WorldWideScience

Sample records for bivariate multicanonical monte

  1. Partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations.

    Science.gov (United States)

    Okumura, Hisashi

    2008-09-28

    Partial multicanonical algorithm is proposed for molecular dynamics and Monte Carlo simulations. The partial multicanonical simulation samples a wide range of a part of the potential-energy terms, which is necessary to sample the conformational space widely, whereas a wide range of total potential energy is sampled in the multicanonical algorithm. Thus, one can concentrate the effort to determine the weight factor only on the important energy terms in the partial multicanonical simulation. The partial multicanonical, multicanonical, and canonical molecular dynamics algorithms were applied to an alanine dipeptide in explicit water solvent. The canonical simulation sampled the states of P(II), C(5), alpha(R), and alpha(P). The multicanonical simulation covered the alpha(L) state as well as these states. The partial multicanonical simulation also sampled the C(7) (ax) state in addition to the states that were sampled by the multicanonical simulation. In the partial multicanonical simulation, furthermore, backbone dihedral angles phi and psi rotated more frequently than those in the multicanonical and canonical simulations. These results mean that the partial multicanonical algorithm has a higher sampling efficiency than the multicanonical and canonical algorithms.

  2. Generalized-ensemble molecular dynamics and Monte Carlo algorithms beyond the limit of the multicanonical algorithm

    International Nuclear Information System (INIS)

    Okumura, Hisashi

    2010-01-01

    I review two new generalized-ensemble algorithms for molecular dynamics and Monte Carlo simulations of biomolecules, that is, the multibaric–multithermal algorithm and the partial multicanonical algorithm. In the multibaric–multithermal algorithm, two-dimensional random walks not only in the potential-energy space but also in the volume space are realized. One can discuss the temperature dependence and pressure dependence of biomolecules with this algorithm. The partial multicanonical simulation samples a wide range of only an important part of potential energy, so that one can concentrate the effort to determine a multicanonical weight factor only on the important energy terms. This algorithm has higher sampling efficiency than the multicanonical and canonical algorithms. (review)

  3. Multicanonical recursions

    International Nuclear Information System (INIS)

    Berg, B.A.

    1996-01-01

    Recently multicanonical Monte Carlo (MC) sampling and closely related methods have received much attention. Considerable gains have been achieved in situations with open-quotes supercriticalclose quotes slowing down, such as first-order transition, and systems with conflicting constrains, for instance, spin glasses or proteins. In the multicanonical ensemble one samples configurations such that exact reconstruction of canonical expectation values becomes feasible for a desired temperature range. This requires a broad energy distribution, and leaves innovative freedom concerning the optimal shape. Considerable practical experience exists only for the uniform energy distribution

  4. A histogram-free multicanonical Monte Carlo algorithm for the construction of analytical density of states

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbach, Markus [ORNL; Li, Ying Wai [ORNL

    2017-06-01

    We report a new multicanonical Monte Carlo (MC) algorithm to obtain the density of states (DOS) for physical systems with continuous state variables in statistical mechanics. Our algorithm is able to obtain an analytical form for the DOS expressed in a chosen basis set, instead of a numerical array of finite resolution as in previous variants of this class of MC methods such as the multicanonical (MUCA) sampling and Wang-Landau (WL) sampling. This is enabled by storing the visited states directly in a data set and avoiding the explicit collection of a histogram. This practice also has the advantage of avoiding undesirable artificial errors caused by the discretization and binning of continuous state variables. Our results show that this scheme is capable of obtaining converged results with a much reduced number of Monte Carlo steps, leading to a significant speedup over existing algorithms.

  5. Massively parallel multicanonical simulations

    Science.gov (United States)

    Gross, Jonathan; Zierenberg, Johannes; Weigel, Martin; Janke, Wolfhard

    2018-03-01

    Generalized-ensemble Monte Carlo simulations such as the multicanonical method and similar techniques are among the most efficient approaches for simulations of systems undergoing discontinuous phase transitions or with rugged free-energy landscapes. As Markov chain methods, they are inherently serial computationally. It was demonstrated recently, however, that a combination of independent simulations that communicate weight updates at variable intervals allows for the efficient utilization of parallel computational resources for multicanonical simulations. Implementing this approach for the many-thread architecture provided by current generations of graphics processing units (GPUs), we show how it can be efficiently employed with of the order of 104 parallel walkers and beyond, thus constituting a versatile tool for Monte Carlo simulations in the era of massively parallel computing. We provide the fully documented source code for the approach applied to the paradigmatic example of the two-dimensional Ising model as starting point and reference for practitioners in the field.

  6. Estimation of the four-wave mixing noise probability-density function by the multicanonical Monte Carlo method.

    Science.gov (United States)

    Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas

    2005-01-01

    The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.

  7. Optimization of partial multicanonical molecular dynamics simulations applied to an alanine dipeptide in explicit water solvent.

    Science.gov (United States)

    Okumura, Hisashi

    2011-01-07

    The partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations samples a wide range of an important part of the potential energy. Although it is a strong technique for structure prediction of biomolecules, the choice of the partial potential energy has not been optimized. In order to find the best choice, partial multicanonical molecular dynamics simulations of an alanine dipeptide in explicit water solvent were performed with 15 trial choices for the partial potential energy. The best choice was found to be the sum of the electrostatic, Lennard-Jones, and torsion-angle potential energies between solute atoms. In this case, the partial multicanonical simulation sampled all of the local-minimum free-energy states of the P(II), C(5), α(R), α(P), α(L), and C states and visited these states most frequently. Furthermore, backbone dihedral angles ϕ and ψ rotated very well. It is also found that the most important term among these three terms is the electrostatic potential energy and that the Lennard-Jones term also helps the simulation to overcome the steric restrictions. On the other hand, multicanonical simulation sampled all of the six states, but visited these states fewer times. Conventional canonical simulation sampled only four of the six states: The P(II), C(5), α(R), and α(P) states.

  8. Multicanonical evaluation of the tails of the probability density function of semiconductor optical amplifier output power fluctuations

    DEFF Research Database (Denmark)

    Tromborg, Bjarne; Reimer, Michael; Yevick, David

    2010-01-01

    This paper presents a multicanonical Monte Carlo method for simulating the tails of a pdf distribution of the filtered output power from a semiconductor optical amplifier down to values of the order of 10−40. The influence of memory effects on the pdf is examined in order to demonstrate the manner...... in which the calculated pdf approaches the true pdf with increasing integration time. The simulated pdf is shown to be in good agreement with a second order analytic expression for the pdf....

  9. Study of ±J Ising spin glasses via multicanonical ensemble

    International Nuclear Information System (INIS)

    Celik, T.; Berg, B.

    1993-03-01

    The authors performed numerical simulations of 2D and 3D Edwards-Anderson spin glass models by using the recently developed multicanonical ensemble. The ergodicity times increase with the lattice size approximately as V 3 . The energy, entropy and other physical quantities are easily calculable at all temperatures from a single simulation. Their finite size scalings and the zero temperature limits are also explored

  10. Program package for multicanonical simulations of U(1) lattice gauge theory-Second version

    Science.gov (United States)

    Bazavov, Alexei; Berg, Bernd A.

    2013-03-01

    A new version STMCMUCA_V1_1 of our program package is available. It eliminates compatibility problems of our Fortran 77 code, originally developed for the g77 compiler, with Fortran 90 and 95 compilers. New version program summaryProgram title: STMC_U1MUCA_v1_1 Catalogue identifier: AEET_v1_1 Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html Programming language: Fortran 77 compatible with Fortran 90 and 95 Computers: Any capable of compiling and executing Fortran code Operating systems: Any capable of compiling and executing Fortran code RAM: 10 MB and up depending on lattice size used No. of lines in distributed program, including test data, etc.: 15059 No. of bytes in distributed program, including test data, etc.: 215733 Keywords: Markov chain Monte Carlo, multicanonical, Wang-Landau recursion, Fortran, lattice gauge theory, U(1) gauge group, phase transitions of continuous systems Classification: 11.5 Catalogue identifier of previous version: AEET_v1_0 Journal Reference of previous version: Computer Physics Communications 180 (2009) 2339-2347 Does the new version supersede the previous version?: Yes Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory (or other continuous systems) close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors. Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars. Reasons for the new version: The previous version was developed for the g77 compiler Fortran 77 version. Compiler errors were encountered with Fortran 90 and Fortran 95 compilers (specified below). Summary of revisions: epsilon=one/10**10 is replaced by epsilon/10.0D10 in the parameter statements of the subroutines u1_bmha.f, u1_mucabmha.f, u1wl

  11. The ferromagnetic-spin glass transition in PdMn alloys: symmetry breaking of ferromagnetism and spin glass studied by a multicanonical method.

    Science.gov (United States)

    Kato, Tomohiko; Saita, Takahiro

    2011-03-16

    The magnetism of Pd(1-x)Mn(x) is investigated theoretically. A localized spin model for Mn spins that interact with short-range antiferromagnetic interactions and long-range ferromagnetic interactions via itinerant d electrons is set up, with no adjustable parameters. A multicanonical Monte Carlo simulation, combined with a procedure of symmetry breaking, is employed to discriminate between the ferromagnetic and spin glass orders. The transition temperature and the low-temperature phase are determined from the temperature variation of the specific heat and the probability distributions of the ferromagnetic order parameter and the spin glass order parameter at different concentrations. The calculation results reveal that only the ferromagnetic phase exists at x glass phase exists at x > 0.04, and that the two phases coexist at intermediate concentrations. This result agrees semi-quantitatively with experimental results.

  12. Advanced Markov chain Monte Carlo methods learning from past samples

    CERN Document Server

    Liang, Faming; Carrol, Raymond J

    2010-01-01

    This book provides comprehensive coverage of simulation of complex systems using Monte Carlo methods. Developing algorithms that are immune to the local trap problem has long been considered as the most important topic in MCMC research. Various advanced MCMC algorithms which address this problem have been developed include, the modified Gibbs sampler, the methods based on auxiliary variables and the methods making use of past samples. The focus of this book is on the algorithms that make use of past samples. This book includes the multicanonical algorithm, dynamic weighting, dynamically weight

  13. On bivariate geometric distribution

    Directory of Open Access Journals (Sweden)

    K. Jayakumar

    2013-05-01

    Full Text Available Characterizations of bivariate geometric distribution using univariate and bivariate geometric compounding are obtained. Autoregressive models with marginals as bivariate geometric distribution are developed. Various bivariate geometric distributions analogous to important bivariate exponential distributions like, Marshall-Olkin’s bivariate exponential, Downton’s bivariate exponential and Hawkes’ bivariate exponential are presented.

  14. Methods for Monte Carlo simulations of biomacromolecules.

    Science.gov (United States)

    Vitalis, Andreas; Pappu, Rohit V

    2009-01-01

    The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies.

  15. Multicanonical simulation of the Domb-Joyce model and the Gō model: new enumeration methods for self-avoiding walks

    International Nuclear Information System (INIS)

    Shirai, Nobu C; Kikuchi, Macoto

    2013-01-01

    We develop statistical enumeration methods for self-avoiding walks using a powerful sampling technique called the multicanonical Monte Carlo method. Using these methods, we estimate the numbers of the two dimensional N-step self-avoiding walks up to N = 256 with statistical errors. The developed methods are based on statistical mechanical models of paths which include self-avoiding walks. The criterion for selecting a suitable model for enumerating self-avoiding walks is whether or not the configuration space of the model includes a set for which the number of the elements can be exactly counted. We call this set a scale fixing set. We selected the following two models which satisfy the criterion: the Gō model for lattice proteins and the Domb-Joyce model for generalized random walks. There is a contrast between these two models in the structures of the configuration space. The configuration space of the Gō model is defined as the universal set of self-avoiding walks, and the set of the ground state conformation provides a scale fixing set. On the other hand, the configuration space of the Domb-Joyce model is defined as the universal set of random walks which can be used as a scale fixing set, and the set of the ground state conformation is the same as the universal set of self-avoiding walks. From the perspective of enumeration performance, we conclude that the Domb-Joyce model is the better of the two. The reason for the performance difference is partly explained by the existence of the first-order phase transition of the Gō model

  16. Stress-strength reliability for general bivariate distributions

    Directory of Open Access Journals (Sweden)

    Alaa H. Abdel-Hamid

    2016-10-01

    Full Text Available An expression for the stress-strength reliability R=P(X1bivariate distribution. Such distribution includes bivariate compound Weibull, bivariate compound Gompertz, bivariate compound Pareto, among others. In the parametric case, the maximum likelihood estimates of the parameters and reliability function R are obtained. In the non-parametric case, point and interval estimates of R are developed using Govindarajulu's asymptotic distribution-free method when X1 and X2 are dependent. An example is given when the population distribution is bivariate compound Weibull. Simulation is performed, based on different sample sizes to study the performance of estimates.

  17. Bivariate discrete beta Kernel graduation of mortality data.

    Science.gov (United States)

    Mazza, Angelo; Punzo, Antonio

    2015-07-01

    Various parametric/nonparametric techniques have been proposed in literature to graduate mortality data as a function of age. Nonparametric approaches, as for example kernel smoothing regression, are often preferred because they do not assume any particular mortality law. Among the existing kernel smoothing approaches, the recently proposed (univariate) discrete beta kernel smoother has been shown to provide some benefits. Bivariate graduation, over age and calendar years or durations, is common practice in demography and actuarial sciences. In this paper, we generalize the discrete beta kernel smoother to the bivariate case, and we introduce an adaptive bandwidth variant that may provide additional benefits when data on exposures to the risk of death are available; furthermore, we outline a cross-validation procedure for bandwidths selection. Using simulations studies, we compare the bivariate approach proposed here with its corresponding univariate formulation and with two popular nonparametric bivariate graduation techniques, based on Epanechnikov kernels and on P-splines. To make simulations realistic, a bivariate dataset, based on probabilities of dying recorded for the US males, is used. Simulations have confirmed the gain in performance of the new bivariate approach with respect to both the univariate and the bivariate competitors.

  18. Non-Boltzmann Ensembles and Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Murthy, K. P. N.

    2016-01-01

    Boltzmann sampling based on Metropolis algorithm has been extensively used for simulating a canonical ensemble and for calculating macroscopic properties of a closed system at desired temperatures. An estimate of a mechanical property, like energy, of an equilibrium system, is made by averaging over a large number microstates generated by Boltzmann Monte Carlo methods. This is possible because we can assign a numerical value for energy to each microstate. However, a thermal property like entropy, is not easily accessible to these methods. The reason is simple. We can not assign a numerical value for entropy, to a microstate. Entropy is not a property associated with any single microstate. It is a collective property of all the microstates. Toward calculating entropy and other thermal properties, a non-Boltzmann Monte Carlo technique called Umbrella sampling was proposed some forty years ago. Umbrella sampling has since undergone several metamorphoses and we have now, multi-canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau algorithm etc . This class of methods generates non-Boltzmann ensembles which are un-physical. However, physical quantities can be calculated as follows. First un-weight a microstates of the entropic ensemble; then re-weight it to the desired physical ensemble. Carry out weighted average over the entropic ensemble to estimate physical quantities. In this talk I shall tell you of the most recent non- Boltzmann Monte Carlo method and show how to calculate free energy for a few systems. We first consider estimation of free energy as a function of energy at different temperatures to characterize phase transition in an hairpin DNA in the presence of an unzipping force. Next we consider free energy as a function of order parameter and to this end we estimate density of states g ( E , M ), as a function of both energy E , and order parameter M . This is carried out in two stages. We estimate g ( E ) in the first stage

  19. Bivariate Kumaraswamy Models via Modified FGM Copulas: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Indranil Ghosh

    2017-11-01

    Full Text Available A copula is a useful tool for constructing bivariate and/or multivariate distributions. In this article, we consider a new modified class of FGM (Farlie–Gumbel–Morgenstern bivariate copula for constructing several different bivariate Kumaraswamy type copulas and discuss their structural properties, including dependence structures. It is established that construction of bivariate distributions by this method allows for greater flexibility in the values of Spearman’s correlation coefficient, ρ and Kendall’s τ .

  20. An Affine Invariant Bivariate Version of the Sign Test.

    Science.gov (United States)

    1987-06-01

    words: affine invariance, bivariate quantile, bivariate symmetry, model,. generalized median, influence function , permutation test, normal efficiency...calculate a bivariate version of the influence function , and the resulting form is bounded, as is the case for the univartate sign test, and shows the...terms of a blvariate analogue of IHmpel’s (1974) influence function . The latter, though usually defined as a von-Mises derivative of certain

  1. STUDI PERBANDINGAN ANTARA ALGORITMA BIVARIATE MARGINAL DISTRIBUTION DENGAN ALGORITMA GENETIKA

    Directory of Open Access Journals (Sweden)

    Chastine Fatichah

    2006-01-01

    Full Text Available Bivariate Marginal Distribution Algorithm is extended from Estimation of Distribution Algorithm. This heuristic algorithm proposes the new approach for recombination of generate new individual that without crossover and mutation process such as genetic algorithm. Bivariate Marginal Distribution Algorithm uses connectivity variable the pair gene for recombination of generate new individual. Connectivity between variable is doing along optimization process. In this research, genetic algorithm performance with one point crossover is compared with Bivariate Marginal Distribution Algorithm performance in case Onemax, De Jong F2 function, and Traveling Salesman Problem. In this research, experimental results have shown performance the both algorithm is dependence of parameter respectively and also population size that used. For Onemax case with size small problem, Genetic Algorithm perform better with small number of iteration and more fast for get optimum result. However, Bivariate Marginal Distribution Algorithm perform better of result optimization for case Onemax with huge size problem. For De Jong F2 function, Genetic Algorithm perform better from Bivariate Marginal Distribution Algorithm of a number of iteration and time. For case Traveling Salesman Problem, Bivariate Marginal Distribution Algorithm have shown perform better from Genetic Algorithm of optimization result. Abstract in Bahasa Indonesia : Bivariate Marginal Distribution Algorithm merupakan perkembangan lebih lanjut dari Estimation of Distribution Algorithm. Algoritma heuristik ini mengenalkan pendekatan baru dalam melakukan rekombinasi untuk membentuk individu baru, yaitu tidak menggunakan proses crossover dan mutasi seperti pada Genetic Algorithm. Bivariate Marginal Distribution Algorithm menggunakan keterkaitan pasangan variabel dalam melakukan rekombinasi untuk membentuk individu baru. Keterkaitan antar variabel tersebut ditemukan selama proses optimasi berlangsung. Aplikasi yang

  2. Comparison of Model Reliabilities from Single-Step and Bivariate Blending Methods

    DEFF Research Database (Denmark)

    Taskinen, Matti; Mäntysaari, Esa; Lidauer, Martin

    2013-01-01

    Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from...... be calculated. Model reliabilities by the single-step and the bivariate blending methods were higher than by animal model due to genomic information. Compared to the single-step method, the bivariate blending method reliability estimates were, in general, lower. Computationally bivariate blending method was......, on the other hand, lighter than the single-step method....

  3. Multimagnetical simulations

    International Nuclear Information System (INIS)

    Hansmann, U.; Berg, B.A.; Florida State Univ., Tallahassee, FL; Neuhaus, T.

    1992-01-01

    We modified the recently proposed multicanonical MC algorithm for the case of a magnetic field driven order-order phase transition. We test this multimagnetic Monte Carlo algorithm for the D = 2 Ising model at β = 0.5 and simulate square lattices up to size 100 x 100. On these lattices with periodic boundary conditions it is possible to enhance the appearance of order-order interfaces during the simulation by many orders of magnitude as compared to the standard Monte Carlo simulation

  4. Covariate analysis of bivariate survival data

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methods have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.

  5. Reliability for some bivariate beta distributions

    Directory of Open Access Journals (Sweden)

    Nadarajah Saralees

    2005-01-01

    Full Text Available In the area of stress-strength models there has been a large amount of work as regards estimation of the reliability R=Pr( Xbivariate distribution with dependence between X and Y . In particular, we derive explicit expressions for R when the joint distribution is bivariate beta. The calculations involve the use of special functions.

  6. Reliability for some bivariate gamma distributions

    Directory of Open Access Journals (Sweden)

    Nadarajah Saralees

    2005-01-01

    Full Text Available In the area of stress-strength models, there has been a large amount of work as regards estimation of the reliability R=Pr( Xbivariate distribution with dependence between X and Y . In particular, we derive explicit expressions for R when the joint distribution is bivariate gamma. The calculations involve the use of special functions.

  7. Ordinal bivariate inequality

    DEFF Research Database (Denmark)

    Sonne-Schmidt, Christoffer Scavenius; Tarp, Finn; Østerdal, Lars Peter Raahave

    This paper introduces a concept of inequality comparisons with ordinal bivariate categorical data. In our model, one population is more unequal than another when they have common arithmetic median outcomes and the first can be obtained from the second by correlationincreasing switches and/or median......-preserving spreads. For the canonical 2x2 case (with two binary indicators), we derive a simple operational procedure for checking ordinal inequality relations in practice. As an illustration, we apply the model to childhood deprivation in Mozambique....

  8. Ordinal Bivariate Inequality

    DEFF Research Database (Denmark)

    Sonne-Schmidt, Christoffer Scavenius; Tarp, Finn; Østerdal, Lars Peter Raahave

    2016-01-01

    This paper introduces a concept of inequality comparisons with ordinal bivariate categorical data. In our model, one population is more unequal than another when they have common arithmetic median outcomes and the first can be obtained from the second by correlation-increasing switches and....../or median-preserving spreads. For the canonical 2 × 2 case (with two binary indicators), we derive a simple operational procedure for checking ordinal inequality relations in practice. As an illustration, we apply the model to childhood deprivation in Mozambique....

  9. Bivariate copula in fitting rainfall data

    Science.gov (United States)

    Yee, Kong Ching; Suhaila, Jamaludin; Yusof, Fadhilah; Mean, Foo Hui

    2014-07-01

    The usage of copula to determine the joint distribution between two variables is widely used in various areas. The joint distribution of rainfall characteristic obtained using the copula model is more ideal than the standard bivariate modelling where copula is belief to have overcome some limitation. Six copula models will be applied to obtain the most suitable bivariate distribution between two rain gauge stations. The copula models are Ali-Mikhail-Haq (AMH), Clayton, Frank, Galambos, Gumbel-Hoogaurd (GH) and Plackett. The rainfall data used in the study is selected from rain gauge stations which are located in the southern part of Peninsular Malaysia, during the period from 1980 to 2011. The goodness-of-fit test in this study is based on the Akaike information criterion (AIC).

  10. Bivariable analysis of ventricular late potentials in high resolution ECG records

    International Nuclear Information System (INIS)

    Orosco, L; Laciar, E

    2007-01-01

    In this study the bivariable analysis for ventricular late potentials detection in high-resolution electrocardiographic records is proposed. The standard time-domain analysis and the application of the time-frequency technique to high-resolution ECG records are briefly described as well as their corresponding results. In the proposed technique the time-domain parameter, QRSD and the most significant time-frequency index, EN QRS are used like variables. A bivariable index is defined, that combines the previous parameters. The propose technique allows evaluating the risk of ventricular tachycardia in post-myocardial infarct patients. The results show that the used bivariable index allows discriminating between the patient's population with ventricular tachycardia and the subjects of the control group. Also, it was found that the bivariable technique obtains a good valuation as diagnostic test. It is concluded that comparatively, the valuation of the bivariable technique as diagnostic test is superior to that of the time-domain method and the time-frequency technique evaluated individually

  11. Building Bivariate Tables: The compareGroups Package for R

    Directory of Open Access Journals (Sweden)

    Isaac Subirana

    2014-05-01

    Full Text Available The R package compareGroups provides functions meant to facilitate the construction of bivariate tables (descriptives of several variables for comparison between groups and generates reports in several formats (LATEX, HTML or plain text CSV. Moreover, bivariate tables can be viewed directly on the R console in a nice format. A graphical user interface (GUI has been implemented to build the bivariate tables more easily for those users who are not familiar with the R software. Some new functions and methods have been incorporated in the newest version of the compareGroups package (version 1.x to deal with time-to-event variables, stratifying tables, merging several tables, and revising the statistical methods used. The GUI interface also has been improved, making it much easier and more intuitive to set the inputs for building the bivariate tables. The ?rst version (version 0.x and this version were presented at the 2010 useR! conference (Sanz, Subirana, and Vila 2010 and the 2011 useR! conference (Sanz, Subirana, and Vila 2011, respectively. Package compareGroups is available from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=compareGroups.

  12. The relative performance of bivariate causality tests in small samples

    NARCIS (Netherlands)

    Bult, J..R.; Leeflang, P.S.H.; Wittink, D.R.

    1997-01-01

    Causality tests have been applied to establish directional effects and to reduce the set of potential predictors, For the latter type of application only bivariate tests can be used, In this study we compare bivariate causality tests. Although the problem addressed is general and could benefit

  13. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.

    Science.gov (United States)

    Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai

    2011-01-01

    Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.

  14. A generalized right truncated bivariate Poisson regression model with applications to health data.

    Science.gov (United States)

    Islam, M Ataharul; Chowdhury, Rafiqul I

    2017-01-01

    A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model.

  15. A comparison of bivariate and univariate QTL mapping in livestock populations

    Directory of Open Access Journals (Sweden)

    Sorensen Daniel

    2003-11-01

    Full Text Available Abstract This study presents a multivariate, variance component-based QTL mapping model implemented via restricted maximum likelihood (REML. The method was applied to investigate bivariate and univariate QTL mapping analyses, using simulated data. Specifically, we report results on the statistical power to detect a QTL and on the precision of parameter estimates using univariate and bivariate approaches. The model and methodology were also applied to study the effectiveness of partitioning the overall genetic correlation between two traits into a component due to many genes of small effect, and one due to the QTL. It is shown that when the QTL has a pleiotropic effect on two traits, a bivariate analysis leads to a higher statistical power of detecting the QTL and to a more precise estimate of the QTL's map position, in particular in the case when the QTL has a small effect on the trait. The increase in power is most marked in cases where the contributions of the QTL and of the polygenic components to the genetic correlation have opposite signs. The bivariate REML analysis can successfully partition the two components contributing to the genetic correlation between traits.

  16. Comparison between two bivariate Poisson distributions through the ...

    African Journals Online (AJOL)

    These two models express themselves by their probability mass function. ... To remedy this problem, Berkhout and Plug proposed a bivariate Poisson distribution accepting the correlation as well negative, equal to zero, that positive.

  17. Bivariate value-at-risk

    Directory of Open Access Journals (Sweden)

    Giuseppe Arbia

    2007-10-01

    Full Text Available In this paper we extend the concept of Value-at-risk (VaR to bivariate return distributions in order to obtain measures of the market risk of an asset taking into account additional features linked to downside risk exposure. We first present a general definition of risk as the probability of an adverse event over a random distribution and we then introduce a measure of market risk (b-VaR that admits the traditional b of an asset in portfolio management as a special case when asset returns are normally distributed. Empirical evidences are provided by using Italian stock market data.

  18. Two new bivariate zero-inflated generalized Poisson distributions with a flexible correlation structure

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2015-05-01

    Full Text Available To model correlated bivariate count data with extra zero observations, this paper proposes two new bivariate zero-inflated generalized Poisson (ZIGP distributions by incorporating a multiplicative factor (or dependency parameter λ, named as Type I and Type II bivariate ZIGP distributions, respectively. The proposed distributions possess a flexible correlation structure and can be used to fit either positively or negatively correlated and either over- or under-dispersed count data, comparing to the existing models that can only fit positively correlated count data with over-dispersion. The two marginal distributions of Type I bivariate ZIGP share a common parameter of zero inflation while the two marginal distributions of Type II bivariate ZIGP have their own parameters of zero inflation, resulting in a much wider range of applications. The important distributional properties are explored and some useful statistical inference methods including maximum likelihood estimations of parameters, standard errors estimation, bootstrap confidence intervals and related testing hypotheses are developed for the two distributions. A real data are thoroughly analyzed by using the proposed distributions and statistical methods. Several simulation studies are conducted to evaluate the performance of the proposed methods.

  19. Causal networks clarify productivity-richness interrelations, bivariate plots do not

    Science.gov (United States)

    Grace, James B.; Adler, Peter B.; Harpole, W. Stanley; Borer, Elizabeth T.; Seabloom, Eric W.

    2014-01-01

    Perhaps no other pair of variables in ecology has generated as much discussion as species richness and ecosystem productivity, as illustrated by the reactions by Pierce (2013) and others to Adler et al.'s (2011) report that empirical patterns are weak and inconsistent. Adler et al. (2011) argued we need to move beyond a focus on simplistic bivariate relationships and test mechanistic, multivariate causal hypotheses. We feel the continuing debate over productivity–richness relationships (PRRs) provides a focused context for illustrating the fundamental difficulties of using bivariate relationships to gain scientific understanding.

  20. A bivariate model for analyzing recurrent multi-type automobile failures

    Science.gov (United States)

    Sunethra, A. A.; Sooriyarachchi, M. R.

    2017-09-01

    The failure mechanism in an automobile can be defined as a system of multi-type recurrent failures where failures can occur due to various multi-type failure modes and these failures are repetitive such that more than one failure can occur from each failure mode. In analysing such automobile failures, both the time and type of the failure serve as response variables. However, these two response variables are highly correlated with each other since the timing of failures has an association with the mode of the failure. When there are more than one correlated response variables, the fitting of a multivariate model is more preferable than separate univariate models. Therefore, a bivariate model of time and type of failure becomes appealing for such automobile failure data. When there are multiple failure observations pertaining to a single automobile, such data cannot be treated as independent data because failure instances of a single automobile are correlated with each other while failures among different automobiles can be treated as independent. Therefore, this study proposes a bivariate model consisting time and type of failure as responses adjusted for correlated data. The proposed model was formulated following the approaches of shared parameter models and random effects models for joining the responses and for representing the correlated data respectively. The proposed model is applied to a sample of automobile failures with three types of failure modes and up to five failure recurrences. The parametric distributions that were suitable for the two responses of time to failure and type of failure were Weibull distribution and multinomial distribution respectively. The proposed bivariate model was programmed in SAS Procedure Proc NLMIXED by user programming appropriate likelihood functions. The performance of the bivariate model was compared with separate univariate models fitted for the two responses and it was identified that better performance is secured by

  1. Approximation of bivariate copulas by patched bivariate Fréchet copulas

    KAUST Repository

    Zheng, Yanting; Yang, Jingping; Huang, Jianhua Z.

    2011-01-01

    Bivariate Fréchet (BF) copulas characterize dependence as a mixture of three simple structures: comonotonicity, independence and countermonotonicity. They are easily interpretable but have limitations when used as approximations to general dependence structures. To improve the approximation property of the BF copulas and keep the advantage of easy interpretation, we develop a new copula approximation scheme by using BF copulas locally and patching the local pieces together. Error bounds and a probabilistic interpretation of this approximation scheme are developed. The new approximation scheme is compared with several existing copula approximations, including shuffle of min, checkmin, checkerboard and Bernstein approximations and exhibits better performance, especially in characterizing the local dependence. The utility of the new approximation scheme in insurance and finance is illustrated in the computation of the rainbow option prices and stop-loss premiums. © 2010 Elsevier B.V.

  2. Approximation of bivariate copulas by patched bivariate Fréchet copulas

    KAUST Repository

    Zheng, Yanting

    2011-03-01

    Bivariate Fréchet (BF) copulas characterize dependence as a mixture of three simple structures: comonotonicity, independence and countermonotonicity. They are easily interpretable but have limitations when used as approximations to general dependence structures. To improve the approximation property of the BF copulas and keep the advantage of easy interpretation, we develop a new copula approximation scheme by using BF copulas locally and patching the local pieces together. Error bounds and a probabilistic interpretation of this approximation scheme are developed. The new approximation scheme is compared with several existing copula approximations, including shuffle of min, checkmin, checkerboard and Bernstein approximations and exhibits better performance, especially in characterizing the local dependence. The utility of the new approximation scheme in insurance and finance is illustrated in the computation of the rainbow option prices and stop-loss premiums. © 2010 Elsevier B.V.

  3. Probability distributions with truncated, log and bivariate extensions

    CERN Document Server

    Thomopoulos, Nick T

    2018-01-01

    This volume presents a concise and practical overview of statistical methods and tables not readily available in other publications. It begins with a review of the commonly used continuous and discrete probability distributions. Several useful distributions that are not so common and less understood are described with examples and applications in full detail: discrete normal, left-partial, right-partial, left-truncated normal, right-truncated normal, lognormal, bivariate normal, and bivariate lognormal. Table values are provided with examples that enable researchers to easily apply the distributions to real applications and sample data. The left- and right-truncated normal distributions offer a wide variety of shapes in contrast to the symmetrically shaped normal distribution, and a newly developed spread ratio enables analysts to determine which of the three distributions best fits a particular set of sample data. The book will be highly useful to anyone who does statistical and probability analysis. This in...

  4. GIS-Based bivariate statistical techniques for groundwater potential ...

    Indian Academy of Sciences (India)

    24

    This study shows the potency of two GIS-based data driven bivariate techniques namely ... In the view of these weaknesses , there is a strong requirement for reassessment of .... Font color: Text 1, Not Expanded by / Condensed by , ...... West Bengal (India) using remote sensing, geographical information system and multi-.

  5. Assessing the copula selection for bivariate frequency analysis ...

    Indian Academy of Sciences (India)

    58

    Copulas are applied to overcome the restriction of traditional bivariate frequency ... frequency analysis methods cannot describe the random variable properties that ... In order to overcome the limitation of multivariate distributions, a copula is a ..... The Mann-Kendall (M-K) test is a non-parametric statistical test which is used ...

  6. About some properties of bivariate splines with shape parameters

    Science.gov (United States)

    Caliò, F.; Marchetti, E.

    2017-07-01

    The paper presents and proves geometrical properties of a particular bivariate function spline, built and algorithmically implemented in previous papers. The properties typical of this family of splines impact the field of computer graphics in particular that of the reverse engineering.

  7. Optimizing an objective function under a bivariate probability model

    NARCIS (Netherlands)

    X. Brusset; N.M. Temme (Nico)

    2007-01-01

    htmlabstractThe motivation of this paper is to obtain an analytical closed form of a quadratic objective function arising from a stochastic decision process with bivariate exponential probability distribution functions that may be dependent. This method is applicable when results need to be

  8. A New Measure Of Bivariate Asymmetry And Its Evaluation

    International Nuclear Information System (INIS)

    Ferreira, Flavio Henn; Kolev, Nikolai Valtchev

    2008-01-01

    In this paper we propose a new measure of bivariate asymmetry, based on conditional correlation coefficients. A decomposition of the Pearson correlation coefficient in terms of its conditional versions is studied and an example of application of the proposed measure is given.

  9. Spectrum-based estimators of the bivariate Hurst exponent

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2014-01-01

    Roč. 90, č. 6 (2014), art. 062802 ISSN 1539-3755 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : bivariate Hurst exponent * power- law cross-correlations * estimation Subject RIV: AH - Economics Impact factor: 2.288, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0436818.pdf

  10. Bivariate generalized Pareto distribution for extreme atmospheric particulate matter

    Science.gov (United States)

    Amin, Nor Azrita Mohd; Adam, Mohd Bakri; Ibrahim, Noor Akma; Aris, Ahmad Zaharin

    2015-02-01

    The high particulate matter (PM10) level is the prominent issue causing various impacts to human health and seriously affecting the economics. The asymptotic theory of extreme value is apply for analyzing the relation of extreme PM10 data from two nearby air quality monitoring stations. The series of daily maxima PM10 for Johor Bahru and Pasir Gudang stations are consider for year 2001 to 2010 databases. The 85% and 95% marginal quantile apply to determine the threshold values and hence construct the series of exceedances over the chosen threshold. The logistic, asymmetric logistic, negative logistic and asymmetric negative logistic models areconsidered as the dependence function to the joint distribution of a bivariate observation. Maximum likelihood estimation is employed for parameter estimations. The best fitted model is chosen based on the Akaike Information Criterion and the quantile plots. It is found that the asymmetric logistic model gives the best fitted model for bivariate extreme PM10 data and shows the weak dependence between two stations.

  11. Bivariational calculations for radiation transfer in an inhomogeneous participating media

    International Nuclear Information System (INIS)

    El Wakil, S.A.; Machali, H.M.; Haggag, M.H.; Attia, M.T.

    1986-07-01

    Equations for radiation transfer are obtained for dispersive media with space dependent albedo. Bivariational bound principle is used to calculate the reflection and transmission coefficients for such media. Numerical results are given and compared. (author)

  12. Spectral density regression for bivariate extremes

    KAUST Repository

    Castro Camilo, Daniela

    2016-05-11

    We introduce a density regression model for the spectral density of a bivariate extreme value distribution, that allows us to assess how extremal dependence can change over a covariate. Inference is performed through a double kernel estimator, which can be seen as an extension of the Nadaraya–Watson estimator where the usual scalar responses are replaced by mean constrained densities on the unit interval. Numerical experiments with the methods illustrate their resilience in a variety of contexts of practical interest. An extreme temperature dataset is used to illustrate our methods. © 2016 Springer-Verlag Berlin Heidelberg

  13. Bivariate extreme value with application to PM10 concentration analysis

    Science.gov (United States)

    Amin, Nor Azrita Mohd; Adam, Mohd Bakri; Ibrahim, Noor Akma; Aris, Ahmad Zaharin

    2015-05-01

    This study is focus on a bivariate extreme of renormalized componentwise maxima with generalized extreme value distribution as a marginal function. The limiting joint distribution of several parametric models are presented. Maximum likelihood estimation is employed for parameter estimations and the best model is selected based on the Akaike Information Criterion. The weekly and monthly componentwise maxima series are extracted from the original observations of daily maxima PM10 data for two air quality monitoring stations located in Pasir Gudang and Johor Bahru. The 10 years data are considered for both stations from year 2001 to 2010. The asymmetric negative logistic model is found as the best fit bivariate extreme model for both weekly and monthly maxima componentwise series. However the dependence parameters show that the variables for weekly maxima series is more dependence to each other compared to the monthly maxima.

  14. Bivariate Rayleigh Distribution and its Properties

    Directory of Open Access Journals (Sweden)

    Ahmad Saeed Akhter

    2007-01-01

    Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.

  15. Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach.

    Science.gov (United States)

    Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao

    2016-01-15

    When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach and has several attractive features compared with the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, because the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach.

    Science.gov (United States)

    Mohammadi, Tayeb; Kheiri, Soleiman; Sedehi, Morteza

    2016-01-01

    Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables "number of blood donation" and "number of blood deferral": as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models.

  17. Parameter estimation and statistical test of geographically weighted bivariate Poisson inverse Gaussian regression models

    Science.gov (United States)

    Amalia, Junita; Purhadi, Otok, Bambang Widjanarko

    2017-11-01

    Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.

  18. Univariate and Bivariate Empirical Mode Decomposition for Postural Stability Analysis

    Directory of Open Access Journals (Sweden)

    Jacques Duchêne

    2008-05-01

    Full Text Available The aim of this paper was to compare empirical mode decomposition (EMD and two new extended methods of  EMD named complex empirical mode decomposition (complex-EMD and bivariate empirical mode decomposition (bivariate-EMD. All methods were used to analyze stabilogram center of pressure (COP time series. The two new methods are suitable to be applied to complex time series to extract complex intrinsic mode functions (IMFs before the Hilbert transform is subsequently applied on the IMFs. The trace of the analytic IMF in the complex plane has a circular form, with each IMF having its own rotation frequency. The area of the circle and the average rotation frequency of IMFs represent efficient indicators of the postural stability status of subjects. Experimental results show the effectiveness of these indicators to identify differences in standing posture between groups.

  19. Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis

    DEFF Research Database (Denmark)

    Wu, Yili; Duan, Haiping; Tian, Xiaocao

    2018-01-01

    Previous genome-wide association studies on anthropometric measurements have identified more than 100 related loci, but only a small portion of heritability in obesity was explained. Here we present a bivariate twin study to look for the genetic variants associated with body mass index and waist......-hip ratio, and to explore the obesity-related pathways in Northern Han Chinese. Cholesky decompositionmodel for 242monozygotic and 140 dizygotic twin pairs indicated a moderate genetic correlation (r = 0.53, 95%CI: 0.42–0.64) between body mass index and waist-hip ratio. Bivariate genome-wide association.......05. Expression quantitative trait loci analysis identified rs2242044 as a significant cis-eQTL in both the normal adipose-subcutaneous (P = 1.7 × 10−9) and adipose-visceral (P = 4.4 × 10−15) tissue. These findings may provide an important entry point to unravel genetic pleiotropy in obesity traits....

  20. Semi-automated detection of aberrant chromosomes in bivariate flow karyotypes

    NARCIS (Netherlands)

    Boschman, G. A.; Manders, E. M.; Rens, W.; Slater, R.; Aten, J. A.

    1992-01-01

    A method is described that is designed to compare, in a standardized procedure, bivariate flow karyotypes of Hoechst 33258 (HO)/Chromomycin A3 (CA) stained human chromosomes from cells with aberrations with a reference flow karyotype of normal chromosomes. In addition to uniform normalization of

  1. Monte Carlo codes and Monte Carlo simulator program

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.

    1990-03-01

    Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)

  2. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    Science.gov (United States)

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  3. On the matched pairs sign test using bivariate ranked set sampling ...

    African Journals Online (AJOL)

    BVRSS) is introduced and investigated. We show that this test is asymptotically more efficient than its counterpart sign test based on a bivariate simple random sample (BVSRS). The asymptotic null distribution and the efficiency of the test are derived.

  4. Smoothing of the bivariate LOD score for non-normal quantitative traits.

    Science.gov (United States)

    Buil, Alfonso; Dyer, Thomas D; Almasy, Laura; Blangero, John

    2005-12-30

    Variance component analysis provides an efficient method for performing linkage analysis for quantitative traits. However, type I error of variance components-based likelihood ratio testing may be affected when phenotypic data are non-normally distributed (especially with high values of kurtosis). This results in inflated LOD scores when the normality assumption does not hold. Even though different solutions have been proposed to deal with this problem with univariate phenotypes, little work has been done in the multivariate case. We present an empirical approach to adjust the inflated LOD scores obtained from a bivariate phenotype that violates the assumption of normality. Using the Collaborative Study on the Genetics of Alcoholism data available for the Genetic Analysis Workshop 14, we show how bivariate linkage analysis with leptokurtotic traits gives an inflated type I error. We perform a novel correction that achieves acceptable levels of type I error.

  5. Monte Carlo and Quasi-Monte Carlo Sampling

    CERN Document Server

    Lemieux, Christiane

    2009-01-01

    Presents essential tools for using quasi-Monte Carlo sampling in practice. This book focuses on issues related to Monte Carlo methods - uniform and non-uniform random number generation, variance reduction techniques. It covers several aspects of quasi-Monte Carlo methods.

  6. Testing independence of bivariate interval-censored data using modified Kendall's tau statistic.

    Science.gov (United States)

    Kim, Yuneung; Lim, Johan; Park, DoHwan

    2015-11-01

    In this paper, we study a nonparametric procedure to test independence of bivariate interval censored data; for both current status data (case 1 interval-censored data) and case 2 interval-censored data. To do it, we propose a score-based modification of the Kendall's tau statistic for bivariate interval-censored data. Our modification defines the Kendall's tau statistic with expected numbers of concordant and disconcordant pairs of data. The performance of the modified approach is illustrated by simulation studies and application to the AIDS study. We compare our method to alternative approaches such as the two-stage estimation method by Sun et al. (Scandinavian Journal of Statistics, 2006) and the multiple imputation method by Betensky and Finkelstein (Statistics in Medicine, 1999b). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Bivariate return period for levee failure monitoring

    Science.gov (United States)

    Isola, M.; Caporali, E.

    2017-12-01

    Levee breaches are strongly linked with the interaction processes among water, soil and structure, thus many are the factors that affect the breach development. One of the main is the hydraulic load, characterized by intensity and duration, i.e. by the flood event hydrograph. On the magnitude of the hydraulic load is based the levee design, generally without considering the fatigue failure due to the load duration. Moreover, many are the cases in which the levee breach are characterized by flood of magnitude lower than the design one. In order to implement the strategies of flood risk management, we built here a procedure based on a multivariate statistical analysis of flood peak and volume together with the analysis of the past levee failure events. Particularly, in order to define the probability of occurrence of the hydraulic load on a levee, a bivariate copula model is used to obtain the bivariate joint distribution of flood peak and volume. Flood peak is the expression of the load magnitude, while the volume is the expression of the stress over time. We consider the annual flood peak and the relative volume. The volume is given by the hydrograph area between the beginning and the end of event. The beginning of the event is identified as an abrupt rise of the discharge by more than 20%. The end is identified as the point from which the receding limb is characterized by the baseflow, using a nonlinear reservoir algorithm as baseflow separation technique. By this, with the aim to define warning thresholds we consider the past levee failure events and the relative bivariate return period (BTr) compared with the estimation of a traditional univariate model. The discharge data of 30 hydrometric stations of Arno River in Tuscany, Italy, in the period 1995-2016 are analysed. The database of levee failure events, considering for each event the location as well as the failure mode, is also created. The events were registered in the period 2000-2014 by EEA

  8. Robust bivariate error detection in skewed data with application to historical radiosonde winds

    KAUST Repository

    Sun, Ying

    2017-01-18

    The global historical radiosonde archives date back to the 1920s and contain the only directly observed measurements of temperature, wind, and moisture in the upper atmosphere, but they contain many random errors. Most of the focus on cleaning these large datasets has been on temperatures, but winds are important inputs to climate models and in studies of wind climatology. The bivariate distribution of the wind vector does not have elliptical contours but is skewed and heavy-tailed, so we develop two methods for outlier detection based on the bivariate skew-t (BST) distribution, using either distance-based or contour-based approaches to flag observations as potential outliers. We develop a framework to robustly estimate the parameters of the BST and then show how the tuning parameter to get these estimates is chosen. In simulation, we compare our methods with one based on a bivariate normal distribution and a nonparametric approach based on the bagplot. We then apply all four methods to the winds observed for over 35,000 radiosonde launches at a single station and demonstrate differences in the number of observations flagged across eight pressure levels and through time. In this pilot study, the method based on the BST contours performs very well.

  9. Robust bivariate error detection in skewed data with application to historical radiosonde winds

    KAUST Repository

    Sun, Ying; Hering, Amanda S.; Browning, Joshua M.

    2017-01-01

    The global historical radiosonde archives date back to the 1920s and contain the only directly observed measurements of temperature, wind, and moisture in the upper atmosphere, but they contain many random errors. Most of the focus on cleaning these large datasets has been on temperatures, but winds are important inputs to climate models and in studies of wind climatology. The bivariate distribution of the wind vector does not have elliptical contours but is skewed and heavy-tailed, so we develop two methods for outlier detection based on the bivariate skew-t (BST) distribution, using either distance-based or contour-based approaches to flag observations as potential outliers. We develop a framework to robustly estimate the parameters of the BST and then show how the tuning parameter to get these estimates is chosen. In simulation, we compare our methods with one based on a bivariate normal distribution and a nonparametric approach based on the bagplot. We then apply all four methods to the winds observed for over 35,000 radiosonde launches at a single station and demonstrate differences in the number of observations flagged across eight pressure levels and through time. In this pilot study, the method based on the BST contours performs very well.

  10. Chain Plot: A Tool for Exploiting Bivariate Temporal Structures

    OpenAIRE

    Taylor, CC; Zempeni, A

    2004-01-01

    In this paper we present a graphical tool useful for visualizing the cyclic behaviour of bivariate time series. We investigate its properties and link it to the asymmetry of the two variables concerned. We also suggest adding approximate confidence bounds to the points on the plot and investigate the effect of lagging to the chain plot. We conclude our paper by some standard Fourier analysis, relating and comparing this to the chain plot.

  11. Bivariate tensor product ( p , q $(p, q$ -analogue of Kantorovich-type Bernstein-Stancu-Schurer operators

    Directory of Open Access Journals (Sweden)

    Qing-Bo Cai

    2017-11-01

    Full Text Available Abstract In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of ( p , q $(p, q$ -integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.

  12. Conformational Ensembles of an Intrinsically Disordered Protein pKID with and without a KIX Domain in Explicit Solvent Investigated by All-Atom Multicanonical Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Haruki Nakamura

    2012-02-01

    Full Text Available The phosphorylated kinase-inducible activation domain (pKID adopts a helix–loop–helix structure upon binding to its partner KIX, although it is unstructured in the unbound state. The N-terminal and C-terminal regions of pKID, which adopt helices in the complex, are called, respectively, αA and αB. We performed all-atom multicanonical molecular dynamics simulations of pKID with and without KIX in explicit solvents to generate conformational ensembles. Although the unbound pKID was disordered overall, αA and αB exhibited a nascent helix propensity; the propensity of αA was stronger than that of αB, which agrees with experimental results. In the bound state, the free-energy landscape of αB involved two low free-energy fractions: native-like and non-native fractions. This result suggests that αB folds according to the induced-fit mechanism. The αB-helix direction was well aligned as in the NMR complex structure, although the αA helix exhibited high flexibility. These results also agree quantitatively with experimental observations. We have detected that the αB helix can bind to another site of KIX, to which another protein MLL also binds with the adopting helix. Consequently, MLL can facilitate pKID binding to the pKID-binding site by blocking the MLL-binding site. This also supports experimentally obtained results.

  13. A simple approximation to the bivariate normal distribution with large correlation coefficient

    NARCIS (Netherlands)

    Albers, Willem/Wim; Kallenberg, W.C.M.

    1994-01-01

    The bivariate normal distribution function is approximated with emphasis on situations where the correlation coefficient is large. The high accuracy of the approximation is illustrated by numerical examples. Moreover, exact upper and lower bounds are presented as well as asymptotic results on the

  14. Global assessment of predictability of water availability: A bivariate probabilistic Budyko analysis

    Science.gov (United States)

    Wang, Weiguang; Fu, Jianyu

    2018-02-01

    Estimating continental water availability is of great importance for water resources management, in terms of maintaining ecosystem integrity and sustaining society development. To more accurately quantify the predictability of water availability, on the basis of univariate probabilistic Budyko framework, a bivariate probabilistic Budyko approach was developed using copula-based joint distribution model for considering the dependence between parameter ω of Wang-Tang's equation and the Normalized Difference Vegetation Index (NDVI), and was applied globally. The results indicate the predictive performance in global water availability is conditional on the climatic condition. In comparison with simple univariate distribution, the bivariate one produces the lower interquartile range under the same global dataset, especially in the regions with higher NDVI values, highlighting the importance of developing the joint distribution by taking into account the dependence structure of parameter ω and NDVI, which can provide more accurate probabilistic evaluation of water availability.

  15. On minimum divergence adaptation of discrete bivariate distributions to given marginals

    Czech Academy of Sciences Publication Activity Database

    Vajda, Igor; van der Meulen, E. C.

    2005-01-01

    Roč. 51, č. 1 (2005), s. 313-320 ISSN 0018-9448 R&D Projects: GA ČR GA201/02/1391; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : approximation of contingency tables * bivariate discrete distributions * minimization of divergences Subject RIV: BD - Theory of Information Impact factor: 2.183, year: 2005

  16. A bivariate space-time downscaler under space and time misalignment.

    Science.gov (United States)

    Berrocal, Veronica J; Gelfand, Alan E; Holland, David M

    2010-12-01

    Ozone and particulate matter PM(2.5) are co-pollutants that have long been associated with increased public health risks. Information on concentration levels for both pollutants come from two sources: monitoring sites and output from complex numerical models that produce concentration surfaces over large spatial regions. In this paper, we offer a fully-model based approach for fusing these two sources of information for the pair of co-pollutants which is computationally feasible over large spatial regions and long periods of time. Due to the association between concentration levels of the two environmental contaminants, it is expected that information regarding one will help to improve prediction of the other. Misalignment is an obvious issue since the monitoring networks for the two contaminants only partly intersect and because the collection rate for PM(2.5) is typically less frequent than that for ozone.Extending previous work in Berrocal et al. (2009), we introduce a bivariate downscaler that provides a flexible class of bivariate space-time assimilation models. We discuss computational issues for model fitting and analyze a dataset for ozone and PM(2.5) for the ozone season during year 2002. We show a modest improvement in predictive performance, not surprising in a setting where we can anticipate only a small gain.

  17. Unadjusted Bivariate Two-Group Comparisons: When Simpler is Better.

    Science.gov (United States)

    Vetter, Thomas R; Mascha, Edward J

    2018-01-01

    Hypothesis testing involves posing both a null hypothesis and an alternative hypothesis. This basic statistical tutorial discusses the appropriate use, including their so-called assumptions, of the common unadjusted bivariate tests for hypothesis testing and thus comparing study sample data for a difference or association. The appropriate choice of a statistical test is predicated on the type of data being analyzed and compared. The unpaired or independent samples t test is used to test the null hypothesis that the 2 population means are equal, thereby accepting the alternative hypothesis that the 2 population means are not equal. The unpaired t test is intended for comparing dependent continuous (interval or ratio) data from 2 study groups. A common mistake is to apply several unpaired t tests when comparing data from 3 or more study groups. In this situation, an analysis of variance with post hoc (posttest) intragroup comparisons should instead be applied. Another common mistake is to apply a series of unpaired t tests when comparing sequentially collected data from 2 study groups. In this situation, a repeated-measures analysis of variance, with tests for group-by-time interaction, and post hoc comparisons, as appropriate, should instead be applied in analyzing data from sequential collection points. The paired t test is used to assess the difference in the means of 2 study groups when the sample observations have been obtained in pairs, often before and after an intervention in each study subject. The Pearson chi-square test is widely used to test the null hypothesis that 2 unpaired categorical variables, each with 2 or more nominal levels (values), are independent of each other. When the null hypothesis is rejected, 1 concludes that there is a probable association between the 2 unpaired categorical variables. When comparing 2 groups on an ordinal or nonnormally distributed continuous outcome variable, the 2-sample t test is usually not appropriate. The

  18. Evidence for bivariate linkage of obesity and HDL-C levels in the Framingham Heart Study.

    Science.gov (United States)

    Arya, Rector; Lehman, Donna; Hunt, Kelly J; Schneider, Jennifer; Almasy, Laura; Blangero, John; Stern, Michael P; Duggirala, Ravindranath

    2003-12-31

    Epidemiological studies have indicated that obesity and low high-density lipoprotein (HDL) levels are strong cardiovascular risk factors, and that these traits are inversely correlated. Despite the belief that these traits are correlated in part due to pleiotropy, knowledge on specific genes commonly affecting obesity and dyslipidemia is very limited. To address this issue, we first conducted univariate multipoint linkage analysis for body mass index (BMI) and HDL-C to identify loci influencing variation in these phenotypes using Framingham Heart Study data relating to 1702 subjects distributed across 330 pedigrees. Subsequently, we performed bivariate multipoint linkage analysis to detect common loci influencing covariation between these two traits. We scanned the genome and identified a major locus near marker D6S1009 influencing variation in BMI (LOD = 3.9) using the program SOLAR. We also identified a major locus for HDL-C near marker D2S1334 on chromosome 2 (LOD = 3.5) and another region near marker D6S1009 on chromosome 6 with suggestive evidence for linkage (LOD = 2.7). Since these two phenotypes have been independently mapped to the same region on chromosome 6q, we used the bivariate multipoint linkage approach using SOLAR. The bivariate linkage analysis of BMI and HDL-C implicated the genetic region near marker D6S1009 as harboring a major gene commonly influencing these phenotypes (bivariate LOD = 6.2; LODeq = 5.5) and appears to improve power to map the correlated traits to a region, precisely. We found substantial evidence for a quantitative trait locus with pleiotropic effects, which appears to influence both BMI and HDL-C phenotypes in the Framingham data.

  19. The bivariate probit model of uncomplicated control of tumor: a heuristic exposition of the methodology

    International Nuclear Information System (INIS)

    Herbert, Donald

    1997-01-01

    Purpose: To describe the concept, models, and methods for the construction of estimates of joint probability of uncomplicated control of tumors in radiation oncology. Interpolations using this model can lead to the identification of more efficient treatment regimens for an individual patient. The requirement to find the treatment regimen that will maximize the joint probability of uncomplicated control of tumors suggests a new class of evolutionary experimental designs--Response Surface Methods--for clinical trials in radiation oncology. Methods and Materials: The software developed by Lesaffre and Molenberghs is used to construct bivariate probit models of the joint probability of uncomplicated control of cancer of the oropharynx from a set of 45 patients for each of whom the presence/absence of recurrent tumor (the binary event E-bar 1 /E 1 ) and the presence/absence of necrosis (the binary event E 2 /E-bar 2 ) of the normal tissues of the target volume is recorded, together with the treatment variables dose, time, and fractionation. Results: The bivariate probit model can be used to select a treatment regime that will give a specified probability, say P(S) = 0.60, of uncomplicated control of tumor by interpolation within a set of treatment regimes with known outcomes of recurrence and necrosis. The bivariate probit model can be used to guide a sequence of clinical trials to find the maximum probability of uncomplicated control of tumor for patients in a given prognostic stratum using Response Surface methods by extrapolation from an initial set of treatment regimens. Conclusions: The design of treatments for individual patients and the design of clinical trials might be improved by use of a bivariate probit model and Response Surface Methods

  20. Comparison of transition-matrix sampling procedures

    DEFF Research Database (Denmark)

    Yevick, D.; Reimer, M.; Tromborg, Bjarne

    2009-01-01

    We compare the accuracy of the multicanonical procedure with that of transition-matrix models of static and dynamic communication system properties incorporating different acceptance rules. We find that for appropriate ranges of the underlying numerical parameters, algorithmically simple yet high...... accurate procedures can be employed in place of the standard multicanonical sampling algorithm....

  1. Technical note: Towards a continuous classification of climate using bivariate colour mapping

    NARCIS (Netherlands)

    Teuling, A.J.

    2011-01-01

    Climate is often defined in terms of discrete classes. Here I use bivariate colour mapping to show that the global distribution of K¨oppen-Geiger climate classes can largely be reproduced by combining the simple means of two key states of the climate system 5 (i.e., air temperature and relative

  2. Task A, High Energy Physics Program experiment and theory: Task B, High Energy Physics Program numerical simulation of quantum field theories

    International Nuclear Information System (INIS)

    1992-01-01

    The effort of the experimental group has been concentrated on the CERN ALEPH and FERMILAB D0 collider experiments and completion of two fixed target experiments. The BNL fixed target experiment 771 took the world's largest sample of D(1285) and E/iota(1420) events, using pion, kaon and antiproton beams. Observing the following resonances: 0 minus-plus [1280], 1 ++ [1280], 0 minus-plus [1420], 0 minus-plus [1470], 1 ± [1415]. The Fermilab fixed target experiment E711, dihadron production in pN interactions at 800 GeV, completed data reduction and analysis. The atomic weight dependence, when parameterized as σ(A) = σ o A α , yielded a value of α = 1.043 ± 0.011 ± .012. The cross section per nucleon and angular distributions was also measured as a function of two particle mass and agrees very well with QCD calculations. The D0 Fermilab Collider Experiment E740 began its first data taking run in April 1992. The CERN collider experiment ALEPH at LEP is presently taking more data. The Z mass and width, the couplings to the upper and lower components of the hadronic isospin doublet, forward-backward asymmetries of hadronic events, and measurements of the fragmentation process have been made. The effort of detector development for the SSC has substantially increased with particular emphasis on scintillators, both in fibers and plates. Work has continued on higher-order QCD calculations using the Monte Carlo technique developed previously. This year results for WW, ZZ, WZ, and γγ production have been published. A method for incorporating parton showering in such calculations was developed and applied to W production. The multicanonical Monte Carlo algorithm has stood up to the promises anticipated; it was used in multicanonical simulations of first-order phase transitions and for spin glass systems

  3. A method of moments to estimate bivariate survival functions: the copula approach

    Directory of Open Access Journals (Sweden)

    Silvia Angela Osmetti

    2013-05-01

    Full Text Available In this paper we discuss the problem on parametric and non parametric estimation of the distributions generated by the Marshall-Olkin copula. This copula comes from the Marshall-Olkin bivariate exponential distribution used in reliability analysis. We generalize this model by the copula and different marginal distributions to construct several bivariate survival functions. The cumulative distribution functions are not absolutely continuous and they unknown parameters are often not be obtained in explicit form. In order to estimate the parameters we propose an easy procedure based on the moments. This method consist in two steps: in the first step we estimate only the parameters of marginal distributions and in the second step we estimate only the copula parameter. This procedure can be used to estimate the parameters of complex survival functions in which it is difficult to find an explicit expression of the mixed moments. Moreover it is preferred to the maximum likelihood one for its simplex mathematic form; in particular for distributions whose maximum likelihood parameters estimators can not be obtained in explicit form.

  4. Robustness leads close to the edge of chaos in coupled map networks: toward the understanding of biological networks

    International Nuclear Information System (INIS)

    Saito, Nen; Kikuchi, Macoto

    2013-01-01

    Dynamics in biological networks are, in general, robust against several perturbations. We investigate a coupled map network as a model motivated by gene regulatory networks and design systems that are robust against phenotypic perturbations (perturbations in dynamics), as well as systems that are robust against mutation (perturbations in network structure). To achieve such a design, we apply a multicanonical Monte Carlo method. Analysis based on the maximum Lyapunov exponent and parameter sensitivity shows that systems with marginal stability, which are regarded as systems at the edge of chaos, emerge when robustness against network perturbations is required. This emergence of the edge of chaos is a self-organization phenomenon and does not need a fine tuning of parameters. (paper)

  5. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Science.gov (United States)

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  6. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus

    DEFF Research Database (Denmark)

    Medina-Gomez, Carolina; Kemp, John P; Dimou, Niki L

    2017-01-01

    Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone...... as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total...

  7. Computational approach to Thornley's problem by bivariate operational calculus

    Science.gov (United States)

    Bazhlekova, E.; Dimovski, I.

    2012-10-01

    Thornley's problem is an initial-boundary value problem with a nonlocal boundary condition for linear onedimensional reaction-diffusion equation, used as a mathematical model of spiral phyllotaxis in botany. Applying a bivariate operational calculus we find explicit representation of the solution, containing two convolution products of special solutions and the arbitrary initial and boundary functions. We use a non-classical convolution with respect to the space variable, extending in this way the classical Duhamel principle. The special solutions involved are represented in the form of fast convergent series. Numerical examples are considered to show the application of the present technique and to analyze the character of the solution.

  8. Carbon and oxygen isotopic ratio bi-variate distribution for marble artifacts quarry assignment

    International Nuclear Information System (INIS)

    Pentia, M.

    1995-01-01

    Statistical description, by a Gaussian bi-variate probability distribution of 13 C/ 12 C and 18 O/ 16 O isotopic ratios in the ancient marble quarries has been done and the new method for obtaining the confidence level quarry assignment for marble artifacts has been presented. (author) 8 figs., 3 tabs., 4 refs

  9. Meta-analysis for diagnostic accuracy studies: a new statistical model using beta-binomial distributions and bivariate copulas.

    Science.gov (United States)

    Kuss, Oliver; Hoyer, Annika; Solms, Alexander

    2014-01-15

    There are still challenges when meta-analyzing data from studies on diagnostic accuracy. This is mainly due to the bivariate nature of the response where information on sensitivity and specificity must be summarized while accounting for their correlation within a single trial. In this paper, we propose a new statistical model for the meta-analysis for diagnostic accuracy studies. This model uses beta-binomial distributions for the marginal numbers of true positives and true negatives and links these margins by a bivariate copula distribution. The new model comes with all the features of the current standard model, a bivariate logistic regression model with random effects, but has the additional advantages of a closed likelihood function and a larger flexibility for the correlation structure of sensitivity and specificity. In a simulation study, which compares three copula models and two implementations of the standard model, the Plackett and the Gauss copula do rarely perform worse but frequently better than the standard model. We use an example from a meta-analysis to judge the diagnostic accuracy of telomerase (a urinary tumor marker) for the diagnosis of primary bladder cancer for illustration. Copyright © 2013 John Wiley & Sons, Ltd.

  10. A power study of bivariate LOD score analysis of a complex trait and fear/discomfort with strangers.

    Science.gov (United States)

    Ji, Fei; Lee, Dayoung; Mendell, Nancy Role

    2005-12-30

    Complex diseases are often reported along with disease-related traits (DRT). Sometimes investigators consider both disease and DRT phenotypes separately and sometimes they consider individuals as affected if they have either the disease or the DRT, or both. We propose instead to consider the joint distribution of the disease and the DRT and do a linkage analysis assuming a pleiotropic model. We evaluated our results through analysis of the simulated datasets provided by Genetic Analysis Workshop 14. We first conducted univariate linkage analysis of the simulated disease, Kofendrerd Personality Disorder and one of its simulated associated traits, phenotype b (fear/discomfort with strangers). Subsequently, we considered the bivariate phenotype, which combined the information on Kofendrerd Personality Disorder and fear/discomfort with strangers. We developed a program to perform bivariate linkage analysis using an extension to the Elston-Stewart peeling method of likelihood calculation. Using this program we considered the microsatellites within 30 cM of the gene pleiotropic for this simulated disease and DRT. Based on 100 simulations of 300 families we observed excellent power to detect linkage within 10 cM of the disease locus using the DRT and the bivariate trait.

  11. A non-stationary cost-benefit based bivariate extreme flood estimation approach

    Science.gov (United States)

    Qi, Wei; Liu, Junguo

    2018-02-01

    Cost-benefit analysis and flood frequency analysis have been integrated into a comprehensive framework to estimate cost effective design values. However, previous cost-benefit based extreme flood estimation is based on stationary assumptions and analyze dependent flood variables separately. A Non-Stationary Cost-Benefit based bivariate design flood estimation (NSCOBE) approach is developed in this study to investigate influence of non-stationarities in both the dependence of flood variables and the marginal distributions on extreme flood estimation. The dependence is modeled utilizing copula functions. Previous design flood selection criteria are not suitable for NSCOBE since they ignore time changing dependence of flood variables. Therefore, a risk calculation approach is proposed based on non-stationarities in both marginal probability distributions and copula functions. A case study with 54-year observed data is utilized to illustrate the application of NSCOBE. Results show NSCOBE can effectively integrate non-stationarities in both copula functions and marginal distributions into cost-benefit based design flood estimation. It is also found that there is a trade-off between maximum probability of exceedance calculated from copula functions and marginal distributions. This study for the first time provides a new approach towards a better understanding of influence of non-stationarities in both copula functions and marginal distributions on extreme flood estimation, and could be beneficial to cost-benefit based non-stationary bivariate design flood estimation across the world.

  12. Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields

    Science.gov (United States)

    Zscheischler, Jakob; Orth, Rene; Seneviratne, Sonia I.

    2017-07-01

    Crops are vital for human society. Crop yields vary with climate and it is important to understand how climate and crop yields are linked to ensure future food security. Temperature and precipitation are among the key driving factors of crop yield variability. Previous studies have investigated mostly linear relationships between temperature and precipitation and crop yield variability. Other research has highlighted the adverse impacts of climate extremes, such as drought and heat waves, on crop yields. Impacts are, however, often non-linearly related to multivariate climate conditions. Here we derive bivariate return periods of climate conditions as indicators for climate variability along different temperature-precipitation gradients. We show that in Europe, linear models based on bivariate return periods of specific climate conditions explain on average significantly more crop yield variability (42 %) than models relying directly on temperature and precipitation as predictors (36 %). Our results demonstrate that most often crop yields increase along a gradient from hot and dry to cold and wet conditions, with lower yields associated with hot and dry periods. The majority of crops are most sensitive to climate conditions in summer and to maximum temperatures. The use of bivariate return periods allows the integration of non-linear impacts into climate-crop yield analysis. This offers new avenues to study the link between climate and crop yield variability and suggests that they are possibly more strongly related than what is inferred from conventional linear models.

  13. Monte Carlo methods

    Directory of Open Access Journals (Sweden)

    Bardenet Rémi

    2013-07-01

    Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.

  14. Regression analysis for bivariate gap time with missing first gap time data.

    Science.gov (United States)

    Huang, Chia-Hui; Chen, Yi-Hau

    2017-01-01

    We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.

  15. A COMPARISON OF SOME ROBUST BIVARIATE CONTROL CHARTS FOR INDIVIDUAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    Moustafa Omar Ahmed Abu - Shawiesh

    2014-06-01

    Full Text Available This paper proposed and considered some bivariate control charts to monitor individual observations from a statistical process control. Usual control charts which use mean and variance-covariance estimators are sensitive to outliers. We consider the following robust alternatives to the classical Hoteling's T2: T2MedMAD, T2MCD, T2MVE a simulation study has been conducted to compare the performance of these control charts. Two real life data are analyzed to illustrate the application of these robust alternatives.

  16. A comparison between multivariate and bivariate analysis used in marketing research

    Directory of Open Access Journals (Sweden)

    Constantin, C.

    2012-01-01

    Full Text Available This paper is about an instrumental research conducted in order to compare the information given by two multivariate data analysis in comparison with the usual bivariate analysis. The outcomes of the research reveal that sometimes the multivariate methods use more information from a certain variable, but sometimes they use only a part of the information considered the most important for certain associations. For this reason, a researcher should use both categories of data analysis in order to obtain entirely useful information.

  17. Dissecting the correlation structure of a bivariate phenotype ...

    Indian Academy of Sciences (India)

    Unknown

    We use Monte-Carlo simulations to evaluate the performance of the proposed test under different trait parameters and quantitative trait distributions. An application of the method is illustrated using data on two alcohol-related phenotypes from a project on the collaborative study on the genetics of alcoholism. [Ghosh S 2005 ...

  18. A non-parametric conditional bivariate reference region with an application to height/weight measurements on normal girls

    DEFF Research Database (Denmark)

    Petersen, Jørgen Holm

    2009-01-01

    A conceptually simple two-dimensional conditional reference curve is described. The curve gives a decision basis for determining whether a bivariate response from an individual is "normal" or "abnormal" when taking into account that a third (conditioning) variable may influence the bivariate...... response. The reference curve is not only characterized analytically but also by geometric properties that are easily communicated to medical doctors - the users of such curves. The reference curve estimator is completely non-parametric, so no distributional assumptions are needed about the two......-dimensional response. An example that will serve to motivate and illustrate the reference is the study of the height/weight distribution of 7-8-year-old Danish school girls born in 1930, 1950, or 1970....

  19. Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields

    Directory of Open Access Journals (Sweden)

    J. Zscheischler

    2017-07-01

    Full Text Available Crops are vital for human society. Crop yields vary with climate and it is important to understand how climate and crop yields are linked to ensure future food security. Temperature and precipitation are among the key driving factors of crop yield variability. Previous studies have investigated mostly linear relationships between temperature and precipitation and crop yield variability. Other research has highlighted the adverse impacts of climate extremes, such as drought and heat waves, on crop yields. Impacts are, however, often non-linearly related to multivariate climate conditions. Here we derive bivariate return periods of climate conditions as indicators for climate variability along different temperature–precipitation gradients. We show that in Europe, linear models based on bivariate return periods of specific climate conditions explain on average significantly more crop yield variability (42 % than models relying directly on temperature and precipitation as predictors (36 %. Our results demonstrate that most often crop yields increase along a gradient from hot and dry to cold and wet conditions, with lower yields associated with hot and dry periods. The majority of crops are most sensitive to climate conditions in summer and to maximum temperatures. The use of bivariate return periods allows the integration of non-linear impacts into climate–crop yield analysis. This offers new avenues to study the link between climate and crop yield variability and suggests that they are possibly more strongly related than what is inferred from conventional linear models.

  20. Exploring Monte Carlo methods

    CERN Document Server

    Dunn, William L

    2012-01-01

    Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble

  1. Specialized Monte Carlo codes versus general-purpose Monte Carlo codes

    International Nuclear Information System (INIS)

    Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi

    2002-01-01

    The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)

  2. Monte Carlo principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Raeside, D E [Oklahoma Univ., Oklahoma City (USA). Health Sciences Center

    1976-03-01

    The principles underlying the use of Monte Carlo methods are explained, for readers who may not be familiar with the approach. The generation of random numbers is discussed, and the connection between Monte Carlo methods and random numbers is indicated. Outlines of two well established Monte Carlo sampling techniques are given, together with examples illustrating their use. The general techniques for improving the efficiency of Monte Carlo calculations are considered. The literature relevant to the applications of Monte Carlo calculations in medical physics is reviewed.

  3. Recurrent major depression and right hippocampal volume: A bivariate linkage and association study.

    Science.gov (United States)

    Mathias, Samuel R; Knowles, Emma E M; Kent, Jack W; McKay, D Reese; Curran, Joanne E; de Almeida, Marcio A A; Dyer, Thomas D; Göring, Harald H H; Olvera, Rene L; Duggirala, Ravi; Fox, Peter T; Almasy, Laura; Blangero, John; Glahn, David C

    2016-01-01

    Previous work has shown that the hippocampus is smaller in the brains of individuals suffering from major depressive disorder (MDD) than those of healthy controls. Moreover, right hippocampal volume specifically has been found to predict the probability of subsequent depressive episodes. This study explored the utility of right hippocampal volume as an endophenotype of recurrent MDD (rMDD). We observed a significant genetic correlation between the two traits in a large sample of Mexican American individuals from extended pedigrees (ρg = -0.34, p = 0.013). A bivariate linkage scan revealed a significant pleiotropic quantitative trait locus on chromosome 18p11.31-32 (LOD = 3.61). Bivariate association analysis conducted under the linkage peak revealed a variant (rs574972) within an intron of the gene SMCHD1 meeting the corrected significance level (χ(2) = 19.0, p = 7.4 × 10(-5)). Univariate association analyses of each phenotype separately revealed that the same variant was significant for right hippocampal volume alone, and also revealed a suggestively significant variant (rs12455524) within the gene DLGAP1 for rMDD alone. The results implicate right-hemisphere hippocampal volume as a possible endophenotype of rMDD, and in so doing highlight a potential gene of interest for rMDD risk. © 2015 Wiley Periodicals, Inc.

  4. Comparison of Six Methods for the Detection of Causality in a Bivariate Time Series

    Czech Academy of Sciences Publication Activity Database

    Krakovská, A.; Jakubík, J.; Chvosteková, M.; Coufal, David; Jajcay, Nikola; Paluš, Milan

    2018-01-01

    Roč. 97, č. 4 (2018), č. článku 042207. ISSN 2470-0045 R&D Projects: GA MZd(CZ) NV15-33250A Institutional support: RVO:67985807 Keywords : comparative study * causality detection * bivariate models * Granger causality * transfer entropy * convergent cross mappings Impact factor: 2.366, year: 2016 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.042207

  5. Bivariate- distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems.

    Science.gov (United States)

    Kota, V K B; Chavda, N D; Sahu, R

    2006-04-01

    Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.

  6. 11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing

    CERN Document Server

    Nuyens, Dirk

    2016-01-01

    This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.

  7. On the construction of bivariate exponential distributions with an arbitrary correlation coefficient

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    In this paper we use a concept of multivariate phase-type distributions to define a class of bivariate exponential distributions. This class has the following three appealing properties. Firstly, we may construct a pair of exponentially distributed random variables with any feasible correlation...... coefficient (also negative). Secondly, the class satisfies that any linear combination (projection) of the marginal random variables is a phase {type distributions, The latter property is potentially important for the development hypothesis testing in linear models. Thirdly, it is very easy to simulate...

  8. A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League

    NARCIS (Netherlands)

    Koopman, S.J.; Lit, R.

    2015-01-01

    Summary: We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results

  9. Bivariate pointing movements on large touch screens: investigating the validity of a refined Fitts' Law.

    Science.gov (United States)

    Bützler, Jennifer; Vetter, Sebastian; Jochems, Nicole; Schlick, Christopher M

    2012-01-01

    On the basis of three empirical studies Fitts' Law was refined for bivariate pointing tasks on large touch screens. In the first study different target width parameters were investigated. The second study considered the effect of the motion angle. Based on the results of the two studies a refined model for movement time in human-computer interaction was formulated. A third study, which is described here in detail, concerns the validation of the refined model. For the validation study 20 subjects had to execute a bivariate pointing task on a large touch screen. In the experimental task 250 rectangular target objects were displayed at a randomly chosen position on the screen covering a broad range of ID values (ID= [1.01; 4.88]). Compared to existing refinements of Fitts' Law, the new model shows highest predictive validity. A promising field of application of the model is the ergonomic design and evaluation of project management software. By using the refined model, software designers can calculate a priori the appropriate angular position and the size of buttons, menus or icons.

  10. Selection effects in the bivariate brightness distribution for spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1986-01-01

    The joint distribution of total luminosity and characteristic surface brightness (the bivariate brightness distribution) is investigated for a complete sample of spiral galaxies in the Virgo cluster. The influence of selection and physical limits of various kinds on the apparent distribution are detailed. While the distribution of surface brightness for bright galaxies may be genuinely fairly narrow, faint galaxies exist right across the (quite small) range of accessible surface brightnesses so no statement can be made about the true extent of the distribution. The lack of high surface brightness bright galaxies in the Virgo sample relative to an overall RC2 sample (mostly field galaxies) supports the contention that the star-formation rate is reduced in the inner region of the cluster for environmental reasons. (author)

  11. Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2015-01-01

    Roč. 431, č. 1 (2015), s. 124-127 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : Correlations * Power- law cross-correlations * Bivariate Hurst exponent * Spectrum coherence Subject RIV: AH - Economics Impact factor: 1.785, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kristoufek-0452314.pdf

  12. Comparing Johnson’s SBB, Weibull and Logit-Logistic bivariate distributions for modeling tree diameters and heights using copulas

    Energy Technology Data Exchange (ETDEWEB)

    Cardil Forradellas, A.; Molina Terrén, D.M.; Oliveres, J.; Castellnou, M.

    2016-07-01

    Aim of study: In this study we compare the accuracy of three bivariate distributions: Johnson’s SBB, Weibull-2P and LL-2P functions for characterizing the joint distribution of tree diameters and heights. Area of study: North-West of Spain. Material and methods: Diameter and height measurements of 128 plots of pure and even-aged Tasmanian blue gum (Eucalyptus globulus Labill.) stands located in the North-west of Spain were considered in the present study. The SBB bivariate distribution was obtained from SB marginal distributions using a Normal Copula based on a four-parameter logistic transformation. The Plackett Copula was used to obtain the bivariate models from the Weibull and Logit-logistic univariate marginal distributions. The negative logarithm of the maximum likelihood function was used to compare the results and the Wilcoxon signed-rank test was used to compare the related samples of these logarithms calculated for each sample plot and each distribution. Main results: The best results were obtained by using the Plackett copula and the best marginal distribution was the Logit-logistic. Research highlights: The copulas used in this study have shown a good performance for modeling the joint distribution of tree diameters and heights. They could be easily extended for modelling multivariate distributions involving other tree variables, such as tree volume or biomass. (Author)

  13. A comparison of bivariate, multivariate random-effects, and Poisson correlated gamma-frailty models to meta-analyze individual patient data of ordinal scale diagnostic tests.

    Science.gov (United States)

    Simoneau, Gabrielle; Levis, Brooke; Cuijpers, Pim; Ioannidis, John P A; Patten, Scott B; Shrier, Ian; Bombardier, Charles H; de Lima Osório, Flavia; Fann, Jesse R; Gjerdingen, Dwenda; Lamers, Femke; Lotrakul, Manote; Löwe, Bernd; Shaaban, Juwita; Stafford, Lesley; van Weert, Henk C P M; Whooley, Mary A; Wittkampf, Karin A; Yeung, Albert S; Thombs, Brett D; Benedetti, Andrea

    2017-11-01

    Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On the use of stochastic approximation Monte Carlo for Monte Carlo integration

    KAUST Repository

    Liang, Faming

    2009-03-01

    The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.

  15. On the use of stochastic approximation Monte Carlo for Monte Carlo integration

    KAUST Repository

    Liang, Faming

    2009-01-01

    The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration

  16. Application of bivariate mapping for hydrological classification and analysis of temporal change and scale effects in Switzerland

    NARCIS (Netherlands)

    Speich, Matthias J.R.; Bernhard, Luzi; Teuling, Ryan; Zappa, Massimiliano

    2015-01-01

    Hydrological classification schemes are important tools for assessing the impacts of a changing climate on the hydrology of a region. In this paper, we present bivariate mapping as a simple means of classifying hydrological data for a quantitative and qualitative assessment of temporal change.

  17. The Evaluation of Bivariate Mixed Models in Meta-analyses of Diagnostic Accuracy Studies with SAS, Stata and R.

    Science.gov (United States)

    Vogelgesang, Felicitas; Schlattmann, Peter; Dewey, Marc

    2018-05-01

    Meta-analyses require a thoroughly planned procedure to obtain unbiased overall estimates. From a statistical point of view not only model selection but also model implementation in the software affects the results. The present simulation study investigates the accuracy of different implementations of general and generalized bivariate mixed models in SAS (using proc mixed, proc glimmix and proc nlmixed), Stata (using gllamm, xtmelogit and midas) and R (using reitsma from package mada and glmer from package lme4). Both models incorporate the relationship between sensitivity and specificity - the two outcomes of interest in meta-analyses of diagnostic accuracy studies - utilizing random effects. Model performance is compared in nine meta-analytic scenarios reflecting the combination of three sizes for meta-analyses (89, 30 and 10 studies) with three pairs of sensitivity/specificity values (97%/87%; 85%/75%; 90%/93%). The evaluation of accuracy in terms of bias, standard error and mean squared error reveals that all implementations of the generalized bivariate model calculate sensitivity and specificity estimates with deviations less than two percentage points. proc mixed which together with reitsma implements the general bivariate mixed model proposed by Reitsma rather shows convergence problems. The random effect parameters are in general underestimated. This study shows that flexibility and simplicity of model specification together with convergence robustness should influence implementation recommendations, as the accuracy in terms of bias was acceptable in all implementations using the generalized approach. Schattauer GmbH.

  18. Vectorized Monte Carlo

    International Nuclear Information System (INIS)

    Brown, F.B.

    1981-01-01

    Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes

  19. Adjoint electron Monte Carlo calculations

    International Nuclear Information System (INIS)

    Jordan, T.M.

    1986-01-01

    Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment

  20. Bivariate Genomic Footprinting Detects Changes in Transcription Factor Activity

    Directory of Open Access Journals (Sweden)

    Songjoon Baek

    2017-05-01

    Full Text Available In response to activating signals, transcription factors (TFs bind DNA and regulate gene expression. TF binding can be measured by protection of the bound sequence from DNase digestion (i.e., footprint. Here, we report that 80% of TF binding motifs do not show a measurable footprint, partly because of a variable cleavage pattern within the motif sequence. To more faithfully portray the effect of TFs on chromatin, we developed an algorithm that captures two TF-dependent effects on chromatin accessibility: footprinting and motif-flanking accessibility. The algorithm, termed bivariate genomic footprinting (BaGFoot, efficiently detects TF activity. BaGFoot is robust to different accessibility assays (DNase-seq, ATAC-seq, all examined peak-calling programs, and a variety of cut bias correction approaches. BaGFoot reliably predicts TF binding and provides valuable information regarding the TFs affecting chromatin accessibility in various biological systems and following various biological events, including in cases where an absolute footprint cannot be determined.

  1. Monte Carlo: Basics

    OpenAIRE

    Murthy, K. P. N.

    2001-01-01

    An introduction to the basics of Monte Carlo is given. The topics covered include, sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, central limit theorem (stable distribution, Levy distribution), random numbers (generation and testing), random sampling techniques (inversion, rejection, sampling from a Gaussian, Metropolis sampling), analogue Monte Carlo and Importance sampling (exponential b...

  2. MORSE Monte Carlo code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described

  3. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males.

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Liu

    2009-08-01

    Full Text Available Current genome-wide association studies (GWAS are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically.To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI, with the osteoporosis risk phenotype, hip bone mineral density (BMD, scanning approximately 380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6 gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82x10(-7 and 1.47x10(-6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the approximately 380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS cohort containing 3,355 Caucasians (1,370 males and 1,985 females from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat.Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.

  4. Powerful Bivariate Genome-Wide Association Analyses Suggest the SOX6 Gene Influencing Both Obesity and Osteoporosis Phenotypes in Males

    Science.gov (United States)

    Liu, Yao-Zhong; Pei, Yu-Fang; Liu, Jian-Feng; Yang, Fang; Guo, Yan; Zhang, Lei; Liu, Xiao-Gang; Yan, Han; Wang, Liang; Zhang, Yin-Ping; Levy, Shawn; Recker, Robert R.; Deng, Hong-Wen

    2009-01-01

    Background Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically. Principal Findings To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat. Conclusions Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis. PMID:19714249

  5. SNPMClust: Bivariate Gaussian Genotype Clustering and Calling for Illumina Microarrays

    Directory of Open Access Journals (Sweden)

    Stephen W. Erickson

    2016-07-01

    Full Text Available SNPMClust is an R package for genotype clustering and calling with Illumina microarrays. It was originally developed for studies using the GoldenGate custom genotyping platform but can be used with other Illumina platforms, including Infinium BeadChip. The algorithm first rescales the fluorescent signal intensity data, adds empirically derived pseudo-data to minor allele genotype clusters, then uses the package mclust for bivariate Gaussian model fitting. We compared the accuracy and sensitivity of SNPMClust to that of GenCall, Illumina's proprietary algorithm, on a data set of 94 whole-genome amplified buccal (cheek swab DNA samples. These samples were genotyped on a custom panel which included 1064 SNPs for which the true genotype was known with high confidence. SNPMClust produced uniformly lower false call rates over a wide range of overall call rates.

  6. Monte Carlo theory and practice

    International Nuclear Information System (INIS)

    James, F.

    1987-01-01

    Historically, the first large-scale calculations to make use of the Monte Carlo method were studies of neutron scattering and absorption, random processes for which it is quite natural to employ random numbers. Such calculations, a subset of Monte Carlo calculations, are known as direct simulation, since the 'hypothetical population' of the narrower definition above corresponds directly to the real population being studied. The Monte Carlo method may be applied wherever it is possible to establish equivalence between the desired result and the expected behaviour of a stochastic system. The problem to be solved may already be of a probabilistic or statistical nature, in which case its Monte Carlo formulation will usually be a straightforward simulation, or it may be of a deterministic or analytic nature, in which case an appropriate Monte Carlo formulation may require some imagination and may appear contrived or artificial. In any case, the suitability of the method chosen will depend on its mathematical properties and not on its superficial resemblance to the problem to be solved. The authors show how Monte Carlo techniques may be compared with other methods of solution of the same physical problem

  7. Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory

    Science.gov (United States)

    Rahimi, A.; Zhang, L.

    2012-12-01

    Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further

  8. Protein folding simulations by generalized-ensemble algorithms.

    Science.gov (United States)

    Yoda, Takao; Sugita, Yuji; Okamoto, Yuko

    2014-01-01

    In the protein folding problem, conventional simulations in physical statistical mechanical ensembles, such as the canonical ensemble with fixed temperature, face a great difficulty. This is because there exist a huge number of local-minimum-energy states in the system and the conventional simulations tend to get trapped in these states, giving wrong results. Generalized-ensemble algorithms are based on artificial unphysical ensembles and overcome the above difficulty by performing random walks in potential energy, volume, and other physical quantities or their corresponding conjugate parameters such as temperature, pressure, etc. The advantage of generalized-ensemble simulations lies in the fact that they not only avoid getting trapped in states of energy local minima but also allows the calculations of physical quantities as functions of temperature or other parameters from a single simulation run. In this article we review the generalized-ensemble algorithms. Four examples, multicanonical algorithm, replica-exchange method, replica-exchange multicanonical algorithm, and multicanonical replica-exchange method, are described in detail. Examples of their applications to the protein folding problem are presented.

  9. Monte Carlo Methods in Physics

    International Nuclear Information System (INIS)

    Santoso, B.

    1997-01-01

    Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained

  10. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  11. Statistical implications in Monte Carlo depletions - 051

    International Nuclear Information System (INIS)

    Zhiwen, Xu; Rhodes, J.; Smith, K.

    2010-01-01

    As a result of steady advances of computer power, continuous-energy Monte Carlo depletion analysis is attracting considerable attention for reactor burnup calculations. The typical Monte Carlo analysis is set up as a combination of a Monte Carlo neutron transport solver and a fuel burnup solver. Note that the burnup solver is a deterministic module. The statistical errors in Monte Carlo solutions are introduced into nuclide number densities and propagated along fuel burnup. This paper is towards the understanding of the statistical implications in Monte Carlo depletions, including both statistical bias and statistical variations in depleted fuel number densities. The deterministic Studsvik lattice physics code, CASMO-5, is modified to model the Monte Carlo depletion. The statistical bias in depleted number densities is found to be negligible compared to its statistical variations, which, in turn, demonstrates the correctness of the Monte Carlo depletion method. Meanwhile, the statistical variation in number densities generally increases with burnup. Several possible ways of reducing the statistical errors are discussed: 1) to increase the number of individual Monte Carlo histories; 2) to increase the number of time steps; 3) to run additional independent Monte Carlo depletion cases. Finally, a new Monte Carlo depletion methodology, called the batch depletion method, is proposed, which consists of performing a set of independent Monte Carlo depletions and is thus capable of estimating the overall statistical errors including both the local statistical error and the propagated statistical error. (authors)

  12. Monte Carlo simulation for IRRMA

    International Nuclear Information System (INIS)

    Gardner, R.P.; Liu Lianyan

    2000-01-01

    Monte Carlo simulation is fast becoming a standard approach for many radiation applications that were previously treated almost entirely by experimental techniques. This is certainly true for Industrial Radiation and Radioisotope Measurement Applications - IRRMA. The reasons for this include: (1) the increased cost and inadequacy of experimentation for design and interpretation purposes; (2) the availability of low cost, large memory, and fast personal computers; and (3) the general availability of general purpose Monte Carlo codes that are increasingly user-friendly, efficient, and accurate. This paper discusses the history and present status of Monte Carlo simulation for IRRMA including the general purpose (GP) and specific purpose (SP) Monte Carlo codes and future needs - primarily from the experience of the authors

  13. Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis

    Science.gov (United States)

    Mortuza, Md Rubayet; Moges, Edom; Demissie, Yonas; Li, Hong-Yi

    2018-02-01

    The study aims at regional and probabilistic evaluation of bivariate drought characteristics to assess both the past and future drought duration and severity in Bangladesh. The procedures involve applying (1) standardized precipitation index to identify drought duration and severity, (2) regional frequency analysis to determine the appropriate marginal distributions for both duration and severity, (3) copula model to estimate the joint probability distribution of drought duration and severity, and (4) precipitation projections from multiple climate models to assess future drought trends. Since drought duration and severity in Bangladesh are often strongly correlated and do not follow same marginal distributions, the joint and conditional return periods of droughts are characterized using the copula-based joint distribution. The country is divided into three homogeneous regions using Fuzzy clustering and multivariate discordancy and homogeneity measures. For given severity and duration values, the joint return periods for a drought to exceed both values are on average 45% larger, while to exceed either value are 40% less than the return periods from the univariate frequency analysis, which treats drought duration and severity independently. These suggest that compared to the bivariate drought frequency analysis, the standard univariate frequency analysis under/overestimate the frequency and severity of droughts depending on how their duration and severity are related. Overall, more frequent and severe droughts are observed in the west side of the country. Future drought trend based on four climate models and two scenarios showed the possibility of less frequent drought in the future (2020-2100) than in the past (1961-2010).

  14. Collective estimation of multiple bivariate density functions with application to angular-sampling-based protein loop modeling

    KAUST Repository

    Maadooliat, Mehdi

    2015-10-21

    This paper develops a method for simultaneous estimation of density functions for a collection of populations of protein backbone angle pairs using a data-driven, shared basis that is constructed by bivariate spline functions defined on a triangulation of the bivariate domain. The circular nature of angular data is taken into account by imposing appropriate smoothness constraints across boundaries of the triangles. Maximum penalized likelihood is used to fit the model and an alternating blockwise Newton-type algorithm is developed for computation. A simulation study shows that the collective estimation approach is statistically more efficient than estimating the densities individually. The proposed method was used to estimate neighbor-dependent distributions of protein backbone dihedral angles (i.e., Ramachandran distributions). The estimated distributions were applied to protein loop modeling, one of the most challenging open problems in protein structure prediction, by feeding them into an angular-sampling-based loop structure prediction framework. Our estimated distributions compared favorably to the Ramachandran distributions estimated by fitting a hierarchical Dirichlet process model; and in particular, our distributions showed significant improvements on the hard cases where existing methods do not work well.

  15. Cost-offsets of prescription drug expenditures: data analysis via a copula-based bivariate dynamic hurdle model.

    Science.gov (United States)

    Deb, Partha; Trivedi, Pravin K; Zimmer, David M

    2014-10-01

    In this paper, we estimate a copula-based bivariate dynamic hurdle model of prescription drug and nondrug expenditures to test the cost-offset hypothesis, which posits that increased expenditures on prescription drugs are offset by reductions in other nondrug expenditures. We apply the proposed methodology to data from the Medical Expenditure Panel Survey, which have the following features: (i) the observed bivariate outcomes are a mixture of zeros and continuously measured positives; (ii) both the zero and positive outcomes show state dependence and inter-temporal interdependence; and (iii) the zeros and the positives display contemporaneous association. The point mass at zero is accommodated using a hurdle or a two-part approach. The copula-based approach to generating joint distributions is appealing because the contemporaneous association involves asymmetric dependence. The paper studies samples categorized by four health conditions: arthritis, diabetes, heart disease, and mental illness. There is evidence of greater than dollar-for-dollar cost-offsets of expenditures on prescribed drugs for relatively low levels of spending on drugs and less than dollar-for-dollar cost-offsets at higher levels of drug expenditures. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Collective estimation of multiple bivariate density functions with application to angular-sampling-based protein loop modeling

    KAUST Repository

    Maadooliat, Mehdi; Zhou, Lan; Najibi, Seyed Morteza; Gao, Xin; Huang, Jianhua Z.

    2015-01-01

    This paper develops a method for simultaneous estimation of density functions for a collection of populations of protein backbone angle pairs using a data-driven, shared basis that is constructed by bivariate spline functions defined on a triangulation of the bivariate domain. The circular nature of angular data is taken into account by imposing appropriate smoothness constraints across boundaries of the triangles. Maximum penalized likelihood is used to fit the model and an alternating blockwise Newton-type algorithm is developed for computation. A simulation study shows that the collective estimation approach is statistically more efficient than estimating the densities individually. The proposed method was used to estimate neighbor-dependent distributions of protein backbone dihedral angles (i.e., Ramachandran distributions). The estimated distributions were applied to protein loop modeling, one of the most challenging open problems in protein structure prediction, by feeding them into an angular-sampling-based loop structure prediction framework. Our estimated distributions compared favorably to the Ramachandran distributions estimated by fitting a hierarchical Dirichlet process model; and in particular, our distributions showed significant improvements on the hard cases where existing methods do not work well.

  17. Efficient estimation of semiparametric copula models for bivariate survival data

    KAUST Repository

    Cheng, Guang

    2014-01-01

    A semiparametric copula model for bivariate survival data is characterized by a parametric copula model of dependence and nonparametric models of two marginal survival functions. Efficient estimation for the semiparametric copula model has been recently studied for the complete data case. When the survival data are censored, semiparametric efficient estimation has only been considered for some specific copula models such as the Gaussian copulas. In this paper, we obtain the semiparametric efficiency bound and efficient estimation for general semiparametric copula models for possibly censored data. We construct an approximate maximum likelihood estimator by approximating the log baseline hazard functions with spline functions. We show that our estimates of the copula dependence parameter and the survival functions are asymptotically normal and efficient. Simple consistent covariance estimators are also provided. Numerical results are used to illustrate the finite sample performance of the proposed estimators. © 2013 Elsevier Inc.

  18. Geology of Maxwell Montes, Venus

    Science.gov (United States)

    Head, J. W.; Campbell, D. B.; Peterfreund, A. R.; Zisk, S. A.

    1984-01-01

    Maxwell Montes represent the most distinctive topography on the surface of Venus, rising some 11 km above mean planetary radius. The multiple data sets of the Pioneer missing and Earth based radar observations to characterize Maxwell Montes are analyzed. Maxwell Montes is a porkchop shaped feature located at the eastern end of Lakshmi Planum. The main massif trends about North 20 deg West for approximately 1000 km and the narrow handle extends several hundred km West South-West WSW from the north end of the main massif, descending down toward Lakshmi Planum. The main massif is rectilinear and approximately 500 km wide. The southern and northern edges of Maxwell Montes coincide with major topographic boundaries defining the edge of Ishtar Terra.

  19. (U) Introduction to Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-20

    Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.

  20. Geovisualization of land use and land cover using bivariate maps and Sankey flow diagrams

    Science.gov (United States)

    Strode, Georgianna; Mesev, Victor; Thornton, Benjamin; Jerez, Marjorie; Tricarico, Thomas; McAlear, Tyler

    2018-05-01

    The terms `land use' and `land cover' typically describe categories that convey information about the landscape. Despite the major difference of land use implying some degree of anthropogenic disturbance, the two terms are commonly used interchangeably, especially when anthropogenic disturbance is ambiguous, say managed forestland or abandoned agricultural fields. Cartographically, land use and land cover are also sometimes represented interchangeably within common legends, giving with the impression that the landscape is a seamless continuum of land use parcels spatially adjacent to land cover tracts. We believe this is misleading, and feel we need to reiterate the well-established symbiosis of land uses as amalgams of land covers; in other words land covers are subsets of land use. Our paper addresses this spatially complex, and frequently ambiguous relationship, and posits that bivariate cartographic techniques are an ideal vehicle for representing both land use and land cover simultaneously. In more specific terms, we explore the use of nested symbology as ways to represent graphically land use and land cover, where land cover are circles nested with land use squares. We also investigate bivariate legends for representing statistical covariance as a means for visualizing the combinations of land use and cover. Lastly, we apply Sankey flow diagrams to further illustrate the complex, multifaceted relationships between land use and land cover. Our work is demonstrated on data representing land use and cover data for the US state of Florida.

  1. A bivariate measurement error model for semicontinuous and continuous variables: Application to nutritional epidemiology.

    Science.gov (United States)

    Kipnis, Victor; Freedman, Laurence S; Carroll, Raymond J; Midthune, Douglas

    2016-03-01

    Semicontinuous data in the form of a mixture of a large portion of zero values and continuously distributed positive values frequently arise in many areas of biostatistics. This article is motivated by the analysis of relationships between disease outcomes and intakes of episodically consumed dietary components. An important aspect of studies in nutritional epidemiology is that true diet is unobservable and commonly evaluated by food frequency questionnaires with substantial measurement error. Following the regression calibration approach for measurement error correction, unknown individual intakes in the risk model are replaced by their conditional expectations given mismeasured intakes and other model covariates. Those regression calibration predictors are estimated using short-term unbiased reference measurements in a calibration substudy. Since dietary intakes are often "energy-adjusted," e.g., by using ratios of the intake of interest to total energy intake, the correct estimation of the regression calibration predictor for each energy-adjusted episodically consumed dietary component requires modeling short-term reference measurements of the component (a semicontinuous variable), and energy (a continuous variable) simultaneously in a bivariate model. In this article, we develop such a bivariate model, together with its application to regression calibration. We illustrate the new methodology using data from the NIH-AARP Diet and Health Study (Schatzkin et al., 2001, American Journal of Epidemiology 154, 1119-1125), and also evaluate its performance in a simulation study. © 2015, The International Biometric Society.

  2. Lectures on Monte Carlo methods

    CERN Document Server

    Madras, Neal

    2001-01-01

    Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati

  3. Hybrid SN/Monte Carlo research and results

    International Nuclear Information System (INIS)

    Baker, R.S.

    1993-01-01

    The neutral particle transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S N ) and stochastic (Monte Carlo) methods are applied. The Monte Carlo and S N regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid Monte Carlo/S N method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S N is well suited for by themselves. The hybrid method has been successfully applied to realistic shielding problems. The vectorized Monte Carlo algorithm in the hybrid method has been ported to the massively parallel architecture of the Connection Machine. Comparisons of performance on a vector machine (Cray Y-MP) and the Connection Machine (CM-2) show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when realistic problems requiring variance reduction are considered. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well

  4. Monte Carlo simulation in nuclear medicine

    International Nuclear Information System (INIS)

    Morel, Ch.

    2007-01-01

    The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)

  5. Preparation and bivariate analysis of suspensions of human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    van den Engh, G.J.; Trask, B.J.; Gray, J.W.; Langlois, R.G.; Yu, L.C.

    1985-01-01

    Chromosomes were isolated from a variety of human cell types using a HEPES-buffered hypotonic solution (pH 8.0) containing KCl, MgSO/sub 4/ dithioerythritol, and RNase. The chromosomes isolated by this procedure could be stained with a variety of fluorescent stains including propidium iodide, chromomycin A3, and Hoeschst 33258. Addition of sodium citrate to the stained chromosomes was found to improve the total fluorescence resolution. High-quality bivariate Hoeschst vs. chromomycin fluorescence distributions were obtained for chromosomes isolated from a human fibroblast cell strain, a human colon carcinoma cell line, and human peripheral blood lymphocyte cultures. Good flow karyotypes were also obtained from primary amniotic cell cultures. The Hoeschst vs. chromomycin flow karyotypes of a given cell line, made at different times and at dye concentrations varying over fourfold ranges, show little variation in the relative peak positions of the chromosomes. The size of the DNA in chromosomes isolated using this procedure ranges from 20 to 50 kilobases. The described isolation procedure is simple, it yields high-quality flow karyotypes, and it can be used to prepare chromosomes from clinical samples. 22 references, 7 figures, 1 table.

  6. An integrated user-friendly ArcMAP tool for bivariate statistical modeling in geoscience applications

    Science.gov (United States)

    Jebur, M. N.; Pradhan, B.; Shafri, H. Z. M.; Yusof, Z.; Tehrany, M. S.

    2014-10-01

    Modeling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modeling. Bivariate statistical analysis (BSA) assists in hazard modeling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, BSM (bivariate statistical modeler), for BSA technique is proposed. Three popular BSA techniques such as frequency ratio, weights-of-evidence, and evidential belief function models are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and is created by a simple graphical user interface, which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.

  7. An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications

    Science.gov (United States)

    Jebur, M. N.; Pradhan, B.; Shafri, H. Z. M.; Yusoff, Z. M.; Tehrany, M. S.

    2015-03-01

    Modelling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modelling. Bivariate statistical analysis (BSA) assists in hazard modelling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time-consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, bivariate statistical modeler (BSM), for BSA technique is proposed. Three popular BSA techniques, such as frequency ratio, weight-of-evidence (WoE), and evidential belief function (EBF) models, are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and created by a simple graphical user interface (GUI), which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve (AUC) is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.

  8. Belo Monte hydropower project: actual studies; AHE Belo Monte: os estudos atuais

    Energy Technology Data Exchange (ETDEWEB)

    Figueira Netto, Carlos Alberto de Moya [CNEC Engenharia S.A., Sao Paulo, SP (Brazil); Rezende, Paulo Fernando Vieira Souto [Centrais Eletricas Brasileiras S.A. (ELETROBRAS), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This article presents the evolution of the studies of Belo Monte Hydro Power Project (HPP) since the initial inventory studies of the Xingu River in 1979 until the current studies for conclusion of the Technical, Economic and Environmental Feasibility Studies the Belo Monte Hydro Power Project, as authorized by Brazilian National Congress. The current studies characterize the Belo Monte HPP with an installed capacity of 11,181.3 MW (20 units of 550 MW in the main power house and 7 units of 25.9 MW in the additional power house), connected to the Brazilian Interconnected Power Grid, allowing to generate 4,796 mean MW of firm energy, without depending on any flow rate regularization of the upstream Xingu river flooding only 441 k m2, of which approximately 200 k m2, correspond to the normal annual wet season flooding of the Xingu River. (author)

  9. Advanced Multilevel Monte Carlo Methods

    KAUST Repository

    Jasra, Ajay

    2017-04-24

    This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.

  10. Advanced Multilevel Monte Carlo Methods

    KAUST Repository

    Jasra, Ajay; Law, Kody; Suciu, Carina

    2017-01-01

    This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.

  11. Monte Carlo - Advances and Challenges

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Mosteller, Russell D.; Martin, William R.

    2008-01-01

    Abstract only, full text follows: With ever-faster computers and mature Monte Carlo production codes, there has been tremendous growth in the application of Monte Carlo methods to the analysis of reactor physics and reactor systems. In the past, Monte Carlo methods were used primarily for calculating k eff of a critical system. More recently, Monte Carlo methods have been increasingly used for determining reactor power distributions and many design parameters, such as β eff , l eff , τ, reactivity coefficients, Doppler defect, dominance ratio, etc. These advanced applications of Monte Carlo methods are now becoming common, not just feasible, but bring new challenges to both developers and users: Convergence of 3D power distributions must be assured; confidence interval bias must be eliminated; iterated fission probabilities are required, rather than single-generation probabilities; temperature effects including Doppler and feedback must be represented; isotopic depletion and fission product buildup must be modeled. This workshop focuses on recent advances in Monte Carlo methods and their application to reactor physics problems, and on the resulting challenges faced by code developers and users. The workshop is partly tutorial, partly a review of the current state-of-the-art, and partly a discussion of future work that is needed. It should benefit both novice and expert Monte Carlo developers and users. In each of the topic areas, we provide an overview of needs, perspective on past and current methods, a review of recent work, and discussion of further research and capabilities that are required. Electronic copies of all workshop presentations and material will be available. The workshop is structured as 2 morning and 2 afternoon segments: - Criticality Calculations I - convergence diagnostics, acceleration methods, confidence intervals, and the iterated fission probability, - Criticality Calculations II - reactor kinetics parameters, dominance ratio, temperature

  12. Monte Carlo simulation of experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1977-07-01

    An outline of the technique of computer simulation of particle physics experiments by the Monte Carlo method is presented. Useful special purpose subprograms are listed and described. At each stage the discussion is made concrete by direct reference to the programs SIMUL8 and its variant MONTE-PION, written to assist in the analysis of the radiative decay experiments μ + → e + ν sub(e) antiνγ and π + → e + ν sub(e)γ, respectively. These experiments were based on the use of two large sodium iodide crystals, TINA and MINA, as e and γ detectors. Instructions for the use of SIMUL8 and MONTE-PION are given. (author)

  13. Fast sequential Monte Carlo methods for counting and optimization

    CERN Document Server

    Rubinstein, Reuven Y; Vaisman, Radislav

    2013-01-01

    A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the

  14. The MC21 Monte Carlo Transport Code

    International Nuclear Information System (INIS)

    Sutton TM; Donovan TJ; Trumbull TH; Dobreff PS; Caro E; Griesheimer DP; Tyburski LJ; Carpenter DC; Joo H

    2007-01-01

    MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities

  15. Monte Carlo Treatment Planning for Advanced Radiotherapy

    DEFF Research Database (Denmark)

    Cronholm, Rickard

    This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...... and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...

  16. Using bivariate latent basis growth curve analysis to better understand treatment outcome in youth with anorexia nervosa.

    Science.gov (United States)

    Byrne, Catherine E; Wonderlich, Joseph A; Curby, Timothy; Fischer, Sarah; Lock, James; Le Grange, Daniel

    2018-04-25

    This study explored the relation between eating-related obsessionality and weight restoration utilizing bivariate latent basis growth curve modelling. Eating-related obsessionality is a moderator of treatment outcome for adolescents with anorexia nervosa (AN). This study examined the degree to which the rate of change in eating-related obsessionality was associated with the rate of change in weight over time in family-based treatment (FBT) and individual therapy for AN. Data were drawn from a 2-site randomized controlled trial that compared FBT and adolescent focused therapy for AN. Bivariate latent basis growth curves were used to examine the differences of the relations between trajectories of body weight and symptoms associated with eating and weight obsessionality. In the FBT group, the slope of eating-related obsessionality scores and the slope of weight were significantly (negatively) correlated. This finding indicates that a decrease in overall eating-relating obsessionality is significantly associated with an increase in weight for individuals who received FBT. However, there was no relation between change in obsessionality scores and change in weight in the adolescent focused therapy group. Results suggest that FBT has a specific impact on both weight gain and obsessive compulsive behaviour that is distinct from individual therapy. Copyright © 2018 John Wiley & Sons, Ltd and Eating Disorders Association.

  17. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  18. Statistical estimation Monte Carlo for unreliability evaluation of highly reliable system

    International Nuclear Information System (INIS)

    Xiao Gang; Su Guanghui; Jia Dounan; Li Tianduo

    2000-01-01

    Based on analog Monte Carlo simulation, statistical Monte Carlo methods for unreliable evaluation of highly reliable system are constructed, including direct statistical estimation Monte Carlo method and weighted statistical estimation Monte Carlo method. The basal element is given, and the statistical estimation Monte Carlo estimators are derived. Direct Monte Carlo simulation method, bounding-sampling method, forced transitions Monte Carlo method, direct statistical estimation Monte Carlo and weighted statistical estimation Monte Carlo are used to evaluate unreliability of a same system. By comparing, weighted statistical estimation Monte Carlo estimator has smallest variance, and has highest calculating efficiency

  19. An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution

    Science.gov (United States)

    Campbell, C. W.

    1983-01-01

    An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.

  20. Bivariate Cointegration Analysis of Energy-Economy Interactions in Iran

    Directory of Open Access Journals (Sweden)

    Ismail Oladimeji Soile

    2015-12-01

    Full Text Available Fixing the prices of energy products below their opportunity cost for welfare and redistribution purposes is common with governments of many oil producing developing countries. This has often resulted in huge energy consumption in developing countries and the question that emerge is whether this increased energy consumption results in higher economic activities. Available statistics show that Iran’s economy growth shrunk for the first time in two decades from 2011 amidst the introduction of pricing reform in 2010 and 2014 suggesting a relationship between energy use and economic growth. Accordingly, the study examined the causality and the likelihood of a long term relationship between energy and economic growth in Iran. Unlike previous studies which have focused on the effects and effectiveness of the reform, the paper investigates the rationale for the reform. The study applied a bivariate cointegration time series econometric approach. The results reveals a one-way causality running from economic growth to energy with no feedback with evidence of long run connection. The implication of this is that energy conservation policy is not inimical to economic growth. This evidence lend further support for the ongoing subsidy reforms in Iran as a measure to check excessive and inefficient use of energy.

  1. Applications of Monte Carlo method in Medical Physics

    International Nuclear Information System (INIS)

    Diez Rios, A.; Labajos, M.

    1989-01-01

    The basic ideas of Monte Carlo techniques are presented. Random numbers and their generation by congruential methods, which underlie Monte Carlo calculations are shown. Monte Carlo techniques to solve integrals are discussed. The evaluation of a simple monodimensional integral with a known answer, by means of two different Monte Carlo approaches are discussed. The basic principles to simualate on a computer photon histories reduce variance and the current applications in Medical Physics are commented. (Author)

  2. Multilevel sequential Monte Carlo samplers

    KAUST Repository

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan

    2016-01-01

    In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . ∞>h0>h1⋯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. © 2016 Elsevier B.V.

  3. Multilevel sequential Monte Carlo samplers

    KAUST Repository

    Beskos, Alexandros

    2016-08-29

    In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . ∞>h0>h1⋯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. © 2016 Elsevier B.V.

  4. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  5. Experience with the Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)

    2007-06-15

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.

  6. Experience with the Monte Carlo Method

    International Nuclear Information System (INIS)

    Hussein, E.M.A.

    2007-01-01

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed

  7. Monte Carlo alpha calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, D.; Soran, P.; Whalen, P.

    1985-01-01

    A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.

  8. Monte Carlo simulations of neutron scattering instruments

    International Nuclear Information System (INIS)

    Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.

    2001-01-01

    A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)

  9. Linear filtering applied to Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Morrison, G.W.; Pike, D.H.; Petrie, L.M.

    1975-01-01

    A significant improvement in the acceleration of the convergence of the eigenvalue computed by Monte Carlo techniques has been developed by applying linear filtering theory to Monte Carlo calculations for multiplying systems. A Kalman filter was applied to a KENO Monte Carlo calculation of an experimental critical system consisting of eight interacting units of fissile material. A comparison of the filter estimate and the Monte Carlo realization was made. The Kalman filter converged in five iterations to 0.9977. After 95 iterations, the average k-eff from the Monte Carlo calculation was 0.9981. This demonstrates that the Kalman filter has the potential of reducing the calculational effort of multiplying systems. Other examples and results are discussed

  10. Bivariate copulas on the exponentially weighted moving average control chart

    Directory of Open Access Journals (Sweden)

    Sasigarn Kuvattana

    2016-10-01

    Full Text Available This paper proposes four types of copulas on the Exponentially Weighted Moving Average (EWMA control chart when observations are from an exponential distribution using a Monte Carlo simulation approach. The performance of the control chart is based on the Average Run Length (ARL which is compared for each copula. Copula functions for specifying dependence between random variables are used and measured by Kendall’s tau. The results show that the Normal copula can be used for almost all shifts.

  11. Burnup calculations using Monte Carlo method

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2009-01-01

    In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code

  12. Monte Carlo simulations for plasma physics

    International Nuclear Information System (INIS)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  13. Neutrino oscillation parameter sampling with MonteCUBES

    Science.gov (United States)

    Blennow, Mattias; Fernandez-Martinez, Enrique

    2010-01-01

    We present MonteCUBES ("Monte Carlo Utility Based Experiment Simulator"), a software package designed to sample the neutrino oscillation parameter space through Markov Chain Monte Carlo algorithms. MonteCUBES makes use of the GLoBES software so that the existing experiment definitions for GLoBES, describing long baseline and reactor experiments, can be used with MonteCUBES. MonteCUBES consists of two main parts: The first is a C library, written as a plug-in for GLoBES, implementing the Markov Chain Monte Carlo algorithm to sample the parameter space. The second part is a user-friendly graphical Matlab interface to easily read, analyze, plot and export the results of the parameter space sampling. Program summaryProgram title: MonteCUBES (Monte Carlo Utility Based Experiment Simulator) Catalogue identifier: AEFJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 69 634 No. of bytes in distributed program, including test data, etc.: 3 980 776 Distribution format: tar.gz Programming language: C Computer: MonteCUBES builds and installs on 32 bit and 64 bit Linux systems where GLoBES is installed Operating system: 32 bit and 64 bit Linux RAM: Typically a few MBs Classification: 11.1 External routines: GLoBES [1,2] and routines/libraries used by GLoBES Subprograms used:Cat Id ADZI_v1_0, Title GLoBES, Reference CPC 177 (2007) 439 Nature of problem: Since neutrino masses do not appear in the standard model of particle physics, many models of neutrino masses also induce other types of new physics, which could affect the outcome of neutrino oscillation experiments. In general, these new physics imply high-dimensional parameter spaces that are difficult to explore using classical methods such as multi-dimensional projections and minimizations, such as those

  14. Monte Carlo methods and models in finance and insurance

    CERN Document Server

    Korn, Ralf; Kroisandt, Gerald

    2010-01-01

    Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of...

  15. Monte Carlo approaches to light nuclei

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs

  16. Monte Carlo approaches to light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.

  17. Probabilistic modeling using bivariate normal distributions for identification of flow and displacement intervals in longwall overburden

    Energy Technology Data Exchange (ETDEWEB)

    Karacan, C.O.; Goodman, G.V.R. [NIOSH, Pittsburgh, PA (United States). Off Mine Safety & Health Research

    2011-01-15

    Gob gas ventholes (GGV) are used to control methane emissions in longwall mines by capturing it within the overlying fractured strata before it enters the work environment. In order for GGVs to effectively capture more methane and less mine air, the length of the slotted sections and their proximity to top of the coal bed should be designed based on the potential gas sources and their locations, as well as the displacements in the overburden that will create potential flow paths for the gas. In this paper, an approach to determine the conditional probabilities of depth-displacement, depth-flow percentage, depth-formation and depth-gas content of the formations was developed using bivariate normal distributions. The flow percentage, displacement and formation data as a function of distance from coal bed used in this study were obtained from a series of borehole experiments contracted by the former US Bureau of Mines as part of a research project. Each of these parameters was tested for normality and was modeled using bivariate normal distributions to determine all tail probabilities. In addition, the probability of coal bed gas content as a function of depth was determined using the same techniques. The tail probabilities at various depths were used to calculate conditional probabilities for each of the parameters. The conditional probabilities predicted for various values of the critical parameters can be used with the measurements of flow and methane percentage at gob gas ventholes to optimize their performance.

  18. Xp21 contiguous gene syndromes: Deletion quantitation with bivariate flow karyotyping allows mapping of patient breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, E.R.B.; Towbin, J.A. (Baylor College of Medicine, Houston, TX (United States)); Engh, G. van den; Trask, B.J. (Lawrence Livermore National Lab., CA (United States))

    1992-12-01

    Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans >15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to [plus minus]1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD. 44 refs., 3 figs.

  19. Genetic correlations between body condition scores and fertility in dairy cattle using bivariate random regression models.

    Science.gov (United States)

    De Haas, Y; Janss, L L G; Kadarmideen, H N

    2007-10-01

    Genetic correlations between body condition score (BCS) and fertility traits in dairy cattle were estimated using bivariate random regression models. BCS was recorded by the Swiss Holstein Association on 22,075 lactating heifers (primiparous cows) from 856 sires. Fertility data during first lactation were extracted for 40,736 cows. The fertility traits were days to first service (DFS), days between first and last insemination (DFLI), calving interval (CI), number of services per conception (NSPC) and conception rate to first insemination (CRFI). A bivariate model was used to estimate genetic correlations between BCS as a longitudinal trait by random regression components, and daughter's fertility at the sire level as a single lactation measurement. Heritability of BCS was 0.17, and heritabilities for fertility traits were low (0.01-0.08). Genetic correlations between BCS and fertility over the lactation varied from: -0.45 to -0.14 for DFS; -0.75 to 0.03 for DFLI; from -0.59 to -0.02 for CI; from -0.47 to 0.33 for NSPC and from 0.08 to 0.82 for CRFI. These results show (genetic) interactions between fat reserves and reproduction along the lactation trajectory of modern dairy cows, which can be useful in genetic selection as well as in management. Maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in mid lactation when the genetic variance for BCS is largest, and the genetic correlations between BCS and fertility is strongest.

  20. A comparison of the effect of 5-bromodeoxyuridine substitution on 33258 Hoechst- and DAPI-fluorescence of isolated chromosomes by bivariate flow karyotyping

    NARCIS (Netherlands)

    Buys, C. H.; Mesa, J.; van der Veen, A. Y.; Aten, J. A.

    1986-01-01

    Application of the fluorescent DNA-intercalator propidium iodide for stabilization of the mitotic chromosome structure during isolation of chromosomes from V79 Chinese hamster cells and subsequent staining with the fluorochromes 33258 Hoechst or DAPI allowed bivariate flow karyotyping of isolated

  1. Simulation and the Monte Carlo method

    CERN Document Server

    Rubinstein, Reuven Y

    2016-01-01

    Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...

  2. A bivariate contaminated binormal model for robust fitting of proper ROC curves to a pair of correlated, possibly degenerate, ROC datasets.

    Science.gov (United States)

    Zhai, Xuetong; Chakraborty, Dev P

    2017-06-01

    The objective was to design and implement a bivariate extension to the contaminated binormal model (CBM) to fit paired receiver operating characteristic (ROC) datasets-possibly degenerate-with proper ROC curves. Paired datasets yield two correlated ratings per case. Degenerate datasets have no interior operating points and proper ROC curves do not inappropriately cross the chance diagonal. The existing method, developed more than three decades ago utilizes a bivariate extension to the binormal model, implemented in CORROC2 software, which yields improper ROC curves and cannot fit degenerate datasets. CBM can fit proper ROC curves to unpaired (i.e., yielding one rating per case) and degenerate datasets, and there is a clear scientific need to extend it to handle paired datasets. In CBM, nondiseased cases are modeled by a probability density function (pdf) consisting of a unit variance peak centered at zero. Diseased cases are modeled with a mixture distribution whose pdf consists of two unit variance peaks, one centered at positive μ with integrated probability α, the mixing fraction parameter, corresponding to the fraction of diseased cases where the disease was visible to the radiologist, and one centered at zero, with integrated probability (1-α), corresponding to disease that was not visible. It is shown that: (a) for nondiseased cases the bivariate extension is a unit variances bivariate normal distribution centered at (0,0) with a specified correlation ρ 1 ; (b) for diseased cases the bivariate extension is a mixture distribution with four peaks, corresponding to disease not visible in either condition, disease visible in only one condition, contributing two peaks, and disease visible in both conditions. An expression for the likelihood function is derived. A maximum likelihood estimation (MLE) algorithm, CORCBM, was implemented in the R programming language that yields parameter estimates and the covariance matrix of the parameters, and other statistics

  3. Lecture 1. Monte Carlo basics. Lecture 2. Adjoint Monte Carlo. Lecture 3. Coupled Forward-Adjoint calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft University of Technology, Interfaculty Reactor Institute, Delft (Netherlands)

    2000-07-01

    The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)

  4. Lecture 1. Monte Carlo basics. Lecture 2. Adjoint Monte Carlo. Lecture 3. Coupled Forward-Adjoint calculations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    2000-01-01

    The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)

  5. Classification of Knee Joint Vibration Signals Using Bivariate Feature Distribution Estimation and Maximal Posterior Probability Decision Criterion

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2013-04-01

    Full Text Available Analysis of knee joint vibration or vibroarthrographic (VAG signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee joint VAG signals helps characterize the pathological condition of degenerative articular cartilages in the knee. This paper used the kernel-based probability density estimation method to model the distributions of the VAG signals recorded from healthy subjects and patients with knee joint disorders. The estimated densities of the VAG signals showed explicit distributions of the normal and abnormal signal groups, along with the corresponding contours in the bivariate feature space. The signal classifications were performed by using the Fisher’s linear discriminant analysis, support vector machine with polynomial kernels, and the maximal posterior probability decision criterion. The maximal posterior probability decision criterion was able to provide the total classification accuracy of 86.67% and the area (Az of 0.9096 under the receiver operating characteristics curve, which were superior to the results obtained by either the Fisher’s linear discriminant analysis (accuracy: 81.33%, Az: 0.8564 or the support vector machine with polynomial kernels (accuracy: 81.33%, Az: 0.8533. Such results demonstrated the merits of the bivariate feature distribution estimation and the superiority of the maximal posterior probability decision criterion for analysis of knee joint VAG signals.

  6. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Univ. of New Mexico, Albuquerque, NM

    2016-01-01

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  7. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications Group; Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Engineering Dept.

    2016-11-29

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  8. Monte Carlo Transport for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  9. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    Science.gov (United States)

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  10. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  11. Generalized hybrid Monte Carlo - CMFD methods for fission source convergence

    International Nuclear Information System (INIS)

    Wolters, Emily R.; Larsen, Edward W.; Martin, William R.

    2011-01-01

    In this paper, we generalize the recently published 'CMFD-Accelerated Monte Carlo' method and present two new methods that reduce the statistical error in CMFD-Accelerated Monte Carlo. The CMFD-Accelerated Monte Carlo method uses Monte Carlo to estimate nonlinear functionals used in low-order CMFD equations for the eigenfunction and eigenvalue. The Monte Carlo fission source is then modified to match the resulting CMFD fission source in a 'feedback' procedure. The two proposed methods differ from CMFD-Accelerated Monte Carlo in the definition of the required nonlinear functionals, but they have identical CMFD equations. The proposed methods are compared with CMFD-Accelerated Monte Carlo on a high dominance ratio test problem. All hybrid methods converge the Monte Carlo fission source almost immediately, leading to a large reduction in the number of inactive cycles required. The proposed methods stabilize the fission source more efficiently than CMFD-Accelerated Monte Carlo, leading to a reduction in the number of active cycles required. Finally, as in CMFD-Accelerated Monte Carlo, the apparent variance of the eigenfunction is approximately equal to the real variance, so the real error is well-estimated from a single calculation. This is an advantage over standard Monte Carlo, in which the real error can be underestimated due to inter-cycle correlation. (author)

  12. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ

    Science.gov (United States)

    Yilmaz, Işik; Marschalko, Marian; Bednarik, Martin

    2013-04-01

    The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However, Area Under Curve (AUC) values obtained from all three models showed that the map obtained from soft computing (ANN) model looks like more accurate than the other models, accuracies of all three models can be evaluated relatively similar. The results also showed that the conditional probability is an essential method in preparation of collapse susceptibility map and highly compatible with GIS operating features.

  13. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain.

    Science.gov (United States)

    Rabbani, Hossein; Sonka, Milan; Abramoff, Michael D

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.

  14. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Hossein Rabbani

    2013-01-01

    Full Text Available In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.

  15. Is Monte Carlo embarrassingly parallel?

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)

    2012-07-01

    Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)

  16. Is Monte Carlo embarrassingly parallel?

    International Nuclear Information System (INIS)

    Hoogenboom, J. E.

    2012-01-01

    Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)

  17. Which global stock indices trigger stronger contagion risk in the Vietnamese stock market? Evidence using a bivariate analysis

    OpenAIRE

    Wang Kuan-Min; Lai Hung-Cheng

    2013-01-01

    This paper extends recent investigations into risk contagion effects on stock markets to the Vietnamese stock market. Daily data spanning October 9, 2006 to May 3, 2012 are sourced to empirically validate the contagion effects between stock markets in Vietnam, and China, Japan, Singapore, and the US. To facilitate the validation of contagion effects with market-related coefficients, this paper constructs a bivariate EGARCH model of dynamic conditional correlation coefficients. Using the...

  18. Mean field simulation for Monte Carlo integration

    CERN Document Server

    Del Moral, Pierre

    2013-01-01

    In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko

  19. Variational Variance Reduction for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2001-01-01

    A new variational variance reduction (VVR) method for Monte Carlo criticality calculations was developed. This method employs (a) a variational functional that is more accurate than the standard direct functional, (b) a representation of the deterministically obtained adjoint flux that is especially accurate for optically thick problems with high scattering ratios, and (c) estimates of the forward flux obtained by Monte Carlo. The VVR method requires no nonanalog Monte Carlo biasing, but it may be used in conjunction with Monte Carlo biasing schemes. Some results are presented from a class of criticality calculations involving alternating arrays of fuel and moderator regions

  20. Monte Carlo Solutions for Blind Phase Noise Estimation

    Directory of Open Access Journals (Sweden)

    Çırpan Hakan

    2009-01-01

    Full Text Available This paper investigates the use of Monte Carlo sampling methods for phase noise estimation on additive white Gaussian noise (AWGN channels. The main contributions of the paper are (i the development of a Monte Carlo framework for phase noise estimation, with special attention to sequential importance sampling and Rao-Blackwellization, (ii the interpretation of existing Monte Carlo solutions within this generic framework, and (iii the derivation of a novel phase noise estimator. Contrary to the ad hoc phase noise estimators that have been proposed in the past, the estimators considered in this paper are derived from solid probabilistic and performance-determining arguments. Computer simulations demonstrate that, on one hand, the Monte Carlo phase noise estimators outperform the existing estimators and, on the other hand, our newly proposed solution exhibits a lower complexity than the existing Monte Carlo solutions.

  1. Monte Carlo based diffusion coefficients for LMFBR analysis

    International Nuclear Information System (INIS)

    Van Rooijen, Willem F.G.; Takeda, Toshikazu; Hazama, Taira

    2010-01-01

    A method based on Monte Carlo calculations is developed to estimate the diffusion coefficient of unit cells. The method uses a geometrical model similar to that used in lattice theory, but does not use the assumption of a separable fundamental mode used in lattice theory. The method uses standard Monte Carlo flux and current tallies, and the continuous energy Monte Carlo code MVP was used without modifications. Four models are presented to derive the diffusion coefficient from tally results of flux and partial currents. In this paper the method is applied to the calculation of a plate cell of the fast-spectrum critical facility ZEBRA. Conventional calculations of the diffusion coefficient diverge in the presence of planar voids in the lattice, but our Monte Carlo method can treat this situation without any problem. The Monte Carlo method was used to investigate the influence of geometrical modeling as well as the directional dependence of the diffusion coefficient. The method can be used to estimate the diffusion coefficient of complicated unit cells, the limitation being the capabilities of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained with deterministic codes. (author)

  2. Computer system for Monte Carlo experimentation

    International Nuclear Information System (INIS)

    Grier, D.A.

    1986-01-01

    A new computer system for Monte Carlo Experimentation is presented. The new system speeds and simplifies the process of coding and preparing a Monte Carlo Experiment; it also encourages the proper design of Monte Carlo Experiments, and the careful analysis of the experimental results. A new functional language is the core of this system. Monte Carlo Experiments, and their experimental designs, are programmed in this new language; those programs are compiled into Fortran output. The Fortran output is then compiled and executed. The experimental results are analyzed with a standard statistics package such as Si, Isp, or Minitab or with a user-supplied program. Both the experimental results and the experimental design may be directly loaded into the workspace of those packages. The new functional language frees programmers from many of the details of programming an experiment. Experimental designs such as factorial, fractional factorial, or latin square are easily described by the control structures and expressions of the language. Specific mathematical modes are generated by the routines of the language

  3. Random Numbers and Monte Carlo Methods

    Science.gov (United States)

    Scherer, Philipp O. J.

    Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.

  4. LCG Monte-Carlo Data Base

    CERN Document Server

    Bartalini, P.; Kryukov, A.; Selyuzhenkov, Ilya V.; Sherstnev, A.; Vologdin, A.

    2004-01-01

    We present the Monte-Carlo events Data Base (MCDB) project and its development plans. MCDB facilitates communication between authors of Monte-Carlo generators and experimental users. It also provides a convenient book-keeping and an easy access to generator level samples. The first release of MCDB is now operational for the CMS collaboration. In this paper we review the main ideas behind MCDB and discuss future plans to develop this Data Base further within the CERN LCG framework.

  5. Alternative implementations of the Monte Carlo power method

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Gelbard, E.M.

    2002-01-01

    We compare nominal efficiencies, i.e. variances in power shapes for equal running time, of different versions of the Monte Carlo eigenvalue computation, as applied to criticality safety analysis calculations. The two main methods considered here are ''conventional'' Monte Carlo and the superhistory method, and both are used in criticality safety codes. Within each of these major methods, different variants are available for the main steps of the basic Monte Carlo algorithm. Thus, for example, different treatments of the fission process may vary in the extent to which they follow, in analog fashion, the details of real-world fission, or may vary in details of the methods by which they choose next-generation source sites. In general the same options are available in both the superhistory method and conventional Monte Carlo, but there seems not to have been much examination of the special properties of the two major methods and their minor variants. We find, first, that the superhistory method is just as efficient as conventional Monte Carlo and, secondly, that use of different variants of the basic algorithms may, in special cases, have a surprisingly large effect on Monte Carlo computational efficiency

  6. Applying Emax model and bivariate thin plate splines to assess drug interactions.

    Science.gov (United States)

    Kong, Maiying; Lee, J Jack

    2010-01-01

    We review the semiparametric approach previously proposed by Kong and Lee and extend it to a case in which the dose-effect curves follow the Emax model instead of the median effect equation. When the maximum effects for the investigated drugs are different, we provide a procedure to obtain the additive effect based on the Loewe additivity model. Then, we apply a bivariate thin plate spline approach to estimate the effect beyond additivity along with its 95 per cent point-wise confidence interval as well as its 95 per cent simultaneous confidence interval for any combination dose. Thus, synergy, additivity, and antagonism can be identified. The advantages of the method are that it provides an overall assessment of the combination effect on the entire two-dimensional dose space spanned by the experimental doses, and it enables us to identify complex patterns of drug interaction in combination studies. In addition, this approach is robust to outliers. To illustrate this procedure, we analyzed data from two case studies.

  7. Igo - A Monte Carlo Code For Radiotherapy Planning

    International Nuclear Information System (INIS)

    Goldstein, M.; Regev, D.

    1999-01-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor, while minimizing the dose to normal tissues and vital organs. To carry out this task, it is critical to calculate correctly the 3-D dose delivered. Monte Carlo transport methods (especially the Adjoint Monte Carlo have the potential to provide more accurate predictions of the 3-D dose the currently used methods. IG0 is a Monte Carlo code derived from the general Monte Carlo Program - MCNP, tailored specifically for calculating the effects of radiation therapy. This paper describes the IG0 transport code, the PIG0 interface and some preliminary results

  8. Monte Carlo techniques for analyzing deep-penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1986-01-01

    Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications

  9. Odd-flavor Simulations by the Hybrid Monte Carlo

    CERN Document Server

    Takaishi, Tetsuya; Takaishi, Tetsuya; De Forcrand, Philippe

    2001-01-01

    The standard hybrid Monte Carlo algorithm is known to simulate even flavors QCD only. Simulations of odd flavors QCD, however, can be also performed in the framework of the hybrid Monte Carlo algorithm where the inverse of the fermion matrix is approximated by a polynomial. In this exploratory study we perform three flavors QCD simulations. We make a comparison of the hybrid Monte Carlo algorithm and the R-algorithm which also simulates odd flavors systems but has step-size errors. We find that results from our hybrid Monte Carlo algorithm are in agreement with those from the R-algorithm obtained at very small step-size.

  10. Quantum Monte Carlo approaches for correlated systems

    CERN Document Server

    Becca, Federico

    2017-01-01

    Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...

  11. Track 4: basic nuclear science variance reduction for Monte Carlo criticality simulations. 6. Variational Variance Reduction for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2001-01-01

    Recently, it has been shown that the figure of merit (FOM) of Monte Carlo source-detector problems can be enhanced by using a variational rather than a direct functional to estimate the detector response. The direct functional, which is traditionally employed in Monte Carlo simulations, requires an estimate of the solution of the forward problem within the detector region. The variational functional is theoretically more accurate than the direct functional, but it requires estimates of the solutions of the forward and adjoint source-detector problems over the entire phase-space of the problem. In recent work, we have performed Monte Carlo simulations using the variational functional by (a) approximating the adjoint solution deterministically and representing this solution as a function in phase-space and (b) estimating the forward solution using Monte Carlo. We have called this general procedure variational variance reduction (VVR). The VVR method is more computationally expensive per history than traditional Monte Carlo because extra information must be tallied and processed. However, the variational functional yields a more accurate estimate of the detector response. Our simulations have shown that the VVR reduction in variance usually outweighs the increase in cost, resulting in an increased FOM. In recent work on source-detector problems, we have calculated the adjoint solution deterministically and represented this solution as a linear-in-angle, histogram-in-space function. This procedure has several advantages over previous implementations: (a) it requires much less adjoint information to be stored and (b) it is highly efficient for diffusive problems, due to the accurate linear-in-angle representation of the adjoint solution. (Traditional variance-reduction methods perform poorly for diffusive problems.) Here, we extend this VVR method to Monte Carlo criticality calculations, which are often diffusive and difficult for traditional variance-reduction methods

  12. Non statistical Monte-Carlo

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-04-01

    We have shown that the transport equation can be solved with particles, like the Monte-Carlo method, but without random numbers. In the Monte-Carlo method, particles are created from the source, and are followed from collision to collision until either they are absorbed or they leave the spatial domain. In our method, particles are created from the original source, with a variable weight taking into account both collision and absorption. These particles are followed until they leave the spatial domain, and we use them to determine a first collision source. Another set of particles is then created from this first collision source, and tracked to determine a second collision source, and so on. This process introduces an approximation which does not exist in the Monte-Carlo method. However, we have analyzed the effect of this approximation, and shown that it can be limited. Our method is deterministic, gives reproducible results. Furthermore, when extra accuracy is needed in some region, it is easier to get more particles to go there. It has the same kind of applications: rather problems where streaming is dominant than collision dominated problems

  13. The vector and parallel processing of MORSE code on Monte Carlo Machine

    International Nuclear Information System (INIS)

    Hasegawa, Yukihiro; Higuchi, Kenji.

    1995-11-01

    Multi-group Monte Carlo Code for particle transport, MORSE is modified for high performance computing on Monte Carlo Machine Monte-4. The method and the results are described. Monte-4 was specially developed to realize high performance computing of Monte Carlo codes for particle transport, which have been difficult to obtain high performance in vector processing on conventional vector processors. Monte-4 has four vector processor units with the special hardware called Monte Carlo pipelines. The vectorization and parallelization of MORSE code and the performance evaluation on Monte-4 are described. (author)

  14. Asymptotics of bivariate generating functions with algebraic singularities

    Science.gov (United States)

    Greenwood, Torin

    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.

  15. The use of bivariate spatial modeling of questionnaire and parasitology data to predict the distribution of Schistosoma haematobium in Coastal Kenya.

    Directory of Open Access Journals (Sweden)

    Hugh J W Sturrock

    Full Text Available Questionnaires of reported blood in urine (BIU distributed through the existing school system provide a rapid and reliable method to classify schools according to the prevalence of Schistosoma haematobium, thereby helping in the targeting of schistosomiasis control. However, not all schools return questionnaires and it is unclear whether treatment is warranted in such schools. This study investigates the use of bivariate spatial modelling of available and multiple data sources to predict the prevalence of S. haematobium at every school along the Kenyan coast.Data from a questionnaire survey conducted by the Kenya Ministry of Education in Coast Province in 2009 were combined with available parasitological and environmental data in a Bayesian bivariate spatial model. This modeled the relationship between BIU data and environmental covariates, as well as the relationship between BIU and S. haematobium infection prevalence, to predict S. haematobium infection prevalence at all schools in the study region. Validation procedures were implemented to assess the predictive accuracy of endemicity classification.The prevalence of BIU was negatively correlated with distance to nearest river and there was considerable residual spatial correlation at small (~15 km spatial scales. There was a predictable relationship between the prevalence of reported BIU and S. haematobium infection. The final model exhibited excellent sensitivity (0.94 but moderate specificity (0.69 in identifying low (<10% prevalence schools, and had poor performance in differentiating between moderate and high prevalence schools (sensitivity 0.5, specificity 1.Schistosomiasis is highly focal and there is a need to target treatment on a school-by-school basis. The use of bivariate spatial modelling can supplement questionnaire data to identify schools requiring mass treatment, but is unable to distinguish between moderate and high prevalence schools.

  16. Epileptic seizure prediction based on a bivariate spectral power methodology.

    Science.gov (United States)

    Bandarabadi, Mojtaba; Teixeira, Cesar A; Direito, Bruno; Dourado, Antonio

    2012-01-01

    The spectral power of 5 frequently considered frequency bands (Alpha, Beta, Gamma, Theta and Delta) for 6 EEG channels is computed and then all the possible pairwise combinations among the 30 features set, are used to create a 435 dimensional feature space. Two new feature selection methods are introduced to choose the best candidate features among those and to reduce the dimensionality of this feature space. The selected features are then fed to Support Vector Machines (SVMs) that classify the cerebral state in preictal and non-preictal classes. The outputs of the SVM are regularized using a method that accounts for the classification dynamics of the preictal class, also known as "Firing Power" method. The results obtained using our feature selection approaches are compared with the ones obtained using minimum Redundancy Maximum Relevance (mRMR) feature selection method. The results in a group of 12 patients of the EPILEPSIAE database, containing 46 seizures and 787 hours multichannel recording for out-of-sample data, indicate the efficiency of the bivariate approach as well as the two new feature selection methods. The best results presented sensitivity of 76.09% (35 of 46 seizures predicted) and a false prediction rate of 0.15(-1).

  17. Monte Carlo techniques for analyzing deep penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1985-01-01

    A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications

  18. Monte Carlo techniques for analyzing deep penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1985-01-01

    A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs

  19. Biases in Monte Carlo eigenvalue calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gelbard, E.M.

    1992-12-01

    The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the ``fixed-source`` case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated (``replicated``) over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.

  20. Biases in Monte Carlo eigenvalue calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gelbard, E.M.

    1992-01-01

    The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the fixed-source'' case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated ( replicated'') over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.

  1. Biases in Monte Carlo eigenvalue calculations

    International Nuclear Information System (INIS)

    Gelbard, E.M.

    1992-01-01

    The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the ''fixed-source'' case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated (''replicated'') over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here

  2. Importance iteration in MORSE Monte Carlo calculations

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Hoogenboom, J.E.

    1994-01-01

    An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example that shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation

  3. Importance iteration in MORSE Monte Carlo calculations

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Hoogenboom, J.E.

    1994-02-01

    An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example, which shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation. (orig.)

  4. Advanced Computational Methods for Monte Carlo Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-12

    This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.

  5. Prospect on general software of Monte Carlo method

    International Nuclear Information System (INIS)

    Pei Lucheng

    1992-01-01

    This is a short paper on the prospect of Monte Carlo general software. The content consists of cluster sampling method, zero variance technique, self-improved method, and vectorized Monte Carlo method

  6. Obtaining DDF Curves of Extreme Rainfall Data Using Bivariate Copula and Frequency Analysis

    DEFF Research Database (Denmark)

    Sadri, Sara; Madsen, Henrik; Mikkelsen, Peter Steen

    2009-01-01

    , situated near Copenhagen in Denmark. For rainfall extracted using method 2, the marginal distribution of depth was found to fit the Generalized Pareto distribution while duration was found to fit the Gamma distribution, using the method of L-moments. The volume was fit with a generalized Pareto...... with duration for a given return period and name them DDF (depth-duration-frequency) curves. The copula approach does not assume the rainfall variables are independent or jointly normally distributed. Rainfall series are extracted in three ways: (1) by maximum mean intensity; (2) by depth and duration...... distribution and the duration was fit with a Pearson type III distribution for rainfall extracted using method 3. The Clayton copula was found to be appropriate for bivariate analysis of rainfall depth and duration for both methods 2 and 3. DDF curves derived using the Clayton copula for depth and duration...

  7. Strategije drevesnega preiskovanja Monte Carlo

    OpenAIRE

    VODOPIVEC, TOM

    2018-01-01

    Po preboju pri igri go so metode drevesnega preiskovanja Monte Carlo (ang. Monte Carlo tree search – MCTS) sprožile bliskovit napredek agentov za igranje iger: raziskovalna skupnost je od takrat razvila veliko variant in izboljšav algoritma MCTS ter s tem zagotovila napredek umetne inteligence ne samo pri igrah, ampak tudi v številnih drugih domenah. Čeprav metode MCTS združujejo splošnost naključnega vzorčenja z natančnostjo drevesnega preiskovanja, imajo lahko v praksi težave s počasno konv...

  8. Monte Carlo electron/photon transport

    International Nuclear Information System (INIS)

    Mack, J.M.; Morel, J.E.; Hughes, H.G.

    1985-01-01

    A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs

  9. A Basic Bivariate Structure of Personality Attributes Evident Across Nine Languages.

    Science.gov (United States)

    Saucier, Gerard; Thalmayer, Amber Gayle; Payne, Doris L; Carlson, Robert; Sanogo, Lamine; Ole-Kotikash, Leonard; Church, A Timothy; Katigbak, Marcia S; Somer, Oya; Szarota, Piotr; Szirmák, Zsofia; Zhou, Xinyue

    2014-02-01

    Here, two studies seek to characterize a parsimonious common-denominator personality structure with optimal cross-cultural replicability. Personality differences are observed in all human populations and cultures, but lexicons for personality attributes contain so many distinctions that parsimony is lacking. Models stipulating the most important attributes have been formulated by experts or by empirical studies drawing on experience in a very limited range of cultures. Factor analyses of personality lexicons of nine languages of diverse provenance (Chinese, Korean, Filipino, Turkish, Greek, Polish, Hungarian, Maasai, and Senoufo) were examined, and their common structure was compared to that of several prominent models in psychology. A parsimonious bivariate model showed evidence of substantial convergence and ubiquity across cultures. Analyses involving key markers of these dimensions in English indicate that they are broad dimensions involving the overlapping content of the interpersonal circumplex, models of communion and agency, and morality/warmth and competence. These "Big Two" dimensions-Social Self-Regulation and Dynamism-provide a common-denominator model involving the two most crucial axes of personality variation, ubiquitous across cultures. The Big Two might serve as an umbrella model serving to link diverse theoretical models and associated research literatures. © 2013 Wiley Periodicals, Inc.

  10. Monte Carlo method for array criticality calculations

    International Nuclear Information System (INIS)

    Dickinson, D.; Whitesides, G.E.

    1976-01-01

    The Monte Carlo method for solving neutron transport problems consists of mathematically tracing paths of individual neutrons collision by collision until they are lost by absorption or leakage. The fate of the neutron after each collision is determined by the probability distribution functions that are formed from the neutron cross-section data. These distributions are sampled statistically to establish the successive steps in the neutron's path. The resulting data, accumulated from following a large number of batches, are analyzed to give estimates of k/sub eff/ and other collision-related quantities. The use of electronic computers to produce the simulated neutron histories, initiated at Los Alamos Scientific Laboratory, made the use of the Monte Carlo method practical for many applications. In analog Monte Carlo simulation, the calculation follows the physical events of neutron scattering, absorption, and leakage. To increase calculational efficiency, modifications such as the use of statistical weights are introduced. The Monte Carlo method permits the use of a three-dimensional geometry description and a detailed cross-section representation. Some of the problems in using the method are the selection of the spatial distribution for the initial batch, the preparation of the geometry description for complex units, and the calculation of error estimates for region-dependent quantities such as fluxes. The Monte Carlo method is especially appropriate for criticality safety calculations since it permits an accurate representation of interacting units of fissile material. Dissimilar units, units of complex shape, moderators between units, and reflected arrays may be calculated. Monte Carlo results must be correlated with relevant experimental data, and caution must be used to ensure that a representative set of neutron histories is produced

  11. Bayesian Optimal Experimental Design Using Multilevel Monte Carlo

    KAUST Repository

    Ben Issaid, Chaouki; Long, Quan; Scavino, Marco; Tempone, Raul

    2015-01-01

    Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.

  12. Bayesian Optimal Experimental Design Using Multilevel Monte Carlo

    KAUST Repository

    Ben Issaid, Chaouki

    2015-01-07

    Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.

  13. Le Comte de Monte Cristo: da literatura ao cinema

    OpenAIRE

    Caravela, Natércia Murta Silva

    2008-01-01

    A presente dissertação discute o diálogo estabelecido entre literatura e cinema no tratamento da personagem principal – um homem traído que se vinga de forma cruel dos seus inimigos – na obra literária Le Comte de Monte-Cristo, de Alexandre Dumas, e nas três adaptações fílmicas escolhidas: Le Comte de Monte-Cristo de Robert Vernay (1943); The count of Monte Cristo de David Greene (1975) e The count of Monte Cristo de Kevin Reynolds (2002). O projecto centra-se na análise da ...

  14. Bivariate Drought Analysis Using Streamflow Reconstruction with Tree Ring Indices in the Sacramento Basin, California, USA

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2016-03-01

    Full Text Available Long-term streamflow data are vital for analysis of hydrological droughts. Using an artificial neural network (ANN model and nine tree-ring indices, this study reconstructed the annual streamflow of the Sacramento River for the period from 1560 to 1871. Using the reconstructed streamflow data, the copula method was used for bivariate drought analysis, deriving a hydrological drought return period plot for the Sacramento River basin. Results showed strong correlation among drought characteristics, and the drought with a 20-year return period (17.2 million acre-feet (MAF per year in the Sacramento River basin could be considered a critical level of drought for water shortages.

  15. Present status of transport code development based on Monte Carlo method

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki

    1985-01-01

    The present status of development in Monte Carlo code is briefly reviewed. The main items are the followings; Application fields, Methods used in Monte Carlo code (geometry spectification, nuclear data, estimator and variance reduction technique) and unfinished works, Typical Monte Carlo codes and Merits of continuous energy Monte Carlo code. (author)

  16. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    OpenAIRE

    Rabbani, Hossein; Sonka, Milan; Abramoff, Michael D.

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture th...

  17. Successful vectorization - reactor physics Monte Carlo code

    International Nuclear Information System (INIS)

    Martin, W.R.

    1989-01-01

    Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)

  18. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung; Liang, Faming

    2009-01-01

    in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method

  19. Aquaculture in artificially developed wetlands in urban areas: an application of the bivariate relationship between soil and surface water in landscape ecology.

    Science.gov (United States)

    Paul, Abhijit

    2011-01-01

    Wetlands show a strong bivariate relationship between soil and surface water. Artificially developed wetlands help to build landscape ecology and make built environments sustainable. The bheries, wetlands of eastern Calcutta (India), utilize the city sewage to develop urban aquaculture that supports the local fish industries and opens a new frontier in sustainable environmental planning research.

  20. Reflections on early Monte Carlo calculations

    International Nuclear Information System (INIS)

    Spanier, J.

    1992-01-01

    Monte Carlo methods for solving various particle transport problems developed in parallel with the evolution of increasingly sophisticated computer programs implementing diffusion theory and low-order moments calculations. In these early years, Monte Carlo calculations and high-order approximations to the transport equation were seen as too expensive to use routinely for nuclear design but served as invaluable aids and supplements to design with less expensive tools. The earliest Monte Carlo programs were quite literal; i.e., neutron and other particle random walk histories were simulated by sampling from the probability laws inherent in the physical system without distoration. Use of such analogue sampling schemes resulted in a good deal of time being spent in examining the possibility of lowering the statistical uncertainties in the sample estimates by replacing simple, and intuitively obvious, random variables by those with identical means but lower variances

  1. Bivariate empirical mode decomposition for ECG-based biometric identification with emotional data.

    Science.gov (United States)

    Ferdinando, Hany; Seppanen, Tapio; Alasaarela, Esko

    2017-07-01

    Emotions modulate ECG signals such that they might affect ECG-based biometric identification in real life application. It motivated in finding good feature extraction methods where the emotional state of the subjects has minimum impacts. This paper evaluates feature extraction based on bivariate empirical mode decomposition (BEMD) for biometric identification when emotion is considered. Using the ECG signal from the Mahnob-HCI database for affect recognition, the features were statistical distributions of dominant frequency after applying BEMD analysis to ECG signals. The achieved accuracy was 99.5% with high consistency using kNN classifier in 10-fold cross validation to identify 26 subjects when the emotional states of the subjects were ignored. When the emotional states of the subject were considered, the proposed method also delivered high accuracy, around 99.4%. We concluded that the proposed method offers emotion-independent features for ECG-based biometric identification. The proposed method needs more evaluation related to testing with other classifier and variation in ECG signals, e.g. normal ECG vs. ECG with arrhythmias, ECG from various ages, and ECG from other affective databases.

  2. A bivariate optimal replacement policy for a multistate repairable system

    International Nuclear Information System (INIS)

    Zhang Yuanlin; Yam, Richard C.M.; Zuo, Ming J.

    2007-01-01

    In this paper, a deteriorating simple repairable system with k+1 states, including k failure states and one working state, is studied. It is assumed that the system after repair is not 'as good as new' and the deterioration of the system is stochastic. We consider a bivariate replacement policy, denoted by (T,N), in which the system is replaced when its working age has reached T or the number of failures it has experienced has reached N, whichever occurs first. The objective is to determine the optimal replacement policy (T,N)* such that the long-run expected profit per unit time is maximized. The explicit expression of the long-run expected profit per unit time is derived and the corresponding optimal replacement policy can be determined analytically or numerically. We prove that the optimal policy (T,N)* is better than the optimal policy N* for a multistate simple repairable system. We also show that a general monotone process model for a multistate simple repairable system is equivalent to a geometric process model for a two-state simple repairable system in the sense that they have the same structure for the long-run expected profit (or cost) per unit time and the same optimal policy. Finally, a numerical example is given to illustrate the theoretical results

  3. Reconstruction of Monte Carlo replicas from Hessian parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Tie-Jiun [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Gao, Jun [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240 (China); High Energy Physics Division, Argonne National Laboratory,Argonne, Illinois, 60439 (United States); Huston, Joey [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Nadolsky, Pavel [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Schmidt, Carl; Stump, Daniel [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Wang, Bo-Ting; Xie, Ke Ping [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Dulat, Sayipjamal [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); School of Physics Science and Technology, Xinjiang University,Urumqi, Xinjiang 830046 (China); Center for Theoretical Physics, Xinjiang University,Urumqi, Xinjiang 830046 (China); Pumplin, Jon; Yuan, C.P. [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States)

    2017-03-20

    We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.

  4. Sampling from a polytope and hard-disk Monte Carlo

    International Nuclear Information System (INIS)

    Kapfer, Sebastian C; Krauth, Werner

    2013-01-01

    The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed for this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation

  5. Problems in radiation shielding calculations with Monte Carlo methods

    International Nuclear Information System (INIS)

    Ueki, Kohtaro

    1985-01-01

    The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)

  6. Cluster monte carlo method for nuclear criticality safety calculation

    International Nuclear Information System (INIS)

    Pei Lucheng

    1984-01-01

    One of the most important applications of the Monte Carlo method is the calculation of the nuclear criticality safety. The fair source game problem was presented at almost the same time as the Monte Carlo method was applied to calculating the nuclear criticality safety. The source iteration cost may be reduced as much as possible or no need for any source iteration. This kind of problems all belongs to the fair source game prolems, among which, the optimal source game is without any source iteration. Although the single neutron Monte Carlo method solved the problem without the source iteration, there is still quite an apparent shortcoming in it, that is, it solves the problem without the source iteration only in the asymptotic sense. In this work, a new Monte Carlo method called the cluster Monte Carlo method is given to solve the problem further

  7. Wielandt acceleration for MCNP5 Monte Carlo eigenvalue calculations

    International Nuclear Information System (INIS)

    Brown, F.

    2007-01-01

    Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue (k eff ) and eigenfunction (fission source distribution) of the fundamental mode. A recently proposed method for accelerating convergence of the Monte Carlo power iteration using Wielandt's method has been implemented in a test version of MCNP5. The method is shown to provide dramatic improvements in convergence rates and to greatly reduce the possibility of false convergence assessment. The method is effective and efficient, improving the Monte Carlo figure-of-merit for many problems. In addition, the method should eliminate most of the underprediction bias in confidence intervals for Monte Carlo criticality calculations. (authors)

  8. Monte Carlo shielding analyses using an automated biasing procedure

    International Nuclear Information System (INIS)

    Tang, J.S.; Hoffman, T.J.

    1988-01-01

    A systematic and automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete ordinates calculation are used to generate biasing parameters for a Monte Carlo calculation. The entire procedure of adjoint calculation, biasing parameters generation, and Monte Carlo calculation has been automated. The automated biasing procedure has been applied to several realistic deep-penetration shipping cask problems. The results obtained for neutron and gamma-ray transport indicate that with the automated biasing procedure Monte Carlo shielding calculations of spent-fuel casks can be easily performed with minimum effort and that accurate results can be obtained at reasonable computing cost

  9. Applications of the Monte Carlo method in radiation protection

    International Nuclear Information System (INIS)

    Kulkarni, R.N.; Prasad, M.A.

    1999-01-01

    This paper gives a brief introduction to the application of the Monte Carlo method in radiation protection. It may be noted that an exhaustive review has not been attempted. The special advantage of the Monte Carlo method has been first brought out. The fundamentals of the Monte Carlo method have next been explained in brief, with special reference to two applications in radiation protection. Some sample current applications have been reported in the end in brief as examples. They are, medical radiation physics, microdosimetry, calculations of thermoluminescence intensity and probabilistic safety analysis. The limitations of the Monte Carlo method have also been mentioned in passing. (author)

  10. Pore-scale uncertainty quantification with multilevel Monte Carlo

    KAUST Repository

    Icardi, Matteo; Hoel, Haakon; Long, Quan; Tempone, Raul

    2014-01-01

    . Since there are no generic ways to parametrize the randomness in the porescale structures, Monte Carlo techniques are the most accessible to compute statistics. We propose a multilevel Monte Carlo (MLMC) technique to reduce the computational cost

  11. Current and future applications of Monte Carlo

    International Nuclear Information System (INIS)

    Zaidi, H.

    2003-01-01

    Full text: The use of radionuclides in medicine has a long history and encompasses a large area of applications including diagnosis and radiation treatment of cancer patients using either external or radionuclide radiotherapy. The 'Monte Carlo method'describes a very broad area of science, in which many processes, physical systems, and phenomena are simulated by statistical methods employing random numbers. The general idea of Monte Carlo analysis is to create a model, which is as similar as possible to the real physical system of interest, and to create interactions within that system based on known probabilities of occurrence, with random sampling of the probability density functions (pdfs). As the number of individual events (called 'histories') is increased, the quality of the reported average behavior of the system improves, meaning that the statistical uncertainty decreases. The use of the Monte Carlo method to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides as well as the assessment of image quality and quantitative accuracy of radionuclide imaging. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the nuclear medicine community at large. Many of these questions will be answered when Monte Carlo techniques are implemented and used for more routine calculations and for in-depth investigations. In this paper, the conceptual role of the Monte Carlo method is briefly introduced and followed by a survey of its different applications in diagnostic and therapeutic

  12. Quantum statistical Monte Carlo methods and applications to spin systems

    International Nuclear Information System (INIS)

    Suzuki, M.

    1986-01-01

    A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures

  13. SPQR: a Monte Carlo reactor kinetics code

    International Nuclear Information System (INIS)

    Cramer, S.N.; Dodds, H.L.

    1980-02-01

    The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations

  14. Optix: A Monte Carlo scintillation light transport code

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M.J., E-mail: mjsafari@aut.ac.ir [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Afarideh, H. [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Ghal-Eh, N. [School of Physics, Damghan University, PO Box 36716-41167, Damghan (Iran, Islamic Republic of); Davani, F. Abbasi [Nuclear Engineering Department, Shahid Beheshti University, PO Box 1983963113, Tehran (Iran, Islamic Republic of)

    2014-02-11

    The paper reports on the capabilities of Monte Carlo scintillation light transport code Optix, which is an extended version of previously introduced code Optics. Optix provides the user a variety of both numerical and graphical outputs with a very simple and user-friendly input structure. A benchmarking strategy has been adopted based on the comparison with experimental results, semi-analytical solutions, and other Monte Carlo simulation codes to verify various aspects of the developed code. Besides, some extensive comparisons have been made against the tracking abilities of general-purpose MCNPX and FLUKA codes. The presented benchmark results for the Optix code exhibit promising agreements. -- Highlights: • Monte Carlo simulation of scintillation light transport in 3D geometry. • Evaluation of angular distribution of detected photons. • Benchmark studies to check the accuracy of Monte Carlo simulations.

  15. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung

    2009-11-01

    Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.

  16. Present status and future prospects of neutronics Monte Carlo

    International Nuclear Information System (INIS)

    Gelbard, E.M.

    1990-01-01

    It is fair to say that the Monte Carlo method, over the last decade, has grown steadily more important as a neutronics computational tool. Apparently this has happened for assorted reasons. Thus, for example, as the power of computers has increased, the cost of the method has dropped, steadily becoming less and less of an obstacle to its use. In addition, more and more sophisticated input processors have now made it feasible to model extremely complicated systems routinely with really remarkable fidelity. Finally, as we demand greater and greater precision in reactor calculations, Monte Carlo is often found to be the only method accurate enough for use in benchmarking. Cross section uncertainties are now almost the only inherent limitations in our Monte Carlo capabilities. For this reason Monte Carlo has come to occupy a special position, interposed between experiment and other computational techniques. More and more often deterministic methods are tested by comparison with Monte Carlo, and cross sections are tested by comparing Monte Carlo with experiment. In this way one can distinguish very clearly between errors due to flaws in our numerical methods, and those due to deficiencies in cross section files. The special role of Monte Carlo as a benchmarking tool, often the only available benchmarking tool, makes it crucially important that this method should be polished to perfection. Problems relating to Eigenvalue calculations, variance reduction and the use of advanced computers are reviewed in this paper. (author)

  17. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    Science.gov (United States)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  18. Frequency domain Monte Carlo simulation method for cross power spectral density driven by periodically pulsed spallation neutron source using complex-valued weight Monte Carlo

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro

    2014-01-01

    Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed

  19. Neutron point-flux calculation by Monte Carlo

    International Nuclear Information System (INIS)

    Eichhorn, M.

    1986-04-01

    A survey of the usual methods for estimating flux at a point is given. The associated variance-reducing techniques in direct Monte Carlo games are explained. The multigroup Monte Carlo codes MC for critical systems and PUNKT for point source-point detector-systems are represented, and problems in applying the codes to practical tasks are discussed. (author)

  20. Research on perturbation based Monte Carlo reactor criticality search

    International Nuclear Information System (INIS)

    Li Zeguang; Wang Kan; Li Yangliu; Deng Jingkang

    2013-01-01

    Criticality search is a very important aspect in reactor physics analysis. Due to the advantages of Monte Carlo method and the development of computer technologies, Monte Carlo criticality search is becoming more and more necessary and feasible. Traditional Monte Carlo criticality search method is suffered from large amount of individual criticality runs and uncertainty and fluctuation of Monte Carlo results. A new Monte Carlo criticality search method based on perturbation calculation is put forward in this paper to overcome the disadvantages of traditional method. By using only one criticality run to get initial k_e_f_f and differential coefficients of concerned parameter, the polynomial estimator of k_e_f_f changing function is solved to get the critical value of concerned parameter. The feasibility of this method was tested. The results show that the accuracy and efficiency of perturbation based criticality search method are quite inspiring and the method overcomes the disadvantages of traditional one. (authors)

  1. Shell model the Monte Carlo way

    International Nuclear Information System (INIS)

    Ormand, W.E.

    1995-01-01

    The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined

  2. Shell model the Monte Carlo way

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, W.E.

    1995-03-01

    The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.

  3. Monte Carlo learning/biasing experiment with intelligent random numbers

    International Nuclear Information System (INIS)

    Booth, T.E.

    1985-01-01

    A Monte Carlo learning and biasing technique is described that does its learning and biasing in the random number space rather than the physical phase-space. The technique is probably applicable to all linear Monte Carlo problems, but no proof is provided here. Instead, the technique is illustrated with a simple Monte Carlo transport problem. Problems encountered, problems solved, and speculations about future progress are discussed. 12 refs

  4. Temperature variance study in Monte-Carlo photon transport theory

    International Nuclear Information System (INIS)

    Giorla, J.

    1985-10-01

    We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case [fr

  5. Monte Carlo applications to radiation shielding problems

    International Nuclear Information System (INIS)

    Subbaiah, K.V.

    2009-01-01

    Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling of physical and mathematical systems to compute their results. However, basic concepts of MC are both simple and straightforward and can be learned by using a personal computer. Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators, which were far quicker to use than the tables of random numbers which had been previously used for statistical sampling. In Monte Carlo simulation of radiation transport, the history (track) of a particle is viewed as a random sequence of free flights that end with an interaction event where the particle changes its direction of movement, loses energy and, occasionally, produces secondary particles. The Monte Carlo simulation of a given experimental arrangement (e.g., an electron beam, coming from an accelerator and impinging on a water phantom) consists of the numerical generation of random histories. To simulate these histories we need an interaction model, i.e., a set of differential cross sections (DCS) for the relevant interaction mechanisms. The DCSs determine the probability distribution functions (pdf) of the random variables that characterize a track; 1) free path between successive interaction events, 2) type of interaction taking place and 3) energy loss and angular deflection in a particular event (and initial state of emitted secondary particles, if any). Once these pdfs are known, random histories can be generated by using appropriate sampling methods. If the number of generated histories is large enough, quantitative information on the transport process may be obtained by simply averaging over the simulated histories. The Monte Carlo method yields the same information as the solution of the Boltzmann transport equation, with the same interaction model, but is easier to implement. In particular, the simulation of radiation

  6. Randomized quasi-Monte Carlo simulation of fast-ion thermalization

    Science.gov (United States)

    Höök, L. J.; Johnson, T.; Hellsten, T.

    2012-01-01

    This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to {O}(N^{-1}) , where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 214.

  7. A Monte Carlo algorithm for the Vavilov distribution

    International Nuclear Information System (INIS)

    Yi, Chul-Young; Han, Hyon-Soo

    1999-01-01

    Using the convolution property of the inverse Laplace transform, an improved Monte Carlo algorithm for the Vavilov energy-loss straggling distribution of the charged particle is developed, which is relatively simple and gives enough accuracy to be used for most Monte Carlo applications

  8. Adaptive Multilevel Monte Carlo Simulation

    KAUST Repository

    Hoel, H

    2011-08-23

    This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).

  9. Monte Carlo computation in the applied research of nuclear technology

    International Nuclear Information System (INIS)

    Xu Shuyan; Liu Baojie; Li Qin

    2007-01-01

    This article briefly introduces Monte Carlo Methods and their properties. It narrates the Monte Carlo methods with emphasis in their applications to several domains of nuclear technology. Monte Carlo simulation methods and several commonly used computer software to implement them are also introduced. The proposed methods are demonstrated by a real example. (authors)

  10. Nested Sampling with Constrained Hamiltonian Monte Carlo

    OpenAIRE

    Betancourt, M. J.

    2010-01-01

    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.

  11. Statistics of Monte Carlo methods used in radiation transport calculation

    International Nuclear Information System (INIS)

    Datta, D.

    2009-01-01

    Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport

  12. Multiple histogram method and static Monte Carlo sampling

    NARCIS (Netherlands)

    Inda, M.A.; Frenkel, D.

    2004-01-01

    We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From

  13. Forest canopy BRDF simulation using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.

    2006-01-01

    Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.

  14. Enhanced sampling algorithms.

    Science.gov (United States)

    Mitsutake, Ayori; Mori, Yoshiharu; Okamoto, Yuko

    2013-01-01

    In biomolecular systems (especially all-atom models) with many degrees of freedom such as proteins and nucleic acids, there exist an astronomically large number of local-minimum-energy states. Conventional simulations in the canonical ensemble are of little use, because they tend to get trapped in states of these energy local minima. Enhanced conformational sampling techniques are thus in great demand. A simulation in generalized ensemble performs a random walk in potential energy space and can overcome this difficulty. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques. In this article we review uses of the generalized-ensemble algorithms in biomolecular systems. Three well-known methods, namely, multicanonical algorithm, simulated tempering, and replica-exchange method, are described first. Both Monte Carlo and molecular dynamics versions of the algorithms are given. We then present various extensions of these three generalized-ensemble algorithms. The effectiveness of the methods is tested with short peptide and protein systems.

  15. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  16. Discrete Diffusion Monte Carlo for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory

    2014-10-01

    The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.

  17. Monte Carlo techniques in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Zaidi, H.

    2002-01-01

    Monte Carlo techniques have become one of the most popular tools in different areas of medical radiation physics following the development and subsequent implementation of powerful computing systems for clinical use. In particular, they have been extensively applied to simulate processes involving random behaviour and to quantify physical parameters that are difficult or even impossible to calculate analytically or to determine by experimental measurements. The use of the Monte Carlo method to simulate radiation transport turned out to be the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides. There is broad consensus in accepting that the earliest Monte Carlo calculations in medical radiation physics were made in the area of nuclear medicine, where the technique was used for dosimetry modelling and computations. Formalism and data based on Monte Carlo calculations, developed by the Medical Internal Radiation Dose (MIRD) committee of the Society of Nuclear Medicine, were published in a series of supplements to the Journal of Nuclear Medicine, the first one being released in 1968. Some of these pamphlets made extensive use of Monte Carlo calculations to derive specific absorbed fractions for electron and photon sources uniformly distributed in organs of mathematical phantoms. Interest in Monte Carlo-based dose calculations with β-emitters has been revived with the application of radiolabelled monoclonal antibodies to radioimmunotherapy. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the medical physics

  18. Monte Carlo strategies in scientific computing

    CERN Document Server

    Liu, Jun S

    2008-01-01

    This paperback edition is a reprint of the 2001 Springer edition This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians It can also be used as the textbook for a graduate-level course on Monte Carlo methods Many problems discussed in the alter chapters can be potential thesis topics for masters’ or PhD students in statistics or computer science departments Jun Liu is Professor of Statistics at Harvard University, with a courtesy Professor appointment at Harvard Biostatistics Department Professor Liu was the recipient of the 2002 COPSS Presidents' Award, the most prestigious one for sta...

  19. Off-diagonal expansion quantum Monte Carlo.

    Science.gov (United States)

    Albash, Tameem; Wagenbreth, Gene; Hen, Itay

    2017-12-01

    We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.

  20. Dynamic bounds coupled with Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rajabalinejad, M., E-mail: M.Rajabalinejad@tudelft.n [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands); Meester, L.E. [Delft Institute of Applied Mathematics, Delft University of Technology, Delft (Netherlands); Gelder, P.H.A.J.M. van; Vrijling, J.K. [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands)

    2011-02-15

    For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper describes a method to reduce the simulation cost even further, while retaining the accuracy of Monte Carlo, by taking into account widely present monotonicity. For models exhibiting monotonic (decreasing or increasing) behavior, dynamic bounds (DB) are defined, which in a coupled Monte Carlo simulation are updated dynamically, resulting in a failure probability estimate, as well as a strict (non-probabilistic) upper and lower bounds. Accurate results are obtained at a much lower cost than an equivalent ordinary Monte Carlo simulation. In a two-dimensional and a four-dimensional numerical example, the cost reduction factors are 130 and 9, respectively, where the relative error is smaller than 5%. At higher accuracy levels, this factor increases, though this effect is expected to be smaller with increasing dimension. To show the application of DB method to real world problems, it is applied to a complex finite element model of a flood wall in New Orleans.

  1. Coded aperture optimization using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Martineau, A.; Rocchisani, J.M.; Moretti, J.L.

    2010-01-01

    Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.

  2. Randomized quasi-Monte Carlo simulation of fast-ion thermalization

    International Nuclear Information System (INIS)

    Höök, L J; Johnson, T; Hellsten, T

    2012-01-01

    This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to O(N -1 ), where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 2 14 . (paper)

  3. Usefulness of the Monte Carlo method in reliability calculations

    International Nuclear Information System (INIS)

    Lanore, J.M.; Kalli, H.

    1977-01-01

    Three examples of reliability Monte Carlo programs developed in the LEP (Laboratory for Radiation Shielding Studies in the Nuclear Research Center at Saclay) are presented. First, an uncertainty analysis is given for a simplified spray system; a Monte Carlo program PATREC-MC has been written to solve the problem with the system components given in the fault tree representation. The second program MONARC 2 has been written to solve the problem of complex systems reliability by the Monte Carlo simulation, here again the system (a residual heat removal system) is in the fault tree representation. Third, the Monte Carlo program MONARC was used instead of the Markov diagram to solve the simulation problem of an electric power supply including two nets and two stand-by diesels

  4. Combinatorial nuclear level density by a Monte Carlo method

    International Nuclear Information System (INIS)

    Cerf, N.

    1994-01-01

    We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states,and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations

  5. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    International Nuclear Information System (INIS)

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed

  6. Variational Monte Carlo Technique

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Variational Monte Carlo Technique: Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. General Article Volume 19 Issue 8 August 2014 pp 713-739 ...

  7. A Bivariate Mixture Model for Natural Antibody Levels to Human Papillomavirus Types 16 and 18: Baseline Estimates for Monitoring the Herd Effects of Immunization.

    Directory of Open Access Journals (Sweden)

    Margaretha A Vink

    Full Text Available Post-vaccine monitoring programs for human papillomavirus (HPV have been introduced in many countries, but HPV serology is still an underutilized tool, partly owing to the weak antibody response to HPV infection. Changes in antibody levels among non-vaccinated individuals could be employed to monitor herd effects of immunization against HPV vaccine types 16 and 18, but inference requires an appropriate statistical model. The authors developed a four-component bivariate mixture model for jointly estimating vaccine-type seroprevalence from correlated antibody responses against HPV16 and -18 infections. This model takes account of the correlation between HPV16 and -18 antibody concentrations within subjects, caused e.g. by heterogeneity in exposure level and immune response. The model was fitted to HPV16 and -18 antibody concentrations as measured by a multiplex immunoassay in a large serological survey (3,875 females carried out in the Netherlands in 2006/2007, before the introduction of mass immunization. Parameters were estimated by Bayesian analysis. We used the deviance information criterion for model selection; performance of the preferred model was assessed through simulation. Our analysis uncovered elevated antibody concentrations in doubly as compared to singly seropositive individuals, and a strong clustering of HPV16 and -18 seropositivity, particularly around the age of sexual debut. The bivariate model resulted in a more reliable classification of singly and doubly seropositive individuals than achieved by a combination of two univariate models, and suggested a higher pre-vaccine HPV16 seroprevalence than previously estimated. The bivariate mixture model provides valuable baseline estimates of vaccine-type seroprevalence and may prove useful in seroepidemiologic assessment of the herd effects of HPV vaccination.

  8. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2011-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique. (author)

  9. Modified Monte Carlo procedure for particle transport problems

    International Nuclear Information System (INIS)

    Matthes, W.

    1978-01-01

    The simulation of photon transport in the atmosphere with the Monte Carlo method forms part of the EURASEP-programme. The specifications for the problems posed for a solution were such, that the direct application of the analogue Monte Carlo method was not feasible. For this reason the standard Monte Carlo procedure was modified in the sense that additional properly weighted branchings at each collision and transport process in a photon history were introduced. This modified Monte Carlo procedure leads to a clear and logical separation of the essential parts of a problem and offers a large flexibility for variance reducing techniques. More complex problems, as foreseen in the EURASEP-programme (e.g. clouds in the atmosphere, rough ocean-surface and chlorophyl-distribution in the ocean) can be handled by recoding some subroutines. This collision- and transport-splitting procedure can of course be performed differently in different space- and energy regions. It is applied here only for a homogeneous problem

  10. Uncertainty analysis in Monte Carlo criticality computations

    International Nuclear Information System (INIS)

    Qi Ao

    2011-01-01

    Highlights: ► Two types of uncertainty methods for k eff Monte Carlo computations are examined. ► Sampling method has the least restrictions on perturbation but computing resources. ► Analytical method is limited to small perturbation on material properties. ► Practicality relies on efficiency, multiparameter applicability and data availability. - Abstract: Uncertainty analysis is imperative for nuclear criticality risk assessments when using Monte Carlo neutron transport methods to predict the effective neutron multiplication factor (k eff ) for fissionable material systems. For the validation of Monte Carlo codes for criticality computations against benchmark experiments, code accuracy and precision are measured by both the computational bias and uncertainty in the bias. The uncertainty in the bias accounts for known or quantified experimental, computational and model uncertainties. For the application of Monte Carlo codes for criticality analysis of fissionable material systems, an administrative margin of subcriticality must be imposed to provide additional assurance of subcriticality for any unknown or unquantified uncertainties. Because of a substantial impact of the administrative margin of subcriticality on economics and safety of nuclear fuel cycle operations, recently increasing interests in reducing the administrative margin of subcriticality make the uncertainty analysis in criticality safety computations more risk-significant. This paper provides an overview of two most popular k eff uncertainty analysis methods for Monte Carlo criticality computations: (1) sampling-based methods, and (2) analytical methods. Examples are given to demonstrate their usage in the k eff uncertainty analysis due to uncertainties in both neutronic and non-neutronic parameters of fissionable material systems.

  11. An Overview of the Monte Carlo Application ToolKit (MCATK)

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-07

    MCATK is a C++ component-based Monte Carlo neutron-gamma transport software library designed to build specialized applications and designed to provide new functionality in existing general-purpose Monte Carlo codes like MCNP; it was developed with Agile software engineering methodologies under the motivation to reduce costs. The characteristics of MCATK can be summarized as follows: MCATK physics – continuous energy neutron-gamma transport with multi-temperature treatment, static eigenvalue (k and α) algorithms, time-dependent algorithm, fission chain algorithms; MCATK geometry – mesh geometries, solid body geometries. MCATK provides verified, unit-tested Monte Carlo components, flexibility in Monte Carlo applications development, and numerous tools such as geometry and cross section plotters. Recent work has involved deterministic and Monte Carlo analysis of stochastic systems. Static and dynamic analysis is discussed, and the results of a dynamic test problem are given.

  12. Efficiency and accuracy of Monte Carlo (importance) sampling

    NARCIS (Netherlands)

    Waarts, P.H.

    2003-01-01

    Monte Carlo Analysis is often regarded as the most simple and accurate reliability method. Be-sides it is the most transparent method. The only problem is the accuracy in correlation with the efficiency. Monte Carlo gets less efficient or less accurate when very low probabilities are to be computed

  13. Suppression of the initial transient in Monte Carlo criticality simulations; Suppression du regime transitoire initial des simulations Monte-Carlo de criticite

    Energy Technology Data Exchange (ETDEWEB)

    Richet, Y

    2006-12-15

    Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)

  14. Monte Carlo criticality analysis for dissolvers with neutron poison

    International Nuclear Information System (INIS)

    Yu, Deshun; Dong, Xiufang; Pu, Fuxiang.

    1987-01-01

    Criticality analysis for dissolvers with neutron poison is given on the basis of Monte Carlo method. In Monte Carlo calculations of thermal neutron group parameters for fuel pieces, neutron transport length is determined in terms of maximum cross section approach. A set of related effective multiplication factors (K eff ) are calculated by Monte Carlo method for the three cases. Related numerical results are quite useful for the design and operation of this kind of dissolver in the criticality safety analysis. (author)

  15. Improvements for Monte Carlo burnup calculation

    Energy Technology Data Exchange (ETDEWEB)

    Shenglong, Q.; Dong, Y.; Danrong, S.; Wei, L., E-mail: qiangshenglong@tsinghua.org.cn, E-mail: d.yao@npic.ac.cn, E-mail: songdr@npic.ac.cn, E-mail: luwei@npic.ac.cn [Nuclear Power Inst. of China, Cheng Du, Si Chuan (China)

    2015-07-01

    Monte Carlo burnup calculation is development trend of reactor physics, there would be a lot of work to be done for engineering applications. Based on Monte Carlo burnup code MOI, non-fuel burnup calculation methods and critical search suggestions will be mentioned in this paper. For non-fuel burnup, mixed burnup mode will improve the accuracy of burnup calculation and efficiency. For critical search of control rod position, a new method called ABN based on ABA which used by MC21 will be proposed for the first time in this paper. (author)

  16. Monte Carlo dose distributions for radiosurgery

    International Nuclear Information System (INIS)

    Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.

    2001-01-01

    The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)

  17. Quasi Monte Carlo methods for optimization models of the energy industry with pricing and load processes; Quasi-Monte Carlo Methoden fuer Optimierungsmodelle der Energiewirtschaft mit Preis- und Last-Prozessen

    Energy Technology Data Exchange (ETDEWEB)

    Leoevey, H.; Roemisch, W. [Humboldt-Univ., Berlin (Germany)

    2015-07-01

    We discuss progress in quasi Monte Carlo methods for numerical calculation integrals or expected values and justify why these methods are more efficient than the classic Monte Carlo methods. Quasi Monte Carlo methods are found to be particularly efficient if the integrands have a low effective dimension. That's why We also discuss the concept of effective dimension and prove on the example of a stochastic Optimization model of the energy industry that such models can posses a low effective dimension. Modern quasi Monte Carlo methods are therefore for such models very promising. [German] Wir diskutieren Fortschritte bei Quasi-Monte Carlo Methoden zur numerischen Berechnung von Integralen bzw. Erwartungswerten und begruenden warum diese Methoden effizienter sind als die klassischen Monte Carlo Methoden. Quasi-Monte Carlo Methoden erweisen sich als besonders effizient, falls die Integranden eine geringe effektive Dimension besitzen. Deshalb diskutieren wir auch den Begriff effektive Dimension und weisen am Beispiel eines stochastischen Optimierungsmodell aus der Energiewirtschaft nach, dass solche Modelle eine niedrige effektive Dimension besitzen koennen. Moderne Quasi-Monte Carlo Methoden sind deshalb fuer solche Modelle sehr erfolgversprechend.

  18. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  19. Monte Carlo Methods in ICF

    Science.gov (United States)

    Zimmerman, George B.

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  20. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, George B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials

  1. BREM5 electroweak Monte Carlo

    International Nuclear Information System (INIS)

    Kennedy, D.C. II.

    1987-01-01

    This is an update on the progress of the BREMMUS Monte Carlo simulator, particularly in its current incarnation, BREM5. The present report is intended only as a follow-up to the Mark II/Granlibakken proceedings, and those proceedings should be consulted for a complete description of the capabilities and goals of the BREMMUS program. The new BREM5 program improves on the previous version of BREMMUS, BREM2, in a number of important ways. In BREM2, the internal loop (oblique) corrections were not treated in consistent fashion, a deficiency that led to renormalization scheme-dependence; i.e., physical results, such as cross sections, were dependent on the method used to eliminate infinities from the theory. Of course, this problem cannot be tolerated in a Monte Carlo designed for experimental use. BREM5 incorporates a new way of treating the oblique corrections, as explained in the Granlibakken proceedings, that guarantees renormalization scheme-independence and dramatically simplifies the organization and calculation of radiative corrections. This technique is to be presented in full detail in a forthcoming paper. BREM5 is, at this point, the only Monte Carlo to contain the entire set of one-loop corrections to electroweak four-fermion processes and renormalization scheme-independence. 3 figures

  2. PEPSI: a Monte Carlo generator for polarized leptoproduction

    International Nuclear Information System (INIS)

    Mankiewicz, L.

    1992-01-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for the polarized deep inelastic leptoproduction mediated by electromagnetic interaction. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering and requires the standard polarization-independent JETSET routines to perform fragmentation into final hadrons. (orig.)

  3. Importance estimation in Monte Carlo modelling of neutron and photon transport

    International Nuclear Information System (INIS)

    Mickael, M.W.

    1992-01-01

    The estimation of neutron and photon importance in a three-dimensional geometry is achieved using a coupled Monte Carlo and diffusion theory calculation. The parameters required for the solution of the multigroup adjoint diffusion equation are estimated from an analog Monte Carlo simulation of the system under investigation. The solution of the adjoint diffusion equation is then used as an estimate of the particle importance in the actual simulation. This approach provides an automated and efficient variance reduction method for Monte Carlo simulations. The technique has been successfully applied to Monte Carlo simulation of neutron and coupled neutron-photon transport in the nuclear well-logging field. The results show that the importance maps obtained in a few minutes of computer time using this technique are in good agreement with Monte Carlo generated importance maps that require prohibitive computing times. The application of this method to Monte Carlo modelling of the response of neutron porosity and pulsed neutron instruments has resulted in major reductions in computation time. (Author)

  4. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  5. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    International Nuclear Information System (INIS)

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors

  6. Study on random number generator in Monte Carlo code

    International Nuclear Information System (INIS)

    Oya, Kentaro; Kitada, Takanori; Tanaka, Shinichi

    2011-01-01

    The Monte Carlo code uses a sequence of pseudo-random numbers with a random number generator (RNG) to simulate particle histories. A pseudo-random number has its own period depending on its generation method and the period is desired to be long enough not to exceed the period during one Monte Carlo calculation to ensure the correctness especially for a standard deviation of results. The linear congruential generator (LCG) is widely used as Monte Carlo RNG and the period of LCG is not so long by considering the increasing rate of simulation histories in a Monte Carlo calculation according to the remarkable enhancement of computer performance. Recently, many kinds of RNG have been developed and some of their features are better than those of LCG. In this study, we investigate the appropriate RNG in a Monte Carlo code as an alternative to LCG especially for the case of enormous histories. It is found that xorshift has desirable features compared with LCG, and xorshift has a larger period, a comparable speed to generate random numbers, a better randomness, and good applicability to parallel calculation. (author)

  7. Bivariate frequency analysis of rainfall intensity and duration for urban stormwater infrastructure design

    Science.gov (United States)

    Jun, Changhyun; Qin, Xiaosheng; Gan, Thian Yew; Tung, Yeou-Koung; De Michele, Carlo

    2017-10-01

    This study presents a storm-event based bivariate frequency analysis approach to determine design rainfalls in which, the number, intensity and duration of actual rainstorm events were considered. To derive more realistic design storms, the occurrence probability of an individual rainstorm event was determined from the joint distribution of storm intensity and duration through a copula model. Hourly rainfall data were used at three climate stations respectively located in Singapore, South Korea and Canada. It was found that the proposed approach could give a more realistic description of rainfall characteristics of rainstorm events and design rainfalls. As results, the design rainfall quantities from actual rainstorm events at the three studied sites are consistently lower than those obtained from the conventional rainfall depth-duration-frequency (DDF) method, especially for short-duration storms (such as 1-h). It results from occurrence probabilities of each rainstorm event and a different angle for rainfall frequency analysis, and could offer an alternative way of describing extreme rainfall properties and potentially help improve the hydrologic design of stormwater management facilities in urban areas.

  8. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z. [Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China)

    2013-07-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  9. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.

    2013-01-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  10. An analysis on the costs of Belo Monte hydroelectric power plant; Uma analise sobre os custos da hidreletrica Belo Monte

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Vinicius Miranda da [Universidade de Sao Paulo (PIPGE/USP), SP (Brazil). Programa Interunidades de Pos-Graduacao em Energia], e-mail: energiapara@yahoo.com.br

    2008-07-01

    The Belo Monte hydropower plant's low generation cost is among the arguments used by Centrais Eletricas do Norte do Brazil (ELETRONORTE), a Brazilian state electric utility, to make possible its construction. This paper shows that the generation cost presented by ELETROBRAS is very low in relation to the world pattern of cost and probably unrealistic. It also shows that the generation cost cannot be used separately to determine the Belo Monte dam's economic feasibility. There is the need to include other costs, such as: socio environmental degradation and control, financial compensation for using the hydraulic resources, transmission and thermal backup stations, beyond, evidently, generation cost for assuring the credibility of the Belo Monte hydropower plant's economic analysis. (author)

  11. Monte Carlo method applied to medical physics

    International Nuclear Information System (INIS)

    Oliveira, C.; Goncalves, I.F.; Chaves, A.; Lopes, M.C.; Teixeira, N.; Matos, B.; Goncalves, I.C.; Ramalho, A.; Salgado, J.

    2000-01-01

    The main application of the Monte Carlo method to medical physics is dose calculation. This paper shows some results of two dose calculation studies and two other different applications: optimisation of neutron field for Boron Neutron Capture Therapy and optimization of a filter for a beam tube for several purposes. The time necessary for Monte Carlo calculations - the highest boundary for its intensive utilisation - is being over-passed with faster and cheaper computers. (author)

  12. A radiating shock evaluated using Implicit Monte Carlo Diffusion

    International Nuclear Information System (INIS)

    Cleveland, M.; Gentile, N.

    2013-01-01

    Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)

  13. The Monte Carlo method the method of statistical trials

    CERN Document Server

    Shreider, YuA

    1966-01-01

    The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio

  14. Automated Monte Carlo biasing for photon-generated electrons near surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Crawford, Martin James; Kensek, Ronald Patrick

    2009-09-01

    This report describes efforts to automate the biasing of coupled electron-photon Monte Carlo particle transport calculations. The approach was based on weight-windows biasing. Weight-window settings were determined using adjoint-flux Monte Carlo calculations. A variety of algorithms were investigated for adaptivity of the Monte Carlo tallies. Tree data structures were used to investigate spatial partitioning. Functional-expansion tallies were used to investigate higher-order spatial representations.

  15. Applicability of quasi-Monte Carlo for lattice systems

    International Nuclear Information System (INIS)

    Ammon, Andreas; Deutsches Elektronen-Synchrotron; Hartung, Tobias; Jansen, Karl; Leovey, Hernan; Griewank, Andreas; Mueller-Preussker, Michael

    2013-11-01

    This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N -1/2 , where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N -1 , or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.

  16. Applicability of quasi-Monte Carlo for lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hartung, Tobias [King' s College London (United Kingdom). Dept. of Mathematics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leovey, Hernan; Griewank, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Mathematics; Mueller-Preussker, Michael [Berlin Humboldt-Univ. (Germany). Dept. of Physics

    2013-11-15

    This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N{sup -1/2}, where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N{sup -1}, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.

  17. Uniform distribution and quasi-Monte Carlo methods discrepancy, integration and applications

    CERN Document Server

    Kritzer, Peter; Pillichshammer, Friedrich; Winterhof, Arne

    2014-01-01

    The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology.

  18. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn

    2008-01-01

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc

  19. THE BIVARIATE SIZE-LUMINOSITY RELATIONS FOR LYMAN BREAK GALAXIES AT z {approx} 4-5

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han; Su, Jian [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ravindranath, Swara, E-mail: kuanghan@pha.jhu.edu [The Inter-University Center for Astronomy and Astrophysics, Pune University Campus, Pune 411007, Maharashtra (India)

    2013-03-01

    We study the bivariate size-luminosity distribution of Lyman break galaxies (LBGs) selected at redshifts around 4 and 5 in GOODS and the HUDF fields. We model the size-luminosity distribution as a combination of log-normal distribution (in size) and Schechter function (in luminosity), therefore it enables a more detailed study of the selection effects. We perform extensive simulations to quantify the dropout-selection completenesses and measurement biases and uncertainties in two-dimensional size and magnitude bins, and transform the theoretical size-luminosity distribution to the expected distribution for the observed data. Using maximum-likelihood estimator, we find that the Schechter function parameters for B {sub 435}-dropouts and are consistent with the values in the literature, but the size distributions are wider than expected from the angular momentum distribution of the underlying dark matter halos. The slope of the size-luminosity (RL) relation is similar to those found for local disk galaxies, but considerably shallower than local early-type galaxies.

  20. THE BIVARIATE SIZE-LUMINOSITY RELATIONS FOR LYMAN BREAK GALAXIES AT z ∼ 4-5

    International Nuclear Information System (INIS)

    Huang, Kuang-Han; Su, Jian; Ferguson, Henry C.; Ravindranath, Swara

    2013-01-01

    We study the bivariate size-luminosity distribution of Lyman break galaxies (LBGs) selected at redshifts around 4 and 5 in GOODS and the HUDF fields. We model the size-luminosity distribution as a combination of log-normal distribution (in size) and Schechter function (in luminosity), therefore it enables a more detailed study of the selection effects. We perform extensive simulations to quantify the dropout-selection completenesses and measurement biases and uncertainties in two-dimensional size and magnitude bins, and transform the theoretical size-luminosity distribution to the expected distribution for the observed data. Using maximum-likelihood estimator, we find that the Schechter function parameters for B 435 -dropouts and are consistent with the values in the literature, but the size distributions are wider than expected from the angular momentum distribution of the underlying dark matter halos. The slope of the size-luminosity (RL) relation is similar to those found for local disk galaxies, but considerably shallower than local early-type galaxies.

  1. Exponential convergence on a continuous Monte Carlo transport problem

    International Nuclear Information System (INIS)

    Booth, T.E.

    1997-01-01

    For more than a decade, it has been known that exponential convergence on discrete transport problems was possible using adaptive Monte Carlo techniques. An adaptive Monte Carlo method that empirically produces exponential convergence on a simple continuous transport problem is described

  2. Bivariate Gaussian bridges: directional factorization of diffusion in Brownian bridge models.

    Science.gov (United States)

    Kranstauber, Bart; Safi, Kamran; Bartumeus, Frederic

    2014-01-01

    In recent years high resolution animal tracking data has become the standard in movement ecology. The Brownian Bridge Movement Model (BBMM) is a widely adopted approach to describe animal space use from such high resolution tracks. One of the underlying assumptions of the BBMM is isotropic diffusive motion between consecutive locations, i.e. invariant with respect to the direction. Here we propose to relax this often unrealistic assumption by separating the Brownian motion variance into two directional components, one parallel and one orthogonal to the direction of the motion. Our new model, the Bivariate Gaussian bridge (BGB), tracks movement heterogeneity across time. Using the BGB and identifying directed and non-directed movement within a trajectory resulted in more accurate utilisation distributions compared to dynamic Brownian bridges, especially for trajectories with a non-isotropic diffusion, such as directed movement or Lévy like movements. We evaluated our model with simulated trajectories and observed tracks, demonstrating that the improvement of our model scales with the directional correlation of a correlated random walk. We find that many of the animal trajectories do not adhere to the assumptions of the BBMM. The proposed model improves accuracy when describing the space use both in simulated correlated random walks as well as observed animal tracks. Our novel approach is implemented and available within the "move" package for R.

  3. A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. Eduard, E-mail: J.E.Hoogenboom@tudelft.nl [Delft University of Technology (Netherlands); Ivanov, Aleksandar; Sanchez, Victor, E-mail: Aleksandar.Ivanov@kit.edu, E-mail: Victor.Sanchez@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Diop, Cheikh, E-mail: Cheikh.Diop@cea.fr [CEA/DEN/DANS/DM2S/SERMA, Commissariat a l' Energie Atomique, Gif-sur-Yvette (France)

    2011-07-01

    A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)

  4. A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard; Ivanov, Aleksandar; Sanchez, Victor; Diop, Cheikh

    2011-01-01

    A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)

  5. Isotopic depletion with Monte Carlo

    International Nuclear Information System (INIS)

    Martin, W.R.; Rathkopf, J.A.

    1996-06-01

    This work considers a method to deplete isotopes during a time- dependent Monte Carlo simulation of an evolving system. The method is based on explicitly combining a conventional estimator for the scalar flux with the analytical solutions to the isotopic depletion equations. There are no auxiliary calculations; the method is an integral part of the Monte Carlo calculation. The method eliminates negative densities and reduces the variance in the estimates for the isotope densities, compared to existing methods. Moreover, existing methods are shown to be special cases of the general method described in this work, as they can be derived by combining a high variance estimator for the scalar flux with a low-order approximation to the analytical solution to the depletion equation

  6. Multilevel sequential Monte-Carlo samplers

    KAUST Repository

    Jasra, Ajay

    2016-01-01

    Multilevel Monte-Carlo methods provide a powerful computational technique for reducing the computational cost of estimating expectations for a given computational effort. They are particularly relevant for computational problems when approximate distributions are determined via a resolution parameter h, with h=0 giving the theoretical exact distribution (e.g. SDEs or inverse problems with PDEs). The method provides a benefit by coupling samples from successive resolutions, and estimating differences of successive expectations. We develop a methodology that brings Sequential Monte-Carlo (SMC) algorithms within the framework of the Multilevel idea, as SMC provides a natural set-up for coupling samples over different resolutions. We prove that the new algorithm indeed preserves the benefits of the multilevel principle, even if samples at all resolutions are now correlated.

  7. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics

  8. Multilevel sequential Monte-Carlo samplers

    KAUST Repository

    Jasra, Ajay

    2016-01-05

    Multilevel Monte-Carlo methods provide a powerful computational technique for reducing the computational cost of estimating expectations for a given computational effort. They are particularly relevant for computational problems when approximate distributions are determined via a resolution parameter h, with h=0 giving the theoretical exact distribution (e.g. SDEs or inverse problems with PDEs). The method provides a benefit by coupling samples from successive resolutions, and estimating differences of successive expectations. We develop a methodology that brings Sequential Monte-Carlo (SMC) algorithms within the framework of the Multilevel idea, as SMC provides a natural set-up for coupling samples over different resolutions. We prove that the new algorithm indeed preserves the benefits of the multilevel principle, even if samples at all resolutions are now correlated.

  9. Parallel MCNP Monte Carlo transport calculations with MPI

    International Nuclear Information System (INIS)

    Wagner, J.C.; Haghighat, A.

    1996-01-01

    The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected

  10. Contributory fault and level of personal injury to drivers involved in head-on collisions: Application of copula-based bivariate ordinal models.

    Science.gov (United States)

    Wali, Behram; Khattak, Asad J; Xu, Jingjing

    2018-01-01

    The main objective of this study is to simultaneously investigate the degree of injury severity sustained by drivers involved in head-on collisions with respect to fault status designation. This is complicated to answer due to many issues, one of which is the potential presence of correlation between injury outcomes of drivers involved in the same head-on collision. To address this concern, we present seemingly unrelated bivariate ordered response models by analyzing the joint injury severity probability distribution of at-fault and not-at-fault drivers. Moreover, the assumption of bivariate normality of residuals and the linear form of stochastic dependence implied by such models may be unduly restrictive. To test this, Archimedean copula structures and normal mixture marginals are integrated into the joint estimation framework, which can characterize complex forms of stochastic dependencies and non-normality in residual terms. The models are estimated using 2013 Virginia police reported two-vehicle head-on collision data, where exactly one driver is at-fault. The results suggest that both at-fault and not-at-fault drivers sustained serious/fatal injuries in 8% of crashes, whereas, in 4% of the cases, the not-at-fault driver sustained a serious/fatal injury with no injury to the at-fault driver at all. Furthermore, if the at-fault driver is fatigued, apparently asleep, or has been drinking the not-at-fault driver is more likely to sustain a severe/fatal injury, controlling for other factors and potential correlations between the injury outcomes. While not-at-fault vehicle speed affects injury severity of at-fault driver, the effect is smaller than the effect of at-fault vehicle speed on at-fault injury outcome. Contrarily, and importantly, the effect of at-fault vehicle speed on injury severity of not-at-fault driver is almost equal to the effect of not-at-fault vehicle speed on injury outcome of not-at-fault driver. Compared to traditional ordered probability

  11. Monte Carlo systems used for treatment planning and dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2017-04-15

    General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte

  12. Multilevel Monte Carlo in Approximate Bayesian Computation

    KAUST Repository

    Jasra, Ajay

    2017-02-13

    In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Carlo version of the approach is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.

  13. Monte Carlo simulation of Markov unreliability models

    International Nuclear Information System (INIS)

    Lewis, E.E.; Boehm, F.

    1984-01-01

    A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)

  14. A residual Monte Carlo method for discrete thermal radiative diffusion

    International Nuclear Information System (INIS)

    Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.

    2003-01-01

    Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems

  15. Improving the modelling of redshift-space distortions - I. A bivariate Gaussian description for the galaxy pairwise velocity distributions

    Science.gov (United States)

    Bianchi, Davide; Chiesa, Matteo; Guzzo, Luigi

    2015-01-01

    As a step towards a more accurate modelling of redshift-space distortions (RSD) in galaxy surveys, we develop a general description of the probability distribution function of galaxy pairwise velocities within the framework of the so-called streaming model. For a given galaxy separation r, such function can be described as a superposition of virtually infinite local distributions. We characterize these in terms of their moments and then consider the specific case in which they are Gaussian functions, each with its own mean μ and dispersion σ. Based on physical considerations, we make the further crucial assumption that these two parameters are in turn distributed according to a bivariate Gaussian, with its own mean and covariance matrix. Tests using numerical simulations explicitly show that with this compact description one can correctly model redshift-space distortions on all scales, fully capturing the overall linear and non-linear dynamics of the galaxy flow at different separations. In particular, we naturally obtain Gaussian/exponential, skewed/unskewed distribution functions, depending on separation as observed in simulations and data. Also, the recently proposed single-Gaussian description of RSD is included in this model as a limiting case, when the bivariate Gaussian is collapsed to a two-dimensional Dirac delta function. We also show how this description naturally allows for the Taylor expansion of 1 + ξS(s) around 1 + ξR(r), which leads to the Kaiser linear formula when truncated to second order, explicating its connection with the moments of the velocity distribution functions. More work is needed, but these results indicate a very promising path to make definitive progress in our programme to improve RSD estimators.

  16. Stochastic approximation Monte Carlo importance sampling for approximating exact conditional probabilities

    KAUST Repository

    Cheon, Sooyoung

    2013-02-16

    Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305-320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom. © 2013 Springer Science+Business Media New York.

  17. Stochastic approximation Monte Carlo importance sampling for approximating exact conditional probabilities

    KAUST Repository

    Cheon, Sooyoung; Liang, Faming; Chen, Yuguo; Yu, Kai

    2013-01-01

    Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305-320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom. © 2013 Springer Science+Business Media New York.

  18. Contributon Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Gerstl, S.A.W.

    1979-05-01

    The contributon Monte Carlo method is based on a new recipe to calculate target responses by means of volume integral of the contributon current in a region between the source and the detector. A comprehensive description of the method, its implementation in the general-purpose MCNP code, and results of the method for realistic nonhomogeneous, energy-dependent problems are presented. 23 figures, 10 tables

  19. Bayesian Monte Carlo method

    International Nuclear Information System (INIS)

    Rajabalinejad, M.

    2010-01-01

    To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.

  20. Closed-shell variational quantum Monte Carlo simulation for the ...

    African Journals Online (AJOL)

    Closed-shell variational quantum Monte Carlo simulation for the electric dipole moment calculation of hydrazine molecule using casino-code. ... Nigeria Journal of Pure and Applied Physics ... The variational quantum Monte Carlo (VQMC) technique used in this work employed the restricted Hartree-Fock (RHF) scheme.

  1. New Approaches and Applications for Monte Carlo Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano

    2017-02-01

    This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.

  2. Recommender engine for continuous-time quantum Monte Carlo methods

    Science.gov (United States)

    Huang, Li; Yang, Yi-feng; Wang, Lei

    2017-03-01

    Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.

  3. Rapid Monte Carlo Simulation of Gravitational Wave Galaxies

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2015-01-01

    With the detection of gravitational waves on the horizon, astrophysical catalogs produced by gravitational wave observatories can be used to characterize the populations of sources and validate different galactic population models. Efforts to simulate gravitational wave catalogs and source populations generally focus on population synthesis models that require extensive time and computational power to produce a single simulated galaxy. Monte Carlo simulations of gravitational wave source populations can also be used to generate observation catalogs from the gravitational wave source population. Monte Carlo simulations have the advantes of flexibility and speed, enabling rapid galactic realizations as a function of galactic binary parameters with less time and compuational resources required. We present a Monte Carlo method for rapid galactic simulations of gravitational wave binary populations.

  4. Acceleration of monte Carlo solution by conjugate gradient method

    International Nuclear Information System (INIS)

    Toshihisa, Yamamoto

    2005-01-01

    The conjugate gradient method (CG) was applied to accelerate Monte Carlo solutions in fixed source problems. The equilibrium model based formulation enables to use CG scheme as well as initial guess to maximize computational performance. This method is available to arbitrary geometry provided that the neutron source distribution in each subregion can be regarded as flat. Even if it is not the case, the method can still be used as a powerful tool to provide an initial guess very close to the converged solution. The major difference of Monte Carlo CG to deterministic CG is that residual error is estimated using Monte Carlo sampling, thus statistical error exists in the residual. This leads to a flow diagram specific to Monte Carlo-CG. Three pre-conditioners were proposed for CG scheme and the performance was compared with a simple 1-D slab heterogeneous test problem. One of them, Sparse-M option, showed an excellent performance in convergence. The performance per unit cost was improved by four times in the test problem. Although direct estimation of efficiency of the method is impossible mainly because of the strong problem-dependence of the optimized pre-conditioner in CG, the method seems to have efficient potential as a fast solution algorithm for Monte Carlo calculations. (author)

  5. PERHITUNGAN VaR PORTOFOLIO SAHAM MENGGUNAKAN DATA HISTORIS DAN DATA SIMULASI MONTE CARLO

    Directory of Open Access Journals (Sweden)

    WAYAN ARTHINI

    2012-09-01

    Full Text Available Value at Risk (VaR is the maximum potential loss on a portfolio based on the probability at a certain time.  In this research, portfolio VaR values calculated from historical data and Monte Carlo simulation data. Historical data is processed so as to obtain stock returns, variance, correlation coefficient, and variance-covariance matrix, then the method of Markowitz sought proportion of each stock fund, and portfolio risk and return portfolio. The data was then simulated by Monte Carlo simulation, Exact Monte Carlo Simulation and Expected Monte Carlo Simulation. Exact Monte Carlo simulation have same returns and standard deviation  with historical data, while the Expected Monte Carlo Simulation satistic calculation similar to historical data. The results of this research is the portfolio VaR  with time horizon T=1, T=10, T=22 and the confidence level of 95 %, values obtained VaR between historical data and Monte Carlo simulation data with the method exact and expected. Value of VaR from both Monte Carlo simulation is greater than VaR historical data.

  6. Monte Carlo methods for the reliability analysis of Markov systems

    International Nuclear Information System (INIS)

    Buslik, A.J.

    1985-01-01

    This paper presents Monte Carlo methods for the reliability analysis of Markov systems. Markov models are useful in treating dependencies between components. The present paper shows how the adjoint Monte Carlo method for the continuous time Markov process can be derived from the method for the discrete-time Markov process by a limiting process. The straightforward extensions to the treatment of mean unavailability (over a time interval) are given. System unavailabilities can also be estimated; this is done by making the system failed states absorbing, and not permitting repair from them. A forward Monte Carlo method is presented in which the weighting functions are related to the adjoint function. In particular, if the exact adjoint function is known then weighting factors can be constructed such that the exact answer can be obtained with a single Monte Carlo trial. Of course, if the exact adjoint function is known, there is no need to perform the Monte Carlo calculation. However, the formulation is useful since it gives insight into choices of the weight factors which will reduce the variance of the estimator

  7. A general transform for variance reduction in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Becker, T.L.; Larsen, E.W.

    2011-01-01

    This paper describes a general transform to reduce the variance of the Monte Carlo estimate of some desired solution, such as flux or biological dose. This transform implicitly includes many standard variance reduction techniques, including source biasing, collision biasing, the exponential transform for path-length stretching, and weight windows. Rather than optimizing each of these techniques separately or choosing semi-empirical biasing parameters based on the experience of a seasoned Monte Carlo practitioner, this General Transform unites all these variance techniques to achieve one objective: a distribution of Monte Carlo particles that attempts to optimize the desired solution. Specifically, this transform allows Monte Carlo particles to be distributed according to the user's specification by using information obtained from a computationally inexpensive deterministic simulation of the problem. For this reason, we consider the General Transform to be a hybrid Monte Carlo/Deterministic method. The numerical results con rm that the General Transform distributes particles according to the user-specified distribution and generally provide reasonable results for shielding applications. (author)

  8. A Monte Carlo approach to combating delayed completion of ...

    African Journals Online (AJOL)

    The objective of this paper is to unveil the relevance of Monte Carlo critical path analysis in resolving problem of delays in scheduled completion of development projects. Commencing with deterministic network scheduling, Monte Carlo critical path analysis was advanced by assigning probability distributions to task times.

  9. Perturbation based Monte Carlo criticality search in density, enrichment and concentration

    International Nuclear Information System (INIS)

    Li, Zeguang; Wang, Kan; Deng, Jingkang

    2015-01-01

    Highlights: • A new perturbation based Monte Carlo criticality search method is proposed. • The method could get accurate results with only one individual criticality run. • The method is used to solve density, enrichment and concentration search problems. • Results show the feasibility and good performances of this method. • The relationship between results’ accuracy and perturbation order is discussed. - Abstract: Criticality search is a very important aspect in reactor physics analysis. Due to the advantages of Monte Carlo method and the development of computer technologies, Monte Carlo criticality search is becoming more and more necessary and feasible. Existing Monte Carlo criticality search methods need large amount of individual criticality runs and may have unstable results because of the uncertainties of criticality results. In this paper, a new perturbation based Monte Carlo criticality search method is proposed and discussed. This method only needs one individual criticality calculation with perturbation tallies to estimate k eff changing function using initial k eff and differential coefficients results, and solves polynomial equations to get the criticality search results. The new perturbation based Monte Carlo criticality search method is implemented in the Monte Carlo code RMC, and criticality search problems in density, enrichment and concentration are taken out. Results show that this method is quite inspiring in accuracy and efficiency, and has advantages compared with other criticality search methods

  10. PENENTUAN HARGA OPSI BELI TIPE ASIA DENGAN METODE MONTE CARLO-CONTROL VARIATE

    Directory of Open Access Journals (Sweden)

    NI NYOMAN AYU ARTANADI

    2017-01-01

    Full Text Available Option is a contract between the writer and the holder which entitles the holder to buy or sell an underlying asset at the maturity date for a specified price known as an exercise price. Asian option is a type of financial derivatives which the payoff taking the average value over the time series of the asset price. The aim of the study is to present the Monte Carlo-Control Variate as an extension of Standard Monte Carlo applied on the calculation of the Asian option price. Standard Monte Carlo simulations 10.000.000 generate standard error 0.06 and the option price convergent at Rp.160.00 while Monte Carlo-Control Variate simulations 100.000 generate standard error 0.01 and the option price convergent at Rp.152.00. This shows the Monte Carlo-Control Variate achieve faster option price toward convergent of the Monte Carlo Standar.

  11. Monte Carlo numerical study of lattice field theories

    International Nuclear Information System (INIS)

    Gan Cheekwan; Kim Seyong; Ohta, Shigemi

    1997-01-01

    The authors are interested in the exact first-principle calculations of quantum field theories which are indeed exact ones. For quantum chromodynamics (QCD) at low energy scale, a nonperturbation method is needed, and the only known such method is the lattice method. The path integral can be evaluated by putting a system on a finite 4-dimensional volume and discretizing space time continuum into finite points, lattice. The continuum limit is taken by making the lattice infinitely fine. For evaluating such a finite-dimensional integral, the Monte Carlo numerical estimation of the path integral can be obtained. The calculation of light hadron mass in quenched lattice QCD with staggered quarks, 3-dimensional Thirring model calculation and the development of self-test Monte Carlo method have been carried out by using the RIKEN supercomputer. The motivation of this study, lattice QCD formulation, continuum limit, Monte Carlo update, hadron propagator, light hadron mass, auto-correlation and source size dependence are described on lattice QCD. The phase structure of the 3-dimensional Thirring model for a small 8 3 lattice has been mapped. The discussion on self-test Monte Carlo method is described again. (K.I.)

  12. Continuous energy Monte Carlo method based lattice homogeinzation

    International Nuclear Information System (INIS)

    Li Mancang; Yao Dong; Wang Kan

    2014-01-01

    Based on the Monte Carlo code MCNP, the continuous energy Monte Carlo multi-group constants generation code MCMC has been developed. The track length scheme has been used as the foundation of cross section generation. The scattering matrix and Legendre components require special techniques, and the scattering event method has been proposed to solve this problem. Three methods have been developed to calculate the diffusion coefficients for diffusion reactor core codes and the Legendre method has been applied in MCMC. To the satisfaction of the equivalence theory, the general equivalence theory (GET) and the superhomogenization method (SPH) have been applied to the Monte Carlo method based group constants. The super equivalence method (SPE) has been proposed to improve the equivalence. GET, SPH and SPE have been implemented into MCMC. The numerical results showed that generating the homogenization multi-group constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data library can be used for a wide range of applications due to the versatility. The MCMC scheme can be seen as a potential alternative to the widely used deterministic lattice codes. (authors)

  13. Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments

    International Nuclear Information System (INIS)

    Pevey, Ronald E.

    2005-01-01

    Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL

  14. Biased Monte Carlo optimization: the basic approach

    International Nuclear Information System (INIS)

    Campioni, Luca; Scardovelli, Ruben; Vestrucci, Paolo

    2005-01-01

    It is well-known that the Monte Carlo method is very successful in tackling several kinds of system simulations. It often happens that one has to deal with rare events, and the use of a variance reduction technique is almost mandatory, in order to have Monte Carlo efficient applications. The main issue associated with variance reduction techniques is related to the choice of the value of the biasing parameter. Actually, this task is typically left to the experience of the Monte Carlo user, who has to make many attempts before achieving an advantageous biasing. A valuable result is provided: a methodology and a practical rule addressed to establish an a priori guidance for the choice of the optimal value of the biasing parameter. This result, which has been obtained for a single component system, has the notable property of being valid for any multicomponent system. In particular, in this paper, the exponential and the uniform biases of exponentially distributed phenomena are investigated thoroughly

  15. Self-learning Monte Carlo (dynamical biasing)

    International Nuclear Information System (INIS)

    Matthes, W.

    1981-01-01

    In many applications the histories of a normal Monte Carlo game rarely reach the target region. An approximate knowledge of the importance (with respect to the target) may be used to guide the particles more frequently into the target region. A Monte Carlo method is presented in which each history contributes to update the importance field such that eventually most target histories are sampled. It is a self-learning method in the sense that the procedure itself: (a) learns which histories are important (reach the target) and increases their probability; (b) reduces the probabilities of unimportant histories; (c) concentrates gradually on the more important target histories. (U.K.)

  16. Migration of particles on heterogeneous bivariate lattices: the universal analytical expressions for the diffusion coefficients

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Boháč, Petr; Jastrabík, Lubomír

    2015-01-01

    Roč. 74, Nov (2015), s. 556-560 ISSN 1386-9477 R&D Projects: GA MŠk LO1409; GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : surface diffusion * heterogeneous lattices * lattice-gas models * kinetic Monte Carlo simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.904, year: 2015

  17. RNA folding kinetics using Monte Carlo and Gillespie algorithms.

    Science.gov (United States)

    Clote, Peter; Bayegan, Amir H

    2018-04-01

    RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see http://bioinformatics.bc.edu/clote/RNAexpNumNbors .

  18. MONTE: the next generation of mission design and navigation software

    Science.gov (United States)

    Evans, Scott; Taber, William; Drain, Theodore; Smith, Jonathon; Wu, Hsi-Cheng; Guevara, Michelle; Sunseri, Richard; Evans, James

    2018-03-01

    The Mission analysis, Operations and Navigation Toolkit Environment (MONTE) (Sunseri et al. in NASA Tech Briefs 36(9), 2012) is an astrodynamic toolkit produced by the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory. It provides a single integrated environment for all phases of deep space and Earth orbiting missions. Capabilities include: trajectory optimization and analysis, operational orbit determination, flight path control, and 2D/3D visualization. MONTE is presented to the user as an importable Python language module. This allows a simple but powerful user interface via CLUI or script. In addition, the Python interface allows MONTE to be used seamlessly with other canonical scientific programming tools such as SciPy, NumPy, and Matplotlib. MONTE is the prime operational orbit determination software for all JPL navigated missions.

  19. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; O'Connor, Evan; Burrows, Adam; Dolence, Joshua C.; Löffler, Frank; Schnetter, Erik

    2012-01-01

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  20. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; O' Connor, Evan [TAPIR, California Institute of Technology, MC 350-17, 1200 E California Blvd., Pasadena, CA 91125 (United States); Burrows, Adam; Dolence, Joshua C. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Loeffler, Frank; Schnetter, Erik, E-mail: abdik@tapir.caltech.edu [Center for Computation and Technology, Louisiana State University, 216 Johnston Hall, Baton Rouge, LA 70803 (United States)

    2012-08-20

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  1. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    International Nuclear Information System (INIS)

    Coulot, J

    2003-01-01

    Monte Carlo techniques are involved in many applications in medical physics, and the field of nuclear medicine has seen a great development in the past ten years due to their wider use. Thus, it is of great interest to look at the state of the art in this domain, when improving computer performances allow one to obtain improved results in a dramatically reduced time. The goal of this book is to make, in 15 chapters, an exhaustive review of the use of Monte Carlo techniques in nuclear medicine, also giving key features which are not necessary directly related to the Monte Carlo method, but mandatory for its practical application. As the book deals with therapeutic' nuclear medicine, it focuses on internal dosimetry. After a general introduction on Monte Carlo techniques and their applications in nuclear medicine (dosimetry, imaging and radiation protection), the authors give an overview of internal dosimetry methods (formalism, mathematical phantoms, quantities of interest). Then, some of the more widely used Monte Carlo codes are described, as well as some treatment planning softwares. Some original techniques are also mentioned, such as dosimetry for boron neutron capture synovectomy. It is generally well written, clearly presented, and very well documented. Each chapter gives an overview of each subject, and it is up to the reader to investigate it further using the extensive bibliography provided. Each topic is discussed from a practical point of view, which is of great help for non-experienced readers. For instance, the chapter about mathematical aspects of Monte Carlo particle transport is very clear and helps one to apprehend the philosophy of the method, which is often a difficulty with a more theoretical approach. Each chapter is put in the general (clinical) context, and this allows the reader to keep in mind the intrinsic limitation of each technique involved in dosimetry (for instance activity quantitation). Nevertheless, there are some minor remarks to

  2. Grain-boundary melting: A Monte Carlo study

    DEFF Research Database (Denmark)

    Besold, Gerhard; Mouritsen, Ole G.

    1994-01-01

    Grain-boundary melting in a lattice-gas model of a bicrystal is studied by Monte Carlo simulation using the grand canonical ensemble. Well below the bulk melting temperature T(m), a disordered liquidlike layer gradually emerges at the grain boundary. Complete interfacial wetting can be observed...... when the temperature approaches T(m) from below. Monte Carlo data over an extended temperature range indicate a logarithmic divergence w(T) approximately - ln(T(m)-T) of the width of the disordered layer w, in agreement with mean-field theory....

  3. Analysis of error in Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Booth, T.E.

    1979-01-01

    The Monte Carlo method for neutron transport calculations suffers, in part, because of the inherent statistical errors associated with the method. Without an estimate of these errors in advance of the calculation, it is difficult to decide what estimator and biasing scheme to use. Recently, integral equations have been derived that, when solved, predicted errors in Monte Carlo calculations in nonmultiplying media. The present work allows error prediction in nonanalog Monte Carlo calculations of multiplying systems, even when supercritical. Nonanalog techniques such as biased kernels, particle splitting, and Russian Roulette are incorporated. Equations derived here allow prediction of how much a specific variance reduction technique reduces the number of histories required, to be weighed against the change in time required for calculation of each history. 1 figure, 1 table

  4. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    International Nuclear Information System (INIS)

    Iandola, F.N.; O'Brien, M.J.; Procassini, R.J.

    2010-01-01

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  5. Neutron flux calculation by means of Monte Carlo methods

    International Nuclear Information System (INIS)

    Barz, H.U.; Eichhorn, M.

    1988-01-01

    In this report a survey of modern neutron flux calculation procedures by means of Monte Carlo methods is given. Due to the progress in the development of variance reduction techniques and the improvements of computational techniques this method is of increasing importance. The basic ideas in application of Monte Carlo methods are briefly outlined. In more detail various possibilities of non-analog games and estimation procedures are presented, problems in the field of optimizing the variance reduction techniques are discussed. In the last part some important international Monte Carlo codes and own codes of the authors are listed and special applications are described. (author)

  6. Transport methods: general. 1. The Analytical Monte Carlo Method for Radiation Transport Calculations

    International Nuclear Information System (INIS)

    Martin, William R.; Brown, Forrest B.

    2001-01-01

    We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)

  7. Markov Chain Monte Carlo

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.

  8. Monte Carlo studies of high-transverse-energy hadronic interactions

    International Nuclear Information System (INIS)

    Corcoran, M.D.

    1985-01-01

    A four-jet Monte Carlo calculation has been used to simulate hadron-hadron interactions which deposit high transverse energy into a large-solid-angle calorimeter and limited solid-angle regions of the calorimeter. The calculation uses first-order QCD cross sections to generate two scattered jets and also produces beam and target jets. Field-Feynman fragmentation has been used in the hadronization. The sensitivity of the results to a few features of the Monte Carlo program has been studied. The results are found to be very sensitive to the method used to ensure overall energy conservation after the fragmentation of the four jets is complete. Results are also sensitive to the minimum momentum transfer in the QCD subprocesses and to the distribution of p/sub T/ to the jet axis and the multiplicities in the fragmentation. With reasonable choices of these features of the Monte Carlo program, good agreement with data at Fermilab/CERN SPS energies is obtained, comparable to the agreement achieved with more sophisticated parton-shower models. With other choices, however, the calculation gives qualitatively different results which are in strong disagreement with the data. These results have important implications for extracting physics conclusions from Monte Carlo calculations. It is not possible to test the validity of a particular model or distinguish between different models unless the Monte Carlo results are unambiguous and different models exhibit clearly different behavior

  9. Monte Carlo methods and applications in nuclear physics

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs

  10. IDF relationships using bivariate copula for storm events in Peninsular Malaysia

    Science.gov (United States)

    Ariff, N. M.; Jemain, A. A.; Ibrahim, K.; Wan Zin, W. Z.

    2012-11-01

    SummaryIntensity-duration-frequency (IDF) curves are used in many hydrologic designs for the purpose of water managements and flood preventions. The IDF curves available in Malaysia are those obtained from univariate analysis approach which only considers the intensity of rainfalls at fixed time intervals. As several rainfall variables are correlated with each other such as intensity and duration, this paper aims to derive IDF points for storm events in Peninsular Malaysia by means of bivariate frequency analysis. This is achieved through utilizing the relationship between storm intensities and durations using the copula method. Four types of copulas; namely the Ali-Mikhail-Haq (AMH), Frank, Gaussian and Farlie-Gumbel-Morgenstern (FGM) copulas are considered because the correlation between storm intensity, I, and duration, D, are negative and these copulas are appropriate when the relationship between the variables are negative. The correlations are attained by means of Kendall's τ estimation. The analysis was performed on twenty rainfall stations with hourly data across Peninsular Malaysia. Using Akaike's Information Criteria (AIC) for testing goodness-of-fit, both Frank and Gaussian copulas are found to be suitable to represent the relationship between I and D. The IDF points found by the copula method are compared to the IDF curves yielded based on the typical IDF empirical formula of the univariate approach. This study indicates that storm intensities obtained from both methods are in agreement with each other for any given storm duration and for various return periods.

  11. GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran)

    Science.gov (United States)

    Haghizadeh, Ali; Moghaddam, Davoud Davoudi; Pourghasemi, Hamid Reza

    2017-12-01

    Groundwater potential analysis prepares better comprehension of hydrological settings of different regions. This study shows the potency of two GIS-based data driven bivariate techniques namely statistical index (SI) and Dempster-Shafer theory (DST) to analyze groundwater potential in Broujerd region of Iran. The research was done using 11 groundwater conditioning factors and 496 spring positions. Based on the ground water potential maps (GPMs) of SI and DST methods, 24.22% and 23.74% of the study area is covered by poor zone of groundwater potential, and 43.93% and 36.3% of Broujerd region is covered by good and very good potential zones, respectively. The validation of outcomes displayed that area under the curve (AUC) of SI and DST techniques are 81.23% and 79.41%, respectively, which shows SI method has slightly a better performance than the DST technique. Therefore, SI and DST methods are advantageous to analyze groundwater capacity and scrutinize the complicated relation between groundwater occurrence and groundwater conditioning factors, which permits investigation of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management experts.

  12. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy

    Directory of Open Access Journals (Sweden)

    Paro AD

    2016-09-01

    Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray 

  13. High-efficiency wavefunction updates for large scale Quantum Monte Carlo

    Science.gov (United States)

    Kent, Paul; McDaniel, Tyler; Li, Ying Wai; D'Azevedo, Ed

    Within ab intio Quantum Monte Carlo (QMC) simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunctions. The evaluation of each Monte Carlo move requires finding the determinant of a dense matrix, which is traditionally iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. For calculations with thousands of electrons, this operation dominates the execution profile. We propose a novel rank- k delayed update scheme. This strategy enables probability evaluation for multiple successive Monte Carlo moves, with application of accepted moves to the matrices delayed until after a predetermined number of moves, k. Accepted events grouped in this manner are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency. This procedure does not change the underlying Monte Carlo sampling or the sampling efficiency. For large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude speedups can be obtained on both multi-core CPU and on GPUs, making this algorithm highly advantageous for current petascale and future exascale computations.

  14. The Monte Carlo Simulation Method for System Reliability and Risk Analysis

    CERN Document Server

    Zio, Enrico

    2013-01-01

    Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling.   Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques.   This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...

  15. Monte Carlo simulation applied to alpha spectrometry

    International Nuclear Information System (INIS)

    Baccouche, S.; Gharbi, F.; Trabelsi, A.

    2007-01-01

    Alpha particle spectrometry is a widely-used analytical method, in particular when we deal with pure alpha emitting radionuclides. Monte Carlo simulation is an adequate tool to investigate the influence of various phenomena on this analytical method. We performed an investigation of those phenomena using the simulation code GEANT of CERN. The results concerning the geometrical detection efficiency in different measurement geometries agree with analytical calculations. This work confirms that Monte Carlo simulation of solid angle of detection is a very useful tool to determine with very good accuracy the detection efficiency.

  16. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1995-01-01

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width

  17. Simulation of transport equations with Monte Carlo

    International Nuclear Information System (INIS)

    Matthes, W.

    1975-09-01

    The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game

  18. Microcanonical Monte Carlo

    International Nuclear Information System (INIS)

    Creutz, M.

    1986-01-01

    The author discusses a recently developed algorithm for simulating statistical systems. The procedure interpolates between molecular dynamics methods and canonical Monte Carlo. The primary advantages are extremely fast simulations of discrete systems such as the Ising model and a relative insensitivity to random number quality. A variation of the algorithm gives rise to a deterministic dynamics for Ising spins. This model may be useful for high speed simulation of non-equilibrium phenomena

  19. A contribution Monte Carlo method

    International Nuclear Information System (INIS)

    Aboughantous, C.H.

    1994-01-01

    A Contribution Monte Carlo method is developed and successfully applied to a sample deep-penetration shielding problem. The random walk is simulated in most of its parts as in conventional Monte Carlo methods. The probability density functions (pdf's) are expressed in terms of spherical harmonics and are continuous functions in direction cosine and azimuthal angle variables as well as in position coordinates; the energy is discretized in the multigroup approximation. The transport pdf is an unusual exponential kernel strongly dependent on the incident and emergent directions and energies and on the position of the collision site. The method produces the same results obtained with the deterministic method with a very small standard deviation, with as little as 1,000 Contribution particles in both analog and nonabsorption biasing modes and with only a few minutes CPU time

  20. The impact of Monte Carlo simulation: a scientometric analysis of scholarly literature

    CERN Document Server

    Pia, Maria Grazia; Bell, Zane W; Dressendorfer, Paul V

    2010-01-01

    A scientometric analysis of Monte Carlo simulation and Monte Carlo codes has been performed over a set of representative scholarly journals related to radiation physics. The results of this study are reported and discussed. They document and quantitatively appraise the role of Monte Carlo methods and codes in scientific research and engineering applications.

  1. Exact Monte Carlo for molecules

    International Nuclear Information System (INIS)

    Lester, W.A. Jr.; Reynolds, P.J.

    1985-03-01

    A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H 2 , and the singlet-triplet splitting in methylene are presented and discussed. 17 refs

  2. No-compromise reptation quantum Monte Carlo

    International Nuclear Information System (INIS)

    Yuen, W K; Farrar, Thomas J; Rothstein, Stuart M

    2007-01-01

    Since its publication, the reptation quantum Monte Carlo algorithm of Baroni and Moroni (1999 Phys. Rev. Lett. 82 4745) has been applied to several important problems in physics, but its mathematical foundations are not well understood. We show that their algorithm is not of typical Metropolis-Hastings type, and we specify conditions required for the generated Markov chain to be stationary and to converge to the intended distribution. The time-step bias may add up, and in many applications it is only the middle of a reptile that is the most important. Therefore, we propose an alternative, 'no-compromise reptation quantum Monte Carlo' to stabilize the middle of the reptile. (fast track communication)

  3. Exploring cluster Monte Carlo updates with Boltzmann machines.

    Science.gov (United States)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  4. Exploring cluster Monte Carlo updates with Boltzmann machines

    Science.gov (United States)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  5. Monte Carlo simulation of continuous-space crystal growth

    International Nuclear Information System (INIS)

    Dodson, B.W.; Taylor, P.A.

    1986-01-01

    We describe a method, based on Monte Carlo techniques, of simulating the atomic growth of crystals without the discrete lattice space assumed by conventional Monte Carlo growth simulations. Since no lattice space is assumed, problems involving epitaxial growth, heteroepitaxy, phonon-driven mechanisms, surface reconstruction, and many other phenomena incompatible with the lattice-space approximation can be studied. Also, use of the Monte Carlo method circumvents to some extent the extreme limitations on simulated timescale inherent in crystal-growth techniques which might be proposed using molecular dynamics. The implementation of the new method is illustrated by studying the growth of strained-layer superlattice (SLS) interfaces in two-dimensional Lennard-Jones atomic systems. Despite the extreme simplicity of such systems, the qualitative features of SLS growth seen here are similar to those observed experimentally in real semiconductor systems

  6. Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Tohjoh, Masayuki; Endo, Tomohiro; Watanabe, Masato; Yamamoto, Akio

    2006-01-01

    As a result of improvements in computer technology, the continuous energy Monte Carlo burn-up calculation has received attention as a good candidate for an assembly calculation method. However, the results of Monte Carlo calculations contain the statistical errors. The results of Monte Carlo burn-up calculations, in particular, include propagated statistical errors through the variance of the nuclide number densities. Therefore, if statistical error alone is evaluated, the errors in Monte Carlo burn-up calculations may be underestimated. To make clear this effect of error propagation on Monte Carlo burn-up calculations, we here proposed an equation that can predict the variance of nuclide number densities after burn-up calculations, and we verified this equation using enormous numbers of the Monte Carlo burn-up calculations by changing only the initial random numbers. We also verified the effect of the number of burn-up calculation points on Monte Carlo burn-up calculations. From these verifications, we estimated the errors in Monte Carlo burn-up calculations including both statistical and propagated errors. Finally, we made clear the effects of error propagation on Monte Carlo burn-up calculations by comparing statistical errors alone versus both statistical and propagated errors. The results revealed that the effects of error propagation on the Monte Carlo burn-up calculations of 8 x 8 BWR fuel assembly are low up to 60 GWd/t

  7. Monte Carlo simulation of neutron counters for safeguards applications

    International Nuclear Information System (INIS)

    Looman, Marc; Peerani, Paolo; Tagziria, Hamid

    2009-01-01

    MCNP-PTA is a new Monte Carlo code for the simulation of neutron counters for nuclear safeguards applications developed at the Joint Research Centre (JRC) in Ispra (Italy). After some preliminary considerations outlining the general aspects involved in the computational modelling of neutron counters, this paper describes the specific details and approximations which make up the basis of the model implemented in the code. One of the major improvements allowed by the use of Monte Carlo simulation is a considerable reduction in both the experimental work and in the reference materials required for the calibration of the instruments. This new approach to the calibration of counters using Monte Carlo simulation techniques is also discussed.

  8. Monte Carlo methods and applications in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.

  9. Research on Monte Carlo improved quasi-static method for reactor space-time dynamics

    International Nuclear Information System (INIS)

    Xu Qi; Wang Kan; Li Shirui; Yu Ganglin

    2013-01-01

    With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)

  10. Kontrola tačnosti rezultata u simulacijama Monte Karlo / Accuracy control in Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Nebojša V. Nikolić

    2010-04-01

    Full Text Available U radu je demonstrirana primena metode automatizovanog ponavljanja nezavisnih simulacionih eksperimenata sa prikupljanjem statistike slučajnih procesa, u dostizanju i kontroli tačnosti simulacionih rezultata u simulaciji sistema masovnog opsluživanja Monte Karlo. Metoda se zasniva na primeni osnovnih stavova i teorema matematičke statistike i teorije verovatnoće. Tačnost simulacionih rezultata dovedena je u direktnu vezu sa brojem ponavljanja simulacionih eksperimenata. / The paper presents an application of the Automated Independent Replication with Gathering Statistics of the Stochastic Processes Method in achieving and controlling the accuracy of simulation results in the Monte Carlo queuing simulations. The method is based on the application of the basic theorems of the theory of probability and mathematical statistics. The accuracy of the simulation results is linked with a number of independent replications of simulation experiments.

  11. Final Report: 06-LW-013, Nuclear Physics the Monte Carlo Way

    International Nuclear Information System (INIS)

    Ormand, W.E.

    2009-01-01

    This is document reports the progress and accomplishments achieved in 2006-2007 with LDRD funding under the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. The project was a theoretical study to explore a novel approach to dealing with a persistent problem in Monte Carlo approaches to quantum many-body systems. The goal was to implement a solution to the notorious 'sign-problem', which if successful, would permit, for the first time, exact solutions to quantum many-body systems that cannot be addressed with other methods. In this document, we outline the progress and accomplishments achieved during FY2006-2007 with LDRD funding in the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. This project was funded under the Lab Wide LDRD competition at Lawrence Livermore National Laboratory. The primary objective of this project was to test the feasibility of implementing a novel approach to solving the generic quantum many-body problem, which is one of the most important problems being addressed in theoretical physics today. Instead of traditional methods based matrix diagonalization, this proposal focused a Monte Carlo method. The principal difficulty with Monte Carlo methods, is the so-called 'sign problem'. The sign problem, which will discussed in some detail later, is endemic to Monte Carlo approaches to the quantum many-body problem, and is the principal reason that they have not been completely successful in the past. Here, we outline our research in the 'shifted-contour method' applied the Auxiliary Field Monte Carlo (AFMC) method

  12. Lattice gauge theories and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Rebbi, C.

    1981-11-01

    After some preliminary considerations, the discussion of quantum gauge theories on a Euclidean lattice takes up the definition of Euclidean quantum theory and treatment of the continuum limit; analogy is made with statistical mechanics. Perturbative methods can produce useful results for strong or weak coupling. In the attempts to investigate the properties of the systems for intermediate coupling, numerical methods known as Monte Carlo simulations have proved valuable. The bulk of this paper illustrates the basic ideas underlying the Monte Carlo numerical techniques and the major results achieved with them according to the following program: Monte Carlo simulations (general theory, practical considerations), phase structure of Abelian and non-Abelian models, the observables (coefficient of the linear term in the potential between two static sources at large separation, mass of the lowest excited state with the quantum numbers of the vacuum (the so-called glueball), the potential between two static sources at very small distance, the critical temperature at which sources become deconfined), gauge fields coupled to basonic matter (Higgs) fields, and systems with fermions

  13. Time step length versus efficiency of Monte Carlo burnup calculations

    International Nuclear Information System (INIS)

    Dufek, Jan; Valtavirta, Ville

    2014-01-01

    Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy

  14. Artificial neural networks, a new alternative to Monte Carlo calculations for radiotherapy

    International Nuclear Information System (INIS)

    Martin, E.; Gschwind, R.; Henriet, J.; Sauget, M.; Makovicka, L.

    2010-01-01

    In order to reduce the computing time needed by Monte Carlo codes in the field of irradiation physics, notably in dosimetry, the authors report the use of artificial neural networks in combination with preliminary Monte Carlo calculations. During the learning phase, Monte Carlo calculations are performed in homogeneous media to allow the building up of the neural network. Then, dosimetric calculations (in heterogeneous media, unknown by the network) can be performed by the so-learned network. Results with an equivalent precision can be obtained within less than one minute on a simple PC whereas several days are needed with a Monte Carlo calculation

  15. Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2006-01-01

    Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations

  16. Herwig: The Evolution of a Monte Carlo Simulation

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Monte Carlo event generation has seen significant developments in the last 10 years starting with preparation for the LHC and then during the first LHC run. I will discuss the basic ideas behind Monte Carlo event generators and then go on to discuss these developments, focussing on the developments in Herwig(++) event generator. I will conclude by presenting the current status of event generation together with some results of the forthcoming new version of Herwig, Herwig 7.

  17. Monte Carlo tests of the ELIPGRID-PC algorithm

    International Nuclear Information System (INIS)

    Davidson, J.R.

    1995-04-01

    The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID computer code of Singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM reg-sign PC. However, no known independent validation of the ELIPGRID algorithm exists. This document describes a Monte Carlo simulation-based validation of a modified version of the ELIPGRID-PC code. The modified ELIPGRID-PC code is shown to match Monte Carlo-calculated hot-spot detection probabilities to within ±0.5% for 319 out of 320 test cases. The one exception, a very thin elliptical hot spot located within a rectangular sampling grid, differed from the Monte Carlo-calculated probability by about 1%. These results provide confidence in the ability of the modified ELIPGRID-PC code to accurately predict hot-spot detection probabilities within an acceptable range of error

  18. Improved Monte Carlo Method for PSA Uncertainty Analysis

    International Nuclear Information System (INIS)

    Choi, Jongsoo

    2016-01-01

    The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard

  19. Two proposed convergence criteria for Monte Carlo solutions

    International Nuclear Information System (INIS)

    Forster, R.A.; Pederson, S.P.; Booth, T.E.

    1992-01-01

    The central limit theorem (CLT) can be applied to a Monte Carlo solution if two requirements are satisfied: (1) The random variable has a finite mean and a finite variance; and (2) the number N of independent observations grows large. When these two conditions are satisfied, a confidence interval (CI) based on the normal distribution with a specified coverage probability can be formed. The first requirement is generally satisfied by the knowledge of the Monte Carlo tally being used. The Monte Carlo practitioner has a limited number of marginal methods to assess the fulfillment of the second requirement, such as statistical error reduction proportional to 1/√N with error magnitude guidelines. Two proposed methods are discussed in this paper to assist in deciding if N is large enough: estimating the relative variance of the variance (VOV) and examining the empirical history score probability density function (pdf)

  20. Improved Monte Carlo Method for PSA Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongsoo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard.

  1. Multiple-time-stepping generalized hybrid Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, Bruno, E-mail: bescribano@bcamath.org [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); Akhmatskaya, Elena [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Reich, Sebastian [Universität Potsdam, Institut für Mathematik, D-14469 Potsdam (Germany); Azpiroz, Jon M. [Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, Donostia (Spain)

    2015-01-01

    Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.

  2. A keff calculation method by Monte Carlo

    International Nuclear Information System (INIS)

    Shen, H; Wang, K.

    2008-01-01

    The effective multiplication factor (k eff ) is defined as the ratio between the number of neutrons in successive generations, which definition is adopted by most Monte Carlo codes (e.g. MCNP). Also, it can be thought of as the ratio of the generation rate of neutrons by the sum of the leakage rate and the absorption rate, which should exclude the effect of the neutron reaction such as (n, 2n) and (n, 3n). This article discusses the Monte Carlo method for k eff calculation based on the second definition. A new code has been developed and the results are presented. (author)

  3. NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    Science.gov (United States)

    Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.

    2004-12-01

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.

  4. Crop canopy BRDF simulation and analysis using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.

    2006-01-01

    This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and

  5. Monte Carlo radiation transport: A revolution in science

    International Nuclear Information System (INIS)

    Hendricks, J.

    1993-01-01

    When Enrico Fermi, Stan Ulam, Nicholas Metropolis, John von Neuman, and Robert Richtmyer invented the Monte Carlo method fifty years ago, little could they imagine the far-flung consequences, the international applications, and the revolution in science epitomized by their abstract mathematical method. The Monte Carlo method is used in a wide variety of fields to solve exact computational models approximately by statistical sampling. It is an alternative to traditional physics modeling methods which solve approximate computational models exactly by deterministic methods. Modern computers and improved methods, such as variance reduction, have enhanced the method to the point of enabling a true predictive capability in areas such as radiation or particle transport. This predictive capability has contributed to a radical change in the way science is done: design and understanding come from computations built upon experiments rather than being limited to experiments, and the computer codes doing the computations have become the repository for physics knowledge. The MCNP Monte Carlo computer code effort at Los Alamos is an example of this revolution. Physicians unfamiliar with physics details can design cancer treatments using physics buried in the MCNP computer code. Hazardous environments and hypothetical accidents can be explored. Many other fields, from underground oil well exploration to aerospace, from physics research to energy production, from safety to bulk materials processing, benefit from MCNP, the Monte Carlo method, and the revolution in science

  6. Suppression of the initial transient in Monte Carlo criticality simulations

    International Nuclear Information System (INIS)

    Richet, Y.

    2006-12-01

    Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)

  7. The SGHWR version of the Monte Carlo code W-MONTE. Part 1. The theoretical model

    International Nuclear Information System (INIS)

    Allen, F.R.

    1976-03-01

    W-MONTE provides a multi-group model of neutron transport in the exact geometry of a reactor lattice using Monte Carlo methods. It is currently restricted to uniform axial properties. Material data is normally obtained from a preliminary WIMS lattice calculation in the transport group structure. The SGHWR version has been required for analysis of zero energy experiments and special aspects of power reactor lattices, such as the unmoderated lattice region above the moderator when drained to dump height. Neutron transport is modelled for a uniform infinite lattice, simultaneously treating the cases of no leakage, radial leakage or axial leakage only, and the combined effects of radial and axial leakage. Multigroup neutron balance edits are incorporated for the separate effects of radial and axial leakage to facilitate the analysis of leakage and to provide effective diffusion theory parameters for core representation in reactor cores. (author)

  8. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Badal, A [U.S. Food and Drug Administration (CDRH/OSEL), Silver Spring, MD (United States); Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Bolch, W [University of Florida, Gainesville, FL (United States); Sechopoulos, I [Emory University, Atlanta, GA (United States)

    2014-06-15

    Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the

  9. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    International Nuclear Information System (INIS)

    Badal, A; Zbijewski, W; Bolch, W; Sechopoulos, I

    2014-01-01

    Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10 7 xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the virtual

  10. PEPSI - a Monte Carlo generator for polarized leptoproduction

    International Nuclear Information System (INIS)

    Mankiewicz, L.

    1992-01-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the Lepto 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S . PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons. (orig.)

  11. Monte Carlo method for solving a parabolic problem

    Directory of Open Access Journals (Sweden)

    Tian Yi

    2016-01-01

    Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.

  12. NUEN-618 Class Project: Actually Implicit Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Vega, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunner, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-14

    This research describes a new method for the solution of the thermal radiative transfer (TRT) equations that is implicit in time which will be called Actually Implicit Monte Carlo (AIMC). This section aims to introduce the TRT equations, as well as the current workhorse method which is known as Implicit Monte Carlo (IMC). As the name of the method proposed here indicates, IMC is a misnomer in that it is only semi-implicit, which will be shown in this section as well.

  13. Monte Carlo burnup codes acceleration using the correlated sampling method

    International Nuclear Information System (INIS)

    Dieudonne, C.

    2013-01-01

    For several years, Monte Carlo burnup/depletion codes have appeared, which couple Monte Carlo codes to simulate the neutron transport to deterministic methods, which handle the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3-dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the Monte Carlo solver called at each time step. In this document we present an original methodology to avoid the repetitive and time-expensive Monte Carlo simulations, and to replace them by perturbation calculations: indeed the different burnup steps may be seen as perturbations of the isotopic concentration of an initial Monte Carlo simulation. In a first time we will present this method, and provide details on the perturbative technique used, namely the correlated sampling. In a second time we develop a theoretical model to study the features of the correlated sampling method to understand its effects on depletion calculations. In a third time the implementation of this method in the TRIPOLI-4 code will be discussed, as well as the precise calculation scheme used to bring important speed-up of the depletion calculation. We will begin to validate and optimize the perturbed depletion scheme with the calculation of a REP-like fuel cell depletion. Then this technique will be used to calculate the depletion of a REP-like assembly, studied at beginning of its cycle. After having validated the method with a reference calculation we will show that it can speed-up by nearly an order of magnitude standard Monte-Carlo depletion codes. (author) [fr

  14. Monte Carlo Simulation in Statistical Physics An Introduction

    CERN Document Server

    Binder, Kurt

    2010-01-01

    Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methods and gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. The fifth edition covers Classical as well as Quantum Monte Carlo methods. Furthermore a new chapter on the sampling of free-energy landscapes has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was awarded the Berni J. Alder CECAM Award for Computational Physics 2001 as well ...

  15. Monte Carlo simulation in statistical physics an introduction

    CERN Document Server

    Binder, Kurt

    1992-01-01

    The Monte Carlo method is a computer simulation method which uses random numbers to simulate statistical fluctuations The method is used to model complex systems with many degrees of freedom Probability distributions for these systems are generated numerically and the method then yields numerically exact information on the models Such simulations may be used tosee how well a model system approximates a real one or to see how valid the assumptions are in an analyical theory A short and systematic theoretical introduction to the method forms the first part of this book The second part is a practical guide with plenty of examples and exercises for the student Problems treated by simple sampling (random and self-avoiding walks, percolation clusters, etc) are included, along with such topics as finite-size effects and guidelines for the analysis of Monte Carlo simulations The two parts together provide an excellent introduction to the theory and practice of Monte Carlo simulations

  16. Geometry and Dynamics for Markov Chain Monte Carlo

    Science.gov (United States)

    Barp, Alessandro; Briol, François-Xavier; Kennedy, Anthony D.; Girolami, Mark

    2018-03-01

    Markov Chain Monte Carlo methods have revolutionised mathematical computation and enabled statistical inference within many previously intractable models. In this context, Hamiltonian dynamics have been proposed as an efficient way of building chains which can explore probability densities efficiently. The method emerges from physics and geometry and these links have been extensively studied by a series of authors through the last thirty years. However, there is currently a gap between the intuitions and knowledge of users of the methodology and our deep understanding of these theoretical foundations. The aim of this review is to provide a comprehensive introduction to the geometric tools used in Hamiltonian Monte Carlo at a level accessible to statisticians, machine learners and other users of the methodology with only a basic understanding of Monte Carlo methods. This will be complemented with some discussion of the most recent advances in the field which we believe will become increasingly relevant to applied scientists.

  17. Vectorizing and macrotasking Monte Carlo neutral particle algorithms

    International Nuclear Information System (INIS)

    Heifetz, D.B.

    1987-04-01

    Monte Carlo algorithms for computing neutral particle transport in plasmas have been vectorized and macrotasked. The techniques used are directly applicable to Monte Carlo calculations of neutron and photon transport, and Monte Carlo integration schemes in general. A highly vectorized code was achieved by calculating test flight trajectories in loops over arrays of flight data, isolating the conditional branches to as few a number of loops as possible. A number of solutions are discussed to the problem of gaps appearing in the arrays due to completed flights, which impede vectorization. A simple and effective implementation of macrotasking is achieved by dividing the calculation of the test flight profile among several processors. A tree of random numbers is used to ensure reproducible results. The additional memory required for each task may preclude using a larger number of tasks. In future machines, the limit of macrotasking may be possible, with each test flight, and split test flight, being a separate task

  18. Multi-Index Monte Carlo (MIMC)

    KAUST Repository

    Haji Ali, Abdul Lateef; Nobile, Fabio; Tempone, Raul

    2015-01-01

    We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence.

  19. Multi-Index Monte Carlo (MIMC)

    KAUST Repository

    Haji Ali, Abdul Lateef

    2015-01-07

    We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence.

  20. Simulation of Rossi-α method with analog Monte-Carlo method

    International Nuclear Information System (INIS)

    Lu Yuzhao; Xie Qilin; Song Lingli; Liu Hangang

    2012-01-01

    The analog Monte-Carlo code for simulating Rossi-α method based on Geant4 was developed. The prompt neutron decay constant α of six metal uranium configurations in Oak Ridge National Laboratory were calculated. α was also calculated by Burst-Neutron method and the result was consistent with the result of Rossi-α method. There is the difference between results of analog Monte-Carlo simulation and experiment, and the reasons for the difference is the gaps between uranium layers. The influence of gaps decrease as the sub-criticality deepens. The relative difference between results of analog Monte-Carlo simulation and experiment changes from 19% to 0.19%. (authors)

  1. Quasi-Monte Carlo methods for lattice systems. A first look

    International Nuclear Information System (INIS)

    Jansen, K.; Cyprus Univ., Nicosia; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.

    2013-02-01

    We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.

  2. Quasi-Monte Carlo methods for lattice systems. A first look

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Leovey, H.; Griewank, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Nube, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Mueller-Preussker, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2013-02-15

    We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N{sup -1/2}, where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N{sup -1}. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.

  3. Monte Carlo calculations of thermodynamic properties of deuterium under high pressures

    International Nuclear Information System (INIS)

    Levashov, P R; Filinov, V S; BoTan, A; Fortov, V E; Bonitz, M

    2008-01-01

    Two different numerical approaches have been applied for calculations of shock Hugoniots and compression isentrope of deuterium: direct path integral Monte Carlo and reactive Monte Carlo. The results show good agreement between two methods at intermediate pressure which is an indication of correct accounting of dissociation effects in the direct path integral Monte Carlo method. Experimental data on both shock and quasi-isentropic compression of deuterium are well described by calculations. Thus dissociation of deuterium molecules in these experiments together with interparticle interaction play significant role

  4. Monte Carlo simulated dynamical magnetization of single-chain magnets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn

    2015-03-15

    Here, a dynamical Monte-Carlo (DMC) method is used to study temperature-dependent dynamical magnetization of famous Mn{sub 2}Ni system as typical example of single-chain magnets with strong magnetic anisotropy. Simulated magnetization curves are in good agreement with experimental results under typical temperatures and sweeping rates, and simulated coercive fields as functions of temperature are also consistent with experimental curves. Further analysis indicates that the magnetization reversal is determined by both thermal-activated effects and quantum spin tunnelings. These can help explore basic properties and applications of such important magnetic systems. - Highlights: • Monte Carlo simulated magnetization curves are in good agreement with experimental results. • Simulated coercive fields as functions of temperature are consistent with experimental results. • The magnetization reversal is understood in terms of the Monte Carlo simulations.

  5. LCG MCDB - a Knowledgebase of Monte Carlo Simulated Events

    CERN Document Server

    Belov, S; Galkin, E; Gusev, A; Pokorski, Witold; Sherstnev, A V

    2008-01-01

    In this paper we report on LCG Monte Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC collaborations by experts. In many cases, the modern Monte Carlo simulation of physical processes requires expert knowledge in Monte Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project.

  6. Exponentially-convergent Monte Carlo via finite-element trial spaces

    International Nuclear Information System (INIS)

    Morel, Jim E.; Tooley, Jared P.; Blamer, Brandon J.

    2011-01-01

    Exponentially-Convergent Monte Carlo (ECMC) methods, also known as adaptive Monte Carlo and residual Monte Carlo methods, were the subject of intense research over a decade ago, but they never became practical for solving the realistic problems. We believe that the failure of previous efforts may be related to the choice of trial spaces that were global and thus highly oscillatory. As an alternative, we consider finite-element trial spaces, which have the ability to treat fully realistic problems. As a first step towards more general methods, we apply piecewise-linear trial spaces to the spatially-continuous two-stream transport equation. Using this approach, we achieve exponential convergence and computationally demonstrate several fundamental properties of finite-element based ECMC methods. Finally, our results indicate that the finite-element approach clearly deserves further investigation. (author)

  7. Monte Carlo Calculation of Sensitivities to Secondary Angular Distributions. Theory and Validation

    International Nuclear Information System (INIS)

    Perell, R. L.

    2002-01-01

    The basic methods for solution of the transport equation that are in practical use today are the discrete ordinates (SN) method, and the Monte Carlo (Monte Carlo) method. While the SN method is typically less computation time consuming, the Monte Carlo method is often preferred for detailed and general description of three-dimensional geometries, and for calculations using cross sections that are point-wise energy dependent. For analysis of experimental and calculated results, sensitivities are needed. Sensitivities to material parameters in general, and to the angular distribution of the secondary (scattered) neutrons in particular, can be calculated by well known SN methods, using the fluxes obtained from solution of the direct and the adjoint transport equations. Algorithms to calculate sensitivities to cross-sections with Monte Carlo methods have been known for quite a time. However, only just recently we have developed a general Monte Carlo algorithm for the calculation of sensitivities to the angular distribution of the secondary neutrons

  8. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  9. Proton therapy analysis using the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Noshad, Houshyar [Center for Theoretical Physics and Mathematics, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)]. E-mail: hnoshad@aeoi.org.ir; Givechi, Nasim [Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2005-10-01

    The range and straggling data obtained from the transport of ions in matter (TRIM) computer program were used to determine the trajectories of monoenergetic 60 MeV protons in muscle tissue by using the Monte Carlo technique. The appropriate profile for the shape of a proton pencil beam in proton therapy as well as the dose deposited in the tissue were computed. The good agreements between our results as compared with the corresponding experimental values are presented here to show the reliability of our Monte Carlo method.

  10. Simplified monte carlo simulation for Beijing spectrometer

    International Nuclear Information System (INIS)

    Wang Taijie; Wang Shuqin; Yan Wuguang; Huang Yinzhi; Huang Deqiang; Lang Pengfei

    1986-01-01

    The Monte Carlo method based on the functionization of the performance of detectors and the transformation of values of kinematical variables into ''measured'' ones by means of smearing has been used to program the Monte Carlo simulation of the performance of the Beijing Spectrometer (BES) in FORTRAN language named BESMC. It can be used to investigate the multiplicity, the particle type, and the distribution of four-momentum of the final states of electron-positron collision, and also the response of the BES to these final states. Thus, it provides a measure to examine whether the overall design of the BES is reasonable and to decide the physical topics of the BES

  11. Monte Carlo simulation of gas Cerenkov detectors

    International Nuclear Information System (INIS)

    Mack, J.M.; Jain, M.; Jordan, T.M.

    1984-01-01

    Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier

  12. Solving the transport equation by Monte Carlo method and application for biological shield calculations; Resavanje transportne jednacine Monte Carlo metodom i njena primena u zadacima proracuna bioloskog stita

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1977-07-01

    General sampling Monte Carlo scheme for neutron transport equation has been described. Programme TRANSFER for neutron beam transmission analysis has been used to calculate the neutron leakage spectrum, detector efficiency and neutron angular distribution of the example problem (author) [Serbo-Croat] U radu se najpre razmatraju osnovni problemi resavanja transportne jednacine i nacin kako Monte Karlo metoda omogucuje da se prevazidju neki od njih: visedimenzionalnost zadatka, problem dubokog prodiranja i dovoljno fino tretiranje efikasnih preseka. Dalje, govori se o iskustvima sa primenom Monte Karlo metode u Laboratoriji za nuklearnu energetiku i tehnicku fiziku i o primeni ove metode na probleme zastite. Na kraju dati su i analizirani ilustrativni primeri proracuna transporta neutrona kroz ravan sloj zastitnog materijala koriscenjem Monte Karlo programa TRANSFER (author)

  13. A contribution to the Monte Carlo method in the reactor theory

    International Nuclear Information System (INIS)

    Lieberoth, J.

    1976-01-01

    The report gives a contribution to the further development of the Monte-Carlo Method to solve the neutron transport problem. The necessary fundamentals, mainly of statistical nature, are collected and partly derived, such as the statistical weight, the use of random numbers or the Monte-Carlo integration method. Special emphasis is put on the so-called team-method, which will help to reduce the statistical error of Monte-Carlo estimates, and on the path-method, which can be used to calculate the neutron fluxes in pre-defined local points

  14. Avariide kiuste Monte Carlosse / Aare Arula

    Index Scriptorium Estoniae

    Arula, Aare

    2007-01-01

    Vt. ka Tehnika dlja Vsehh nr. 3, lk. 26-27. 26. jaanuaril 1937 Tallinnast Monte Carlo tähesõidule startinud Karl Siitanit ja tema meeskonda ootasid ees seiklused, mis oleksid neile peaaegu elu maksnud

  15. Weighted-delta-tracking for Monte Carlo particle transport

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Kotlyar, D.

    2015-01-01

    Highlights: • This paper presents an alteration to the Monte Carlo Woodcock tracking technique. • The alteration improves computational efficiency within regions of high absorbers. • The rejection technique is replaced by a statistical weighting mechanism. • The modified Woodcock method is shown to be faster than standard Woodcock tracking. • The modified Woodcock method achieves a lower variance, given a specified accuracy. - Abstract: Monte Carlo particle transport (MCPT) codes are incredibly powerful and versatile tools to simulate particle behavior in a multitude of scenarios, such as core/criticality studies, radiation protection, shielding, medicine and fusion research to name just a small subset applications. However, MCPT codes can be very computationally expensive to run when the model geometry contains large attenuation depths and/or contains many components. This paper proposes a simple modification to the Woodcock tracking method used by some Monte Carlo particle transport codes. The Woodcock method utilizes the rejection method for sampling virtual collisions as a method to remove collision distance sampling at material boundaries. However, it suffers from poor computational efficiency when the sample acceptance rate is low. The proposed method removes rejection sampling from the Woodcock method in favor of a statistical weighting scheme, which improves the computational efficiency of a Monte Carlo particle tracking code. It is shown that the modified Woodcock method is less computationally expensive than standard ray-tracing and rejection-based Woodcock tracking methods and achieves a lower variance, given a specified accuracy

  16. The Role of Wealth and Health in Insurance Choice: Bivariate Probit Analysis in China

    Directory of Open Access Journals (Sweden)

    Yiding Yue

    2014-01-01

    Full Text Available This paper captures the correlation between the choices of health insurance and pension insurance using the bivariate probit model and then studies the effect of wealth and health on insurance choice. Our empirical evidence shows that people who participate in a health care program are more likely to participate in a pension plan at the same time, while wealth and health have different effects on the choices of the health care program and the pension program. Generally, the higher an individual’s wealth level is, the more likelihood he will participate in a health care program; but wealth has no effect on the participation of pension. Health status has opposite effects on choices of health care programs and pension plans; the poorer an individual’s health is, the more likely he is to participate in health care programs, while the better health he enjoys, the more likely he is to participate in pension plans. When the investigation scope narrows down to commercial insurance, there is only a significant effect of health status on commercial health insurance. The commercial insurance choice and the insurance choice of the agricultural population are more complicated.

  17. A continuation multilevel Monte Carlo algorithm

    KAUST Repository

    Collier, Nathan; Haji Ali, Abdul Lateef; Nobile, Fabio; von Schwerin, Erik; Tempone, Raul

    2014-01-01

    We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error

  18. Direct Monte Carlo simulation of nanoscale mixed gas bearings

    Directory of Open Access Journals (Sweden)

    Kyaw Sett Myo

    2015-06-01

    Full Text Available The conception of sealed hard drives with helium gas mixture has been recently suggested over the current hard drives for achieving higher reliability and less position error. Therefore, it is important to understand the effects of different helium gas mixtures on the slider bearing characteristics in the head–disk interface. In this article, the helium/air and helium/argon gas mixtures are applied as the working fluids and their effects on the bearing characteristics are studied using the direct simulation Monte Carlo method. Based on direct simulation Monte Carlo simulations, the physical properties of these gas mixtures such as mean free path and dynamic viscosity are achieved and compared with those obtained from theoretical models. It is observed that both results are comparable. Using these gas mixture properties, the bearing pressure distributions are calculated under different fractions of helium with conventional molecular gas lubrication models. The outcomes reveal that the molecular gas lubrication results could have relatively good agreement with those of direct simulation Monte Carlo simulations, especially for pure air, helium, or argon gas cases. For gas mixtures, the bearing pressures predicted by molecular gas lubrication model are slightly larger than those from direct simulation Monte Carlo simulation.

  19. Monte Carlo: in the beginning and some great expectations

    International Nuclear Information System (INIS)

    Metropolis, N.

    1985-01-01

    The central theme will be on the historical setting and origins of the Monte Carlo Method. The scene was post-war Los Alamos Scientific Laboratory. There was an inevitability about the Monte Carlo Event: the ENIAC had recently enjoyed its meteoric rise (on a classified Los Alamos problem); Stan Ulam had returned to Los Alamos; John von Neumann was a frequent visitor. Techniques, algorithms, and applications developed rapidly at Los Alamos. Soon, the fascination of the Method reached wider horizons. The first paper was submitted for publication in the spring of 1949. In the summer of 1949, the first open conference was held at the University of California at Los Angeles. Of some interst perhaps is an account of Fermi's earlier, independent application in neutron moderation studies while at the University of Rome. The quantum leap expected with the advent of massively parallel processors will provide stimuli for very ambitious applications of the Monte Carlo Method in disciplines ranging from field theories to cosmology, including more realistic models in the neurosciences. A structure of multi-instruction sets for parallel processing is ideally suited for the Monte Carlo approach. One may even hope for a modest hardening of the soft sciences

  20. A Monte Carlo simulation model for stationary non-Gaussian processes

    DEFF Research Database (Denmark)

    Grigoriu, M.; Ditlevsen, Ove Dalager; Arwade, S. R.

    2003-01-01

    includes translation processes and is useful for both Monte Carlo simulation and analytical studies. As for translation processes, the mixture of translation processes can have a wide range of marginal distributions and correlation functions. Moreover, these processes can match a broader range of second...... athe proposed Monte Carlo algorithm and compare features of translation processes and mixture of translation processes. Keywords: Monte Carlo simulation, non-Gaussian processes, sampling theorem, stochastic processes, translation processes......A class of stationary non-Gaussian processes, referred to as the class of mixtures of translation processes, is defined by their finite dimensional distributions consisting of mixtures of finite dimensional distributions of translation processes. The class of mixtures of translation processes...

  1. Vectorization of phase space Monte Carlo code in FACOM vector processor VP-200

    International Nuclear Information System (INIS)

    Miura, Kenichi

    1986-01-01

    This paper describes the vectorization techniques for Monte Carlo codes in Fujitsu's Vector Processor System. The phase space Monte Carlo code FOWL is selected as a benchmark, and scalar and vector performances are compared. The vectorized kernel Monte Carlo routine which contains heavily nested IF tests runs up to 7.9 times faster in vector mode than in scalar mode. The overall performance improvement of the vectorized FOWL code over the original scalar code reaches 3.3. The results of this study strongly indicate that supercomputer can be a powerful tool for Monte Carlo simulations in high energy physics. (Auth.)

  2. A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.

    2007-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the

  3. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N.A.; Olson, A.P.; Pond, R.B.; Matos, J.E.

    1998-01-01

    The REBUS-3 burnup code, used in the anl RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented. (author)

  4. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N. A.

    1998-01-01

    The REBUS-3 burnup code, used in the ANL RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult burnup analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented

  5. REGRES: A FORTRAN-77 program to calculate nonparametric and ``structural'' parametric solutions to bivariate regression equations

    Science.gov (United States)

    Rock, N. M. S.; Duffy, T. R.

    REGRES allows a range of regression equations to be calculated for paired sets of data values in which both variables are subject to error (i.e. neither is the "independent" variable). Nonparametric regressions, based on medians of all possible pairwise slopes and intercepts, are treated in detail. Estimated slopes and intercepts are output, along with confidence limits, Spearman and Kendall rank correlation coefficients. Outliers can be rejected with user-determined stringency. Parametric regressions can be calculated for any value of λ (the ratio of the variances of the random errors for y and x)—including: (1) major axis ( λ = 1); (2) reduced major axis ( λ = variance of y/variance of x); (3) Y on Xλ = infinity; or (4) X on Y ( λ = 0) solutions. Pearson linear correlation coefficients also are output. REGRES provides an alternative to conventional isochron assessment techniques where bivariate normal errors cannot be assumed, or weighting methods are inappropriate.

  6. Review of quantum Monte Carlo methods and results for Coulombic systems

    International Nuclear Information System (INIS)

    Ceperley, D.

    1983-01-01

    The various Monte Carlo methods for calculating ground state energies are briefly reviewed. Then a summary of the charged systems that have been studied with Monte Carlo is given. These include the electron gas, small molecules, a metal slab and many-body hydrogen

  7. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  8. Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy

    Science.gov (United States)

    Sharma, Sanjib

    2017-08-01

    Markov Chain Monte Carlo based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the last decade, we have also seen a steady increase in the number of papers that employ Monte Carlo based Bayesian analysis. New, efficient Monte Carlo based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (available at https://github.com/sanjibs/bmcmc/ ) that implements some of the algorithms and examples discussed here.

  9. Fundamentals of Monte Carlo

    International Nuclear Information System (INIS)

    Wollaber, Allan Benton

    2016-01-01

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating @@), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  10. Fundamentals of Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  11. Studies of Monte Carlo Modelling of Jets at ATLAS

    CERN Document Server

    Kar, Deepak; The ATLAS collaboration

    2017-01-01

    The predictions of different Monte Carlo generators for QCD jet production, both in multijets and for jets produced in association with other objects, are presented. Recent improvements in showering Monte Carlos provide new tools for assessing systematic uncertainties associated with these jets.  Studies of the dependence of physical observables on the choice of shower tune parameters and new prescriptions for assessing systematic uncertainties associated with the choice of shower model and tune are presented.

  12. Monte Carlos of the new generation: status and progress

    International Nuclear Information System (INIS)

    Frixione, Stefano

    2005-01-01

    Standard parton shower monte carlos are designed to give reliable descriptions of low-pT physics. In the very high-energy regime of modern colliders, this is may lead to largely incorrect predictions of the basic reaction processes. This motivated the recent theoretical efforts aimed at improving monte carlos through the inclusion of matrix elements computed beyond the leading order in QCD. I briefly review the progress made, and discuss bottom production at the Tevatron

  13. Quantum Monte Carlo for vibrating molecules

    International Nuclear Information System (INIS)

    Brown, W.R.; Lawrence Berkeley National Lab., CA

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies

  14. A new method to assess the statistical convergence of monte carlo solutions

    International Nuclear Information System (INIS)

    Forster, R.A.

    1991-01-01

    Accurate Monte Carlo confidence intervals (CIs), which are formed with an estimated mean and an estimated standard deviation, can only be created when the number of particle histories N becomes large enough so that the central limit theorem can be applied. The Monte Carlo user has a limited number of marginal methods to assess the fulfillment of this condition, such as statistical error reduction proportional to 1/√N with error magnitude guidelines and third and fourth moment estimators. A new method is presented here to assess the statistical convergence of Monte Carlo solutions by analyzing the shape of the empirical probability density function (PDF) of history scores. Related work in this area includes the derivation of analytic score distributions for a two-state Monte Carlo problem. Score distribution histograms have been generated to determine when a small number of histories accounts for a large fraction of the result. This summary describes initial studies of empirical Monte Carlo history score PDFs created from score histograms of particle transport simulations. 7 refs., 1 fig

  15. Initial Assessment of Parallelization of Monte Carlo Calculation using Graphics Processing Units

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Joo, Han Gyu

    2009-01-01

    Monte Carlo (MC) simulation is an effective tool for calculating neutron transports in complex geometry. However, because Monte Carlo simulates each neutron behavior one by one, it takes a very long computing time if enough neutrons are used for high precision of calculation. Accordingly, methods that reduce the computing time are required. In a Monte Carlo code, parallel calculation is well-suited since it simulates the behavior of each neutron independently and thus parallel computation is natural. The parallelization of the Monte Carlo codes, however, was done using multi CPUs. By the global demand for high quality 3D graphics, the Graphics Processing Unit (GPU) has developed into a highly parallel, multi-core processor. This parallel processing capability of GPUs can be available to engineering computing once a suitable interface is provided. Recently, NVIDIA introduced CUDATM, a general purpose parallel computing architecture. CUDA is a software environment that allows developers to manage GPU using C/C++ or other languages. In this work, a GPU-based Monte Carlo is developed and the initial assessment of it parallel performance is investigated

  16. Monte Carlo-based tail exponent estimator

    Science.gov (United States)

    Barunik, Jozef; Vacha, Lukas

    2010-11-01

    In this paper we propose a new approach to estimation of the tail exponent in financial stock markets. We begin the study with the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations, we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our proposed method is not sensitive to the choice of tail size and works well also on small data samples. The new estimator also gives unbiased results with symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on the international world stock market indices. On the two separate periods of 2002-2005 and 2006-2009, we estimate the tail exponent.

  17. Monte Carlo Simulation for Particle Detectors

    CERN Document Server

    Pia, Maria Grazia

    2012-01-01

    Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

  18. The specific bias in dynamic Monte Carlo simulations of nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, T.; Endo, H.; Ishizu, T.; Tatewaki, I.

    2013-01-01

    During the development of Monte-Carlo-based dynamic code system, we have encountered two major Monte-Carlo-specific problems. One is the break down due to 'false super-criticality' which is caused by an accidentally large eigenvalue due to statistical error in spite of the fact that the reactor is actually not critical. The other problem, which is the main topic in this paper, is that the statistical error in power level using the reactivity calculated with Monte Carlo code is not symmetric about its mean but always positively biased. This signifies that the bias is accumulated as the calculation proceeds and consequently results in an over-estimation of the final power level. It should be noted that the bias will not be eliminated by refining the time step as long as the variance is not zero. A preliminary investigation on this matter using the one-group-precursor point kinetic equations was made and it was concluded that the bias in power level is approximately proportional to the product of variance in Monte Carlo calculation and elapsed time. This conclusion was verified with some numerical experiments. This outcome is important in quantifying the required precision of the Monte-Carlo-based reactivity calculations. (authors)

  19. Speed-up of ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo simulations by using an auxiliary potential energy surface

    International Nuclear Information System (INIS)

    Nakayama, Akira; Taketsugu, Tetsuya; Shiga, Motoyuki

    2009-01-01

    Efficiency of the ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo methods is enhanced by employing an auxiliary potential energy surface that is used to update the system configuration via molecular dynamics scheme. As a simple illustration of this method, a dual-level approach is introduced where potential energy gradients are evaluated by computationally less expensive ab initio electronic structure methods. (author)

  20. Monte Carlo method to characterize radioactive waste drums

    International Nuclear Information System (INIS)

    Lima, Josenilson B.; Dellamano, Jose C.; Potiens Junior, Ademar J.

    2013-01-01

    Non-destructive methods for radioactive waste drums characterization have being developed in the Waste Management Department (GRR) at Nuclear and Energy Research Institute IPEN. This study was conducted as part of the radioactive wastes characterization program in order to meet specifications and acceptance criteria for final disposal imposed by regulatory control by gamma spectrometry. One of the main difficulties in the detectors calibration process is to obtain the counting efficiencies that can be solved by the use of mathematical techniques. The aim of this work was to develop a methodology to characterize drums using gamma spectrometry and Monte Carlo method. Monte Carlo is a widely used mathematical technique, which simulates the radiation transport in the medium, thus obtaining the efficiencies calibration of the detector. The equipment used in this work is a heavily shielded Hyperpure Germanium (HPGe) detector coupled with an electronic setup composed of high voltage source, amplifier and multiport multichannel analyzer and MCNP software for Monte Carlo simulation. The developing of this methodology will allow the characterization of solid radioactive wastes packed in drums and stored at GRR. (author)

  1. Improved diffusion coefficients generated from Monte Carlo codes

    International Nuclear Information System (INIS)

    Herman, B. R.; Forget, B.; Smith, K.; Aviles, B. N.

    2013-01-01

    Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)

  2. Monte Carlo calculations of electron transport on microcomputers

    International Nuclear Information System (INIS)

    Chung, Manho; Jester, W.A.; Levine, S.H.; Foderaro, A.H.

    1990-01-01

    In the work described in this paper, the Monte Carlo program ZEBRA, developed by Berber and Buxton, was converted to run on the Macintosh computer using Microsoft BASIC to reduce the cost of Monte Carlo calculations using microcomputers. Then the Eltran2 program was transferred to an IBM-compatible computer. Turbo BASIC and Microsoft Quick BASIC have been used on the IBM-compatible Tandy 4000SX computer. The paper shows the running speed of the Monte Carlo programs on the different computers, normalized to one for Eltran2 on the Macintosh-SE or Macintosh-Plus computer. Higher values refer to faster running times proportionally. Since Eltran2 is a one-dimensional program, it calculates energy deposited in a semi-infinite multilayer slab. Eltran2 has been modified to a two-dimensional program called Eltran3 to computer more accurately the case with a point source, a small detector, and a short source-to-detector distance. The running time of Eltran3 is about twice as long as that of Eltran2 for a similar case

  3. pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis

    Science.gov (United States)

    White, J.; Brakefield, L. K.

    2015-12-01

    The null-space monte carlo technique is a non-linear uncertainty analyses technique that is well-suited to high-dimensional inverse problems. While the technique is powerful, the existing workflow for completing null-space monte carlo is cumbersome, requiring the use of multiple commandline utilities, several sets of intermediate files and even a text editor. pyNSMC is an open-source python module that automates the workflow of null-space monte carlo uncertainty analyses. The module is fully compatible with the PEST and PEST++ software suites and leverages existing functionality of pyEMU, a python framework for linear-based uncertainty analyses. pyNSMC greatly simplifies the existing workflow for null-space monte carlo by taking advantage of object oriented design facilities in python. The core of pyNSMC is the ensemble class, which draws and stores realized random vectors and also provides functionality for exporting and visualizing results. By relieving users of the tedium associated with file handling and command line utility execution, pyNSMC instead focuses the user on the important steps and assumptions of null-space monte carlo analysis. Furthermore, pyNSMC facilitates learning through flow charts and results visualization, which are available at many points in the algorithm. The ease-of-use of the pyNSMC workflow is compared to the existing workflow for null-space monte carlo for a synthetic groundwater model with hundreds of estimable parameters.

  4. Safety assessment of infrastructures using a new Bayesian Monte Carlo method

    NARCIS (Netherlands)

    Rajabali Nejad, Mohammadreza; Demirbilek, Z.

    2011-01-01

    A recently developed Bayesian Monte Carlo (BMC) method and its application to safety assessment of structures are described in this paper. We use a one-dimensional BMC method that was proposed in 2009 by Rajabalinejad in order to develop a weighted logical dependence between successive Monte Carlo

  5. 75 FR 59963 - Safety Zone: Monte Foundation Firework Display, Monterey, CA

    Science.gov (United States)

    2010-09-29

    ...-AA00 Safety Zone: Monte Foundation Firework Display, Monterey, CA AGENCY: Coast Guard, DHS. ACTION... Monte Foundation Firework Display. This safety zone is established to ensure the safety of participants... be completed. Because of the dangers posed by the pyrotechnics used in this fireworks display, the...

  6. Monte Carlo studies of ZEPLIN III

    CERN Document Server

    Dawson, J; Davidge, D C R; Gillespie, J R; Howard, A S; Jones, W G; Joshi, M; Lebedenko, V N; Sumner, T J; Quenby, J J

    2002-01-01

    A Monte Carlo simulation of a two-phase xenon dark matter detector, ZEPLIN III, has been achieved. Results from the analysis of a simulated data set are presented, showing primary and secondary signal distributions from low energy gamma ray events.

  7. Optimised Iteration in Coupled Monte Carlo - Thermal-Hydraulics Calculations

    Science.gov (United States)

    Hoogenboom, J. Eduard; Dufek, Jan

    2014-06-01

    This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration method are also tested and it is concluded that the presented iteration method is near optimal.

  8. Optimized iteration in coupled Monte-Carlo - Thermal-hydraulics calculations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; Dufek, J.

    2013-01-01

    This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration methods are also tested and it is concluded that the presented iteration method is near optimal. (authors)

  9. Profit Forecast Model Using Monte Carlo Simulation in Excel

    Directory of Open Access Journals (Sweden)

    Petru BALOGH

    2014-01-01

    Full Text Available Profit forecast is very important for any company. The purpose of this study is to provide a method to estimate the profit and the probability of obtaining the expected profit. Monte Carlo methods are stochastic techniques–meaning they are based on the use of random numbers and probability statistics to investigate problems. Monte Carlo simulation furnishes the decision-maker with a range of possible outcomes and the probabilities they will occur for any choice of action. Our example of Monte Carlo simulation in Excel will be a simplified profit forecast model. Each step of the analysis will be described in detail. The input data for the case presented: the number of leads per month, the percentage of leads that result in sales, , the cost of a single lead, the profit per sale and fixed cost, allow obtaining profit and associated probabilities of achieving.

  10. Calibration and Monte Carlo modelling of neutron long counters

    CERN Document Server

    Tagziria, H

    2000-01-01

    The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...

  11. Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions

    International Nuclear Information System (INIS)

    Miao Binhe; Jeraj, Robert; Bao Shanglian; Mackie, Thomas R

    2003-01-01

    The Monte Carlo method is the most accurate method for radiotherapy dose calculations, if used correctly. However, any Monte Carlo dose calculation is burdened with statistical noise. In this paper, denoising of Monte Carlo dose distributions with a three-dimensional adaptive anisotropic diffusion method was investigated. The standard anisotropic diffusion method was extended by changing the filtering parameters adaptively according to the local statistical noise. Smoothing of dose distributions with different noise levels in an inhomogeneous phantom, a conventional and an IMRT treatment case is shown. The resultant dose distributions were analysed using several evaluating criteria. It is shown that the adaptive anisotropic diffusion method can reduce statistical noise significantly (two to five times, corresponding to the reduction of simulation time by a factor of up to 20), while preserving important gradients of the dose distribution well. The choice of free parameters of the method was found to be fairly robust

  12. MONTE CARLO SIMULATION AND VALUATION: A STOCHASTIC APPROACH SIMULAÇÃO DE MONTE CARLO E VALUATION: UMA ABORDAGEM ESTOCÁSTICA

    Directory of Open Access Journals (Sweden)

    Marcos Roberto Gois de Oliveira

    2013-01-01

    Full Text Available Among the various business valuation methodologies, the discounted cash flow is still the most adopted nowadays on both academic and professional environment. Although many authors support thatmethodology as the most adequate one for business valuation, its projective feature implies in an uncertaintyissue presents in all financial models based on future expectations, the risk that the projected assumptionsdoes not occur. One of the alternatives to measure the risk inherent to the discounted cash flow valuation isto add Monte Carlo Simulation to the deterministic business valuation model in order to create a stochastic model, which can perform a statistic analysis of risk. The objective of this work was to evaluate thepertinence regarding the Monte Carlo Simulation adoption to measure the uncertainty inherent to the business valuation using discounted cash flow, identifying whether the Monte Carlo simulation enhance theaccuracy of this asset pricing methodology. The results of this work assures the operational e icacy ofdiscounted cash flow business valuation using Monte Carlo Simulation, confirming that the adoption of thatmethodology allows a relevant enhancement of the results in comparison with those obtained by using thedeterministic business valuation model.Dentre as diversas metodologias de avaliação de empresas, a avaliação por fluxo de caixa descontadocontinua sendo a mais adotada na atualidade, tanto no meio acadêmico como no profissional. Embora  essametodologia seja considerada por diversos autores como a mais adequada para a avaliação de empresas no contexto atual, seu caráter projetivo remete a um componente de incerteza presente em todos os modelos baseados em expectativas futuras o risco de as premissas de projeção adotadas não se concretizarem. Uma das alternativas para a mensuração do risco inerente à avaliação de empresas pelo fluxo de caixa descontadoconsiste na incorporação da Simulação de Monte

  13. Multi-Index Monte Carlo (MIMC)

    KAUST Repository

    Haji Ali, Abdul Lateef

    2016-01-06

    We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL-2).

  14. Multi-Index Monte Carlo (MIMC)

    KAUST Repository

    Haji Ali, Abdul Lateef; Nobile, Fabio; Tempone, Raul

    2016-01-01

    We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL-2).

  15. Global Monte Carlo Simulation with High Order Polynomial Expansions

    International Nuclear Information System (INIS)

    William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin

    2007-01-01

    The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as 'local' piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi's method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source convergence

  16. A Hybrid Forecasting Model Based on Bivariate Division and a Backpropagation Artificial Neural Network Optimized by Chaos Particle Swarm Optimization for Day-Ahead Electricity Price

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2014-01-01

    Full Text Available In the electricity market, the electricity price plays an inevitable role. Nevertheless, accurate price forecasting, a vital factor affecting both government regulatory agencies and public power companies, remains a huge challenge and a critical problem. Determining how to address the accurate forecasting problem becomes an even more significant task in an era in which electricity is increasingly important. Based on the chaos particle swarm optimization (CPSO, the backpropagation artificial neural network (BPANN, and the idea of bivariate division, this paper proposes a bivariate division BPANN (BD-BPANN method and the CPSO-BD-BPANN method for forecasting electricity price. The former method creatively transforms the electricity demand and price to be a new variable, named DV, which is calculated using the division principle, to forecast the day-ahead electricity by multiplying the forecasted values of the DVs and forecasted values of the demand. Next, to improve the accuracy of BD-BPANN, chaos particle swarm optimization and BD-BPANN are synthesized to form a novel model, CPSO-BD-BPANN. In this study, CPSO is utilized to optimize the initial parameters of BD-BPANN to make its output more stable than the original model. Finally, two forecasting strategies are proposed regarding different situations.

  17. MONK - a general purpose Monte Carlo neutronics program

    International Nuclear Information System (INIS)

    Sherriffs, V.S.W.

    1978-01-01

    MONK is a Monte Carlo neutronics code written principally for criticality calculations relevant to the transport, storage, and processing of fissile material. The code exploits the ability of the Monte Carlo method to represent complex shapes with very great accuracy. The nuclear data used is derived from the UK Nuclear Data File processed to the required format by a subsidiary program POND. A general description is given of the MONK code together with the subsidiary program SCAN which produces diagrams of the system specified. Details of the data input required by MONK and SCAN are also given. (author)

  18. A Bivariate Generalized Linear Item Response Theory Modeling Framework to the Analysis of Responses and Response Times.

    Science.gov (United States)

    Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

    2015-01-01

    A generalized linear modeling framework to the analysis of responses and response times is outlined. In this framework, referred to as bivariate generalized linear item response theory (B-GLIRT), separate generalized linear measurement models are specified for the responses and the response times that are subsequently linked by cross-relations. The cross-relations can take various forms. Here, we focus on cross-relations with a linear or interaction term for ability tests, and cross-relations with a curvilinear term for personality tests. In addition, we discuss how popular existing models from the psychometric literature are special cases in the B-GLIRT framework depending on restrictions in the cross-relation. This allows us to compare existing models conceptually and empirically. We discuss various extensions of the traditional models motivated by practical problems. We also illustrate the applicability of our approach using various real data examples, including data on personality and cognitive ability.

  19. Monte Carlo simulation with the Gate software using grid computing

    International Nuclear Information System (INIS)

    Reuillon, R.; Hill, D.R.C.; Gouinaud, C.; El Bitar, Z.; Breton, V.; Buvat, I.

    2009-03-01

    Monte Carlo simulations are widely used in emission tomography, for protocol optimization, design of processing or data analysis methods, tomographic reconstruction, or tomograph design optimization. Monte Carlo simulations needing many replicates to obtain good statistical results can be easily executed in parallel using the 'Multiple Replications In Parallel' approach. However, several precautions have to be taken in the generation of the parallel streams of pseudo-random numbers. In this paper, we present the distribution of Monte Carlo simulations performed with the GATE software using local clusters and grid computing. We obtained very convincing results with this large medical application, thanks to the EGEE Grid (Enabling Grid for E-science), achieving in one week computations that could have taken more than 3 years of processing on a single computer. This work has been achieved thanks to a generic object-oriented toolbox called DistMe which we designed to automate this kind of parallelization for Monte Carlo simulations. This toolbox, written in Java is freely available on SourceForge and helped to ensure a rigorous distribution of pseudo-random number streams. It is based on the use of a documented XML format for random numbers generators statuses. (authors)

  20. Inference for the Bivariate and Multivariate Hidden Truncated Pareto(type II) and Pareto(type IV) Distribution and Some Measures of Divergence Related to Incompatibility of Probability Distribution

    Science.gov (United States)

    Ghosh, Indranil

    2011-01-01

    Consider a discrete bivariate random variable (X, Y) with possible values x[subscript 1], x[subscript 2],..., x[subscript I] for X and y[subscript 1], y[subscript 2],..., y[subscript J] for Y. Further suppose that the corresponding families of conditional distributions, for X given values of Y and of Y for given values of X are available. We…

  1. Methodology of Continuous-Energy Adjoint Monte Carlo for Neutron, Photon, and Coupled Neutron-Photon Transport

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2003-01-01

    Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems

  2. PEPSI — a Monte Carlo generator for polarized leptoproduction

    Science.gov (United States)

    Mankiewicz, L.; Schäfer, A.; Veltri, M.

    1992-09-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.

  3. Monte Carlo simulations in skin radiotherapy

    International Nuclear Information System (INIS)

    Sarvari, A.; Jeraj, R.; Kron, T.

    2000-01-01

    The primary goal of this work was to develop a procedure for calculation the appropriate filter shape for a brachytherapy applicator used for skin radiotherapy. In the applicator a radioactive source is positioned close to the skin. Without a filter, the resultant dose distribution would be highly nonuniform.High uniformity is usually required however. This can be achieved using an appropriately shaped filter, which flattens the dose profile. Because of the complexity of the transport and geometry, Monte Carlo simulations had to be used. An 192 Ir high dose rate photon source was used. All necessary transport parameters were simulated with the MCNP4B Monte Carlo code. A highly efficient iterative procedure was developed, which enabled calculation of the optimal filter shape in only few iterations. The initially non-uniform dose distributions became uniform within a percent when applying the filter calculated by this procedure. (author)

  4. Modern analysis of ion channeling data by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, Lech [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, Andrzej [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Ratajczak, Renata [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Stonert, Anna [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, Frederico [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France)

    2005-10-15

    Basic scheme of ion channeling spectra Monte Carlo simulation is reformulated in terms of statistical sampling. The McChasy simulation code is described and two examples of the code applications are presented. These are: calculation of projectile flux in uranium dioxide crystal and defect analysis for ion implanted InGaAsP/InP superlattice. Virtues and pitfalls of defect analysis using Monte Carlo simulations are discussed.

  5. Hypothesis testing of scientific Monte Carlo calculations

    Science.gov (United States)

    Wallerberger, Markus; Gull, Emanuel

    2017-11-01

    The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.

  6. Mission Analysis, Operations, and Navigation Toolkit Environment (Monte) Version 040

    Science.gov (United States)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.

    2012-01-01

    Monte is a software set designed for use in mission design and spacecraft navigation operations. The system can process measurement data, design optimal trajectories and maneuvers, and do orbit determination, all in one application. For the first time, a single software set can be used for mission design and navigation operations. This eliminates problems due to different models and fidelities used in legacy mission design and navigation software. The unique features of Monte 040 include a blowdown thruster model for GRAIL (Gravity Recovery and Interior Laboratory) with associated pressure models, as well as an updated, optimalsearch capability (COSMIC) that facilitated mission design for ARTEMIS. Existing legacy software lacked the capabilities necessary for these two missions. There is also a mean orbital element propagator and an osculating to mean element converter that allows long-term orbital stability analysis for the first time in compiled code. The optimized trajectory search tool COSMIC allows users to place constraints and controls on their searches without any restrictions. Constraints may be user-defined and depend on trajectory information either forward or backwards in time. In addition, a long-term orbit stability analysis tool (morbiter) existed previously as a set of scripts on top of Monte. Monte is becoming the primary tool for navigation operations, a core competency at JPL. The mission design capabilities in Monte are becoming mature enough for use in project proposals as well as post-phase A mission design. Monte has three distinct advantages over existing software. First, it is being developed in a modern paradigm: object- oriented C++ and Python. Second, the software has been developed as a toolkit, which allows users to customize their own applications and allows the development team to implement requirements quickly, efficiently, and with minimal bugs. Finally, the software is managed in accordance with the CMMI (Capability Maturity Model

  7. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Ellis; Derek Gaston; Benoit Forget; Kord Smith

    2011-07-01

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes. An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.

  8. Monte Carlo codes use in neutron therapy; Application de codes Monte Carlo en neutrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Paquis, P.; Mokhtari, F.; Karamanoukian, D. [Hopital Pasteur, 06 - Nice (France); Pignol, J.P. [Hopital du Hasenrain, 68 - Mulhouse (France); Cuendet, P. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires; Fares, G.; Hachem, A. [Faculte des Sciences, 06 - Nice (France); Iborra, N. [Centre Antoine-Lacassagne, 06 - Nice (France)

    1998-04-01

    Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)

  9. Frontiers of quantum Monte Carlo workshop: preface

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1985-01-01

    The introductory remarks, table of contents, and list of attendees are presented from the proceedings of the conference, Frontiers of Quantum Monte Carlo, which appeared in the Journal of Statistical Physics

  10. Aasta film - joonisfilm "Mont Blanc" / Verni Leivak

    Index Scriptorium Estoniae

    Leivak, Verni, 1966-

    2002-01-01

    Eesti Filmiajakirjanike Ühing andis aasta 2001 parima filmi tiitli Priit Tenderi joonisfilmile "Mont Blanc" : Eesti Joonisfilm 2001.Ka filmikriitikute eelistused kinodes ja televisioonis 2001. aastal näidatud filmide osas

  11. Anu Välba ronib Mont Blanci tippu

    Index Scriptorium Estoniae

    2008-01-01

    Teleajakirjanik esindab Eesti naisi Euroliidu liikmesmaade naiste ühisretkel, millega tähistatakse Prantsusmaa EL eesistumisaja algust ja 200 aasta möödumist esimese naise jõudmisest Mont Blanci tippu

  12. Minimum variance Monte Carlo importance sampling with parametric dependence

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Halton, J.; Maynard, C.W.

    1981-01-01

    An approach for Monte Carlo Importance Sampling with parametric dependence is proposed. It depends upon obtaining by proper weighting over a single stage the overall functional dependence of the variance on the importance function parameter over a broad range of its values. Results corresponding to minimum variance are adapted and other results rejected. Numerical calculation for the estimation of intergrals are compared to Crude Monte Carlo. Results explain the occurrences of the effective biases (even though the theoretical bias is zero) and infinite variances which arise in calculations involving severe biasing and a moderate number of historis. Extension to particle transport applications is briefly discussed. The approach constitutes an extension of a theory on the application of Monte Carlo for the calculation of functional dependences introduced by Frolov and Chentsov to biasing, or importance sample calculations; and is a generalization which avoids nonconvergence to the optimal values in some cases of a multistage method for variance reduction introduced by Spanier. (orig.) [de

  13. Benchmarking time-dependent neutron problems with Monte Carlo codes

    International Nuclear Information System (INIS)

    Couet, B.; Loomis, W.A.

    1990-01-01

    Many nuclear logging tools measure the time dependence of a neutron flux in a geological formation to infer important properties of the formation. The complex geometry of the tool and the borehole within the formation does not permit an exact deterministic modelling of the neutron flux behaviour. While this exact simulation is possible with Monte Carlo methods the computation time does not facilitate quick turnaround of results useful for design and diagnostic purposes. Nonetheless a simple model based on the diffusion-decay equation for the flux of neutrons of a single energy group can be useful in this situation. A combination approach where a Monte Carlo calculation benchmarks a deterministic model in terms of the diffusion constants of the neutrons propagating in the media and their flux depletion rates thus offers the possibility of quick calculation with assurance as to accuracy. We exemplify this approach with the Monte Carlo benchmarking of a logging tool problem, showing standoff and bedding response. (author)

  14. Multidimensional generalized-ensemble algorithms for complex systems.

    Science.gov (United States)

    Mitsutake, Ayori; Okamoto, Yuko

    2009-06-07

    We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.

  15. Monte Carlo methods beyond detailed balance

    NARCIS (Netherlands)

    Schram, Raoul D.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080

    2015-01-01

    Monte Carlo algorithms are nearly always based on the concept of detailed balance and ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We introduce a general method for designing non-detailed balance algorithms, starting from a conventional algorithm satisfying

  16. Monte Carlo simulations in theoretical physic

    International Nuclear Information System (INIS)

    Billoire, A.

    1991-01-01

    After a presentation of the MONTE CARLO method principle, the method is applied, first to the critical exponents calculations in the three dimensions ISING model, and secondly to the discrete quantum chromodynamic with calculation times in function of computer power. 28 refs., 4 tabs

  17. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    Science.gov (United States)

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  18. Development and application of the automated Monte Carlo biasing procedure in SAS4

    International Nuclear Information System (INIS)

    Tang, J.S.; Broadhead, B.L.

    1995-01-01

    An automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete-ordinates calculation are used to generate biasing parameters for a three-dimensional Monte Carlo calculation. The automated procedure consisting of cross-section processing, adjoint flux determination, biasing parameter generation, and the initiation of a MORSE-SGC/S Monte Carlo calculation has been implemented in the SAS4 module of the SCALE computer code system. (author)

  19. A Monte Carlo study on event-by-event transverse momentum fluctuation at RHIC

    International Nuclear Information System (INIS)

    Xu Mingmei

    2005-01-01

    The experimental observation on the multiplicity dependence of event-by-event transverse momentum fluctuation in relativistic heavy ion collisions is studied using Monte Carlo simulation. It is found that the Monte Carlo generator HIJING is unable to describe the experimental phenomenon well. A simple Monte Carlo model is proposed, which can recover the data and thus shed some light on the dynamical origin of the multiplicity dependence of event-by-event transverse momentum fluctuation. (authors)

  20. A Monte Carlo simulation study of associated liquid crystals

    Science.gov (United States)

    Berardi, R.; Fehervari, M.; Zannoni, C.

    We have performed a Monte Carlo simulation study of a system of ellipsoidal particles with donor-acceptor sites modelling complementary hydrogen-bonding groups in real molecules. We have considered elongated Gay-Berne particles with terminal interaction sites allowing particles to associate and form dimers. The changes in the phase transitions and in the molecular organization and the interplay between orientational ordering and dimer formation are discussed. Particle flip and dimer moves have been used to increase the convergency rate of the Monte Carlo (MC) Markov chain.