose tissue. Findings from this study will provide the valuable information about peripheral CB1R

  14. Prevention of drug priming- and cue-induced reinstatement of MDMA-seeking behaviors by the CB1 cannabinoid receptor antagonist AM251.

    Science.gov (United States)

    Nawata, Yoko; Kitaichi, Kiyoyuki; Yamamoto, Tsuneyuki

    2016-03-01

    3,4-Methylenedioxymethamphetamine (MDMA), a methamphetamine (METH) derivative, exhibits METH-like actions at monoamine transporters and positive reinforcing effects in rodents and primates. The purposes of the present study were to determine whether cross-reinstatement would be observed between MDMA and METH and if the cannabinoid receptor, a receptor known to play critical roles in the brain reward system, could modulate MDMA craving. Rats were trained to press a lever for intravenous MDMA (0.3mg/infusion) or METH (0.02mg/infusion) infusions under a fixed ratio 1 schedule paired with drug-associated cues (light and tone). Following drug self-administration acquisition training, rats underwent extinction training (an infusion of saline). Reinstatement tests were performed once the extinction criteria were achieved. In MDMA-trained rats, the MDMA-priming injection (3.2mg/kg, i.p.) or re-exposure to MDMA-associated cues reinstated MDMA-seeking behavior. Additionally, a priming injection of METH (1.0mg/kg, i.p.) also reinstated MDMA-seeking behavior. In contrast, none of the MDMA doses reinstated METH-seeking behavior in the METH-trained rats. The CB1 cannabinoid receptor antagonist AM251 markedly attenuated the MDMA-seeking behaviors induced by MDMA-priming injection or re-exposure to MDMA-associated cues in a dose-dependent manner. These findings show that MDMA has obvious addictive potential for reinstating drug-seeking behavior and that METH can be an effective stimulus for reinstating MDMA-seeking behaviors. Furthermore, based on the attenuating effect of AM251 in the reinstatement of MDMA-seeking behaviors, drugs that suppress CB1 receptors may be used in treatment of MDMA dependence. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. Delta-9-tetrahydrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB(1) receptors in the least shrew.

    Science.gov (United States)

    Darmani, N A

    2001-01-01

    We have recently shown that the cannabinoid CB(1) receptor antagonist, SR 141716A, produces emesis in the least shrew (Cryptotis parva) in a dose- and route-dependent manner. This effect was blocked by delta-9-tetrahydrocannabinol (Delta(9)-THC). The present study investigates the cannabinoid receptor mechanisms by which Delta(9)-THC produces its antiemetic effects against cisplatin (20 mg/kg, i.p.)-induced emesis as well as its cannabimimetic activity profile (motor reduction) in the least shrew. Intraperitoneal administration of Delta(9)-THC (1, 2.5, 5 and 10 mg/kg) dose-dependently reduced both the percentage of animals vomiting (ID(50)=1.8+/-1.6 mg/kg) and the frequency of vomits (ID(50)=0.36+/-1.18 mg/kg) in a potent manner. The lowest significantly effective antiemetic dose of Delta(9)-THC for the latter emesis parameters was 2.5 mg/kg. Although Delta(9)-THC reduced the frequency of vomits up to 98%, it failed to completely protect all tested shrews from vomiting (80% protection). The cannabinoid CB(1) antagonist (SR 141716A) and not the CB(2) antagonist (SR 144528), reversed the antiemetic effects of Delta(9)-THC in a dose-dependent fashion. Delta(9)-THC (1, 5, 10 and 20 mg/kg, ip) suppressed locomotor parameters (spontaneous locomotor activity, duration of movement and rearing frequency) in a biphasic manner and only the 20-mg/kg dose simultaneously suppressed the triad of locomotor parameters to a significant degree. Subcutaneous (1-10 mg/kg) and intraperitoneal (0.05-40 mg/kg) injection of some doses of SR 141716A caused significant reductions in one or more components of the triad of locomotor parameters but these reductions were not dose dependent. Subcutaneous injection of SR 141716A (0.2, 1, 5 and 10 mg/kg) reversed the motor suppressant effects of a 20-mg/kg dose of Delta(9)-THC (ip) in a dose-dependent manner. Relative to its motor suppressant effects, Delta(9)-THC is a more potent antiemetic agent. Both effects are probably mediated via CB(1

  16. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Petra eAmchova

    2014-03-01

    Full Text Available Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed higher voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 µg/kg/infusion. To this aim, olfactory-bulbectomized (OBX and sham-operated (SHAM Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous (FR-1 schedule of reinforcement in 2h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behaviour after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg, did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2 reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.

  17. Enhanced novelty-induced corticosterone spike and upregulated serotonin 5-HT1A and cannabinoid CB1 receptors in adolescent BTBR mice.

    Science.gov (United States)

    Gould, Georgianna G; Burke, Teresa F; Osorio, Miguel D; Smolik, Corey M; Zhang, Wynne Q; Onaivi, Emmanuel S; Gu, Ting-Ting; DeSilva, Mauris N; Hensler, Julie G

    2014-01-01

    Hypothalamic pituitary adrenal (HPA) axis responses to change and social challenges during adolescence can influence mental health and behavior into adulthood. To examine how HPA tone in adolescence may contribute to psychopathology, we challenged male adolescent (5 weeks) and adult (16 weeks) BTBR T(+)tf/J (BTBR) and 129S1/SvImJ (129S) mice with novelty in sociability tests. In prior studies these strains had exaggerated or altered HPA stress responses and low sociability relative to C57BL/6J mice in adulthood. In adolescence these strains already exhibited similar or worse sociability deficits than adults or age-matched C57 mice. Yet BTBR adolescents were less hyperactive and buried fewer marbles than adults. Novelty-induced corticosterone (CORT) spikes in adolescent BTBR were double adult levels, and higher than 129S or C57 mice at either age. Due to their established role in HPA feedback, we hypothesized that hippocampal Gαi/o-coupled serotonin 5-HT1A and cannabinoid CB1 receptor function might be upregulated in BTBR mice. Adolescent BTBR mice had higher hippocampal 5-HT1A density as measured by [(3)H] 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) binding than C57 mice, and adult BTBR 8-OH-DPAT-stimulated GTPγS binding was higher than in either C57 or 129S mice in this region. Further, BTBR hippocampal CB1 density measured by [(3)H]CP55,940 binding was 15-20% higher than in C57. CP55,940-stimulated GTPγS binding in adult BTBR dentate gyrus was 30% higher then 129S (p<0.05), but was not a product of greater neuronal or cell density defined by NeuN and DAPI staining. Hence hyperactive HPA responsiveness during adolescence may underlie 5-HT1A and CB1 receptor up-regulation and behavioral phenotype of BTBR mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cannabinoid CB1/CB2receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity-based anorexia.

    Science.gov (United States)

    Scherma, Maria; Satta, Valentina; Collu, Roberto; Boi, Maria Francesca; Usai, Paolo; Fratta, Walter; Fadda, Paola

    2017-08-01

    Anorexia nervosa (AN) is a serious psychiatric condition characterized by excessive body weight loss and disturbed perceptions of body shape and size, often associated with excessive physical activity. There is currently no effective drug-related therapy of this disease and this leads to high relapse rate. Clinical data suggest that a promising therapy to treat and reduce reoccurrence of AN may be based on the use of drugs that target the endocannabinoid (EC) system, which appears dysregulated in AN patients. The activity-based anorexia (ABA) rodent model mimics the severe body weight loss and increased physical activity, as well as the neuroendocrine disturbances (i.e. hypoleptinaemia and hypercortisolaemia) in AN. This study investigated whether cannabinoid agonists can effectively modify anorexic-like behaviours and neuroendocrine changes in rats subjected to a repeated ABA regime that mimics the human condition in which patients repeatedly undergo a recovery and illness cycle. Our data show that subchronic treatment with both the natural CB 1 /CB 2 receptor agonist Δ 9 -tetrahydrocannabinol and the synthetic CB 1 /CB 2 receptor agonist CP-55,940 significantly reduced body weight loss and running wheel activity in ABA rats. These behavioural effects were accompanied by an increase in leptin signalling and a decrease in plasma levels of corticosterone. Taken together, our results further demonstrate the involvement of the EC system in AN pathophysiology and that strategies which modulate EC signalling are useful to treat this disorder, specifically in patients where physical hyperactivity plays a central role in its progression and maintenance. © 2017 The British Pharmacological Society.

  19. Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future

    Directory of Open Access Journals (Sweden)

    George ePanagis

    2014-07-01

    Full Text Available Over the last decades the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain reward circuits and the regulation of motivational processes. Importantly, behavioural studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine and heroin, although the conditions under which cannabinoids exert their rewarding effects may be more limited. Furthermore, there is evidence on the involvement of the endocannabinoid system in the regulation of cue- and drug-induced relapsing phenomena in animal models. The aim of this review is to briefly present the available data obtained using diverse behavioural experimental approaches in experimental animals, namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure and the reinstatement of drug-seeking behaviour procedure, to provide a comprehensive picture of the current status of what is known about the endocannabinoid system mechanisms that underlie modification of brain reward processes. Emphasis is placed on the effects of cannabinoid 1 (CB1 receptor agonists, antagonists and endocannabinoid modulators. Further, the role of CB1 receptors in reward processes is investigated through presentation of respective genetic ablation studies in mice. The vast majority of studies in the existing literature suggests that the endocannabinoid system plays a major role in modulating motivation and reward processes. However, much remains to be done before we fully understand these interactions. Further research in the future will shed more light on these processes and, thus, could lead to the development of potential pharmacotherapies designed to treat reward-dysfunction related disorders.

  20. Preparation of iodine-123 labeled AM251: a potential SPECT radioligand for the brain cannabinoid CB1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ruoxi; Makriyannis, Alexandros [Connecticut Univ., Molecular and Cell Biology Dept., Storrs, CT (United States); Gatley, S.J. [Brookhaven National Lab., Medical Dept., Upton, NY (United States)

    1996-10-01

    We report the synthesis and labeling with iodine-123 of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). This compound is an analog of the recently described cannabinoid receptor antagonist, SR141716A, in which a 4-chlorophenyl group is replaced by 4-iodophenyl. Labeling in good yield (62%) and radiochemical purity (> 95%), and high specific activity (> 2500 Ci/mmol) was achieved by an iododestannylation reaction using the tributyltin precursor, no carrier added I-123 iodide, and chloramine-T. (author).

  1. Endocannabinoid 1 and 2 (CB(1); CB(2)) receptor agonists affect negatively cow luteal function in vitro.

    Science.gov (United States)

    Weems, Y S; Lewis, A W; Neuendorff, D A; Randel, R D; Weems, C W

    2009-12-01

    Thirty to 40% of pregnancies are lost during the first third of pregnancy, which has been hypothesized to be due to inadequate progesterone secretion by the corpus luteum. Loss of luteal progesterone secretion during the estrous cycle is via uterine secretion of prostaglandin F(2)alpha (PGF(2)alpha). Cow luteal tissue secretion of prostaglandins (PG) E (PGE(1)+PGE(2)) and PGF(2)alpha are derived from precursors in membrane phospholipids. Cow luteal tissue secretion of PGE and PGF(2)alpha increased linearly with time in culture with the PGE: ratio being 1:1. PGE(1) or PGE(2) are luteotropic in cows and ewes and antiluteolytic in vitro and in vivo in ewes. Endocannabinoids are also derived from phospholipids and are associated with infertility, presumably by reducing implantation; however, effects of endocannabinoids on luteal function have not been addressed. The objective of this experiment was to determine the effects of endocannabinoid type 1 and 2 receptor agonists and receptor antagonists or a fatty acid amide hydrolase (FAAH; catabolizes endocannabinoids) inhibitor, PGE(1), or PGF(2)alpha on bovine luteal secretion of progesterone, PGE, and PGF(2)alphain vitro. PGE and PGF(2)alpha was increased (P or =0.05) with time in vehicle-treated luteal slices in vitro. Progesterone was increased (Pcow luteal function in vitro and that the corpus luteum may also be a site for endocannabinoid decreased fertility as well as a reduction in implantation.

  2. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα and degrading (MAGL, FAAH enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin and parvalbumin in the adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Patricia eRivera

    2014-06-01

    Full Text Available The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e. DAGLα enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL and FAAH and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. CB1, DAGLα and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB1+ fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin+ cells (granular and pyramidal neurons, and calretinin+ and parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+ terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+ interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers. Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.

  3. CB1 receptors down-regulate a cAMP/Epac2/PLC pathway to silence the nerve terminals of cerebellar granule cells.

    Science.gov (United States)

    Alonso, Beatris; Bartolomé-Martín, David; Ferrero, José Javier; Ramírez-Franco, Jorge; Torres, Magdalena; Sánchez-Prieto, José

    2017-08-01

    Cannabinoid receptors mediate short-term retrograde inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at excitatory synapses. The responses of individual nerve terminals in VGLUT1-pHluorin transfected cerebellar granule cells to cannabinoids have shown that prolonged activation of cannabinoid type 1 receptors (CB1Rs) silences a subpopulation of previously active synaptic boutons. Adopting a combined pharmacological and genetic approach to study the molecular mechanisms of CB1R-induced silencing, we found that adenylyl cyclase inhibition decreases cAMP levels while it increases the number of silent synaptic boutons and occludes the induction of further silencing by the cannabinoid agonist HU-210. Guanine nucleotide exchange proteins directly activated by cAMP (Epac proteins) mediate some of the presynaptic effects of cAMP in the potentiation of synaptic transmission. ESI05, a selective Epac2 inhibitor, and U-73122, the specific inhibitor of phospholipase C (PLC), both augment the number of silent synaptic boutons. Moreover, they abolish the capacity of the Epac activator, 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate, to prevent HU-210-induced silencing consistent with PLC signaling lying downstream of Epac2 proteins. Furthermore, Rab3-interacting molecule (RIM)1α KO cells have many more basally silent synaptic boutons (12.9 ± 3.5%) than wild-type cells (1.1 ± 0.5%). HU-210 induced further silencing in these mutant cells, although 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate only awoke the HU-210-induced silence and not the basally silent synaptic boutons. This behavior can be rescued by expressing RIM1α in RIM1α KO cells, these cells behaving very much like wild-type cells. These findings support the hypothesis that a cAMP/Epac/PLC signaling pathway targeting the release machinery appears to mediate cannabinoid

  4. Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251 after physical stress in mice.

    Science.gov (United States)

    Ostadhadi, Sattar; Haj-Mirzaian, Arya; Nikoui, Vahid; Kordjazy, Nastaran; Dehpour, Ahmad-Reza

    2016-02-01

    Cannabinoid inverse agonists possess antidepressant-like properties, but the mechanism of this action is unknown. Numerous studies have reported the interaction between opioid and cannabinoid pathways. In this study, acute foot-shock stress was used in mice to investigate the involvement of the opioid pathway in the antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251. Stress was induced by intermittent foot-shock stimulation for 30 min. Then, using the forced swimming test (FST) and tail suspension test (TST), the immobility time was measured. Results show that the immobility time was significantly prolonged in animals subjected to foot-shock stress, compared with non-stressed controls (P AM-251 (0.5 and 0.3 mg/kg, intraperitoneally (i.p.)), significantly decreased the immobility time of stressed mice in the FST (P AM-251 (0.1 mg/kg), naltrexone (0.3 mg/kg), and morphine (1.0 mg/kg) did not show any significant effect on stressed animals (P > 0.05). Co-administration of AM-251 with sub-effective dose of naltrexone decreased the effective dose of this cannabinoid inverse agonist, to 0.1 mg/kg (P AM-251 (0.5 mg/kg; P AM-251 in a foot-shock stress model. © 2016 John Wiley & Sons Australia, Ltd.

  5. Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor.

    Science.gov (United States)

    Freitas, Renato Leonardo de; Salgado-Rohner, Carlos José; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-09-01

    It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline.

  6. The inhibitory effect of combination treatment with leptin and cannabinoid CB1 receptor agonist on food intake and body weight gain is mediated by serotonin 1B and 2C receptors.

    Science.gov (United States)

    Wierucka-Rybak, M; Wolak, M; Juszczak, M; Drobnik, J; Bojanowska, E

    2016-06-01

    Previous studies reported that the co-injection of leptin and cannabinoid CB1 receptor antagonists reduces food intake and body weight in rats, and this effect is more profound than that induced by these compounds individually. Additionally, serotonin mediates the effects of numerous anorectic drugs. To investigate whether serotonin interacts with leptin and endocannabinoids to affect food intake and body weight, we administered 5-hydroxytryptamine(HT)1B and 5-hydroxytryptamine(HT)2C serotonin receptor antagonists (3 mg/kg GR 127935 and 0.5 mg/kg SB 242084, respectively) to male Wistar rats treated simultaneously with leptin (100 μg/kg) and the CB1 receptor inverse agonist AM 251 (1 mg/kg) for 3 days. In accordance with previous findings, the co-injection of leptin and AM 251, but not the individual injection of each drug, resulted in a significant decrease in food intake and body weight gain. Blockade of the 5-HT1B and 5-HT2C receptors completely abolished the leptin- and AM 251-induced anorectic and body-weight-reducing effects. These results suggest that serotonin mediates the leptin- and AM 251-dependent regulation of feeding behavior in rats via the 5-HT1B and 5-HT2C receptors.

  7. Anti-obesity effects of the combined administration of CB1 receptor antagonist rimonabant and melanin-concentrating hormone antagonist SNAP-94847 in diet-induced obese mice.

    Science.gov (United States)

    Verty, A N A; Lockie, S H; Stefanidis, A; Oldfield, B J

    2013-02-01

    Current anti-obesity monotherapies have proven only marginally effective and are often accompanied by adverse side effects. The cannabinoid 1 (CB1) receptor antagonist rimonabant, while effective at producing weight loss, has been discontinued from clinical use owing to increased incidence of depression. This study investigates the interaction between the cannabinoid and melanin-concentrating hormone (MCH) systems in food intake, body weight control, and mood. Lean male C57BL/6 mice were injected i.p. with rimonabant (0.0, 0.03, 0.3 and 3.0 mg kg(-1)) or the MCH1-R antagonist SNAP-94847 (0.0, 1.0, 5.0 and 10.0 mg kg(-1)) to establish dose response parameters for each drug. Diet-induced obese (DIO) mice were given either vehicle, sub-threshold dose of rimonabant and SNAP-94847 alone or in combination. Impact on behavioral outcomes, food intake, body weight, plasma metabolites and expression of key metabolic proteins in the brown adipose tissue (BAT) and white adipose tissue (WAT) were measured. The high doses of rimonabant and SNAP-94847 produced a reduction in food intake after 2 and 24 h. Combining sub-threshold doses of rimonabant and SNAP-94847 produced a significantly greater loss of body weight in DIO mice compared with vehicle and monotherapies. In addition, combining sub effective doses of these drugs led to a shift in markers of thermogenesis in BAT and lipid metabolism in WAT consistent with increased energy expenditure and lipolysis. Furthermore, co-administration of rimonabant and SNAP-94847 produced a transient reduction in food intake, and significantly reduced fat mass and adipocyte size. Importantly, SNAP-94847 significantly attenuated the ability of rimonabant to reduced immobility time in the forced swim test. These results provide proof of principle that combination of rimonabant and a MCH1 receptor antagonist is highly effective in reducing body weight below that achieved by rimonabant and SNAP-94847 monotherapies. In addition, the

  8. Endocannabinoid CB1 Receptor Mediated Rises in Ca2+ and Depolarization-Induced Suppression of Inhibition within the Laterodorsal Tegmental Nucleus

    DEFF Research Database (Denmark)

    Soni, Neeraj; Kohlmeier, Kristi Anne

    2016-01-01

    in this nucleus, we examined whether CB1R activation led to rises in intracellular Ca(2+) ([Ca(2+)]i) and whether processes shown in other regions to involve endocannabinoid (eCB) transmission were present in the LDT. Using a combination of Ca(2+) imaging in multiple cells loaded with Ca(2+) imaging dye via 'bulk...

  9. N-arachidonoyl-serotonin, a dual FAAH and TRPV1 blocker, inhibits the retrieval of contextual fear memory: Role of the cannabinoid CB1 receptor in the dorsal hippocampus.

    Science.gov (United States)

    Gobira, Pedro H; Lima, Isabel V; Batista, Luara A; de Oliveira, Antônio C; Resstel, Leonardo B; Wotjak, Carsten T; Aguiar, Daniele C; Moreira, Fabricio A

    2017-06-01

    Anandamide, an endocannabinoid, inhibits aversive responses by activating the CB 1 cannabinoid receptor. At high concentrations, however, anandamide may exert pro-aversive activities mediated by the transient receptor potential vanilloid type-1 channel (TRPV1). Accordingly, N-arachidonoyl-serotonin (AA-5-HT), a dual blocker of the anandamide-hydrolysing enzyme fatty acid amide hydrolase (FAAH) and the TRPV1 channel, induces anxiolytic-like effects. Here we tested the hypothesis that AA-5-HT inhibits the expression of contextual fear conditioning by facilitating CB 1 receptor signalling in the dorsal hippocampus of mice. Intraperitoneal injection of AA-5-HT (0.1, 0.3, 1 mg/kg) inhibited the retrieval of contextual fear memory (freezing response). The effect of AA-5-HT (0.3 mg/kg) was prevented by systemic injection of the CB 1 receptor antagonist, AM251 (1.0 mg/kg), and mimicked by simultaneous FAAH inhibition (URB597, 0.3 mg/kg) and TRPV1 blockage (SB366791, 1 mg/kg). Injection of AA-5-HT (0.125, 0.25, 0.5 nmol) into the dorsal hippocampus also reduced freezing. Finally, the effect of systemic AA-5-HT (0.3 mg/kg) was prevented by intra-hippocampal injection of AM251 (1 nmol). In conclusion, dual FAAH and TRPV1 blockage inhibits contextual fear memory by facilitating anandamide-induced CB 1 receptor activation in the dorsal hippocampus. This approach may lead to new pharmacological treatments for traumatic memories and related psychiatric disorders.

  10. Repeated administration of phytocannabinoid Δ(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner.

    Science.gov (United States)

    Tai, S; Hyatt, W S; Gu, C; Franks, L N; Vasiljevik, T; Brents, L K; Prather, P L; Fantegrossi, W E

    2015-12-01

    These studies probed the relationship between intrinsic efficacy and tolerance/cross-tolerance between ∆(9)-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than ∆(9)-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0mg/kg or 10.0mg/kg, respectively) or a maximally hypothermic dose of 30.0mg/kg ∆(9)-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0mg/kg ∆(9)-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a ∆(9)-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated ∆(9)-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  12. Reversible disruption of pre-pulse inhibition in hypomorphic-inducible and reversible CB1-/- mice.

    Directory of Open Access Journals (Sweden)

    Maria Franca Marongiu

    Full Text Available Although several genes are implicated in the pathogenesis of schizophrenia, in animal models for such a severe mental illness only some aspects of the pathology can be represented (endophenotypes. Genetically modified mice are currently being used to obtain or characterize such endophenotypes. Since its cloning and characterization CB1 receptor has increasingly become of significant physiological, pharmacological and clinical interest. Recently, its involvement in schizophrenia has been reported. Among the different approaches employed, gene targeting permits to study the multiple roles of the endocannabinoid system using knockout ((-/- mice represent a powerful model but with some limitations due to compensation. To overcome such a limitation, we have generated an inducible and reversible tet-off dependent tissue-specific CB1(-/- mice where the CB1R is re-expressed exclusively in the forebrain at a hypomorphic level due to a mutation (IRh-CB1(-/- only in absence of doxycycline (Dox. In such mice, under Dox(+ or vehicle, as well as in wild-type (WT and CB1(-/-, two endophenotypes motor activity (increased in animal models of schizophrenia and pre-pulse inhibition (PPI of startle reflex (disrupted in schizophrenia were analyzed. Both CB1(-/- and IRh-CB1(-/- showed increased motor activity when compared to WT animals. The PPI response, unaltered in WT and CB1(-/- animals, was on the contrary highly and significantly disrupted only in Dox(+ IRh-CB1(-/- mice. Such a response was easily reverted after either withdrawal from Dox or haloperidol treatment. This is the first Inducible and Reversible CB1(-/- mice model to be described in the literature. It is noteworthy that the PPI disruption is not present either in classical full CB1(-/- mice or following acute administration of rimonabant. Such a hypomorphic model may provide a new tool for additional in vivo and in vitro studies of the physiological and pathological roles of cannabinoid system in

  13. Behavioral effects of the novel potent cannabinoid CB1 agonist AM 4054.

    Science.gov (United States)

    McLaughlin, Peter J; Thakur, Ganesh A; Vemuri, V Kiran; McClure, Evan D; Brown, Cara M; Winston, Keisha M; Wood, Jodianne T; Makriyannis, Alexandros; Salamone, John D

    2013-08-01

    Due to the ubiquity of the CB1 cannabinoid receptor throughout the nervous system, as well as the many potential therapeutic uses of CB1 agonist-based interventions, it is desirable to synthesize novel probes of the CB1 receptor. Here, the acute behavioral effects of systemic (i.p.) administration of the putative novel CB1 full agonist AM 4054 were tested in rats. In Experiment 1, a dose range (0.15625-1.25 mg/kg) of AM 4054 produced effects consistent with CB1 agonism in the cannabinoid tetrad of tasks in rats, including induction of analgesia, catalepsy, hypothermia, and locomotor suppression. These effects were reversed with the CB1-selective inverse agonist AM 251 in Experiment 2, indicating that AM 4054 produced CB1 receptor-mediated effects. Analysis of open-field activity indicated that the reduction in locomotion is more consistent with general motor slowing than anxiogenesis. AM 4054 (0.0625-0.5 mg/kg) also dose-dependently reduced fixed-ratio 5 (FR5) operant responding for food in Experiment 3, and microanalysis of the timing and rate of lever pressing indicated a pattern of suppression similar to other CB1 agonists. Minimum doses of AM 4054 (0.125-0.3125 mg/kg) required to produce significant effects in these behavioral assays were lower than those of many CB1 agonists. It is likely that AM 4054 is a potent pharmacological tool for assessment of cannabinoid receptor function. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    Science.gov (United States)

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-05

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cannabinoid CB1Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors.

    Science.gov (United States)

    Leonard, Michael Z; Alapafuja, Shakiru O; Ji, Lipin; Shukla, Vidyanand G; Liu, Yingpeng; Nikas, Spyros P; Makriyannis, Alexandros; Bergman, Jack; Kangas, Brian D

    2017-12-01

    An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type 1 (CB 1 ) receptor agonists such as Δ 9 -tetrahydrocannabinol are increasingly used for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N -arachidonoylethanolamine [AEA (or anandamide)] and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB 1 agonist-like subjective effects, as reflected in CB 1 -related discriminative stimulus effects in laboratory subjects. Squirrel monkeys ( n = 8) that discriminated the CB 1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, the inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (JZL195, AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB 1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB 1 -related discriminative stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were nonsurmountably antagonized by low doses of rimonabant. Additionally, FAAH or MGL inhibition revealed CB 1 -like subjective effects produced by AEA but not by 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB 1 receptor-mediated subjective effects. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  16. CB 1/2 dual agonists with 3-carbamoyl 2-pyridone derivatives as antipruritics: reduction of CNS side effects by introducing polar functional groups.

    Science.gov (United States)

    Odan, Masahide; Ishizuka, Natsuki; Hiramatsu, Yoshiharu; Inagaki, Masanao; Hashizume, Hiroshi; Fujii, Yasuhiko; Mitsumori, Susumu; Morioka, Yasuhide; Soga, Masahiko; Deguchi, Masashi; Yasui, Kiyoshi; Arimura, Akinori

    2012-04-15

    Our lead compound 1 showed high affinity for both CB1 and CB2 receptors, suggesting the possibility of inducing psychoactive side effects through the CB1 receptor in the brain. To solve this issue, polar functional groups were introduced at the 3-position of the pyridone core of compound 1 to find CB1/2 dual agonists such as 17 and 20 which did not show any CNS side effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Characterization of structurally novel G protein biased CB1 agonists: Implications for drug development.

    Science.gov (United States)

    Ford, Benjamin M; Franks, Lirit N; Tai, Sherrica; Fantegrossi, William E; Stahl, Edward L; Berquist, Michael D; Cabanlong, Christian V; Wilson, Catheryn D; Penthala, Narsimha R; Crooks, Peter A; Prather, Paul L

    2017-11-01

    The human cannabinoid subtype 1 receptor (hCB 1 R) is highly expressed in the CNS and serves as a therapeutic target for endogenous ligands as well as plant-derived and synthetic cannabinoids. Unfortunately, acute use of hCB 1 R agonists produces unwanted psychotropic effects and chronic administration results in development of tolerance and dependence, limiting the potential clinical use of these ligands. Studies in β-arrestin knockout mice suggest that interaction of certain GPCRs, including μ-, δ-, κ-opioid and hCB 1 Rs, with β-arrestins might be responsible for several adverse effects produced by agonists acting at these receptors. Indeed, agonists that bias opioid receptor activation toward G-protein, relative to β-arrestin signaling, produce less severe adverse effects. These observations indicate that therapeutic utility of agonists acting at hCB 1 Rs might be improved by development of G-protein biased hCB 1 R agonists. Our laboratory recently reported a novel class of indole quinulidinone (IQD) compounds that bind cannabinoid receptors with relatively high affinity and act with varying efficacy. The purpose of this study was to determine whether agonists in this novel cannabinoid class exhibit ligand bias at hCB 1 receptors. Our studies found that a novel IQD-derived hCB 1 receptor agonist PNR-4-20 elicits robust G protein-dependent signaling, with transduction ratios similar to the non-biased hCB 1 R agonist CP-55,940. In marked contrast to CP-55,940, PNR-4-20 produces little to no β-arrestin 2 recruitment. Quantitative calculation of bias factors indicates that PNR-4-20 exhibits from 5.4-fold to 29.5-fold bias for G protein, relative to β-arrestin 2 signaling (when compared to G protein activation or inhibition of forskolin-stimulated cAMP accumulation, respectively). Importantly, as expected due to reduced β-arrestin 2 recruitment, chronic exposure of cells to PNR-4-20 results in significantly less desensitization and down-regulation of hCB 1

  18. Δ9-tetrahydrocannabinol suppresses cytotoxic T lymphocyte function independent of CB1 and CB 2, disrupting early activation events.

    Science.gov (United States)

    Karmaus, Peer W F; Chen, Weimin; Kaplan, Barbara L F; Kaminski, Norbert E

    2012-12-01

    Previously, CD8(+) T cells were found to be a sensitive target for suppression by Δ(9)-tetrahydrocannabinol (Δ(9)-THC) in a murine model of influenza infection. To study the effect of Δ(9)-THC on CD8(+) cytotoxic T lymphocytes (CTL), an allogeneic model of MHC I mismatch was used to elicit CTL. In addition, to determine the requirement for the cannabinoid receptors 1 (CB(1)) and 2 (CB(2)) in Δ(9)-THC-mediated CTL response modulation, mice null for both receptors were used (CB(1) (-/-)CB(2) (-/-)). Δ(9)-THC suppressed CTL function independent of CB(1) and CB(2) as evidenced by reduction of (51)Cr release by CTL generated from CB(1) (-/-)CB(2) (-/-) mice. Furthermore, viability in CD4(+) and CD8(+) cells was reduced in a concentration-dependent manner with Δ(9)-THC, independent of CB(1) and CB(2), but no effect of Δ(9)-THC on proliferation was observed, suggesting that Δ(9)-THC decreases the number of T cells initially activated. Δ(9)-THC increased expression of the activation markers, CD69 in CD8(+) cells and CD25 in CD4(+) cells in a concentration-dependent manner in cells derived from WT and CB(1) (-/-)CB(2) (-/-) mice. Furthermore, Δ(9)-THC synergized with the calcium ionophore, ionomycin, to increase CD69 expression on both CD4(+) and CD8(+) cells. In addition, without stimulation, Δ(9)-THC increased CD69 expression in CD8(+) cells from CB(1) (-/-)CB(2) (-/-) and WT mice. Overall, these results suggest that CB(1) and CB(2) are dispensable for Δ(9)-THC-mediated suppression and that perturbation of Ca(2+) signals during T cell activation plays an important role in the mechanism by which Δ(9)-THC suppresses CTL function.

  19. Differences in spontaneously avoiding or approaching mice reflect differences in CB1-mediated signaling of dorsal striatal transmission.

    Directory of Open Access Journals (Sweden)

    Daniela Laricchiuta

    Full Text Available Approach or avoidance behaviors are accompanied by perceptual vigilance for, affective reactivity to and behavioral predisposition towards rewarding or punitive stimuli, respectively. We detected three subpopulations of C57BL/6J mice that responded with avoiding, balancing or approaching behaviors not induced by any experimental manipulation but spontaneously displayed in an approach/avoidance conflict task. Although the detailed neuronal mechanisms underlying the balancing between approach and avoidance are not fully clarified, there is growing evidence that endocannabinoid system (ECS plays a critical role in the control of these balancing actions. The sensitivity of dorsal striatal synapses to the activation of cannabinoid CB1 receptors was investigated in the subpopulations of spontaneously avoiding, balancing or approaching mice. Avoiding animals displayed decreased control of CB1 receptors on GABAergic striatal transmission and in parallel increase of behavioral inhibition. Conversely, approaching animals exhibited increased control of CB1 receptors and in parallel increase of explorative behavior. Balancing animals reacted with balanced responses between approach and avoidance patterns. Treating avoiding animals with URB597 (fatty acid amide hydrolase inhibitor or approaching animals with AM251 (CB1 receptor inverse agonist reverted their respective behavioral and electrophysiological patterns. Therefore, enhanced or reduced CB1-mediated control on dorsal striatal transmission represents the synaptic hallmark of the approach or avoidance behavior, respectively. Thus, the opposite spontaneous responses to conflicting stimuli are modulated by a different involvement of endocannabinoid signaling of dorsal striatal neurons in the range of temperamental traits related to individual differences.

  20. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation.

    Science.gov (United States)

    Stanley, Christopher P; Hind, William H; Tufarelli, Cristina; O'Sullivan, Saoirse E

    2015-09-01

    The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼ 40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  1. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yuting Tang

    Full Text Available An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week or control ASO Isis-141923 (25 mg/kg/week via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05. Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05. Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.

  2. The In Vivo Effects of the CB1-Positive Allosteric Modulator GAT229 on Intraocular Pressure in Ocular Normotensive and Hypertensive Mice.

    Science.gov (United States)

    Cairns, Elizabeth A; Szczesniak, Anna-Maria; Straiker, Alex J; Kulkarni, Pushkar M; Pertwee, Roger G; Thakur, Ganesh A; Baldridge, William H; Kelly, Melanie E M

    2017-10-01

    Orthosteric cannabinoid receptor 1 (CB 1 ) activation leads to decreases in intraocular pressure (IOP). However, use of orthosteric CB 1 agonists chronically has several disadvantages, limiting their usefulness as clinically relevant drugs. Allosteric modulators interact with topographically distinct sites to orthosteric ligands and may be useful to circumvent some of these disadvantages. The purpose of this study was to investigate the effects of the novel CB 1 -positive allosteric modulator (PAM) GAT229 on IOP. IOP was measured using rebound tonometry in anesthetized normotensive C57Bl/6 mice and in a genetic model of ocular hypertension [nose, eyes, ears (nee) mice] before drug administration, and at 1, 6, and 12 h thereafter. In normotensive mice, topical administration of 5 μL GAT229 alone at either 0.2% or 2% did not reduce IOP. However, a subthreshold dose (0.25%) of the nonselective orthosteric CB 1 agonist WIN 55,212-2, when combined with 0.2% GAT229, significantly reduced IOP compared with vehicle at 6 and 12 h. Similarly, combination of subthreshold Δ 9 -tetrahydrocannabinol (a nonselective orthosteric CB 1 agonist; 1 mg/kg) with topical 0.2% GAT229 produced IOP lowering at 6 h. In nee mice, administration of topical 0.2% GAT229 or 10 mg/kg GAT229 alone was sufficient to lower IOP at 6 and 12 h, and 12 h, respectively. The CB 1 PAM GAT229 reduces IOP in ocular hypertensive mice and enhanced CB 1 -mediated IOP reduction when combined with subthreshold CB 1 orthosteric ligands in normotensive mice. Administration of CB 1 PAMs may provide a novel approach to reduce IOP with fewer of the disadvantages associated with orthosteric CB 1 activation.

  3. Perspectives of CB1 Antagonist in Treatment of Obesity: Experience of RIO-Asia

    Directory of Open Access Journals (Sweden)

    Changyu Pan

    2011-01-01

    Full Text Available Rimonabant, a selective cannabinoid-1 (CB1 receptor antagonist, has been shown to reduce weight and enhance improvements in cardiometabolic risk parameters in Western populations. This study assessed these effects of rimonabant in Asian population. A total of 643 patients (BMI 25 kg/m2 or greater without diabetes from China, Republic of Korea, and Taiwan were prescribed a hypocaloric diet (600 kcal/day deficit and randomized to rimonabant 20 mg (n=318 or placebo (n=325 for 9months. The primary efficacy variable was weight change from baseline after 9 months of treatment. Results showed that rimonabant group lost more weight than placebo, (LSM ± SEM of −4.7 ± 0.3 kg vs. −1.7 ± 0.3 kg, P<.0001. The 5% and 10% responders were 2 or 3 folds more in the rimonabant group (53.0% vs. 20.0% and 21.5% vs. 5.7%, resp. (P<.0001. Rimonabant also significantly increased HDL-cholesterol, decreased triglycerides and waist circumference,by 7.1%, 10.6%, and 2.8 cm, respectively (P<.0001. This study confirmed the comparable efficacy and safety profile of rimonabant in Asian population to Caucasians. Owing to the recent suspension of all the CB1 antagonists off the pharmaceutical market for weight reduction in Europe and USA, a perspective in drug discovery for intervening peripheral CB1 receptor in the management of obesity is discussed.

  4. Cannabis Users Show Enhanced Expression of CB1-5HT2AReceptor Heteromers in Olfactory Neuroepithelium Cells.

    Science.gov (United States)

    Galindo, Liliana; Moreno, Estefanía; López-Armenta, Fernando; Guinart, Daniel; Cuenca-Royo, Aida; Izquierdo-Serra, Mercè; Xicota, Laura; Fernandez, Cristina; Menoyo, Esther; Fernández-Fernández, José M; Benítez-King, Gloria; Canela, Enric I; Casadó, Vicent; Pérez, Víctor; de la Torre, Rafael; Robledo, Patricia

    2018-01-02

    Cannabinoid CB1 receptors (CB 1 R) and serotonergic 2A receptors (5HT 2A R) form heteromers in the brain of mice where they mediate the cognitive deficits produced by delta-9-tetrahydrocannabinol. However, it is still unknown whether the expression of this heterodimer is modulated by chronic cannabis use in humans. In this study, we investigated the expression levels and functionality of CB 1 R-5HT 2A R heteromers in human olfactory neuroepithelium (ON) cells of cannabis users and control subjects, and determined their molecular characteristics through adenylate cyclase and the ERK 1/2 pathway signaling studies. We also assessed whether heteromer expression levels correlated with cannabis consumption and cognitive performance in neuropsychological tests. ON cells from controls and cannabis users expressed neuronal markers such as βIII-tubulin and nestin, displayed similar expression levels of genes related to cellular self-renewal, stem cell differentiation, and generation of neural crest cells, and showed comparable Na + currents in patch clamp recordings. Interestingly, CB 1 R-5HT 2A R heteromer expression was significantly increased in cannabis users and positively correlated with the amount of cannabis consumed, and negatively with age of onset of cannabis use. In addition, a negative correlation was found between heteromer expression levels and attention and working memory performance in cannabis users and control subjects. Our findings suggest that cannabis consumption regulates the formation of CB 1 R-5HT 2A R heteromers, and may have a key role in cognitive processing. These heterodimers could be potential new targets to develop treatment alternatives for cognitive impairments.

  5. CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice

    Directory of Open Access Journals (Sweden)

    Shivakumar Subbanna

    2018-02-01

    Full Text Available Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD. However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7 mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2 levels. The developmental expression of MeCP2 in mice is closely correlated with synaptogenesis and neuronal maturation. It was shown that ethanol treatment of P7 mice enhanced Mecp2 mRNA levels but reduced protein levels. The genetic deletion of CB1R prevented, and administration of a CB1R antagonist before ethanol treatment of P7 mice inhibited caspase-3 activation. Additionally, it reversed the loss of MeCP2 protein, cAMP response element binding protein (CREB activation, and activity-regulated cytoskeleton-associated protein (Arc expression. The inhibition of caspase-3 activity prior to ethanol administration prevented ethanol-induced loss of MeCP2, CREB activation, epigenetic regulation of Arc expression, long-term potentiation (LTP, spatial memory deficits and activity-dependent impairment of several signaling molecules, including MeCP2, in adult mice. Collectively, these results reveal that the ethanol-induced CB1R-mediated activation of caspase-3 degrades the MeCP2 protein in the P7 mouse brain and causes long-lasting neurobehavioral deficits in adult mice. This CB1R-mediated instability of MeCP2 during active synaptic maturation may disrupt synaptic circuit maturation and lead to neurobehavioral abnormalities, as observed in this animal model of FASD.

  6. The future of endocannabinoid-oriented clinical research after CB1 antagonists

    Science.gov (United States)

    Le Foll, Bernard; Gorelick, David A.; Goldberg, Steven R.

    2009-01-01

    Great interest has been shown by the medical community and the public in the cannabinoid CB1 receptor antagonists, such as rimonabant, for treatment of obesity, metabolic syndrome, and possibly drug addiction. This novel class of drug has therapeutic potential for other disorders, as the endocannabinoid system is involved in various health conditions. However, rimonabant, the first clinically available member of this class of drugs, has been linked to increased risk of anxiety, depression, and suicidality. Due to those risks, the European Medicines Agency (EMEA) called for its withdrawal from the market in October, 2008. Shortly after this decision, several pharmaceutical companies (Sanofi-aventis, Merck, Pfizer, Solvay) announced they would stop further clinical research on this class of drug. Here, we provide an overview of those events and make several suggestions for continuing such clinical research, while safeguarding the safety of patients and clinical trial subjects. PMID:19300982

  7. Reduction of opioid dependence by the CB(1) antagonist SR141716A in mice: evaluation of the interest in pharmacotherapy of opioid addiction.

    Science.gov (United States)

    Mas-Nieto, M; Pommier, B; Tzavara, E T; Caneparo, A; Da Nascimento, S; Le Fur, G; Roques, B P; Noble, F

    2001-04-01

    Several compounds, mainly opioid agonists such as methadone, are currently used for long term medication of heroin addicts. Nevertheless, these maintenance treatments have the disadvantage to induce a dependence to another opiate. As interactions between opioid and cannabinoid systems have been demonstrated, the ability of the CB(1) antagonist, SR141716A to reduce morphine-induced addiction was investigated. The effects of SR141716A on the rewarding responses of morphine were evaluated in the place conditioning paradigm. No significant conditioned preference or aversion were observed after repeated treatment with the CB(1) antagonist alone. However, SR141716A was able to antagonize the acquisition of morphine-induced conditioned place preference. SR141716A was co-administered with morphine for 5 days, and the withdrawal syndrome was precipitated by naloxone administration. A reduction in the incidence of two main signs of abstinence: wet dog shakes and jumping was observed while the other were not significantly modified. In contrast, an acute injection of the CB(1) antagonist just before naloxone administration was unable to modify the incidence of the behavioural manifestations of the withdrawal, suggesting that only chronic blockade of CB(1) receptors is able to reduce morphine-induced physical dependence. Several biochemical mechanisms could explain the reduction of opioid dependence by CB(1) antagonists. Whatever the hypotheses, this study supports the reported interaction between the endogenous cannabinoid and opioid systems, and suggests that SR 141716A warrants further investigations for a possible use in opioid addiction.

  8. CB1 blockade potentiates down-regulation of lipogenic gene expression in perirenal adipose tissue in high carbohydrate diet-induced obesity.

    Science.gov (United States)

    Vida, Margarita; Rivera, Patricia; Gavito, Ana Luisa; Suárez, Juan; Pavón, Francisco Javier; Arrabal, Sergio; Romero-Cuevas, Miguel; Bautista, Dolores; Martínez, Ana; de Fonseca, Fernando Rodríguez; Serrano, Antonia; Baixeras, Elena

    2014-01-01

    De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in

  9. CB1 blockade potentiates down-regulation of lipogenic gene expression in perirenal adipose tissue in high carbohydrate diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Margarita Vida

    Full Text Available De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR, sterol-response element binding protein (SREBP and carbohydrate-responsive-element-binding protein (ChREBP. We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT of rats fed a high-carbohydrate diet (HCHD or a high-fat diet (HFD. Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p, which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and

  10. Cannabidiol upregulates melanogenesis through CB1 dependent pathway by activating p38 MAPK and p42/44 MAPK.

    Science.gov (United States)

    Hwang, Young Sun; Kim, Youn-Jung; Kim, Mi Ok; Kang, Mingyeong; Oh, Sae Woong; Nho, Youn Hwa; Park, See-Hyoung; Lee, Jongsung

    2017-08-01

    Melanogenesis plays a critical role in the protection of skin against external stresses such as ultraviolet irradiation and oxidative stressors. This study was aimed to investigate the effects of cannabidiol on melanogenesis and its mechanisms of action in human epidermal melanocytes. We found that cannabidiol increased both melanin content and tyrosinase activity. The mRNA levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP) 1, and TRP2 were increased following cannabidiol treatment. Likewise, cannabidiol increased the protein levels of MITF, TRP 1, TRP 2, and tyrosinase. Mechanistically, we found that cannabidiol regulated melanogenesis by upregulating MITF through phosphorylation of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, independent of cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. In addition, the melanogenic effect of cannabidiol was found to be mediated by cannabinoid CB 1 receptor, not by CB 2 receptor. Taken together, these findings indicate that cannabidiol-induced melanogenesis is cannabinoid CB 1 receptor-dependent, and cannabidiol induces melanogenesis through increasing MITF gene expression which is mediated by activation of p38 MAPK and p42/44 MAPK. Our results suggest that cannabidiol might be useful as a protective agent against external stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Neural effects of cannabinoid CB1 neutral antagonist tetrahydrocannabivarin on food reward and aversion in healthy volunteers.

    Science.gov (United States)

    Tudge, Luke; Williams, Clare; Cowen, Philip J; McCabe, Ciara

    2014-12-25

    Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  12. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana.

    Science.gov (United States)

    Friend, Lindsey; Weed, Jared; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac; Edwards, Jeffrey G

    2017-11-08

    The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ 9 -tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ 9 -tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ 9 -tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ 9 -tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ 9 -tetrahydrocannabinol use. Copyright © 2017 the

  13. Increase in hypothalamic AMPK phosphorylation induced by prolonged exposure to LPS involves ghrelin and CB1R signaling.

    Science.gov (United States)

    Rivas, Priscila M S; Vechiato, Fernanda M V; Borges, Beatriz C; Rorato, Rodrigo; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2017-07-01

    Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100μg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/μl in 5μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Using proteomics to discover novel biomarkers for fatty liver development and response to CB1R antagonist treatment in an obese mouse model.

    Science.gov (United States)

    Chen, Chin-Chang; Lee, Tzung-Yan; Kwok, Ching-Fai; Hsu, Yung-Pei; Shih, Kuang-Chung; Lin, Yan-Jie; Ho, Low-Tone

    2017-01-01

    Over activity of cannabinoid receptor type 1 (CB1R) plays a key role in increasing the incidence of obesity-induced non-alcoholic fatty liver disease. Tissue proteome analysis has been applied to investigate the bioinformatics regarding the mode of action and therapeutic mechanism. The aim of this study was to explore the potential pathways altered with CB1R in obesity-induced fatty liver. Male C57BL/6 mice were fed either a standard chow diet (STD) or a high-fat diet (HFD) with or without 1-week treatment of CB1R inverse agonist AM251 at 5 mg/kg. Then, liver tissues were harvested for 2DE analysis and protein profiles were identified by using MALDI-MS. Results showed that eight of significantly altered protein spots at the level of changes > twofold were overlapped among the three groups, naming major urinary protein 1, ATP synthase subunit β, glucosamine-fructose-6-phosphate aminotransferase 1, zine finger protein 2, s-adenosylmethionine synthase isoform type-1, isocitrate dehydrogenase subunit α, epoxide hydrolase 2 and 60S acidic ribosomal protein P0. These identified proteins were involved in glucose/lipid metabolic process, xenobiotic metabolic system, and ATP synthesized process in mitochondria. Based on the findings, we speculated that CB1R blockade might exert its anti-metabolic disorder effect via improvement of mitochondrial function in hepatic steatosis in HFD condition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Engineered regulation of lysozyme by the SH3-CB1 binding interaction.

    Science.gov (United States)

    Pham, Elizabeth; Truong, Kevin

    2012-06-01

    The ability to design proteins with desired properties by using protein structural information will allow us to create high-value therapeutic and diagnostic products. Using the protein structures of lambda lysozyme and the SH3 domain of human Crk, we designed a synthetic protein switch that controls the activity of lysozyme by sterically hindering its active cleft through the binding of SH3 to its CB1 peptide-binding partner. First, several fusion protein designs with lysozyme and CB1 were modeled to determine the one with greatest steric effect in the presence of SH3. Next, the selected fusion protein was created and tested in vitro. In the absence of SH3, the lysozyme-CB1 fusion protein functioned normally. In the presence of SH3, the lysozyme activity was inhibited and with the addition of excess CB1 peptides to compete for SH3 binding, the lysozyme activity was restored. Lastly, this structure-based strategy can be used to engineer synthetic regulation by peptide-domain-binding interfaces into a variety of proteins.

  16. Role of the amygdala GABA-A receptors in ACPA-induced deficits during conditioned fear learning.

    Science.gov (United States)

    Nasehi, Mohammad; Roghani, Farnaz; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-05-01

    The basolateral amygdala (BLA) is a key structure for the emotional processing and storage of memories associated with emotional events, especially fear. On the other hand, endocannabinoids and CB1 receptors play a key role in learning and memory partly through long-term synaptic depression of GABAergic synapses in the BLA. The aim of this study was to explore the effects of GABA-A receptor agonist and antagonist in the fear-related memory acquisition deficits induced by ACPA (a selective CB1 cannabinoid receptor agonist). This study used context and tone fear conditioning paradigms to assess fear-related memory in male NMRI mice. Our results showed that the pre-training intraperitoneal administration of ACPA (0.5mg/kg) or (0.1 and 0.5mg/kg) decreased the percentage of freezing time in the contextual and tone fear conditioning, respectively. This indicated an impaired context- or tone-dependent fear memory acquisition. Moreover, the pre-training intra-BLA microinjection of GABA-A receptor agonist, muscimol, at 0.05 and 0.5μg/mouse impaired context-dependent fear memory, while the same doses of GABA-A antagonist, bicuculline, impaired tone-dependent fear memory. However, a subthreshold dose of muscimol or bicuculline increased the effect of ACPA at 0.1 and 0.5 or 0.05mg/kg on context- or tone-dependent fear memory, respectively. In addition, bicuculline at the lower dose increased the ACPA response on locomotor activity compared to its respective group. Such findings highlighted an interaction between BLA GABAergic and cannabinoidergic systems during the acquisition phase of conditioned fear memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effects of the cannabinoid CB1agonist ACEA on salicylate ototoxicity, hyperacusis and tinnitus in guinea pigs.

    Science.gov (United States)

    Berger, Joel I; Coomber, Ben; Hill, Samantha; Alexander, Steve P H; Owen, William; Palmer, Alan R; Wallace, Mark N

    2017-12-01

    Cannabinoids have been suggested as a therapeutic target for a variety of brain disorders. Despite the presence of their receptors throughout the auditory system, little is known about how cannabinoids affect auditory function. We sought to determine whether administration of arachidonyl-2'-chloroethylamide (ACEA), a highly-selective CB 1 agonist, could attenuate a variety of auditory effects caused by prior administration of salicylate, and potentially treat tinnitus. We recorded cortical resting-state activity, auditory-evoked cortical activity and auditory brainstem responses (ABRs), from chronically-implanted awake guinea pigs, before and after salicylate + ACEA. Salicylate-induced reductions in click-evoked ABR amplitudes were smaller in the presence of ACEA, suggesting that the ototoxic effects of salicylate were less severe. ACEA also abolished salicylate-induced changes in cortical alpha band (6-10 Hz) oscillatory activity. However, salicylate-induced increases in cortical evoked activity (suggestive of the presence of hyperacusis) were still present with salicylate + ACEA. ACEA administered alone did not induce significant changes in either ABR amplitudes or oscillatory activity, but did increase cortical evoked potentials. Furthermore, in two separate groups of non-implanted animals, we found no evidence that ACEA could reverse behavioural identification of salicylate- or noise-induced tinnitus. Together, these data suggest that while ACEA may be potentially otoprotective, selective CB 1 agonists are not effective in diminishing the presence of tinnitus or hyperacusis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Diphenyl Purine Derivatives as Peripherally Selective Cannabinoid Receptor 1 Antagonists

    Science.gov (United States)

    Fulp, Alan; Bortoff, Katherine; Zhang, Yanan; Seltzman, Herbert; Mathews, James; Snyder, Rodney; Fennell, Tim; Maitra, Rangan

    2015-01-01

    Cannabinoid receptor 1 (CB1) antagonists are potentially useful for the treatment of several diseases. However, clinical development of several CB1 antagonists was halted due to central nervous system (CNS)-related side effects including depression and suicidal ideation in some users. Recently, studies have indicated that selective regulation of CB1 receptors in the periphery is a viable strategy for treating several important disorders. Past efforts to develop peripherally selective antagonists of CB1 have largely targeted rimonabant, an inverse agonist of CB1. Reported here are our efforts toward developing a peripherally selective CB1 antagonist based on the otenabant scaffold. Even though otenabant penetrates the CNS, it is unique among CB1 antagonists that have been clinically tested because it has properties that are normally associated with peripherally selective compounds. Our efforts have resulted in an orally absorbed compound that is a potent and selective CB1 antagonist with limited penetration into the CNS. PMID:23098108

  19. Prevalence of bla NDM, bla PER, bla VEB, bla IMP, and bla VIM Genes among Acinetobacter baumannii Isolated from Two Hospitals of Tehran, Iran.

    Science.gov (United States)

    Fallah, Fatemeh; Noori, Maryam; Hashemi, Ali; Goudarzi, Hossein; Karimi, Abdollah; Erfanimanesh, Soroor; Alimehr, Shadi

    2014-01-01

    Background and Objectives. The aim of this study was to determine the frequency of bla NDM, bla PER, bla VEB, bla IMP, and bla VIM type genes among A. baumannii isolates from hospitalized patients in two hospitals in Tehran, Iran. Patients and Methods. Antibiotic susceptibility tests were performed by Kirby-Bauer disc diffusion and Broth microdilution methods. The frequency of MBL (metallo-beta-lactamase) and ESBL (extended-spectrum-beta-lactamase) producers was evaluated by CDDT. The β -lactamases genes were detected by PCR and sequencing methods. Results. The resistance of A. baumannii isolates against tested antibiotics was as follows: 103 (95.4%) to ceftazidime, 108 (100%) to cefotaxime, 105 (95.7%) to cefepime, 99 (91.7%) to imipenem, 99 (91.7%) to meropenem, 87 (80.6%) to amikacin, 105 (97.2%) to piperacillin, 100 (92.6%) to ciprofloxacin, 103 (95.4%) to piperacillin/tazobactam, 44 (40.7%) to gentamicin, 106 (98.1%) to ampicillin/sulbactam, 106 (98.1%) to co-trimoxazole, 87 (80.6%) to tetracycline, and 1 (1.8%) to colistin. Using combined disk diffusion test, 91 (84.2%) and 86 (86.86%) were ESBL and MBL producers, respectively. The prevalence of bla PER-1, bla VEB-1, bla IMP-1, and bla VIM-1 genes was 71 (78.03%), 36 (39.5%), 3 (3.48%), and 15 (17.44%), respectively. Conclusions. The prevalence of ESBLs and MBLs-producing A. baumannii strains detected in this study is a major concern and highlights the need of infection control measures.

  20. Dose-dependent effects of celecoxib on CB-1 agonist-induced antinociception in the mice

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zarrindast

    2009-04-01

    Full Text Available "nObjective: Endocannabinoid produce analgesia that is comparable which of opioids. The mechanism of antinociceptive effects of (∆ - 9 tetrahydrocannabinol (THC is suggested to be through cyclooxygenase (COX pathway. In the present work, the effect of two extreme dose ranges of celecoxib (mg/kg and ng/kg, a cyclooxygenase-2 (COX-2 antagonist, on arachidonylcyclopropylamide (ACPA, a selective CB1 agonist induced antinociception in mice was examined. "nMethods: We have investigated the interaction between celecoxib, at the doses of mg/kg (50, 100, 200 and 400 i.p.  and ultra low dose (ULD (25 and 50 ng/kg, i.p., on the antinociceptive effect of intracerebroventricular (i.c.v. administration of ACPA (0.004, 0.0625 and 1 μg/mice, using formalin test in mice. "nResults: I.C.V. administration of ACPA induced antinociception. Intraperitoneal administration of celecoxib (mg/kg and its ULD (ng/kg attenuated and potentiated, ACPA antinociceptive effects, respectively. "nConclusion: It is concluded that the mg/kg doses of COX-2 antagonist showed opposite effects compare to the ultra-low dose of the drug.

  1. Emergence of Klebsiella pneumoniae carrying bla(VIM) and bla(KPC) genes.

    Science.gov (United States)

    Meletis, G; Tzampaz, E; Protonotariou, E; Sofianou, D

    2010-04-01

    A Klebsiella pneumoniae clinical isolate resistant to imipenem was recovered from a wound sample. The patient, a 57-year-old man, underwent a surgical resection of small bowel and sigmoid colon and was treated with multiple courses of antimicrobials. PCR analysis revealed that the clinical isolate was carrying simultaneously bla(VIM-1), bla(KPC-2), bla(SHV) and bla(TEM) genes. The concomitant presence of these genes is alarming and poses therapeutic as well as infection control problems.

  2. DHPG Activation of Group 1 mGluRs in BLA Enhances Fear Conditioning

    Science.gov (United States)

    Rudy, Jerry W.; Matus-Amat, Patricia

    2009-01-01

    Group 1 metabotropic glutamate receptors are known to play an important role in both synaptic plasticity and memory. We show that activating these receptors prior to fear conditioning by infusing the group 1 mGluR agonist, (R.S.)-3,5-dihydroxyphenylglycine (DHPG), into the basolateral region of the amygdala (BLA) of adult Sprague-Dawley rats…

  3. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis.

    Science.gov (United States)

    Janero, David R; Makriyannis, Alexandros

    2009-03-01

    The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimonabant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant's market withdrawal in the European Union and suspension of rimonabant's, taranabant's, and otenabant's ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued

  4. Multidrug resistance genes, including bla(KPC) and bla(CTX)-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil.

    Science.gov (United States)

    Cabral, Adriane Borges; Melo, Rita de Cássia de Andrade; Maciel, Maria Amélia Vieira; Lopes, Ana Catarina Souza

    2012-10-01

    The prevalence of cephalosporins and carbapenem-resistant Klebsiella pneumoniae strains is rising in Brazil, with potential serious consequences in terms of patients' outcomes and general care. This study characterized 24 clinical isolates of K. pneumoniae from two hospitals in Recife, Brazil, through the antimicrobial susceptibility profile, analyses of β-lactamase genes (bla(TEM), bla(SHV),bla(CTX-M), bla(KPC), bla(VIM), bla(IMP), and bla(SPM), plasmidial profile and ERIC-PCR (Enterobacterial repetitive intergenic consensus-polymerase chain reaction). ERIC-PCR and plasmidial analysis grouped the isolates in 17 and 19 patterns, respectively. Six isolates from one hospital presented the same pattern by ERIC-PCR, indicating clonal dissemination. All isolates presented bla(SHV), 62.5% presented bla(CTX)-M-2, 29% bla(TEM), and 41.7% bla(KPC). Metallo-β-lactamase genes bla(VIM), bla(IMP), and bla(SPM) not detected. Eleven isolates were identified carrying at least 3 β-lactamase studied genes, and 2 isolates carried bla(SHV), bla(TEM), bla (CTX-M-2) and bla(KPC) simultaneously. The accumulation of resistance genes in some strains, observed in this study, imposes limitations in the therapeutic options available for the treatment of infections caused by K. pneumoniae in Recife, Brazil. These results should alert the Brazilian medical authorities to establish rigorous methods for more efficiently control the dissemination of antimicrobial resistance genes in the hospital environment.

  5. Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists

    Science.gov (United States)

    Pertwee, R.G.

    2010-01-01

    It is widely accepted that non-endogenous compounds that target CB1 and/or CB2 receptors possess therapeutic potential for the clinical management of an ever growing number of disorders. Just a few of these disorders are already treated with Δ9-tetrahydrocannabinol or nabilone, both CB1/CB2 receptor agonists, and there is now considerable interest in expanding the clinical applications of such agonists and also in exploiting CB2-selective agonists, peripherally restricted CB1/CB2 receptor agonists and CB1/CB2 antagonists and inverse agonists as medicines. Already, numerous cannabinoid receptor ligands have been developed and their interactions with CB1 and CB2 receptors well characterized. This review describes what is currently known about the ability of such compounds to bind to, activate, inhibit or block non-CB1, non-CB2 G protein-coupled receptors such as GPR55, transmitter gated channels, ion channels and nuclear receptors in an orthosteric or allosteric manner. It begins with a brief description of how each of these ligands interacts with CB1 and/or CB2 receptors. PMID:20166927

  6. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1 causing infections in Brazilian tertiary-care hospital

    Directory of Open Access Journals (Sweden)

    Polotto Milena

    2012-08-01

    Full Text Available Abstract Background Nosocomial infections caused by Pseudomonas aeruginosa presenting resistance to beta-lactam drugs are one of the most challenging targets for antimicrobial therapy, leading to substantial increase in mortality rates in hospitals worldwide. In this context, P. aeruginosa harboring acquired mechanisms of resistance, such as production of metallo-beta-lactamase (MBLs and extended-spectrum beta-lactamases (ESBLs have the highest clinical impact. Hence, this study was designed to investigate the presence of genes codifying for MBLs and ESBLs among carbapenem resistant P. aeruginosa isolated in a Brazilian 720-bed teaching tertiary care hospital. Methods Fifty-six carbapenem-resistant P. aeruginosa strains were evaluated for the presence of MBL and ESBL genes. Strains presenting MBL and/or ESBL genes were submitted to pulsed-field gel electrophoresis for genetic similarity evaluation. Results Despite the carbapenem resistance, genes for MBLs (blaSPM-1 or blaIMP-1 were detected in only 26.7% of isolates. Genes encoding ESBLs were detected in 23.2% of isolates. The blaCTX-M-2 was the most prevalent ESBL gene (19.6%, followed by blaGES-1 and blaGES-5 detected in one isolate each. In all isolates presenting MBL phenotype by double-disc synergy test (DDST, the blaSPM-1 or blaIMP-1 genes were detected. In addition, blaIMP-1 was also detected in three isolates which did not display any MBL phenotype. These isolates also presented the blaCTX-M-2 gene. The co-existence of blaCTX-M-2 with blaIMP-1 is presently reported for the first time, as like as co-existence of blaGES-1 with blaIMP-1. Conclusions In this study MBLs production was not the major mechanism of resistance to carbapenems, suggesting the occurrence of multidrug efflux pumps, reduction in porin channels and production of other beta-lactamases. The detection of blaCTX-M-2,blaGES-1 and blaGES-5 reflects the recent emergence of ESBLs among antimicrobial resistant P. aeruginosa and

  7. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1 causing infections in Brazilian tertiary-care hospital

    Science.gov (United States)

    2012-01-01

    Background Nosocomial infections caused by Pseudomonas aeruginosa presenting resistance to beta-lactam drugs are one of the most challenging targets for antimicrobial therapy, leading to substantial increase in mortality rates in hospitals worldwide. In this context, P. aeruginosa harboring acquired mechanisms of resistance, such as production of metallo-beta-lactamase (MBLs) and extended-spectrum beta-lactamases (ESBLs) have the highest clinical impact. Hence, this study was designed to investigate the presence of genes codifying for MBLs and ESBLs among carbapenem resistant P. aeruginosa isolated in a Brazilian 720-bed teaching tertiary care hospital. Methods Fifty-six carbapenem-resistant P. aeruginosa strains were evaluated for the presence of MBL and ESBL genes. Strains presenting MBL and/or ESBL genes were submitted to pulsed-field gel electrophoresis for genetic similarity evaluation. Results Despite the carbapenem resistance, genes for MBLs (blaSPM-1 or blaIMP-1) were detected in only 26.7% of isolates. Genes encoding ESBLs were detected in 23.2% of isolates. The blaCTX-M-2 was the most prevalent ESBL gene (19.6%), followed by blaGES-1 and blaGES-5 detected in one isolate each. In all isolates presenting MBL phenotype by double-disc synergy test (DDST), the blaSPM-1 or blaIMP-1 genes were detected. In addition, blaIMP-1 was also detected in three isolates which did not display any MBL phenotype. These isolates also presented the blaCTX-M-2 gene. The co-existence of blaCTX-M-2 with blaIMP-1 is presently reported for the first time, as like as co-existence of blaGES-1 with blaIMP-1. Conclusions In this study MBLs production was not the major mechanism of resistance to carbapenems, suggesting the occurrence of multidrug efflux pumps, reduction in porin channels and production of other beta-lactamases. The detection of blaCTX-M-2,blaGES-1 and blaGES-5 reflects the recent emergence of ESBLs among antimicrobial resistant P. aeruginosa and the extraordinary

  8. Cannabinoid CB1 receptor agonists do not decrease, but may increase, acoustic trauma-induced tinnitus in rats

    Directory of Open Access Journals (Sweden)

    Yiwen eZheng

    2015-03-01

    Full Text Available Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In the present study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC and cannabidiol (CBD, delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: 1 sham (i.e. no acoustic trauma with vehicle treatment; 2 sham with drug treatment (i.e. delta-9-THC + CBD; 3 acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and 4 acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioural testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage.

  9. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum.

    Science.gov (United States)

    Oleson, Erik B; Beckert, Michael V; Morra, Joshua T; Lansink, Carien S; Cachope, Roger; Abdullah, Rehab A; Loriaux, Amy L; Schetters, Dustin; Pattij, Tommy; Roitman, Mitchell F; Lichtman, Aron H; Cheer, Joseph F

    2012-01-26

    Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high-frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also results in the release of endocannabinoids from dopamine cell bodies. In this context, endocannabinoids are thought to regulate reward seeking by modulating dopamine signaling, although a direct link has never been demonstrated. To test this, we pharmacologically manipulated endocannabinoid neurotransmission in the VTA while measuring transient changes in dopamine concentration in the NAc during reward seeking. Disrupting endocannabinoid signaling dramatically reduced, whereas augmenting levels of the endocannabinoid 2-arachidonoylglycerol (2AG) increased, cue-evoked dopamine concentrations and reward seeking. These data suggest that 2AG in the VTA regulates reward seeking by sculpting ethologically relevant patterns of dopamine release during reward-directed behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum.

    NARCIS (Netherlands)

    Oleson, E.B.; Beckert, M.V.; Morra, J.T.; Lansink, C.S.; Cachope, R.; Abdullah, R.A.; Loriaux, A.L.; Schetters, D.; Pattij, T.; Roitman, M.F.; Lichtman, A.H.; Cheer, J.F.

    2012-01-01

    Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high-frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also

  11. Endocannabinoids Shape Accumbal Encoding of Cue-Motivated Behavior via CB1 Receptor Activation in the Ventral Tegmentum

    NARCIS (Netherlands)

    Oleson, E.B.; Beckert, M.V.; Morra, J.T.; Lansink, C.S.; Cachope, R.; Abdullah, R.A.; Loriaux, A.L.; Schetters, D.; Pattij, T.; Roitman, M.F.; Lichtman, A.H.; Cheer, J.F.

    2012-01-01

    Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high-frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also

  12. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function

    NARCIS (Netherlands)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CBI

  13. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands

    DEFF Research Database (Denmark)

    Pertwee, R G; Howlett, A C; Abood, M E

    2010-01-01

    There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid ¿(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor...

  14. Leptin Receptor Deficiency is Associated With Upregulation of Cannabinoid 1 Receptors in Limbic Brain Regions

    Science.gov (United States)

    THANOS, PANAYOTIS K.; RAMALHETE, ROBERTO C.; MICHAELIDES, MICHAEL; PIYIS, YIANNI K.; WANG, GENE-JACK; VOLKOW, NORA D.

    2009-01-01

    Leptin receptor dysfunction results in overeating and obesity. Leptin regulates hypothalamic signaling that underlies the motivation to hyperphagia, but the interaction between leptin and cannabinoid signaling is poorly understood. We evaluated the role of cannabinoid 1 receptors (CB1R) in overeating and the effects of food deprivation on CB1R in the brain. One-month-old Zucker rats were divided into unrestricted and restricted (fed 70% of unrestricted rats) diet groups and maintained until adulthood (4 months). Levels of relative binding sites of CB1R (CB1R binding levels) were assessed using [3H] SR141716A in vitro autoradiography. These levels were higher (except cerebellum and hypothalamus) at 4 months than at 1 month of age. One month CB1R binding levels for most brain regions did not differ between Ob and Lean (Le) rats (except in frontal and cingulate cortices in Le and in the hypothalamus in Ob). Four month Ob rats had higher CB1R binding levels than Le in most brain regions and food restriction was associated with higher CB1R levels in all brain regions in Ob, but not in Le rats. CB1R binding levels increased between adolescence and young adulthood which we believe was influenced by leptin and food availability. The high levels of CB1R in Ob rats suggest that leptin's inhibition of food-intake is in part mediated by downregulation of CB1R and that leptin interferes with CB1R upregulation under food-deprivation conditions. These results are consistent with prior findings showing increased levels of endogenous cannabinoids in the Ob rats corroborating the regulation of cannabinoid signaling by leptin. PMID:18563836

  15. Detection of blaNDM, blaDIM, blaIMP, blaVIM and blaCTX-M-15 beta-lactamase Genes among Pseudomonas aeruginosa and Acinetobacter baumannii Strains Isolated from Two Hospitals of Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Tahere Farajzadeh Alan

    2016-10-01

    Full Text Available Background: In this study, we evaluated the existence of blaNDM ,  blaDIM, blaIMP, blaVIM, blaCTX-M-15 beta-lactamase  genes among Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from hospitalized patients.Materials and Methods: From June 2013 to May 2014, thirty-four nonduplicate nonconsecutive isolates of A. baumannii and P. aeruginosa were isolated from blood, respiratory tract, wound, sputum and urine samples of patients from hospitalized in two hospitals in Tehran, Iran. Antibiotic susceptibility test was performed by Kirby-Bauer disc diffusion method according to CLSI guidelines. In this study, the frequency of MBL (metallo-beta-lactamase producers was evaluated by CDDT (Combined disk diffusion test and prevalence of blaNDM, blaDIM, blaIMP, blaVIM and blaCTX-M-15  genes were evaluated  by PCR and sequencing methods among P. aeruginosa and  A. baumannii strains isolated from  hospitalized patient of Tehran during 2013 -2014 years.Results: Of thirty-four non-fermenter isolates, 24 (70.58% P. aeruginosa and 10 (29.41% as A. baumannii were isolated and identified. High rate of resistance to common antibiotics were detected specially among A. baumannii isolates that showed 100% resistance to 4 of tested antibiotics. The CDDT results reveal that 4 (16.66% of the P. aeruginosa isolates and 1 (10% of the A.baumannii were positive for production of MBLs. The prevalence of blaCTX-M-15 gene among 10 A. baumannii isolates was 4 (40%, and for IMP-1, 2 (20%. The OXA-51 has been investigated and was detected in all A. baumannii isolates. Also the prevalence of blaCTX-M-15 gene among 24 P.aeruginosa isolates was 11 (45.83%, and for IMP-1, 3(12.5%. Fortunately, NDM, blaVIM, blaDIM gene was not detected in all isolates.Conclusion: The detection of MBL-producing A. baumannii and P. aeruginosa strains detected in this research is of great concern and highlights the need of infection control measures, including antimicrobial

  16. Occurrence of Enterobacter hormaechei carrying blaNDM-1 and blaKPC-2 in China.

    Science.gov (United States)

    Yang, Biwei; Feng, Yu; McNally, Alan; Zong, Zhiyong

    2018-02-01

    Three carbapenem-resistant clinical isolates of the Enterobacter cloacae complex (ECC) were recovered from different patients in a hospital. All 3 isolates carried 2 carbapenemase genes bla KPC-2 and bla NDM-1 . A study was performed to characterize their relatedness and to investigate possible links among the patients. Whole genome sequencing revealed that the isolates were Enterobacter hormaechei and belonged to ST177 of the ECC. There were 19-142 single nucleotide polymorphisms (SNPs) between the isolates, suggesting that the isolates were likely from a central reservoir, which might have existed for some time. bla KPC-2 and bla NDM-1 were carried on 2 different IncF-type plasmids in the isolates. The 3 bla NDM-1 -carrying plasmids were almost identical and were self-transmissible, while the bla KPC-2 -carrying plasmids were only transmissible in the presence of the bla NDM-1 -carrying plasmid. The source of and direct links among them were not identified, suggesting a hospital transmission of a common multidrug resistant strain. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Detection of multidrug-resistant Pseudomonas aeruginosa harboring bla GES-1 and bla GES-11 in Recife, Brazil

    Directory of Open Access Journals (Sweden)

    Valdemir Vicente da Silva Júnior

    Full Text Available Abstract INTRODUCTION: Pseudomonas aeruginosa, an important pathogen globally, presents several resistance mechanisms. This study aimed to investigate the presence of bla GES in clinical isolates of Pseudomonas aeruginosa obtained from various clinical specimens from patients admitted to three different hospitals in Recife, Brazil. The Guiana extended spectrum beta-lactamase (GES enzymes are responsible for conferring broad spectrum resistance to beta-lactam drugs, including the carbapenems. METHODS: A total of 100 carbapenem-resistant P. aeruginosa isolates underwent polymerase chain reaction (PCR testing to identify bla GES, bla KPC, bla SPM-1, bla IMP, and bla VIM. Additionally, PCR products positive for bla GES were sequenced. The clonal profiles of these same isolates were then determined by means of enterobacterial repetitive intergenic consensus (ERIC-PCR analysis. RESULTS: PCR analysis revealed that four isolates harbored bla GES; DNA sequencing showed that two harbored bla GES-1 and two bla GES-11. Beta-lactamase genes bla SPM-1, bla IMP, bla VIM, and bla KPC were investigated; none of these genes was detected. Automated susceptibility testing methods (Vitek®2, bioMérieux showed that the bla GES-1-positive isolates were only susceptible to polymyxin B. The patterns obtained with ERIC-PCR methods showed clonal relationship between the two isolates that harbored bla GES-11, whereas different clonal profiles were found in the isolates harboring bla GES-1. CONCLUSIONS: We detected the presence of bacterial isolates positive for two different variants of the enzyme GES in three different hospitals from Recife, Brazil. These enzymes have a great capacity for dissemination among Gram-negative bacteria and confer broad-spectrum resistance to beta-lactam antibiotics and to the carbapenems.

  18. Detection of multidrug-resistant Pseudomonas aeruginosa harboring bla GES-1 and bla GES-11 in Recife, Brazil.

    Science.gov (United States)

    Silva Júnior, Valdemir Vicente da; Ferreira, Laura Durão; Alves, Lílian Rodrigues; Cabral, Adriane Borges; Jácome, Paula Regina Luna de Araújo; Araújo, Paulo Sérgio Ramos de; Lopes, Ana Catarina de Souza; Maciel, Maria Amélia Vieira

    2017-01-01

    Pseudomonas aeruginosa, an important pathogen globally, presents several resistance mechanisms. This study aimed to investigate the presence of bla GES in clinical isolates of Pseudomonas aeruginosa obtained from various clinical specimens from patients admitted to three different hospitals in Recife, Brazil. The Guiana extended spectrum beta-lactamase (GES) enzymes are responsible for conferring broad spectrum resistance to beta-lactam drugs, including the carbapenems. A total of 100 carbapenem-resistant P. aeruginosa isolates underwent polymerase chain reaction (PCR) testing to identify bla GES, bla KPC, bla SPM-1, bla IMP, and bla VIM. Additionally, PCR products positive for bla GES were sequenced. The clonal profiles of these same isolates were then determined by means of enterobacterial repetitive intergenic consensus (ERIC)-PCR analysis. PCR analysis revealed that four isolates harbored bla GES; DNA sequencing showed that two harbored bla GES-1 and two bla GES-11. Beta-lactamase genes bla SPM-1, bla IMP, bla VIM, and bla KPC were investigated; none of these genes was detected. Automated susceptibility testing methods (Vitek®2, bioMérieux) showed that the bla GES-1-positive isolates were only susceptible to polymyxin B. The patterns obtained with ERIC-PCR methods showed clonal relationship between the two isolates that harbored bla GES-11, whereas different clonal profiles were found in the isolates harboring bla GES-1. We detected the presence of bacterial isolates positive for two different variants of the enzyme GES in three different hospitals from Recife, Brazil. These enzymes have a great capacity for dissemination among Gram-negative bacteria and confer broad-spectrum resistance to beta-lactam antibiotics and to the carbapenems.

  19. Rapid and simple identification of carbapenemase genes, blaNDM, blaOXA-48, blaVIM, blaIMP-14and blaKPCgroups, in Gram-negative bacilli by in-house loop-mediated isothermal amplification with hydroxynaphthol blue dye.

    Science.gov (United States)

    Srisrattakarn, Arpasiri; Lulitanond, Aroonlug; Wilailuckana, Chotechana; Charoensri, Nicha; Wonglakorn, Lumyai; Saenjamla, Pimjai; Chaimanee, Prajuab; Daduang, Jureerut; Chanawong, Aroonwadee

    2017-07-01

    Carbapenem-resistant Enterobacteriaceae isolates by carbapenemase production are being reported globally with increasing frequency, leading to limited therapeutic options. We therefore developed a loop-mediated isothermal amplification method with hydroxynaphthol blue dye (LAMP-HNB) for rapid confirmation of bla NDM , bla OXA-48 , bla VIM , bla IMP-14 and bla KPC groups. Sixty-two Enterobacteriaceae and Pseudomonas spp. isolates carrying various carbapenemase genes (28 bla NDM-1 , 9 bla IMP-14a , 2 bla IMP-48 , 1 bla IMP-1 , 1 bla IMP-4 , 1 bla IMP-9 , 1 bla IMP-15 , 4 bla VIM-2 , 1 bla VIM-1 , 1 bla IMP-14a & bla VIM-2 , 7 bla KPC-2 , 3 bla OXA-48 and 3 bla OXA-181 ) and 37 non-carbapenemase-producing Enterobacteriaceae isolates as confirmed by the PCR methods were included. Bacterial DNA was extracted by a simple boiling method. The LAMP-HNB method for each target gene was carried out using a set of six primers under isothermal condition at 65 °C in an ordinary water bath within 60 min and visual measurement of reaction by the change from violet to sky blue. This method had high efficiency (100% sensitivity and specificity) for identifying the bla NDM , bla OXA-48 , bla VIM , bla IMP-14 and bla KPC groups compared with the PCR method. The HNB is easy to prepare, inexpensive and provides reliable results. Therefore, this method could be used as a confirmatory carbapenemase test in routine laboratory or for epidemiological purposes.

  20. Dissemination of Pseudomonas aeruginosa producing bla IMP-1 and bla VIM-1 in Qazvin and Alborz educational hospitals, Iran.

    Science.gov (United States)

    Peymani, Amir; Naserpour Farivar, Taghi; Mohammadi Ghanbarlou, Mahdi; Najafipour, Reza

    2015-12-01

    Pseudomonas aeruginosa is a frequent opportunistic pathogen in health care associated infections that is highly resistant to the majority of β-lactams. The aims of this study were to access the antimicrobial susceptibility pattern of P. aeruginosa isolated from educational hospitals of Qazvin and Alborz provinces, to determine the prevalence of metallo-β-lactamase (MBL) among carbapenem non-susceptible isolates by combined disk (CD) method, and to detect the bla IMP, bla VIM, bla SIM, bla GIM, bla SPM and bla NDM-1-MBL genes. In this cross-sectional study, 300 P. aeruginosa isolates were collected from different clinical specimens in two provinces of Qazvin and Alborz hospitals, Iran. After identification of isolates by standard laboratory methods, antimicrobial susceptibility was done against 17 antibiotics according to clinical and laboratory standards institute (CLSI) guideline. CD method was carried out for detection of MBLs and the presence of bla IMP, bla VIM, bla SIM, bla GIM, bla NDM-1 and bla SPM-genes was further assessed by PCR and sequencing methods. In this study, 107 (35.66%) isolates were non-susceptible to imipenem and/or meropenem among those 56 (52.3%) isolates were metallo-β-lactamase producer. Twenty-four of 56 (42.85%) MBL-positive isolates were confirmed to be positive for MBL-encoding genes in which 14 (25%) and 10 (17.85%) isolates carried bla IMP-1 and bla VIM-1 genes either alone or in combination. Three (5.35%) isolates carried bla IMP and bla VIM genes, simultaneously. Considering the moderate prevalence and clinical importance of MBL-producing isolates, rapid identification and use of appropriate infection control (IC) measures are necessary to prevent further spread of infections by these resistant organisms.

  1. Immunohistochemical analysis of cannabinoid receptor 1 expression in steatotic rat livers.

    Science.gov (United States)

    Zduniak, Krzysztof; Ziółkowski, Piotr; Regnell, Pontus; Tollet-Egnell, Petra; Åkesson, Lina; Cooper, Martin E

    2016-04-01

    The primary aim of the present study was to determine the expression levels of cannabinoid receptor type 1 (CB1) in steatotic rat livers. The secondary aim was to clarify whether steatosis and inflammation are more marked in areas with increased CB1 overexpression. For ethical and economic reasons, the present study investigated tissue from archived liver blocks, which were obtained from 38 rats that had been euthanized during the course of previous research at the Karolinska Institute of the Karolinska University Hospital (Stockholm, Sweden) and Lund University (Malmö, Sweden). Liver tissue fixed in formalin and embedded in paraffin was used that had been sourced from 36 male Sprague Dawley rats (age, 7 weeks) and 2 rats (age, 180 days) lacking normal leptin receptors. The rat liver tissue was stained with antibodies against CB1 and counterstained with hematoxylin. The expression of CB1 and the number of cells overexpressing CB1 were determined. Steatosis was scored according to the Dixon scoring system. CB1 overexpression and steatosis were detected in hepatocytes from all 38 livers sampled. The expression of CB1 was more marked in hepatocytes localized next to portal triads. Near the central veins, the expression was significantly weaker. Steatosis was more marked in areas of increased CB1 overexpression. Lymphocyte infiltration was more commonly observed in areas of increased CB1 overexpression. Therefore, the present results indicate that CB1 receptors are overexpressed in areas with steatosis, and indicate that CB1 in hepatocytes contributes to the formation of steatosis in rats, even prior to its progression to steatohepatitis. These results are consistent with publications reporting that CB1 in hepatocytes increases lipogenesis and contributes to inflammation.

  2. Stress hormones receptors in the amygdala mediate the effects of stress on the consolidation, but not the retrieval, of a non aversive spatial task.

    Directory of Open Access Journals (Sweden)

    Amir Segev

    Full Text Available This study examined the effects of the arousal level of the rat and exposure to a behavioral stressor on acquisition, consolidation and retrieval of a non-aversive hippocampal-dependent learning paradigm, the object location task. Learning was tested under two arousal conditions: no previous habituation to the experimental context (high novelty stress/arousal level or extensive prior habituation (reduced novelty stress/arousal level. Results indicated that in the habituated rats, exposure to an out-of-context stressor (i.e, elevated platform stress impaired consolidation and retrieval, but not acquisition, of the task. Non-habituated animals under both stressed and control conditions did not show retention of the task. In habituated rats, RU-486 (10 ng/side, a glucocorticoid receptor (GR antagonist, or propranolol (0.75 µg/side, a beta-adrenergic antagonist, injected into the basolateral amygdala (BLA, prevented the impairing effects of the stressor on consolidation, but not on retrieval. The CB1/CB2 receptor agonist WIN55,212-2 (WIN, 5 µg/side microinjected into the BLA did not prevent the effects of stress on either consolidation or retrieval. Taken together the results suggest that: (i GR and β-adrenergic receptors in the BLA mediate the impairing effects of stress on the consolidation, but not the retrieval, of a neutral, non-aversive hippocampal-dependent task, (ii the impairing effects of stress on hippocampal consolidation and retrieval are mediated by different neural mechanisms (i.e., different neurotransmitters or different brain areas, and (iii the effects of stress on memory depend on the interaction between several main factors such as the stage of memory processing under investigation, the animal's level of arousal and the nature of the task (neutral or aversive.

  3. Stress hormones receptors in the amygdala mediate the effects of stress on the consolidation, but not the retrieval, of a non aversive spatial task.

    Science.gov (United States)

    Segev, Amir; Ramot, Assaf; Akirav, Irit

    2012-01-01

    This study examined the effects of the arousal level of the rat and exposure to a behavioral stressor on acquisition, consolidation and retrieval of a non-aversive hippocampal-dependent learning paradigm, the object location task. Learning was tested under two arousal conditions: no previous habituation to the experimental context (high novelty stress/arousal level) or extensive prior habituation (reduced novelty stress/arousal level). Results indicated that in the habituated rats, exposure to an out-of-context stressor (i.e, elevated platform stress) impaired consolidation and retrieval, but not acquisition, of the task. Non-habituated animals under both stressed and control conditions did not show retention of the task. In habituated rats, RU-486 (10 ng/side), a glucocorticoid receptor (GR) antagonist, or propranolol (0.75 µg/side), a beta-adrenergic antagonist, injected into the basolateral amygdala (BLA), prevented the impairing effects of the stressor on consolidation, but not on retrieval. The CB1/CB2 receptor agonist WIN55,212-2 (WIN, 5 µg/side) microinjected into the BLA did not prevent the effects of stress on either consolidation or retrieval. Taken together the results suggest that: (i) GR and β-adrenergic receptors in the BLA mediate the impairing effects of stress on the consolidation, but not the retrieval, of a neutral, non-aversive hippocampal-dependent task, (ii) the impairing effects of stress on hippocampal consolidation and retrieval are mediated by different neural mechanisms (i.e., different neurotransmitters or different brain areas), and (iii) the effects of stress on memory depend on the interaction between several main factors such as the stage of memory processing under investigation, the animal's level of arousal and the nature of the task (neutral or aversive).

  4. bla(IMP) and bla(VIM) mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India.

    Science.gov (United States)

    Amudhan, M Shanthi; Sekar, Uma; Kamalanathan, Arunagiri; Balaraman, Sekar

    2012-11-26

    The emergence and rapid spread of blaIMP and blaVIM metallo-beta-lactamase (MBL) producing Gram-negative bacteria causing nosocomial infections are of concern worldwide due to limited treatment options. A total of 179 nonreplicate, consecutive, carbapenem resistant Pseudomonas aeruginosa (61), Acinetobacter baumannii (116), Acinetobacter lwoffii (1) and Pseudomonas stutzeri (1) isolated from patients hospitalized for 48 hours or more were included in the study. The minimum inhibitory concentrations (MIC) to imipenem and meropenem were determined and interpreted according to Clinical Laboratory Standards Institute guidelines. The Modified Hodge Test (MHT) and inhibitor potentiated disk diffusion tests with ethylenediaminetetraacetic acid (EDTA) were used for screening of carbapenamases and MBL production respectively. Polymerase chain reaction (PCR) was performed for the detection of MBL (blaVIM and blaIMP) genes. Gene sequencing was performed for representative isolates. MHT was positive in 94.4% (n = 169). MBL screening with EDTA was positive in 80.4% (n = 144). MBL genes bla VIM and bla IMP were detected in 92 (51.4%) isolates. Bla VIM alone was detected in 89 isolates while two isolates had bla IMP alone. One isolate had both bla VIM and bla IMP. Among the P. aeruginosa, 36 carried the MBL gene. In A. baumannii, 54 carried the MBL gene. Bla VIM was found in P. stutzeri and A. lwoffii isolates. Carbapenem resistance in P. aeruginosa and A. baumannii is chiefly mediated by MBL production. The common MBL gene is the blaVIM.

  5. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  6. Genetic Dissection of the Role of Cannabinoid Type-1 Receptors in the Emotional Consequences of Repeated Social Stress in Mice

    Science.gov (United States)

    Dubreucq, Sarah; Matias, Isabelle; Cardinal, Pierre; Häring, Martin; Lutz, Beat; Marsicano, Giovanni; Chaouloff, Francis

    2012-01-01

    The endocannabinoid system (ECS) tightly controls emotional responses to acute aversive stimuli. Repeated stress alters ECS activity but the role played by the ECS in the emotional consequences of repeated stress has not been investigated in detail. This study used social defeat stress, together with pharmacology and genetics to examine the role of cannabinoid type-1 (CB1) receptors on repeated stress-induced emotional alterations. Seven daily social defeat sessions increased water (but not food) intake, sucrose preference, anxiety, cued fear expression, and adrenal weight in C57BL/6N mice. The first and the last social stress sessions triggered immediate brain region-dependent changes in the concentrations of the principal endocannabinoids anandamide and 2-arachidonoylglycerol. Pretreatment before each of the seven stress sessions with the CB1 receptor antagonist rimonabant prolonged freezing responses of stressed mice during cued fear recall tests. Repeated social stress abolished the increased fear expression displayed by constitutive CB1 receptor-deficient mice. The use of mutant mice lacking CB1 receptors from cortical glutamatergic neurons or from GABAergic neurons indicated that it is the absence of the former CB1 receptor population that is responsible for the fear responses in socially stressed CB1 mutant mice. In addition, stress-induced hypolocomotor reactivity was amplified by the absence of CB1 receptors from GABAergic neurons. Mutant mice lacking CB1 receptors from serotonergic neurons displayed a higher anxiety but decreased cued fear expression than their wild-type controls. These mutant mice failed to show social stress-elicited increased sucrose preference. This study shows that (i) release of endocannabinoids during stress exposure impedes stress-elicited amplification of cued fear behavior, (ii) social stress opposes the increased fear expression and delayed between-session extinction because of the absence of CB1 receptors from cortical

  7. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    DEFF Research Database (Denmark)

    Frost, M; Nielsen, T L; Wraae, K

    2010-01-01

    Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants of the CB1...

  8. Electroacupuncture Inhibition of Hyperalgesia in Rats with Adjuvant Arthritis: Involvement of Cannabinoid Receptor 1 and Dopamine Receptor Subtypes in Striatum

    Directory of Open Access Journals (Sweden)

    Yin Shou

    2013-01-01

    Full Text Available Electroacupuncture (EA has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36 and Kunlun (BL60 acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P=0.001. The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression.

  9. Prevalence of blaTEM , blaSHV and blaCTX-M genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India

    Directory of Open Access Journals (Sweden)

    Arijit Bora

    2014-01-01

    Full Text Available Aim: This study was carried out to determine the presence of blaTEM , blaSHV and blaCTX-M genes in extended-spectrum β-lactamase (ESBL producing Escherichia coli (E. coli and Klebsiella pneumoniae (K. pneumoniae at a tertiary care referral hospital in Northeast India. Materials and Methods: A total of 270 E. coli and 219 K. pneumoniae isolates were recovered during the period between August 2009 and July 2010. Kirby-Bauer disk diffusion method was performed to determine the antibiotic resistance pattern. Screening and phenotypic confirmatory test for ESBL production were performed using standard disc diffusion methods. Each of the initial ESBL screening test isolate was investigated for the presence of blaTEM , blaSHV and blaCTX-M genes via polymerase chain reaction (PCR using gene-specific primers. Results: Phenotypic confirmatory test able to detect ESBL production in 73.58% of E. coli and 67.24% of K. pneumoniae. However, PCR amplification showed the presence of one or more ESBL genes in each of the initial ESBL screening positive isolate. Among three ESBL genotypes, the most prevalent genotype was found to be blaCTX-M in E. coli (88.67% and blaTEM in K. pneumoniae (77.58% ESBL producing isolates. Majority of ESBL producing isolates possess more than one ESBL genes. Conclusion: This study constituted a primer report on high prevalence of blaTEM and blaCTX-M genes in ESBL producing isolates of E. coli and K. pneumoniae and denotes the need of more extensive studies on these antibiotic genes to determine the magnitude of the problem of antibiotic resistance exiting in this locality.

  10. Prevalence of blaTEM , blaSHV and blaCTX-M genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India.

    Science.gov (United States)

    Bora, Arijit; Hazarika, Naba Kumar; Shukla, Sanket Kumar; Prasad, Kashi N; Sarma, Jayanta Biswa; Ahmed, Giasuddin

    2014-01-01

    This study was carried out to determine the presence of blaTEM , blaSHV and blaCTX-M genes in extended-spectrum β-lactamase (ESBL) producing Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) at a tertiary care referral hospital in Northeast India. A total of 270 E. coli and 219 K. pneumoniae isolates were recovered during the period between August 2009 and July 2010. Kirby-Bauer disk diffusion method was performed to determine the antibiotic resistance pattern. Screening and phenotypic confirmatory test for ESBL production were performed using standard disc diffusion methods. Each of the initial ESBL screening test isolate was investigated for the presence of blaTEM , blaSHV and blaCTX-M genes via polymerase chain reaction (PCR) using gene-specific primers. Phenotypic confirmatory test able to detect ESBL production in 73.58% of E. coli and 67.24% of K. pneumoniae. However, PCR amplification showed the presence of one or more ESBL genes in each of the initial ESBL screening positive isolate. Among three ESBL genotypes, the most prevalent genotype was found to be blaCTX-M in E. coli (88.67%) and blaTEM in K. pneumoniae (77.58%) ESBL producing isolates. Majority of ESBL producing isolates possess more than one ESBL genes. This study constituted a primer report on high prevalence of blaTEM and blaCTX-M genes in ESBL producing isolates of E. coli and K. pneumoniae and denotes the need of more extensive studies on these antibiotic genes to determine the magnitude of the problem of antibiotic resistance exiting in this locality.

  11. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    OpenAIRE

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors, the present experiments investigated whether the endocannabinoid system in the BLA influences memory consolidation and whether glucocorticoids interact with this system. The CB1 receptor agonist WIN5...

  12. The future of type 1 cannabinoid receptor allosteric ligands.

    Science.gov (United States)

    Alaverdashvili, Mariam; Laprairie, Robert B

    2018-02-01

    Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.

  13. Computer modeling of Cannabinoid receptor type 1

    Directory of Open Access Journals (Sweden)

    Sapundzhi Fatima

    2018-01-01

    Full Text Available Cannabinoid receptors are important class of receptors as they are involved in various physiological processes such as appetite, pain-sensation, mood, and memory. It is important to design receptor-selective ligands in order to treat a particular disorder. The aim of the present study is to model the structure of cannabinoid receptor CB1 and to perform docking between obtained models and known ligands. Two models of CBR1 were prepared with two different methods (Modeller of Chimera and MOE. They were used for docking with GOLD 5.2. It was established a high correlation between inhibitory constant Ki of CB1 cannabinoid ligands and the ChemScore scoring function of GOLD, which concerns both models. This suggests that the models of the CB1 receptors obtained could be used for docking studies and in further investigation and design of new potential, selective and active cannabinoids with the desired effects.

  14. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor

    International Nuclear Information System (INIS)

    Yan Zhencheng; Liu Daoyan; Zhang Lili; Shen Chenyi; Ma Qunli; Cao Tingbing; Wang Lijuan; Nie Hai; Zidek, Walter; Tepel, Martin; Zhu Zhiming

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-δ (PPAR-δ)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-δ. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-δ. Furthermore, selective silencing of PPAR-δ by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 ± 0.06 (n = 3) to 1.91 ± 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-δ significantly reduced CB1 expression to 0.39 ± 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-δ. Both CB1 and PPAR-δ are intimately involved in therapeutic interventions against a most important cardiovascular risk factor

  15. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala

    DEFF Research Database (Denmark)

    Varodayan, Florence P.; Soni, Neeraj; Bajo, Michal

    2016-01-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1) expression and function in brain regions associated with addiction. CB1 inhibits GABA...

  16. Constitutive cannabinoid 1 and mu opioid receptor activity in the ventral tegmental area: occurrence, function and therapeutic relevance

    NARCIS (Netherlands)

    Meye, F.J.

    2012-01-01

    Cannabinoid 1 receptors (CB1Rs) play a crucial role in regulating systems dedicated to processing rewards and emotions. It was known that in artificial systems, CB1Rs can exhibit activity that is independent of the typical agonist-driven form. However, it remained largely unclear whether this

  17. Interaction between Cannabinoid Type 1 and Type 2 Receptors in the Modulation of Subventricular Zone and Dentate Gyrus Neurogenesis

    Directory of Open Access Journals (Sweden)

    Rui S. Rodrigues

    2017-08-01

    Full Text Available Neurogenesis in the adult mammalian brain occurs mainly in two neurogenic niches, the subventricular zone (SVZ and the subgranular zone (SGZ of the dentate gyrus (DG. Cannabinoid type 1 and 2 receptors (CB1R and CB2R have been shown to differently modulate neurogenesis. However, low attention has been given to the interaction between CB1R and CB2R in modulating postnatal neurogenesis (proliferation, neuronal differentiation and maturation. We focused on a putative crosstalk between CB1R and CB2R to modulate neurogenesis and cultured SVZ and DG stem/progenitor cells from early postnatal (P1-3 Sprague-Dawley rats. Data showed that the non-selective cannabinoid receptor agonist WIN55,212-2 promotes DG cell proliferation (measured by BrdU staining, an effect blocked by either CB1R or CB2R selective antagonists. Experiments with selective agonists showed that facilitation of DG cell proliferation requires co-activation of both CB1R and CB2R. Cell proliferation in the SVZ was not affected by the non-selective receptor agonist, but it was enhanced by CB1R selective activation. However, either CB1R or CB2R selective antagonists abolished the effect of the CB1R agonist in SVZ cell proliferation. Neuronal differentiation (measured by immunocytochemistry against neuronal markers of different stages and calcium imaging was facilitated by WIN55,212-2 at both SVZ and DG. This effect was mimicked by either CB1R or CB2R selective agonists and blocked by either CB1R or CB2R selective antagonists, cross-antagonism being evident. In summary, our findings indicate a tight interaction between CB1R and CB2R to modulate neurogenesis in the two major neurogenic niches, thus contributing to further unraveling the mechanisms behind the action of endocannabinoids in the brain.

  18. Detection of bla KPC-2 in Proteus mirabilis in Brazil

    Directory of Open Access Journals (Sweden)

    Adriane Borges Cabral

    2015-02-01

    Full Text Available INTRODUCTION : Infections caused by Klebsiella pneumoniae carbapenemase (KPC-producing isolates pose a major worldwide public health problem today. METHODS : A carbapenem-resistant Proteus mirabilis clinical isolate was investigated for plasmid profiles and the occurrence of β-lactamase genes. RESULTS : The isolate exhibited resistance to ertapenem and imipenem and was susceptible to meropenem, polymyxin, and tigecycline. Five plasmids were identified in this isolate. DNA sequencing analysis revealed the presence of bla KPC-2 and bla TEM-1 genes. An additional PCR using plasmid DNA confirmed that bla KPC-2 was present in one of these plasmids. Conclusions: We report the detection of bla KPC-2 in P. mirabilis in Brazil for the first time. This finding highlights the continuous transfer of bla KPC between bacterial genera, which presents a serious challenge to the prevention of infection by multidrug-resistant bacteria.

  19. First Report of blaCTX-M-28 in Enterobacteriaceae Isolates in the United Arab Emirates

    Directory of Open Access Journals (Sweden)

    Mubarak Alfaresi

    2018-01-01

    Full Text Available Background. The CTX-M family of extended-spectrum beta lactamase (ESBL enzymes is comprised of over 60 blaCTX-M gene variants with the predominance of blaCTX-M-15 in many regions. In this report, we present the first description of blaCTX-M-28 in the United Arab Emirates. Methods. Forty-five non-duplicate ESBL producing isolates identified in a secondary care facility in the United Arab Emirates from June to July 2016 were studied. Gene sequencing was performed and DNA sequences were annotated using the BLAST program to identify the gene subtypes. Results. The majority of the ESBL positive isolates were E. coli (n/N=39/45; 86.6% followed by K. pneumoniae (n=5 and K. oxytoca (n=1. All isolates harboured blaCTX-M and blaTEM genes, 18 had blaSHV, and 2 were blaVIM positive. Thirty-seven isolates (82.2% were positive for blaCTX-M-28. Other blaCTX-M genes identified include blaCTX-M-167 (n=2; isolates #1 and 26 and one each for blaCTX-M-38, blaCTX-M-163, and blaCTX-M-198. No blaCTX-M-15 was identified. The predominant blaTEM subtype was blaTEM-171 (n=8 followed by one of each of blaTEM-120, blaTEM-163, and blaTEM-206. The blaSHV subtypes were blaSHV-148 and blaSHV-187. Conclusion. The findings indicate the first description of blaCTX-M-28 in a setting where blaCTX-M-15 was previously predominant.

  20. Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals.

    Science.gov (United States)

    Nasri, Emna; Subirats, Jessica; Sànchez-Melsió, Alexandre; Mansour, Hedi Ben; Borrego, Carles M; Balcázar, José Luis

    2017-10-01

    Carbapenems are β-lactam antibiotics with a broad spectrum of activity and are usually considered the last resort for the treatment of severe infections caused by multidrug-resistant pathogens. The clinically most significant carbapenemases are KPC, NDM, and OXA-48-like enzymes, whose genes have been increasingly reported worldwide in members of the family Enterobacteriaceae. In this study, we quantified the abundance of these genes in wastewater effluents from different Tunisian hospitals. The bla NDM and bla OXA-48 -like genes were detected at similar concentrations in all hospital wastewater effluents. In contrast, the bla KPC gene was detected at lower concentration than other genes and it was only detected in three of the seven effluents analyzed. To the best of our knowledge, this study quantified for the first time the abundance of bla KPC , bla NDM , and bla OXA-48 -like genes in wastewater effluents from Tunisian hospitals, highlighting the widespread distribution of these carbapenemase genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [blaTEM, blaSHV y blaCTX-M genes in extended-spectrum beta-lactamases producing enterobacterias isolated from patients with hospital-acquired infections].

    Science.gov (United States)

    Guzmán, Militza; Rodríguez, Eliosmar; Antón, Karen; Silva, Suyin; Navarro, Jhonilys; Lastra, Loriannys; Salazar, Elsa; Alonso, Guillermina

    2013-09-01

    The objective of the present investigation was to identify the blaTEM, blaSHV, and blaCTX-M genes on extended-spectrum beta-lactamases (ESBL) producing Enterobacteriaceae from clinical isolates, collected between September and November 2005. In addition to third-generation cephalosporin resistance, the isolates also showed resistance to chloramphenicol (59.2%), amikacin (37.0%) and gentamicin (40.7%), and demonstrated sensitivity to imipenem and meropenem. Nine strains were capable of transferring third-generation cephalosporin resistance, as well as the production of ESBL. In the clinical isolates, the genes blaSHV, blaTEM and blaCTX-M were detected, being more prevalent the types blaTEM-1, blaSHV-1, blaSHV-5 blaSHV-5-2a and blaCTX-M-1; while in the trans-conjugated only blaTEM-1, blaSHV-5 y blaSHV-5-2awere found. In total, seven types of genes were identified, five of which were codifying genes for ESBL-type enzymes. This demonstrates that in the hospital center, resistance to third-generation cephalosporin is mediated by several enzymes.

  2. Occurrence of co-existing bla VIM-2 and bla NDM-1 in clinical isolates of Pseudomonas aeruginosa from India.

    Science.gov (United States)

    Paul, Deepjyoti; Dhar, Debadatta; Maurya, Anand Prakash; Mishra, Shweta; Sharma, Gauri Dutt; Chakravarty, Atanu; Bhattacharjee, Amitabha

    2016-05-06

    bla VIM-2 harboring Pseudomonas aeruginosa has been reported worldwide and considered as the most prevalent metallo-β-lactamase after NDM which are found horizontally transferable and mostly associated with integron gene cassettes. The present study investigates the genetic background, transmission dynamics as well as stability of bla VIM-2 in clinical isolates of P. aeruginosa harbor bla NDM-1 as well which were collected from October 2012 to September 2013. Two P. aeruginosa strains harboring bla VIM-2 along with bla NDM-1 were isolated from Silchar Medical College and Hospital, India. Genetic environment of these resistance determinants was determined and transferability was checked by transformation and conjugation assay which was further confirmed by Southern hybridization. Replicon typing was performed to determine the incompatibility group of the resistant plasmid and their stability was checked by serial passage method. Antimicrobial susceptibility pattern of the isolates was determined and their clonal relatedness was checked by pulsed field gel electrophoresis. bla VIM-2 was found to be horizontally transferable through an Inc F type plasmid of approximately 30 kb in size. bla VIM-2 was found to be associated with integron gene cassette and was flanked by two different types of cassette arrays. Both the isolates were co-harboring bla NDM-1 which was carried within Inc N type of plasmid with an approximate 24 kb in size and associated with ISAba125 in their upstream region. Reduced susceptibility rate as well as high MIC range was observed in case of wild strains and transformants carrying bla VIM-2 and bla NDM-1. The detection of this co-existence of multiple carbapenem resistance genes in this part of world is worrisome and further investigation is required in order to trace the source and to initiate proper treatment option.

  3. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  4. Synthesis of Photoswitchable Δ9-Tetrahydrocannabinol Derivatives Enables Optical Control of Cannabinoid Receptor 1 Signaling.

    Science.gov (United States)

    Westphal, Matthias V; Schafroth, Michael A; Sarott, Roman C; Imhof, Michael A; Bold, Christian P; Leippe, Philipp; Dhopeshwarkar, Amey; Grandner, Jessica M; Katritch, Vsevolod; Mackie, Ken; Trauner, Dirk; Carreira, Erick M; Frank, James A

    2017-12-20

    The cannabinoid receptor 1 (CB1) is an inhibitory G protein-coupled receptor abundantly expressed in the central nervous system. It has rich pharmacology and largely accounts for the recreational use of cannabis. We describe efficient asymmetric syntheses of four photoswitchable Δ 9 -tetrahydrocannabinol derivatives (azo-THCs) from a central building block 3-Br-THC. Using electrophysiology and a FRET-based cAMP assay, two compounds are identified as potent CB1 agonists that change their effect upon illumination. As such, azo-THCs enable CB1-mediated optical control of inwardly rectifying potassium channels, as well as adenylyl cyclase.

  5. [Expression of cannabinoid receptor I during mice skin incised wound healing course].

    Science.gov (United States)

    Zhao, Zhen-bin; Guan, Da-wei; Liu, Wei-wei; Wang, Tao; Fan, Yan-yan; Cheng, Zi-hui; Zheng, Ji-long; Hu, Geng-yi

    2010-08-01

    To investigate the expression of cannabinoid receptor I (CB1R) during mice skin incised wound healing course and time-dependent changes of CB1R in wound age determination. The changes of CBIR expression in skin incised wound were detected by immunohistochemistry and Western blotting. The control group showed a low expression of CB1R detected mainly in epidermis, hair follicles, sebaceous gland and dermomuscular layer. CB1R expression was undetectable in neutrophils in the wound specimens from 6h to 12h post-injury. CB1R positive cells were mostly mononuclear cells (MNCs) and fibroblastic cells (FBCs) from 1 d to 5 d post-injury. CB1R positive cells were mostly FBCs from 7 d to 14d post-injury. The ratio of the CB1R positive cells increased gradually in the wound specimens from 6 h to 3 d post-injury, reached peak level at 5 d, and then decreased gradually from 7d to 14 d post-injury. The positive bands of CB1R were observed in all time points of the wound healing course by Western blotting. The expression peak showed at 5 d post-injury. CB1R is activated during the wound healing course. The expression of CB1R is found in mononuclear cells, which could be involved in inflammation reaction. CBIR is observed in fibroblastic cells, which could participate in the wound healing. CB1R may be a potentially useful marker for determination of wound healing age.

  6. Cannabinoid Receptor Activation Modifies NMDA Receptor Mediated Release of Intracellular Calcium: Implications for Endocannabinoid Control of Hippocampal Neural Plasticity

    Science.gov (United States)

    Hampson, Robert E.; Miller, Frances; Palchik, Guillermo; Deadwyler, Sam A.

    2011-01-01

    Chronic activation or inhibition of cannabinoid receptors (CB1) leads to continuous suppression of neuronal plasticity in hippocampus and other brain regions, suggesting that endocannabinoids may have a functional role in synaptic processes that produce state-dependent transient modulation of hippocampal cell activity. In support of this, it has previously been shown in vitro that cannabinoid CB1 receptors modulate second messenger systems in hippocampal neurons that can modulate intracellular ion channels, including channels which release calcium from intracellular stores. Here we demonstrate in hippocampal slices a similar endocannabinoid action on excitatory glutamatergic synapses via modulation of NMDA-receptor mediated intracellular calcium levels in confocal imaged neurons. Calcium entry through glutamatergic NMDA-mediated ion channels increases intracellular calcium concentrations via modulation of release from ryanodine-sensitive channels in endoplasmic reticulum. The studies reported here show that NMDA-elicited increases in Calcium Green fluorescence are enhanced by CB1 receptor antagonists (i.e. rimonabant), and inhibited by CB1 agonists (i.e. WIN 55,212-2). Suppression of endocannabinoid breakdown by either reuptake inhibition (AM404) or fatty-acid amide hydrolase inhibition (URB597) produced suppression of NMDA elicited calcium increases comparable to WIN 55,212-2, while enhancement of calcium release provoked by endocannabinoid receptor antagonists (Rimonabant) was shown to depend on the blockade of CB1 receptor mediated de-phosphorylation of Ryanodine receptors. Such CB1 receptor modulation of NMDA elicited increases in intracellular calcium may account for the respective disruption and enhancement by CB1 agents of trial-specific hippocampal neuron ensemble firing patterns during performance of a short-term memory task, reported previously from this laboratory. PMID:21288475

  7. Cannabinoid receptor 1 inhibition causes seizures during anesthesia induction in experimental sepsis.

    Science.gov (United States)

    Küster, Inga; Kuschnereit, Rieke; Kelly, Melanie; Zhou, Juan; Whynot, Sara; Kianian, Mandana; Hung, Orlando; Shukla, Romesh; Cerny, Vladimir; Pavlovic, Dragan; Lehmann, Christian

    2012-06-01

    We report on seizures during anesthesia induction in animals treated with a cannabinoid receptor 1 (CB1R) antagonist for experimental sepsis. Animals received surgery for colon ascendens stent peritonitis-induced sepsis or sham surgery followed by treatment of CB1R antagonist, CB1R agonist, or placebo. Fourteen hours later, animals received pentobarbital or ketamine for anesthesia induction and animal behavior was observed. Tonic-clonic seizures were observed in 5 of 12 septic animals (42%) treated with CB1R antagonist after induction of anesthesia with pentobarbital. The data suggest that CB1R inhibition in combination with pentobarbital may increase the incidence of anesthetic-induced seizures in the case of sepsis.

  8. Rapid detection of Pseudomonas aeruginosa and Acinetobacter baumannii Harboring bla(VIM-2), bla(IMP-1) and bla(OXA-23) genes by using loop-mediated isothermal amplification methods.

    Science.gov (United States)

    Kim, Hye Jin; Kim, Hyung Sun; Lee, Jae Myun; Yoon, Sang Sun; Yong, Dongeun

    2016-01-01

    Carbapenem-resistant Pseudomonas aeruginosa (CRPA) and Acinetobacter baumannii (CRAB) are the leading causes of nosocomial infections. A rapid and sensitive test to detect CRPA and CRAB is required for appropriate antibiotic treatment. We optimized a loop-mediated isothermal amplification (LAMP) assay to detect the presence of bla(VIM-2), bla(IMP-1), and bla(OXA-23), which are critical components for carbapenem resistance. Two sets of primers, inner and outer primers, were manually designed as previously described. The LAMP buffer was optimized (at 2mM MgSO₄) by testing different concentrations of MgSO₄. The optimal reaction temperature and incubation time were determined by using a gradient thermocycler. Then, the optimized bla(VIM-2), bla(IMP-1), and bla(OXA-23) LAMP reactions were evaluated by using 120 P. aeruginosa and 99 A. baumannii clinical isolates. Only one strain of the 100 CRPA isolates harbored bla(IMP-1), whereas none of them harbored bla(VIM-2). These results indicate that the acquisition of bla(VIM-2) or bla(IMP-1) may not play a major role in carbapenem resistance in Korea. Fifty two strains of the 75 CRAB isolates contained bla(OXA-23), but none contained bla(VIM-2) and bla(IMP-1) alleles. Our results demonstrate the usefulness of LAMP for the diagnosis of CRPA and CRAB.

  9. Endocannabinoids Stimulate Human Melanogenesis via Type-1 Cannabinoid Receptor*

    Science.gov (United States)

    Pucci, Mariangela; Pasquariello, Nicoletta; Battista, Natalia; Di Tommaso, Monia; Rapino, Cinzia; Fezza, Filomena; Zuccolo, Michela; Jourdain, Roland; Finazzi Agrò, Alessandro; Breton, Lionel; Maccarrone, Mauro

    2012-01-01

    We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB1, CB2, and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μm) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB1-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μm). This CB1-dependent activity was fully abolished by the selective CB1 antagonist SR141716 or by RNA interference of the receptor. CB1 signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB1 activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor. PMID:22431736

  10. Cannabinoid 1 receptor knockout mice display cold allodynia, but enhanced recovery from spared-nerve injury-induced mechanical hypersensitivity.

    Science.gov (United States)

    Sideris, Alexandra; Piskoun, Boris; Russo, Lori; Norcini, Monica; Blanck, Thomas; Recio-Pinto, Esperanza

    2016-01-01

    The function of the Cannabinoid 1 receptor (CB1R) in the development of neuropathic pain is not clear. Mounting evidence suggest that CB1R expression and activation may contribute to pain. Cannabinoid 1 receptor knockout mice (CB1R-/-) generated on a C57Bl/6 background exhibit hypoalgesia in the hotplate assay and formalin test. These findings suggest that Cannabinoid 1 receptor expression mediates the responses to at least some types of painful stimuli. By using this mouse line, we sought to determine if the lack of Cannabinoid 1 receptor unveils a general hypoalgesic phenotype, including protection against the development of neuropathic pain. The acetone test was used to measure cold sensitivity, the electronic von Frey was used to measure mechanical thresholds before and after spared-nerve injury, and analysis of footprint patterns was conducted to determine if motor function is differentially affected after nerve-injury in mice with varying levels of Cannabinoid 1 receptor. At baseline, CB1R-/- mice were hypersensitive in the acetone test, and this phenotype was maintained after spared-nerve injury. Using calcium imaging of lumbar dorsal root ganglion (DRG) cultures, a higher percentage of neurons isolated from CB1R-/- mice were menthol sensitive relative to DRG isolated from wild-type (CB1R+/+) mice. Baseline mechanical thresholds did not differ among genotypes, and mechanical hypersensitivity developed similarly in the first two weeks following spared-nerve injury (SNI). At two weeks post-SNI, CB1R-/- mice recovered significantly from mechanical hypersensitivity, while the CB1R+/+ mice did not. Heterozygous knockouts (CB1R+/-) transiently developed cold allodynia only after injury, but recovered mechanical thresholds to a similar extent as the CB1R-/- mice. Sciatic functional indices, which reflect overall nerve health, and alternation coefficients, which indicate uniformity of strides, were not significantly different among genotypes. Cold allodynia and

  11. Antigenic Determinants of the Bilobal Cockroach Allergen Bla g 2.

    Science.gov (United States)

    Woodfolk, Judith A; Glesner, Jill; Wright, Paul W; Kepley, Christopher L; Li, Mi; Himly, Martin; Muehling, Lyndsey M; Gustchina, Alla; Wlodawer, Alexander; Chapman, Martin D; Pomés, Anna

    2016-01-29

    Bla g 2 is a major indoor cockroach allergen associated with the development of asthma. Antigenic determinants on Bla g 2 were analyzed by mutagenesis based on the structure of the allergen alone and in complex with monoclonal antibodies that interfere with IgE antibody binding. The structural analysis revealed mechanisms of allergen-antibody recognition through cation-π interactions. Single and multiple Bla g 2 mutants were expressed in Pichia pastoris and purified. The triple mutant K132A/K251A/F162Y showed an ∼100-fold reduced capacity to bind IgE, while preserving the native molecular fold, as proven by x-ray crystallography. This mutant was still able to induce mast cell release. T-cell responses were assessed by analyzing Th1/Th2 cytokine production and the CD4(+) T-cell phenotype in peripheral blood mononuclear cell cultures. Although T-cell activating capacity was similar for the KKF mutant and Bla g 2 based on CD25 expression, the KKF mutant was a weaker inducer of the Th2 cytokine IL-13. Furthermore, this mutant induced IL-10 from a non-T-cell source at higher levels that those induced by Bla g 2. Our findings demonstrate that a rational design of site-directed mutagenesis was effective in producing a mutant with only 3 amino acid substitutions that maintained the same fold as wild type Bla g 2. These residues, which were involved in IgE antibody binding, endowed Bla g 2 with a T-cell modulatory capacity. The antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Antigenic Determinants of the Bilobal Cockroach Allergen Bla g 2*

    Science.gov (United States)

    Woodfolk, Judith A.; Glesner, Jill; Wright, Paul W.; Kepley, Christopher L.; Li, Mi; Himly, Martin; Muehling, Lyndsey M.; Gustchina, Alla; Wlodawer, Alexander; Chapman, Martin D.; Pomés, Anna

    2016-01-01

    Bla g 2 is a major indoor cockroach allergen associated with the development of asthma. Antigenic determinants on Bla g 2 were analyzed by mutagenesis based on the structure of the allergen alone and in complex with monoclonal antibodies that interfere with IgE antibody binding. The structural analysis revealed mechanisms of allergen-antibody recognition through cation-π interactions. Single and multiple Bla g 2 mutants were expressed in Pichia pastoris and purified. The triple mutant K132A/K251A/F162Y showed an ∼100-fold reduced capacity to bind IgE, while preserving the native molecular fold, as proven by x-ray crystallography. This mutant was still able to induce mast cell release. T-cell responses were assessed by analyzing Th1/Th2 cytokine production and the CD4+ T-cell phenotype in peripheral blood mononuclear cell cultures. Although T-cell activating capacity was similar for the KKF mutant and Bla g 2 based on CD25 expression, the KKF mutant was a weaker inducer of the Th2 cytokine IL-13. Furthermore, this mutant induced IL-10 from a non-T-cell source at higher levels that those induced by Bla g 2. Our findings demonstrate that a rational design of site-directed mutagenesis was effective in producing a mutant with only 3 amino acid substitutions that maintained the same fold as wild type Bla g 2. These residues, which were involved in IgE antibody binding, endowed Bla g 2 with a T-cell modulatory capacity. The antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines. PMID:26644466

  13. Imipenem-resistant Acinetobacter baumannii carrying the ISAba1-bla OXA-23, 51 and ISAba1-bla ADC-7 genes in Monteria, Colombia

    Directory of Open Access Journals (Sweden)

    Pedro Martínez

    2012-12-01

    Full Text Available The purpose of this study was to identify the genes coding for resistance to ceftazidime and imipenem and describe the molecular epidemiology of A. baumannii strains isolated from a clinical center in Colombia. Twenty isolates of imipenem-resistant A. baumannii from an equal number of patients with nosocomial infections were obtained. Primers were used to amplify genes bla IMP, bla VIM, bla OXA-23, bla OXA-24, bla OXA-58, bla OXA-51 and bla ADC-7. To detect insertion sequences ISAba1/bla OXA-23, ISAba1/bla OXA-51 and ISAba1/bla ADC-7, mapping by PCR using combinations of reverse primers ISAba1 and reverse primers of bla OXA-23, bla OXA-51 and bla ADC-7 were used. The amplification products were purified and cloned into PCR 2.1-TOPO vector and transformed into chemically competent Escherichia coli TOP10. These amplicons were then sequenced. PFGE was performed on DNA of A. baumannii isolates digested with ApaI. Results. The DNA profiles obtained included 9 clusters with, four 2-7 isolates per profile, and 5 single-isolate profiles. Of the 20 isolates resistant to imipenem, 15 carried bla OXA-23 gene, 4 contained ISAba1 upstream of bla OXA-51 gene, and 6 contained ISAba1 upstream of bla OXA-23 gene. Eighteen of these isolates carried the bla ADC-7 gene, with 9 of the isolates having ISAba1 located upstream of this gene. This is the first report of the ISAba1 /ADC-7 associated with OXAs genes in A. baumannii isolates from Colombia.

  14. Imipenem-resistant Acinetobacter baumannii carrying the ISAba1-bla OXA-23,51 and ISAba1-bla ADC-7 genes in Monteria, Colombia.

    Science.gov (United States)

    Martínez, Pedro; Mattar, Salim

    2012-10-01

    The purpose of this study was to identify the genes coding for resistance to ceftazidime and imipenem and describe the molecular epidemiology of A. baumannii strains isolated from a clinical center in Colombia. Twenty isolates of imipenem-resistant A. baumannii from an equal number of patients with nosocomial infections were obtained. Primers were used to amplify genes bla IMP, bla VIM, bla OXA-23, bla OXA-24, bla OXA-58, bla OXA-51 and bla ADC-7. To detect insertion sequences ISAba1/bla OXA-23, ISAba1/bla OXA-51 and ISAba1/bla ADC-7, mapping by PCR using combinations of reverse primers ISAba1 and reverse primers of bla OXA-23, bla OXA-51 and bla ADC-7 were used. The amplification products were purified and cloned into PCR 2.1-TOPO vector and transformed into chemically competent Escherichia coli TOP10. These amplicons were then sequenced. PFGE was performed on DNA of A. baumannii isolates digested with ApaI. Results. The DNA profiles obtained included 9 clusters with, four 2-7 isolates per profile, and 5 single-isolate profiles. Of the 20 isolates resistant to imipenem, 15 carried bla OXA-23 gene, 4 contained ISAba1 upstream of bla OXA-51 gene, and 6 contained ISAba1 upstream of bla OXA-23 gene. Eighteen of these isolates carried the bla ADC-7 gene, with 9 of the isolates having ISAba1 located upstream of this gene. This is the first report of the ISAba1/ADC-7 associated with OXAs genes in A. baumannii isolates from Colombia.

  15. Repeated Low-Dose Administration of the Monoacylglycerol Lipase Inhibitor JZL184 Retains Cannabinoid Receptor Type 1–Mediated Antinociceptive and Gastroprotective Effects

    OpenAIRE

    Kinsey, Steven G.; Wise, Laura E.; Ramesh, Divya; Abdullah, Rehab; Selley, Dana E.; Cravatt, Benjamin F.; Lichtman, Aron H.

    2013-01-01

    The monoacylglycerol lipase (MAGL) inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) produces antinociceptive and anti-inflammatory effects. However, repeated administration of high-dose JZL184 (40 mg/kg) causes dependence, antinociceptive tolerance, cross-tolerance to the pharmacological effects of cannabinoid receptor agonists, and cannabinoid receptor type 1 (CB1) downregulation and desensitization. This functional CB1 receptor tolerance...

  16. CANNABINOID RECEPTOR AGONISTS UPREGULATE AND ENHANCE SEROTONIN 2A (5-HT2A) RECEPTOR ACTIVITY VIA ERK1/2 SIGNALING

    OpenAIRE

    Franklin, Jade M.; Carrasco, Gonzalo A.

    2012-01-01

    Recent behavioral studies suggest that non-selective agonists of cannabinoid receptors may regulate serotonin 2A (5-HT2A) receptor neurotransmission. Two cannabinoids receptors are found in brain, CB1 and CB2 receptors, but the molecular mechanism by which cannabinoid receptors would regulate 5-HT2A receptor neurotransmission remains unknown. Interestingly, we have recently found that certain cannabinoid receptor agonists can specifically upregulate 5-HT2A receptors. Here, we present experime...

  17. Adenosine–cannabinoid receptor interactions. Implications for striatal function

    Science.gov (United States)

    Ferré, Sergi; Lluís, Carme; Justinova, Zuzana; Quiroz, César; Orru, Marco; Navarro, Gemma; Canela, Enric I; Franco, Rafael; Goldberg, Steven R

    2010-01-01

    Adenosine and endocannabinoids are very ubiquitous non-classical neurotransmitters that exert a modulatory role on the transmission of other more ‘classical’ neurotransmitters. In this review we will focus on their common role as modulators of dopamine and glutamate neurotransmission in the striatum, the main input structure of the basal ganglia. We will pay particular attention to the role of adenosine A2A receptors and cannabinoid CB1 receptors. Experimental results suggest that presynaptic CB1 receptors interacting with A2A receptors in cortico-striatal glutamatergic terminals that make synaptic contact with dynorphinergic medium-sized spiny neurons (MSNs) are involved in the motor-depressant and addictive effects of cannabinoids. On the other hand, postsynaptic CB1 receptors interacting with A2A and D2 receptors in the dendritic spines of enkephalinergic MSNs and postsynaptic CB1 receptors in the dendritic spines of dynorphinergic MSN are probably involved in the cataleptogenic effects of cannabinoids. These receptor interactions most probably depend on the existence of a variety of heteromers of A2A, CB1 and D2 receptors in different elements of striatal spine modules. Drugs selective for the different striatal A2A and CB1 receptor heteromers could be used for the treatment of neuropsychiatric disorders and drug addiction and they could provide effective drugs with fewer side effects than currently used drugs. This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x PMID:20590556

  18. Cannabinoid Receptor Type 1 Expression in the Developing Avian Retina: Morphological and Functional Correlation With the Dopaminergic System

    Directory of Open Access Journals (Sweden)

    Luzia da Silva Sampaio

    2018-03-01

    Full Text Available The avian retina has been used as a model to study signaling by different neuro- and gliotransmitters. It is unclear how dopaminergic and cannabinoid systems are related in the retina. Here we studied the expression of type 1 and 2 cannabinoid receptors (CB1 and CB2, as well as monoacylglycerol lipase (MAGL, the enzyme that degrades 2-arachidonoylglycerol (2-AG, during retina development. Our data show that CB1 receptor is highly expressed from embryonic day 5 (E5 until post hatched day 7 (PE7, decreasing its levels throughout development. CB1 is densely found in the ganglion cell layer (GCL and inner plexiform layer (IPL. CB2 receptor was also found from E5 until PE7 with a decrease in its contents from E9 afterwards. CB2 was mainly present in the lamination of the IPL at PE7. MAGL is expressed in all retinal layers, mainly in the IPL and OPL from E9 to PE7 retina. CB1 and CB2 were found both in neurons and glia cells, but MAGL was only expressed in Müller glia. Older retinas (PE7 show CB1 positive cells mainly in the INL and co-expression of CB1 and tyrosine hydroxylase (TH are shown in a few cells when both systems are mature. CB1 co-localized with TH and was heavily associated to D1 receptor labeling in primary cell cultures. Finally, cyclic AMP (cAMP was activated by the selective D1 agonist SKF38393, and inhibited when cultures were treated with WIN55, 212–2 (WIN in a CB1 dependent manner. The results suggest a correlation between the endocannabinoid and dopaminergic systems (DSs during the avian retina development. Activation of CB1 limits cAMP accumulation via D1 receptor activation and may influence embryological parameters during avian retina differentiation.

  19. The CB1 Neutral Antagonist Tetrahydrocannabivarin Reduces Default Mode Network and Increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers.

    Science.gov (United States)

    Rzepa, Ewelina; Tudge, Luke; McCabe, Ciara

    2015-09-10

    The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  20. The CB1 Neutral Antagonist AM4113 Retains the Therapeutic Efficacy of the Inverse Agonist Rimonabant for Nicotine Dependence and Weight Loss with Better Psychiatric Tolerability

    Science.gov (United States)

    Gueye, Aliou B.; Pryslawsky, Yaroslaw; Trigo, Jose M.; Poulia, Nafsika; Delis, Foteini; Antoniou, Katerina; Loureiro, Michael; Laviolette, Steve R.; Vemuri, Kiran; Makriyannis, Alexandros

    2016-01-01

    Background: Multiple studies suggest a pivotal role of the endocannabinoid system in regulating the reinforcing effects of various substances of abuse. Rimonabant, a CB1 inverse agonist found to be effective for smoking cessation, was associated with an increased risk of anxiety and depression. Here we evaluated the effects of the CB1 neutral antagonist AM4113 on the abuse-related effects of nicotine and its effects on anxiety and depressive-like behavior in rats. Methods: Rats were trained to self-administer nicotine under a fixed-ratio 5 or progressive-ratio schedules of reinforcement. A control group was trained to self-administer food. The acute/chronic effects of AM4113 pretreatment were evaluated on nicotine taking, motivation for nicotine, and cue-, nicotine priming- and yohimbine-induced reinstatement of nicotine-seeking. The effects of AM4113 in the basal firing and bursting activity of midbrain dopamine neurons were evaluated in a separate group of animals treated with nicotine. Anxiety/depression-like effects of AM4113 and rimonabant were evaluated 24h after chronic (21 days) pretreatment (0, 1, 3, and 10mg/kg, 1/d). Results: AM4113 significantly attenuated nicotine taking, motivation for nicotine, as well as cue-, priming- and stress-induced reinstatement of nicotine-seeking behavior. These effects were accompanied by a decrease of the firing and burst rates in the ventral tegmental area dopamine neurons in response to nicotine. On the other hand, AM4113 pretreatment did not have effects on operant responding for food. Importantly, AM4113 did not have effects on anxiety and showed antidepressant-like effects. Conclusion: Our results indicate that AM4113 could be a promising therapeutic option for the prevention of relapse to nicotine-seeking while lacking anxiety/depression-like side effects. PMID:27493155

  1. Detection of blaSPM-1, blaKPC, blaTEM and blaCTX-M genes in isolates of Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. from cancer patients with healthcare-associated infections.

    Science.gov (United States)

    Jácome, Paula Regina Luna de Araújo; Alves, Lílian Rodrigues; Jácome-Júnior, Agenor Tavares; Silva, Maria Jesuíta Bezerra da; Lima, Jailton Lobo da Costa; Araújo, Paulo Sérgio Ramos; Lopes, Ana Catarina S; Maciel, Maria Amélia Vieira

    2016-07-01

    Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. are three of the pathogens most frequently involved in infections of cancer patients, and the production of β -lactamases is a major mechanism of resistance due to its wide diversity of existing enzymes. Therefore, the aim of the present study was to investigate the microbiological profile and data related to patients and infections, and to search for β -lactamase genes in bacterial isolates from hospitalized cancer patients in a hospital in Recife, Pernambuco, Brazil. A total of 169 isolates were recovered between 2012 and 2014, of which 58 were P. aeruginosa, 36 were Acinetobacter spp. and 75 were Klebsiella spp. A high percentage of carbapenem resistance was observed in P. aeruginosa and Acinetobacter spp. Among the carbapenem-resistant bacteria, the blaSPM-1 gene was detected in P. aeruginosa (35.5 %) and Acinetobacter spp. (3.8 %), while blaKPC was detected in P. aeruginosa (25.8 %) only. Among the third- and fourth-generation cephalosporin-resistant strains, in Klebsiella spp. we detected the genes blaTEM (30.6 %), blaCTX-M (58.3 %) and blaKPC (5.6 %), and in Acinetobacter spp. only blaTEM (25.9 %). This the first report of an Acinetobacter baumannii blaSPM-1 gene carrier that has been isolated in Brazil. The most frequent cancer types were bowel tumour [14.8 %; 95 % confidence interval (CI95 %) 9.8-21.1 %], breast cancer (13.6 %; CI95 % 8.8-19.7 %) and prostate cancer (11.2%; CI95 % 6.9-17.0 %). These results therefore provide knowledge of susceptibility profile and resistance mechanisms and thus can contribute to the strategic formulation of hospital infection control plans and the rational use of antimicrobials, reducing mortality from infection levels in cancer patients.

  2. Characterization of a shortened model of diet alternation in female rats: effects of the CB1 receptor antagonist rimonabant on food intake and anxiety-like behavior.

    Science.gov (United States)

    Blasio, Angelo; Rice, Kenner C; Sabino, Valentina; Cottone, Pietro

    2014-10-01

    The prevalence of eating disorders and obesity in western societies is epidemic and increasing in severity. Preclinical research has focused on the development of animal models that can mimic the maladaptive patterns of food intake observed in certain forms of eating disorders and obesity. This study was aimed at characterizing a recently established model of palatable diet alternation in female rats. For this purpose, females rats were fed either continuously with a regular chow diet (Chow/Chow) or intermittently with a regular chow diet for 2 days and a palatable, high-sucrose diet for 1 day (Chow/Palatable). Following diet cycling, rats were administered rimonabant (0, 0.3, 1, 3 mg/kg intraperitoneally) during access to either palatable diet or chow diet and were assessed for food intake and body weight. Finally, rats were pretreated with rimonabant (0, 3 mg/kg, intraperitoneally) and tested in the elevated plus maze during withdrawal from the palatable diet. Female rats with alternating access to palatable food cycled their intake, overeating during access to the palatable diet and undereating upon returning to the regular chow diet. Rimonabant treatment resulted in increased chow hypophagia and anxiety-like behavior in Chow/Palatable rats. No effect of drug treatment was observed on the compulsive eating of palatable food in the diet-cycled rats. The results of this study suggest that withdrawal from alternating access to the palatable diet makes individuals vulnerable to the anxiogenic effects of rimonabant and provides etiological factors potentially responsible for the emergence of severe psychiatric side-effects following rimonabant treatment in obese patients.

  3. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways

    NARCIS (Netherlands)

    Verhoeckx, K.C.M.; Korthout, H.A.A.J.; Meeteren-Kreikamp, A.P. van; Ehlert, K.A.; Wang, M.; Greef, J. van der; Rodenburg, R.J.T.; Witkamp, R.F.

    2006-01-01

    There is a great interest in the pharmacological properties of cannabinoid like compounds that are not linked to the adverse effects of Δ9-tetrahydrocannabinol (THC), e.g. psychoactive properties. The present paper describes the potential immuno-modulating activity of unheated Cannabis sativa

  4. Effects of the cannabinoid CB1 receptor agonist CP55,940 and antagonist SR141716A on d-amphetamine-induced behaviours in Cebus monkeys

    DEFF Research Database (Denmark)

    Madsen, Morten V; Peacock, Linda; Werge, Thomas

    2006-01-01

    Several clinical studies have shown that alterations in the cannabinoid system in the brain may be associated with schizophrenia. Although evidence points towards an antipsychotic potential for cannabinoid antagonists, experimental studies have shown inconsistent behavioural effects of cannabinoid...

  5. Arvanil, olvanil, AM 1172 and LY 2183240 (various cannabinoid CB1 receptor agonists) increase the threshold for maximal electroshock-induced seizures in mice.

    Science.gov (United States)

    Tutka, Piotr; Wlaź, Aleksandra; Florek-Łuszczki, Magdalena; Kołodziejczyk, Patrycjusz; Bartusik-Aebisher, Dorota; Łuszczki, Jarogniew J

    2018-02-01

    Recent evidence reveals therapeutic potential for cannabinoids to reduce seizure frequency, severity and duration. Animal models are useful tools to determine the potential antiseizure or antiepileptic effects of cannabinoids. The objective of this study was evaluation of the effect of arvanil, olvanil, AM 1172 and LY 2183240, the compounds interacted with endocannabinoid and/or endovanilloid systems, on convulsions in the commonly used model of convulsions in mice. Arvanil and olvanil were injected intraperitoneally (ip) 30min and AM 1172 and LY 2183240 were administered ip 60min before the maximal electroshock seizure threshold (MEST) test. The criterion for convulsant activity was tonic hindlimb extension. Arvanil, olvanil, AM 1172 and LY 2183240 dose-dependently increased the electroconvulsive threshold in mice. The TID 20 (threshold increasing dose 20) values for arvanil, olvanil, AM 1172 and LY 2183240 were 0.9, 2.18, 2.48 and 3.56mgkg -1 , respectively, and the TID 50 (threshold increasing dose 50) values were 1.88, 6.45, 6.29 and 10.04mgkg -1 , respectively. This study identified anticonvulsant effects of arvanil, olvanil, AM 1172 and LY 2183240. The order of the magnitude of the anticonvulsant effects of the examined compounds was following: arvanil>olvanil>AM 1172>LY 2183240. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. CB-1 receptors modulate the effect of the selective serotonin reuptake inhibitor, citalopram on extracellular serotonin levels in the rat prefrontal cortex

    NARCIS (Netherlands)

    Kleijn, Jelle; Cremers, Thomas I. F. H.; Hofland, Corry M.; Westerink, Ben H. C.

    A large percentage of depressed individuals use drugs of abuse, like cannabis. This study investigates the impact of cannabis on the pharmacological effects of the antidepressant citalopram. Using microdialysis in the prefrontal cortex of rats we monitored serotonin levels before and after

  7. Effects of cannabinoid CB(1) receptor agonism and antagonism on SKF81297-induced dyskinesia and haloperidol-induced dystonia in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Madsen, Morten V; Peacock, Linda P; Werge, Thomas

    2011-01-01

    Antipsychotic drugs may cause extrapyramidal symptoms (EPS), such as dyskinesia and dystonia. These effects are believed to involve dysfunctional striatal dopamine transmission. Patients with schizophrenia show increased prevalence of cannabis abuse and this has been linked to severity of EPS...

  8. Identification and molecular characterization of Escherichia coli blaSHVgenes in a Chinese teaching hospital.

    Science.gov (United States)

    Zhu, Mei; Yang, Guangjian; Li, Ailing; Zong, Li; Dong, Zhaoguang; Lu, Junwan; Zhang, Kaibo; Cheng, Cong; Chang, Qingli; Wu, Xiuying; Ying, Jianchao; Li, Xianneng; Ding, Li; Zheng, Haixiao; Yu, Junping; Ying, Jun; Xu, Teng; Yi, Huiguang; Li, Peizhen; Li, Kewei; Wu, Songquan; Bao, Qiyu; Wang, Junrong

    2017-02-05

    Escherichia coli (E. coli) commonly reside in human intestine and most E. coli strains are harmless, but some serotypes cause serious food poisoning. This study identified and molecularly characterized bla SHV genes from 490 E. coli strains with multi-drug resistance in a hospital population. PCR and molecular cloning and southern blot were performed to assess functions and localizations of this resistant E. coli gene and the pulsed-field gel electrophoresis (PFGE) was utilized to demonstrate the clonal relatedness of the positive E. coli strains. The data showed that 4 of these 490 E. coli strains (4/499, 0.8%) carried bla SHV genes that included EC D2485 (bla SHV-5 ), EC D2487 (bla SHV-5 ), EC D2684 (bla SHV-11 ) and EC D2616 (bla SHV-195, a novel bla SHV ). Analysis of bla SHV open-reading frame showed that bla SHV-5 had a high hydrolysis activity to the broad-spectrum penicillin (ampicillin or piperacillin), ceftazidime, ceftriaxone, cefotaxime and aztreonam. bla SHV-195 and bla SHV-11 had similar resistant characteristics with high hydrolysis activities to ampicillin and piperacillin, but low activities to cephalosporins. Moreover, the two bla SHV-5 genes were located on a transferable plasmid (23kb), whereas the other two bla SHV variants (bla SHV-11 and bla SHV-195 ) seemed to be located in the chromosomal material. Both EC D2485 and EC D2487 clones isolated in 2010 had the same DNA finger printing profile and they might be the siblings of clonal dissemination. The data from the current study suggest that the novel bla SHV and clonal dissemination may be developed, although bla SHV genes were infrequently identified in this hospital population. The results of the work demonstrate the necessity for molecular surveillance in tracking bla SHV -producing strains in large teaching hospital settings and emphasize the need for epidemiological monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Absence of cannabinoid 1 receptor in beta cells protects against high-fat/high-sugar diet-induced beta cell dysfunction and inflammation in murine islets.

    Science.gov (United States)

    González-Mariscal, Isabel; Montoro, Rodrigo A; Doyle, Máire E; Liu, Qing-Rong; Rouse, Michael; O'Connell, Jennifer F; Santa-Cruz Calvo, Sara; Krzysik-Walker, Susan M; Ghosh, Soumita; Carlson, Olga D; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G; Chia, Chee W; Ghosh, Paritosh; Egan, Josephine M

    2018-03-01

    The cannabinoid 1 receptor (CB1R) regulates insulin sensitivity and glucose metabolism in peripheral tissues. CB1R is expressed on pancreatic beta cells and is coupled to the G protein Gαi, suggesting a negative regulation of endogenous signalling in the beta cell. Deciphering the exact function of CB1R in beta cells has been confounded by the expression of this receptor on multiple tissues involved in regulating metabolism. Thus, in models of global genetic or pharmacological CB1R blockade, it is difficult to distinguish the indirect effects of improved insulin sensitivity in peripheral tissues from the direct effects of inhibiting CB1R in beta cells per se. To assess the direct contribution of beta cell CB1R to metabolism, we designed a mouse model that allows us to determine the role of CB1R specifically in beta cells in the context of whole-body metabolism. We generated a beta cell specific Cnr1 (CB1R) knockout mouse (β-CB1R -/- ) to study the long-term consequences of CB1R ablation on beta cell function in adult mice. We measured beta cell function, proliferation and viability in these mice in response to a high-fat/high-sugar diet and induction of acute insulin resistance with the insulin receptor antagonist S961. β-CB1R -/- mice had increased fasting (153 ± 23% increase at 10 weeks of age) and stimulated insulin secretion and increased intra-islet cAMP levels (217 ± 33% increase at 10 weeks of age), resulting in primary hyperinsulinaemia, as well as increased beta cell viability, proliferation and islet area (1.9-fold increase at 10 weeks of age). Hyperinsulinaemia led to insulin resistance, which was aggravated by a high-fat/high-sugar diet and weight gain, although beta cells maintained their insulin secretory capacity in response to glucose. Strikingly, islets from β-CB1R -/- mice were protected from diet-induced inflammation. Mechanistically, we show that this is a consequence of curtailment of oxidative stress and reduced activation of

  10. Effect of Delta-tetrahydrocannabinol, a cannabinoid receptor agonist, on the triggering of transient lower oesophageal sphincter relaxations in dogs and humans

    NARCIS (Netherlands)

    Beaumont, H.; Jensen, J.; Carlsson, A.; Ruth, M.; Lehmann, A.; Boeckxstaens, G. E.

    2009-01-01

    Background and purpose: Transient lower oesophageal sphincter relaxations (TLESRs) are the main mechanism underlying gastro-oesophageal reflux and are a potential pharmacological treatment target. We evaluated the effect of the CB(1)/CB(2) receptor agonist Delta(9)-tetrahydrocannabinol

  11. Structure-Affinity Relationships and Structure-Kinetic Relationships of 1,2-Diarylimidazol-4-carboxamide Derivatives as Human Cannabinoid 1 Receptor Antagonists.

    Science.gov (United States)

    Xia, Lizi; de Vries, Henk; Lenselink, Eelke B; Louvel, Julien; Waring, Michael J; Cheng, Leifeng; Pahlén, Sara; Petersson, Maria J; Schell, Peter; Olsson, Roine I; Heitman, Laura H; Sheppard, Robert J; IJzerman, Adriaan P

    2017-12-14

    We report on the synthesis and biological evaluation of a series of 1,2-diarylimidazol-4-carboxamide derivatives developed as CB 1 receptor antagonists. These were evaluated in a radioligand displacement binding assay, a [ 35 S]GTPγS binding assay, and in a competition association assay that enables the relatively fast kinetic screening of multiple compounds. The compounds show high affinities and a diverse range of kinetic profiles at the CB 1 receptor and their structure-kinetic relationships (SKRs) were established. Using the recently resolved hCB 1 receptor crystal structures, we also performed a modeling study that sheds light on the crucial interactions for both the affinity and dissociation kinetics of this family of ligands. We provide evidence that, next to affinity, additional knowledge of binding kinetics is useful for selecting new hCB 1 receptor antagonists in the early phases of drug discovery.

  12. Structure–Affinity Relationships and Structure–Kinetic Relationships of 1,2-Diarylimidazol-4-carboxamide Derivatives as Human Cannabinoid 1 Receptor Antagonists

    Science.gov (United States)

    2017-01-01

    We report on the synthesis and biological evaluation of a series of 1,2-diarylimidazol-4-carboxamide derivatives developed as CB1 receptor antagonists. These were evaluated in a radioligand displacement binding assay, a [35S]GTPγS binding assay, and in a competition association assay that enables the relatively fast kinetic screening of multiple compounds. The compounds show high affinities and a diverse range of kinetic profiles at the CB1 receptor and their structure–kinetic relationships (SKRs) were established. Using the recently resolved hCB1 receptor crystal structures, we also performed a modeling study that sheds light on the crucial interactions for both the affinity and dissociation kinetics of this family of ligands. We provide evidence that, next to affinity, additional knowledge of binding kinetics is useful for selecting new hCB1 receptor antagonists in the early phases of drug discovery. PMID:29111736

  13. Emergence of blaCTX-M-15, blaTEM-169 and blaPER-1 extended-spectrum β-lactamase genes among different Salmonella enterica serovars from human faecal samples.

    Science.gov (United States)

    Tajbakhsh, Mercedeh; Avini, Mohammad Yaghoobi; Alikhajeh, Jahan; Tajeddin, Elahe; Rahbar, Mohammad; Eslami, Parisa; Alebouyeh, Masoud; Zali, Mohammad Reza

    2016-07-01

    Broad-spectrum β-lactams are used for empirical therapy of severe infections with non-typhoid Salmonella serotypes; however, activities of these drugs against the strains producing different β-lactamase is not so clear. This study investigated the prevalence of β-lactamase genes among isolates of S. enterica serovars from human faecal samples and determined their diversity in activity against different β-lactams. Antimicrobial resistance of faecal isolates of S. enterica to extended-spectrum cephalosporins was analysed and MIC values were determined for the strains presenting extended-spectrum β-lactamases (ESBLs) phenotypes. The β-lactamase genes were identified by PCR and sequencing. β-lactamase activity of the Salmonella strains exhibiting ESBL phenotype was detected by biological, iodometric, spectrophotometry and nitrocefin assays. Out of 202 S. enterica isolates, ESBLs phenotype was detected among 3.4% (7/202) of the strains. blaTEM-1 and blaCTX-M-15 were among the frequent β-lactamase genes. Detection of blaTEM-169 in S. enterica serovar Typhimurium and S. enterica serovar Bredeney and blaPER-1 in S. enterica serovar Infantis was a new finding in this experiment. Location of blaCTX-M-15/blaTEM-169/blaPER-1 genes on plasmid was confirmed in a transformation experiment. While crude extracts of the enzymes from each strain showed higher activity against cephalothin and cefotaxime, the lowest activity was detected against ceftazidime. The greatest synergistic activity was seen in a strain of S. enterica that carried blaCTX-M-15 and blaPER-1 genes compared with those presenting blaCTX-M-15/blaTEM-169 or blaCTX-M-15/blaTEM-1 genotypes. The results show dissemination of ESBLs encoding genes and their combined activity among different serovars of S. enterica that are a threat for future treatment options.

  14. Interactions between Intracellular Domains as Key Determinants of the Quaternary Structure and Function of Receptor Heteromers*

    Science.gov (United States)

    Navarro, Gemma; Ferré, Sergi; Cordomi, Arnau; Moreno, Estefania; Mallol, Josefa; Casadó, Vicent; Cortés, Antoni; Hoffmann, Hanne; Ortiz, Jordi; Canela, Enric I.; Lluís, Carme; Pardo, Leonardo; Franco, Rafael; Woods, Amina S.

    2010-01-01

    G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In this study, using resonance energy transfer techniques in experiments with mutated receptors, we provide for the first time clear evidence for a key role of intracellular domains in the determination of the quaternary structure of GPCR heteromers between adenosine A2A, cannabinoid CB1, and dopamine D2 receptors. In these interactions, arginine-rich epitopes form salt bridges with phosphorylated serine or threonine residues from CK1/2 consensus sites. Each receptor (A2A, CB1, and D2) was found to include two evolutionarily conserved intracellular domains to establish selective electrostatic interactions with intracellular domains of the other two receptors, indicating that these particular electrostatic interactions constitute a general mechanism for receptor heteromerization. Mutation experiments indicated that the interactions of the intracellular domains of the CB1 receptor with A2A and D2 receptors are fundamental for the correct formation of the quaternary structure needed for the function (MAPK signaling) of the A2A-CB1-D2 receptor heteromers. Analysis of MAPK signaling in striatal slices of CB1 receptor KO mice and wild-type littermates supported the existence of A1-CB1-D2 receptor heteromer in the brain. These findings allowed us to propose the first molecular model of the quaternary structure of a receptor heteromultimer. PMID:20562103

  15. Prevalence of bla SHV genes in clinical isolates of Klebsiella ...

    African Journals Online (AJOL)

    Five bacterial strains (4 Klebsiella pneumoniae and 1 Escherichia coli) representative of pathogenic species and resistant to β-lactam antibiotics are investigated to isolate the genes responsible of β--lactamase activity. The use of engineering techniques enables us to show the widespread of blaSHV genes particularly in ...

  16. Rapid detection of blaVIM-1-37 and blaKPC1/2-12 alleles from clinical samples by multiplex PCR-based assays.

    Science.gov (United States)

    Frasson, Ilaria; Biasolo, Maria Angela; Bartolini, Andrea; Cavallaro, Antonietta; Richter, Sara N; Palù, Giorgio

    2013-07-01

    VIM and KPC are two major families of carbapenemases involved in nosocomial outbreaks of multidrug-resistant Gram-negative bacilli. To rapidly detect bla(VIM)- and bla(KPC)-encoding strains, three multiplex PCR-based methods were designed and validated: (i) a real-time PCR to detect all reported VIM alleles, namely bla(VIM-1-19, 23-37); (ii) a real-time PCR to identify bla(VIM)-type and bla(KPC) carbapenemases in an ultrarapid single reaction; and (iii) a standard PCR to amplify and sequence all VIM alleles. All three methods detected 33 VIM-positive samples among 107 Gram-negative isolates with imipenem and meropenem minimum inhibitory concentrations ≥1 mg/L. The three methods displayed 100% sensitivity, specificity and concordance. Sequencing of the bla(VIM) amplicons revealed that 30 samples encoded bla(VIM-1) and 3 samples encoded bla(VIM-2). The real-time assay, optimised for the simultaneous detection of bla(VIM) and bla(KPC), identified 3 and 12 isolates positive for both bla(VIM)/bla(KPC) and for bla(KPC), respectively. The analytical sensitivity of the real-time assays was linear over 6 log dilutions, with a reproducible detection limit of 1 CFU. No cross-reactivity was detected. The developed assays provide powerful tools for rapid identification of VIM and KPC carbapenemase producers, therefore contributing to the prevention and containment of resistance dissemination. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Characteristics of β-lactamases and their genes (blaA and blaB in Yersinia intermedia and Y. frederiksenii

    Directory of Open Access Journals (Sweden)

    Sharma Sachin

    2007-04-01

    Full Text Available Abstract Background The presence of β-lactamases in Y. enterocolitica has been reported to vary with serovars, biovars and geographical origin of the isolates. An understanding of the β-lactamases in other related species is important for an overall perception of antibiotic resistance in yersiniae. The objective of this work was to study the characteristics of β-lactamases and their genes in strains of Y. intermedia and Y. frederiksenii, isolated from clinical and non-clinical sources in India. Results The enzymes, Bla-A (a constitutive class A penicillinase and Bla-B (an inducible class C cephalosporinase were found to be present in all the clinical and non-clinical strains of Y. intermedia and Y. frederiksenii by double disc diffusion method. The results showed differential expression of Bla-A as indicated by presence/absence of synergy whereas expression of Bla-B was quite consistent. The presence of these enzymes was also reflected in the high minimum inhibitory concentrations, MIC50 (126–1024 mg/L and MIC90 (256–1024 mg/L of β-lactam antibiotics against these species. Restriction fragment length polymorphism (RFLP revealed heterogeneity in both blaA and blaB genes of Y. intermedia and Y. frederiksenii. The blaA gene of Y. intermedia shared significant sequence identity (87–96% with blaA of Y. enterocolitica biovars 1A, 1B and 4. The sequence identity of blaA of Y. frederiksenii with these biovars was 77–79%. The sequence identity of blaB gene of Y. intermedia and Y. frederiksenii was more (85% with that of Y. enterocolitica biovars 1A, 1B and 2 compared to other species viz., Y. bercovieri, Y. aldovae and Y. ruckeri. Isoelectric focusing data further revealed that both Y. intermedia and Y. frederiksenii produced Bla-A (pI 8.7 and "Bla-B like" (pI 5.5–7.1 enzymes. Conclusion Both Y. intermedia and Y. frederiksenii showed presence of blaA and blaB genes and unequivocal expression of the two β-lactamases. Limited heterogeneity

  18. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  19. Characterization of a novel blaIMP gene, blaIMP-58, using whole genome sequencing in a Pseudomonas putida isolate detected in Denmark

    DEFF Research Database (Denmark)

    Holmgaard, Dennis Back; Hansen, Frank; Hasman, Henrik

    2017-01-01

    A multidrug-resistant strain of Pseudomonas putida was isolated from the urine of a 65-year-old women hospitalized for serious clinical conditions. Using whole genome sequencing a novel blaIMP gene, blaIMP-58 was discovered and characterized.......A multidrug-resistant strain of Pseudomonas putida was isolated from the urine of a 65-year-old women hospitalized for serious clinical conditions. Using whole genome sequencing a novel blaIMP gene, blaIMP-58 was discovered and characterized....

  20. Bacillus licheniformis BlaR1 L3 Loop Is a Zinc Metalloprotease Activated by Self-Proteolysis

    Science.gov (United States)

    Sépulchre, Jérémy; Amoroso, Ana; Joris, Bernard

    2012-01-01

    In Bacillus licheniformis 749/I, BlaP β-lactamase is induced by the presence of a β-lactam antibiotic outside the cell. The first step in the induction mechanism is the detection of the antibiotic by the membrane-bound penicillin receptor BlaR1 that is composed of two functional domains: a carboxy-terminal domain exposed outside the cell, which acts as a penicillin sensor, and an amino-terminal domain anchored to the cytoplasmic membrane, which works as a transducer-transmitter. The acylation of BlaR1 sensor domain by the antibiotic generates an intramolecular signal that leads to the activation of the L3 cytoplasmic loop of the transmitter by a single-point cleavage. The exact mechanism of L3 activation and the nature of the secondary cytoplasmic signal launched by the activated transmitter remain unknown. However, these two events seem to be linked to the presence of a HEXXH zinc binding motif of neutral zinc metallopeptidases. By different experimental approaches, we demonstrated that the L3 loop binds zinc ion, belongs to Gluzincin metallopeptidase superfamily and is activated by self-proteolysis. PMID:22623956

  1. Discovery of 1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylaminopiperidine-4-carboxylic acid amide hydrochloride (CP-945,598), a novel, potent, and selective cannabinoid type 1 receptor antagonist.

    Science.gov (United States)

    Griffith, David A; Hadcock, John R; Black, Shawn C; Iredale, Philip A; Carpino, Philip A; DaSilva-Jardine, Paul; Day, Robert; DiBrino, Joseph; Dow, Robert L; Landis, Margaret S; O'Connor, Rebecca E; Scott, Dennis O

    2009-01-22

    We report the structure-activity relationships, design, and synthesis of the novel cannabinoid type 1 (CB1) receptor antagonist 3a (CP-945,598). Compound 3a showed subnanomolar potency at human CB1 receptors in binding (Ki = 0.7 nM) and functional assays (Ki = 0.12 nM). In vivo, compound 3a reversed cannabinoid agonist-mediated responses, reduced food intake, and increased energy expenditure and fat oxidation in rodents.

  2. Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar.

    Directory of Open Access Journals (Sweden)

    Yo Sugawara

    Full Text Available The bacterial enzyme New Delhi metallo-β-lactamase hydrolyzes almost all β-lactam antibiotics, including carbapenems, which are drugs of last resort for severe bacterial infections. The spread of carbapenem-resistant Enterobacteriaceae that carry the New Delhi metallo-β-lactamase gene, blaNDM, poses a serious threat to public health. In this study, we genetically characterized eight carbapenem-resistant Escherichia coli isolates from a tertiary care hospital in Yangon, Myanmar. The eight isolates belonged to five multilocus-sequence types and harbored multiple antimicrobial-resistance genes, resulting in resistance against nearly all of the antimicrobial agents tested, except colistin and fosfomycin. Nine plasmids harboring blaNDM genes were identified from these isolates. Multiple blaNDM genes were found in the distinct Inc-replicon types of the following plasmids: an IncA/C2 plasmid harboring blaNDM-1 (n = 1, IncX3 plasmids harboring blaNDM-4 (n = 2 or blaNDM-7 (n = 1, IncFII plasmids harboring blaNDM-4 (n = 1 or blaNDM-5 (n = 3, and a multireplicon F plasmid harboring blaNDM-5 (n = 1. Comparative analysis highlighted the diversity of the blaNDM-harboring plasmids and their distinct characteristics, which depended on plasmid replicon types. The results indicate circulation of phylogenetically distinct strains of carbapenem-resistant E. coli with various plasmids harboring blaNDM genes in the hospital.

  3. Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar.

    Science.gov (United States)

    Sugawara, Yo; Akeda, Yukihiro; Sakamoto, Noriko; Takeuchi, Dan; Motooka, Daisuke; Nakamura, Shota; Hagiya, Hideharu; Yamamoto, Norihisa; Nishi, Isao; Yoshida, Hisao; Okada, Kazuhisa; Zin, Khwar Nyo; Aye, Mya Mya; Tomono, Kazunori; Hamada, Shigeyuki

    2017-01-01

    The bacterial enzyme New Delhi metallo-β-lactamase hydrolyzes almost all β-lactam antibiotics, including carbapenems, which are drugs of last resort for severe bacterial infections. The spread of carbapenem-resistant Enterobacteriaceae that carry the New Delhi metallo-β-lactamase gene, blaNDM, poses a serious threat to public health. In this study, we genetically characterized eight carbapenem-resistant Escherichia coli isolates from a tertiary care hospital in Yangon, Myanmar. The eight isolates belonged to five multilocus-sequence types and harbored multiple antimicrobial-resistance genes, resulting in resistance against nearly all of the antimicrobial agents tested, except colistin and fosfomycin. Nine plasmids harboring blaNDM genes were identified from these isolates. Multiple blaNDM genes were found in the distinct Inc-replicon types of the following plasmids: an IncA/C2 plasmid harboring blaNDM-1 (n = 1), IncX3 plasmids harboring blaNDM-4 (n = 2) or blaNDM-7 (n = 1), IncFII plasmids harboring blaNDM-4 (n = 1) or blaNDM-5 (n = 3), and a multireplicon F plasmid harboring blaNDM-5 (n = 1). Comparative analysis highlighted the diversity of the blaNDM-harboring plasmids and their distinct characteristics, which depended on plasmid replicon types. The results indicate circulation of phylogenetically distinct strains of carbapenem-resistant E. coli with various plasmids harboring blaNDM genes in the hospital.

  4. Successful treatment of a Carbapenem-resistant Klebsiella pneumoniae carrying bla OXA-48 , bla VIM-2 , bla CMY-2 and bla SHV- with high dose combination of imipenem and amikacin.

    Science.gov (United States)

    Hajjej, Zied; Gharsallah, Hedi; Naija, Habiba; Boutiba, Ilhem; Labbene, Iheb; Ferjani, Mustapha

    2016-01-01

    We describe a case of 58-year-old man with septic shock due to Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) bloodstream infections (BSI) who was successfully treated with a high dose association of amikacin and imipenem combined with continuous venovenous hemodiafiltration (CVVHDF). A Klebsiella pneumoniae (Kp) was isolated from the catheter culture and from two blood samples, drawn from the catheter before removal and from a peripheral vein. The Kp was intermediate to Amikacin (MIC = 16 μg/ml) and was resistant to all other antibiotics including Imipenem (MIC = 4 μg/ml), Colistin (MIC = 16 μg/ml) and Tigecycline (MIC = 4 μg/ml) according to the Clinical and Laboratory Standards Institute (CLSI) published in 2011. PCR amplification and sequencing verified the presence of blaOXA-48, blaVIM-2, blaCMY-2 and blaSHV-1 genes. Amikacin was given at a dose of 30 mg/kg (2.5 g) in a 30 min infusion and the dose of imipenem was increased to 1 g every 6 h despite patient's altered renal function (Creatinine Clearance = 25 ml/min). To avoid amikacin nephrotoxicity and to allow the use of high doses of imipenem, continuous venovenous hemodiafiltration (CVVHDF) (blood flow, 200 ml/h; dialysate, 1000 ml/h; ultrafiltrate, 2000 ml/h) was initiated 1 h after the start of the amikacin infusion and continued thereafter. The patient improved hemodynamically and norepinephrine was stopped five days after antibiotherapy adaptation.

  5. Co-existence of bla OXA-23 and bla NDM-1 genes of Acinetobacter baumannii isolated from Nepal: antimicrobial resistance and clinical significance

    Directory of Open Access Journals (Sweden)

    Prabhu Raj Joshi

    2017-02-01

    Full Text Available Abstract Background Molecular analysis of carbapenem-resistant genes in Acinetobacter baumannii, an emerging pathogen, is less commonly reported from Nepal. In this study we determined the antibiotic susceptibility profile and genetic mechanism of carbapenem resistance in clinical isolates of A. baumannii. Methods A. baumannii were isolated from various clinical specimens and identified based on Gram staining, biochemical tests, and PCR amplification of organism specific 16S rRNA and bla OXA-51 genes. The antibiotic susceptibility testing was performed using disc diffusion and E-test method. Multiplex PCR assays were used to detect the following β-lactamase genes: four class D carbapenem hydrolyzing oxacillinases (bla OXA-51, bla OXA-23, bla OXA-24 and bla OXA-58. Uniplex PCRs were used to detect three class B metallo-β-lactamases genes (bla IMP, bla VIM and bla NDM-1, class C cephalosporin resistance genes (bla ADC, aminoglycoside resistance gene (aphA6, and ISAba1 of all isolates. Insertion sequence ISAba125 among NDM-1 positive strains was detected. Clonal relatedness of all isolates were analyzed using repetitive sequence-based PCR (rep-PCR. Results Of total 44 analyzed isolates, 97.7% (n = 43 were carbapenem-resistant A. baumannii (CR-AB and 97.7% (n = 43 were multidrug resistant A. baumannii (MDR-AB. One isolate was detected to be extremely drug resistant A. baumannii (XDR-AB. All the isolates were fully susceptible to colistin (MICs < 2 μg/ml. The bla OXA-23 gene was detected in all isolates, while bla NDM-1 was detected in 6 isolates (13.6%. Insertion sequence, ISAba1 was detected in all of bla OXA-23 positive isolates. ISAba125 was detected in all bla NDM-1 positive strains. The bla ADC and aphA6 genes were detected in 90.1 and 40.1%, respectively. The rep-PCR of all isolates represented 7 different genotypes. Conclusion We found high prevalence of CR-AB and MDR-AB with bla OXA-23 gene in a tertiary care hospital in

  6. Effect of the CB1 cannabinoid agonist WIN 55212-2 on the acquisition and reinstatement of MDMA-induced conditioned place preference in mice

    Directory of Open Access Journals (Sweden)

    Miñarro José

    2010-03-01

    Full Text Available Abstract Background Numerous reports indicate that MDMA users consume other psychoactive drugs, among which cannabis is one of the most common. The aim of the present study was to evaluate, using the conditioned place preference, the effect of the cannabinoid agonist WIN 55,212-2 on the rewarding effects of MDMA in mice. Methods In the first experiment adolescent mice were initially conditioned with 1.25, 2.5 or 5 mg/kg of MDMA or 0.1 or 0.5 mg/kg of WIN and subsequently with both drugs. Reinstatement of the extinguished preference by priming doses was performed in the groups that showed CPP. In the second experiment, animals were conditioned with 2.5 or 5 mg/kg of MDMA and, after extinction, reinstatement of the preference was induced by 0.5 or 0.1 mg/kg of WIN. Results A low dose of WIN 55212-2 (0.1 mg/kg increased the rewarding effects of low doses of MDMA (1.25 mg/kg, although a decrease in the preference induced by MDMA (5 and 2.5 mg/kg was observed when the dose of WIN 55212-2 was raised (0.5 mg/kg. The CB1 antagonist SR 141716 also increased the rewarding effects of the lowest MDMA dose and did not block the effects of WIN. Animals treated with the highest WIN dose plus a non-neurotoxic dose of MDMA exhibited decreases of striatal DA and serotonin in the cortex. On the other hand, WIN 55212-2-induced CPP was reinstated by priming injections of MDMA, although WIN did not reinstate the MDMA-induced CPP. Conclusions These results confirm that the cannabinoid system plays a role in the rewarding effects of MDMA and highlights the risks that sporadic drug use can pose in terms of relapse to dependence. Finally, the potential neuroprotective action of cannabinoids is not supported by our data; on the contrary, they are evidence of the potential neurotoxic effect of said drugs when administered with MDMA.

  7. Detection of bla(IMP) and bla(VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains.

    Science.gov (United States)

    Fallah, Fatemeh; Borhan, Rebwar Shams; Hashemi, Ali

    2013-01-01

    Acquired Metallo-β-Lactamases (MBLs) are emerging resistance determinants in Pseudomonas aeruginosa and other gram-negative bacteria.Using Combination Disk Diffusion test, it was found that among 83 imipenem non-susceptible P. aeruginosa strains, 48 (57.9%) were MBL producers. PCR and Sequencing methods proved that these isolates were positive for blaIMP-1 genes, whereas none were positive for bla(VIM) genes. The mortality rate due to MBL-producing Pseudomonas infection was 4 (8.3%) among the hospitalized patients. Therefore, identification of drug resistance patterns in P. aeruginosa and detection of MBLs producing isolates are of great importance in the prevention and control of infections.

  8. Characterization of a novel blaIMPgene, blaIMP-58, using whole genome sequencing in a Pseudomonas putida isolate detected in Denmark.

    Science.gov (United States)

    Holmgaard, Dennis Back; Hansen, Frank; Hasman, Henrik; Justesen, Ulrik S; Hammerum, Anette M

    2017-01-01

    A multidrug-resistant strain of Pseudomonas putida was isolated from the urine of a 65-year-old women hospitalized for serious clinical conditions. Using whole genome sequencing a novel blaIMP gene, blaIMP-58 was discovered and characterized. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The effect of leptin receptor deficiency and fasting on cannabinoid receptor 1 mRNA expression in the rat hypothalamus, brainstem and nodose ganglion.

    Science.gov (United States)

    Jelsing, Jacob; Larsen, Philip Just; Vrang, Niels

    2009-10-02

    Despite ample evidence for the involvement of the endocannabinoid system in the control of appetite, food intake and energy balance, relatively little is known about the regulation of cannabinoid receptor 1 (CB(1)R) expression in respect to leptin signalling and fasting. In the present study, we examined CB(1)R mRNA levels in lean (Fa/?) and obese (fa/fa) male Zucker rats under basal and food-restricted conditions. Using stereological sampling principles coupled with semi-quantitative radioactive in situ hybridization we provide semi-quantitative estimates of CB(1)R mRNA expression in key appetite regulatory hypothalamic and brainstem areas, as well as in the nodose ganglia. Whereas no effect of fasting were determined on CB(1)R mRNA levels in the paraventricular (PVN) and ventromedial hypothalamic (VMH) nucleus, in the brainstem dorsal vagal complex or nodose ganglion of lean Zucker rats, CB(1)R mRNA levels were consistently elevated in obese Zucker rats pointing to a direct influence of disrupted leptin signalling on CB(1)R mRNA regulation.

  10. Molecular characterisation and diversity in Enterobacter cloacae from Edinburgh and Egypt carrying bla(CTX-M-14) and bla(VIM-4) β-lactamase genes.

    Science.gov (United States)

    Dimude, J U; Amyes, S G B

    2013-06-01

    The purpose of this study was to compare the carbapenemases and extended-spectrum β-lactamases (ESBLs) associated with resistance, the genetic environment of these genes, and their location on plasmids among Enterobacter cloacae isolates from Edinburgh (UK) and Egypt. Nine E. cloacae isolates were obtained from Egypt (n=3) and Edinburgh (n=6). Antimicrobial susceptibility testing was performed by agar dilution. Molecular detection of carbapenemase genes, blaCTX-M-14 and the presence of integron structures was done by PCR and sequencing. Genotyping of the strains was performed by pulsed-field gel electrophoresis (PFGE) with XbaI restriction. Plasmids were extracted to determine the location of the resistance genes. PCR sequencing revealed that all of the isolates carried the blaCTX-M-14 ESBL gene, whilst two isolates also carried the blaVIM-4 metallo-β-lactamase gene. The blaCTX-M-14 genes in two isolates were associated with the ISEcp1 transposase. Analysis of the integrons found an intI1 integron associated with the complex ISCR1. The blaVIM-4 gene was identified in the form of a gene cassette within the class 1 integron, followed downstream by the resistance genes aacA7, dfrA1 and aadA2. PFGE revealed genetic relatedness among six isolates, whereas the others were diverse although related. Plasmid analysis revealed a single plasmid carrying both blaVIM-4 and blaCTX-M-14. In conclusion, the presence of insertion sequence ISEcp1 upstream of blaCTX-M-14 suggests its involvement in the expression and mobilisation of this gene. Linked carriage of blaVIM-4 and blaCTX-M-14 on the same plasmid in E. cloacae results in resistance to all β-lactams and limits antibiotic treatment options. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  11. Predominance of carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP and blaVIM metallo-β-lactamases in a major hospital in Costa Rica.

    Science.gov (United States)

    Toval, Francisco; Guzmán-Marte, Anel; Madriz, Vivian; Somogyi, Teresita; Rodríguez, César; García, Fernando

    2015-01-01

    This study aimed to assess the molecular basis of the resistance to carbapenems in clinical isolates of Pseudomonas aeruginosa recovered from a tertiary-level health facility in San José, Costa Rica. A total of 198 non-duplicated isolates were evaluated for their susceptibility to β-lactams, aminoglycosides and fluoroquinolones. The production of metallo-β-lactamases (MBLs), the presence of MBL encoding genes (blaIMP, blaVIM and blaGIM-1) and the occurrence of these genes within class 1 integrons were investigated. In addition, an ERIC2 PCR fingerprinting method was used to elucidate the distribution of the detected MBL genes within the strain collection. Of the 198 isolates tested, 125 (63.1 %) were categorized as carbapenem-resistant. The majority (88.8 %) of the carbapemen-resistant isolates also showed resistance to ceftazidime, cefepime, aztreonam, ticarcillin/clavulanic acid, amikacin, gentamicin, tobramycin, ciprofloxacin and gatifloxacin. Among the carbapenem-resistant isolates, 102 (81.6 %) showed MBL activity. Strikingly, both blaIMP and blaVIM genes were simultaneously detected in most (94.1 %) of the 102 MBL producers. Five carbapenem-resistant MBL producers were positive only for blaIMP genes. Almost 70 % of the isolates examined harboured the intI1 gene, accompanied by the sul1 and qacEΔ1 genes in 136 (99 %) and 122 (89 %) isolates, respectively. The majority (94.4 %) of the carbapenem-resistant isolates carried the intI1 gene, in contrast to 26 % of the carbapenem-susceptible isolates. Ninety-three out of 96 (96.9 %) isolates carrying both blaIMP and blaVIM genes also harboured the intI1, sul1 and qacEΔ1 genes. Gene cassettes from carbapenem-susceptible and MBL-negative carbapenem-resistant isolates encoded aminoglycoside-resistance enzymes (aadA2, aadA4 and aadA6) as well as orfD and qacF genes. RAPD analysis distributed 126 of the isolates in 29 clusters. Eighty of the 90 blaIMP (+) blaVIM (+) isolates were sorted into 16

  12. The endocannabinoid-CB receptor system: Importance for development and in pediatric disease.

    Science.gov (United States)

    Fride, Ester

    2004-01-01

    Endogenous cannabinoids (endocannabinoids) and their cannabinoid CB1 and CB2 receptors, are present from the early stages of gestation and play a number of vital roles for the developing organism. Although most of these data are collected from animal studies, a role for cannabinoid receptors in the developing human brain has been suggested, based on the detection of "atypically" distributed CB1 receptors in several neural pathways of the fetal brain. In addition, a role for the endocannabinoid system for the human infant is likely, since the endocannabinoid 2-arachidonoyl glycerol has been detected in human milk. Animal research indicates that the Endocannabinoid-CB1 Receptor ('ECBR') system fulfills a number of roles in the developing organism: 1. embryonal implantation (requires a temporary and localized reduction in anandamide); 2. in neural development (by the transient presence of CB1 receptors in white matter areas of the nervous system); 3. as a neuroprotectant (anandamide protects the developing brain from trauma-induced neuronal loss); 4. in the initiation of suckling in the newborn (where activation of the CB1 receptors in the neonatal brain is critical for survival). 5. In addition, subtle but definite deficiencies have been described in memory, motor and addictive behaviors and in higher cognitive ('executive') function in the human offspring as result of prenatal exposure to marihuana. Therefore, the endocanabinoid-CB1 receptor system may play a role in the development of structures which control these functions, including the nigrostriatal pathway and the prefrontal cortex. From the multitude of roles of the endocannabinoids and their receptors in the developing organism, there are two distinct stages of development, during which proper functioning of the endocannabinoid system seems to be critical for survival: embryonal implantation and neonatal milk sucking. We propose that a dysfunctional Endocannabinoid-CB1 Receptor system in infants with growth

  13. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    NARCIS (Netherlands)

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors,

  14. Cannabinoid receptor type 1 and 2 expression in the skin of healthy dogs and dogs with atopic dermatitis.

    Science.gov (United States)

    Campora, Luca; Miragliotta, Vincenzo; Ricci, Emanuele; Cristino, Luigia; Di Marzo, Vincenzo; Albanese, Francesco; Federica Della Valle, Maria; Abramo, Francesca

    2012-07-01

    To determine the distribution of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2) in skin (including hair follicles and sweat and sebaceous glands) of clinically normal dogs and dogs with atopic dermatitis (AD) and to compare results with those for positive control samples for CB1 (hippocampus) and CB2 (lymph nodes). Skin samples from 5 healthy dogs and 5 dogs with AD and popliteal lymph node and hippocampus samples from 5 cadavers of dogs. CB1 and CB2 were immunohistochemically localized in formalin-fixed, paraffin-embedded sections of tissue samples. In skin samples of healthy dogs, CB1 and CB2 immunoreactivity was detected in various types of cells in the epidermis and in cells in the dermis, including perivascular cells with mast cell morphology, fibroblasts, and endothelial cells. In skin samples of dogs with AD, CB1 and CB2 immunoreactivity was stronger than it was in skin samples of healthy dogs. In positive control tissue samples, CB1 immunoreactivity was detected in all areas of the hippocampus, and CB2 immunoreactivity was detected in B-cell zones of lymphoid follicles. The endocannabinoid system and cannabimimetic compounds protect against effects of allergic inflammatory disorders in various species of mammals. Results of the present study contributed to knowledge of the endocannabinoid system and indicated this system may be a target for treatment of immune-mediated and inflammatory disorders such as allergic skin diseases in dogs.

  15. Clinical Performance of Check-Direct CPE, a Multiplex PCR for Direct Detection of bla(KPC), bla(NDM) and/or bla(VIM), and bla(OXA)-48 from Perirectal Swabs.

    Science.gov (United States)

    Lau, Anna F; Fahle, Gary A; Kemp, Margaret A; Jassem, Agatha N; Dekker, John P; Frank, Karen M

    2015-12-01

    We evaluated the clinical performance of Check-Direct CPE for carbapenemase detection directly from 301 perirectal swabs (258 patients) in a nonoutbreak setting. Culture of a PCR-confirmed, carbapenemase-containing organism, or history of colonization with such organism within the previous 2 weeks, was used as the reference standard. Check-Direct CPE demonstrated a sensitivity value, specificity value, positive predictive value (PPV), and negative predictive value (NPV) of 100% (all bla(KPC)), 88%, 21%, and 100%, respectively. False positives accounted for 79% (n = 34) of samples for which a cycle threshold (C(T)) value was reached. Simulated studies to evaluate specimen pooling as an approach to minimize costs showed no difference in C(T) values for pooled groups of three or five that each contained a single specimen spiked with ∼1,500 CFU bla(KPC) Klebsiella pneumoniae; however, the detection rate dropped to 60% at a seeded concentration of ∼150 CFU. When data were pooled, C(T) values for bla(KPC) were higher for heavy-feces-containing than for light-feces-containing liquid-suspended specimens. Furthermore, C(T) values for liquid-suspended specimens were 4 to 5 C(T) values lower (i.e., represented greater sensitivity) than those seen in direct swab analysis. Culture was equivalent to or better than Check-Direct CPE for 13/15 (87%) isolates tested in a limit-of-detection analysis. Detection of a carbapenemase gene at a C(T) cutoff value of ≤35 was culture confirmed in 23/24 (96%) of cases; however, C(T) values of >35 overlapped broadly between culture-positive (n = 21) and culture-negative (n = 36) specimens. Check-Direct CPE will likely prove most useful in high-prevalence areas or in outbreak settings where rapid carbapenemase detection is critical for infection control management. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Cannabinoid Receptor Signaling in Central Regulation of Feeding Behavior: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Marco Koch

    2017-05-01

    Full Text Available Cannabinoids are lipid messengers that modulate a variety of physiological processes and modify the generation of specific behaviors. In this regard, the cannabinoid receptor type 1 (CB1 represents the most relevant target molecule of cannabinoids so far. One main function of central CB1 signaling is to maintain whole body energy homeostasis. Thus, cannabinoids functionally interact with classical neurotransmitters in neural networks that control energy metabolism and feeding behavior. The promotion of CB1 signaling can increase appetite and stimulate feeding, while blockade of CB1 suppresses hunger and induces hypophagia. However, in order to treat overeating, pharmacological blockade of CB1 by the inverse agonist rimonabant not only suppressed feeding but also resulted in psychiatric side effects. Therefore, research within the last decade focused on deciphering the underlying cellular and molecular mechanisms of central cannabinoid signaling that control feeding and other behaviors, with the overall aim still being the identification of specific targets to develop safe pharmacological interventions for the treatment of obesity. Today, many studies unraveled the subcellular localization of CB1 and the function of cannabinoids in neurons and glial cells within circumscribed brain regions that represent integral parts of neural circuitries controlling feeding behavior. Here, these novel experimental findings will be summarized and recent advances in understanding the mechanisms of CB1-dependent cannabinoid signaling being relevant for central regulation of feeding behavior will be highlighted. Finally, presumed alternative pathways of cannabinoids that are not driven by CB1 activation but also contributing to control of feeding behavior will be introduced.

  17. Adolescent Alcohol Drinking Renders Adult Drinking BLA-Dependent: BLA Hyper-Activity as Contributor to Comorbid Alcohol Use Disorder and Anxiety Disorders.

    Science.gov (United States)

    Moaddab, Mahsa; Mangone, Elizabeth; Ray, Madelyn H; McDannald, Michael A

    2017-11-14

    Adolescent alcohol drinking increases the risk for alcohol-use disorder in adulthood. Yet, the changes in adult neural function resulting from adolescent alcohol drinking remain poorly understood. We hypothesized that adolescent alcohol drinking alters basolateral amygdala (BLA) function, making alcohol drinking BLA-dependent in adulthood. Male, Long Evans rats were given voluntary, intermittent access to alcohol (20% ethanol) or a bitter, isocaloric control solution, across adolescence. Half of the rats in each group received neurotoxic BLA lesions. In adulthood, all rats were given voluntary, intermittent access to alcohol. BLA lesions reduced adult alcohol drinking in rats receiving adolescent access to alcohol, but not in rats receiving adolescent access to the control solution. The effect of the BLA lesion was most apparent in high alcohol drinking adolescent rats. The BLA is essential for fear learning and is hyper-active in anxiety disorders. The results are consistent with adolescent heavy alcohol drinking inducing BLA hyper-activity, providing a neural mechanism for comorbid alcohol use disorder and anxiety disorders.

  18. Emergence of Klebsiella pneumoniae ST273 Carrying blaNDM-7and ST656 Carrying blaNDM-1in Manila, Philippines.

    Science.gov (United States)

    Chou, Andrew; Roa, Marylette; Evangelista, Michael A; Sulit, Arielle Kae; Lagamayo, Evelina; Torres, Brian C; Klinzing, David C; Daroy, Maria Luisa G; Navoa-Ng, Josephine; Sucgang, Richard; Zechiedrich, Lynn

    2016-10-01

    We sought to determine the epidemiology of carbapenem-resistant Enterobacteriaceae and to investigate the emergence of carbapenem-resistant Klebsiella pneumoniae in two teaching hospitals in Manila, Philippines. We screened 364 Enterobacteriaceae for carbapenem resistance between 2012 and 2013 and detected four carbapenem-resistant K. pneumoniae isolates from three different patients. We used whole genome sequencing to determine the antibiotic resistance profiles and confirmed the presence of carbapenemase genes by multiplex PCR. We used multilocus sequence typing and PCR-based replicon typing to genetically characterize the carbapenem-resistant isolates. The carbapenemase gene bla NDM was detected in K. pneumoniae isolates from two patients. The first patient had ventilator-associated pneumonia and lumbar shunt infection from K. pneumoniae ST273 carrying bla NDM-7 . The second patient had asymptomatic genitourinary colonization with K. pneumoniae ST656 carrying bla NDM-1 . The third patient had a gluteal abscess with K. pneumoniae ST1 that did not carry a carbapenemase gene, but did carry bla DHA-1 , bla OXA-1 , and bla SHV-1 . In this study, we report the first cases of bla NDM -carrying pathogens in the Philippines and add to the growing evidence of the worldwide spread of ST273 and NDM-7, a more efficient carbapenem hydrolyzer than NDM-1.

  19. A pivotal role for enhanced brainstem Orexin receptor 1 signaling in the central cannabinoid receptor 1-mediated pressor response in conscious rats.

    Science.gov (United States)

    Ibrahim, Badr Mostafa; Abdel-Rahman, Abdel A

    2015-10-05

    Orexin receptor 1 (OX1R) signaling is implicated in cannabinoid receptor 1 (CB1R) modulation of feeding. Further, our studies established the dependence of the central CB1R-mediated pressor response on neuronal nitric oxide synthase (nNOS) and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation in the RVLM. Here, we tested the novel hypothesis that brainstem orexin-A/OX1R signaling plays a pivotal role in the central CB1R-mediated pressor response. Our multiple labeling immunofluorescence findings revealed co-localization of CB1R, OX1R and the peptide orexin-A within the C1 area of the rostral ventrolateral medulla (RVLM). Activation of central CB1R following intracisternal (i.c.) WIN55,212-2 (15μg/rat) in conscious rats caused significant increases in BP and orexin-A level in RVLM neuronal tissue. Additional studies established a causal role for orexin-A in the central CB1R-mediated pressor response because (i) selective blockade of central CB1R (AM251, 30μg/rat; i.c.) abrogated WIN55,212-2-evoked increases in RVLM orexin-A level, (ii) the selective OX1R antagonist SB-408124 (10nmol/rat; i.c.) attenuated orexin-A (3nmol/rat; i.c.) or WIN55,212-2 (15μg/rat; i.c.)-evoked pressor response while selective CB1R blockade (AM251) had no effect on orexin-A (3nmol/rat; i.c.)-evoked pressor response, (iii) direct CB1R activation in the RVLM (WIN55,212-2; 0.1μg/rat) increased RVLM orexin-A and BP. Finally, SB-408124 attenuated WIN55,212-2-evoked increases in RVLM nNOS and ERK1/2 phosphorylation and BP. Our findings suggest that orexin-A/OX1R dependent activation of the RVLM nNOS/ERK1/2 cascade is essential neurochemical mechanism for the central CB1R-mediated pressor response in conscious rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. High prevalence of multidrug-resistance in Acinetobacter baumannii and dissemination of carbapenemase-encoding genes blaOXA-23-like, blaOXA-24-like and blaNDM-1 in Algiers hospitals.

    Science.gov (United States)

    Khorsi, Khadidja; Messai, Yamina; Hamidi, Moufida; Ammari, Houria; Bakour, Rabah

    2015-06-01

    To assess and characterize antibiotic resistance in Acinetobacter baumannii strains recovered from 5 health-care facilities in Algiers. Antibiotic susceptibility testing was performed by agar diffusion and agar dilution methods, resistance genes were identified by PCR and sequencing, and molecular typing of isolates was carried out by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Among 125 tested isolates, 117 (93.6%) were multidrug-resistant, of which 94 (75.2%) were imipenem resistant. The blaADC and blaOXA-51-like genes were detected in all isolates, in association with ISAba1 sequence in 84% and 8% (imipenem resistant) of isolates, respectively. The blaOXA-23-like and blaOXA-24-like carbapenemase genes were detected in 67.02% and 20.21% of imipenem-resistant isolates, respectively. The blaOXA-23-like gene is linked to ISAba1 or ISAba4 elements. The metallo-β-lactamase NDM-1 gene was found in 10 (10.6%) imipenem-resistant strains from three hospitals, it is linked to ISAba125 element in nine strains. Extended spectrum β-lactamases production was not detected. Imipenem and cefotaxime resistance phenotypes could not be transferred to Escherichia coli by conjugation. Outer membrane protein CarO gene was not detected in four imipenem-resistant isolates. The aac(6')-Ib, sul1, sul2, tetA and tetB genes were present in 5.31%, 36.17%, 77.65%, 1.06% and 65.92% of strains, respectively. Class 1 integrons were detected in 23.4% strains. ERIC-PCR typing showed a genetic diversity among blaOXA-23-like and blaOXA-24-like positive strains, while clonality was observed among blaNDM-1 positives. This study highlighted the high prevalence of imipenem resistance in Acinetobacter baumannii in Algiers hospitals mediated mainly by blaOXA-23-like, blaOXA-24-like, and blaNDM-1 genes. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  1. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity.

    Directory of Open Access Journals (Sweden)

    Lisa K Brents

    Full Text Available K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R.JWH-018, five potential monohydroxylated metabolites (M1-M5, and one carboxy metabolite (M6 were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i values that were lower than or equivalent to Δ(9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251.Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9

  2. Contribution of the basolateral amygdala NMDA and muscarinic receptors in rat's memory retrieval.

    Science.gov (United States)

    Nazarinia, Efat; Rezayof, Ameneh; Sardari, Maryam; Yazdanbakhsh, Nima

    2017-03-01

    The present study was designed to investigate the involvement of the muscarinic cholinergic receptors in the basolateral amygdala (BLA) in memory retrieval. Also, the possible relationship between the BLA muscarinic cholinergic and the NMDA receptor systems was evaluated in the inhibitory avoidance learning. Male Wistar rats were bilaterally cannulated into the BLAs and memory retrieval was measured in a step-through type inhibitory avoidance apparatus. Intra-BLA microinjection of different doses of a non-selective muscarinic receptor antagonist, scopolamine (0.5-1μg/rat, intra-BLA), 5min before the testing phase dose-dependently induced amnesia. Pre-test intra-BLA microinjection of different doses of NMDA (0.005-0.05μg/rat) reversed scopolamine-induced amnesia and improved memory retrieval. In addition, different doses of a selective NMDA receptor antagonist, D-AP5 (0.001-0.005μg/rat, intra-BLA) potentiated the response of an ineffective dose of scopolamine (0.5μg/rat) to inhibit memory retrieval. It should be considered that pre-test intra-BLA microinjection of the same doses of NMDA or D-AP5 by themselves had no effect on memory retrieval. Similar to ANOVA analysis, our cubic interpolation analysis also predicted that the activation or inactivation of the NMDA receptors by different doses of drugs can affect the scopolamine response. On the other hand, pre-test intra-BLA microinjection of D-AP5 inhibited the reversal effect of NMDA on scopolamine-induced amnesia. It can be concluded that the BLA cholinergic system, via muscarinic receptors, has a critical role in memory retrieval. Our results also suggest that a cooperative interaction between the BLA NMDA and muscarinic acetylcholine receptors modulates memory formation of inhibitory avoidance task in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cannabinoid receptor type-1: breaking the dogmas [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Arnau Busquets Garcia

    2016-05-01

    Full Text Available The endocannabinoid system (ECS is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids, and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB1. In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells and intracellular compartments (e.g., mitochondria. Interestingly, cellular and molecular effects are differentially mediated by CB1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons. Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.

  4. AM-251 and rimonabant act as direct antagonists at mu-opioid receptors: implications for opioid/cannabinoid interaction studies.

    Science.gov (United States)

    Seely, Kathryn A; Brents, Lisa K; Franks, Lirit N; Rajasekaran, Maheswari; Zimmerman, Sarah M; Fantegrossi, William E; Prather, Paul L

    2012-10-01

    Mu-opioid and CB1-cannabinoid agonists produce analgesia; however, adverse effects limit use of drugs in both classes. Additive or synergistic effects resulting from concurrent administration of low doses of mu- and CB1-agonists may produce analgesia with fewer side effects. Synergism potentially results from interaction between mu-opioid receptors (MORs) and CB1 receptors (CB1Rs). AM-251 and rimonabant are CB1R antagonist/inverse agonists employed to validate opioid-cannabinoid interactions, presumed to act selectively at CB1Rs. Therefore, the potential for direct action of these antagonists at MORs is rarely considered. This study determined if AM-251 and/or rimonabant directly bind and modulate the function of MORs. Surprisingly, AM-251 and rimonabant, but not a third CB1R inverse agonist AM-281, bind with mid-nanomolar affinity to human MORs with a rank order of affinity (K(i)) of AM-251 (251 nM) > rimonabant (652 nM) > AM281 (2135 nM). AM-251 and rimonabant, but not AM-281, also competitively antagonize morphine induced G-protein activation in CHO-hMOR cell homogenates (K(b) = 719 or 1310 nM, respectively). AM-251 and rimonabant block morphine inhibition of cAMP production, while only AM-251 elicits cAMP rebound in CHO-hMOR cells chronically exposed to morphine. AM-251 and rimonabant (10 mg/kg) attenuate morphine analgesia, whereas the same dose of AM-281 produces little effect. Therefore, in addition to high CB1R affinity, AM-251 and rimonabant bind to MORs with mid-nanomolar affinity and at higher doses may affect morphine analgesia via direct antagonism at MORs. Such CB1-independent of these antagonists effects may contribute to reported inconsistencies when CB1/MOR interactions are examined via pharmacological methods in CB1-knockout versus wild-type mice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    DEFF Research Database (Denmark)

    Frost, M; Nielsen, T L; Wraae, K

    2010-01-01

    Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants of the CB1...... receptor gene (CNR1) and the link to obesity have been conflicting. The aim of the present study was to evaluate whether selected common variants of the CNR1 are associated with measures of obesity and fat distribution....

  6. Dissemination of blaOXA-370gene among several Enterobacteriaceae species in Brazil.

    Science.gov (United States)

    Magagnin, C M; Rozales, F P; Antochevis, L; Nunes, L S; Martins, A S; Barth, A L; Sampaio, J M; Zavascki, A P

    2017-10-01

    OXA-370 is a recently described OXA-48 variant that has only been described in a few Enterobacter spp. and Klebsiella pneumoniae isolates. The purpose of this study is to assess the prevalence of OXA-370-producing isolates in carbapenem-nonsusceptible Enterobacteriaceae recovered from 28 hospitals from Brazil. Real-time PCR was used to determine the presence of bla NDM-1 , bla KPC-2 , bla VIM-type , bla GES-type , bla OXA-48-like , and bla IMP-type genes. A total of 4,451 Enterobacteriaceae were screened. The gene bla OXA-48-like was detected in 74 (2.5%) isolates, mostly of Enterobacter spp. (44.6% E. cloacae and 2.7% E. aerogenes) and Klebsiella spp. (31.1% K. pneumoniae and 6.7% K. oxytoca), followed by Escherichia coli, (6.7%), Morganella morganii, (2.7%), Citrobacter freundii (1.3%), Proteus mirabilis (1.3%), Providencia stuartii (1.3%), and Serratia spp. (1.3%). These isolates were from five hospitals, 67 (90.5%) from the hospital where the bla OXA-370 was first described. Sequencing of bla OXA-48-like was performed in 52 isolates, including E. cloacae, E. aerogenes, K. pneumoniae, K. oxytoca, E. coli, and C. freundii; all presenting 100% identity with bla OXA-370 . PFGE revealed the presence of distinct clones among K. pneumoniae, E. cloacae, K. oxytoca, and E. coli. Susceptibility rates to meropenem, imipenem, and ertapenem among OXA-370-producing isolates were 92.3%, 78.8%, 7.7% respectively; the MIC 50 /MIC 90 were 0.38/2 mg/L and 1/3 mg/L for meropenem and imipenem respectively. Overall, antimicrobial susceptibility analysis suggests that OXA-370 lacks carbapenemase activity. Our study demonstrated that the bla OXA-370 gene is disseminated among several Enterobacteriaceae species and clones, indicating a high potential for dissemination.

  7. Cannabinoid Receptor Blockade Reduces the Opportunity Cost at Which Rats Maintain Operant Performance for Rewarding Brain Stimulation

    Science.gov (United States)

    Trujillo-Pisanty, Ivan; Hernandez, Giovanni; Moreau-Debord, Ian; Cossette, Marie-Pierre; Conover, Kent; Cheer, Joseph F.; Shizgal, Peter

    2018-01-01

    There is ample evidence that blockade of CB1 receptors reduces reward seeking. However, the reported effects of CB1 blockade on performance for rewarding electrical brain stimulation stand out as an exception. By applying a novel method for conceptualizing and measuring reward seeking, we show that AM-251, a CB1 receptor antagonist, does indeed decrease performance for rewarding electrical stimulation of the medial forebrain bundle in rats. Reward seeking depends on multiple sets of variables, including the intensity of the reward, its cost, and the value of competing rewards. In turn, reward intensity depends both on the sensitivity and gain of brain reward circuitry. We show that drug-induced changes in sensitivity cannot account for the suppressive effect of AM-251 on reward seeking. Therefore, the role of CB1 receptors must be sought among the remaining determinants of performance. Our analysis provides an explanation of the inconsistencies between prior reports, which likely arose from the following: (1) the averaging of data across subjects showing heterogeneous effects and (2) the use of methods that cannot distinguish between the different determinants of reward pursuit. By means of microdialysis, we demonstrate that blockade of CB1 receptors attenuates nucleus accumbens dopamine release in response to rewarding medial forebrain bundle stimulation, and we propose that this action is responsible for the ability of the drug to decrease performance for the electrical reward. PMID:21471378

  8. Short communication: Extended-spectrum cephalosporin-resistant Escherichia coli in colostrum from New Brunswick, Canada, dairy cows harbor blaCMY-2and blaTEMresistance genes.

    Science.gov (United States)

    Awosile, B B; McClure, J T; Sanchez, J; VanLeeuwen, J; Rodriguez-Lecompte, J C; Keefe, G; Heider, L C

    2017-10-01

    Dairy calves are colonized shortly after birth by multidrug resistant (MDR) bacteria, including Escherichia coli. The role of dairy colostrum fed to calves as a potential source of MDR bacteria resistance genes has not been investigated. This study determined the recovery rate of extended-spectrum cephalosporin-resistant (ESC-R) E. coli in colostrum from cows. The ESC-R E. coli isolates were further investigated to determine their phenotypic antimicrobial resistance pattern and the genes conferring ESC-R. Fresh colostrum was collected from 452 cows from 8 dairy herds in New Brunswick, Canada. The ESC-R E. coli was isolated from the colostrum by using the VACC agar, a selective media for extended-spectrum β-lactamase producing Enterobacteriaceae. Minimum inhibitory concentration was determined for all the suspected ESC-R E. coli isolates using a commercial gram-negative broth microdilution method. Two multiplex PCR were conducted on all the suspected ESC-R E. coli isolates to determine the presence of the bla CTX-M (groups 1, 2, 9, and 8/25) bla CMY-2 , bla SHV , and bla TEM resistance genes. The ESC-R E. coli were detected in 20 (4.43%) of the colostrum samples. At least 1 ESC-R E. coli isolate was detected in 6 (75%) of the dairy herds. All ESC-R E. coli had MDR profiles based on minimum inhibitory concentration testing. No bla CTX-M groups genes were detected; however, the bla CMY-2 gene was detected in 9 or 20 (45%) and bla TEM was detected in 7 of 20 (35%) of the ESC-R E. coli. No ESC-R E. coli had both bla CMY-2 and bla TEM resistance genes. This is the first report of bla CMY-2 and bla TEM genes found in E. coli isolates cultured from dairy colostrum to our knowledge. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Role of endocannabinoids and cannabinoid-1 receptors in cerebrocortical blood flow regulation.

    Directory of Open Access Journals (Sweden)

    András Iring

    Full Text Available Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1 receptor blockade and inhibition of cannabinoid reuptake, respectively on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H.In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v. failed to influence blood pressure (BP, cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v. induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H.Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the

  10. Role of Endocannabinoids and Cannabinoid-1 Receptors in Cerebrocortical Blood Flow Regulation

    Science.gov (United States)

    Horváth, Béla; Benkő, Rita; Lacza, Zsombor; Járai, Zoltán; Sándor, Péter; Di Marzo, Vincenzo; Pacher, Pál; Benyó, Zoltán

    2013-01-01

    Background Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1) receptor blockade and inhibition of cannabinoid reuptake, respectively) on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H). Methodology/Principal Findings In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v.) failed to influence blood pressure (BP), cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry) or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v.) induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H. Conclusion/Significance Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a

  11. Novel variant (bla(VIM-4)) of the metallo-beta-lactamase gene bla(VIM-1) in a clinical strain of Pseudomonas aeruginosa.

    Science.gov (United States)

    Pournaras, Spyros; Tsakris, Athanassios; Maniati, Maria; Tzouvelekis, Leonidas S; Maniatis, Antonios N

    2002-12-01

    A Pseudomonas aeruginosa isolate highly resistant to carbapenems was collected from a patient with postsurgical cerebrospinal infection in Greece. The isolate carried a class 1 integron that contained as a sole cassette the gene bla(VIM-4), a novel variant of bla(VIM-1), with one nucleotide difference resulting in a Ser-to-Arg change at amino acid position 175 of the VIM-1 enzyme. This is the first detection of a VIM-1 variant after its appearance in Italy.

  12. Prolonged cannabinoid exposure alters GABAA receptor mediated synaptic function in cultured hippocampal neurons

    Science.gov (United States)

    Deshpande, Laxmikant S.; Blair, Robert. E.; DeLorenzo, Robert. J.

    2011-01-01

    Developing cannabinoid based medication along with marijuana’s recreational use makes it important to investigate molecular adaptations the endocannabinoid system undergoes following prolonged use and withdrawal. Repeated cannabinoid administration results in development of tolerance and produces withdrawal symptoms that may include seizures. Here we employed electrophysiological and immunochemical techniques to investigate the effects of prolonged CB1 receptor agonist exposure on cultured hippocampal neurons. Approximately 60% of CB1 receptors colocalize to GABAergic terminals in hippocampal cultures. Prolonged treatment with the cannabinamimetic WIN 55,212-2 (+WIN, 1μM, 24-h) caused profound CB1 receptor downregulation accompanied by neuronal hyperexcitability. Furthermore, prolonged +WIN treatment resulted in increased GABA release as indicated by increased mIPSC frequency, a diminished GABAergic inhibition as indicated by reduction in mIPSC amplitude and a reduction in GABAA channel number. Additionally, surface staining for the GABAA β2/3 receptor subunits was decreased, while no changes in staining for the presynaptic vesicular GABA transporter were observed, indicating that GABAergic terminals remained intact. These findings demonstrate that agonist-induced downregulation of the CB1 receptor in hippocampal cultures results in neuronal hyperexcitability that may be attributed, in part, to alterations in both presynaptic GABA release mechanisms and postsynaptic GABAA receptor function demonstrating a novel role for cannabinoid-dependent presynaptic control of neuronal transmission. PMID:21324315

  13. Enterobacter cloacae Complex Isolates Harboring blaNMC-A or blaIMI-Type Class A Carbapenemase Genes on Novel Chromosomal Integrative Elements and Plasmids.

    Science.gov (United States)

    Boyd, David A; Mataseje, Laura F; Davidson, Ross; Delport, Johannes A; Fuller, Jeff; Hoang, Linda; Lefebvre, Brigitte; Levett, Paul N; Roscoe, Diane L; Willey, Barbara M; Mulvey, Michael R

    2017-05-01

    Carbapenem-resistant Enterobacter cloacae complex isolates submitted to a reference laboratory from 2010 to 2015 were screened by PCR for seven common carbapenemase gene groups, namely, KPC, NDM, OXA-48, VIM, IMP, GES, and NMC-A/IMI. Nineteen of the submitted isolates (1.7%) were found to harbor Ambler class A bla NMC-A or bla IMI -type carbapenemases. All 19 isolates were resistant to at least one carbapenem but susceptible to aminoglycosides, trimethoprim-sulfamethoxazole, tigecycline, and ciprofloxacin. Most isolates (17/19) gave positive results with the Carba-NP test for phenotypic carbapenemase detection. Isolates were genetically diverse by pulsed-field gel electrophoresis macrorestriction analysis, multilocus sequence typing, and hsp60 gene analysis. The genes were found in various Enterobacter cloacae complex species; however, bla NMC-A was highly associated with Enterobacter ludwigii Whole-genome sequencing and bioinformatics analysis revealed that all NMC-A ( n = 10), IMI-1 ( n = 5), and IMI-9 ( n = 2) producers harbored the carbapenemase gene on EludIMEX-1-like integrative mobile elements (EcloIMEXs) located in the identical chromosomal locus. Two novel genes, bla IMI-5 and bla IMI-6 , were harbored on different IncFII-type plasmids. Enterobacter cloacae complex isolates harboring bla NMC-A/IMI -type carbapenemases are relatively rare in Canada. Though mostly found integrated into the chromosome, some variants are located on plasmids that may enhance their mobility potential. © Crown copyright 2017.

  14. Detection of blaOXA-23-like and blaNDM-1 in Acinetobacter baumannii from the Eastern Region, Saudi Arabia.

    Science.gov (United States)

    El-Mahdy, Taghrid S; Al-Agamy, Mohamed H; Al-Qahtani, Ahmed A; Shibl, Atef M

    2017-01-01

    Acinetobacter baumannii is currently considered as one of the most common successful pathogens in the healthcare system due to its ability to quickly develop resistance. Ten carbapenem-resistant A. calcoaceticus-baumannii complex were isolated from the eastern region, Saudi Arabia in 2014. All isolates were resistant to ciprofloxacin, however, 8 of 10 isolates were tigecycline resistant. Susceptibility test was also carried out for three aminoglycosides, resistance to gentamicin was 80%, amikacin was 90%, and tobramycin was 50%. Colistin susceptibility was seen in all isolates. The 10 isolates harbored bla OXA-23-like and ISAba1 and 9 of them also carried bla ADC . Three isolates of 10 harbored bla NDM-1 coding for NDM metallo-β-lactamase (MBL) with coexistence of bla ADC together with either bla GES or bla TEM or both. Those three isolates exhibited negative Etest MBL screening test. Pulsed-field gel electrophoresis revealed the high clonal variability of the isolates, although two isolates were indistinguishable. The risk of dissemination of carbapenem resistance through presence of ISAba1 upstream of OXA-23-like in all isolates raises the concern about emergence of higher carbapenem prevalence rates in the future in our region. This study also demonstrated the importance of molecular surveillance to provide accurate and reliable data about the resistance rates of A. baumannii. Finally, the high incidence of NDM-1 among our isolates requires a routine surveillance to monitor the future prevalence of this enzyme in the region.

  15. Antibiotic Resistance Pattern and Evaluation of Metallo-Beta Lactamase Genes Including bla- IMP and bla- VIM Types in Pseudomonas aeruginosa Isolated from Patients in Tehran Hospitals.

    Science.gov (United States)

    Aghamiri, Samira; Amirmozafari, Nour; Fallah Mehrabadi, Jalil; Fouladtan, Babak; Samadi Kafil, Hossein

    2014-01-01

    Beta-lactamase producing strains of Pseudomonas aeruginosa are important etiological agents of hospital infections. Carbapenems are among the most effective antibiotics used against Pseudomonas infections, but they can be rendered infective by group B β -lactamase, commonly called metallo-beta lactamase. In this study, the antimicrobial sensitivity patterns of P. aeruginosa strains isolated from 9 different hospitals in Tehran, Iran, as well as the prevalence of MBLs genes (bla- VIM and bla- IMP ) were determined. A total of 212 strains of P. aeruginosa recovered from patients in hospitals in Tehran were confirmed by both biochemical methods and PCR. Their antimicrobial sensitivity patterns were determined by Kirby-Bauer disk diffusion method. Following MIC determination, imipenem resistant strains were selected by DDST method which was followed by PCR tests for determination of MBLs genes: bla- IMP and bla- VIM . The results indicated that, in the DDST phenotypic method, among the 100 imipenem resistant isolates, 75 strains were MBLs positive. The PCR test indicated that 70 strains (33%) carried bla- VIM gene and 20 strains (9%) harbored bla- IMP . The results indicated that the extent of antibiotic resistance among Pseudomonas aeruginosa is on the rise. This may be due to production of MBLs enzymes. Therefore, determination of antibiotic sensitivity patterns and MBLs production by these bacteria, can be important in control of clinical Pseudomonas infection.

  16. Evolution of IncA/C blaCMY-₂-carrying plasmids by acquisition of the blaNDM-₁ carbapenemase gene.

    Science.gov (United States)

    Carattoli, Alessandra; Villa, Laura; Poirel, Laurent; Bonnin, Rémy A; Nordmann, Patrice

    2012-02-01

    The bla(NDM-1) gene has been reported to be often located on broad-host-range plasmids of the IncA/C type in clinical but also environmental bacteria recovered from the New Delhi, India, area. IncA/C-type plasmids are the main vehicles for the spread of the cephalosporinase gene bla(CMY-2), frequently identified in the United States, Canada, and Europe. In this study, we completed the sequence of IncA/C plasmid pNDM-KN carrying the bla(NDM-1) gene, recovered from a Klebsiella pneumoniae isolate from Kenya. This sequence was compared with those of three IncA/C-type reference plasmids from Escherichia coli, Yersinia ruckeri, and Photobacterium damselae. Comparative analysis showed that the bla(NDM-1) gene was located on a widely diffused plasmid scaffold known to be responsible for the spread of bla(CMY-2)-like genes and consequently for resistance to broad-spectrum cephalosporins. Considering that IncA/C plasmids possess a broad host range, this scaffold might support a large-scale diffusion of the bla(NDM-1) gene among Gram-negative rods.

  17. Müller cells express the cannabinoid CB2 receptor in the vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian

    2013-01-01

    The presence of the cannabinoid receptor type 1 (CB1R) has been largely documented in the rodent and primate retinae in recent years. There is, however, some controversy concerning the presence of the CB2 receptor (CB2R) within the central nervous system. Only recently, CB2R has been found...... in the rodent retina, but its presence in the primate retina has not yet been demonstrated. The aim of this study was twofold: 1) to characterize the distribution patterns of CB2R in the monkey retina and compare this distribution with that previously reported for CB1R and 2) to resolve the controversy...... on the presence of CB2R in the neural component of the retina. We therefore thoroughly examined the cellular localization of CB2R in the vervet monkey (Chlorocebus sabeus) retina, using confocal microscopy. Our results demonstrate that CB2R, like CB1R, is present throughout the retinal layers, but with striking...

  18. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture.

    Science.gov (United States)

    Miyashita, Keiko; Oyama, Tohru; Sakuta, Tetsuya; Tokuda, Masayuki; Torii, Mitsuo

    2012-06-01

    Anandamide (N-arachidonoylethanolamine [AEA]) is one of the main endocannabinoids. Endocannabinoids are implicated in various physiological and pathologic functions, inducing not only nociception but also regeneration and inflammation. The role of the endocannabinoid system in peripheral organs was recently described. The aim of this study was to investigate the effect of AEA on matrix metalloproteinase (MMP)-2 induction in human dental pulp cells (HPC). We examined AEA-induced MMP-2 production and the expression of AEA receptors (cannabinoid [CB] receptor-1, CB2, and transient receptor potential vanilloid-1 [TRPV1]) in HPC by Western blot. MMP-2 concentrations in supernatants were determined by enzyme-linked immunosorbent assay. We then investigated the role of the AEA receptors and mitogen-activated protein kinase in AEA-induced MMP-2 production in HPC. AEA significantly induced MMP-2 production in HPC. HPC expressed all 3 types of AEA receptor (CB1, CB2, and TRPV1). AEA-induced MMP-2 production was blocked by CB1 or TRPV1 antagonists and by small interfering RNA for CB1 or TRPV1. Furthermore, c-Jun N-terminal kinase inhibitor also reduced MMP-2 production. We demonstrated for the first time that AEA induced MMP-2 production via CB1 and TRPV1 in HPC. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Investigation of diversity of plasmids carrying the blaTEM-52 gene

    DEFF Research Database (Denmark)

    Bielak, Eliza Maria; Bergenholtz, Rikke D.; Jørgensen, Mikael Skaanning

    2011-01-01

    OBJECTIVES: To investigate the diversity of plasmids that carry blaTEM-52 genes among Escherichia coli and Salmonella enterica originating from animals, meat products and humans. METHODS: A collection of 22 blaTEM-52-encoding plasmids was characterized by restriction fragment length polymorphism...... of self-transfer to a plasmid-free E. coli recipient. CONCLUSIONS: The blaTEM-52 gene found in humans could have been transmitted on transferable plasmids originating from animal sources. Some of the blaTEM-52 plasmids carry replicons that differ from the classical ones. Two novel replicons were detected...... (RFLP), replicon typing (by PCR or replicon sequencing), susceptibility testing, assessment of plasmid ability to self-transfer by conjugation and typing of the genetic environment of the blaTEM-52 gene. Detected IncI1 plasmids underwent further plasmid multilocus sequence typing. RESULTS: RFLP profiles...

  20. Δ9-tetrahydrocannabinol impairs the inflammatory response to influenza infection: role of antigen-presenting cells and the cannabinoid receptors 1 and 2.

    Science.gov (United States)

    Karmaus, Peer W F; Chen, Weimin; Crawford, Robert; Kaplan, Barbara L F; Kaminski, Norbert E

    2013-02-01

    Δ(9)-tetrahydrocannabinol (Δ(9)-THC) has potent immune modulatory properties and can impair pathogen-induced immune defenses, which in part have been attributed to ligation of the cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). Most recently, dendritic cells (DC) were identified for their potential to enhance influenza-induced immunopathology in mice lacking CB(1) and CB(2) (CB(1) (-/-)CB(2) (-/-)). This study focused on the modulation of the inflammatory immune response to influenza by Δ(9)-THC and the role of CB(1) and/or CB(2) as receptor targets for Δ(9)-THC. C57Bl/6 (wild type) and CB(1) (-/-)CB(2) (-/-) mice were administered Δ(9)-THC (75 mg/kg) surrounding the intranasal instillation of A/PR/8/34 influenza virus. Three days post infection (dpi), Δ(9)-THC broadly decreased expression levels of mRNA induced by the innate immune response to influenza, suppressed the percentage of interferon-gamma (IFN-γ)-producing CD4(+) and interleukin-17-producing NK1.1(+) cells, and reduced the influx of antigen-presenting cells (APC), including inflammatory myeloid cells and monocytes/macrophages, into the lung in a CB(1)- and/or CB(2)-dependent manner. Δ(9)-THC had little effect on the expression of CD86, major histocompatibility complex I (MHC I), and MHC II by APC isolated from the lung. In vitro studies demonstrated that lipopolysaccharide (LPS)-induced maturation was suppressed by Δ(9)-THC in bone marrow-derived DC (bmDC). Furthermore, antigen-specific IFN-γ production by CD8(+) T cells after coculture was reduced by Δ(9)-THC treatment of bmDC in a CB(1)- and/or CB(2)-dependent manner. Collectively, these studies suggest that Δ(9)-THC potently suppresses myeloid cell immune function, in a manner involving CB(1) and/or CB(2), thereby impairing immune responses to influenza infection.

  1. The spread of bla OXA-48 and bla OXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia.

    Science.gov (United States)

    Fursova, Nadezhda K; Astashkin, Eugeny I; Knyazeva, Anastasia I; Kartsev, Nikolay N; Leonova, Ekaterina S; Ershova, Olga N; Alexandrova, Irina A; Kurdyumova, Natalia V; Sazikina, Svetlana Yu; Volozhantsev, Nikolay V; Svetoch, Edward A; Dyatlov, Ivan A

    2015-11-02

    The spread of carbapenemase-producing Enterobacteriaceae (CPE) is a great problem of healthcare worldwide. Study of the spread for bla OXA-48-like genes coding epidemically significant carbapenemases among hospital pathogens is important for the regional and global epidemiology of antimicrobial resistance. Antibacterial resistant isolates of Klebsiella pneumoniae (n = 95) from 54 patients, P. mirabilis (n = 32) from 20 patients, Enterobacter aerogenes (n = 6) from four patients, and Enterobacter cloacae (n = 4) from four patients were collected from January, 2013 to October, 2014 in neurosurgical intensive care unit (ICU) of the Burdenko Neurosurgery Institute, Moscow. Characteristics of the isolates were done using susceptibility tests, PCR detection of the resistance genes, genotyping, conjugation, DNA sequencing, and bioinformatic analysis. Major strains under study were multi drug resistant (MDR), resistant to three or more functional classes of drugs simultaneously-98.9 % K. pneumoniae, 100 % P. mirabilis, one E. aerogenes isolate, and one E. cloacae isolate. Molecular-genetic mechanism of MDR in K. pneumoniae and P. mirabilis isolates were based on carrying of epidemic extended-spectrum beta-lactamase bla CTX-M-15 gene (87.2 and 90.6 % accordingly), carbapenemase bla OXA-48-like gene (55.3 and 23.3 % accordingly), and class 1 (54.8 and 31.3 % accordingly) and class 2 (90.6 % P. mirabilis) integrons. The bla OXA-48-like-positive K. pneumoniae were collected during whole two-year surveillance period, while P. mirabilis and Enterobacter spp. carrying bla OXA-48-like genes were detected only after four and 18 months after the research start, respectively. The bla OXA-48-like gene acquisition was shown for P. mirabilis isolates collected from five patients and for E. cloacae isolate collected from one patient during their stay in the ICU, presumably from bla OXA-48-like-positive K. pneumoniae. The source of the bla OXA-244 gene acquired by E

  2. Molecular detection of metallo-β-lactamase genes, bla IMP-1, bla VIM-2 and bla SPM-1 in imipenem resistant Pseudomonas aeruginosa isolated from clinical specimens in teaching hospitals of Ahvaz, Iran.

    Science.gov (United States)

    Moosavian, Mojtaba; Rahimzadeh, Mohammad

    2015-02-01

    Carbapenem resistant Pseudomonas aeruginosa is a serious cause of nosocomial infections. The main purpose of the study is to determine the prevalence rate of imipenem resistant Pseudomonas aeruginosa carrying metallo-ß-lactamase (MBL) genes. 236 Pseudomonas aeruginosa isolates were collected from teaching hospitals of Ahvaz University of Medical Sciences during a period of 9 months in 2012. These strains were identified using conventional microbiological tests. The susceptibility of isolates to antibiotics were assessed using disk diffusion test. The IMP-EDTA combination disk phenotypic test was performed for detection of MBL producing strains. Finally, polymerase chain reaction (PCR) was performed to detect MBL genes, bla IMP-1, bla VIM-2 and bla SPM-1 in imipenem resistant strains. Out of 236 examined isolates, 122 isolates (51.4%) were resistant to imipenem. The IMP-EDTA combination test showed that among 122 imipenem resistant strains, 110 strains (90%) were phenotipically MBL producers. Additionally, the results of PCR method showed that 2 strains (1.6%) and 67strains (55%) of imipenem resistant Pseudomonas aeruginosa isolates contained bla VIM-2 and bla IMP-1 genes respectively. No SPM-1gene was found in the examined samples. Resistance of P. aeruginosa isolates to imipenem due to MBL enzymes is increasing in Ahavaz. Because of clinical significance of this kind of resistance, rapid detection of MBL producing strains and followed by appropriate treatment is necessary to prevent the spreading of these organisms.

  3. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity.

    Science.gov (United States)

    Meadows, A; Lee, J H; Wu, C-S; Wei, Q; Pradhan, G; Yafi, M; Lu, H-C; Sun, Y

    2016-03-01

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical cannabinoid receptor, and its pharmacology and functions are distinct from CB1. GPR55 regulates neuropathic pain, gut, bone, immune functions and motor coordination. GPR55 is expressed in various brain regions and peripheral tissues. However, the roles of GPR55 in energy and glucose homeostasis are unknown. Here we have investigated the roles of GPR55 in energy balance and insulin sensitivity using GPR55-null mice (GPR55(-/-)). Body composition of the mice was measured by EchoMRI. Food intake, feeding behavior, energy expenditure and physical activity of GPR55(-/-) mice were determined by indirect calorimetry. Muscle function was assessed by forced treadmill running test. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Adipose inflammation was assessed by flow cytometry analysis of adipose tissue macrophages. The expression of inflammatory markers in adipose tissues and orexigenic/anorexigenic peptides in the hypothalamus was also analyzed by real-time PCR. GPR55(-/-) mice had normal total energy intake and feeding pattern (i.e., no changes in meal size, meal number or feeding frequency). Intriguingly, whereas adult GPR55(-/-) mice only showed a modest increase in overall body weight, they exhibited significantly increased fat mass and insulin resistance. The spontaneous locomotor activity of GPR55(-/-) mice was dramatically decreased, whereas resting metabolic rate and non-shivering thermogenesis were unchanged. Moreover, GPR55(-/-) mice exhibited significantly decreased voluntary physical activity, showing reduced running distance on the running wheels, whereas muscle function appeared to be normal. GPR55 has an important role in energy

  4. Yersinia enterocolitica and Photorhabdus asymbiotica β-lactamases BlaA are exported by the twin-arginine translocation pathway.

    Science.gov (United States)

    Schriefer, Eva-Maria; Hoffmann-Thoms, Stephanie; Schmid, Franz X; Schmid, Annika; Heesemann, Jürgen

    2013-01-01

    In general, β-lactamases of medically important Gram-negative bacteria are Sec-dependently translocated into the periplasm. In contrast, β-lactamases of Mycobacteria spp. (BlaC, BlaS) and the Gram-negative environmental bacteria Stenotrophomonas maltophilia (L2) and Xanthomonas campestris (Bla(XCC-1)) have been reported to be secreted by the twin-arginine translocation (Tat) system. Yersinia enterocolitica carries 2 distinct β-lactamase genes (blaA and blaB) encoding BlaA(Ye) and the AmpC-like β-lactamase BlaB, respectively. By using the software PRED-TAT for prediction and discrimination of Sec from Tat signal peptides, we identified a functional Tat signal sequence for Yersinia BlaA(Ye). The Tat-dependent translocation of BlaA(Ye) could be clearly demonstrated by using a Y. enterocolitica tatC-mutant and cell fractionation. Moreover, we could demonstrate a unique unusual temperature-dependent activity profile of BlaA(Ye) ranging from 15 to 60 °C and a high 'melting temperature' (T(M)=44.3°) in comparison to the related Sec-dependent β-lactamase TEM-1 (20-50°C, T(M)=34.9 °C). Strikingly, the blaA gene of Y. enterocolitica is present in diverse environmental Yersinia spp. and a blaA homolog gene could be identified in the closely related Photorhabdus asymbiotica (BlaA(Pa); 69% identity to BlaA(Ye)). For BlaA(Pa) of P. asymbiotica, we could also demonstrate Tat-dependent secretion. These results suggest that Yersinia BlaA-related β-lactamases may be the prototype of a large Tat-dependent β-lactamase family, which originated from environmental bacteria. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta

    DEFF Research Database (Denmark)

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...... or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p......Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...

  6. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci

    DEFF Research Database (Denmark)

    Olsen, John E.; Christensen, Henrik; Aarestrup, Frank Møller

    2006-01-01

    NS) and Staphylococcus aureus of bovine origin. Methods: blaZ was detected in 143 strains of penicillin-resistant S. aureus and CoNS from five Danish cattle herds (n = 25/23), random CoNS isolates from Denmark (n = 37), a collection of S. aureus from six different countries (n = 52), humans in Denmark (n = 3) and beta...... types. The major types all contained strains of both human and bovine origin, and more than one Staphylococcus species, demonstrating a shared gene pool. In a comparison of S. aureus and CoNS obtained from five Danish cattle herds, the same type of blaZ was only detected in one case. Conclusions....... The localization of blaZ was determined by Southern blotting in 108 isolates. Results: All penicillin-resistant strains carried blaZ and showed a similar organization of blaR1 and blaZ. The blaZ gene was localized to a plasmid in only 16 of the resistant strains. Sixty-nine sequences representing 105 isolates...

  7. Transcriptional analysis of bla NDM-1 and copy number alteration under carbapenem stress

    Directory of Open Access Journals (Sweden)

    Deepjyoti Paul

    2017-02-01

    Full Text Available Abstract Background New Delhi metallo beta-lactamase is known to compromise carbapenem therapy and leading to treatment failure. However, their response to carbapenem stress is not clearly known. Here, we have investigated the transcriptional response of bla NDM-1 and plasmid copy number alteration under carbapenem exposure. Methods Three bla NDM-1 harboring plasmids representing three incompatibility types (IncFIC, IncA/C and IncK were inoculated in LB broth with and without imipenem, meropenem and ertapenem. After each 1 h total RNA was isolated, immediately reverse transcribed into cDNA and quantitative real time PCR was used for transcriptional expression of bla NDM-1. Horizontal transferability and stability of the plasmids encoding bla NDM-1 were also determined. Changes in copy number of bla NDM-1 harboring plasmids under the exposure of different carbapenems were determined by real time PCR. Clonal relatedness among the isolates was determined by pulsed field gel electrophoresis. Results Under carbapenem stress over an interval of time there was a sharp variation in the transcriptional expression of bla NDM-1 although it did not follow a specific pattern. All bla NDM-1 carrying plasmids were transferable by conjugation. These plasmids were highly stable and complete loss was observed between 92nd to 96th serial passages when antibiotic pressure was withdrawn. High copy number of bla NDM-1 was found for IncF type plasmids compared to the other replicon types. Conclusion This study suggests that the single dose of carbapenem pressure does not significantly influence the expression of bla NDM-1 and also focus on the stability of this gene as well as the change in copy number with respect to the incompatible type of plasmid harboring resistance determinant.

  8. Decreased Fitness and Virulence in ST10 Escherichia coli Harboring blaNDM-5 and mcr-1 against a ST4981 Strain with blaNDM-5

    Directory of Open Access Journals (Sweden)

    Yawei Zhang

    2017-06-01

    Full Text Available Although coexistence of blaNDM-5 and mcr-1 in Escherichia coli has been reported, little is known about the fitness and virulence of such strains. Three carbapenem-resistant Escherichia coli (GZ1, GZ2, and GZ3 successively isolated from one patient in 2015 were investigated for microbiological fitness and virulence. GZ1 and GZ2 were also resistant to colistin. To verify the association between plasmids and fitness, growth kinetics of the transconjugants were performed. We also analyzed genomic sequences of GZ2 and GZ3 using PacBio sequencing. GZ1 and GZ2 (ST10 co-harbored blaNDM-5 and mcr-1, while GZ3 (ST4981 carried only blaNDM-5. GZ3 demonstrated significantly more rapid growth (P < 0.001 and overgrew GZ2 with a competitive index of 1.0157 (4 h and 2.5207 (24 h. Increased resistance to serum killing and mice mortality was also identified in GZ3. While GZ2 had four plasmids (IncI2, IncX3, IncHI2, IncFII, GZ3 possessed one plasmid (IncFII. The genetic contexts of blaNDM-5 in GZ2 and GZ3 were identical but inserted into different backbones, IncX3 (102,512 bp and IncFII (91,451 bp, respectively. The growth was not statistically different between the transconjugants with mcr-1 or blaNDM-5 plasmid and recipient (P = 0.6238. Whole genome sequence analysis revealed that 28 virulence genes were specific to GZ3, potentially contributing to increased virulence of GZ3. Decreased fitness and virulence in a mcr-1 and blaNDM-5 co-harboring ST10 E. coli was found alongside a ST4981 strain with only blaNDM-5. Acquisition of mcr-1 or blaNDM-5 plasmid did not lead to considerable fitness costs, indicating the potential for dissemination of mcr-1 and blaNDM-5 in Enterobacteriaceae.

  9. Multidrug-resistant Acinetobacter baumannii strains carrying the bla(OxA-23) and the bla(GES-11) genes in a neonatology center in Tunisia.

    Science.gov (United States)

    Charfi-Kessis, Karama; Mansour, Wejdene; Ben Haj Khalifa, Anis; Mastouri, Maha; Nordmann, Patrice; Aouni, Mahjoub; Poirel, Laurent

    2014-09-01

    Multidrug-resistant and difficult-to-treat Acinetobacter baumannii may be responsible for nosocomial infections. The production of carbapenem-hydrolyzing class D β-lactamases (CHDLs) and extended-spectrum β-lactamase (ESBLs) of the GES type possessing a carbapenemase activity has been increasingly reported worldwide in A. baumannii. The aim of this study was to analyze the resistance mechanisms of two carbapenem resistant A. baumannii clinical isolates recovered in a neonatology center in the center-east of Tunisia. Two carbapenem resistant A. baumannii isolates were recovered. The first isolate co-harbored the blaGES-11 ESBL gene and the blaOxA-23 CHDL gene. Analyses of the genetic location indicated that the blaGES-11 gene was plasmid located (Gr6). However, the blaOxA-23 gene was located on the chromosome. The second strain had only the blaOxA-23 CHDL gene, which was plasmid located. This study showed the first description of the GES-type β-lactamase in A. baumannii in Tunisia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Rapid Detection of blaKPC Carbapenemase Genes by Real-Time PCR▿

    OpenAIRE

    Hindiyeh, Musa; Smollen, Gill; Grossman, Zehava; Ram, Daniela; Davidson, Yehudit; Mileguir, Fernando; Vax, Marina; Ben David, Debbie; Tal, Ilana; Rahav, Galia; Shamiss, Ari; Mendelson, Ella; Keller, Nathan

    2008-01-01

    Carbapenem resistance among Enterobacteriaceae is an emerging problem worldwide. Klebsiella pneumoniae carbapenemase (blaKPC) enzymes are among the most common β-lactamases described. In this study, we report the development and validation of a real-time PCR (q-PCR) assay for the detection of blaKPC genes using TaqMan chemistry. The q-PCR amplification of blaKPC DNA was linear over 7 log dilutions (r2 = 0.999; slope, 3.54), and the amplification efficiency was 91.6%. The q-PCR detection limit...

  11. Social Isolation During Adolescence Induces Anxiety Behaviors and Enhances Firing Activity in BLA Pyramidal Neurons via mGluR5 Upregulation.

    Science.gov (United States)

    Lin, Song; Li, Xin; Chen, Yi-Hua; Gao, Feng; Chen, Hao; Hu, Neng-Yuan; Huang, Lang; Luo, Zheng-Yi; Liu, Ji-Hong; You, Qiang-Long; Yin, Ya-Nan; Li, Ze-Lin; Li, Xiao-Wen; Du, Zhuo-Jun; Yang, Jian-Ming; Gao, Tian-Ming

    2017-09-15

    Social isolation during the vulnerable period of adolescence contributes to the occurrence of psychiatric disorders and profoundly affects brain development and adult behavior. Although the impact of social isolation during adolescence on anxiety behaviors has been well studied, much less is known about the onset and underlying mechanisms of these behaviors. We observed that following 2 weeks, but not 1 week, of social isolation, adolescent mice exhibited anxiety behaviors. Strikingly, the mGluR5 protein levels in the amygdala increased concomitantly with anxiety behaviors, and both intraperitoneal administration and intra-basolateral amygdala (BLA) infusion of MPEP, a metabotropic glutamate receptor 5 antagonist, normalized anxiety behaviors. Furthermore, electrophysiological studies showed that 2 weeks of social isolation during adolescence facilitated pyramidal neuronal excitability in the BLA, which could be normalized by MPEP. Together, these results reveal a critical period in adolescence during which social isolation can induce anxiety behaviors and facilitate BLA pyramidal neuronal excitability, both of which are mediated by mGluR5, thus providing mechanistic insights into the onset of anxiety behaviors after social isolation during adolescence.

  12. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play

    Directory of Open Access Journals (Sweden)

    Antonia Manduca

    2016-11-01

    Full Text Available Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R or mu-opioid receptor (MOR antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC. Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of mediates social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  13. Electroacupuncture Potentiates Cannabinoid Receptor-Mediated Descending Inhibitory Control in a Mouse Model of Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Yuan

    2018-04-01

    Full Text Available Knee osteoarthritis (KOA is a highly prevalent, chronic joint disorder, which can lead to chronic pain. Although electroacupuncture (EA is effective in relieving chronic pain in the clinic, the involved mechanisms remain unclear. Reduced diffuse noxius inhibitory controls (DNIC function is associated with chronic pain and may be related to the action of endocannabinoids. In the present study, we determined whether EA may potentiate cannabinoid receptor-mediated descending inhibitory control and inhibit chronic pain in a mouse model of KOA. We found that the optimized parameters of EA inhibiting chronic pain were the low frequency and high intensity (2 Hz + 1 mA. EA reversed the reduced expression of CB1 receptors and the 2-arachidonoylglycerol (2-AG level in the midbrain in chronic pain. Microinjection of the CB1 receptor antagonist AM251 into the ventrolateral periaqueductal gray (vlPAG can reversed the EA effect on pain hypersensitivity and DNIC function. In addition, CB1 receptors on GABAergic but not glutamatergic neurons are involved in the EA effect on DNIC function and descending inhibitory control of 5-HT in the medulla, thus inhibiting chronic pain. Our data suggest that endocannabinoid (2-AG-CB1R-GABA-5-HT may be a novel signaling pathway involved in the effect of EA improving DNIC function and inhibiting chronic pain.

  14. Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity

    NARCIS (Netherlands)

    Boon, M.R.; Kooijman, S.; Dam, A.D. van; Pelgrom, L.R.; Berbée, J.F.P.; Visseren, C.A.R.; Aggele, R.C. van; Hoek, A.M. van den; Sips, H.C.M.; Lombès, M.; Havekes, L.M.; Tamsma, J.T.; Guigas, B.; Meijer, O.C.; Jukema, J.W.; Rensen, P.C.N.

    2014-01-01

    The endocannabinoid system is an important player in energy metabolism by regulating appetite, lipolysis, and energy expenditure. Chronic blockade of the cannabinoid 1 receptor (CB1R) leads to long-term maintenance of weight loss and reduction of dyslipidemia in experimental and human obesity. The

  15. Enterobacteriaceae Harboring AmpC (blaCMY) and ESBL (blaCTX-M) in Migratory and Nonmigratory Wild Songbird Populations on Ohio Dairies.

    Science.gov (United States)

    Mathys, Dimitria A; Mathys, Blake A; Mollenkopf, Dixie F; Daniels, Joshua B; Wittum, Thomas E

    2017-04-01

    Extended-spectrum β-lactamases (ESBLs) confer bacterial resistance to critically important antimicrobials, including extended-spectrum cephalosporins (ESCs). Livestock are important reservoirs for the zoonotic food-borne transmission of ESC-resistant enteric bacteria. Our aim is to describe the potential role of migratory and resident wild birds in the epidemiology of ESBL-mediated bacterial resistance on dairy farms. Using mist nets, we sampled wild migratory and resident birds either immediately adjacent to or 600 ft away from free-stall barns on three Ohio dairy farms during the 2014 and 2015 spring migrations. Individual swabs were used to obtain both a cloacal and external surface swab from each bird. Samples were inoculated into MacConkey broth containing cefotaxime then inoculated onto MacConkey agar with cefoxitin, cefepime, or meropenem to identify the bla CMY, bla CTX-M, and carbapenemase phenotypes, respectively. Six hundred twenty-three birds were sampled, 19 (3.0%) of which harbored bacteria with bla CMY and 32 (5.1%) harbored bacteria with bla CTX-M from either their cloacal sample or from their external swab. There was no difference in the prevalence of either gene between migratory and resident birds. Prevalence of bla CMY and bla CTX-M was higher among birds sampled immediately outside the barns compared with those sampled 600 ft away. Our results suggest that wild birds can serve as mechanical and/or biological vectors for Enterobacteriaceae with resistance to ESCs. Birds live in close contact with dairy cows and their feed, therefore, transmission locally between farms is possible. Finding a similar prevalence in migratory and nonmigratory birds suggests the potential for regional and intercontinental movement of these resistance genes via birds.

  16. Detection of bla-IMP-1 and bla-IMP-2 Genes Among Metallo-β-lactamase-Producing Pseudomonas Aeruginosa Isolated from Burn Patients in Isfahan

    Directory of Open Access Journals (Sweden)

    M. Pourbabaee

    2016-02-01

    Full Text Available Background: Pseudomonas aeruginosa is a nosocomial pathogen which especially causes infections among burn patients. Carbapenems are extensively used for the treatment of infections caused by multidrug-resistant P. aeruginosa isolates. The emergence of carbapenemases producing isolates is an outcome of increased utilization of carbapenems. The aim of this study was to determine the bla-IMP-1 and bla-IMP-2 genes in metallo-β-lactamase (MBL -producing Pseudomonas aeruginosa isolated from burn patients in Isfahan. Material and Methods: A total of 150 P. aeruginosa were isolated from burn patients hospitalized in Imam-Mousakazem hospital in Isfahan. Antimicrobial susceptibility was determined using disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI guidelines. Double Disk Synergy Test (DDST was carried out for screening of MBL production in imipenem-resistant strains. PCR assays were used for detection of bla-IMP-1 and bla-IMP-2 genes among metallo-β-lactamase-producing Pseudomonas aeruginosa isolates. The purified PCR products were sequenced. Results: Of 150 Pseudomonas aeruginosa isolates, %100 identified as multi-drug resistant strains. The most resistance rates were seen against ciprofloxacin, tobromycin, meropenem and imipenem. All of 144 imipenem-resistant Pseudomonas aeruginosa isolates were MBL producing by DDST test. Twenty-nine (19.3% and 8(5.3% MBL producing Pseudomonas aeruginosa isolates harbored bla-IMP-1 and bla-IMP-2 genes respectively. Conclusions: According to results of this study high level resistance to imipenem and MBl genes carriage was seen among Pseudomonas aeruginosa isolated from burn patient infections in our region.

  17. First detection of bla TEM, SHV and CTX-M among Gram negative ...

    African Journals Online (AJOL)

    First detection of bla TEM, SHV and CTX-M among Gram negative bacilli exhibiting extended spectrum β- lactamase phenotype isolated at University Hospital Center, Yalgado Ouedraogo, Ouagadougou, Burkina Faso.

  18. Providencia isolates carrying bla (PER-1) and bla (VIM-2) genes: biofilm-forming capacity and biofilm inhibitory concentrations for carbapenem antibiotics.

    Science.gov (United States)

    Kim, Jungmin; Kim, Shukho; Lee, Hee Woo; Kim, Sung Min; Seol, Sung Yong

    2011-06-01

    Multidrug-resistant clinical isolates of Providentia carrying bla (PER-1) and bla (VIM-2) were evaluated for the abilities to form biofilm and high biofilm forming capacity was demonstrated in them. Minimum biofilm inhibitory concentrations (MBICs), minimum biofilm eradication concentrations (MBECs), and minimum inhibitory concentrations (MICs) for imipenem and meropenem were also determined. In all tested strains, the MBICs were higher than the MICs for both drugs. Interestingly, the MBICs and the MBEC(50) for meropenem were lower than those for imipenem in the isolates producing high amounts of biofilm, suggesting that meropenem is superior to imipenem in the growth inhibition and eradication of biofilm forming Providentia strains.

  19. Occurrence of blaNDM-1 & absence of blaKPC genes encoding carbapenem resistance in uropathogens from a tertiary care centre from north India

    Directory of Open Access Journals (Sweden)

    Balvinder Mohan

    2015-01-01

    Interpretation & conclusions: The bla NDM-1 gene was absent in our isolates obtained during 2008 but was present amongst Enterobacteriaceae isolated in 2012. The bla KPC gene was also not found. Nine isolates obtained during the two years had multiple genes encoding carbapenemases confirming the previous reports of emergence of GNB containing genes encoding multiple carbapenemases. Typing using BOX-PCR indicated that this emergence was not because of clonal expansion of a single strain, and multiple strains were circulating at a single point of time.

  20. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of blaNDM-7and blaOXA-48.

    Science.gov (United States)

    Solgi, H; Badmasti, F; Aminzadeh, Z; Giske, C G; Pourahmad, M; Vaziri, F; Havaei, S A; Shahcheraghi, F

    2017-11-01

    Gastrointestinal colonization of carbapenem-resistant Enterobacteriaceae (CRE) could serve as a reservoir for the transmission of these pathogens in the clinical setting. The aim of this study was to investigate the intestinal carriage of CRE and to analyze risk factors for CRE carriage. Rectal swabs were collected from 95 patients at two Iranian university hospitals. CRE screening was performed using selective media (CHROMagar and MacConkey agar). Polymerase chain reaction (PCR) was used to detect carbapenemase-encoding genes. Clonal relatedness was investigated by pulsed-field gel electrophoresis (PFGE). The rate of carriage of CRE in hospitalized patients was 37.9%. Overall, 54 CRE isolates were identified, of which 47 were carbapenemase-producers. All of the 54 CRE were detected using CHROMagar compared with 52 CRE detected using MacConkey agar. Fifteen patients were colonized by multiple CRE isolates. Three significant risk factors for CRE carriage were detected: intensive care unit (ICU) hospitalization, antibiotic exposure, and mechanical ventilation. bla OXA-48 was the most frequent carbapenemase detected, followed by bla NDM-1 and bla NDM-7 . Eleven carbapenemase-producing Enterobacteriaceae (CPE) isolates co-harbored bla NDM-1 and bla OXA-48 . Also, six CPE isolates co-harbored bla NDM-7 and bla OXA-48 . We did not detect bla KPC , bla GES , bla IMP , or bla VIM . PFGE analysis showed that Escherichia coli clones were diverse, while Klebsiella pneumoniae isolates were divided into four clusters. Cluster I was the major clone carrying bla OXA-48 and bla CTX-M-15 genes. In our study, the carriage rate of CRE was high and the emergence of CPE isolates among patients is alarming. The implementation of adequate preventive measures such as active surveillance is urgently needed to control the spread of CPE in the healthcare setting.

  1. Differential Binding of Co(II) and Zn(II) to Metallo-beta-Lactamase Bla2 from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, M.; Breece, R; Hajdin, C; Bender, K; Hu, Z; Costello, A; Bennett, B; Tierney, D; Crowder, M

    2009-01-01

    In an effort to probe the structure, mechanism, and biochemical properties of metallo-{beta}-lactamase Bla2 from Bacillus anthracis, the enzyme was overexpressed, purified, and characterized. Metal analyses demonstrated that recombinant Bla2 tightly binds 1 equiv of Zn(II). Steady-state kinetic studies showed that mono-Zn(II) Bla2 (1Zn-Bla2) is active, while di-Zn(II) Bla2 (ZnZn-Bla2) was unstable. Catalytically, 1Zn-Bla2 behaves like the related enzymes CcrA and L1. In contrast, di-Co(II) Bla2 (CoCo-Bla2) is substantially more active than the mono-Co(II) analogue. Rapid kinetics and UV-vis, 1H NMR, EPR, and EXAFS spectroscopic studies show that Co(II) binding to Bla2 is distributed, while EXAFS shows that Zn(II) binding is sequential. To our knowledge, this is the first documented example of a Zn enzyme that binds Co(II) and Zn(II) via distinct mechanisms, underscoring the need to demonstrate transferability when extrapolating results on Co(II)-substituted proteins to the native Zn(II)-containing forms.

  2. First report of blaNDM-1-producing Acinetobacter baumannii isolated in Lebanon from civilians wounded during the Syrian war.

    Science.gov (United States)

    Rafei, Rayane; Dabboussi, Fouad; Hamze, Monzer; Eveillard, Matthieu; Lemarié, Carole; Mallat, Hassan; Rolain, Jean-Marc; Joly-Guillou, Marie-Laure; Kempf, Marie

    2014-04-01

    The emergence of carbapenem-resistant Acinetobacter baumannii has been observed worldwide. We describe the first detection of A. baumannii carrying the blaNDM-1 gene in Lebanon, isolated from Syrian patients wounded during the civil war. Four carbapenem-resistant A. baumannii strains isolated in 2012 in the Tripoli Government Hospital, Lebanon, from civilians wounded during the Syrian war, were analysed. Susceptibility was determined by disk diffusion testing, and resistance to carbapenems was confirmed by Etest. The presence of blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, blaOXA-143-like, and blaNDM was investigated by PCR. Clonal relationships were studied by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and blaOXA-51 sequence-based typing. All isolates harboured the blaNDM-1 gene and were negative for other tested carbapenemases. They all belonged to the sequence type 85 and formed a single cluster by PFGE. Finally, blaOXA-51-like gene sequencing revealed the presence of the blaOXA-94 variant in all four isolates. These findings show that Syria constitutes a reservoir for NDM-1-producing bacteria. These results also highlight the need for effective measures to stop the threatening spread of such strains. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Delta-9-tetrahydrocannabinol decreases masticatory muscle sensitization in female rats through peripheral cannabinoid receptor activation.

    Science.gov (United States)

    Wong, H; Hossain, S; Cairns, B E

    2017-11-01

    This study investigated whether intramuscular injection of delta-9-tetrahydrocannabinol (THC), by acting on peripheral cannabinoid (CB) receptors, could decrease nerve growth factor (NGF)-induced sensitization in female rat masseter muscle; a model which mimics the symptoms of myofascial temporomandibular disorders. Immunohistochemistry was used to explore the peripheral expression of cannabinoid receptors in the masseter muscle while behavioural and electrophysiology experiments were employed to assess the functional effects of intramuscular injection of THC. It was found that CB1 and CB2 receptors are expressed by trigeminal ganglion neurons that innervate the masseter muscle and also on their peripheral endings. Their expression was greater in TRPV1-positive ganglion neurons. Three days after intramuscular injection of NGF, ganglion neuron expression of CB1 and CB2, but not TPRV1, was decreased. In behavioural experiments, intramuscular injection (10 μL) of THC (1 mg/mL) attenuated NGF-induced mechanical sensitization. No change in mechanical threshold was observed in the contralateral masseter muscles and no impairment of motor function was found after intramuscular injections of THC. In anaesthetized rats, the same concentration of THC increased the mechanical thresholds of masseter muscle mechanoreceptors. Co-administration of the CB1 antagonist AM251 blocked the effect of THC on masseter muscle mechanoreceptors while the CB2 antagonist AM630 had no effect. These results suggest that reduced inhibitory input from the peripheral cannabinoid system may contribute to NGF-induced local myofascial sensitization of mechanoreceptors. Peripheral application of THC may counter this effect by activating the CB1 receptors on masseter muscle mechanoreceptors to provide analgesic relief without central side effects. Our results suggest THC could reduce masticatory muscle pain through activating peripheral CB1 receptors. Peripheral application of cannabinoids could be a

  4. [Development and evaluation of novel loop-mediated isothermal amplification for rapid detection of bla(IMP-1) and bla(VIM-2) genes].

    Science.gov (United States)

    Kojima, Tadashi; Shibata, Naohiro; Ikedo, Masanari; Arakawa, Yoshichika

    2006-07-01

    Loop-mediated isothermal amplification (LAMP) amplifies a target gene with high specificity and rapidity under isothermal conditions. LAMP assays were developed for the rapid detection of metallo-beta-lactamase (MBL) genes such as bla(IMP-1)) and bla(VIM-2). We initially designed specific primers to detect MBL genes for LAMP assays and evaluated the specificity and sensitivity of these assays. LAMP assays amplified MBL genes under a constant temperature of 63 degrees C within 1 hour, and were compared to PCR in MBL-producing strains. The results of MBL genes typing by LAMP assays agree completely with PCR results. The lower detection limits of bla(IMP-1)- and bla(VIM-2)-LAMP assays using real-time turbidimeters were 30cfu/test and 3cfu/test. After amplification, products were directly observed by the naked eye with a fluorescent detection reagent. In conclusion, LAMP assays are convenient, rapid, and fully feasible for detecting MBL genes in ordinary clinical microbiology laboratories without special apparatus.

  5. Proximal Tubular Cannabinoid-1 Receptor Regulates Obesity-Induced CKD.

    Science.gov (United States)

    Udi, Shiran; Hinden, Liad; Earley, Brian; Drori, Adi; Reuveni, Noa; Hadar, Rivka; Cinar, Resat; Nemirovski, Alina; Tam, Joseph

    2017-12-01

    Obesity-related structural and functional changes in the kidney develop early in the course of obesity and occur independently of hypertension, diabetes, and dyslipidemia. Activating the renal cannabinoid-1 receptor (CB 1 R) induces nephropathy, whereas CB 1 R blockade improves kidney function. Whether these effects are mediated via a specific cell type within the kidney remains unknown. Here, we show that specific deletion of CB 1 R in the renal proximal tubule cells did not protect the mice from obesity, but markedly attenuated the obesity-induced lipid accumulation in the kidney and renal dysfunction, injury, inflammation, and fibrosis. These effects associated with increased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as enhanced fatty acid β -oxidation. Collectively, these findings indicate that renal proximal tubule cell CB 1 R contributes to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy by regulating the liver kinase B1/AMP-activated protein kinase signaling pathway. Copyright © 2017 by the American Society of Nephrology.

  6. Spread of plasmids containing the bla(VIM-1) and bla(CTX-M) genes and the qnr determinant in Enterobacter cloacae, Klebsiella pneumoniae and Klebsiella oxytoca isolates.

    Science.gov (United States)

    Miró, Elisenda; Segura, Concha; Navarro, Ferran; Sorlí, Lluisa; Coll, Pere; Horcajada, Juan P; Alvarez-Lerma, Francisco; Salvadó, Margarita

    2010-04-01

    We describe 12 VIM-1-producing strains (7 Enterobacter cloacae, 2 Klebsiella pneumoniae and 3 clonal Klebsiella oxytoca strains) detected among clinically relevant Enterobacteriaceae isolates from routine cultures at the Hospital del Mar (Barcelona, Spain) from December 2006 to May 2007. Susceptibility to carbapenems was evaluated with the MicroScan system. beta-Lactamases were identified by PCR and sequencing. Clonal relationships between the isolates were analysed by PFGE. Transferability of the enzymes was tested by conjugation. Plasmid characterization was performed by PCR-based replicon typing and PFGE with S1 nuclease digestion of whole genomic DNA. The PFGE gels were then transferred and hybridized. The disc diffusion method correctly identified five of the seven E. cloacae isolates as intermediate or resistant strains. All isolates produced the VIM-1 enzyme. Three E. cloacae and three K. oxytoca strains were also CTX-M-9-producing strains, and one E. cloacae was also a CTX-M-3-producing strain. The plasmids carrying the bla(VIM) gene, of unknown incompatibility group, had a size of approximately 75 kb (eight strains) or 40 kb (three strains) and also contained the qnrS and the aac(6')-Ib-cr genes. In the remaining strain the bla(VIM-1) gene was found in an HI2 plasmid of 290 kb together with bla(CTX-M-9), qnrA, qnrS and the aac(6')-Ib-cr genes. The results showed a linkage between the bla(VIM-1) and the qnrS and the aac(6')-Ib-cr genes, and between the bla(CTX-M-9) and the qnrA genes.

  7. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  8. A novel transposon, Tn6306, mediates the spread of blaIMI in Enterobacteriaceae in hospitals

    Directory of Open Access Journals (Sweden)

    Fangfang Zhang

    2017-12-01

    Full Text Available The increasing incidence of carbapenem-resistant Enterobacteriaceae has become a challenge for clinical therapy. In our study, we analysed the molecular characteristics of imipenem-hydrolyzing β-lactamase (IMI in Enterobacteriaceae isolates. Two reported clinical isolates, the IMI-3-producing Raoultella ornithinolytica RJ46C and the IMI-2-producing Escherichia coli RJ18 were identified in our retrospective review of isolates collected from June 2010 to June 2013, both isolates were resistant to carbapenem but sensitive to expanded-spectrum cephalosporins. The blaIMI gene was located on different ∼170-kb plasmids in both isolates. The blaIMI-3 gene was carried by the plasmid pRJ46C, which was extracted from the transconjugant and identified to be a 166,620-bp conjugative IncFIIY plasmid that contained 193 open reading frames, including replication-, plasmid conjugal transfer-, partitioning-, and mobilization-associated structures. The blaIMI-3 gene was located on a 15-kb region with a completely inverted sequence relative to that of plasmid pGA45, two ISEcl1-like elements containing two 33-bp complete inverted repeats were in an inverted orientation on both sides of the 15-kb region. We identified this typical structure as a novel composite transposon named Tn6306, indicating the occurrence of transposition. In addition, the blaIMI-2-carrying pRJ18 was an IncFIB plasmid, and a similar ISEcl1-like element was identified in an inverted direction upstream of IMI-2 in pRJ18. The identification of blaIMI in R. ornithinolytica and E. coli highlights the diversity of spreading carbapenemases in Enterobacteriaceae between hospitals and the environment in China. The novel transposon Tn6306, and other insert sequences, may play important roles in blaIMI mobilization. Keywords: blaIMI in Enterobacteriaceae, Genetic environment, Plasmids, Novel transposon structure Tn6306, ISEcl1-like element

  9. The G protein G(i1) exhibits basal coupling but not preassembly with G protein-coupled receptors

    Czech Academy of Sciences Publication Activity Database

    Bondar, A.; Lazar, Josef

    2017-01-01

    Roč. 292, č. 23 (2017), s. 9690-9698 ISSN 0021-9258 Institutional support: RVO:61388963 Keywords : resonance energy transfer * CB1 cannabinoid receptor * living cells Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.125, year: 2016

  10. Incidence of blaNDM-1 gene in Escherichia coli isolates at a tertiary care referral hospital in Northeast India

    Directory of Open Access Journals (Sweden)

    A Bora

    2013-01-01

    Full Text Available Purpose: Increasing reports on New Delhi metallo-β-lactamase-1 (NDM-1 producing Escherichia coli constitute a serious threat to global health since it is found to be highly resistant to most of the currently available antibiotics including carbapenems. This study has been performed to find out the incidence blaNDM-1 in E. coli isolates recovered from the various clinical samples at a tertiary care referral hospital in Northeast India. Materials and Methods: A total of 270 non-duplicated E. coli isolates were recovered from the various clinical samples at a tertiary care referral hospital in Northeast India. All isolates with reduced susceptibility to meropenem or ertapenem (diameter of zones of inhibition, ≤21 mm were further phenotypically confirmed for carbapenemase production by modified Hodge test. All screened isolates were also subjected to the polymerase chain reaction detection of blaNDM-1 gene and additional bla genes coding for transmission electron microscopy, SHV, CTX-M, and AmpC. Results: Out of 270 E. coli isolates, 14 were screened for carbapenemase production on the basis of their reduced susceptibility to meropenem or ertapenem. All screened isolates were found to be positive for blaNDM-1 . Each of the blaNDM-1 possessing isolate was also positive for two or more additional bla genes, such as blaTEM , blaCTX-M and blaAmpC . Phylogenetic analysis showed very less variation in blaNDM-1 gene with respect to blaNDM-1 possessing E. coli isolates from other parts of India and abroad. Conclusions: Our findings highlight the incidence of blaNDM-1 in E. coli isolates with a reduced susceptibility to meropenem or ertapenem.

  11. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  12. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit.

    Science.gov (United States)

    Lintas, Alessandra; Chi, Ning; Lauzon, Nicole M; Bishop, Stephanie F; Gholizadeh, Shervin; Sun, Ninglei; Tan, Huibing; Laviolette, Steven R

    2011-08-03

    The basolateral amygdala (BLA), ventral tegmental area (VTA), and nucleus accumbens (NAc) play central roles in the processing of opiate-related associative reward learning and memory. The BLA receives innervation from dopaminergic fibers originating in the VTA, and both dopamine (DA) D1 and D2 receptors are expressed in this region. Using a combination of in vivo single-unit extracellular recording in the NAc combined with behavioral pharmacology studies, we have identified a double dissociation in the functional roles of DA D1 versus D2 receptor transmission in the BLA, which depends on opiate exposure state; thus, in previously opiate-naive rats, blockade of intra-BLA D1, but not D2, receptor transmission blocked the acquisition of associative opiate reward memory, measured in an unbiased conditioned place preference procedure. In direct contrast, in rats made opiate dependent and conditioned in a state of withdrawal, intra-BLA D2, but not D1, receptor blockade blocked opiate reward encoding. This functional switch was dependent on cAMP signaling as comodulation of intra-BLA cAMP levels reversed or replicated the functional effects of intra-BLA D1 or D2 transmission during opiate reward processing. Single-unit in vivo extracellular recordings performed in neurons of the NAc confirmed an opiate-state-dependent role for BLA D1/D2 transmission in NAc neuronal response patterns to morphine. Our results characterize and identify a novel opiate addiction switching mechanism directly in the BLA that can control the processing of opiate reward information as a direct function of opiate exposure state via D1 or D2 receptor signaling substrates.

  13. [Progress in study on endocannabinoids and cannabinoid receptors in the treatment for neuropathic pain].

    Science.gov (United States)

    Liu, Peng; Zhang, Wei; Zhang, Shaobo; Zhang, Yibao; Wang, Jing

    2016-08-01

    Endocannabinoids and cannabinoid receptors are expressed in various central pain modulation regions. They maintain in dynamic changes in the expression level and distribution under different pathological and physiological conditions. These changes possess advantage as well as disadvantage. Exogenous administration of endocannabinoids exerts analgesic effect in different pain models, which is mainly mediated by the cannabinoid CB1 and CB2 receptors. Inhibition of enzymes for degrading endocannabinoids in different pain models also shows analgesic effect due to the increased local levels of endocannabinoids.

  14. Endocannabinoids and cannabinoid receptors in ischaemia–reperfusion injury and preconditioning

    Science.gov (United States)

    Pacher, P; Haskó, G

    2007-01-01

    Ischaemia–reperfusion (I/R) is a pivotal mechanism of organ injury during stroke, myocardial infarction, organ transplantation and vascular surgeries. Ischaemic preconditioning (IPC) is a potent endogenous form of tissue protection against I/R injury. On the one hand, endocannabinoids have been implicated in the protective effects of IPC through cannabinoid CB1/CB2 receptor-dependent and -independent mechanisms. However, there is evidence suggesting that endocannabinoids are overproduced during various forms of I/R, such as myocardial infarction or whole body I/R associated with circulatory shock, and may contribute to the cardiovascular depressive state associated with these pathologies. Previous studies using synthetic CB1 receptor agonists or knockout mice demonstrated CB1 receptor-dependent protection against cerebral I/R injury in various animal models. In contrast, several follow-up reports have shown protection afforded by CB1 receptor antagonists, but not agonists. Excitedly, emerging studies using potent CB2 receptor agonists and/or knockout mice have provided compelling evidence that CB2 receptor activation is protective against myocardial, cerebral and hepatic I/R injuries by decreasing the endothelial cell activation/inflammatory response (for example, expression of adhesion molecules, secretion of chemokines, and so on), and by attenuating the leukocyte chemotaxis, rolling, adhesion to endothelium, activation and transendothelial migration, and interrelated oxidative/nitrosative damage. This review is aimed to discuss the role of endocannabinoids and CB receptors in various forms of I/R injury (myocardial, cerebral, hepatic and circulatory shock) and preconditioning, and to delineate the evidence supporting the therapeutic utility of selective CB2 receptor agonists, which are devoid of psychoactive effects, as a promising new approach to limit I/R-induced tissue damage. PMID:18026124

  15. First Identification of a Patient Colonized With Klebsiella pneumoniae Carrying blaNDM-1 in Taiwan

    Directory of Open Access Journals (Sweden)

    Hua-Shin Wu

    2010-11-01

    Full Text Available New Delhi metallo-β-lactamase 1 (NDM-1 is a novel type of metallo-β-lactamase (MBL. Enterobacteriaceae carrying this NDM-1 encoding gene, blaNDM-1, have been identified worldwide. Bacteria carrying blaNDM-1 are not only resistant to carbapenem, but also highly resistant to many classes of antibiotics, which indicate the importance of prompt identification of these bacteria and implementation of strict infection control measures to prevent their transmission. Here, we report the first identification and management of a patient colonized with Klebsiella pneumoniae carrying blaNDM-1 in Taiwan, who returned from New Delhi where he had been hospitalized for a gun-shot injury.

  16. BlaSTorage: a fast package to parse, manage and store BLAST results.

    Science.gov (United States)

    Orsini, Massimiliano; Carcangiu, Simone

    2013-01-30

    Large-scale sequence studies requiring BLAST-based analysis produce huge amounts of data to be parsed. BLAST parsers are available, but they are often missing some important features, such as keeping all information from the raw BLAST output, allowing direct access to single results, and performing logical operations over them. We implemented BlaSTorage, a Python package that parses multi BLAST results and returns them in a purpose-built object-database format. Unlike other BLAST parsers, BlaSTorage retains and stores all parts of BLAST results, including alignments, without loss of information; a complete API allows access to all the data components. BlaSTorage shows comparable speed of more basic parser written in compiled languages as C++ and can be easily integrated into web applications or software pipelines.

  17. BlaSTorage: a fast package to parse, manage and store BLAST results

    Directory of Open Access Journals (Sweden)

    Orsini Massimiliano

    2013-01-01

    Full Text Available Abstract Background Large-scale sequence studies requiring BLAST-based analysis produce huge amounts of data to be parsed. BLAST parsers are available, but they are often missing some important features, such as keeping all information from the raw BLAST output, allowing direct access to single results, and performing logical operations over them. Findings We implemented BlaSTorage, a Python package that parses multi BLAST results and returns them in a purpose-built object-database format. Unlike other BLAST parsers, BlaSTorage retains and stores all parts of BLAST results, including alignments, without loss of information; a complete API allows access to all the data components. Conclusions BlaSTorage shows comparable speed of more basic parser written in compiled languages as C++ and can be easily integrated into web applications or software pipelines.

  18. [Cannabis and cannabinoid receptors: from pathophysiology to therapeutic options].

    Science.gov (United States)

    Derkinderen, P; Valjent, E; Darcel, F; Damier, P; Girault, J-A

    2004-07-01

    Although cannabis has been used as a medicine for several centuries, the therapeutic properties of cannabis preparations (essentially haschich and marijuana) make them far most popular as a recreational drugs. Scientific studies on the effects of cannabis were advanced considerably by the identification in 1964 of cannabinoid D9-tetrahydrocannadinol (THC), recognized as the major active constituent of cannabis. Cloning of the centrally located CB1 receptor in 1990 and the identification of the first endogenous ligand of the CB1 receptor, anandamide, in 1992 further advanced our knowledge. Progress has incited further research on the biochemistry and pharmacology of the cannabinoids in numerous diseases of the central nervous system. In the laboratory animal, cannabinoids have demonstrated potential in motion disorders, demyelinizing disease, epilepsy, and as anti-tumor and neuroprotector agents. Several clinical studies are currently in progress, but therapeutic use of cannabinoids in humans couls be hindered by undesirable effects, particularly psychotropic effects. CB1 receptor antagonists also have interesting therapeutic potential.

  19. Crystal Structure of a Dimerized Cockroach Allergen Bla g 2 Complexed with a Monoclonal Antibody

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mi; Gustchina, Alla; Alexandratos, Jerry; Wlodawer, Alexander; Wünschmann, Sabina; Kepley, Christopher L.; Chapman, Martin D.; Pomes, Anna (INDOOR Bio.); (VCU); (NIH)

    2008-09-03

    The crystal structure of a 1:1 complex between the German cockroach allergen Bla g 2 and the Fab' fragment of a monoclonal antibody 7C11 was solved at 2.8-{angstrom} resolution. Bla g 2 binds to the antibody through four loops that include residues 60-70, 83-86, 98-100, and 129-132. Cation-{pi} interactions exist between Lys-65, Arg-83, and Lys-132 in Bla g 2 and several tyrosines in 7C11. In the complex with Fab', Bla g 2 forms a dimer, which is stabilized by a quasi-four-helix bundle comprised of an {alpha}-helix and a helical turn from each allergen monomer, exhibiting a novel dimerization mode for an aspartic protease. A disulfide bridge between C51a and C113, unique to the aspartic protease family, connects the two helical elements within each Bla g 2 monomer, thus facilitating formation of the bundle. Mutation of these cysteines, as well as the residues Asn-52, Gln-110, and Ile-114, involved in hydrophobic interactions within the bundle, resulted in a protein that did not dimerize. The mutant proteins induced less {beta}-hexosaminidase release from mast cells than the wild-type Bla g 2, suggesting a functional role of dimerization in allergenicity. Because 7C11 shares a binding epitope with IgE, the information gained by analysis of the crystal structure of its complex provided guidance for site-directed mutagenesis of the allergen epitope. We have now identified key residues involved in IgE antibody binding; this information will be useful for the design of vaccines for immunotherapy.

  20. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles.

    Science.gov (United States)

    Chatterjee, Somdatta; Mondal, Ayan; Mitra, Shravani; Basu, Sulagna

    2017-08-01

    To investigate the transmission of the gene encoding New Delhi metallo-β-lactamase-1 ( bla NDM-1 ) through outer membrane vesicles (OMVs) released from an Acinetobacter baumannii strain (A_115). Isolation and purification of OMVs by density gradient from a carbapenem-resistant clinical strain of A. baumannii harbouring plasmid-mediated bla NDM-1 and aac(6')-Ib-cr genes was performed. DNA was purified from the OMVs and used for PCR and dot-blot analysis. Vesicles treated with DNase I and proteinase K were used to transform A. baumannii ATCC 19606 and Escherichia coli JM109 strains. MIC values for the transformants were determined, followed by PCR and restriction digestion of plasmids. PFGE was done for A_115 and transformants of ATCC 19606 and JM109. The A. baumannii strain (ST 1462) released vesicles (25-100 nm) during in vitro growth at late log phase. PCR and dot-blot analysis confirmed the presence of bla NDM-1 and aac(6')-Ib-cr genes in intravesicular DNA. bla NDM-1 and aac(6')-Ib-cr genes were transferred to both the A. baumannii ATCC 19606 and E. coli JM109 recipient cells. The transformation frequency of the purified OMVs was in the range of 10 -5 -10 -6 and gradually reduced with storage of OMVs. The sizes of the plasmids in the transformants and their restriction digestion patterns were identical to the plasmid in A_115. The transformants showed elevated MIC values of the β-lactam group of antibiotics, which confirmed the presence of a bla NDM-1 -harbouring plasmid. This is the first experimental evidence of intra- and inter-species transfer of a plasmid harbouring a bla NDM-1 gene in A. baumannii via OMVs with high transformation frequency. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Occurrence of blaNDM-7within IncX3-type plasmid of Escherichia coli from India.

    Science.gov (United States)

    Paul, Deepjyoti; Bhattacharjee, Amitabha; Ingti, Birson; Choudhury, Nargis Alom; Maurya, Anand Prakash; Dhar, Debadatta; Chakravarty, Atanu

    2017-04-01

    New-Delhi metallo-β-lactamase-7 with higher hydrolytic activity than its ancestor NDM-1 is emerging across the globe including India. In this study, we have investigated the genetic context of bla NDM-7 and alteration in plasmid copy number under concentration gradient carbapenem stress. Six bla NDM-7 producing Escherichia coli isolates were obtained from Silchar Medical College and Hospital and the co-existence of other β-lactamases and transferability of this resistant determinant was determined by transformation and conjugation assay followed by typing of the plasmid by PBRT method. Genetic context and plasmid stability of bla NDM-7 was also determined. The change in copy number of transconjugable plasmid carrying bla NDM-7 under exposure of different carbapenem antibiotics was determined by quantitative Real Time PCR. All the six isolates carrying bla NDM-7 were conjugatively transferable through an IncX3-type plasmid and were also found to co-harbor bla CTX-M-15 . Genetic analysis of bla NDM-7 showed an association of ISAba125, IS5 and a truncated portion of ISAba125 in the upstream region and ble MBL gene in the downstream region of bla NDM-7 . Complete loss of the plasmids carrying bla NDM-7 was observed between 85th to 90th serial passages when antibiotic pressure was withdrawn. After analyzing the relative copy number it was observed that the copy number of the bla NDM-7 encoding plasmid was highly affected by the concentration of ertapenem. The present study has first demonstrated presence of IncX3-type plasmid encoding bla NDM-7 within nosocomial isolates of E. coli. Measures must be taken to prevent or atleast slowdown the emergence of this resistance determinant in this country. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition

    Directory of Open Access Journals (Sweden)

    Megan S. Wyeth

    2017-08-01

    Full Text Available Although Netos are considered auxiliary subunits critical for kainate receptor (KAR function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1-, and parvalbumin (PV-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediated inhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.

  3. Infusion of the NMDA Receptor Antagonist, DL-APV, into the Basolateral Amygdala Disrupts Learning to Fear a Novel and a Familiar Context as Well as Relearning to Fear an Extinguished Context

    Science.gov (United States)

    Laurent, Vincent; Westbrook, R. Frederick

    2009-01-01

    Ample evidence suggests that activation of NMDA receptors (NMDAr) in the basolateral complex of the amygdala (BLA) is necessary for context fear conditioning. The present series of experiments examined whether this activation was still required when the to-be-shocked context had a history. We found that BLA infusion of the selective NMDAr…

  4. Non-O1/Non-O139 Vibrio cholerae Avian Isolate from France Cocarrying the bla(VIM-1) and bla(VIM-4) Genes.

    Science.gov (United States)

    Aberkane, Salim; Compain, Fabrice; Barraud, Olivier; Ouédraogo, Abdoul-Salam; Bouzinbi, Nicolas; Vittecoq, Marion; Jean-Pierre, Hélène; Decré, Dominique; Godreuil, Sylvain

    2015-10-01

    We describe here a non-O1/non-O139 Vibrio cholerae isolate producing both VIM-1 and VIM-4 carbapenemases. It was isolated from a yellow-legged gull in southern France. The blaVIM genes were part of a class 1 integron structure located in an IncA/C plasmid. This study emphasizes the presence of carbapenemase genes in wildlife microbiota. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Prevalencia de bacterias Gram negativas portadoras del gen blaKPC en hospitales de Colombia

    Directory of Open Access Journals (Sweden)

    Robinson Pacheco

    2014-04-01

    Full Text Available Introducción. Las enzimas carbapenemasas de tipo KPC tienen gran capacidad de diseminación, son causantes de epidemias y se asocian a mayor mortalidad y estancia hospitalaria. En Colombia se han venido reportando cada vez más desde 2007, pero se desconoce la prevalencia hospitalaria. Objetivo. Estimar la prevalencia hospitalaria del gen blaKPC. Materiales y métodos. Se evaluó la presencia del gen blaKPC y su ‘clonalidad’ en aislamientos de enterobacterias y Pseudomonas aeruginosa de pacientes hospitalizados. Resultados. De los 424 aislamientos evaluados durante el periodo de estudio, 273 cumplieron con criterios de elegibilidad, 31,1 % fue positivo para el gen blaKPC y, al ajustar por ‘clonalidad’, la positividad fue de 12,8 %. El gen blaKPC se encontró con mayor frecuencia en Klebsiella pneumoniae seguido de P. aeruginosa y otras enterobacterias. A pesar de que la unidad de cuidados intensivos aportó el mayor número de aislamientos, no se encontró un patrón más prevalente del gen blaKPC en las ellas que en las otras salas. El aparato respiratorio fue el sitio anatómico de origen con la mayor prevalencia. No se presentó estacionalidad en la frecuencia de los aislamientos portadores del gen blaKPC. Conclusión. Este estudio reveló la alta prevalencia del gen blaKPC en diferentes microorganismos aislados en varias instituciones hospitalarias del país. La extraordinaria capacidad de propagación del gen blaKPC, las dificultades del diagnóstico y la limitada disponibilidad de antibióticos plantean la apremiante necesidad de fortalecer los sistemas de vigilancia epidemiológica y ajustar oportunamente las políticas institucionales de uso racional de antibióticos con el fin de contener su diseminación a otras instituciones de salud del país.

  6. G-protein coupling of cannabinoid receptors

    International Nuclear Information System (INIS)

    Glass, M.

    2001-01-01

    Full text: Since the cloning of the cannabinoid CB1 and CB2 receptors in the early 1990's extensive research has focused on understanding their signal transduction pathways. While it has been known for sometime that both receptors can couple to intracellular signalling via pertussis toxin sensitive G-proteins (Gi/Go), the specificity and kinetics of these interactions have only recently been elucidated. We have developed an in situ reconstitution approach to investigating receptor-G-protein interactions. This approach involves chaotropic extraction of receptor containing membranes in order to inactivate or remove endogenous G-proteins. Recombinant or isolated brain G-proteins can then be added back to the receptors, and their activation monitored through the binding of [ 35 S]-GTPγS. This technique has been utilised for an extensive study of cannabinoid receptor mediated activation of G-proteins. In these studies we have established that CB1 couples with high affinity to both Gi and Go type G-proteins. In contrast, CB2 couples strongly to Gi, but has a very low affinity for Go. This finding correlated well with the previous findings that while CB1 and CB2 both couple to the inhibition of adenylate cyclase, CB1 but not CB2 could also inhibit calcium channels. We then examined the ability of a range of cannabinoid agonists to activate the Gi and Go via CB1. Conventional receptor theory suggests that a receptor is either active or inactive with regard to a G-protein and that the active receptor activates all relevant G-proteins equally. However, in this study we found that agonists could produce different degrees of activation, depending on which G-protein was present. Further studies have compared the ability of the two endocannabinoids to drive the activation of Gi or Go. These studies show that agonists can induce multiple forms of activated receptor that differ in their ability to catalyse the activation of Gi or Go. The ability of an agonist to drive a receptor

  7. Novel Peripherally Restricted Cannabinoid 1 Receptor Selective Antagonist TXX-522 with Prominent Weight-Loss Efficacy in Diet Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-10-01

    Full Text Available The clinical development of the first generation of globally active cannabinoid 1 receptor (CB1R antagonists was suspended because of their adverse neuropsychiatric effects. Selective blockade of peripheral CB1Rs has the potential to provide a viable strategy for the treatment of severe obesity while avoiding these central nervous system side effects. In the current study, a novel compound (TXX-522 was rationally designed based on the parent nucleus of a classical CB1R-selective antagonist/inverse agonist, rimonabant (SR141716A. Docking assays indicate that TXX-522 was bound with the CB1R in a mode similar to that of SR141716A. TXX-522 showed good binding, CB1R-selectivity (over the CB2R, and functional antagonist activities in a range of in vitro molecular and cellular assays. In vivo analysis of the steady state distribution of TXX-522 in the rat brain and blood tissues and the assay of its functional effects on CB1R activity collectively showed that TXX-522 showed minimal brain penetration. Moreover, the in vivo pharmacodynamic study further revealed that TXX-522 had good oral bioavailability and a potent anti-obesity effect, and ameliorated insulin resistance in high-fat diet-induced obese mice. No impact on food intake was observed in this model, confirming the limited brain penetration of this compound. Thus, the current study indicates that TXX-522 is a novel and potent peripherally acting selective CB1R antagonist with the potential to control obesity and related metabolic disorders.

  8. Emergence of carbapenem resistant Escherichia coli isolates producing blaNDM and blaOXA-48-like carried on IncA/C and IncL/M plasmids at two Iranian university hospitals.

    Science.gov (United States)

    Solgi, Hamid; Giske, Christian G; Badmasti, Farzad; Aghamohammad, Shadi; Havaei, Seyed Asghar; Sabeti, Shahram; Mostafavizadeh, Kamyar; Shahcheraghi, Fereshteh

    2017-11-01

    The emergence of carbapenem resistance among Escherichia coli is a serious threat to public health. The objective of this study was to investigate resistance genes and clonality of carbapenem resistant E. coli in Iran. Between February 2015 and July 2016, a total of 32 non-duplicate E. coli isolates that were ertapenem resistant or intermediate (R/I-ETP) were collected from patient clinical or surveillance cultures (rectal swabs) at two university hospitals. Resistance genes were identified by PCR and sequencing. Conjugation experiments, PCR-based replicon typing, PFGE and multilocus sequence typing (MLST) were performed. PCR assays showed, among the 32 isolates, twenty-nine strains produced carbapenemase genes. The predominant carbapenemase was bla OXA-48 (82.8%), followed by bla NDM-1 (31%), bla NDM-7 (6.9%) and bla OXA-181 (3.4%). Seven of the bla NDM positive isolates co-harbored bla OXA-48 carbapenemases. The bla NDM and bla OXA-48 were found in IncA/C and IncL/M conjugative plasmids, respectively. The bla CTX-M-15 , qnrA and intI1 genes were also present in most isolates. The PFGE revealed genetic diversity among the 28 E. coli isolates, which belonged to six minor PFGE clusters and 14 isolates were singletons. The 26 isolates were distributed into 18 STs, of which two were dominant (ST648 and ST167). We identified one bla NDM-1 -positive ST131 E. coli isolates that harbor the bla CTX-M-15 and bla TEM genes. Horizontal transfer of IncA/C and IncL/M plasmids has likely facilitated the spread of the bla OXA-48 and bla NDM genes among E. coli. Their clonal diversity and the presence of faecal carriers in isolates suggest an endemic spread of OXA-48 and NDM. Therefore, it emphasizes the critical importance of monitoring and controlling the spread of carbapenem resistant E. coli. Copyright © 2017. Published by Elsevier B.V.

  9. Functional blaKPC-2 sequences are present in United States beef cattle feces regardless of antibiotic use

    Science.gov (United States)

    Recently, using quantitative PCR (qPCR) we detected blaKPC-2 in metagenomic DNA (mgDNA) prepared from the feces of 36 lots beef cattle "raised without antibiotics" (RWA) and 36 lots raised "conventionally" (CONV). Since a small internal fragment of the blaKPC-2 gene was targeted we sought to confirm...

  10. Positron Emission Tomographic Imaging of the Cannabinoid Type 1 Receptor System with [11C]OMAR ([11C]JHU75528: Improvements in Image Quantification Using Wild-Type and Knockout Mice

    Directory of Open Access Journals (Sweden)

    Raúl Herance

    2011-11-01

    Full Text Available In this study, we assessed the feasibility of using positron emission tomography (PET and the tracer [11C]OMAR ([11C]JHU75528, an analogue of rimonabant, to study the brain cannabinoid type 1 (CB1 receptor system. Wild-type (WT andCB1 knockout (KO animals were imaged at baseline and after pretreatment with blocking doses of rimonabant. Brain uptake in WT animals was higher (50% than in KO animals in baseline conditions. After pretreatment with rimonabant, WT uptake lowered to the level of KO animals. The results of this study support the feasibility of using PET with the radiotracer [11C]JHU75528 to image the brain CB1 receptor system in mice. In addition, this methodology can be used to assess the effect of new drugs in preclinical studies using genetically manipulated animals.

  11. Detection of New Delhi Metallo-Beta-Lactamase (Encoded by blaNDM-1 ) in Enterobacter aerogenes in China.

    Science.gov (United States)

    Shen, Yong; Xiao, Wei-Qiang; Gong, Jiao-Mei; Pan, Jun; Xu, Qing-Xia

    2017-03-01

    The increase in bla NDM -1 in Enterobacteriaceae has become a major concern worldwide. In previous study, we investigated clonal dissemination and mechanisms of resistance to carbapenem in China. We carried out retrospective surveillance for bla NDM -1 among carbapenem-resistant enterobacter strains, which were isolated from patients at our hospital by bacterial strains selection, antimicrobial susceptibility testing, species identification, and molecular detection of resistance gene. We found three bla NDM -1 -positive isolates which were identified as Enterobacter aerogenes in clinical patients in China. The bla NDM -1 -positive Enterobacter aerogenes isolates were first found. It is important to mandate prudent usage of antibiotics and implement infection control measures to control the spread of these resistant bla NDM -1 -positive strains. © 2016 Wiley Periodicals, Inc.

  12. Pharmacokinetic/pharmaco-dynamic modelling and simulation of the effects of different cannabinoid receptor type 1 antagonists on (9)-tetrahydrocannabinol challenge tests

    NARCIS (Netherlands)

    Guan, Zheng; Klumpers, Linda E.; Oyetayo, Olubukayo-Opeyemi; Heuberger, Jules; van Gerven, Joop M. A.; Stevens, Jasper

    Aim: The severe psychiatric side effects of cannabinoid receptor type 1 (CB1) antagonists hampered their wide development but this might be overcome by careful management of drug development with pharmacokinetic/pharmacodynamic (PK/PD) analyses. PK/PD models suitable for direct comparison of

  13. In vitro and in vivo pharmacology of synthetic olivetol- or resorcinol-derived cannabinoid receptor ligands

    Science.gov (United States)

    Cascio, M G; Bisogno, T; Palazzo, E; Thomas, A; van der Stelt, M; Brizzi, A; de Novellis, V; Marabese, I; Ross, R; van de Doelen, T; Brizzi, V; Pertwee, R; Maione, S; Di Marzo, V

    2006-01-01

    Background and purpose: We have previously reported the development of CB-25 and CB-52, two ligands of CB1 and CB2 cannabinoid receptors. We assessed here their functional activity. Experimental approach: The effect of the two compounds on forskolin-induced cAMP formation in intact cells or GTP-γ-S binding to cell membranes, and their action on nociception in vivo was determined. Key results: CB-25 enhanced forskolin-induced cAMP formation in N18TG2 cells (EC50∼20 nM, max. stimulation=48%), behaving as an inverse CB1 agonist, but it stimulated GTP-γ-S binding to mouse brain membranes, behaving as a partial CB1 agonist (EC50=100 nM, max. stimulation=48%). At human CB1 receptors, CB-25 inhibited cAMP formation in hCB1-CHO cells (EC50=1600 nM, max. inhibition=68% of CP-55,940 effect). CB-52 inhibited forskolin-induced cAMP formation by N18TG2 cells (IC50=450 nM, max. inhibition=40%) and hCB1-CHO cells (EC50=2600 nM, max. inhibition=62% of CP-55,940 effect), and stimulated GTP-γ-S binding to mouse brain membranes (EC50=11 nM, max. stimulation∼16%). Both CB-25 and CB-52 showed no activity in all assays of CB2-coupled functional activity and antagonized CP55940-induced stimulation of GTP-γ-S binding to hCB2-CHO cell membranes. In vivo, both compounds, administered i.p., produced dose-dependent nociception in the plantar test carried out in healthy rats, and antagonised the anti-nociceptive effect of i.p. WIN55,212-2. In the formalin test in mice, however, the compounds counteracted both phases of formalin-induced nociception. Conclusions and implications: CB-25 and CB-52 behave in vitro mostly as CB1 partial agonists and CB2 neutral antagonists, whereas their activity in vivo might depend on the tonic activity of cannabinoid receptors. PMID:16953186

  14. Progesterone receptor and dopamine receptors are required in Δ9-tetrahydrocannabinol modulation of sexual receptivity in female rats

    Science.gov (United States)

    Mani, Shailaja K.; Mitchell, Andrea; O'Malley, Bert W.

    2001-01-01

    Ovarian steroids, estrogen and progesterone, influence the sensitivity of certain neural processes to cannabinoid treatment by modulation of brain dopaminergic activity. We examined the effects of the active ingredient of cannabis, Δ9-tetrahydrocannabinol (THC), on sexual behavior in female rats and its influence on steroid hormone receptors and neurotransmitters in the facilitation of sexual receptivity. Our results revealed that the facilitatory effect of THC was inhibited by antagonists to both progesterone and dopamine D1 receptors. To test further the idea that progesterone receptors (PR) and/or dopamine receptors (D1R) in the hypothalamus are required for THC-facilitated sexual behavior in rodents, antisense and sense oligonucleotides to PR and D1R were administered intracerebroventricularly (ICV) into the third cerebral ventricle of ovariectomized, estradiol benzoate-primed rats. Progesterone- and THC-facilitated sexual behavior was inhibited in animals treated with antisense oligonucleotides to PR or to D1R. Antagonists to cannabinoid receptor-1 subtype (CB1), but not to cannabinoid receptor-2 subtype (CB2) inhibited progesterone- and dopamine-facilitated sexual receptivity in female rats. Our studies indicate that THC acts on the CB1 cannabinoid receptor to initiate a signal transduction response that requires both membrane dopamine and intracellular progesterone receptors for effective induction of sexual behavior. PMID:11158625

  15. Prevalence of blaSHV genes in clinical isolates of Klebsiella ...

    African Journals Online (AJOL)

    Owner

    Five bacterial strains (4 Klebsiella pneumoniae and 1 Escherichia coli ) representative of pathogenic species and ... Keys words: β-Lactamases, Klebsiella pneuminiae, blaSHV gene, Saint Camille medical centre, Ouagadougou. INTRODUCTION .... recombinant plasmids from strain 1004 DNA with this approach failed.

  16. Modulation of cannabinoid receptor activation as a neuroprotective strategy for EAE and stroke.

    Science.gov (United States)

    Zhang, Ming; Martin, Billy R; Adler, Martin W; Razdan, Raj J; Kong, Weimin; Ganea, Doina; Tuma, Ronald F

    2009-06-01

    Recognition of the importance of the endocannabinoid system in both homeostasis and pathologic responses raised interest recently in the development of therapeutic agents based on this system. The CB(2) receptor, a component of the endocannabinoid system, has significant influence on immune function and inflammatory responses. Inflammatory responses are major contributors to central nervous system (CNS) injury in a variety of diseases. In this report, we present evidence that activation of CB(2) receptors, by selective CB(2) agonists, reduces inflammatory responses that contribute to CNS injury. The studies demonstrate neuroprotective effects in experimental autoimmune encephalomyelitis, a model of multiple sclerosis, and in a murine model of cerebral ischemia/reperfusion injury. In both cases, CB(2) receptor activation results in reduced white cell rolling and adhesion to cerebral microvessels, a reduction in immune cell invasion, and improved neurologic function after insult. In addition, administration of the CB(1) antagonist SR141716A reduces infarct size following ischemia/reperfusion injury. Administration of both a selective CB(2) agonist and a CB(1) antagonist has the unique property of increasing blood flow to the brain during the occlusion period, suggesting an effect on collateral blood flow. In summary, selective CB(2) receptor agonists and CB(1) receptor antagonists have significant potential for neuroprotection in animal models of two devastating diseases that currently lack effective treatment options.

  17. Frequency-dependent cannabinoid receptor-independent modulation of glycine receptors by endocannabinoid 2-AG

    Directory of Open Access Journals (Sweden)

    Natalia eLozovaya

    2011-07-01

    Full Text Available Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG, on the functional properties of glycine receptor channels (GlyRs and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1-1 µM, 2-AG directly affected the functions of recombinant homomeric alpha1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ~300 milliseconds. Addition of 1 µM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4-10 Hz application of short (2-ms duration pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor-knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10-20 Hz stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.

  18. Class 1 Integron Containing Metallo-β-Lactamase Gene blaVIM-2 in Pseudomonas aeruginosa Clinical Strains Isolated in Japan

    OpenAIRE

    Yatsuyanagi, Jun; Saito, Shioko; Harata, Seizaburo; Suzuki, Noriyuki; Ito, Yuko; Amano, Ken-ichi; Enomoto, Katsuhiko

    2004-01-01

    Four blaVIM-2 gene-harboring Pseudomonas aeruginosa strains were identified. These strains possessed a class 1 integron harboring ORF1, blaVIM-2, and aacA4 gene cassettes. The transposon-mediated horizontal spread of the blaVIM-2 gene among these strains was suggested, which increases the threat that the blaVIM-2 gene will disseminate among diverse genera of bacteria.

  19. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Directory of Open Access Journals (Sweden)

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  20. Cannabinoid Receptor 1 Gene Polymorphisms and Marijuana Misuse Interactions On White Matter and Cognitive Deficits in Schizophrenia

    OpenAIRE

    Ho, Beng-Choon; Wassink, Thomas H.; Ziebell, Steven; Andreasen, Nancy C.

    2011-01-01

    Marijuana exposure during the critical period of adolescent brain maturation may disrupt neuro-modulatory influences of endocannabinoids and increase schizophrenia susceptibility. Cannabinoid receptor 1 (CB1/CNR1) is the principal brain receptor mediating marijuana effects. No study to-date has systematically investigated the impact of CNR1 on quantitative phenotypic features in schizophrenia and inter-relationships with marijuana misuse. We genotyped 235 schizophrenia patients using 12 tag s...

  1. Regulative effect of anandamide-mediated cannabinoid receptor in rats with visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Yu-qin HE

    2012-11-01

    Full Text Available Objective  To investigate the role of anandamide(ANA-mediated cannabinoid receptor 1(CB1 on the acquisition of visceral hypersensitivity in rats, and explore its underlying mechanism. Methods  The visceral hypersensitivity non-noxious/noxious colorectal distension (NNCRD/NCRD model of rat was reproduced by ovalbumin (OVA sensitization combined with NNCRD/NCRD. Fifty-four rats were randomly divided into control group (n=7, saline+CRD group (n=7, OVA+CRD+dimethyl sulfoxide (DMSO group (n=8, OVA+CRD+different concentrations of ANA (0.5, 5.0, 10.0mg/kg groups (8 each, and OVA+CRD+ANA+AM251 group (n=8. The expression and quantitative assessment of CB1 were monitored by immunoflurorescence and laser scanning confocal analysis. The visceral sensitivity was evaluated by the area under curve (AUC of myoelectrical activity of abdominal wall muscle. Results  By NCRD at 80mmHg, the density of CB1 immunofluorescence intensity was significantly higher in L4–L6 of the spinal cord of the rats in saline+CRD group compared with that in control group (P 0.05. By NCRD at 80mmHg, the VMR-AUC increased obviously in OVA+CRD+DMSO group as compared with that of saline+CRD group, but it decreased significantly in OVA+CRD+high concentration ANA group (P < 0.05. When AM251 was intravenously given, VMR-AUC increased significantly in OVA+CRD+ANA+AM251 group compared with that in OVA+CRD+different concentrations of ANA groups (P < 0.05. Conclusions Intravenous administration of ANA may mitigate the visceral nociception induced by basic OVAsensitization combined with NCRD stimulation in CB1-mediated manner. It indicated that anandamide-mediated CB1 cannabinoid receptor may regulate the development and maintenance of visceral hypersensitivity.

  2. Chronic morphine selectively sensitizes the effect of D1 receptor agonist on presynaptic glutamate release in basolateral amygdala neurons that project to prelimbic cortex.

    Science.gov (United States)

    Song, Jiaojiao; Chen, Ming; Dong, Yi; Lai, Bin; Zheng, Ping

    2018-05-01

    Drug addiction is a brain disorder characterized by chronic, compulsive use of drugs. Previous studies have found a number of chronic morphine-induced changes in the brain at molecular levels. A study from our lab showed that chronic morphine-induced increase in the expression of presynaptic D1 receptors in basolateral amygdala (BLA) neurons played an important role in environmental cue-induced retrieval of morphine withdrawal memory. However, the downstream neurocircuitry of chronic morphine-induced increase presynaptic D1 receptors in the BLA remains to be elucidated. Using retrogradely labelling technique combined with whole-cell patch-clamp methods, our results showed that (1) chronic morphine sensitized the effect of D1 receptor agonist on presynaptic glutamate release in BLA neurons that projected to the prelimbic cortex (PrL), but had no influence on that in BLA neurons that projected to the nucleus accumbens (NAc) or the CA1 of the hippocampus; (2) chronic morphine sensitized the effect of D1 receptor agonist on action potential firing in BLA neurons that projected to the PrL, but without affecting the intrinsic excitability and the sensitivity of postsynaptic glutamate receptors to glutamate in BLA neurons that projected to the PrL. These results suggest that chronic morphine selectively sensitizes the effect of D1 receptor agonist on presynaptic glutamate release in BLA neurons that project to PrL and induces a sensitization of the effect of D1 receptor agonist on action potential firing in BLA neurons that project to the PrL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Hydrolysis of clavulanate by Mycobacterium tuberculosis β-lactamase BlaC harboring a canonical SDN motif.

    Science.gov (United States)

    Soroka, Daria; Li de la Sierra-Gallay, Inès; Dubée, Vincent; Triboulet, Sébastien; van Tilbeurgh, Herman; Compain, Fabrice; Ballell, Lluis; Barros, David; Mainardi, Jean-Luc; Hugonnet, Jean-Emmanuel; Arthur, Michel

    2015-09-01

    Combinations of β-lactams with clavulanate are currently being investigated for tuberculosis treatment. Since Mycobacterium tuberculosis produces a broad spectrum β-lactamase, BlaC, the success of this approach could be compromised by the emergence of clavulanate-resistant variants, as observed for inhibitor-resistant TEM variants in enterobacteria. Previous analyses based on site-directed mutagenesis of BlaC have led to the conclusion that this risk was limited. Here, we used a different approach based on determination of the crystal structure of β-lactamase BlaMAb of Mycobacterium abscessus, which efficiently hydrolyzes clavulanate. Comparison of BlaMAb and BlaC allowed for structure-assisted site-directed mutagenesis of BlaC and identification of the G(132)N substitution that was sufficient to switch the interaction of BlaC with clavulanate from irreversible inactivation to efficient hydrolysis. The substitution, which restored the canonical SDN motif (SDG→SDN), allowed for efficient hydrolysis of clavulanate, with a more than 10(4)-fold increase in k cat (0.41 s(-1)), without affecting the hydrolysis of other β-lactams. Mass spectrometry revealed that acylation of BlaC and of its G(132)N variant by clavulanate follows similar paths, involving sequential formation of two acylenzymes. Decarboxylation of the first acylenzyme results in a stable secondary acylenzyme in BlaC, whereas hydrolysis occurs in the G(132)N variant. The SDN/SDG polymorphism defines two mycobacterial lineages comprising rapidly and slowly growing species, respectively. Together, these results suggest that the efficacy of β-lactam-clavulanate combinations may be limited by the emergence of resistance. β-Lactams active without clavulanate, such as faropenem, should be prioritized for the development of new therapies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids.

    Science.gov (United States)

    Wailan, Alexander M; Sidjabat, Hanna E; Yam, Wan Keat; Alikhan, Nabil-Fareed; Petty, Nicola K; Sartor, Anna L; Williamson, Deborah A; Forde, Brian M; Schembri, Mark A; Beatson, Scott A; Paterson, David L; Walsh, Timothy R; Partridge, Sally R

    2016-07-01

    blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Multiplication of blaOXA-23 is common in clinical Acinetobacter baumannii, but does not enhance carbapenem resistance.

    Science.gov (United States)

    Hua, Xiaoting; Shu, Jianfeng; Ruan, Zhi; Yu, Yunsong; Feng, Ye

    2016-12-01

    To investigate the copy number of bla OXA-23 and its correlation with carbapenem resistance in carbapenem-resistant Acinetobacter baumannii (CRAB). A total of 113 bla OXA-23 -positive clinical CRAB isolates were collected from two hospitals in Zhejiang province, China. Their genetic relatedness was determined by MLST. The MIC of imipenem was determined using the agar diffusion method and the copy number of bla OXA-23 was measured using quantitative real-time PCR (qRT-PCR). The complete genomes of five clinical CRAB strains were sequenced using PacBio technology to investigate the multiplication mechanism of bla OXA-23 . Most of the isolates (100/113) belonged to global clone II and the MIC of imipenem ranged from 16 to 96 mg/L. The gene bla OXA-23 resided exclusively in Tn2006 or Tn2009. Approximately 38% of the isolates carried two or more copies of bla OXA-23 . The copy number of bla OXA-23 was not correlated with the MIC of imipenem. Within the five sequenced strains, multiple copies of bla OXA-23 were either tandemly clustered or independently inserted at different genomic sites. Multiplication of bla OXA-23 is common in CRAB, but does not enhance carbapenem resistance. Multiplication can be present in the form of either tandem amplifications or independent insertions at different sites. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Cannabidiol inhibits synaptic transmission in rat hippocampal cultures and slices via multiple receptor pathways

    Science.gov (United States)

    Ledgerwood, CJ; Greenwood, SM; Brett, RR; Pratt, JA; Bushell, TJ

    2011-01-01

    BACKGROUND AND PURPOSE Cannabidiol (CBD) has emerged as an interesting compound with therapeutic potential in several CNS disorders. However, whether it can modulate synaptic activity in the CNS remains unclear. Here, we have investigated whether CBD modulates synaptic transmission in rat hippocampal cultures and acute slices. EXPERIMENTAL APPROACH The effect of CBD on synaptic transmission was examined in rat hippocampal cultures and acute slices using whole cell patch clamp and standard extracellular recordings respectively. KEY RESULTS Cannabidiol decreased synaptic activity in hippocampal cultures in a concentration-dependent and Pertussis toxin-sensitive manner. The effects of CBD in culture were significantly reduced in the presence of the cannabinoid receptor (CB1) inverse agonist, LY320135 but were unaffected by the 5-HT1A receptor antagonist, WAY100135. In hippocampal slices, CBD inhibited basal synaptic transmission, an effect that was abolished by the proposed CB1 receptor antagonist, AM251, in addition to LY320135 and WAY100135. CONCLUSIONS AND IMPLICATIONS Cannabidiol reduces synaptic transmission in hippocampal in vitro preparations and we propose a role for both 5-HT1A and CB1 receptors in these CBD-mediated effects. These data offer some mechanistic insights into the effects of CBD and emphasize that further investigations into the actions of CBD in the CNS are required in order to elucidate the full therapeutic potential of CBD. PMID:20825410

  7. blaCTX-M-2 and blaCTX-M-28 extended-spectrum β-lactamase genes and class 1 integrons in clinical isolates of Klebsiella pneumoniae from Brazil

    Directory of Open Access Journals (Sweden)

    Ana Catarina S Lopes

    2010-03-01

    Full Text Available Twenty-eight Klebsiella pneumoniae clinical isolates that exhibited an extended-spectrum cephalosporin-resistance profile from a city in the Northeast of Brazil were analysed by PCR and DNA sequencing in order to determine the occurrence of blaCTX-M genes and class 1 integrons. We determined the occurrence of the blaCTX-M-2 gene in six K. pneumoniae isolates and describe the first detection of the blaCTX-M-28 gene in South America. Seven isolates carried class 1 integrons. Partial sequencing analysis of the 5'-3'CS variable region in the class 1 integrons of three isolates revealed the presence of aadA1, blaOXA-2 and dfr22 gene cassettes.

  8. Isolation of Enterobacter aerogenes carrying blaTEM-1 and blaKPC-3 genes recovered from a hospital Intensive Care Unit.

    Science.gov (United States)

    Pulcrano, Giovanna; Pignanelli, Salvatore; Vollaro, Adriana; Esposito, Matilde; Iula, Vita Dora; Roscetto, Emanuela; Soriano, Amata Amy; Catania, Maria Rosaria

    2016-06-01

    Enterobacter aerogenes has recently emerged as an important hospital pathogen. In this study, we showed the emergence of E. aerogenes isolates carrying the blaKPC gene in patients colonized by carbapenem-resistant Klebsiella pneumoniae strains. Two multiresistant E. aerogenes isolates were recovered from bronchial aspirates of two patients hospitalized in the Intensive Care Unit at the "Santa Maria della Scaletta" Hospital, Imola. The antimicrobial susceptibility test showed the high resistance to carbapenems and double-disk synergy test confirmed the phenotype of KPC and AmpC production. Other investigation revealed that ESBL and blaKPC genes were carried on the conjugative pKpQIL plasmid. This is a relevant report in Italy that describes a nosocomial infection due to the production of KPC beta-lactamases by an E. aerogenes isolate in patients previously colonized by K. pneumoniae carbapenem-resistant. In conclusion, it's necessary a continuous monitoring of multidrug-resistant strains for the detection of any KPC-producing bacteria that could expand the circulation of carbapenem-resistant pathogens. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  9. blaGES carrying Pseudomonas aeruginosa isolates from a public hospital in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Flávia L. P. C. Pellegrino

    Full Text Available Previous analysis of Pseudomonas aeruginosa class-1 integrons from Rio de Janeiro, Brazil, revealed the blaGES gene in one isolate. We screened isolates of two widespread PFGE genotypes, A and B, at a public hospital in Rio, for the presence of blaGES. The gene was detected in all seven P. aeruginosa isolates belonging to genotype B. Three of the seven genotype-B isolates were resistant to amikacin, aztreonam, ceftazidime, cefepime, ciprofloxacin, gentamicin, imipenem, meropenem, piperacillin-tazobactam and ticarcillin-clavulanic acid. The other four isolates were resistant to all these agents, except gentamicin, imipenem, meropenem and piperacillin-tazobactam. A synergistic effect between ceftazidime and imipenem or clavulanic acid suggested the production of GES-type ESBL.

  10. Clonal spread of blaOXA-72-carrying Acinetobacter baumannii sequence type 512 in Taiwan.

    Science.gov (United States)

    Kuo, Han-Yueh; Hsu, Po-Jui; Chen, Jiann-Yuan; Liao, Po-Cheng; Lu, Chia-Wei; Chen, Chang-Hua; Liou, Ming-Li

    2016-07-01

    This is the first report to show an insidious outbreak of armA- and blaOXA-72-carrying Acinetobacter baumannii sequence type 512 (ST512) at a study hospital in northern Taiwan. Multilocus sequence typing revealed that this was a ST512 clone. All of the isolates with ST512 carried a novel 12,056-bp repGR2 in combination with a repGR12-type plasmid. This plasmid, designated pAB-ML, had one copy of the blaOXA-72 gene that was flanked by XerC/XerD-like sites and conferred resistance to carbapenems. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  11. Structural determinants of the partial agonist-inverse agonist properties of 6′-azidohex-2′-yne-Δ8-tetrahydrocannabinol at cannabinoid receptors

    Science.gov (United States)

    Ross, Ruth A; Gibson, T Michael; Stevenson, Lesley A; Saha, Bijali; Crocker, Peter; Razdan, Raj K; Pertwee, Roger G

    1999-01-01

    We have extended previous investigations of four analogues of Δ8-tetrahydrocannabinol (Δ8-THC): 6′-azidohex-2′-yne-Δ8-THC (O-1184), 6′-azidohex-cis-2′-ene-Δ8-THC (O-1238) and octyl-2′-yne-Δ8-THC (O-584) and its 1-deoxy-analogue (O-1315).O-1184, O-1238 and O-584 displaced [3H]-CP55940 from specific binding sites on Chinese hamster ovary (CHO) cell membranes expressing CB1 or CB2 cannabinoid receptors, with pKi values of 8.28 to 8.45 (CB1) and 8.03 to 8.13 (CB2). The pKi values of O-1315 were significantly less, 7.63 (CB1) and 7.01 (CB2).All the analogues inhibited forskolin-stimulated cyclic AMP production by CB1-transfected CHO cells (pEC50=9.16 to 9.72). Only O-1238 behaved as a full agonist in this cell line.In mouse vasa deferentia, O-1238 inhibited electrically-evoked contractions (pEC50=10.18 and Emax=70.5%). Corresponding values for O-1184 were 9.08 and 21.1% respectively. At 1 nM, O-1184 produced surmountable antagonism of the cannabinoid receptor agonist, CP55940. However, at 0.1 nM, O-1184 did not attenuate CP55940-induced inhibition of cyclic AMP production by CB1-transfected CHO cells.In CB2-transfected CHO cells, cyclic AMP production was inhibited by CP55940 (pEC50=8.59), enhanced by O-1184 and O-584 (pEC50=8.20 and 6.86 respectively) and not significantly affected by O-1238 or O-1315.At 100 nM, O-1184 and O-1238 produced surmountable antagonism of CP55940 in CB2 cells, decreasing the pEC50 of CP55940 from 8.61 to 7.42 (O-1184) or from 8.54 to 7.44 (O-1238).These data support the hypothesis that increasing the degree of unsaturation of the aliphatic side-chain of Δ8-THC analogues has little effect on CB1 or CB2 receptor affinity but can reduce CB1 receptor efficacy and reverse the direction of responses elicited at CB2 receptors. PMID:10516656

  12. Structure-affinity relationships and pharmacological characterization of new alkyl-resorcinol cannabinoid receptor ligands: Identification of a dual cannabinoid receptor/TRPA1 channel agonist.

    Science.gov (United States)

    Brizzi, Antonella; Aiello, Francesca; Marini, Pietro; Cascio, Maria Grazia; Corelli, Federico; Brizzi, Vittorio; De Petrocellis, Luciano; Ligresti, Alessia; Luongo, Livio; Lamponi, Stefania; Maione, Sabatino; Pertwee, Roger G; Di Marzo, Vincenzo

    2014-09-01

    In our ongoing program aimed at deeply investigating the endocannabinoid system (ES), a set of new alkyl-resorcinol derivatives was prepared focusing on the nature and the importance of the carboxamide functionality. Binding studies on CB1 and CB2 receptors, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) showed that some of the newly developed compounds behaved as very potent cannabinoid receptor ligands (Ki in the nanomolar range) while, however, none of them was able to inhibit MAGL and/or FAAH. Derivative 11 was a potent CB1 and CB2 ligand, with Ki values similar to WIN 55,212, exhibiting a CB1 and CB2 agonist profile in vitro. In the formalin test of peripheral acute and inflammatory pain in mice, this compound showed a weak and delayed antinociceptive effect against the second phase of the nocifensive response, exhibiting, interestingly, a quite potent transient receptor potential ankyrin type-1 (TRPA1) channel agonist activity. Moreover, derivative 14, characterized by lower affinity but higher CB2 selectivity than 11, proved to behave as a weak CB2 competitive inverse agonist. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    DEFF Research Database (Denmark)

    Nielsen, Morten Frost; Nielsen, T L; Wraae, K

    2010-01-01

    OBJECTIVE: Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants...... of the CB1 receptor gene (CNR1) and the link to obesity have been conflicting. The aim of the present study was to evaluate whether selected common variants of the CNR1 are associated with measures of obesity and fat distribution. DESIGN AND METHODS: The single nucleotide polymorphisms (SNPs) rs806381, rs......10485179 and rs1049353 were genotyped, and body fat and fat distribution were assessed by the use of dual-energy X-ray absorptiometry and magnetic resonance imaging in a population-based study comprising of 783 Danish men, aged 20-29 years. RESULTS: The rs806381 polymorphism was significantly associated...

  14. Sources of diversity of carbapenem resistance levels in Klebsiella pneumoniae carrying blaVIM-1.

    Science.gov (United States)

    Loli, A; Tzouvelekis, L S; Tzelepi, E; Carattoli, A; Vatopoulos, A C; Tassios, P T; Miriagou, V

    2006-09-01

    To elucidate the mechanisms responsible for the diversity of beta-lactam resistance phenotypes among isolates of a VIM-1-producing Klebsiella pneumoniae (VPKP) strain that is endemic in Greek hospitals. Five VPKP clinical isolates were studied. MICs of beta-lactams were determined by agar dilution. PFGE of XbaI-digested genomic DNA was used for typing. Profiles of outer membrane proteins (OMPs) were determined by SDS-PAGE. Selected isolates were transformed with a plasmid encoding the Omp36K porin. beta-Lactamase activities were analysed by IEF and imipenem hydrolysis was assessed by spectrophotometry. VIM-1-encoding, self-transmissible plasmids were characterized by replicon typing, RFLP and hybridization with bla(VIM)- and IS26-specific probes. Characterization of integrons was performed by PCR, cloning and sequencing. Isolates exhibited highly similar PFGE patterns. Imipenem MICs were 2, 4, 16, 32 and 64 mg/L. The isolate with the highest imipenem MIC (Vipm-64) lacked a 36 kDa OMP. Expression of a cloned OmpK36 in this isolate reduced the imipenem MIC to susceptibility levels. Imipenem-hydrolysing activity was significantly higher in Vipm-16 as compared with the other isolates that expressed similar amounts of VIM-1. All isolates transferred beta-lactam resistance to Escherichia coli through conjugative, IncN plasmids that exhibited differences in the RFLP and hybridization patterns with bla(VIM)- and IS26-specific probes. The Vipm-16 plasmid, mediating the higher imipenem MICs among transconjugants, carried two copies of bla(VIM-1). Cloning and sequencing showed In-e541-like integrons truncated at the 5'CS by insertion of IS26 elements at two different positions. A VIM-1-producing strain of K. pneumoniae has evolved through OMP alterations and rearrangements in the bla(VIM-1)-carrying plasmid probably mediated by IS26, generating isolates with imipenem MICs ranging from susceptibility to resistance.

  15. Tn5090-like class 1 integron carrying bla(VIM-2) in a Pseudomonas putida strain from Portugal.

    Science.gov (United States)

    Santos, C; Caetano, T; Ferreira, S; Mendo, S

    2010-10-01

    Three Pseudomonas putida strains containing bla(VIM-2) were isolated from an inanimate surface of a female ward sanitary facility in the Hospital Infante D. Pedro, Aveiro. A novel class 1 integron was found in strain Pp2 (aacA4/bla(VIM-2)/aac6'-IIc disrupted by an insertion sequence IS1382), and strain Pp1 was found to carry a class 1 integron (aacA7/bla(VIM-2)/aacC1/aacA4), which is described for the first time in this species. Strain PF1 carries a class 1 integron associated with a Tn5090-like transposon, constituting the first finding of this type of arrangement in a strain from Portugal. This association highlights further dissemination of bla(VIM-2) in environmental hospital isolates. © 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  16. ∆(9)-Tetrahydrocannabinol decreases NOP receptor density and mRNA levels in human SH-SY5Y cells.

    Science.gov (United States)

    Cannarsa, Rosalia; Carretta, Donatella; Lattanzio, Francesca; Candeletti, Sanzio; Romualdi, Patrizia

    2012-02-01

    Several studies demonstrated a cross-talk between the opioid and cannabinoid system. The NOP receptor and its endogenous ligand nociceptin/orphanin FQ represent an opioid-related functional entity that mediates some non-classical opioid effects. The relationship between cannabinoid and nociceptin/NOP system is yet poorly explored. In this study, we used the neuroblastoma SH-SY5Y cell line to investigate the effect of delta-9-tetrahydrocannabinol (∆(9)-THC) on nociceptin/NOP system. Results revealed that the exposure to ∆(9)-THC (100, 150, and 200 nM) for 24 h produces a dose-dependent NOP receptor B (max) down-regulation. Moreover, ∆(9)-THC caused a dose-dependent decrease in NOP mRNA levels. The selective cannabinoid receptor CB1 antagonist AM251 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide) reduces both effects, suggesting that ∆(9)-THC activation of CB1 receptor is involved in the observed effects. These data show evidence of a cross-talk between NOP and CB1 receptors, thus suggesting a possible interplay between cannabinoid and nociceptin/NOP system.

  17. Delta-9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation and nitric oxide production.

    Science.gov (United States)

    Shmist, Yelena A; Goncharov, Igor; Eichler, Maor; Shneyvays, Vladimir; Isaac, Ahuva; Vogel, Zvi; Shainberg, Asher

    2006-02-01

    Delta-9-tetrahydrocannabinol (THC), the major active component of marijuana, has a beneficial effect on the cardiovascular system during stress conditions, but the defence mechanism is still unclear. The present study was designed to investigate the central (CB1) and the peripheral (CB2) cannabinoid receptor expression in neonatal cardiomyoctes and possible function in the cardioprotection of THC from hypoxia. Pre-treatment of cardiomyocytes that were grown in vitro with 0.1 - 10 microM THC for 24 h prevented hypoxia-induced lactate dehydrogenase (LDH) leakage and preserved the morphological distribution of alpha-sarcomeric actin. The antagonist for the CB2 (10 microM), but not CB1 receptor antagonist (10 microM) abolished the protective effect of THC. In agreement with these results using RT-PCR, it was shown that neonatal cardiac cells express CB2, but not CB1 receptors. Involvement of NO in the signal transduction pathway activated by THC through CB2 was examined. It was found that THC induces nitric oxide (NO) production by induction of NO synthase (iNOS) via CB2 receptors. L-NAME (NOS inhibitor, 100 microM) prevented the cardioprotection provided by THC. Taken together, our findings suggest that THC protects cardiac cells against hypoxia via CB2 receptor activation by induction of NO production. An NO mechanism occurs also in the classical pre-conditioning process; therefore, THC probably pre-trains the cardiomyocytes to hypoxic conditions.

  18. Assessment of antibiotic resistance pattern in Acinetobacter bumannii carrying bla oxA type genes isolated from hospitalized patients

    Directory of Open Access Journals (Sweden)

    Hossein Goudarzi

    2013-11-01

    Full Text Available AbstractPlease cite this article as: Goudarzi H, Douraghi M, Ghalavand Z, Goudarzi M. Assessment of antibiotic resistance pattern in Acinetobacter baumannii carrying bla oxA type genes isolated from hospitalized patients. Novel Biomed 2013;1(2:54-61.Introduction: Acinetobacter baumannii is a Gram-negative coccobacillus and one of the most opportunistic pathogens responsible for serious infections in hospitalized patients.Methods: During a 12 month study, 221 clinical isolates and 22 environmental Acinetobacter baumannii isolates were collected. In vitro susceptibility of Acinetobacter baumannii isolates to 13 antimicrobial agents amikacin; cefepime; ceftazidime; ciprofloxacin; meropenem; piperacillin/tazobactam; sulfamethoxazole/ trimethoprim; imipenem; tigecycline; colistin; gentamycin; ceftriaxone; levofloxacin was performed by the disk diffusion method and Minimum Inhibitory Concentration(MICs of imipenem; levofloxacin and cefepime.was done by the E-test according to Clinical and Laboratory Standards Institute (CLSI criteria. blaOXA-23, blaOXA-24, blaOXA-58, blaOXA-51genes were detected by polymerase chain reaction and sequencing.Results: The result of antimicrobial susceptibility test of clinical isolates by the disk diffusion method revealed that that all strains of Acinetobacter baumannii were resistant to piperacillin/tazobactam. The rates of resistance to the majority of antibiotics tested varied between 69% and 100 %, with the exception of tigecycline and colistin. Of 221 isolates tested 99(44.8% were XDR. All strains carry a blaOXA-51-like gene. blaOXA-23gene was the most prevalence among blaOXA-types.Conclusion: colistin and tigecycline can be effective drugs for treatment of Acinetobacter baumannii infections. Continuous Surveillance for Acinetobacter baumannii multidrug-resistant strains is necessary to prevent the further spread of resistant isolates.

  19. Acinetobacter calcoaceticus from a fatal case of pneumonia harboring bla(NDM-1) on a widely distributed plasmid.

    Science.gov (United States)

    Li, Peng; Yang, Chaojie; Xie, Jing; Liu, Nan; Wang, Houzhao; Zhang, Ling; Wang, Xu; Wang, Yong; Qiu, Shaofu; Song, Hongbin

    2015-03-18

    We have recovered one bla(NDM-1)-harboring bacterial strain, designated as XM1570, from a sputum sample obtained from a fatal case of pneumonia in China. Biochemical profiling, 16S rRNA sequencing and antimicrobial susceptibility testing were performed. Conjugation experiments were conducted to determine transmissibility of resistance. Pulsed-field gel electrophoresis and whole genome sequencing were performed to identify strain-specific features. The isolate XM1570 was identified as Acinetobacter calcoaceticus. Whole genome sequencing identified two plasmids, pXM1 and pXM2. Comparative analysis showed >99% similarity between XM1570 and A. calcoaceticus PHEA-2. Plasmid pXM1 carried the carbapenemase gene bla(NDM-1) and displayed high homology with previously described plasmids isolated from different Acinetobacter spp., which were collected from human or livestock distributed in China and worldwide. The bla(NDM-1) gene was located on this conjugative plasmid in a transposon-like region flanked by two copies of the insertion sequence ISAba125; and resistance to all tested β-lactams was observed. Transferability of resistance from pXM1 to the transconjugants was identified. Plasmid pXM2 had an insertion sequence ISAba125 and a -35 region of the bla NDM-1 gene promoter but the bla NDM-1 gene was not present. A chromosomally located carbapenemase-encoding gene bla OXA-75 was detected; however, this gene was interrupted by an insertion sequence ISAba22 belonging to IS3 family. Location of bla(NDM-1) on different self-transmissible plasmids could facilitate geographically broad dissemination and host range expansion of the bla(NDM-1) gene via horizontal gene transfer. Our findings of this normally environmental species A. calcoaceticus XM1570 further underline the significant clinical challenge and the essential need for surveillance including molecular methods and plasmid analyses.

  20. Effects of cannabinoid and glutamate receptor antagonists and their interactions on learning and memory in male rats.

    Science.gov (United States)

    Barzegar, Somayeh; Komaki, Alireza; Shahidi, Siamak; Sarihi, Abdolrahman; Mirazi, Naser; Salehi, Iraj

    2015-04-01

    Despite previous findings on the effects of cannabinoid and glutamatergic systems on learning and memory, the effects of the combined stimulation or the simultaneous inactivation of these two systems on learning and memory have not been studied. In addition, it is not clear whether the effects of the cannabinoid system on learning and memory occur through the modulation of glutamatergic synaptic transmission. Hence, in this study, we examined the effects of the simultaneous inactivation of the cannabinoid and glutamatergic systems on learning and memory using a passive avoidance (PA) test in rats. On the test day, AM251, which is a CB1 cannabinoid receptor antagonist; MK-801, which is a glutamate receptor antagonist; or both substances were injected intraperitoneally into male Wistar rats 30min before placing the animal in a shuttle box. A learning test (acquisition) was then performed, and a retrieval test was performed the following day. Learning and memory in the PA test were significantly different among the groups. The CB1 receptor antagonist improved the scores on the PA acquisition and retention tests. However, the glutamatergic receptor antagonist decreased the acquisition and retrieval scores on the PA task. The CB1 receptor antagonist partly decreased the glutamatergic receptor antagonist effects on PA learning and memory. These results indicated that the acute administration of a CB1 antagonist improved cognitive performance on a PA task in normal rats and that a glutamate-related mechanism may underlie the antagonism of cannabinoid by AM251 in learning and memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Human β-defensin HBD3 binds to immobilized Bla g2 from the German cockroach (Blattella germanica).

    Science.gov (United States)

    Dietrich, Deborah E; Martin, Aaron D; Brogden, Kim A

    2014-03-01

    Human β-defensin 3 (HBD3) is a small, well-characterized peptide in mucosal secretions with broad antimicrobial activities and diverse innate immune functions. Among these functions is the ability of HBD3 to bind to antigens. In this study, we hypothesize that HBD3 binds to the allergen Bla g2 from the German cockroach (Blattella germanica). The ability of HBD1 (used as a control β-defensin) and HBD3 to bind to Bla g2 and human serum albumin (HSA, used as a control ligand) was assessed using the SensíQ Pioneer surface plasmon resonance (SPR) spectroscopy biosensor system. HBD1 was observed to bind weakly to Bla g2, while HBD3 demonstrated a stronger affinity for the allergen. HBD3 was assessed under two buffer conditions using 0.15 M and 0.3 M NaCl to control the electrostatic attraction of the peptide to the chip surface. The apparent K(D) of HBD3 binding Bla g2 was 5.9±2.1 μM and for binding HSA was 4.2±0.7 μM, respectively. Thus, HBD3, found in mucosal secretions has the ability to bind to allergens like Bla g2 possibly by electrostatic interaction, and may alter the ability of Bla g2 to induce localized allergic and/or inflammatory mucosal responses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Tamoxifen Isomers and Metabolites Exhibit Distinct Affinity and Activity at Cannabinoid Receptors: Potential Scaffold for Drug Development.

    Science.gov (United States)

    Ford, Benjamin M; Franks, Lirit N; Radominska-Pandya, Anna; Prather, Paul L

    2016-01-01

    Tamoxifen (Tam) is a selective estrogen receptor (ER) modulator (SERM) that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoid subtype 1 and 2 receptors (CB1R and CB2Rs). Interestingly, cis- (E-Tam) and trans- (Z-Tam) isomers of Tam exhibit over a 100-fold difference in affinity for ERs. Therefore, the current study assessed individual isomers of Tam and subsequent cytochrome P450 metabolic products, 4-hydroxytamoxifen (4OHT) and 4-hydroxy-N-desmethyl tamoxifen (End) for affinity and activity at CBRs. Results showed that Z-4OHT, but not Z-Tam or Z-End, exhibits higher affinity for both CB1 and CB2Rs relative to the E-isomer. Furthermore, Z- and E-isomers of Tam and 4OHT show slightly higher affinity for CB2Rs, while both End isomers are relatively CB1R-selective. When functional activity was assessed by G-protein activation and regulation of the downstream effector adenylyl cyclase, all isomers examined act as full CB1 and CB2R inverse agonists. Interestingly, Z-Tam appears to be more efficacious than the full inverse agonist AM630 at CB2Rs, while both Z-Tam and Z-End exhibit characteristics of insurmountable antagonism at CB1 and CB2Rs, respectively. Collectively, these results suggest that the SERMs Tam, 4OHT and End elicit ER-independent actions via CBRs in an isomer-specific manner. As such, this novel structural scaffold might be used to develop therapeutically useful drugs for treatment of a variety of diseases mediated via CBRs.

  3. Tamoxifen Isomers and Metabolites Exhibit Distinct Affinity and Activity at Cannabinoid Receptors: Potential Scaffold for Drug Development.

    Directory of Open Access Journals (Sweden)

    Benjamin M Ford

    Full Text Available Tamoxifen (Tam is a selective estrogen receptor (ER modulator (SERM that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoid subtype 1 and 2 receptors (CB1R and CB2Rs. Interestingly, cis- (E-Tam and trans- (Z-Tam isomers of Tam exhibit over a 100-fold difference in affinity for ERs. Therefore, the current study assessed individual isomers of Tam and subsequent cytochrome P450 metabolic products, 4-hydroxytamoxifen (4OHT and 4-hydroxy-N-desmethyl tamoxifen (End for affinity and activity at CBRs. Results showed that Z-4OHT, but not Z-Tam or Z-End, exhibits higher affinity for both CB1 and CB2Rs relative to the E-isomer. Furthermore, Z- and E-isomers of Tam and 4OHT show slightly higher affinity for CB2Rs, while both End isomers are relatively CB1R-selective. When functional activity was assessed by G-protein activation and regulation of the downstream effector adenylyl cyclase, all isomers examined act as full CB1 and CB2R inverse agonists. Interestingly, Z-Tam appears to be more efficacious than the full inverse agonist AM630 at CB2Rs, while both Z-Tam and Z-End exhibit characteristics of insurmountable antagonism at CB1 and CB2Rs, respectively. Collectively, these results suggest that the SERMs Tam, 4OHT and End elicit ER-independent actions via CBRs in an isomer-specific manner. As such, this novel structural scaffold might be used to develop therapeutically useful drugs for treatment of a variety of diseases mediated via CBRs.

  4. Type-1 cannabinoid receptors reduce membrane fluidity of capacitated boar sperm by impairing their activation by bicarbonate.

    Directory of Open Access Journals (Sweden)

    Barbara Barboni

    Full Text Available BACKGROUND: Mammalian spermatozoa acquire their full fertilizing ability (so called capacitation within the female genital tract, where they are progressively exposed to inverse gradients of inhibiting and stimulating molecules. METHODOLOGY/PRINCIPAL FINDINGS: In the present research, the effect on this process of anandamide, an endocannabinoid that can either activate or inhibit cannabinoid receptors depending on its concentration, and bicarbonate, an oviductal activatory molecule, was assessed, in order to study the role exerted by the type 1 cannabinoid receptor (CB1R in the process of lipid membrane remodeling crucial to complete capacitation. To this aim, boar sperm were incubated in vitro under capacitating conditions (stimulated by bicarbonate in the presence or in the absence of methanandamide (Met-AEA, a non-hydrolysable analogue of anandamide. The CB1R involvement was studied by using the specific inhibitor (SR141716 or mimicking its activation by adding a permeable cAMP analogue (8Br-cAMP. By an immunocytochemistry approach it was shown that the Met-AEA inhibits the bicarbonate-dependent translocation of CB1R from the post-equatorial to equatorial region of sperm head. In addition it was found that Met-AEA is able to prevent the bicarbonate-induced increase in membrane disorder and the cholesterol extraction, both preliminary to capacitation, acting through a CB1R-cAMP mediated pathway, as indicated by MC540 and filipin staining, EPR spectroscopy and biochemical analysis on whole membranes (CB1R activity and on membrane enriched fraction (C/P content and anisotropy. CONCLUSIONS/SIGNIFICANCE: Altogether, these data demonstrate that the endocannabinoid system strongly inhibits the process of sperm capacitation, acting as membrane stabilizing agent, thus increasing the basic knowledge on capacitation-related signaling and potentially opening new perspectives in diagnostics and therapeutics of male infertility.

  5. Impact of Cannabinoid Receptor Ligands on Sensitisation to Methamphetamine Effects on Rat Locomotor Behaviour

    Directory of Open Access Journals (Sweden)

    L. Landa

    2008-01-01

    Full Text Available The repeated administration of various drugs of abuse may lead to a gradually increased behavioural response to these substances, particularly an increase in locomotion and stereotypies may occur. This phenomenon is well known and described as behavioural sensitisation. An increased response to the drug tested, elicited by previous repeated administration of another drug is recognised as cross-sensitisation. Based on our earlier experiences with studies on mice, which confirmed sensitisation to methamphetamine and described cross-sensitisation to methamphetamine after pre-treatment with cannabinoid CB1 receptor agonist, we focused the present study on the use of another typical laboratory animal - the rat. A biological validity of the sensitisation phenomenon was expected to be enhanced if the results of both mouse and rat studies were conformable. Similar investigation in rats brought very similar results to those described earlier in mice. However, at least some interspecies differences were noted in the rat susceptibility to the development of sensitisation to methamphetamine effects. Comparing to mice, it was more demanding to titrate a dose of methamphetamine producing behavioural sensitisation. Furthermore, we were not able to provoke cross-sensitisation by repeated administration of cannabinoid CB1 receptor agonist methanandamide and similarly, we did not demonstrate the suppression of cross-sensitisation in rats that were repeatedly given combined pre-treatment with cannabinoid CB1 receptor antagonist AM 251 and methamphetamine. Finally, unlike mice, an alternative behavioural change was registered after repeated methamphetamine treatment instead: the occurrence of stereotypic behaviour (nose rubbing.

  6. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Shenglong Zou

    2018-03-01

    Full Text Available The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R and 2. The CB1R is the prominent subtype in the central nervous system (CNS and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.

  7. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Science.gov (United States)

    Coiret, Guyllaume; Ster, Jeanne; Grewe, Benjamin; Wendling, Fabrice; Helmchen, Fritjof; Gerber, Urs; Benquet, Pascal

    2012-01-01

    Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1) receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  8. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  9. Molecular epidemiology of an outbreak of imipenem-resistant Acinetobacter baumannii carrying the ISAba1-bla(OXA-51-like) genes in a Korean hospital.

    Science.gov (United States)

    Chaulagain, Bidur Prasad; Jang, Sook Jin; Ahn, Gyuu Yeol; Ryu, So Yeon; Kim, Dong Min; Park, Geon; Kim, Won Yong; Shin, Jong Hee; Kook, Joong Ki; Kang, Seong-Ho; Moon, Dae Soo; Park, Young Jin

    2012-01-01

    Between January 2004 and December 2004, an outbreak of imipenem-resistant Acinetobacter baumannii (IRAB) in 2 intensive care units (ICU) of Chosun University Hospital, Korea affected 77 patients. A case-control study revealed that the time spent in the hospital and mechanical ventilation practices were risk factors. IRAB was isolated from the hands of 4% (5/124) of healthcare workers; 27.3% (21/77) of the samples obtained from the ICU environment. A pulsed-field gel electrophoresis analysis showed that 82.1% (23/28) of clinical IRAB isolates and 85.7% (6/7) of environmental IRAB isolates were type A. The ISAba1F/OXA-51-likeR PCR showed that 93.7% (30/32) of IRAB strains had the ISAba1 gene upstream of the bla(OXA-51-like) gene. Two ISAba1F/OXA-51-likeR PCR-negative IRAB strains were bla(IMP-1) positive. All of the IRAB strains tested by PCR were negative for bla(VIM), bla(SIM), bla(GIM-1), bla(SPM-1), bla(GES), bla(OXA-23-like), bla(OXA-24-like), and bla(OXA-58-like) carbapenemase genes. After implementing an infection control strategy, a steady reduction in the attack rate of IRAB infection was observed.

  10. Correlations between the Memory-Related Behavior and the Level of Oxidative Stress Biomarkers in the Mice Brain, Provoked by an Acute Administration of CB Receptor Ligands

    Science.gov (United States)

    Kruk-Slomka, Marta; Boguszewska-Czubara, Anna; Slomka, Tomasz; Budzynska, Barbara; Biala, Grazyna

    2016-01-01

    The endocannabinoid system, through cannabinoid (CB) receptors, is involved in memory-related responses, as well as in processes that may affect cognition, like oxidative stress processes. The purpose of the experiments was to investigate the impact of CB1 and CB2 receptor ligands on the long-term memory stages in male Swiss mice, using the passive avoidance (PA) test, as well as the influence of these compounds on the level of oxidative stress biomarkers in the mice brain. A single injection of a selective CB1 receptor antagonist, AM 251, improved long-term memory acquisition and consolidation in the PA test in mice, while a mixed CB1/CB2 receptor agonist WIN 55,212-2 impaired both stages of cognition. Additionally, JWH 133, a selective CB2 receptor agonist, and AM 630, a competitive CB2 receptor antagonist, significantly improved memory. Additionally, an acute administration of the highest used doses of JWH 133, WIN 55,212-2, and AM 630, but not AM 251, increased total antioxidant capacity (TAC) in the brain. In turn, the processes of lipids peroxidation, expressed as the concentration of malondialdehyde (MDA), were more advanced in case of AM 251. Thus, some changes in the PA performance may be connected with the level of oxidative stress in the brain. PMID:26839719

  11. Delayed identification of Acinetobacter baumannii during an outbreak owing to disrupted blaOXA-51-like by ISAba19.

    Science.gov (United States)

    Ahmadi, Amjad; Salimizand, Himen

    2017-07-01

    Early detection of Acinetobacter baumannii, an emerging pathogen in hospital settings, is of interest. The bla OXA-51-like family had been used as a marker to detect A. baumannii. During an infection outbreak, 14 isolates produced a 1.7-kb PCR band instead of 353 bp for this marker. This work sought the reasons behind the increased marker size. Characterisation of isolates was done by API-20NE, gyrB multiplex PCR and 16S-23S rRNA ITS sequencing. The 1.7-kb band generated and the complete bla OXA-51-like variant were sequenced to find the probable integrated element. Susceptibility testing to various antimicrobials was performed by microdilution. bla OXA-like , metallo-β-lactamases (MBLs), the ISAba1 element and the presence of ISAba1 adjacent to bla OXA-like were sought. rep-PCR, global clonal (GC) lineage determination and multilocus sequence typing (MLST) were performed to analyse the relationship among isolates. Isolates were characterised as Acinetobacter baumannii-calcoaceticus complex by API-20NE. gyrB multiplex PCR and 16S-23S ITS sequencing verified the isolates as A. baumannii. Sequencing of the 1.7-kb band revealed ISAba19 as the disrupting element. The bla OXA-51 variant was bla OXA-66 , which was elongated to 2.2 kb due to ISAba19. The bla OXA-23-like family was found in 67% of isolates. MBL genes were not detected; however, ISAba1-bla OXA-23-like was characterised in carbapenem-resistant isolates (53%; 8/15). Isolates were divided into three clusters by rep-PCR. All strains were ST2 and all but one belonged to GC II. Identification of A. baumannii based only on bla OXA-51-like is not reliable. Besides bla OXA-51-like , multiplex PCR of gyrB and rpoB could provide rapid and cost-effective results. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  12. Sex differences in cannabinoid 1 vs. cannabinoid 2 receptor-selective antagonism of antinociception produced by delta9-tetrahydrocannabinol and CP55,940 in the rat.

    Science.gov (United States)

    Craft, Rebecca M; Wakley, Alexa A; Tsutsui, Kimberly T; Laggart, Jillian D

    2012-03-01

    The purpose of this study was to determine whether sex differences in cannabinoid (CB)-induced antinociception and motoric effects can be attributed to differential activation of CB(1) or CB(2) receptors. Rats were injected intraperitoneally with vehicle, rimonabant [5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (SR141716A), a putative CB(1) receptor-selective antagonist; 0.1-10 mg/kg] or 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-1H-pyrazole-3-carboxamide (SR144528) (a putative CB(2) receptor-selective antagonist; 1.0-10 mg/kg). Thirty minutes later, Δ(9)-tetrahydrocannabinol (THC; 1.25-40 mg/kg) or 5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol (CP55,940) (0.05-1.6 mg/kg) was injected. Paw pressure and tail withdrawal antinociception, locomotor activity, and catalepsy were measured. Rimonabant dose-dependently antagonized THC and CP55,940 in each test, but was up to 10 times more potent in female than male rats on the nociceptive tests; estimates of rimonabant affinity (apparent pK(B)) for the CB(1) receptor were approximately 0.5 to 1 mol/kg higher in female than male rats. SR144528 partially antagonized THC-induced tail withdrawal antinociception and locomotor activity in females, but this antagonism was not dose-dependent or consistent; no SR144528 antagonism was observed in either sex tested with CP55,940. Neither the time course of rimonabant antagonism nor the plasma levels of rimonabant differed between the sexes. Rimonabant and SR144528 did not antagonize morphine-induced antinociception, and naloxone did not antagonize THC-induced antinociception in either sex. These results suggest that THC produces acute antinociceptive and motoric effects via activation of CB(1), and perhaps under some conditions, CB(2) receptors, in female rats, whereas THC acts primarily at CB(1) receptors in male rats. Higher apparent pK(B) for

  13. Characterization of blaCTX-M IncFII plasmids and clones of Escherichia coli from pets in France.

    Science.gov (United States)

    Dahmen, Safia; Haenni, Marisa; Châtre, Pierre; Madec, Jean-Yves

    2013-12-01

    To characterize bla(CTX-M) IncFII plasmids and clones of Escherichia coli from cats and dogs and to compare them with bla(CTX-M) IncFII plasmids reported in humans. From December 2006 to April 2010, 518 E. coli isolates from clinical infections in cats and dogs were screened for extended-spectrum β-lactamase (ESBL) production. Antimicrobial susceptibility was performed by disc diffusion and resistance genes were identified by PCR and sequencing. Plasmids were characterized using PCR-based replicon typing and sub-typing schemes, restriction fragment length polymorphism analysis, S1-PFGE and Southern hybridization. Isolates were characterized by PFGE, phylogenetic grouping, O25b typing and multilocus sequence typing. Nineteen E. coli isolates (3.7%) produced ESBLs, of which 14 (74%) carried bla(CTX-M) IncFII plasmids. The bla(CTX-M) gene was predominant and located on F31:A4:B1, F36:A4:B1 or F36:A1:B20 plasmids, abundantly reported in humans. The bla(CTX-M) F22:A1:B20 or F2:A2:B20 plasmids were also found. Different sequence types (STs) were identified, such as ST10, ST410, ST359, ST617 and ST224. Only one E. coli isolate belonged to the ST131 E. coli clone and carried a bla(CTX-M) F2:A2:B20 plasmid. This is the first known extensive study on ESBL-producing E. coli isolates from pets in France. The ST131 clone was rare. However, the predominance of human-like bla(CTX-M) IncFII plasmids suggests exchanges of these plasmids with the human reservoir.

  14. Chromosomal Integration of the Klebsiella pneumoniae Carbapenemase Gene,blaKPC, in Klebsiella Species Is Elusive but Not Rare.

    Science.gov (United States)

    Mathers, Amy J; Stoesser, Nicole; Chai, Weidong; Carroll, Joanne; Barry, Katie; Cherunvanky, Anita; Sebra, Robert; Kasarskis, Andrew; Peto, Tim E; Walker, A Sarah; Sifri, Costi D; Crook, Derrick W; Sheppard, Anna E

    2017-03-01

    Carbapenemase genes in Enterobacteriaceae are mostly described as being plasmid associated. However, the genetic context of carbapenemase genes is not always confirmed in epidemiological surveys, and the frequency of their chromosomal integration therefore is unknown. A previously sequenced collection of bla KPC -positive Enterobacteriaceae from a single U.S. institution (2007 to 2012; n = 281 isolates from 182 patients) was analyzed to identify chromosomal insertions of Tn 4401 , the transposon most frequently harboring bla KPC Using a combination of short- and long-read sequencing, we confirmed five independent chromosomal integration events from 6/182 (3%) patients, corresponding to 15/281 (5%) isolates. Three patients had isolates identified by perirectal screening, and three had infections which were all successfully treated. When a single copy of bla KPC was in the chromosome, one or both of the phenotypic carbapenemase tests were negative. All chromosomally integrated bla KPC genes were from Klebsiella spp., predominantly K. pneumoniae clonal group 258 (CG258), even though these represented only a small proportion of the isolates. Integration occurred via IS 15 -ΔI-mediated transposition of a larger, composite region encompassing Tn 4401 at one locus of chromosomal integration, seen in the same strain ( K. pneumoniae ST340) in two patients. In summary, we identified five independent chromosomal integrations of bla KPC in a large outbreak, demonstrating that this is not a rare event. bla KPC was more frequently integrated into the chromosome of epidemic CG258 K. pneumoniae lineages (ST11, ST258, and ST340) and was more difficult to detect by routine phenotypic methods in this context. The presence of chromosomally integrated bla KPC within successful, globally disseminated K. pneumoniae strains therefore is likely underestimated. Copyright © 2017 Mathers et al.

  15. First report on blaNDM-1-producing Acinetobacter baumannii in three clinical isolates from Ethiopia.

    Science.gov (United States)

    Pritsch, Michael; Zeynudin, Ahmed; Messerer, Maxim; Baumer, Simon; Liegl, Gabriele; Schubert, Soeren; Löscher, Thomas; Hoelscher, Michael; Belachew, Tefara; Rachow, Andrea; Wieser, Andreas

    2017-03-01

    Multidrug-resistant Gram-negative bacterial infections are recognized as one of the major threats to global health. In this study, we describe for the first time bla NDM-1 gene carrying organisms from Ethiopia consisting of three Acinetobacter baumannii isolates from patients in Jimma. Besides phenotypic antimicrobial susceptibility testing, molecular strain typing and sequencing was performed to describe the phylogenetic relation of the Ethiopian isolates in detail in relation to published isolates from all over the globe. Three multi-resistant, bla NDM-1 -positive Acinetobacter baumannii isolates, most likely a local clonal diffusion, were isolated. Two of the three isolates described within this study were untreatable with the locally available antimicrobials and were only susceptible to polymyxin B and amikacin. The genome sequences confirmed the isolates to be distinct from the outbreak strains reported from Kenya, the only other characterized bla NDM-1 positive Acinetobacter baumannii strains in East Africa so far. Up to date, no other bacterial species were found to harbour the gene cassette in Jimma and conjugation to E. coli was not successful under laboratory conditions. However, natural transmission to other bacteria seems likely, given the evident lack of hygienic precautions due to limited resource settings. The detected isolates could solely be the tip of the iceberg regarding the presence of NDM-1 producing organisms in the region, as only a limited number of bacterial isolates were evaluated so far and until recently, susceptibility testing and isolation of bacteria could hardly be performed in clinical patient care. These multi-drug resistant organisms pose a serious threat to antimicrobial treatments in Jimma, Ethiopia.

  16. Susceptibility Pattern and Distribution of Oxacillinases and blaPER-1 Genes among Multidrug Resistant Acinetobacter baumannii in a Teaching Hospital in Iran

    Directory of Open Access Journals (Sweden)

    Sareh Bagheri Josheghani

    2015-01-01

    Full Text Available Acinetobacter baumannii (A. baumannii is an important nosocomial pathogen in healthcare institutions. β-Lactamase-mediated resistance is the most common mechanism for carbapenem resistance in A. baumannii. The aim of this study was to determine the antibiotic resistance pattern, to detect OXA encoding genes, class A, blaPER-1, and to detect the presence of ISAba1. A total of 124 A. baumannii isolates were collected from hospitalized patients in a teaching hospital in Kashan, Iran. The susceptibility of isolates to different antibiotics was determined by disk-diffusion method. PCR was used to detect blaPER-1, blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and ISAba1 genes. All isolates were resistant to ceftazidime, ceftriaxone, and cefotaxime. All of the isolates revealed susceptibility to polymyxin B and colistin. Ninety-six percent of the isolates were extensive drug resistance (XDR, 5.6% extended spectrum beta-lactamase (ESBL, and 54.8% metallo-beta-lactamase (MBL. All isolates were positive for blaOXA-51 and ISAba1. blaOXA-23,  blaOXA-24, and blaOXA-58 were found in 79.8%, 25%, and 3.2%, respectively. The frequency rate of blaPER-1 gene was 52.4%. Multidrug resistant A. baumannii isolates are increasing in our setting and extensively limit therapeutic options. The high rate presence of class D carbapenemase-encoding genes, mainly blaOXA-23 carbapenemases, is worrying and alarming as an emerging threat in our hospital.

  17. The complex genetic context of blaPER-1 flanked by miniature inverted-repeat transposable elements in Acinetobacter johnsonii.

    Directory of Open Access Journals (Sweden)

    Zhiyong Zong

    Full Text Available On a large plasmid of Acinetobacter johnsonii strain XBB1 from hospital sewage, blaPER-1 and ISCR1 were found in a complex Tn402-like integron carrying an arr3-aacA4 cassette array. The integron was truncated by the same 439-bp miniature inverted-repeat transposable element (MITE at both ends. blaPER-1 and its complex surroundings might have been mobilized by the MITEst into an orf of unknown function, evidenced by the presence of the characteristic 5-bp direct target repeats. The same 439-bp MITEs have also been found flanking class 1 integrons carrying metallo-β-lactamases genes bla IMP-1, bla IMP-5 and bla VIM-2 before but without ISCR1. Although the cassette arrays are different, integrons have always been truncated by the 439-bp MITEs at the exact same locations. The results suggested that MITEs might be able to mobilize class 1 integrons via transposition or homologous recombination and therefore represent a possible common mechanism for mobilizing antimicrobial resistance determinants.

  18. IncFII Conjugative Plasmid-Mediated Transmission of blaNDM-1 Elements among Animal-Borne Escherichia coli Strains.

    Science.gov (United States)

    Lin, Dachuan; Xie, Miaomiao; Li, Ruichao; Chen, Kaichao; Chan, Edward Wai-Chi; Chen, Sheng

    2017-01-01

    This study aims to investigate the prevalence and transmission dynamics of the bla NDM-1 gene in animal Escherichia coli strains. Two IncFII bla NDM-1 -encoding plasmids with only minor structural variation in the MDR region, pHNEC46-NDM and pHNEC55-NDM, were found to be responsible for the transmission of bla NDM-1 in these strains. The bla NDM-1 gene can be incorporated into plasmids and stably inherited in animal-borne E. coli strains that can be maintained in animal gut microflora even without carbapenem selection pressure. Copyright © 2016 American Society for Microbiology.

  19. Characterization of a novel plasmid type and various genetic contexts of bla OXA-58 in Acinetobacter spp. from multiple cities in China.

    Directory of Open Access Journals (Sweden)

    Yiqi Fu

    Full Text Available BACKGROUND/OBJECTIVE: Several studies have described the epidemiological distribution of blaOXA-58-harboring Acinetobacter baumannii in China. However, there is limited data concerning the replicon types of blaOXA-58-carrying plasmids and the genetic context surrounding blaOXA-58 in Acinetobacter spp. in China. METHODOLOGY/PRINCIPAL FINDINGS: Twelve non-duplicated blaOXA-58-harboring Acinetobacter spp. isolates were collected from six hospitals in five different cities between 2005 and 2010. The molecular epidemiology of the isolates was carried out using PFGE and multilocus sequence typing. Carbapenemase-encoding genes and plasmid replicase genes were identified by PCR. The genetic location of blaOXA-58 was analyzed using S1-nuclease method. Plasmid conjugation and electrotransformation were performed to evaluate the transferability of blaOXA-58-harboring plasmids. The genetic structure surrounding blaOXA-58 was determined by cloning experiments. The twelve isolates included two Acinetobacter pittii isolates (belong to one pulsotype, three Acinetobacter nosocomialis isolates (belong to two pulsotypes and seven Acinetobacter baumannii isolates (belong to two pulsotypes/sequence types. A. baumannii ST91 was found to be a potential multidrug resistant risk clone carrying both blaOXA-58 and blaOXA-23. blaOXA-58 located on plasmids varied from ca. 52 kb to ca. 143 kb. All plasmids can be electrotransformed to A. baumannii recipient, but were untypeable by the current replicon typing scheme. A novel plasmid replicase named repAci10 was identified in blaOXA-58-harboring plasmids of two A. pittii isolates, three A. nosocomialis isolates and two A. baumannii isolates. Four kinds of genetic contexts of blaOXA-58 were identified. The transformants of plasmids with structure of IS6 family insertion sequence (ISOur1, IS1008 or IS15-ΔISAba3-like element-blaOXA-58 displayed carbapenem nonsusceptible, while others with structure of intact ISAba3-like element-bla

  20. Iodometric and Molecular Detection of ESBL Production Among Clinical Isolates of E. coli Fingerprinted by ERIC-PCR: The First Egyptian Report Declares the Emergence of E. coli O25b-ST131clone Harboring blaGES.

    Science.gov (United States)

    El-Badawy, Mohamed F; Tawakol, Wael M; Maghrabi, Ibrahim A; Mansy, Moselhy S; Shohayeb, Mohamed M; Ashour, Mohammed S

    2017-09-01

    The extensive use of β-lactam antibiotics has led to emergence and spread of extended-spectrum β-lactamases (ESBLs). This study was conducted to investigate the prevalence of 7 different ESBL genes (bla TEM , bla SHV , bla CTX-M , bla VEB , bla PER , bla GES , and bla OXA-10 ) and O25b-ST131 high-risk clone among 61 clinical isolates of Escherichia coli. Also, one broad-spectrum β-lactamase (bla OXA-1 ) was investigated. This study was also constructed to evaluate iodometric overlay method in detection of ESBL production. Phenotypic identification of E. coli isolates using API 20E revealed 18 distinct biotypes. DNA fingerprinting using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) differentiated all isolates into 2 main phylogenetic groups with 60 distinct genetic profiles. Elevated values of minimal inhibitory concentration (MIC) 50 and MIC 90 for third- and fourth-generation cephalosporins were observed. Phenotypic tests revealed that 85.24% of isolates were ESBL producers. The incidence rates of bla TEM , bla SHV , bla CTX-M , bla GES , bla OXA-1 , and bla OXA-10 among E. coli ESBL producer phenotype were 69.23%, 25%, 96.15%, 3.85%, 11.54%, and 48%, respectively. On the other hand, bla VEB and bla PER were not detected. Sequencing of bla TEM and bla SHV revealed that bla TEM-214 and bla SHV-11 were the most prevalent variants. Group characterization of bla CTX-M revealed that bla CTX-M-1 was the most prevalent group of bla CTX-M family. It was found that 30.77% of E. coli ESBL producers belonged to O25b-ST131 clone harboring bla CTX-M-15 . This study concluded that iodometric overlay method was 100% sensitive in detection of ESBL production. To our knowledge, this is the first Egyptian study that declares the emergence of E. coli O25b-ST131 harboring bla GES .

  1. The G protein G(i1) exhibits basal coupling but not preassembly with G protein-coupled receptors

    Czech Academy of Sciences Publication Activity Database

    Bondar, Alexey; Lazar, Josef

    2017-01-01

    Roč. 292, č. 23 (2017), s. 9690-9698 ISSN 0021-9258 R&D Projects: GA ČR GA13-10799S; GA ČR(CZ) GJ17-14413Y Institutional support: RVO:61388971 Keywords : RESONANCE ENERGY-TRANSFER * CB1 CANNABINOID RECEPTOR * LIVING CELLS Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.125, year: 2016

  2. The delayed strengthening of synaptic connectivity in the amygdala depends on NMDA receptor activation during acute stress.

    Science.gov (United States)

    Yasmin, Farhana; Saxena, Kapil; McEwen, Bruce S; Chattarji, Sumantra

    2016-10-01

    There is growing evidence that stress leads to contrasting patterns of structural plasticity in the hippocampus and amygdala, two brain areas implicated in the cognitive and affective symptoms of stress-related psychiatric disorders. Acute stress has been shown to trigger a delayed increase in the density of dendritic spines in the basolateral amygdala (BLA) of rodents. However, the physiological correlates of this delayed spinogenesis in the BLA remain unexplored. Furthermore, NMDA receptors (NMDARs) have been known to underlie chronic stress-induced structural plasticity in the hippocampus, but nothing is known about the role of these receptors in the delayed spinogenesis, and its physiological consequences, in the BLA following acute stress. Here, using whole-cell recordings in rat brain slices, we find that a single exposure to 2-h immobilization stress enhances the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs) recorded from principal neurons in the BLA 10 days later. This was also accompanied by faster use-dependent block of NMDA receptor currents during repeated stimulation of thalamic inputs to the BLA, which is indicative of higher presynaptic release probability at these inputs 10 days later. Furthermore, targeted in vivo infusion of the NMDAR-antagonist APV into the BLA during the acute stress prevents the increase in mEPSC frequency and spine density 10 days later. Together, these results identify a role for NMDARs during acute stress in both the physiological and morphological strengthening of synaptic connectivity in the BLA in a delayed fashion. These findings also raise the possibility that activation of NMDA receptors during stress may serve as a common molecular mechanism despite the divergent patterns of plasticity that eventually emerge after stress in the amygdala and hippocampus. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological

  3. Detection of extended-spectrum β-lactamases (blaCTX-M-1 and blaTEM in Escherichia coli, Salmonella spp., and Klebsiella pneumoniae isolated from poultry in North Eastern India

    Directory of Open Access Journals (Sweden)

    H. Lalzampuia

    2014-11-01

    Full Text Available Aim: The present study was conducted to record the association of extended spectrum β-lactamases (ESBLs producing enteric bacteria with diarrhea of poultry birds in Mizoram, India. Materials and Methods: Fecal samples were collected from poultry birds with the history of diarrhea from different parts of Mizoram. Samples were processed for isolation and identification of Escherichia coli, Salmonella, and Klebsiella pneumoniae. All the isolates were subjected to antibiotic sensitivity assays. Phenotypically, ESBLs production ability was determined by double discs synergy test (DDST method. ESBLs producing isolates were subjected to polymerase chain reaction (PCR for detection of ESBLs genes. Plasmids were cured by acridine orange. Transfer of resistance from donor to recipient strains was done by in vitro horizontal method. Results: A total of 134 enteric bacteria was isolated, of which 102 (76.12%, 21 (15.67% and 11 (8.21% were E. coli, Salmonella spp. and K. pneumoniae, respectively. By DDST 7 (5.22% isolates (6 E. coli and 1 K. pneumoniae were ESBLs producer. PCR analysis confirmed 5 (3.73% (4 E. coli and 1 K. pneumoniae isolates harboured blaCTX-M-1 gene and/or blaTEM gene. All the isolates were carrying plasmids ranging between 0.9 kb and ~30 kb. Of the 4 isolates positive for blaCTX-M-1 and/or blaTEM, 2 (1.84% were confirmed for blaCTX-M-1 gene in their plasmid. No blaTEM gene was detected from plasmid. The resistance plasmid could not be transferred to the recipient by in vitro horizontal gene transfer method. Conclusion: ESBLs producing enteric bacteria are circulating in poultry in North Eastern Region of India. As poultry is one of the most common food animals in this region, these organisms may enter in human population through them.

  4. Antibiotic Resistance Patterns and a Survey of Metallo-β-Lactamase Genes Including bla-IMP and bla-VIM Types in Acinetobacter baumannii Isolated from Hospital Patients in Tehran.

    Science.gov (United States)

    Aghamiri, Samira; Amirmozafari, Nour; Fallah Mehrabadi, Jalil; Fouladtan, Babak; Hanafi Abdar, Mojtaba

    2016-01-01

    Metallo-β-lactamases (MBLs) producing strains of Acinetobacter baumannii are serious etiological agents of hospital infections worldwide. Among the β- lactams, carbapenems are the most effective antibiotics used against A. baumannii. However, resistance to these drugs among clinical strains of A. baumannii has been increasing in recent years. In this study, the antimicrobial sensitivity patterns of A. baumannii strains isolated from eleven different hospitals in Tehran, Iran, and the prevalence of MBL genes (bla-VIM and bla-IMP) were determined. During a period of 5 months, 176 isolates of A. baumannii were collected from different clinical specimens from hospitalized patients in Tehran. All isolates were confirmed by biochemical methods. The isolates were tested for antibiotic sensitivity by the Kirby-Bauer disk diffusion method. Following minimum inhibitory concentration determination, imipenem-resistant isolates were further tested for MBL production by the double disk synergy test (DDST) method. PCR assays were performed for the detection of the MBL genes bla-IMP and bla-VIM. The DDST phenotypic method indicated that among the 169 imipenem-resistant isolates, 165 strains were MBL positive. The PCR assays revealed that 63 of the overall isolates (36%) carried the bla-VIM gene and 70 strains (40%) harbored bla-IMP. It is obvious that nosocomial infections associated with multidrug-resistant Acinetobacter spp. are on the rise. Therefore, the determination of antibiotic sensitivity patterns and screening for MBL production among A. baumannii isolates is important for controlling clinical Acinetobacter infections. © 2016 S. Karger AG, Basel.

  5. Altered Expression of Type-1 and Type-2 Cannabinoid Receptors in Celiac Disease

    Science.gov (United States)

    Di Tommaso, Monia; Biancheri, Paolo; Rapino, Cinzia; Giuffrida, Paolo; Papadia, Cinzia; Montana, Chiara; Pasini, Alessandra; Vanoli, Alessandro; Lanzarotto, Francesco; Villanacci, Vincenzo

    2013-01-01

    Anandamide (AEA) is the prominent member of the endocannabinoid family and its biological action is mediated through the binding to both type-1 (CB1) and type-2 (CB2) cannabinoid receptors (CBR). The presence of AEA and CBR in the gastrointestinal tract highlighted their pathophysiological role in several gut diseases, including celiac disease. Here, we aimed to investigate the expression of CBR at transcriptional and translational levels in the duodenal mucosa of untreated celiac patients, celiac patients on a gluten-free diet for at least 12 months and control subjects. Also biopsies from treated celiac patients cultured ex vivo with peptic-tryptic digest of gliadin were investigated. Our data show higher levels of both CB1 and CB2 receptors during active disease and normal CBR levels in treated celiac patients. In conclusion, we demonstrate an up-regulation of CB1 and CB2 mRNA and protein expression, that points to the therapeutic potential of targeting CBR in patients with celiac disease. PMID:23620805

  6. Detection of blaOXA-23 in Acinetobacter spp. isolated from patients of a university hospital

    Directory of Open Access Journals (Sweden)

    Laís Lisboa Corrêa

    Full Text Available INTRODUCTION: Acinetobacter spp. have emerged as notorious pathogens involved in healthcareassociated infections. Carbapenems are important antimicrobial agents for treating infections due to multidrug resistant Acinetobacter spp. Different mechanisms may confer resistance to these drugs in the genus, particularly production of class D carbapenemases. OXA-23-like family has been pointed out as one of the predominant carbapenamases among Acinetobacter. The present work aimed to investigate the occurrence of OXA-23-like carbapenemases among Acinetobacter isolates recovered from patients of a university hospital in Niterói, RJ, Brazil. METHODS: Antimicrobial susceptibility profiles were determined by disk-diffusion. Imipenem resistant isolates were submitted to Modified Hodge Test in order to screen for carbapenemase production, and later to polymerase chain reaction (PCR to investigate the presence of blaOXA-23. RESULTS: Imipenem and meropenem resistance rates were 71.4% and 69.7%, respectively. The Modified Hodge Test revealed carbapenemase production among 76 (89.4% of the 85 imipenem resistant isolates analyzed; according to PCR results, 81 isolates (95.4% carried the blaOXA-23 gene. CONCLUSIONS: OXA-23-like enzymes may be an important mechanism of carbapenem resistance among isolates present in the hospital studied.

  7. Pathogenicity of pan-drug-resistant Serratia marcescens harbouring blaNDM-1.

    Science.gov (United States)

    Gruber, Teresa M; Göttig, Stephan; Mark, Laura; Christ, Sara; Kempf, Volkhard A J; Wichelhaus, Thomas A; Hamprecht, Axel

    2015-04-01

    To characterize a pan-drug-resistant Serratia marcescens clinical isolate carrying the New Delhi metallo-β-lactamase (NDM)-1. The presence of β-lactamase genes was examined by PCR and sequencing. Antibiotic susceptibility was determined by antibiotic gradient test. Transformation assays, transconjugation assays, PFGE and PCR-based replicon typing were used for plasmid analysis. Horizontal gene transfer was evaluated by liquid mating using Escherichia coli J53 as a recipient. Pathogenicity of NDM-1 expressing S. marcescens was analysed using the Galleria mellonella infection model. S. marcescens isolate SM1890 was non-susceptible to all tested antibiotics, with minocycline retaining intermediate activity. blaNDM-1 was located on a 140 kb IncA/C-type plasmid which was transferable to E. coli and Klebsiella pneumoniae by conjugation. The LD50 of the NDM-positive, SM1890 isolate was higher than that of other, NDM-1 negative, S. marcescens strains. The presence of a blaNDM-1-harbouring IncA/C plasmid resulted in marked resistance to β-lactam antibiotics, but had no significant effect on virulence of isogenic strains. Because of the intrinsic resistance of S. marcescens to colistin and reduced susceptibility to tigecycline, treatment options for infections by NDM-1-positive isolates are extremely limited in this species. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Virulence of Klebsiella pneumoniae isolates harboring bla KPC-2 carbapenemase gene in a Caenorhabditis elegans model.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Lavigne

    Full Text Available Klebsiella pneumoniae carbapenemase (KPC is a carbapenemase increasingly reported worldwide in Enterobacteriaceae. The aim of this study was to analyze the virulence of several KPC-2-producing K. pneumoniae isolates. The studied strains were (i five KPC-2 clinical strains from different geographical origins, belonging to different ST-types and possessing plasmids of different incompatibility groups; (ii seven transformants obtained after electroporation of either these natural KPC plasmids or a recombinant plasmid harboring only the bla KPC-2 gene into reference strains K. pneumoniae ATCC10031/CIP53153; and (iii five clinical strains cured of plasmids. The virulence of K. pneumoniae isolates was evaluated in the Caenorhabditis elegans model. The clinical KPC producers and transformants were significantly less virulent (LT50: 5.5 days than K. pneumoniae reference strain (LT50: 4.3 days (p<0.01. However, the worldwide spread KPC-2 positive K. pneumoniae ST258 strains and reference strains containing plasmids extracted from K. pneumoniae ST258 strains had a higher virulence than KPC-2 strains belonging to other ST types (LT50: 5 days vs. 6 days, p<0.01. The increased virulence observed in cured strains confirmed this trend. The bla KPC-2 gene itself was not associated to increased virulence.

  9. Gene blaCTX-M Mutation as Risk Factor of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Devinna Kang

    2017-06-01

    Full Text Available Currently there are more than half from all antibiotics used in the world which is belong to β lactam group, but clinical effectiveness of the antibiotics are limited by antibiotic resistance of microorganisms as causative agents from infectious diseases. Several resistance mechanisms for Enterobacteriaceae are mostly caused by enzymatic hydrolysis of antibiotics specific enzymes, called β lactamases. β lactamases represent a large group of enzyme which is genetically and functionally different as extended‑spectrum β-lactamase (ESBL and known as greatest threat of resistence. Plasmid localization from the encoded gene and enzyme distribution among the pathogen increases every year. Most widespread and clinically relevant ESBL are class A ESBL of Temoniera (TEM, Sulphydryl variable (SHV and Cefotaxime (CTX-M types. The purpose of this review was to analyze variant of blaCTX-M gene which cause the most increase incidence of antibiotic resistance. The methods of this review were data-based searching based on Pubmed, Scopus and Google Scholar, without limitation of index factor by using the keyword “blaCTX-M”, “Extended-spectrum β-lactamase”, and “antibiotic resistance”. The conclusion of the review is CTX-M type ESBL have replaced TEM and SHV type as dominant enzyme in last decade. ESBL produced by Klebsiella pneumoniae have emerged as one of major nosocomial pathogens. Nosocomial infection caused by CTX-M-15 in Klebsiella pneumoniae dramatically increased in recent years.

  10. Detection of blaOXA-23 in Acinetobacter spp. isolated from patients of a university hospital

    Directory of Open Access Journals (Sweden)

    Laís Lisboa Corrêa

    2012-12-01

    Full Text Available INTRODUCTION: Acinetobacter spp. have emerged as notorious pathogens involved in healthcareassociated infections. Carbapenems are important antimicrobial agents for treating infections due to multidrug resistant Acinetobacter spp. Different mechanisms may confer resistance to these drugs in the genus, particularly production of class D carbapenemases. OXA-23-like family has been pointed out as one of the predominant carbapenamases among Acinetobacter. The present work aimed to investigate the occurrence of OXA-23-like carbapenemases among Acinetobacter isolates recovered from patients of a university hospital in Niterói, RJ, Brazil. METHODS: Antimicrobial susceptibility profiles were determined by disk-diffusion. Imipenem resistant isolates were submitted to Modified Hodge Test in order to screen for carbapenemase production, and later to polymerase chain reaction (PCR to investigate the presence of blaOXA-23. RESULTS: Imipenem and meropenem resistance rates were 71.4% and 69.7%, respectively. The Modified Hodge Test revealed carbapenemase production among 76 (89.4% of the 85 imipenem resistant isolates analyzed; according to PCR results, 81 isolates (95.4% carried the blaOXA-23 gene. CONCLUSIONS: OXA-23-like enzymes may be an important mechanism of carbapenem resistance among isolates present in the hospital studied.

  11. A putative multi-replicon plasmid co-harboring beta-lactamase genes blaKPC-2, blaCTX-M-14 and blaTEM-1 and trimethoprim resistance gene dfrA25 from a Klebsiella pneumoniae sequence type (ST 11 strain in China.

    Directory of Open Access Journals (Sweden)

    Yu Tang

    Full Text Available The global emergence of Klebsiella pneumoniae carbapenemase (KPC-producing Klebsiella pneumoniae poses a major public health threat requiring immediate and aggressive action. Some older generation antibiotics, such as trimethoprim, serve as alternatives for treatment of infections. Here, we determined the complete nucleotide sequence of plasmid pHS091147, which co-harbored the carbapenemase (blaKPC-2 and trimethoprim resistance genes (dfrA25 from a Klebsiella pneumoniae sequence type (ST 11 clone recovered in Shanghai, China. pHS091147 had three replication genes, several plasmid-stability genes and an intact type IV secretion system gene cluster. Besides blaKPC-2 and dfrA25, pHS091147 carried several other resistance genes, including β-lactamase genes blaTEM-1 and blaCTX-M-14, sulphonamide resistance gene sul1, a quinolone resistance gene remnant (ΔqnrB2, and virulence associated gene iroN. Notably, the multidrug-resistance region was a chimeric structure composed of three subregions, which shared strong sequence homology with several plasmids previously assigned in Genbank. To our knowledge, this is the first report of the co-localization of blaKPC-2 and dfrA25 on a novel putative multi-replicon plasmid in a Klebsiella pneumoniae ST11 clone.

  12. Survey of Antibiotic Resistance and Frequency of blaOXA-23 and blaOXA-24 Oxacillinase in Acinetobacter baumannii Isolated from Tracheal Tube Specimens of Patients Hospitalized in Intensive Care Units in Isfahan city

    Directory of Open Access Journals (Sweden)

    M Ghalebi

    2017-04-01

    chi-square tests. Results: All isolates were found resistant to ceftazidime, ceftriaxone, meropenem and imipenem and the lowest resistance were seen against colistin (0% and tigecycline (10%, respectively. All isolates were resistant to imipenem using Etest method with MIC ≥ 32 μg / ml. blaOXA-23 and blaOXA-24 genes were detected in 87.5% and 25% of isolates, respectively. Conclusion: Due to the results, treatment of A. baumannii isolates by carbapenems is ineffective and tigecycline or colistin could be used for treatment. Other studies for detection of other mechanisms for carbapenem resistance are recommended.

  13. Dissemination and genetic context analysis of bla(VIM-6) among Pseudomonas aeruginosa isolates in Asian-Pacific Nations.

    Science.gov (United States)

    Castanheira, M; Bell, J M; Turnidge, J D; Mendes, R E; Jones, R N

    2010-02-01

    VIM-6, previously reported in two strains from Singapore recovered in 2000, was detected in 16 isolates collected in 2006 in India (12 isolates), Indonesia (two), Korea and the Philippines (one each). High genetic variability was observed among VIM-6-producing isolates (12 ribotypes and 11 pulsed-field gel electrophoresis types), but clones were observed in India and Indonesia; bla(VIM-6)-carrying integrons of 3.9 kb and 5 kb were detected, and two of five Indian hospitals yielded isolates with both integrons. These two integrons, bla(VIM-6) was located in the first position, followed by bla(OXA-10) and aacA4. The 5-kb integrons also harboured aadA1 and a 331-bp open reading frame encoding a putative efflux pump.

  14. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT).

    Science.gov (United States)

    Bashashati, M; Fichna, J; Piscitelli, F; Capasso, R; Izzo, A A; Sibaev, A; Timmermans, J-P; Cenac, N; Vergnolle, N; Di Marzo, V; Storr, M

    2017-12-01

    Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain. Immunostaining was performed on myenteric plexus of the mouse colon. The effects of the dual FAAH/TRPV1 inhibitor AA-5-HT on electrically induced contractility, excitatory junction potential (EJP) and fast (f) and slow (s) inhibitory junction potentials (IJP) in the mouse colon, colonic propulsion and visceromotor response (VMR) to rectal distension were studied. The colonic levels of endocannabinoids and fatty acid amides were measured. CB1-positive neurons exhibited TRPV1; only some TRPV1 positive neurons did not express CB1. CB1 and FAAH did not colocalize. AA-5-HT (100 nM-10 μM) decreased colonic contractility by ~60%; this effect was abolished by TRPV1 antagonist 5'-IRTX, but not by CB1 antagonist, SR141716. AA-5-HT (1 μM-10 μM) inhibited EJP by ~30% and IJPs by ~50%. The effects of AA-5-HT on junction potentials were reversed by SR141716 and 5`-IRTX. AA-5-HT (20 mg/kg; i.p.) inhibited colonic propulsion by ~30%; SR141716 but not 5`-IRTX reversed this effect. AA-5-HT decreased VMR by ~50%-60%; these effects were not blocked by SR141716 or 5`-IRTX. AA-5-HT increased AEA in the colon. The effects of AA-5-HT on visceral sensation and colonic motility are differentially mediated by CB1, TRPV1 and non-CB1/TRPV1 mechanisms, possibly reflecting the distinct neuromodulatory roles of endocannabinoid and endovanilloid FAAH substrates in the mouse intestine. © 2017 John Wiley & Sons Ltd.

  15. Further Spread of blaNDM-5 in Enterobacteriaceae via IncX3 Plasmids in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Fangfang eZhang

    2016-03-01

    Full Text Available One hundred and two carbapenem-resistant Enterobacteriaceae (CRE strains were isolated in a teaching hospital in Shanghai, China from 2012 to 2015. In a follow-up study, 4 New Delhi metallo-β-lactamase-5 (NDM-5-producing strains were identified after screening these CRE strains, including 1 Klebsiella pneumoniae strain (RJ01, 1 Proteus mirabilis strain (RJ02, and 2 Escherichia coli strains (RJ03 and RJ04. All K. pneumoniae and E. coli isolates were resistant to carbapenems, third-generation cephalosporins, and piperacillin-tazobactam, but were susceptible to amikacin. No epidemiological links for either E. coli isolate were found by multilocus sequence typing (MLST and pulsed-field gel electrophoresis (PFGE. However, MLST revealed a novel sequence type, ST2250, of the K. pneumoniae RJ01 strain. Inc types and sizes of blaNDM-5-carrying plasmids differed among the 4 isolates, although in P. mirabilis RJ02 and E. coli RJ03, blaNDM-5 was carried by conjugative IncX3 plasmids of nearly the same size (~40 kb. Investigation of the genetic background of sequences flanking the blaNDM-5 gene showed that all 4 isolates shared the same genetic content (IS3000-ΔISAba125-IS5-blaNDM-5-ble-trpF-dsbC-IS26-ΔumuD, which was identical to that of the pNDM_MGR194 plasmid circulating in India. This is the first identification of blaNDM-5 in P. mirabilis, which suggests its further spread to Enterobacteriaceae, and indicates that IncX3 plasmids may play an important role in potentiating the spread of blaNDM.

  16. The role of the genetic elements bla oxa and IS Aba 1 in the Acinetobacter calcoaceticus-Acinetobacter baumannii complex in carbapenem resistance in the hospital setting.

    Science.gov (United States)

    Kobs, Vanessa Cristine; Ferreira, Jéssica Augustini; Bobrowicz, Thaís Alexandra; Ferreira, Leslie Ecker; Deglmann, Roseneide Campos; Westphal, Glauco Adrieno; França, Paulo Henrique Condeixa de

    2016-01-01

    Members of the Acinetobacter genus are key pathogens that cause healthcare-associated infections, and they tend to spread and develop new antibiotic resistance mechanisms. Oxacillinases are primarily responsible for resistance to carbapenem antibiotics. Higher rates of carbapenem hydrolysis might be ascribed to insertion sequences, such as the ISAba1 sequence, near bla OXA genes. The present study examined the occurrence of the genetic elements bla OXA and ISAba1 and their relationship with susceptibility to carbapenems in clinical isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Isolates identified over 6 consecutive years in a general hospital in Joinville, Southern Brazil, were evaluated. The investigation of 5 families of genes encoding oxacillinases and the ISAba1 sequence location relative to bla OXA genes was conducted using polymerase chain reaction. All isolates presented the bla OXA-51-like gene (n = 78), and 91% tested positive for the bla OXA-23-like gene (n = 71). The presence of ISAba1 was exclusively detected in isolates carrying the bla OXA-23-like gene. All isolates in which ISAba1 was found upstream of the bla OXA-23-like gene (n = 69) showed resistance to carbapenems, whereas the only isolate in which ISAba1 was not located near the bla OXA-23-like gene was susceptible to carbapenems. The ISAba1 sequence position of another bla OXA-23-like-positive isolate was inconclusive. The isolates exclusively carrying the bla OXA-51-like gene (n = 7) showed susceptibility to carbapenems. The presence of the ISAba1 sequence upstream of the bla OXA-23-like gene was strongly associated with carbapenem resistance in isolates of the A. calcoaceticus-A. baumannii complex in the hospital center studied.

  17. The role of the genetic elements bla oxa and IS Aba 1 in the Acinetobacter calcoaceticus-Acinetobacter baumannii complex in carbapenem resistance in the hospital setting

    Directory of Open Access Journals (Sweden)

    Vanessa Cristine Kobs

    Full Text Available Abstract: INTRODUCTION: Members of the Acinetobacter genus are key pathogens that cause healthcare-associated infections, and they tend to spread and develop new antibiotic resistance mechanisms. Oxacillinases are primarily responsible for resistance to carbapenem antibiotics. Higher rates of carbapenem hydrolysis might be ascribed to insertion sequences, such as the ISAba1 sequence, near bla OXA genes. The present study examined the occurrence of the genetic elements bla OXA and ISAba1 and their relationship with susceptibility to carbapenems in clinical isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. METHODS: Isolates identified over 6 consecutive years in a general hospital in Joinville, Southern Brazil, were evaluated. The investigation of 5 families of genes encoding oxacillinases and the ISAba1 sequence location relative to bla OXA genes was conducted using polymerase chain reaction. RESULTS: All isolates presented the bla OXA-51-like gene (n = 78, and 91% tested positive for the bla OXA-23-like gene (n = 71. The presence of ISAba1 was exclusively detected in isolates carrying the bla OXA-23-like gene. All isolates in which ISAba1 was found upstream of the bla OXA-23-like gene (n = 69 showed resistance to carbapenems, whereas the only isolate in which ISAba1 was not located near the bla OXA-23-like gene was susceptible to carbapenems. The ISAba1 sequence position of another bla OXA-23-like-positive isolate was inconclusive. The isolates exclusively carrying the bla OXA-51-like gene (n = 7 showed susceptibility to carbapenems. CONCLUSIONS: The presence of the ISAba1 sequence upstream of the bla OXA-23-like gene was strongly associated with carbapenem resistance in isolates of the A. calcoaceticus-A. baumannii complex in the hospital center studied.

  18. blaOXA-48 carrying clonal colistin resistant-carbapenem resistant Klebsiella pneumoniae in neonate intensive care unit, India.

    Science.gov (United States)

    Singh, Santosh Kumar; Gupta, Minakshi

    2016-11-01

    Bacteria resistant to colistin, a last resort antibiotic reflect the pre-antibiotic era. In this study, colistin resistance carbapenem-resistant K. pneumoniae (COL R - CRKP) strains from neonate's intensive care unit were evaluated. Molecular analysis showed that all the four colistin resistant K. pneumoniae isolates were clonally related with strong biofilm formation ability and harbored bla SHV-34 and bla OXA-48 genes. Our result suggested the need of proper surveillance and adequate infection control to limiting the spread of these organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Low dose combination of morphine and Δ9-tetrahydrocannabinol circumvents antinociceptive tolerance and apparent desensitization of receptors

    Science.gov (United States)

    Smith, Paul A.; Selley, Dana E.; Sim-Selley, Laura J.; Welch, Sandra P.

    2007-01-01

    Morphine and Δ9-tetrahydrocannabinol (THC) produce antinociception via mu opioid and cannabinoid CB1 receptors, respectively, located in central nervous system (CNS) regions including periaqueductal gray and spinal cord. Chronic treatment with morphine or THC produces antinociceptive tolerance and cellular adaptations that include receptor desensitization. Previous studies have shown that administration of combined sub-analgesic doses of THC + morphine produced antinociception in the absence of tolerance. The present study assessed receptor-mediated G-protein activity in spinal cord and periaqueductal gray following chronic administration of THC, morphine or low-dose combination. Rats received morphine (escalating doses from 1–6 x 75 mg s.c. pellets or s.c. injection of 100 to 200 mg/kg twice daily), THC (4 mg/kg i.p. twice daily) or low-dose combination (0.75 mg/kg each morphine (s.c) and THC (i.p.) twice daily) for 6.5 days. Antinociception was measured in one cohort of rats using the paw pressure test, and a second cohort was assessed for agonist-stimulated [35S]GTPγS binding. Chronic administration of morphine or THC produced antinociceptive tolerance to the respective drugs, whereas combination treatment did not produce tolerance. Administration of THC attenuated cannabinoid CB1 receptor-stimulated G-protein activity in both periaqueductal gray and spinal cord, and administration of morphine decreased mu opioid receptor-stimulated [35S]GTPγS binding in spinal cord or periaqueductal gray, depending on route of administration. In contrast, combination treatment did not alter cannabinoid CB1 receptor- or mu opioid receptor-stimulated G-protein activity in either region. These results demonstrate that low-dose THC-morphine combination treatment produces antinociception in the absence of tolerance or attenuation of receptor function. PMID:17603035

  20. Increased prevalence of carbapenem resistant Enterobacteriaceae in hospital setting due to cross-species transmission of the bla NDM-1 element and clonal spread of progenitor resistant strains.

    Science.gov (United States)

    Wang, Xuan; Chen, Gongxiang; Wu, Xiaoyan; Wang, Liangping; Cai, Jiachang; Chan, Edward W; Chen, Sheng; Zhang, Rong

    2015-01-01

    This study investigated the transmission characteristics of carbapenem-resistant Enterobacteriaceae (CRE) strains collected from a hospital setting in China, in which consistent emergence of CRE strains were observable during the period of May 2013 to February 2014. Among the 45 CRE isolates tested, 21 (47%) strains were found to harbor the bla NDM-1 element, and the rest of 24 CRE strains were all positive for bla KPC-2. The 21 bla NDM-1-borne strains were found to comprise multiple Enterobacteriaceae species including nine Enterobacter cloacae, three Escherichia coli, three Citrobacter freundii, two Klebsiella pneumoniae, two Klebsiella oxytoca, and two Morganella morganii strains, indicating that cross-species transmission of bla NDM-1 is a common event. Genetic analyses by PFGE and MLST showed that, with the exception of E. coli and E. cloacae, strains belonging to the same species were often genetically unrelated. In addition to bla NDM-1, several CRE strains were also found to harbor the bla KPC-2, bla VIM-1, and bla IMP-4 elements. Conjugations experiments confirmed that the majority of carbapenem resistance determinants were transferable. Taken together, our findings suggest that transmission of mobile resistance elements among members of Enterobacteriaceae and clonal spread of CRE strains may contribute synergistically to a rapid increase in the population of CRE in clinical settings, prompting a need to implement more rigorous infection control measures to arrest such vicious transmission cycle in CRE-prevalent areas.

  1. Anandamide and Δ9-Tetrahydrocannabinol Directly Inhibit Cells of the Immune System via CB2 Receptors

    Science.gov (United States)

    Eisenstein, Toby K.; Meissler, Joseph J.; Wilson, Qiana; Gaughan, John P.; Adler, Martin W.

    2007-01-01

    This study shows that two cannabinoids, Δ9-tetrahydrocannabinol (THC) and anandamide, induce dose related immunosuppression in both the primary and secondary in vitro plaque-forming cell assays of antibody formation. The immunosuppression induced by both compounds could be blocked by SR144528, an antagonist specific for the CB2 receptor, but not by SR141716, a CB1 antagonist. These studies are novel in that they show that both anadamide and THC are active in the nanomolar to picomolar (for anandamide) range in these assays of immune function, and that both mediate their effects directly on cells of the immune system through the CB2 receptor. PMID:17640739

  2. Scotopic vision in the monkey is modulated by the G protein-coupled receptor 55

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha

    2016-01-01

    The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors in the mon......The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors...... in the monkey retina, suggesting its possible role in scotopic vision. To test this hypothesis, we recorded full-field electroretinograms (ERGs) after the intravitreal injection of the GPR55 agonist lysophosphatidylglucoside (LPG) or the selective GPR55 antagonist CID16020046 (CID), under light- and dark......-adapted conditions. Thirteen vervet monkeys (Chlorocebus sabaeus) were used in this study: four controls (injected with the vehicle dimethyl sulfoxide, DMSO), four injected with LPG and five with CID. We analyzed amplitudes and latencies of the a-wave (photoreceptor responses) and the b-wave (rod and cone system...

  3. Dissemination and characterization of plasmids carrying oqxAB-bla CTX-M genes in Escherichia coli isolates from food-producing animals.

    Directory of Open Access Journals (Sweden)

    Bao-Tao Liu

    Full Text Available BACKGROUND: The association of PMQR and ESBLs in negative-bacteria isolates has been of great concern. The present study was performed to investigate the prevalence of co-transferability of oqxAB and bla CTX-M genes among the 696 Escherichia coli (E. coli isolates from food-producing animals in South China, and to characterize these plasmids. METHODS: The ESBL-encoding genes (bla(CTX-M, bla(TEM and bla(SHV, and PMQR (qnrA, qnrB, qnrS, qnrC, qnrD, aac(6'-Ib-cr, qepA, and oqxAB of these 696 isolates were determined by PCR and sequenced directionally. Conjugation, S1 nuclease pulsed-field gel electrophoresis (PFGE and Southern blotting experiments were performed to investigate the co-transferability and location of oqxAB and bla(CTX-M. The EcoRI digestion profiles of the plasmids with oqxAB-bla(CTX-M were also analyzed. The clonal relatedness was investigated by PFGE. RESULTS: Of the 696 isolates, 429 harbored at least one PMQR gene, with oqxAB (328 being the most common type; 191 carried bla(CTX-M, with bla(CTX-M-14 the most common. We observed a significant higher prevalence of bla(CTX-M among the oqxAB-positive isolates (38.7% than that (17.4% in the oqxAB-negative isolates. Co-transferability of oqxAB and bla(CTX-M was found in 18 of the 127 isolates carrying oqxAB-bla(CTX-M. These two genes were located on the same plasmid in all the 18 isolates, with floR being on these plasmids in 13 isolates. The co-dissemination of these genes was mainly mediated by F33:A-: B- and HI2 plasmids with highly similar EcoRI digestion profiles. Diverse PFGE patterns indicated the high prevalence of oqxAB was not caused by clonal dissemination. CONCLUSION: bla(CTX-M was highly prevalent among the oqxAB-positive isolates. The co-dissemination of oqxAB-bla(CTX-M genes in E. coli isolates from food-producing animals is mediated mainly by similar F33:A-: B- and HI2 plasmids. This is the first report of the co-existence of oqxAB, bla(CTX-M, and floR on the same

  4. The Cannabinoid Delta-9-tetrahydrocannabinol Mediates Inhibition of Macrophage Chemotaxis to RANTES/CCL5 through the CB2 Receptor

    Science.gov (United States)

    Raborn, Erinn S.; Marciano-Cabral, Francine; Buckley, Nancy E.; Martin, Billy R.; Cabral, Guy A.

    2009-01-01

    The chemotactic response of murine peritoneal macrophages to RANTES/CCL5 was inhibited significantly following pretreatment with delta-9-tetrahydrocannabinol (THC), the major psychoactive component in marijuana. Significant inhibition of this chemokine directed migratory response was obtained also when the full cannabinoid agonist CP55940 was used. The CB2 receptor-selective ligand O-2137 exerted a robust inhibition of chemotaxis while the CB1 receptor-selective ligand ACEA had a minimal effect. The THC-mediated inhibition was reversed by the CB2 receptor-specific antagonist SR144528 but not by the CB1 receptor-specific antagonist SR141716A. In addition, THC treatment had a minimal effect on the chemotactic response of peritoneal macrophages from CB2 knockout mice. Collectively, these results suggest that cannabinoids act through the CB2 receptor to trans-deactivate migratory responsiveness to RANTES/CCL5. Furthermore, the results suggest that the CB2 receptor may be a constituent element of a network of G protein-coupled receptor signal transductional systems, inclusive of chemokine receptors, that act coordinately to modulate macrophage migration. PMID:18247131

  5. Identificación genotípica de β-lactamasas de espectro espectro extendido (BLEE (blaTEM y blaSHV en Escherichia coli uropatógena

    Directory of Open Access Journals (Sweden)

    Yeffersson Grandas Franco

    2016-06-01

    Full Text Available Introducción: Las infecciones de tracto urinario (ITU son consideradas un problema de salud pública a nivel mundial debido a su incidencia y morbilidad. Entre los agentes causales que se aíslan con mayor frecuencia, se encuentra E. coli, con una prevalencia que va desde 40% al 95%. Actualmente, la problemática de las ITU ha venido en aumento, debido a la aparición de resistencia bacteriana a agentes antimicrobianos, influenciado por la presión selectiva, la preexistencia de genes de resistencia y el uso indiscriminado de antibióticos. Objetivo: Identificar molecularmente β-lactamasas de espectro extendido (blaTEM y blaSHV, en E. coli uropatógena, aislada en pacientes ambulatorios que asisten a un laboratorio clínico de tercer nivel de complejidad. Materiales y métodos: Estudio descriptivo de corte transversal. En este trabajo se estudiaron 250 cepas de las cuales 120 eran presuntivas de producir β-lactamasas de acuerdo al método de Kirby-bauer que se realizó años anteriores por el semillero de Inmunidad e Infección. Los genes de interés se amplificaron mediante PCR. Se utilizó Klebsiella pneumoniae ATCC 700603 como control positivo. Una vez amplificado el gen se llevó a cabo el corrido electroforético en gel de agarosa donde el producto amplificado fue de 470 pb en el caso de blaSHV y de 1080 pb para blaTEM. Los fenotipos compatibles con producción de β-lactamasas se analizaron por medio de distribución de frecuencia usando el software WHONET 5,6. La distribución de frecuencia de los genes analizados se calculó usando el software MedCalc versión 15.2.2 (Bélgica – Software BBVA. Resultados: De las cepas analizadas, el 52,8% portadoras del gen blaTEM y el 2,8% del gen blaSHV-2. Se encontró co-existencia de los genes blaSHV-2 y blaTEM en el 1,68% del total de las cepas. De todas las cepas presuntivas de producir BLEE (n=120, 94 fueron productoras de BLEE, lo que nos indicaría que las 21 cepas restantes, implementan

  6. Molecular heterogeneity of bla(VIM-2)-containing integrons from Pseudomonas aeruginosa plasmids encoding the VIM-2 metallo-beta-lactamase.

    Science.gov (United States)

    Pallecchi, L; Riccio, M L; Docquier, J D; Fontana, R; Rossolini, G M

    2001-02-20

    A bla(VIM-2) metallo-beta-lactamase determinant, identical to that previously identified in Pseudomonas aeruginosa COL-1 isolate from a French hospital, was detected on a 28-kb plasmid carried by a nosocomial isolate of P. aeruginosa from Verona, Italy. In this plasmid the bla(VIM-2) determinant was inserted into a class 1 integron of original structure, named In72, that c