WorldWideScience

Sample records for bituminous materials

  1. Effects of bituminous layer as backfill material on mechanical behavior in tunnel model

    OpenAIRE

    Moriyoshi, Akihiro; Takano, Shin-ei; Urata, Hiroyuki; Suzuki, Tetsuya; Yoshida, Takaki

    2001-01-01

    This paper describes the effects of bituminous material as a backfill material on mechanical behavior in model tunnel in laboratory. It is known that load spreading and relaxation of bituminous material are good properties. Then if we use bituminous material as a backfill material of tunnel, the tunnel will have waterproof, good load spreading property. We used new bituminous material (Aquaphalt) which can solidify in water. We conducted relaxation test in tension for new bituminous mat...

  2. 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials

    CERN Document Server

    Partl, Manfred

    2016-01-01

    This work presents the results of RILEM TC 237-SIB (Testing and characterization of sustainable innovative bituminous materials and systems). The papers have been selected for publication after a rigorous peer review process and will be an invaluable source to outline and clarify the main directions of present and future research and standardization for bituminous materials and pavements. The following topics are covered: - Characterization of binder-aggregate interaction - Innovative testing of bituminous binders, additives and modifiers - Durability and aging of asphalt pavements - Mixture design and compaction analysis - Environmentally sustainable materials and technologies - Advances in laboratory characterization of bituminous materials - Modeling of road materials and pavement performance prediction - Field measurement and in-situ characterization - Innovative materials for reinforcement and interlayer systems - Cracking and damage characterization of asphalt pavements - Rec...

  3. Study on Plastic Coated Overburnt Brick Aggregate as an Alternative Material for Bituminous Road Construction

    OpenAIRE

    Sarkar, Dipankar; Pal, Manish; Sarkar, Ashoke K.

    2016-01-01

    There are different places in India where natural stone aggregates are not available for constructional work. Plastic coated OBBA can solve the problem of shortage of stone aggregate to some extent. The engineers are always encouraged to use locally available materials. The present investigation is carried out to evaluate the plastic coated OBBA as an alternative material for bituminous road construction. Shredded waste plastics are mixed with OBBA in different percentages as 0.38, 0.42, 0.46...

  4. Modelling the quasi-static behaviour of bituminous material using a cohesive zone model

    OpenAIRE

    Tabakovic, Amir; Karac, Aleksandar; Ivankovic, Alojz; Gibney, Amanda; McNally, Ciaran; Gilchrist, M. D.

    2010-01-01

    This paper investigates the applicability of a cohesive zone model for simulating the performance of bituminous material subjected to quasistatic loading. The Dugdale traction law was implemented within a finite volume code in order to simulate the binder course mortar material response when subjected to indirect tensile loading. A uniaxial tensile test and a threepoint bend test were employed to determine initial stress-strain curves at different test rates and the cohesive zone parameters (...

  5. A Method to Estimate the Dynamic Displacement and Stress of a Multi-layered Pavement with Bituminous or Concrete Materials

    OpenAIRE

    LU, ZHENG; Yao, Hailin; Zhang, JingBo

    2014-01-01

    In this research work, a method to estimate the dynamic characteristics of a multilayered pavement with bituminous or concrete materials is proposed. A mechanical model is established to investigate the dynamic displacement and stress of the multi-layered pavement structure. Both the flexible and the rigid pavements, corresponding to bituminous materials and concrete materials, respectively, are studied. The theoretical solutions of the multi-layered pavement structure are deduced considering...

  6. Study on Plastic Coated Overburnt Brick Aggregate as an Alternative Material for Bituminous Road Construction

    Directory of Open Access Journals (Sweden)

    Dipankar Sarkar

    2016-01-01

    Full Text Available There are different places in India where natural stone aggregates are not available for constructional work. Plastic coated OBBA can solve the problem of shortage of stone aggregate to some extent. The engineers are always encouraged to use locally available materials. The present investigation is carried out to evaluate the plastic coated OBBA as an alternative material for bituminous road construction. Shredded waste plastics are mixed with OBBA in different percentages as 0.38, 0.42, 0.46, 0.50, 0.54, and 0.60 of the weight of brick aggregates. Marshall Method of mix design is carried out to find the optimum bitumen content of such bituminous concrete mix prepared by plastic coated OBBA. Bulk density, Marshall Stability, flow, Marshall Quotient, ITS, TSR, stripping, fatigue life, and deformations have been determined accordingly. Marshall Stability value of 0.54 percent of plastic mix is comparatively higher than the other mixes except 0.60 percent of plastic mix. Test results are within the prescribed limit for 0.54 percent of plastic mix. There is a significant reduction in rutting characteristics of the same plastic mix. The fatigue life of the mix is also significantly higher. Thus plastic coated OBBA is found suitable in construction of bituminous concrete road.

  7. A Method to Estimate the Dynamic Displacement and Stress of a Multi-layered Pavement with Bituminous or Concrete Materials

    Directory of Open Access Journals (Sweden)

    Zheng LU

    2014-12-01

    Full Text Available In this research work, a method to estimate the dynamic characteristics of a multilayered pavement with bituminous or concrete materials is proposed. A mechanical model is established to investigate the dynamic displacement and stress of the multi-layered pavement structure. Both the flexible and the rigid pavements, corresponding to bituminous materials and concrete materials, respectively, are studied. The theoretical solutions of the multi-layered pavement structure are deduced considering the compatibility condition at the interface of the structural layers. By introducing FFT (Fast Fourier Transform algorithm, some numerical results are presented. Comparisons of the theoretical and experimental result implied that the proposed method is reasonable in predicting the stress and displacement of a multi-layered pavement with bituminous or concrete materials. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6071

  8. Comparative study of test methods for bituminized and other low- and medium-level solidified waste materials

    International Nuclear Information System (INIS)

    Various aspects of the behaviour of bituminized or cemented simulated low- or medium-level radioactive waste in contact with water or salt solutions have been investigated. The solubility (approximately 0.5%) and the diffusion coefficient (approximately 5.10-8 cm2/sec) determining transort of water in pure bitumen have been measured for Mexphalte 40/50 at room temperature. A weighing method has been used to study water uptake and swelling of bituminized sodium nitrate, sodium sulphate or cation-exchange resin. The swelling of samples in contact with water was in some cases very pronounced. In strong salt solutions the tendency to swell is much less. The particle size of the embedded waste material is an important parameter. Thermal pre-treatment of cation-exchange resin before bituminization does not seem to improve the quality of the final product. The interaction between bituminized-exchange resin and concrete barrier materials has been studied. Microbial degradation of bitumen and bituminized waste under aerobic conditions has been investigated. It is probably of minor importance as far as leaching is concerned. A method for measuring leaching from a plane surface of cemented waste has been developed. The method avoids the problem of cracks between the sample and the container. Leaching from cemented sodium nitrate or sulphate was investigated. Absorption of CO2 from the atmosphere was found to have only minor effect on Cs- and Na-leaching but gave a pronounced decrease in Ca-leaching. The use of silica-fume as an additive to cemented sodium nitrate decreased the leach rate by a factor 4. (author)

  9. Cold bituminous mixes

    OpenAIRE

    Delak, Boštjan

    2012-01-01

    Asphalt mix (short also asphalt) can be obtained from nature (natural asphalt) or produced technically (artificial asphalt), i. e. as a mix of bituminous binder, stone grain, and other additives that improve the asphalt properties. The beginnings of the use of asphalt can be traced from 6,000 to 4,000 BC since people back then knew some materials that contained bitumen as a binder. A more frequent use of the natural asphalt, however, starts around 3,000 BC. Different peoples used it primar...

  10. Advances in Interlaboratory Testing and Evaluation of Bituminous Materials State-of-the-Art Report of the RILEM Technical Committee 206-ATB

    CERN Document Server

    Bahia, Hussain; Canestrari, Francesco; Roche, Chantal; Benedetto, Hervé; Piber, Herald; Sybilski, Dariusz

    2013-01-01

    This STAR on asphalt materials presents the achievements of RILEM TC 206 ATB, acquired over many years of interlaboratory tests and international knowledge exchange. It covers experimental aspects of bituminous binder fatigue testing; the background on compaction methods and imaging techniques for characterizing asphalt mixtures including validation of a new imaging software; it focuses on experimental questions and analysis tools regarding mechanical wheel tracking tests, comparing results from different labs and using finite element techniques. Furthermore, long-term rutting prediction and evaluation for an Austrian road are discussed, followed by an extensive analysis and test program on interlayer bond testing of three different test sections which were specifically constructed for this purpose. Finally, the key issue of manufacturing reclaimed hot mix asphalt in the laboratory is studied and recommendations for laboratory ageing of bituminous mixtures are given.

  11. Characterization and modelling of self healing of bituminous materials towards durable asphalt pavement

    NARCIS (Netherlands)

    Qiu, J.; Van de Ven, M.F.C.; Schlangen, H.E.J.G.; Wu, S.; Molenaar, A.A.A.

    2012-01-01

    The traffic volume and the number of heavy vehicles are growing enormously nowadays. There is a need for designing a durable asphalt pavement with innovative technologies. Pavement structures and materials with self healing and self repairing capability are believed to be very useful in such a syste

  12. Temperature induced healing in strained bituminous materials observed by atomic force microscopy

    NARCIS (Netherlands)

    Nahar, S.N.; Schmets, A.J.M.; Scarpas, A.; Schitter, G.

    2013-01-01

    Bitumen is the binder in the composite material named asphalt concrete. Under cyclic mechanical loading of traffic passing over the pavement, eventually damage will initiate in the pavement, leading to eventual structural failure. This damaging process is accelerated by time dependent change of the

  13. Computational micromechanical analysis of the representative volume element of bituminous composite materials

    Science.gov (United States)

    Ozer, Hasan; Ghauch, Ziad G.; Dhasmana, Heena; Al-Qadi, Imad L.

    2016-08-01

    Micromechanical computational modeling is used in this study to determine the smallest domain, or Representative Volume Element (RVE), that can be used to characterize the effective properties of composite materials such as Asphalt Concrete (AC). Computational Finite Element (FE) micromechanical modeling was coupled with digital image analysis of surface scans of AC specimens. Three mixtures with varying Nominal Maximum Aggregate Size (NMAS) of 4.75 mm, 12.5 mm, and 25 mm, were prepared for digital image analysis and computational micromechanical modeling. The effects of window size and phase modulus mismatch on the apparent viscoelastic response of the composite were numerically examined. A good agreement was observed in the RVE size predictions based on micromechanical computational modeling and image analysis. Micromechanical results indicated that a degradation in the matrix stiffness increases the corresponding RVE size. Statistical homogeneity was observed for window sizes equal to two to three times the NMAS. A model was presented for relating the degree of statistical homogeneity associated with each window size for materials with varying inclusion dimensions.

  14. Effect of asphaltene and resin oils on the viscosity of bituminous petroleum materials to be used as asphalt primers

    Directory of Open Access Journals (Sweden)

    Bencomo, M. R.

    2006-03-01

    Full Text Available The bituminous crude from the Machete, Venezuela, area, which has such a fluid consistency that it falls outside the normal scope of the A5TM D-5 (1 penetration test exceeding the 3D-mm ceiling specified in that standard and can be used as an asphalt primer: Like other asphalt products, these materials are -chemically speaking- a mix of numerous naphthenic, paraffinic and aromatic hydrocarbons and heterocyclic compounds containing sulphur, nitrogen, oxygen and so on. They have a dense and a malthene oil phase which, along with the natural hydrocarbons additives used in these products acts as a volatile fluidizer. The former is described as a mix of asphaltenes: complex high molecular weight substances that are insoluble in paraffinic hydrocarbons and soluble in aromatic compounds such as benzene. The malthene oil phase, in turn, consists in a mix of resins and hydrocarbons and together the two constitute a colloidal system. The experiments discussed in the present paper were conducted to determine the effect of the proportion of asphaltenes and resin oils on the viscosity of such bituminous crude emulsions/ with a view to their use as primers. These experiments were run in a Parr batch reactor in a nitrogen atmosphere using n-heptane as a solvent. The resins were separated after the asphaltenes precipitated from the samples and subsequently from the malthene fraction obtained. The results showed that the asphaltenes account for the structural characteristics and consistency of the medium and the resin oils for its cohesive properties/,the malthene oils act as solvents.Los crudos extrapesados procedentes del área Machete (Venezuela son materiales de consistencia blanda o fluida, por lo que se salen del campo en el que normalmente se aplica el ensayo de penetración a productos asfálticos según el método ASTM D-5 (1, cuyo límite máximo es 30 mm, y pueden ser utilizados como pinturas asfálticas de imprimación. Al igual que otros productos

  15. Bituminization plant Jaslovske Bohunice

    International Nuclear Information System (INIS)

    In this leaflet the principle of the bituminization plant for radioactive concentrate (the intermediate liquid radioactive waste generated during the NPP A1, V-1, V-2 operations) solidification used in the Bohunice Radwaste Treatment Centre (BSC RAO) is presented

  16. Bituminous and asphaltic membranes for radioactive waste repositories on land

    International Nuclear Information System (INIS)

    The aim of the study has been to identify, within generic designs for waste facilities, areas where bituminous materials might be incorporated as a barrier. The report is presented in three sections: Part I - The properties of bitumen are described, with particular reference to the long-term behaviour of the material. The durability of bitumen is discussed, including aspects such as ageing, microbial degradation, chemical resistance and radiation resistance. Part II -The use of bituminous materials in hydraulic engineering is outlined. Much of this section of the report concentrates on the use of bituminous materials in embankment dams and reservoir construction. A review of material technology and construction techniques is presented and a detailed assessment made of the performance of the materials in service. Part III - Generic trench type radioactive waste repository designs incorporating bituminous materials are presented. Material and construction specifications for the designs are detailed, and a performance assessment presented. (author)

  17. Crumb Rubber in cold recycled bituminous mixes

    DEFF Research Database (Denmark)

    Dondi, Giulio; Tataranni, Piergiorgio; Pettinari, Matteo;

    2014-01-01

    Today recycling is one of the most innovative and interesting techniques for the rehabilitation of destressed road pavements. In recent years the increased interest in this process, has led to the development of various alternative methods for the recovery and the reuse of road bituminous materials....... Cold recycling is, among the recycling techniques, certainly the most studied and developed: it allows the recovering of bituminous material from an existing pavement without the addition of heat, whilst ensuring the creation of high quality bound base layers. A wide range of materials have been tested...... together with Reclaimed Asphalt Pavement (RAP) and, consequently, there is a large number of variables that can be considered in the mix-design process of new eco-friendly Cold Recycled Mixes. In particular, the present research involves the use of Crumb Rubber within a mixture containing 100% Reclaimed...

  18. Development of non-standard equipment of bituminization line

    International Nuclear Information System (INIS)

    A brief description is presented of some components of the bituminization line developed at the Research Institute of Chemical Installations in Brno. The film rotor evaporator has an evaporation area of 2 m2. The mixing tank is the main technological assembly for processing loose materials, i.e., sorbents and fly ash which it mixes with melted bitumen. The screw conveyor with a three-way valve is designed for batching the dried radioactive sorbent and fly ash into mixing tanks. Attention is also devoted to certain systems of measurement and control of the bituminization line, namely to measurement of the level of the bituminization product, the flow rate of bituminization emulsion and the water-sorbent mixture and to the diagnostics of failure and accident conditions of the film rotor evaporator. (Z.M.)

  19. Reuse of steel slag in bituminous paving mixtures.

    Science.gov (United States)

    Sorlini, Sabrina; Sanzeni, Alex; Rondi, Luca

    2012-03-30

    This paper presents a comprehensive study to evaluate the mechanical properties and environmental suitability of electric arc furnace (EAF) steel slag in bituminous paving mixtures. A variety of tests were executed on samples of EAF slag to characterize the physical, geometrical, mechanical and chemical properties as required by UNI EN specifications, focusing additionally on the volumetric expansion associated with hydration of free CaO and MgO. Five bituminous mixtures of aggregates for flexible road pavement were designed containing up to 40% of EAF slag and were tested to determine Marshall stability and indirect tensile strength. The leaching behaviour of slag samples and bituminous mixtures was evaluated according to the UNI EN leaching test. The tested slag showed satisfactory physical and mechanical properties and a release of pollutants generally below the limits set by the Italian code. Tests on volume stability of fresh materials confirmed that a period of 2-3 months is necessary to reduce effects of oxides hydration. The results of tests performed on bituminous mixtures with EAF slag were comparable with the performance of mixtures containing natural aggregates and the leaching tests provided satisfactory results. PMID:22305201

  20. Response Modelling of Bitumen, Bituminous Mastic and Mortar

    NARCIS (Netherlands)

    Woldekidan, M.F.

    2011-01-01

    This research focuses on testing and modelling the viscoelastic response of bituminous binders. The main goal is to find an appropriate response model for bituminous binders. The desired model should allow implementation into numerical environments such as ABAQUS. On the basis of such numerical envi

  1. Skid resistance of bituminous surfaces in Ohio

    Science.gov (United States)

    Colony, D. C.

    1984-03-01

    Statistical studies of skid number (SN) on the state highway system in Ohio reveal apparently systematic variations in distributions of SN among the twelve districts in the state. These variations appear to be significantly related to traffic and to geological characteristics of a given district. Regression calculations using traffic index, a function of ADT and age of the pavement surface in months, show a high correlation with SN, although standard errors of estimate were too large to make the equations useful for predicting SN from traffic variables. Similar results were obtained by elating SN to physiographic features in the state. Pavement surface type (bituminous or pcc) and coarse aggregate type (limestone, gravel or slag) are significantly related to SN.

  2. Radon concentration measurements in bituminous coal mines

    International Nuclear Information System (INIS)

    Radon measurements were carried out in Kozlu, Karadon and Uezuelmez underground coal mines of Zonguldak bituminous coal basin in Turkey. Passive-time integrating method, which is the most widely used technique for the measurement of radon concentration in air, was applied by using nuclear etched track detectors (CR-39) in the study area. The radon concentration measurements were performed on a total of 42 points in those three mines. The annual exposure, the annual effective dose and lifetime fatality risk, which are the important parameters for the health of workers, were estimated based on chronic occupational exposure to the radon gas, which is calculated using UNCEAR-2000 and ICRP-65 models. The radon concentrations at several coal production faces are higher than the action level of 1000 Bq m-3. It is suggested that the ventilation rates should be rearranged to reduce the radon concentration. (authors)

  3. Radon concentration measurements in bituminous coal mines.

    Science.gov (United States)

    Fisne, Abdullah; Okten, Gündüz; Celebi, Nilgün

    2005-01-01

    Radon measurements were carried out in Kozlu, Karadon and Uzülmez underground coal mines of Zonguldak bituminous coal basin in Turkey. Passive-time integrating method, which is the most widely used technique for the measurement of radon concentration in air, was applied by using nuclear etched track detectors (CR-39) in the study area. The radon concentration measurements were performed on a total of 42 points in those three mines. The annual exposure, the annual effective dose and lifetime fatality risk, which are the important parameters for the health of workers, were estimated based on chronic occupational exposure to the radon gas, which is calculated using UNCEAR-2000 and ICRP-65 models. The radon concentrations at several coal production faces are higher than the action level of 1000 Bq m(-3). It is suggested that the ventilation rates should be rearranged to reduce the radon concentration.

  4. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    This study is a survey of the factors of importance for long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are ralated to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product. (author)

  5. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    This study is a survey of the factors of importance for the long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are related to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product

  6. EXPERIMENTAL STUDY ON HORIZONTAL COMBUSTION TECHNIQUE FOR BITUMINOUS COAL BRIQUET

    Institute of Scientific and Technical Information of China (English)

    路春美; 程世庆; 邵延玲; 张晔

    1997-01-01

    Through a lot of experiments, a new kind of stove using horizontal combustion technique for bituminous coal briquet has been developed. Making use of this stove, studies have been made on burning process of bituminous coal briquet, distribution of temperature field in the stove, the regularities of evolution and combustion of volatile matter, the burning rate and efficiency of bituminous coal briquet, characteristics of fire-sealing and sulfur-retention. The results show that, with the technique, some achievements can be obtained in combustion of bituminous coal briquet, such as lower pollution that the flue gas black degree is below 0.5R and dust concentration is below 90mg/m3 . The stove's combustion efficiency reaches 90%, sulfur fixing efficiency is 60%, and CO concentration is decreased by 40% compared with other traditional stoves. With so many advantages, the stove can be used extensively in civil stoves and smaller industrial boilers.

  7. The bituminous sands : a Canadian mirage?

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, D.R. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees; Nasr, G.J. [Lebanese Univ., Roumieh (Lebanon). Faculty of Engineering; Turcotte, S.F. [Quebec Univ., Montreal, PQ (Canada). Centre d' Etudes Internationales et Mondialisation; Salah, N.B. [Ecole Superieure des Sciences et Techniques De Tunis, Tunis (Tunisia). LMMP

    2009-07-01

    This paper examined the controversy about the potential role of a significant increase in Canadian oil sands production in order to bridge the upcoming gap between the world's increasing energy demand and the total recoverable oil supply. The paper presented the actual potential of different scenarios and considered the prediction cost forecasts. A brief overview of environmental impacts and the real return on investments were also provided. Environmental impacts that were considered included land degradation; water contamination; ecosystem damage; and air pollution. Nuclear energy was also presented as a possible solution. The paper demonstrated that even in a very optimistic scenario, Canada's oil sands accelerated production has a negligible effect on the aforementioned gap, has a considerable impact on environment that has yet to be accounted for. Energy ratios that were presented included energy return on energy investment; energy available on energy used; and energy payback. It was concluded that enhanced recovery techniques are clearly needed for future sustainable exploitation of these bituminous sands. 32 refs., 1 fig.

  8. The microstructure of petroleum vacuum residue films for bituminous concrete: a microscopy approach.

    Science.gov (United States)

    Sourty, E D; Tamminga, A Y; Michels, M A J; Vellinga, W-P; Meijer, H E H

    2011-02-01

    Selected carbon-rich refinery residues ('binders') mixed with mineral particles can form composite materials ('bituminous concrete') with bulk mechanical properties comparable to those of cement concrete. The microstructural mechanism underlying the remarkable composite properties has been related to the appearance of a rigid percolating network consisting of asphaltenes and mineral particles [Wilbrink M. et al. (2005) Rigidity percolation in dispersions with a structured visco-elastic matrix. Phys. Rev. E71, 031402]. In this paper, we explore the microstructure of thin binder films of varying thickness with a number of microscopic characterization techniques, and attempt to relate the observed microstructure to the distinctive mechanical behaviour. Two binders, only one of which has been proven to be suitable for bituminous concrete were investigated, and their microstructure compared. Both binders show the formation of asphaltene aggregates. The binder suitable for bituminous concrete is distinguished by the fact that the asphaltenes show a stronger tendency towards such aggregation, due to a higher concentration and less stabilization in the maltene phase. They also show a clear affinity to other species (such as waxes) and may act as nucleation sites for crystals and aggregates of those species. PMID:21118207

  9. Bituminization of low- and intermediate-level radioactive concentrates

    International Nuclear Information System (INIS)

    The results and experiences are summed up from the research and development of the technology of bituminization of low- and intermediate-level radioactive concentrates generated in the operation of nuclear power plants with WWER-440 reactors. The experiments took place on a pilot plant bituminization line with various model solutions at an evaporator capacity of 70, 100 and 140 litres per hour. The composition of the solutions changed in dependence on the knowledge of the composition of actual concentrates in the V-1 nuclear power plant at Jaslovske Bohunice. The following factors were studied in the concentrate: the effect of its pH, its borate content and content of metal carbonates, the content of organic acid salts, the content of detergents, etc., on the process of bituminization. Physico-chemical conditions are described under which the operation of the evaporator was fail-safe and filling of the bituminization product with salts homogeneous. A low water content of up to 1% was achieved. The properties of the bituminization product were negatively affected by a high level of heavy metal oxides, surfactants, oxalates and citrates. In order to improve the properties of the product it will be necessary to replace bitumen emulsion Silembit-60 used as reinforcement matrix, by a different type of bitumen. (Z.M.)

  10. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  11. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    Science.gov (United States)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-08-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  12. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    Science.gov (United States)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-04-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  13. Measurement of heat generation from simulated bituminized product

    International Nuclear Information System (INIS)

    The fire and explosion incident occurred at Bituminization Demonstration Facility of PNC Tokai Works on March 11, 1997. In order to ascertain the cause of incident, the investigation has been pushed forward. For the investigation, we prepared simulated bituminized product of measurement of heat generation in low temperature region less than 200degC. We used calvet Calorimeter MS80 for the heat generation measurement. Result of measurement, we were able to catch the feeble heat generation from bituminized product. The maximum calorific value that was able to detect it in isothermal measurement was approximately 1 mW/g in 160degC. It was approximately 2 mW/g in 200degC. And, as the another measurement, the measurement condition went heat rate by 0.01degC/minute, the highest temperature 190degC. As a result, the maximum generation of heat value that was able to detect it was approximately 0.5 mW/g. I changed simulated bituminized products and measured these. A difference of condition is salt particle size, salt content rate (45%, 60%), addition of the simulated precipitate. But there was not a difference in the generation of heat characteristic detected. (author)

  14. 30 CFR 716.4 - Special bituminous coal mines.

    Science.gov (United States)

    2010-07-01

    ... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines... may be used if necessary to prevent erosion. (3) Spoil piles will be graded and contoured with no more... of an amendment or revision to the State of Wyoming's regulatory program, regulations, or...

  15. Amenability of Muzret bituminous coal to oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Sahinoglu, E.; Uslu, T. [Karadeniz Technical University, Department of Mining Engineering, 61080 Trabzon (Turkey)

    2008-12-15

    Laboratory scale agglomeration tests were undertaken to investigate the amenability of Muzret (Yusufeli-Artvin) bituminous coal to oil agglomeration. Kerosene was extensively used as oil in the tests. In addition, fuel oil, diesel oil, and hazelnut oil were also used in order to determine the effect of oil type. The effects of the parameters including coal content, kerosene content, agglomeration time, coal particle size, pH, oil type, and agitation rate, on the combustible matter recovery, ash reduction and pyritic sulphur reduction, were investigated. It was found that Muzret bituminous coal could be readily cleaned by oil agglomeration with substantial reductions in ash and pyritic sulphur content. Maximum combustible matter recovery, ash reduction and pyritic sulphur reduction were achieved to be 85.54%, 59.98%, and 85.17%, respectively. (author)

  16. Performance of PAHs emission from bituminous coal combustion

    Institute of Scientific and Technical Information of China (English)

    严建华; 尤孝方; 李晓东; 倪明江; 尹雪峰; 岑可法

    2004-01-01

    Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.

  17. Utilization of Waste Clay from Boron Production in Bituminous Geosynthetic Barrier (GBR-B Production as Landfill Liner

    Directory of Open Access Journals (Sweden)

    Müfide Banar

    2016-01-01

    Full Text Available Bituminous geomembranes, one type of geosynthetics, include a hot bituminous mixture with mineral filler and reinforcement. In this study, boron production waste clay (CW was used as filler to produce a geosynthetic barrier with bentonite, waste tire, and bitumen. Bentonite and waste tires were used as auxiliary fillers and bitumen as the binder. CW/bitumen, CW/bentonite/bitumen, and CW/waste tire/bitumen mixtures were prepared by using a laboratory mixer at 100°C. Hot mixtures were extruded into strips by using a lab-scale corotating twin screw extruder (L/D: 40 followed by die casting (2 mm × 100 mm. Glass fleece or nonwoven polyester was used as reinforcement material and while die casting, both sides of the reinforcement materials were covered with bituminous mixture. Thickness, mass per unit area, tensile strength, elongation at yield, and hydraulic conductivity were used to characterize the geomembranes. Among all geomembranes, nonwoven polyester covered with 30% bitumen-70% boron waste clay mixture (PK-BTM30CW70 was found to be the most promising in terms of structure and mechanical behaviour. After that, consequences of its exposure to distilled water (DW, municipal solid waste landfill leachate (L-MSW, and hazardous waste landfill leachate (L-HW were examined to use for an innovative impermeable liner on solid waste landfills.

  18. Identification of aggregates for Tennessee bituminous surface courses

    Science.gov (United States)

    Sauter, Heather Jean

    Tennessee road construction is a major venue for federal and state spending. Tax dollars each year go to the maintenance and construction of roads. One aspect of highway construction that affects the public is the safety of its state roads. There are many factors that affect the safety of a given road. One factor that was focused on in this research was the polish resistance capabilities of aggregates. Several pre-evaluation methods have been used in the laboratory to predict what will happen in a field situation. A new pre-evaluation method was invented that utilized AASHTO T 304 procedure upscaled to accommodate surface bituminous aggregates. This new method, called the Tennessee Terminal Textural Condition Method (T3CM), was approved by Tennessee Department of Transportation to be used as a pre-evaluation method on bituminous surface courses. It was proven to be operator insensitive, repeatable, and an accurate indication of particle shape and texture. Further research was needed to correlate pre-evaluation methods to the current field method, ASTM E 274-85 Locked Wheel Skid Trailer. In this research, twenty-five in-place bituminous projects and eight source evaluations were investigated. The information gathered would further validate the T3CM and find the pre-evaluation method that best predicted the field method. In addition, new sources of aggregates for bituminous surface courses were revealed. The results of this research have shown T3CM to be highly repeatable with an overall coefficient of variation of 0.26% for an eight sample repeatability test. It was the best correlated pre-evaluation method with the locked wheel skid trailer method giving an R2 value of 0.3946 and a Pearson coefficient of 0.710. Being able to predict field performance of aggregates prior to construction is a powerful tool capable of saving time, money, labor, and possibly lives.

  19. Deformation Properties and Fatigue of Bituminous Mixtures

    Directory of Open Access Journals (Sweden)

    Frantisek Schlosser

    2013-01-01

    Full Text Available Deformation properties and fatigue performance are important characteristics of asphalt bound materials which are used for construction of pavement layers. Viscoelastic asphalt mixtures are better characterized via dynamic tests. This type of tests allows us to collate materials with regard to axle vibrations which lie usually in the range of 6 Hz–25 Hz for standard conditions. Asphalt modified for heat sensitivity in the range from −20°C to +60°C has significant impact on the overall characteristics of the mixture. Deformation properties are used as inputs for empirical mixture design, and fatigue performance of asphalt mixtures reflects the parameters of functional tests. Master curves convey properties of asphalt mixtures for various conditions and allow us to evaluate them without the need of time expensive testing.

  20. Mechanical properties of hot bituminous mixes manufactured with recycled aggregate of Silestone® waste

    Directory of Open Access Journals (Sweden)

    Rubio, M. C.

    2011-03-01

    Full Text Available This article presents the results of a research project which analyzes the viability of incorporating waste material from decorative quartz solid surfacing in the manufacture of hot bituminous mixes. For this purpose, various bituminous mixes were manufactured with waste aggregate in different percentage. A set of tests were carried out that permitted the characterization of the mechanical behavior of these mixes. The results of these tests were similar to the results obtained when conventional mixes made from virgin quarry aggregate were tested. The results for moisture sensitivity as well as for wheel track rutting on mixes showed the optimal performance of this waste material even under very demanding traffic conditions. Laboratory studies showed that the use of this waste material in the manufacture of bituminous mixes is technically viable and can provide high-quality recycled aggregates at a very low cost, which can be used in the pavement of road.

    Este artículo muestra los resultados de un proyecto de investigación que tiene por objeto analizar la viabilidad de incorporación de residuos procedentes de piedra decorativa en la fabricación de mezclas bituminosas en caliente. Para ello se fabricaron mezclas con áridos reciclados de residuos procedentes de piedra decorativa en distintos porcentajes, realizando un conjunto de ensayos que posibilitaron caracterizar el comportamiento mecánico de dichas mezclas. Los resultados obtenidos fueron similares a los de las mezclas convencionales fabricadas con áridos vírgenes procedentes de cantera. Los valores de resistencia conservada ante la acción del agua y deformación en pista, pusieron de manifiesto la aptitud del residuo incluso ante las condiciones de tráfico más exigentes. Los trabajos realizados en el laboratorio indican que la utilización del residuo en la fabricación de mezclas bituminosas es técnicamente viable, pudiendo obtenerse áridos reciclados de gran calidad y

  1. Sorption of aqueous phosphorus onto bituminous and lignitous coal ashes

    Energy Technology Data Exchange (ETDEWEB)

    Yan Jinying; Kirk, Donald W. [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Jia, Charles Q. [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)], E-mail: cqjia@chem-eng.toronto.edu; Liu Xinan [College of Chemical Engineering, Chongqing University, Chongqing (China)

    2007-09-05

    Aiming at the development of a phosphorus removal technology for waste water, phosphate (PO{sub 4}{sup 3-}) retention behavior of bituminous and lignitous coal ashes was investigated using a batch reactor. Ash samples, including fresh and weathered fly and bottom ashes, were studied for their sorption isotherms and reversibility. Fly ashes had a much higher phosphate retention capacity (4000-30,000 mg P/kg) than bottom ashes (15-600 mg P/kg). Lignitous coal ashes were more capable of retaining phosphate than bituminous coal ashes. The retention process was largely irreversible, and the irreversibility increased with the increase in the retention capacity. Weathering enlarged the retention capacity of the bituminous bottom ash, but substantially lowered that of the fly ash, likely due to the difference in the weather-induced changes between the fly and bottom ashes. Sorption isotherms of fly ashes were found to be adequately represented by the Langmuir model while those of bottom ashes fitted better to the Freundlich model. Concentrations of Ca{sup 2+} and PO{sub 4}{sup 3-} in the aqueous phase were measured at the end of sorption and desorption experiments, and were compared with solubilities of three calcium phosphate minerals. The aqueous solutions were saturated or super-saturated with respect to tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) and hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}OH), and slightly under-saturated with respect to amorphous calcium phosphate. It is concluded that precipitation of calcium phosphate is the predominant mechanism for phosphate retention by coal ash under the conditions studied. There is a strong and positive correlation between alkalinity and phosphate sorption capacity. Consequently, acid neutralization capacity (ANC) can be used as an indicator of phosphate sorption capacity of coal ashes.

  2. Osmosis-induced swelling of Eurobitum bituminized radioactive waste in constant total stress conditions

    Science.gov (United States)

    Valcke, E.; Marien, A.; Smets, S.; Li, X.; Mokni, N.; Olivella, S.; Sillen, X.

    2010-11-01

    -confined conditions the swelling of the bituminized waste, and its evolution with time, is the result of several transient processes (salts dissolution, diffusion of salts and water, advection, creep, involving a low permeability material with evolving thickness and properties) that moreover are non-linear and strongly coupled.

  3. Using proximate analysis to characterize airborne dust generation from bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A. [NIOSH, Pittsburgh, PA (United States). Pittsburgh Research Lab.

    2002-06-01

    Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals to investigate the various factors influencing airborne respirable dust generation. Bituminous coal samples from 8 mines (5 U.S. and 3 Polish) were uniformly prepared and processed through a double roll crusher located in a low air velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific quantity of airborne respirable dust generated. A combination of factors is associated with the generation of airborne respirable dust. One factor involved is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics. However, since coals of high moist fuel ratio (high rank) are generally more extensively cleated, it is suggested that the degree of cleating is directly responsible for the quantity of respirable-sized particles produced in the crushed product material for eastern U.S. coals. This is implied by the relationship of ash content and at least one mineral constituent (pyrite, determined from pyritic sulfur analysis) to the percentage of airborne respirable dust. A clear delineation of coals, based on well-known proximate analysis characteristics, that generate the most respirable dust appears to be possible. It was also shown that the dust-generating characteristics of coals could be reasonably described by both the moist fuel ratio and the Hardgrove Grindability Index (HGI). These results show a clear distinction between eastern and western U.S. coals. However, no consistent distinction for Polish coal was observed.

  4. Uraniferous lignites and bituminous clays of the Serres Basin. Pt. A

    International Nuclear Information System (INIS)

    The lignites of the southern area (Christos-Vissiani-Lefkes-Perdikari) and the bituminous clay silts of the northern area (Maramena, Ano Metohi, Chrysopigi) are the main uraniferous beds in the Serres Basin. The sediments of the basin (Upper Miocene to recent) have been stratigraphically divided into three informal unities: the Lefkon, Georgios and Spilia formations. The uraniferous lignites pertaining to the Lefkon limnic-fluvial formation are developed into two discrete horizons, the upper Double Seam and the lower Main Seam. The bituminous clays are of the same age with the lignites, those of Maramena being, however, younger, equivalent to the marine and brackish Georgios formation. The continuity, thickness and dip of the strata reveal considerable regional changes resulting from the intense tectonism of the basin. Further to the surface works the upper lignites have been reached through small excavations and also about 100 boreholes totalling 10,000 m have been drilled. The composition of the organic constituents and the calorific value show a dull transitional to shiny hard lignite with ash rich in pyrite and sulphur. There have been no discrete U minerals detected, while the electron microprobe analysis showed that the uranium is uniformly disseminated into the lignite mass, mainly absorbed through its humic acids. More than 75% of the uranium is extractable, the control of its combustion conditions being, however, a major problem. The potential reserves have been up to date estimated to be of over 4,000 tons (uranium metal), this figure resulting mainly from data evaluated from the borehole γ-ray logs using the computer programmes LOGFILE and LOGPLOT developed at the Radioactive Raw Materials Dept. of the Greek AEC. (author)

  5. Study of thermal reactivity during bituminization of radioactive waste

    International Nuclear Information System (INIS)

    This work deals with the study of chemical reactions and phases transitions which can occur between magnesium nitrate, sodium nitrate, cobalt sulphur product, and nickel potassium ferrocyanide, when they are heated together during bituminization process of nuclear waste. The applied methodology associates a few techniques: temperature, enthalpy, and kinetics of reaction are determined by calorimetry, reaction products are characterised by chemical analyses, mass spectrometry and XRD analysis. Three fields of temperature and energy are observed in function of composition (one compound or a mixture of compounds). The study of reactions between NaNO3 and cobalt sulphur product shows that the presence of water has got an effect on reaction temperature. The study of Mg(NO3)2, 6 H2O and CoS shows an overlapping of different signals, and that the reaction rate is very slow (a few hours). (author)

  6. Leaching tests of simulated Cogema bituminized waste form

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S.; Akimoto, T.; Iida, Y.; Nagano, T. [Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-07-01

    The leaching behavior of COGEMA-type bituminized radioactive waste was studied for the atmospheric and anaerobic conditions. Active and inactive laboratory-scale bitumen samples, including two major salts of NaNO{sub 3} and BaSO{sub 4}, were contacted with deionized water, an alkaline solution (0.01 mol/L Ca(OH){sub 2} or 0.03 mol/L KOH), or a saline solution (0.5 mol/L KCl). It was found that the release of salt was reduced in the Ca(OH){sub 2} solution compared with deionized water under the atmospheric conditions. No significant difference in the concentrations of {sup 237}Np in leachants contacted with the samples for 7 days was observed between the atmospheric and the anaerobic conditions. (authors)

  7. Steam and air plasma gasification of bituminous coal and petrocoke

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available This paper presents a numerical analysis and experimental investigation of two very different solid fuels, low-rank bituminous coal of 40 % ash content and petrocoke of 3 % ash content, gasification under steam and air plasma conditions with an aim of producing synthesis gas. Numerical analysis was fulfilled using the software package TERRA for equilibrium computation. Using the results of the numerical simulation, experiments on plasma steam gasification of the petrocoke and air and steam gasification of the coal were conducted in an original installation. Nominal power of the plasma installation is 100 kWe and sum consumption of the reagents is up to 20 kg/h. High quality synthesis gas was produced in the experiments on solid fuels plasma gasification. It has been found that the synthesis gas content at about 97.4 vol.% can be produced. Comparison between the numerical and experimental results showed satisfactory agreement. 

  8. Investigation of the combustion characteristics of Zonguldak bituminous coal using DTA and DTG

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.; Okutan, H. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

    2006-06-21

    Combustion characteristics of coking, semicoking, and noncoking Turkish bituminous coal samples from Zonguldak basin were investigated applying differential thermal analysis (DTA) and differential thermogravimetry (DTG) techniques. Results were compared with that of the coke from Zonguldak bituminous coal, a Turkish lignite sample from Soma, and a Siberian bituminous coal sample. The thermal data from both techniques showed some differences depending on the proximate analyses of the samples. Noncombustible components of the volatile matter led to important changes in thermal behavior. The data front both methods were, evaluated jointly, and some thermal properties were interpreted considering these methods in a complementary combination.

  9. Effect of Cement on Properties of Over-Burnt Brick Bituminous Concrete Mixes

    Science.gov (United States)

    Sarkar, Dipankar; Pal, Manish

    2016-06-01

    The present investigation is carried out to propose the use of cement coated over burnt brick aggregate in the preparation of bituminous concrete mix. The effect of cement on various mechanical properties such as Marshall stability, flow, Marshall quotient (stability to flow ratio), indirect tensile strength, stripping, rutting and fatigue life of bituminous concrete overlay has been evaluated. In this study, different cement percentages such as 2, 3, 4 and 5 % by weight of aggregate have been mixed with Over Burnt Brick Aggregate (OBBA). The laboratory results indicate that bituminous concrete prepared by 4 % cement coated OBBA gives the highest Marshall stability. The bituminous concrete mix with 4 % cement shows considerable improvement in various mechanical properties of the mix compared to the plain OBBA concrete mix.

  10. State of the art report on bituminized waste forms of radioactive wastes

    International Nuclear Information System (INIS)

    In this report, research and development results on the bituminization of radioactive wastes are closely reviewed, especially those regarding waste treatment technologies, waste solidifying procedures and the characteristics of asphalt and solidified forms. A new concept of the bituminization method is suggested in this report which can improve the characteristics of solidified forms. Stable solid forms with high leach resistance, high thermal resistance and good compression strength were produced by the suggested bituminization method, in which spent polyethylene from agricultural farms was added. This report can help further research and development of improved bituminized forms of radioactive wastes that will maintain long term stabilities in disposal sites. (author). 59 refs., 19 tabs., 18 figs

  11. State of the art report on bituminized waste forms of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Kook; Shon, Jong Sik; Kim, Kil Jeong; Lee, Kang Moo; Jung, In Ha

    1998-03-01

    In this report, research and development results on the bituminization of radioactive wastes are closely reviewed, especially those regarding waste treatment technologies, waste solidifying procedures and the characteristics of asphalt and solidified forms. A new concept of the bituminization method is suggested in this report which can improve the characteristics of solidified forms. Stable solid forms with high leach resistance, high thermal resistance and good compression strength were produced by the suggested bituminization method, in which spent polyethylene from agricultural farms was added. This report can help further research and development of improved bituminized forms of radioactive wastes that will maintain long term stabilities in disposal sites. (author). 59 refs., 19 tabs., 18 figs

  12. Natural gas storage with activated carbon from a bituminous coal

    Science.gov (United States)

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  13. Gasification of high ash, high ash fusion temperature bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  14. The hydrogasification of lignite and sub-bituminous coals

    Science.gov (United States)

    Bhatt, B.; Fallon, P. T.; Steinberg, M.

    1981-02-01

    A North Dakota lignite and a New Mexico sub-bituminous coal have been hydrogenated at up to 900°C and 2500 psi hydrogen pressure. Yields of gaseous hydrocarbons and aromatic liquids have been studied as a function of temperature, pressure, residence time, feed rates and H2/coal ratio. Coal feed rates in excess of 10 lb/hr have been achieved in the 1 in. I. D.×8 ft reactor and methane concentration as high as 55% have been observed. A four-step reaction model was developed for the production and decomposition of the hydrocarbon products. A single object function formulated from the weighted errors for the four dependent process, variables, CH4, C2H6, BTX, and oil yields, was minimized using a program containing three independent iterative techniques. The results of the nonlinear regression analysis for lignite show that a first-order chemical reaction model with respect to C conversion satisfactorily describes the dilute phase hydrogenation. The activation energy for the initial products formation was estimated to be 42,700 cal/gmole and the power of hydrogen partial pressure was found to be +0.14. The overall correlation coefficient was 0.83. The mechanism, the rate expressions, and the design curves developed can be used for scale-up and reactor design.

  15. Bituminous reference document: synthesis of knowledge on the long time behavior of bituminous packages; Dossier de reference bitume: synthese des connaissances sur le comportement a long terme des colis bitumes

    Energy Technology Data Exchange (ETDEWEB)

    Sercombe, J.; Adenot, F.; Vistoli, P.P.; Parraud, S.; Riglet-Martial, C.; Gwinner, B.; Felines, I.; Tiffreau, C.; Libert, M

    2004-07-01

    This document is a synthesis of the knowledge acquired at the CEA on the behavior of bituminous packages. In this framework, the CEA studied bituminous packages in generic conditions of a package lifetime. The main factors, the evolution mechanisms and influential parameters have been determined and quantitative s simulation have been developed. After a description of the main initial bituminous packages characterizations, the evolutions in saturated and un-saturated environment are exposed. (A.L.B.)

  16. Effect of thickness variation of bituminous layer in the structural responses of flexible pavements

    Directory of Open Access Journals (Sweden)

    Juliana Pavan Vidotto

    2014-05-01

    Full Text Available In this work, a sensitivity analysis was performed to investigate the effect of thickness variation of bituminous layer in the structural responses of flexible pavements and, therefore in performance. For this, it used traffic data from a weigh station located at Km 28 of the Immigrants Highway, at state of Sao Paulo, whose data collection was realized in 2008. The loads deriving from traffic were applied to the computational program ELSYM5 to obtain structural responses related to damage such as fatigue cracks and rutting. With these values, the damage factors were calculated and then the sensitivity analysis related to the thickness variation of bituminous layer was performed. Through the obtained results was concluded that the variation of thickness of bituminous layer have an influence on structural responses, and that damage factors related to fatigue cracks were more sensitive than those factors related to rutting.

  17. Global market trade policy analysis for petroleum oils and oils obtained from bituminous minerals, crude

    Directory of Open Access Journals (Sweden)

    Bagheri, F.

    2012-01-01

    Full Text Available This article is based on surveying the custom tariffs imposed on the world export market of Petroleum Oils and Oils Obtained from Bituminous Minerals, Crude. We obtained the data according to the most updated available data provided online by UNCTAD and World Bank. The results indicate that none of the 142 countries in the world market of this product have imposed non-tariff trade barriers on the import of Petroleum Oils and Oils Obtained from Bituminous Minerals, Crude. The developed countries and the countries with transition economies are the main world import partners. European Union, United States, China, Japan, South Korea, Canada, Singapore, Taiwan, Thailand, South Africa, Australia, Turkey, Brazil, Sweden and Belarus are the examples and have imposed low custom tariffs on Petroleum Oils and Oils Obtained from Bituminous Minerals, Crude.

  18. Safety assessment for the bituminization facility of the medium-level waste

    International Nuclear Information System (INIS)

    The safety assessment for the home-made bituminization facility of the medium-level waste during hot test is made. The average external dose equivalent per month is 0.136 x 10-2 Sv. The radioactive substance released into the environment is much lower than the permissible limit. The danger of burning and exploding of the bituminized product is avoided because the operation temperature is controlled strictly below 170 C degree. The report also briefly describes the structural characteristic of the facility, the main process and radiation protection and safety measures

  19. Project and design of apparatus and equipment of pilot plant experimental bituminization line PS 44 EBO

    International Nuclear Information System (INIS)

    The modifications are described made in the design of major components of the pilot plant experimental bituminization line involving: the mixing equipment, the film rotor evaporator, the calciner, and various transport mechanisms for handling drums and containers. The difficulty and complexity of the problem which Kralovopolska strojirna Brno, the end supplier of the bituminization line, will have to tackle is evident mainly from the case of bridge cranes, which feed the line, and the full-portal gantry crane which handles the containers and drums at regional sites of radioactive waste disposal. (Z.M.)

  20. Installation in the A-1 plant of an experimental bituminization line by VUCHZ

    International Nuclear Information System (INIS)

    Following the termination of the experimental operation of the bituminization line at the Research Institute for Chemical Installations in Brno, the line was dismantled and transferred to the nucler power plant in Jaslovske Bohunice. The installation of the line, the layout of the assemblies are described and the results of tests with non-radioactive simulated wastes and actual radioactive wastes briefly described. An amount of 3.2 m3 of actual radioactive wastes from the V-1 nuclear power plant was processed in the tests. The results confirmed the suitability of bituminization for processing liquid radioactive wastes from WWER nuclear power plants. (Z.M.)

  1. Noise Reduction Properties of an Experimental Bituminous Slurry with Crumb Rubber Incorporated by the Dry Process

    Directory of Open Access Journals (Sweden)

    Moisés Bueno

    2014-08-01

    Full Text Available Nowadays, cold technology for asphalt pavement in the field of road construction is considered as an alternative solution to conventional procedures from both an economic and environmental point of view. Among these techniques, bituminous slurry surfacing is obtaining an important role due to the properties of the obtained wearing course. The functional performance of this type of surfaces is directly related to its rough texture. Nevertheless, this parameter has a significant influence on the tire/road noise generation. To reduce this undesirable effect on the sound performance, new designs of elastic bituminous slurries have been developed. Within the FENIX project, this work presents the acoustical characterization of an experimental bituminous slurry with crumb rubber from wasted automobile tires incorporated by the dry process. The obtained results show that, under controlled operational parameters, the close proximity sound levels associated to the experimental slurry are considerably lower than those emitted by a conventional slurry wearing course. However, after one year of supporting traffic loads and different weather conditions, the evaluated bituminous slurry, although it conserves the original noise reduction properties in relation to the conventional one, noticeably increases the generated sound emission. Therefore, it is required to continue improving the design of experimental surfaces in order to enhance its long-term performance.

  2. Towards an Accurate Stress Dependant Time & Frequency Domain VE Response Model for Bituminous Binders

    NARCIS (Netherlands)

    Woldekidan, M.F.; Huurman, M.; Pronk, A.C.

    2010-01-01

    Linear viscoelastic properties of bituminous binders for short loading times are analyzed using dynamic mechanical analysis methods. Dynamic Shear Rheometer (DSR) test with parallel plate (PP) configuration is widely used for this purpose. Due to the complex stress distribution over the cross-sectio

  3. Transformism in Alberta: The Environmental Political Economy of the Bituminous Sands

    Science.gov (United States)

    Katz-Rosene, Ryan

    This thesis attempts to help establish environmental political economy as a viable academic field while providing an example of work in the discipline. It offers an analysis of societal processes resulting in the co-optation and/or neutralization of critical environmentalist ideas. Using Alberta's bituminous sands as a case study, and a Gramsci-influenced eco-Marxist theory as a foundation, the thesis argues that the term 'environmental transformism' (inspired by the Gramscian term trasformismo) is helpful in describing and framing such processes. Accordingly, the ensuing chapters provide an analysis of why environmental transformism is happening in Alberta, and demonstrate how this mechanism works at protecting the status quo from threatening ideologies, thereby consolidating neoliberal capitalism. A concluding argument discusses the inherent dangers posed to society by the transformism of certain environmental subjectivities. The thesis begins by introducing the contentious social and environmental issues surrounding the development of the bituminous sands.

  4. Bituminous coal fired USC power plants for the European market

    Energy Technology Data Exchange (ETDEWEB)

    Klebes, J.; Tigges, K.-D.; Klauke, F.; Busekrus, K. [Hitachi Power Europe GmbH (Germany)

    2007-07-01

    The presentation, in slide/viewgraph form, is in sections entitled: Introduction; Steam generator design features; Optimization of plant efficiency; Steam turbine design features (USC material design principles; rotating and stationary blades; last stage blade (LP 48 inch)); and Future developments. The presentation includes a chart of recent highly efficient coal-fired power plants in Japan, China and Germany.

  5. Organic geochemistry of Upper Carboniferous bituminous coals and clastic sediments from the Lublin Coal Basin

    Science.gov (United States)

    Gola, Marek R.; Karger, Michał; Gazda, Lucjan; Grafka, Oliwia

    2013-09-01

    Bituminous coals and clastic rocks from the Lublin Formation (Pennsylvanian, Westphalian B) were subjected to detailed biomarker and Rock-Eval analyses. The investigation of aliphatic and aromatic fractions and Rock-Eval Tmax suggests that the Carboniferous deposits attained relatively low levels of thermal maturity, at the end of the microbial processes/initial phase of the oil window. Somewhat higher values of maturity in the clastic sediments were caused by postdiagenetic biodegradation of organic matter. The dominance of the odd carbon-numbered n-alkanes in the range n-C25 to n-C31 , high concentrations of moretanes and a predominance of C 28 and C29 steranes are indicative of a terrigenous origin of the organic matter in the study material. This is supported by the presence of eudesmane, bisabolane, dihydro-ar-curcumene and cadalene, found mainly in the coal samples. In addition, tri- and tetracyclic diterpanes, e. g. 16β(H)-kaurane, 16β(H)-phyllocladane, 16α(H)-kaurane and norisopimarane, were identified, suggesting an admixture of conifer ancestors among the deposited higher plants. Parameters Pr/n-C17 and Rdit in the coal samples show deposition of organic matter from peat swamp environments, with the water levels varying from high (water-logged swamp) to very low (ephemeral swamp). Clastic deposits were accumulated in a flood plain environment with local small ponds/lakes. In pond/lake sediments, apart from the dominant terrigenous organic matter, research also revealed a certain quantity of algal matter, indicated, i.a., by the presence of tricyclic triterpanes C28 and C29 and elevated concentrations of steranes. The Paq parameter can prove to be a useful tool in the identification of organic matter, but the processes of organic matter biodegradation observed in clastic rocks most likely influence the value of the parameter, at the same time lowering the interpretation potential of these compounds. The value of Pr/Ph varies from 0.93 to 5.24 and from 3

  6. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  7. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, R.F.; Coless, L.A.; Davis, S.M. [and others

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  8. Locating the Drainage Layer for Bituminous Pavements in Indiana

    OpenAIRE

    Hassan, Hossam Farouk.; White, Thomas D.

    1996-01-01

    Pavement subsurface drainage and its effect on pavement performance has been a subject of interest since the 18th and 19th centuries. With no doubt the detrimental effects of heavy wheel loads on pavements with saturated base material is a significant factor. The consequence of subsurface water on pavement performance includes premature rutting, cracking, faulting, and increased roughness, all of which lead to a decrease in serviceability. This research study involves the evaluation of the...

  9. Natural analogues of bitumen and bituminized radioactive waste

    International Nuclear Information System (INIS)

    Occurrences of natural bitumen provide possibilities to identify and assess materials, processes, phenomena and conditions in nature which can serve as model cases valid also with respect to a final repository. Natural bitumens meet the basic requirements for use as natural analogues. In natural sites, processes of bitumen formation and degradation often work simultaneously. The major processes are thermal alteration, evaporation, reaction with water, biodegradation, oxidation, weathering and radiation degradation. Progress in analytical organic geochemistry made during recent years has enabled a deeper understanding of the structural and compositional effects of these processes on bitumen. This is necessary in natural analogue applications. The time scales involved in degradation processes, as observed in natural occurrences, exceed the time scales dictated by the half-lives of most important fission products in low and medium level waste by orders of magnitude. Only exposure to the weather at the surface leads to a more rapid destruction of bitumen. Trace metals in bitumen arenot released until the matrix is completely destroyed. Products of radiation degradation and weathering of bitumen are able, to a certain degree, to delay migration of the metal ions released. Impregnation with bitumen may effectively reduce the microbial decomposition of easily destructable organic waste components, as can be deduced on the basis of the excellent preservation of fossils observed in bitumen. The complexity of all the natural sites described requires extensive understanding of the origin and kind of organic material in bitumen, its maturation, migration, alteration and degradation and of the geological and tectonic evolution of the site. The latter is used for establishing the time scale

  10. Applied Technological Direction of Power Plant Ash and Slag Waste Management when Kuznetsk Bituminous Coal is Burned

    Directory of Open Access Journals (Sweden)

    Lihach Snejana A.

    2016-01-01

    Full Text Available Currently a lot of power plants have a problem with storage of coal combustion solid by-products (ash and slag. Holding capacity of existing power plants available ash dumps were enlarged and modernized repeatedly. Many plants have two or even three of them. Today new ash dump construction is economically inconvenient due to need to assign new plots of land and their inconveniently big distance from a plant, which increase ash and slag transportation expenses. The goal of our research work is to find promising directions for ash and slag waste mass utilization based on Kuznetsk bituminous coals experimental data on ultimate composition and properties. The experimental research of ash, slag and their mixture samples from ash dumps brought us to conclusion that the most promising direction for these materials application in large quantities is construction industry including road construction. Be-sides, we lined up some other directions for ash, slag, and ash and slag mixture possible application. These directions might not provide mass utilization but they are promising from a point of view of the researched waste properties.

  11. Dye-adsorption capacity of bituminous fly ash and its pozzolanic property after used as dye-adsorbent

    Directory of Open Access Journals (Sweden)

    Penpolcharoen, M.

    2004-02-01

    Full Text Available Bituminous fly ash, which is an industrial waste, was used as an adsorbent to remove dyestuff from the textile-dye wastewater. The batch kinetic and isotherm experiments of the synthetic wastewater were firstly conducted to determine the adsorption behavior and optimal conditions for adsorption. The optimal conditions were then applied to the actual textile-dye wastewater. Under the original conditions of fly ash and wastewater, the results indicated that the color could be removed up to 86.65% by 12 g of the fly ash /L of the wastewater within 30 min. Its adsorption was described by the Freundlich isotherm. The dye-adsorbed fly ash was further studied on its pozzolanic property in terms of compressive strength by using it as a partial substitute to Portland cement type I to produce mortar. The result revealed that the highest compressive strength was of the sample containing 10% by weight of the dye-adsorbed fly ash in replacement of cement. It possessed 215 kg/cm2 at 28 days, which is 92.67% of the sample containing 10% by weight of the original fly ash in replacement of cement, or 83.33 of the cement mortar. For the environmental concern, leachabilities of lead (Pb, chromium (Cr, copper (Cu and zinc (Zn from all mortars were also carried out. No leaching of the heavy metals from any samples could be detected. Hence, the dye-adsorbed fly ash can be used as an environmental friendly construction material.

  12. Thermo-mechanical behavior of bituminous mixtures at low temperatures. Links between the binder characteristics and the mix properties; Comportement thermomecanique des enrobes bitumeux a basses temperatures: relations entre les proprietes du liant et de l'enrobe

    Energy Technology Data Exchange (ETDEWEB)

    Olard, F.

    2003-10-01

    This thesis has been realized within the framework of a partnership between the Ecole Nationale des TPE, APPIA and EUROVIA. The company Total has also been associated to this project. The study deals with the thermo-mechanical behavior of bituminous materials at low temperatures. The aim is to establish the links between the characteristics of the binder and the properties of bituminous mixes at low temperatures, and to better understand the existing low-temperature parameters and criteria for binders (or to propose new ones), related to the in-situ behavior of bituminous mixtures. A large experimental campaign has been carried out so as to fulfill this goal. After a bibliographical study on the rheology and the thermo-mechanical properties of (pure or modified) binders, putties and mixes, the experimental campaign carried out both in the small strain domain and in the large strain domain, is presented. The low temperature behavior of binders has been evaluated with three common fundamental tests: i)the complex modulus determination, ii)the Bending Beam Rheometer and iii)the tensile strength at a constant strain rate and constant temperatures. A new three point bending test on pre-notched bitumen beams has also been developed at the ENTPE. The low-temperature fracture properties of bitumens were studied at constant temperatures and cross-head speeds considering the Linear Elastic Fracture Mechanics (LEFM) assumptions. The thermo-mechanical behavior of bituminous mixtures has been studied by performing i)complex modulus tests, ii)measurements of the coefficient of thermal dilatation and contraction, iii)tensile tests at constant temperatures and strain rates, and iv)Thermal Stress Restrained Specimen Tests. Apart from the determination of some pertinent links between binder and mix properties and discriminating characteristics with regard to the thermal cracking of bituminous mixes at low temperatures, the analysis has also consisted in modeling the behavior of

  13. Investigation of activity release from bituminized intermediate-level waste forms under thermal stresses

    International Nuclear Information System (INIS)

    To determine the consequences of a fire during fabrication, intermediate storage and transport of bituminized NaNO3 waste forms, the fractions of plutonium released from the waste forms were assessed. For this purpose, laboratory tests were made with PuO2-containing specimens as well as a field test with specimens containing Eu2O3. By the evaluation of plutonium release in the laboratory and by the determination of the total sodium release and the relative Eu/Na release in the field tests the plutonium release can be deduced from full-scale specimens. The results show that for bituminized waste forms with high NaNO3 contents (approx. 36 wt%) the average plutonium release obtained in laboratory testing is 15%. In the field tests (IAEA fire test conditions) an average Eu release of 8% was found. These results justify the statement that also for waste forms in open 175 L drum inserts a maximum plutonium release of about 15% can be expected. From the time-dependence of Eu/Na release in the field tests an induction period of 15-20 minutes between the start of testing and the first Na/Eu release can be derived. The maximum differential Na/Eu release occurs after a test period of 45 to 60 minutes duration and after 90 to 105 minutes (tests K2 and K4, respectively); after that time also the highest temperatures in the products are measured. The release values were determined for products in open 175 L drum inserts which in this form are not eligible for intermediate and ultimate storage. For bituminized waste forms in concrete packages (lost concrete shieldings) a delayed increase in temperature to only 70-80 deg. C takes place (4-5 hours after extinction of the fire) if the fire lasts 45 minutes. The concrete package remains intact under test conditions. This means that activity release from bituminized waste forms packaged in this way can be ruled out in the case under consideration. (author)

  14. Assessing radioactive concentrates and waste vapor condensate in solidifying radioactive wastes by bituminization

    International Nuclear Information System (INIS)

    A brief overview is presented of chemical and radiochemical methods used in the world for the analysis of the concentrate of liquid radioactive wastes from nuclear power plants destined for bituminization. Most methods are also suitable for an analysis of the condensate of waste vapors produced in bituminization. The methods of analysis of the radioactive concentrate from the V-1 nuclear power plant in Jaslovske Bohunice and of the waste vapors condensate were developed and tested in practice. Gross gamma activity was measured using a well-type Na(Tl) scintillation detector, the content of radionuclides was determined using semiconductor Ge(Li) spectrometry. The concentration of boric acid in the concentrate was determined by titration with mannite; in the condensate, using spectrophotometry with curcumine. The content of nitrates in both the concentrate and the condensate was determined spectrophotometrically using salicylic acid, the content of nitrites was determined by spectrophotometry using sulfanilic acid and α-naphthylamine. Carbonates and chlorides were determined by titration, sodium and potassium by flame photometry. The content of organic acids was measured by gravimetry of extracted methyl esters, the content of surfactants by spectrophotometry. Infrared spectrophotometry was used in determining hydrocarbons in the waste vapor condensate. The measured value range and the measurement errors are shown for each method. (A.K.)

  15. Chemical activation of bituminous coal for hampering oligomerization of organic contaminants.

    Science.gov (United States)

    Yan, Liang; Sorial, George A

    2011-12-15

    Activated carbons prepared by KOH activation of bituminous coal were studied for hampering oligomerization of phenolic compounds on its surface. A total of 24 activated carbons with different microporosity and BET surface area were created. The effect of the different variables of the activation process (KOH/bituminous coal ratio, heating temperature, activation time, and flow rate of nitrogen gas) on critical carbon parameters was analyzed. The impact of activated carbon on oligomerization was examined by conducting isotherm experiments at a neutral pH on Carbon(exp) produced with optimal characteristics and granular activated carbon (GAC) F400 for phenol, 2-methylphenol and 2-ethylphenol. These isotherms were collected under anoxic (absence of molecular oxygen) and oxic (presence of molecular oxygen) conditions. The single solute adsorption of phenol, 2-methylphenol and 2-ethylphenol on Carbon(exp) showed no obvious differences between oxic and anoxic environment, which indicated that the Carbon(exp) sample is very effective in hampering the oligomerization of phenolic compounds under oxic conditions. On the other hand, F400, which have lower micropore percentage and BET surface area, significant increases in the adsorptive capacity had been observed when molecular oxygen was present. PMID:22004832

  16. THE HISTORY OF EXPLORATION AND EXPLOITATION OF BITUMINOUS AND KEROGENOUS DEPOSITS IN CROATIA

    Directory of Open Access Journals (Sweden)

    Berislav Šebečić

    1995-12-01

    Full Text Available It is assumed thal the first known sedimens of natural bitumen or asphalt in coastal Croatia were exploited as the early moddle ages. Yet authenticated written documents about Vinišće near Trogir derive from no earlier than 1628, about Vrgorac/Paklina from only 1753. By the end of the 18th century, many deposits were discovered in Dalmatia, but it was Škrip on the Island of Brač and Suhi Dolac that were important. The earliest known deposits and occurrences of kerogenous rocks, or bituminous or oil shales, are mentioned as stone or fossil coal in Sovinjak, in the upper course of the River Mirna, and in Rebići in Istria; near Sinj, Slivno not far from the River Neretva, Mirta and near Nerežišće on the Island uf Brač. All if these were well known and described in 1804, while Sovinjak was mentioned in the 16th century. In the article, some of new information derived from mining and geological research into bituminous and kerogenous sediments and deposits are provided (the paper is published in Croatian.

  17. Utilization of Waste Clay from Boron Production in Bituminous Geosynthetic Barrier (GBR-B) Production as Landfill Liner

    OpenAIRE

    Müfide Banar; Yücel Güney; Aysun Özkan; Zerrin Günkaya; Eren Bayrakcı; Derya Ulutaş

    2016-01-01

    Bituminous geomembranes, one type of geosynthetics, include a hot bituminous mixture with mineral filler and reinforcement. In this study, boron production waste clay (CW) was used as filler to produce a geosynthetic barrier with bentonite, waste tire, and bitumen. Bentonite and waste tires were used as auxiliary fillers and bitumen as the binder. CW/bitumen, CW/bentonite/bitumen, and CW/waste tire/bitumen mixtures were prepared by using a laboratory mixer at 100°C. Hot mixtures were extruded...

  18. Biomarker geochemistry of bituminous shale sequence and crude oil in the Ereǧli-Bor Basin (Konya-Niǧde), Central Anatolia, Turkey

    Science.gov (United States)

    Kara-Gulbay, Reyhan; Erdogan, Mert; Korkmaz, Sadettin; Kadinkiz, Gökhan

    2016-04-01

    In the Ereǧli-Bor Basin (Konya-Niǧde), Central Anatolia, bituminous shale sequence with thickness ranging between 72 and 160 m occurs in lacustrine deposits of Upper Miocene-Pliocene age. The live oil has also been observed in this bituminous shale sequence. Rock-Eval/TOC, GC and GC-MS analyses were conducted on selected bituminous shale samples from four borehole (key-12/1, key-12/2, key-12/3 key-12/4) and one crude oil sample from a borehole (key-12/2) in the basin. In this study, organic matter type, maturity and depositional environment of bituminous shale are evaluated and the origin of crude oil is determined by the bituminous shale-crude oil correlation. The total organic carbon (TOC) values of the bituminous shale samples range from 1.21-13.98 wt% with an average TOC value of 4.75wt%. The bituminous shale sequence is characterized by high HI (127-662 mg HC/g TOC) and low OI (7-50 mgCO2/TOC). Tmax varies from 332-419ᵒC. Very low Pr/Ph ratios of bituminous shale (0.09-0.22) are indicative of anoxic depositional conditions. C27 is dominate sterane for bituminous shale and crude oil samples with C27>C29>C28. Normal steranes are more dominant compare to iso- and diasteranes. Ouite high sterane/hopane ratios (1.14-2.70) indicate dominant algal organic matter input for bituminous shale and source rock of crude oil. C31R/hopane ratio for bituminous shale and crude oil samples are very low (0.09-0.13) and these ratio show a lacustrine depositional envirronment for bituminous shale and source rock of crude oil. Sterane and terpane distributions of bituminous shale and crude oil are very similar. A very good correlation in terms of biomarker between bituminous shale and crude oil samples indicate that source rock of crude oil is bituminous shale. The 22S/(22R + 22S) C32 homohopane ratios of bituminous shale and crude oil samples are found to be 0.56 and 0.61, indicating that homohopane isomerization has attained equilibrium and bituminous shale and crude oil are

  19. Physical properties of solid fuel briquettes from bituminous coal waste and biomass

    Institute of Scientific and Technical Information of China (English)

    ZARRINGHALAM-MOGHADDAM A; GHOLIPOUR-ZANJANI N; DOROSTIS; VAEZ M

    2011-01-01

    Biomass and bituminous coal fines from four different coalfields were used to produce fuel briquettes.Two physical properties of briquettes,water resistance index and compressive strength were analyzed.The influence of type and quantity of biomass on physical properties was also studied.The results reveal that depending on the mineral content of the coal,the physical properties of the briquettes differ noticeably.The comparison of briquettes with and without biomass showed that the presence of the beet pulp increased CS in all types of coal samples.Samples containing beet pulp had better physical properties than sawdust.Mezino Ⅱ coal briquettes had highest CS and WRI than the other ones.Calorific value of biomass/Mezino Ⅱ coal briquettes was lessened in comparison with raw coal,but it remained in an acceptable range.

  20. US bituminous coal test program in the British Gas/Lurgi (BGL) gasifier

    Energy Technology Data Exchange (ETDEWEB)

    de Souza, M.D.; Tart, K.R.; Eales, D.F. (British Gas plc, London (United Kingdom)); Turna, O. (Lurgi GmbH, Frankfurt am Main (Germany))

    1991-12-01

    The BGL moving-bed, slagging-gasification process is an extension of the commercially proven Lurgi dry-ash, moving-bed gasification process. British Gas and Lurgi have demonstrated the process over an 11-year period at the 350 and 500 t/d scale at British Gas' Westfield Development Center, Scotland, with a wide variety of US and British coals. British Gas also installed a gas purification and HICOM methanation plant at Westfield to treat approximately 190,000 sft{sup 3}/h of purified syngas. Objectives are: To demonstrate the suitability of US bituminous coals as feed-stocks in the BGL gasification process; to provide performance data for use in designing commercial-scale BGL-based gasification-combined-cycle (GCC) power plants; and to evaluate the performance of the British Gas HICOM process for methanation of US coal-derived syngas.

  1. Biological markers in bitumens and pyrolyzates of Upper Cretaceous bituminous chalks from the Ghareb Formation (Israel)

    Science.gov (United States)

    Rullkötter, Jürgen; Aizenshtat, Zeev; Spiro, Baruch

    1984-01-01

    The sterane and triterpane distributions of three bituminous chalks from the Upper Cretaceous Ghareb Formation (Israel) were investigated both in the original extractable bitumens and in extracts obtained after pyrolysis of whole rock and isolated kerogen samples at 450°C. Pyrolysis was performed in a closed system under hydrous (whole rock) and anhydrous conditions (isolated kerogens). The carbon number distributions of steranes and triterpanes differ significantly between original bitumen and pyrolyzates. Unlike the bitumens in which diasteranes were not detected, the anhydrous pyrolyzates contain small amounts of diasteranes. The presence of water during pyrolysis leads to an increase of sterane isomerization, the abundant formation of diasteranes and an increase of the 18α( H)- trisnorneohopane/17α( H)- trisnorhopane ratio. Sterane isomerization maturation parameters show a closer match between original bitumen and pyrolyzates after pyrolysis in a closed system when compared with an open system.

  2. STUDY ON EVOLUTION REGULARITIES AND ABSORPTION CHARACTERISTICS OF SULFIDE DURING BITUMINOUS BRIQUETTE HORIZONTAL COMBUSTION

    Institute of Scientific and Technical Information of China (English)

    路春美; 王永征

    1999-01-01

    This paper discusses the evolution regularity and the absorption characters of sulfide for bituminous briquette burned in a horizontal burning furnace. The evolution rate of sulphur is affected by some factors, such as the sulphur content in the burning coal, burning time and the meane excess air coefficient in the furnace. With processing the experimental result, the calculation related expression has been obtained to predict the evolution rate of sulfide. The sulphur absorption efficiency of briquette is affected by the factors such as the character of the sulphur sorbent, the type of the coal and the operating parameters. "By means of appropriately adjusting the calciumsulphur mole ratio, the mean excess air coefficient and the time-interval between pushing two layer briquettes, a high sulphur absorption efficiency (>74%) can be obtained.

  3. Examination and comparision of structure: lignite, bituminous and anthracite coal. [10 references

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R.E.; Hayatsu, R.; Scott, R.G.; Moore, L.P.; Studier, M.H.

    1976-01-01

    Coal can be described as an amorphous mixture of macromolecules each made up of a complex array of organic molecules chemically linked together. Methods for breaking up these macromolecules in order to characterize the aromatic structural types have been explored. Pyrolysis is a common method for depolymerizing coal, but under the conditions necessary for pyrolysis much structural rearrangement occurs making a comparison of the products to the initial structural groups in coal difficult if not impossible. One approach has been to use a variety of selective oxidation methods. Aqueous sodium dichromate, aqueous air oxidation with uv light, and hydrogen peroxide in acetic acid have been used. Initial results of some of these studies have been published. This work has been extended to include characterization and comparison of a lignite, bituminous coal, and anthracite. Besides the oxidation products, the monomeric organic molecules trapped within the macromolecules are examined and the results interpreted in relation to coal structure and the coalification process.

  4. Distribution of inorganic and organic substances in the hydrocyclone separated Slovak sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Anton Zubrik; Slavomir Hredzak; Ludmila Turcaniova; Michal Lovas; Ingo Bergmann; Klaus Dieter Becker; Maria Lukcova; Vladimir Sepelak [Slovak Academy of Sciences, Kosice (Slovakia). Institute of Geotechnics

    2010-08-15

    A low-rank Slovak sub-bituminous coal from the Handlova deposit was physically treated by washing in a water-only cyclone with the goal to find the separation effect for inorganic (mainly Fe-bearing minerals) and organic substances (humic acids, diterpanes). A high-quality coal product with the ash content in the dry matter of 9.02% and carbon content of C{sup d} = 68.12% at a mass yield of 29.51% was obtained using the water-only cyclone processing. At first, the physically treated coal samples were detailed characterized by XRD, {sup 57}Fe Moessbauer spectroscopy, FT-IR and HR-TEM. In addition to non-crystalline organic coal components, inorganic compounds belonging to silicate minerals (kaolinite, muscovite and quartz) as well as to Fe-bearing sulphide minerals (pyrite) were identified in the sub-bituminous coal by XRD. {sup 57}Fe Moessbauer spectroscopy detected the presence of iron carbonate (siderite), iron-containing clay mineral and two sulphur-containing minerals (pyrite, jarosite) in the untreated coal. On the other hand, only one Fe-bearing mineral, (pyrite) was found in the washed coal. Effect of the physical separation is also demonstrated in FT-IR spectra, where the peak at 1040 cm{sup -1} representing the silicate component in the untreated sample is not detectable in the washed coal sample. Presence of extractive organic substances, i.e. humic acids and tetracyclic diterpane (16a(H)-phyllocladane), in the hydrocyclone products is also evidenced. It was confirmed that the isolated diterpenoic compound is attendant in the washed product with the lowest ash content and it is assimilated with the organic part of coal. Surprisingly, humic acids were found in the highest concentration in the slurry that has the highest content of ash (63.14%). 54 refs., 8 figs., 5 tabs.

  5. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  6. A study of bituminous pavements to determine a correlation between pavement structure designs and tripping of asphalt cement

    Science.gov (United States)

    Barton, B. R.

    1984-03-01

    After detecting a few cases of stripping of asphalt cement from the aggregate in bituminous pavement, there was concern that stripping might be a widespread problem in the state. It is agreed that water is the cause of stripping, and it was the opinion of some that pavements on granular bases would be less likely to strip because of supposedly better drainage characteristics. Differently designed pavement structures in all areas of the state were investigated to determine if there is a correlation between base and pavement design and stripping. Stripping was not as widespread as had been feared and there was less stripping in fulldepth bituminous base and pavement constructed over a lime-treated subgrade than in pavements constructed oer granular bases. This was contrary to what some had theorized.

  7. Study on the cause of the fire and explosion incident at Bituminization Demonstration Facility of PNC Tokai Works

    International Nuclear Information System (INIS)

    On March 11, 1997, a fire and explosion incident occurred in Bituminization Demonstration Facility (BDF) at Tokai Reprocessing Plant (TRP). The cause of the incident was thoroughly investigated and after thirty meetings of 'Investigation Committee of Science and Technology Agency (STA)'. STA reported possible cause of this incident. Continually detailed investigation was discussed at 'Follow-up Committee of STA'. Based on the results of five meetings, JNC concluded that the main cause of fire was frictional heating and viscous heating in the extruder, which provided an unusually high temperature in the bituminized product at filling, since there was no chemical analysis data suggesting the generation of chemical heat. It is considered that these excessive heat generations were due to the decreased feed rate of liquid waste to the extruder. The Follow-up Committee almost agreed to this conclusion. This paper describes general information concerning the incident and details of the cause of the incident. (author)

  8. The bituminization in Marcoule and la Hague plants. Description of the processes and the fire risk prevention

    International Nuclear Information System (INIS)

    Chemical precipitation is an efficient process to decontaminate liquid effluents and has been selected as early as 1966 for the liquid waste treatment of MARCOULE. The process has been designed by the French CEA and improved along the time. The first implementation in LA HAGUE was for the STE 2 facility (Station de Traitement d'Effluents no 2). A new facility, STE 3, has been commissioned in 1989 in LA HAGUE, benefiting from these previous experience and therefore contributing into a drastic reduction of liquid discharges. The sludges coming from the treatment in MARCOULE and STE 3 are bituminized into continuous extruders. The resulting waste is kept in interim storage, waiting for final disposal. The industrial production, up to now, is close to 10000 drums (55 gallons) in LA HAGUE and 60000 drums in MARCOULE. A retrieval operation of the MARCOULE drums from the present storage has been launched to send them into a recently built interim storage operating since the beginning of 2000. At the present time, in LA HAGUE, evaporation has been preferred to chemical precipitation for the treatment of liquid effluents. After concentration, the effluents go to the vitrification and the volume of resulting waste is much smaller. However, bituminization is still the preferred option for the 10000 m3 of sludges resulting from the STE 2 operations which are being stored in tanks. A complete reevaluation of the operation safety measures of bituminization has been made lately in both plants following recent incidents on other installations. The paper describes the chemical precipitation and the bituminization processes and focuses on safety measures which are implemented for prevention, detection and fight. (authors)

  9. Recycling of polyethylene terephthalate (PET plastic bottle wastes in bituminous asphaltic concrete

    Directory of Open Access Journals (Sweden)

    Adebayo Olatunbosun Sojobi

    2016-12-01

    Full Text Available This research sheds light on the concept of eco-friendly road construction which comprises eco-design, eco-extraction, eco-manufacturing, eco-construction, eco-rehabilitation, eco-maintenance, eco-demolition, and socioeconomic empowerment. It also revealed the challenges being faced in its adoption and the benefits derivable from its application. Furthermore, the effects of recycling PET plastic bottle wastes produced in North Central Nigeria in bituminous asphaltic concrete (BAC used in flexible pavement construction were also evaluated. The mix design consists of 60/70 penetration-grade asphaltic concrete (5%, 68% coarse aggregate, 6% fine aggregate, and 21% filler using the dry process at 170°C. The optimum bitumen content (OBC for conventional BAC was obtained as 4% by weight of total aggregates and filler. Polymer-coated aggregate (PCA-modified BAC seems preferable because it has the potential to utilize more plastic wastes with a higher optimum plastic content (OPC of 16.7% by weight of total aggregates and filler compared to that of 9% by weight of OBC achieved by PMB-BAC. For both PMB- and PCA-modified BAC, an increase in air void, void in mineral aggregate, and Marshall stability were observed. Eco-friendly road construction which recycles PET wastes should be encouraged by government considering its potential environmental and economic benefits.

  10. Comparing potentials for gas outburst in a Chinese anthracite and an Australian bituminous coal mine

    Institute of Scientific and Technical Information of China (English)

    Li Guoqing; Saghafi Abouna

    2014-01-01

    Gas outbursts in underground mining occur under conditions of high gas desorption rate and gas content, combined with high stress regime, low coal strength and high Young’s modulus. This combination of gas and stress factors occurs more often in deep mining. Hence, as the depth of mining increases, the poten-tial for outburst increases. This study proposes a conceptual model to evaluate outburst potential in terms of an outburst indicator. The model was used to evaluate the potential for gas outburst in two mines, by comparing numerical simulations of gas flow behavior under typical stress regimes in an Australian gassy mine extracting a medium-volatile bituminous coal, and a Chinese gassy coal mine in Qinshui Basin (Shanxi province) extracting anthracite coal. We coupled the stress simulation program (FLAC3D) with the gas simulation program (SIMED II) to compute the stress and gas pressure and gas content distribution following development of a roadway into the targeted coal seams. The data from gas content and stress distribution were then used to quantify the intensity of energy release in the event of an outburst.

  11. Burnout behaviour of bituminous coals in air-staged combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kluger, F.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. of Process Engineering and Power Plant (IVD)

    2001-07-01

    In order to determine the influence on burnout by the combustion conditions and the coal preparation, three bituminous coals sold on the world market, from three different locations in Poland, South Africa, and Australia, were studied more closely. For this purpose, the coals were ground in two different particle size ranges, which, besides the influence of the combustion conditions, such a temperature, residence time, and stoichiometry, made it possible to also investigate the impact on burnout by the coal preparation. The experiments were carried out in an electrically heated entrained-flow reactor with a thermal input of 8.5 kW. The parameters for the experiments are wall temperature (1000-1350{degree}C), air ratio (0.6-1.15) and two particle sizes (70% {lt} 75 {mu}m, 90% {lt} 75 {mu}m). The results show that in general, for increasing temperatures, the burnout quality will improve. For the Australian Illawara coal, another outcome is increased NOx emissions. Lowering the air ratio in the reduction zone leads to less NOx emission but to increased unburnt matter in ash. For the smaller particle size fraction, the analysis of the different particle sizes shows an improvement of the burnout without a change in NOx emissions. 10 refs., 10 figs., 2 tabs.

  12. Using proximate analysis to characterize airborne dust generation from bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A.

    2005-11-01

    Prolonged exposure to airborne respirable coal dust is responsible for coal workers pneumoconiosis (CWP), commonly called black lung. Health research studies have identified that the prevalence and severity of CWP are directly related to both the amount of dust exposure and the coal rank. The amount of airborne respirable dust (ARD) smaller than 10 micrometers generated from breakage of different coals varies widely. To investigate the cause, researchers for the National Institute for Occupational Safety and Health (NIOSH) have conducted experiments to identify the causes of airborne respirable dust liberation. Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals from eight mines. The results indicate that the proximate analysis of a coal sample can provide a very good indicator of the potential for a dust problem. For application to the coal mining, processing, and utilization industries, data from 977 US coal seams compiled by the Department of Energy (DoE) has been used to calculate this dust generation potential from an equation based on the NIOSH measured data. A simple procedure for this calculation is provided. 1 fig.

  13. Experimental and modelling of the thermal regions of activity during pyrolysis of bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Strezov, Vladimir [Newbolds Applied Research, The University of Newcastle, Cnr Frith and Gavey Streets, Mayfield 2304, NSW (Australia); Lucas, John A. [Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, University Drive, Callaghan 2308, NSW (Australia); Strezov, Les [Strezov Consulting, 7 Marin Street, Adamstown 2289, NSW (Australia)

    2004-03-01

    Computer-aided thermal analysis technique, incorporated with thermogravimetric and Fourier transform infrared (TG-FTIR), and mass spectrometry, were employed in studying the devolatilisation of three thermal bituminous coals under packed bed pyrolysing conditions. The heats of reactions evolved during coal devolatilisation were determined by computational calorimetry and compared with the evolution rate of fourteen volatile species. The devolatilisation was classified into five major regions of thermal activity, according to the analysis, where the first was related to the dehydration of strongly bounded water. The second was the pre-plastic region with an endothermic prepyrolytic reaction, while the third was the exothermic plastic range with primarily evolution of tars and re-solidification reactions. The secondary devolatilisation was found to be endothermic and the major contributors were hydrocarbons, secondary water, CS{sub 2} and H{sub 2}S. The largest reaction was the contraction of carbon planes with evolution of hydrogen. Each reaction region was assumed to follow the first-order Arrhenius kinetic correlation and the activation energy was determined for each of the five regions. The activation energies were then incorporated into a simplified model for predicting the overall heats of reactions.

  14. Analysis and modeling of 3D complex modulus tests on hot and warm bituminous mixtures

    Science.gov (United States)

    Pham, Nguyen Hoang; Sauzéat, Cédric; Di Benedetto, Hervé; González-León, Juan A.; Barreto, Gilles; Nicolaï, Aurélia; Jakubowski, Marc

    2015-05-01

    This paper presents the results of laboratory testing of hot and warm bituminous mixtures containing Reclaimed Asphalt Pavement (RAP). Complex modulus measurements, using the tension-compression test on cylindrical specimens, were conducted to determine linear viscoelastic (LVE) behavior. Sinusoidal cyclic loadings, with strain amplitude of approximately 50ṡ10-6, were applied at several temperatures (from -25 to +45 °C) and frequencies (from 0.03 Hz to 10 Hz). In addition to axial stresses and strains, radial strains were also measured. The complex modulus E ∗ and complex Poisson's ratios ν ∗ were then obtained in two perpendicular directions. Measured values in these two directions do not indicate anisotropy on Poisson's ratio. The time-temperature superposition principle (TTSP) was verified with good approximation in one-dimensional (1D) and three-dimensional (3D) conditions for the same values of shift factor. Experimental results were modeled using the 2S2P1D model previously developed at the University of Lyon/ENTPE. In addition, specific analysis showed that eventual damage created during complex modulus test is very small and is equivalent to the effect of an increase of temperature of about 0.25 °C.

  15. Development of a method to determine the nuclide inventory in bituminized waste packages; Entwicklung eines Verfahrens zur Bestimmung des Nuklidinventars in bituminierten Abfallgebinden

    Energy Technology Data Exchange (ETDEWEB)

    Mesalic, E.; Kortman, F.; Lierse von Gostomski, C. [Technische Univ. Muenchen, Garching (Germany). Zentrale Technisch-Wissenschaftliche Betriebseinheit Radiochemie Muenchen (RCM)

    2014-01-15

    Until the 1980s, bitumen was used as a conditioning agent for weak to medium radioactive liquid waste. Its use can be ascribed mainly to the properties that indicated that the matrix was optimal. However, fires broke out repeatedly during the conditioning process, so that the method is meanwhile no longer permitted in Germany. There are an estimated 100 waste packages held by the public authorities in Germany that require a supplementary declaration. In contrast to the common matrices, such as for example resins or sludges, there is still no standardized technology for taking samples and subsequently determining the radio-nuclide for bitumen. Aspects, such as the thermoplastic behaviour, make determining the nuclide inventory more difficult in bituminized waste packages. The development of a standardized technology to take samples with a subsequent determination of the radio-nuclide analysis is the objective of a project funded by the BMBF. Known, new methods, specially developed for the project, are examined on inactive bitumen samples and then transferred to active samples. At first non-destructive methods are used. The resulting information forms an important basis to work out and apply destructive strategy for sampling and analysis. Since the project is on-going, this report can only address the development of the sampling process. By developing a sampling system, it will be possible to take samples from an arbitrary selected location of the package across the entire matrix level and thus gain representative analysis material. The process is currently being optimized. (orig.)

  16. Study on the submicron and micron morphology and the properties of poor bituminous coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Pei-Fang Fu; Huai-Chun Zhou; Qing-Yan Fang; Hai Yao; Jianrong Qiu; Minghou Xu [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2007-05-15

    Carbon burnout and its reaction mechanism have been widely focused on in the past decades. The properties of burnout, submicron and micron morphology and the reaction mechanism of poor bituminous coal/char (PBC) in a W-shaped power plant boiler was studied and was compared with those in DTF and in TGA, which showed that the degree of PBC burnout in TGA at 1450{sup o}C was greater than or approximately equal to that in a W-shaped boiler, and that the complexity of the reactions among residual char, oxygen and SiO{sub 2} did not seem to result in mass loss in TGA, although the weight percentage of the residual char in ash decreased from 33% ad (air dry basis) at 900{sup o}C to 9% and at 1450{sup o}C. According to the distribution of pores and the properties of the char burnout, the char can be simply categorized into three classes: char burnout easy, char burnout difficult and char burnout very difficult. The differences of the reaction mechanism must be considered while predicting the burning rate and degree of char burnout in a full-scale boiler by making use of experimental results from TGA and DTF. A different char particle contains markedly different amount of carbons, but for a special char particle, the ratio of carbon to ash is generally constant, and an ash shell does not exist on the char surface. The fusion mineral matter composing of C-O-Si-Al is amorphous, not in the form of Al{sub 2}O{sub 3} and SiO{sub 2} above 1450{sup o}C.

  17. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  18. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  19. Organic petrology and geochemistry of Eocene Suzak bituminous marl, north-central Afghanistan: Depositional environment and source rock potential

    Science.gov (United States)

    Hackley, Paul C.; Sanfilipo, John

    2016-01-01

    Organic geochemistry and petrology of Eocene Suzak bituminous marl outcrop samples from Madr village in north-central Afghanistan were characterized via an integrated analytical approach to evaluate depositional environment and source rock potential. Multiple proxies suggest the organic-rich (TOC ∼6 wt.%) bituminous marls are ‘immature’ for oil generation (e.g., vitrinite Ro  1) indicating organic input from marine algae and/or bacterial biomass, and sterane/hopane ratios are low (0.12–0.14). Monoaromatic steroids are dominated by C28clearly indicating a marine setting. High gammacerane index values (∼0.9) are consistent with anoxia stratification and may indicate intermittent saline-hypersaline conditions. Stable C isotope ratios also suggest a marine depositional scenario for the Suzak samples, consistent with the presence of marine foraminifera including abundant planktic globigerinida(?) and rare benthic discocyclina(?) and nummulites(?). Biomarker 2α-methylhopane for photosynthetic cyanobacteria implies shallow photic zone deposition of Madr marls and 3β-methylhopane indicates presence of methanotrophic archaea in the microbial consortium. The data presented herein are consistent with deposition of Suzak bituminous marls in shallow stratified waters of a restricted marine basin associated with the southeastern incipient or proto-Paratethys. Geochemical proxies from Suzak rock extracts (S content, high polar content, C isotopes, normal (αααR) C27–29 steranes, and C29/C30 and C26/C25 hopane ratios) are similar to extant data from Paleogene oils produced to the north in the Afghan-Tajik Basin. This observation may indicate laterally equivalent strata are effective source rocks as suggested by previous workers; however, further work is needed to strengthen oil-source correlations.

  20. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    Science.gov (United States)

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  1. Behaviour of bituminized waste under gamma irradiation. Effect of STE3 decontamination process components

    International Nuclear Information System (INIS)

    Liquid wastes of light and medium activity are treated by chemical co-precipitation and sludge are mixed with bitumen. Irradiation is responsible of gas production and potential swelling of the embedded. It prevails on limitation of filling of storage containers and activity to 140 Ci. The aim of this work is the study of influence of the components of the decontamination process on the behaviour of bituminous wastes, in order to control swelling and to state radiolysis mechanisms, both for production and storage of wastes. For pure bitumen, mechanism of production of H2 and CH4 are specified. Oxygen consumption, localised on the surface of samples, leads to conversion of aromatic oils and resins to asphaltenes, by a chain reaction mechanism. CO2 et CO are reaction products of gaseous oxygen, respectively with bitumen and light hydrocarbons. The composition of bitumen is slightly modified to heavier and higher polarity products, with parallel hardening. NaNO3, Na2SO4, BaSO4, PPFNi, K2SO4, NiSO4, et diatoms DIT3R et DIC3 have strictly a dilution effect towards gas generation. CoS, above 1% embedded, strongly inhibits production of H2, CH4 and light hydrocarbons. Degradation of bitumen being reduced, a radical mechanism with both radicals H· et R· might exist. Kinetic shows that a bi-radicals mechanism (or more) is probable. In the same way, Raney's nickel induces a important decrease of production of H2, CH4 et C2, with a capacity of 7,7 ml/g. Swelling depends on dimension of sample gas production and dose rate. Solid content and particle size are not determining parameters. Low swelling is obtained for penetrability higher than 70 1/10 mm, This can be realised by addition of a solvent as TBP and by increasing temperature above 40 deg C. Rheological characterizations (oscillation and creeping mode) have not been successful to correlate swelling with a physical parameter. (author)

  2. Mechanical, sorption and transport experiments on a German high volatile bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Gensterblum, Y.; Krooss, B.M. [RWTH Aachen Univ. (Germany). Inst. of Geology and Geochemistry of Petroleum and Coal; Massarotto, Paul [Queensland Univ., Brisbane, St Lucia, QLD (Australia). School of Engineering

    2013-08-01

    A high volatile bituminous coal (vitrinite reflectance: 0.93%, carbon content: 83%) from the Prosper-Haniel mine, North Rhine-Westphalia has been studied using a comprehensive set of measurements and experimental procedures at RWTH Aachen University and the University of Queensland. Using the True Triaxial Stress Coal Permeameter (TTSCP) (Massarotto 2003) of the University of Queensland, permeability and gas displacement tests were performed on an 80 mm cube of the Prosper-Haniel coal. Extensive data sets were recorded to assess the effects of stress changes on gas transport and the impact of nitrogen, methane and CO{sub 2} sorption on the mechanical properties. We investigate the permeability coefficients for helium, nitrogen, methane and carbon dioxide measured on this sample as a function of net stress. As expected, permeability values decrease with increasing stress. Methane and nitrogen have nearly identical permeability coefficients throughout the entire net stress range, while permeability coefficients measured with helium are higher and those measured with CO{sub 2} significantly lower. During the permeability measurements with CO{sub 2} an anisotropic swelling of the coal cube by about 0.19% to 0.23% was observed. The volumetric effect (swelling) is 100 times slower than gas displacement. Simultaneous mechanical tests indicated a softening of the coal block upon exposure to CO{sub 2}. Thus, a decrease of Young's modulus (YM) of the coal cube during the CO{sub 2} flow test was observed as compared to the methane and nitrogen tests. High-pressure sorption isotherms with CH{sub 4} and CO{sub 2} were determined on different grain-size fractions of the Prosper-Haniel coal at 318K and different moisture contents. Methane sorption capacity decreases by 29% with increasing moisture content. Also, a decrease of sorption rate was observed with increasing moisture content. While sorption rates are generally faster for CO{sub 2} than for CH{sub 4}, the sorption

  3. 某600 MW机组烟煤锅炉低N0x改造及效果分析%Low NOx Retrofit for Certain 600 MW Bituminous Coal Boiler and Performance Analysis

    Institute of Scientific and Technical Information of China (English)

    鲁鹏飞

    2013-01-01

    The retrofit effect of certain 600 MW bituminous coal boiler indicates that low NOx combustion technology can reduce the NOx production to 70%, but there are some problems, such as combustion economy and large spray water. Strong reduction atmosphere of burner zone may cause high temperature corrosion on water wall. Therefore, it is suggested to spray some anticorrosive material for prevention.%对某600 MW机组烟煤锅炉进行低NOx改造,改造后锅炉总体性能良好,NOx减排达到70%.但改造对锅炉燃烧经济性、减温水量产生负面影响,同时主燃烧器区形成的强还原性气氛还可能对水冷壁造成高温腐蚀,必须采取喷涂等防腐手段加以预防.

  4. Effect of Pre-oxidation on the Properties of Crushed Bituminous Coal and Activated Carbon Prepared Therefrom

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The influence of a pre-oxidation process on the chemical properties of crushed bituminous coal and on adsorption properties of the subsequently formed char and activated carbon is discussed in this paper.Datong bituminous coal samples sized 6 mm were oxidized at different temperatures and for different times and then carbonized and activated by steam to obtain activated carbons.A Uniform Design method was used to arrange the experiments, IR and adsorption experiments were used to characterize these oxidized coals, chars and activated carbon samples.The results show that the carboxyl group disappeared and α-CH2 groups joined to alkenes decreased dramatically but the carbonyl group clearly increased in the coal sample oxidized at 543 K; The chemical composition of coal samples oxidized at lower temperature is different from that of coal oxidized at 543 K.Oxidizing coal samples at higher temperatures for a short time or at lower temperatures for a longer time resulted in activated carbon samples that tended toward the same adsorption properties: Iodine number 1100 mg/g and Methylene blue value 252 mg/g.The yield of activated carbon obtained from the pre-oxidized coal is 10% higher than the yield from parent coal but the activated carbons have the same adsorption properties.

  5. Characterization of burning and CO2 gasification of chars from mixtures of Zonguldak (Turkey) and Australian bituminous coals

    International Nuclear Information System (INIS)

    In this study, different mixtures (30 wt.% + 70 wt.% and 50 wt.% + 50 wt.%, respectively) of Zonguldak bituminous coal (Turkey) and an Australian bituminous coal are carbonized to obtain char samples. The ignition temperatures of the samples are determined by sending O2 onto the samples in a system designed for determining the ignition temperature. The gasification reactivity of the chars in a CO2 atmosphere is also measured at temperatures between 800 deg. C and 1050 deg. C. The relationship between the ignition temperature and the burning character of the same samples is investigated thermogravimetrically. The moisture, ash and volatile matter analyses are also performed. An increase in carbonization temperature leads to a decrease in the amount of volatile matter. The differences between the effects of volatile matter on the ignition temperature and the gasification reactivity of the samples with CO2 might be explained by the change in pore structure and the varying catalytic effect of mineral components in the structure. It is also seen that there is a good correlation between the thermal analysis and the complete analysis results of the samples

  6. Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation

    Science.gov (United States)

    Li, Xiongwei; Mao, Xianglei; Wang, Zhe; Richard, E. Russo

    2015-11-01

    The carbon content of bituminous coal samples was analyzed by laser-induced breakdown spectroscopy. The 266 nm laser radiation was utilized for laser ablation and plasma generation in air. The partial least square method and the dominant factor based PLS method were used to improve the measurement accuracy of the carbon content of coal. The results showed that the PLS model could achieve good measurement accuracy, and the dominant factor based PLS model could further improve the measurement accuracy. The coefficient of determination and the root-mean-square error of prediction of the PLS model were 0.97 and 2.19%, respectively; and those values for the dominant factor based PLS model were 0.99 and 1.51%, respectively. The results demonstrated that the 266 nm wavelength could accurately measure the carbon content of bituminous coal. supported by National Natural Science Foundation of China (No. 51276100) and the National Basic Research Program of China (973 Program) (No. 2013CB228501). The authors also thank the financial funding from the U. S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division at Lawrence Berkeley National Laboratory (No. 2013CB228501)

  7. chemo-Hydro-mechanical modelling of in-situ disposal of a bituminized radioactive waste in boom clay

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The current reference solution of the Belgian Agency for the Management of Radioactive Waste and Fissile Materials (ONDRAF/NIRAS) envisages underground disposal of Eurobitum Bituminized radioactive Waste (BW) in a geologically stable clay formation. In Belgium, the Boom Clay, which is a 30 to 35 million years old and ∼100 m thick marine sediment is being studied as a potential host formation because of its favorable properties to limit and delay the migration of the leached radionuclides to the biosphere over extended periods of time. The current disposal concept foresees that several drums (220 litres) of Eurobitum would be grouped in thick-walled cement-based secondary containers, which in turn would be placed in concrete-lined disposal galleries that are excavated at mid-depth in the clay layer. Only 80-90 % of the total volume of the drum is filled with Eurobitum.The remaining voids between the containers would be backfilled with a cement-based material. The interaction between the BW and the host clay formation is a very complicated chemo-hydro-mechanical process and depends not only on the hydro-mechanical behaviour of the Boom Clay itself, but also on that of the BW. In fact, the osmosis-induced uptake of water by the dehydrated hygroscopic salts embedded in the waste induces a geo-mechanical perturbation of the host formation, caused by the swelling and the increase of the pressure in and around the waste. The objectives of the Chemo-Hydro-Chemical (CHM) analysis presented in this work are (i) to get insights on the kinetics of water uptake by BW, dissolution of the embedded NaNO3 crystals, solute leaching, and maximum generated pressure under disposal conditions and (ii) to study the stress redistribution due to the recompression of the clay around a gallery caused by the swelling pressure of the bitumen and the admissible swelling pressure for Boom clay. Firstly, a CHM formulation of chemically and

  8. Development of new non destructive methods for bituminized radioactive waste drums characterization; Developpement de nouvelles methodes de caracterisation non destructive pour des dechets radioactifs enrobes dans du bitume

    Energy Technology Data Exchange (ETDEWEB)

    Pin, P

    2004-10-15

    Radioactive waste constitute a major issue for the nuclear industry. One of the key points is their characterization to optimize their management: treatment and packaging, orientation towards the suited disposal. This thesis proposes an evaluation method of the low-energy photon attenuation, based on the gamma-ray spectra Compton continuum. Effectively, the {sup 241}Am measurement by gamma-ray spectrometry is difficult due to the low energy of its main gamma-ray (59.5 keV). The photon attenuation strongly depends on the bituminous mix composition, which includes very absorbing elements. As the Compton continuum also depends on this absorption, it is possible to link the 59.5 keV line attenuation to the Compton level. Another technique is proposed to characterize uranium thanks to its fluorescence X-rays induced by the gamma emitters already present in the waste. The uranium present in the drums disturbs the neutron measurements and its measurement by self-induced X-ray fluorescence allows to correct this interference. Due to various causes of error, the total uncertainty is around 50 % on the activity of the radioisotope {sup 241}Am, corrected by the peak to Compton technique. The same uncertainty is announced on the uranium mass measured by self induced X-ray fluorescence. As a consequence of these promising results, the two methods were included in the industrial project of the 'Marcoule Sorting Unit'. One major advantage is that they do not imply any additional material because they use information already present in the gamma-ray spectra. (author)

  9. Selected annotated bibliography of the geology of uraniferous and radioactive native bituminous substances, exclusive of coals, in the United States

    Science.gov (United States)

    Jones, Harriet Nell

    1956-01-01

    Native bituminous substances are divided into two groups, 1) bitumens and, 2) pyrobitumens. Bitumens are composed principally of hydrocarbons substantially free from oxygenated bodies, are fusible, and are soluble in carbon disulfide. Native bitumens occur in liquid and solid forms. The native liquid bitumens include all petroleums or crude oils. Native solid bitumens include native waxes such as ozocerite, asphalts or petroleum tars, and asphaltites such as gilsonite and grahamite. Pyrobitumens are composed principally of hydrocarbons which may contain oxygenated bodies. They are infusible and are insoluble, or nearly insoluble, in carbon disulfide. Native pyrobitumens are divided into an oxygen-containing group including peats, lignites, and coals, and an essentially oxygen-free, asphaltic group including such substances as wurtzilite, albertite, impsonite, and ingramite. Thucholites, which are carbonaceous substances that may contain uranium, thorium, and rare earths, commonly are considered to be pyrobitumens. Their compositions are variable and may fall into either the oxygen-containing or oxygen-free group. All varieties of native bituminous substances may be associated with mineral matter. The nomenclature of bitumens and pyrobitumens is used very loosely in the literature. This circumstance arises from the difficulty in recognizing many of these substances by visual examination, and because many of them can be identified accurately only by chemical methods. Inasmuch as some of the chemical procedures are time-consuming and satisfactory analytical methods have not been devised for all these substances, geologists generally have not obtained precise identifications but rather have used names that appeared most appropriate to the circumstances. It is expected that future research will show many substances called "asphaltite," "thucholite," etc., to be incorrectly identified. The nomenclature used by the authors of the various references of this bibliography is

  10. Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petrosani basin (southern Carpathian Mountains), Romania

    Energy Technology Data Exchange (ETDEWEB)

    Belkin, Harvey E.; Tewalt, Susan J. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Stucker, J.D. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); University of Kentucky Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Morehead, KY, 40351 (United States); Tatu, Calin A. [University of Medicine and Pharmacy, Department of Immunology, Clinical Laboratory No. 1, Pta. E. Murgu No. 2, RO-1900 Timisoara (Romania); Buia, Grigore [University of Petrosani, Department of Geology, University St. 20, RO-2675 Petrosani (Romania)

    2010-05-01

    Belt samples of Oligocene (Chattian) bituminous coal from 10 underground mines located in the Jiu Valley, Hunedoara County, Petrosani basin, Romania, have been examined and analyzed for proximate and ultimate analysis, major-, minor- and trace-element chemistry, organic petrography, and vitrinite reflectance. The mineral chemistry and mode of occurrence of trace elements also have been investigated using SEM and electron microprobe techniques. Twenty coal beds occur in the Jiu Valley and most of the samples are from bed no. 3, the most productive bed of the Dilja-Uricani Formation of Oligocene age. The Petrosani basin, oriented SW-NE, is 48-km long, 10-km wide at the eastern part and 2-km wide at the western part. The coal mines are distributed along the center of the valley generally following the Jiu de Vest River. Reflectance measurements indicate that the rank of the coals ranges from high-volatile B to high-volatile A bituminous. Overall, rank decreases from the southwest to the northeast. In bed no. 3, R{sub max} varies from 0.75% in the northeast to 0.93% in the southwest. Although, most Oligocene coals in Romania and adjacent countries are lignite in rank, the Jiu Valley bituminous coals have been affected by regional metamorphism and attending hydrothermal fluids related to the Alpine orogenic event. The coals are all dominated by vitrinite; resinite and funginite are important minor macerals in most of the coals. Pyrite and carbonate generally dominate the mineral assemblages with carbonate more abundant in the northwest. Siderite occurs as nodules and masses within the macerals (generally vitrinite). Dolomite and calcite occur as fracture fillings, plant-cell fillings, and in other authigenic forms. Late-stage fracture fillings are siderite, dolomite, calcite, and ankerite. In one instance, two populations of siderite ({proportional_to} 35 and {proportional_to} 45 wt.% FeO) plus ankerite fill a large fracture. Late-stage pyrite framboid alteration is Ni

  11. Effect of structural alteration on the macromolecular properties of brown and bituminous coals, quantitative relationships to the hydrogenation reactivity with tetralin

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, P.N.; Kuznetsova, L.I. [Inst. of Chemistry and Chemico-Metallurgical Processes, Krasnoyarsk (Russian Federation); Bimer, J.; Salbut, P.D. [Inst. of Organic Chemistry, Warszawa (Poland); Gruber, R. [Univ. de Metz (France)

    1996-12-31

    The mobility of macromolecular network has been found to be the fundamental property of both brown and bituminous coals governing the reactivity for hydrogenation with tetralin. In Kansk-Achinsk brown coal, this was primarily affected by carboxylate cross-linking via polyvalent cations like Ca.

  12. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. PMID:22944493

  13. Comparative study of thermal properties of bio-coal from aromatic spent with low rank sub-bituminous coals.

    Science.gov (United States)

    Yadav, Vineet; Baruah, B P; Khare, Puja

    2013-06-01

    In present investigation, biocoal samples were prepared from aromatic plant waste of two perennial grasses, i.e. Cymbopogon flexuosus (lemongrass) and Vetiveria zizanioides (khus) after oil extraction, root of Rosa damascene (rose), bark of Eucalyptus citriodora. These biocoals were characterized by proximate, ultimate, metal, thermogravimetric analysis (TGA), Fourier Transform Infra Red (FTIR) spectroscopy and ash analyses. Activation energies, initial temperature of devolatilization, maximum rate of weight loss (Rmax), fouling, slagging and alkali index were determined on the basis of TGA and ash analysis. These biocoals have good calorific values. There is possibility of slagging and fouling in combustion system but it is not severe. Owing to their similar fuel properties as high sulphur sub-bituminous coal, they can be good candidates for co-firing. Blending of these biocoals with high sulphur coals will serve dual purpose as (i) alternate fuel, and (ii) reduction in SO2 emission. PMID:23603187

  14. Structural characterization of vitrinite-rich and inertinite-rich Permian-aged South African bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Van Niekerk, Daniel; Mathews, Jonathan P. [Energy and Mineral Engineering and the EMS Energy Institute, Pennsylvania State University, Hosler Building, University Park, PA 16802 (United States); Pugmire, Ronald J. [Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States); Solum, Mark S. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States); Painter, Paul C. [Department of Materials Science and Engineering, Pennsylvania State University, 320 Steidle Building, University Park, PA 16802 (United States)

    2008-12-01

    Two South African coals of the same rank and age, but different in maceral composition were subjected to extensive structural analyses. Inertinite-rich Highveld coal (dominated by semifusinite) and vitrinite-rich Waterberg coal were studied to determine structural differences and similarities. The two coals had similar carbon content ({proportional_to} 84%, dmmf) and vitrinite reflectance (mean-maximum 0.71% for vitrinite-rich vs. 0.75% for inertinite-rich), but differed in hydrogen content (6.23% for vitrinite-rich and 4.53% for inertinite-rich). The inertinite-rich coal was more aromatic (86% for inertinite-rich and 76% for vitrinite-rich) and more polycondensed (indicated by a higher bridgehead carbon content). The inertinite-rich coal was structurally more ordered, with a higher degree of crystalline stacking. Both coals had similar average aromatic cluster sizes (16 carbons for vitrinite-rich and 18 carbons for inertinite-rich) and number of cluster attachments (6 attachments for vitrinite-rich and 5 attachments for inertinite-rich). Mass spectrometry showed that both coals consist of similar molecular weight distributions; ranging to approximately 1700 m/z with a maximum abundance of {proportional_to} 450 m/z for the vitrinite-rich coal and {proportional_to} 550 m/z for the inertinite-rich coal. Compared to the Argonne Premium coals the South African vitrinite-rich Waterberg coal was comparable to the coals in the high-volatile bituminous range and inertinite-rich Highveld was closer to the medium- to low-volatile bituminous range. Both coals were surprisingly similar in bulk characterization, although inertinite-rich Highveld coal was structurally more ordered, hydrogen deficient, and more aromatic. (author)

  15. Bituminous solidification, disposal, transport and burial of spent ion-exchange resins. Part of a coordinated programme on treatment of spent ion exchange resins

    International Nuclear Information System (INIS)

    The project dealing with the incorporation of spent ion-exchange resins into bitumen was performed within the Agency coordinated research programme on treatment of spent ion-exchange resins. Physical and chemical properties of commercial ion-exchange resins, bitumens and bituminized resins were studied. It was shown that bitumen with low oil content and with a softening point of 60-70 deg. C are applicable for the incorporation of resins. The final waste form is allowed to contain maximum 50% resin. The comprehensive study of the biological resistance of B-30 bitumen was performed. That showed that any bacteriological attack can be regarded as generally insignificant. A continuously operating technology was realized on a semi-plant scale. The best operating conditions of this technology were determined. On the basis of the experience gained from the experiments a design of the bituminization plant of 50m3 dry resin/year treatment capacity was proposed

  16. Effect of transesterification degree and post-treatment on the in-service performance of NCO-functionalized vegetable oil bituminous products

    OpenAIRE

    Cuadri Vega, Antonio Abad; García Morales, Moisés; Navarro Domínguez, Francisco Javier; Partal López, Pedro

    2014-01-01

    The bitumen modification through polyurethane prepolymers presents significant benefits for the manufacture of bituminous products for the paving industry. In this sense, this work explores the use, as bitumen modifier, of a novel reactive prepolymer synthesized by reaction of 4,4´,diphenylmethane diisocyanate (MDI) and a vegetable oil-based polyol, castor oil (CO), previously transesterified with pentaerythritol. On the one hand, thermal analysis on transesterified CO revealed a highly stabl...

  17. JV Task-123 Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Laudal

    2008-05-01

    The Energy & Environmental Research Center (EERC), in partnership with Babcock & Wilcox (B&W) and with funding from U.S. Department of Energy (DOE), conducting tests to prove that a high level of mercury control (>90%) can be achieved at a power plant burning a high-sulfur eastern bituminous coal. With funding from the Electric Power Research Institute (EPRI), DOE, and Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates Program, the EERC completed an additional sampling project to provide data as to the behavior of a number of trace elements across the various pollution control devices, with a special emphasis on the wet flue gas desulfurization (FGD) system. Results showed that the concentrations of almost all the elements of interest leaving the stack were very low, and a high percentage of the trace elements were captured in the electrostatic precipitator (ESP) (for most, >80%). Although, with a few exceptions, the overall mass balances were generally quite good, the mass balances across the wet FGD were more variable. This is most likely a result of some of the concentrations being very low and also the uncertainties in determining flows within a wet FGD.

  18. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. PMID:27393832

  19. Nuclear method for determination of asphalt content corrected for moisture in bituminous mixture. Final report, March 1988-February 1989

    International Nuclear Information System (INIS)

    This report presents results of research on the development of a method for determination of asphalt content corrected for moisture using the nuclear-gauge method. The researchers selected an approach that involved rapid drying of the asphalt concrete samples in a microwave oven prior to the determination of asphalt content using a Troxler Model 3241-C nuclear asphalt-content gauge. As a reference, asphalt contents were also measured using quantitative extraction. In general, good agreement was found between asphalt contents measured by the Troxler Model 3241-C nuclear gauge and asphalt contents measured by quantitative extraction. In extended sampling for Plant 1, no significant increase in nuclear gauge error was seen over a 10-day sampling period, which indicates that daily calibration of the nuclear gauge is probably unnecessary to maintain satisfactory performance. The field demonstration of the procedure of drying the bituminous mixture in a microwave oven and then determining its asphalt content by the nuclear method indicated asphalt-content results were obtained approximately 1 hour faster than results obtained by quantitative extraction

  20. Effect of mineral matrix and seam thickness on reflectance of vitrinite in high to low volatile bituminous coals - an enigma

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, F.; Gentzis, T.; Snowdon, L.R.; Bustin, R.M.; Feinstein, S.; Labonte, M. (Geological Survey of Canada, Calgary, AB (Canada). Inst. of Sedimentary and Petroleum Geology)

    1993-04-01

    The variation of vitrinite reflectance with respect to mineral matrix (lithology), the thickness of coal seams and coal lenses and the type of organic matter was studied from two cores in a 550 m sedimentary succession from the Upper Jurassic to Lower Cretaceous Kootenay Group. The data obtained indicate that reflectance in high to low volatile bituminous coals (%R[sub o], max0.8-1.35) with depth of burial is affected by the percentage of organic matter in the samples. A positive correlation between the vitrinite reflectance and the percentage of organic matter and a negative correlation with the percentage of mineral matter exist and the thicker the coal interval, the higher the vitrinite reflectance. Variations in vitrinite reflectance may be attributed to chemical differences in the organic matter, possibly induced by degradation and diagenesis syn- or post-depositionally, and to the effect of some clay minerals present in the sediments, which may act as catalysts. Differences in the thermal conductivity of the strata have demonstrably not accounted for the observed variations in reflectance with lithology. The differences in the vitrinite reflectance of organic matter between lithotypes is substantial and is thus an important consideration in resolving the time-temperature history and generation of hydrocarbons from a sedimentary succession.

  1. Waste to Wealth; The Utilization of Scrap Tyre as Aggregate in Bituminous Mixes for Road Construction

    OpenAIRE

    Oba, A. L.,; Onungwe, I.,

    2015-01-01

    The problem associated with solid waste management is on the increase both in the industries, urban cities and in the rural areas. In the United States of America, Asia and Europe, there are over hundreds of waste to wealth combustion plants from where solid wastes are incinerated. In Nigeria, amidst the increasing importation of vehicle tyre such plants are scarcely in existence to enhance generation of revenue from waste through the extraction of raw material for the production ...

  2. Suitability of UK bituminous and Spanish lignitious coals and their blends of two stage liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Flatman-Fairs, D.P.; Harrison, G. [Staffordshire University, Stoke-on-Trent (United Kingdom). School of Sciences

    1999-11-01

    Liquefaction experiments were carried out in spinning/falling basket autoclaves using samples of Kellingly (UK) and Samca (Spain) coals, and a process derived recycle solvent (PDRS). Hydrocracking experiments were carried out in a bomb type autoclave using sulphided NiMo catalyst. For the dissolution, experiments with the individual coals, the influence of temperature 380, 400 and 420{degree}C, and time 1 or 2 h was considered. For hydrocracking, preliminary experiments were carried out with a Kellingly coal liquid to establish appropriate reaction conditions for the hydrocracking of Kellingly and Samca coal liquid blends. There was some evidence of synergistic activity for conversion to dichloromethane (DCM) soluble material and antagonistic behaviour for conversion to tetrahydrofuran soluble/DCM insoluble material for dissolution of the coal blends, but hydrocracking of the coal liquid blends resulted in additive behaviour. For each of the coals, the extent of dissolution correlated with the extent of desulphurisation. The sulphur contents of the solid residues from dissolution tended to increase with the temperature of dissolution, but their H:C ratios decreased and their calorific values were independent. 12 refs., 7 figs., 3 tabs.

  3. Waste to Wealth; The Utilization of Scrap Tyre as Aggregate in Bituminous Mixes for Road Construction

    Directory of Open Access Journals (Sweden)

    Oba, A. L.,

    2015-11-01

    Full Text Available The problem associated with solid waste management is on the increase both in the industries, urban cities and in the rural areas. In the United States of America, Asia and Europe, there are over hundreds of waste to wealth combustion plants from where solid wastes are incinerated. In Nigeria, amidst the increasing importation of vehicle tyre such plants are scarcely in existence to enhance generation of revenue from waste through the extraction of raw material for the production of light weight aggregates, printing ink, paints, shoe polish, dry cell and battery heads. This research paper seeks to utilize vehicle scrap tyre (VST as aggregates in asphaltic mixture by adopting the dry process to evaluate the effect of rubber-bitumen interaction on asphaltic concrete properties; laboratory investigation using 4.75mm, 2.36mm and 0.600mm chunk tyre particle size modified asphalt mixture containing 2%, 4%, 6%, 8% and 10% scrap tyre and 0% tyre content as control mixture. The mixtures were subjected to Marshall Tests where the stability, flow, percentage air void, unit weight, void mineral aggregate, height of specimen and specific gravity were determined. The results obtained shows that as tyre percentage increase the stability, unit weight and specific gravity value decreases. On the other hand, as the tyre content increases, the flow and height of specimen increases while as the tyre content increases the percentage air void and VMA increased for 4.75mm Tyre Particle Size (TPS and 2.36mm TPS while for 0.600mm TPS, reverse is the case. In summary and in comparism with standard specification for road construction material, the Marshall tests conducted on the tyre modified specimens remained intact and by interpretation; material possessing such property indicates good impact resistance when use as surface course in flexible pavement. Conclusively, the use of 10% 4.75mm, 4% 2.36mm or 4% 0.600mm TPS by weight of aggregate in asphaltic concrete is

  4. Characterization of granite and limestone powders for use as fillers in bituminous mastics dosage

    Directory of Open Access Journals (Sweden)

    BRENO BARRA

    2014-06-01

    Full Text Available This paper discusses the importance of studies on materials known as fillers from different mineral origins, used in asphalt mixes, specifically in the formulation of mastics. The research was carried out on samples of limestone and granite rock filler and asphalt binder (50/70. The samples were evaluated through semiquantitative chemical analyses by X-ray fluorescence, granulometry by low angle laser emission, scanning electron microscopy, softening point tests, penetration tests, and aggregate-asphalt binder and aggregate-mastic adhesion tests. The results highlighted convergent trends, indicating that the active behavior of the fillers in the mastic formulation is not related to the size of the particles, but rather to their form, surface texture, specific surface area and mineralogical nature, allowing the filler activity concept to be divided into two components: physical (hardening and chemical (adhesion.

  5. Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures

    Directory of Open Access Journals (Sweden)

    López-López, E.

    2015-06-01

    Full Text Available This study focuses on the characterization of bottom ash (PCC-BA and determining the mechanical characteristics of hot mix asphalt (HMA using PCC-BA and hydrated lime (HL as filler. Physical and chemical characterization of the bottom ash was carried out to evaluate its eventual reutilization as filler substitute. The materials tested in this study were made using 0%, 25%, 50%, 70% and 100% of PCC-BA combined with HL. HMA mixes were evaluated in terms of their engineering properties, namely: air voids in the mixes, water sensitivity, stiffness modulus, performance in wheel tracking test and fatigue resistance. The results obtained indicate that HMA mixes with a filler blend of 70% PCC-BA and 30% HL fulfil European standards and are suitable for light traffic or small infrastructures.Este estudio se centra en la caracterización de las cenizas de fondo (PCC-BA y la determinación de las características mecánicas de mezclas bituminosas en caliente (HMA, utilizando cenizas de fondo y la cal hidratada (HL como filler. Se realizó la caracterización física y química de las cenizas de fondo para evaluar su empleo como sustituto de filler. Las mezclas ensayadas en este estudio se realizaron utilizando 0%, 25%, 50%, 70% y 100% de cenizas de fondo combinadas con cal hidratada. Se evaluaron propiedades ingenieriles de las mezclas bituminosas, tales como los huecos de aire en las mezclas, la sensibilidad al agua, el módulo de rigidez, el ensayo de pista y la resistencia a la fatiga. Los resultados obtenidos indican que las mezclas bituminosas fabricadas con una combinación de filler del 70% de cenizas de fondo y el 30% cal hidratada, cumplen con las normas europeas y son adecuados para su aplicación con tráficos ligeros o en pequeñas infraestructuras.

  6. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  7. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Phuoc [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State; Mcintyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  8. Controls on coalbed methane potential and gas sorption characteristics of high-volatile bituminous coals in Indiana

    Science.gov (United States)

    Solano-Acosta, Wilfrido

    distribution, and adsorption experiments at high and low gas pressures are employed to estimate reservoir gas capacity and to characterize high volatile bituminous coals of Indiana for potential future CO2 sequestration. Understanding the mechanisms and geologic conditions that control the occurrence of gas in coal allows us to better characterize: (1) CBM reservoirs for their potential economic use, and (2) coal seams as future receptacles of anthropogenic carbon dioxide.

  9. Progressive oxidation of pyrite in five bituminous coal samples: An As XANES and 57Fe Moessbauer spectroscopic study

    International Nuclear Information System (INIS)

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Moessbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Moessbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored

  10. Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Daniele; Vassura, Ivano [Laboratory of Chemistry, C.I.R.S.A., University of Bologna, via S. Alberto 163, I-48100 Ravenna (Italy)

    2006-03-01

    A procedure in off-line analytical pyrolysis was investigated for the rapid determination of polycyclic aromatic hydrocarbons (PAHs) evolved from thermal degradation of organic materials. Samples spiked with perdeuterated PAHs were pyrolysed at 1000{sup o}C for 60s by means of a resistively heated filament pyrolyser inserted into a glass chamber connected to a cartridge with a sorbent (XAD-2 resin). PAHs trapped onto the resin were extracted with dichloromethane and analysed by gas chromatography-mass spectrometry (GC-MS). The analytical performance of the overall procedure (precision, recovery, effect of experimental parameters) was evaluated by pyrolysing a bituminous coal certified reference material (CRM). Emission levels of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphtylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene were determined for bituminous and anthracite coals, tyre, and cellulose. Despite some limitations, the method was adequate to the purpose of quantitatively measuring the tendency of various materials to release volatile PAHs upon heating. (author)

  11. Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating

    Science.gov (United States)

    Schimmelmann, Arndt; Mastalerz, Maria; Gao, Ling; Sauer, Peter E.; Topalov, Katarina

    2009-10-01

    Unlike long-term heating in subsiding sedimentary basins, the near-instantaneous thermal maturation of sedimentary organic matter near magmatic intrusions is comparable to artificial thermal maturation in the laboratory in terms of short duration and limited extent. This study investigates chemical and H, C, N, O isotopic changes in high volatile bituminous coal near two Illinois dike contacts and compares observed patterns and trends with data from other published studies and from artificial maturation experiments. Our study pioneers in quantifying isotopically exchangeable hydrogen and measuring the D/H (i.e., 2H/ 1H) ratio of isotopically non-exchangeable organic hydrogen in kerogen near magmatic contacts. Thermal stress in coal caused a reduction of isotopically exchangeable hydrogen in kerogen from 5% to 6% in unaltered coal to 2-3% at contacts, mostly due to elimination of functional groups (e.g., sbnd OH, sbnd COOH, sbnd NH 2). In contrast to all previously published data on D/H in thermally matured organic matter, the more mature kerogen near the two dike contacts is D-depleted, which is attributed to (i) thermal elimination of D-enriched functional groups, and (ii) thermal drying of hydrologically isolated coal prior to the onset of cracking reactions, thereby precluding D-transfer from relatively D-enriched water into kerogen. Maxima in organic nitrogen concentration and in the atomic N/C ratio of kerogen at a distance of ˜2.5 to ˜3.5 m from the thicker dike indicate that reactive N-compounds had been pyrolytically liberated at high temperature closer to the contact, migrated through the coal seam, and recombined with coal kerogen in a zone of lower temperature. The same principle extends to organic carbon, because a strong δ13C kerogen vs. δ15N kerogen correlation across 5.5 m of coal adjacent to the thicker dike indicates that coal was functioning as a flow-through reactor along a dynamic thermal gradient facilitating back-reactions between mobile

  12. Spanish Round Robin test on water sensitivity test of bituminous mixtures; Ejercicio espanol interlaboratorios sobre el ensayo de sensibilidad al gua de mezclas bituminosas

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Saez, R.; Enrique Gabeiras, L.; Miranda Perez, L.; Valor Hernandez, F.

    2011-07-01

    The amendment of Article 542 and 543 on the hot asphalt mixtures included in the Spanish Technical specifications for Road Construction (PG-3), by Circular Order 24/2008, introduced a new series of modification to adapt Spanish regulations to European standards series EN 13108. Among the various amendments, new tests methods and design criteria are considered, as UNE-EN 12697-12 for assessing the water sensitivity on compacted specimens, which is mandatory for every kind of bituminous mixture. In this paper, firstly a comparison between the European method and the old Spanish method described in the NLT-162 is made, explaining the experimental conditions selected. The results of an interlaboratory study or Round Robin Test conducted in ten Spanish laboratories are subsequently described and analyzed, in order to allow each laboratory to assess its technical performance, and also to determine quantitatively the precision of the new method in terms of repeatability and reproducibility. (Author) 15 refs.

  13. Multielement analysis of environmental reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Concentrations of trace elements in environmental reference materials prepared by the National Institute for Environmental Studies, Japan (NIES) and by the National Institute of Standards and Technology, USA (NIST) were determined by instrumental neutron activation analysis (INAA). NIES CRM No. 5 Human Hair, No. 6 Mussel, No. 7 Tea Leaves, No. 8 Vehicle Exhaust Particulates, No. 9 Sargasso and No. 10 Rice Flour-unpolished samples (ca. 150 - 1200 mg) and NIST SRM 1632a Bituminous Coal, SRM 1635 Sub-bituminous Coal and SRM 1633a Coal Fly Ash samples (ca. 10 - 150 mg) were irradiated at the Musashi Institute of Technology Research Reactor (MITRR). Concentrations of 28 - 52 elements in these NIES and NIST environmental reference materials were determined by two irradiation methods and four γ-ray counting methods. The determined values were in good agreement with the NIES and NIST certified values. (author)

  14. 纤维沥青混合料的拌和成型工艺研究%Research on Mixing and Shaping Technology of Fiber Bituminous Mixture

    Institute of Scientific and Technical Information of China (English)

    程英伟; 何晓鸣

    2012-01-01

    利用正交试验对剑麻纤维沥青混凝土混合料的拌和成型工艺进行研究.在固定配合比的前题下,以拌和方案、沥青加热温度、集料加热温度和成型温度为试验因素,模拟路面施工的各种拌和成型情况设计了L9正交表分别进行马歇尔试验.运用极差分析法对试验结果进行分析,确定了纤维沥青混合料拌和成型的优选方案为“同步法拌和+沥青加热温度为175℃+集料加热温度为206℃+成型温度为165℃”.最后分析了几种试验因素对试验指标的影响机理.%In this paper, mixing and shaping technology of bituminous concrete mixture with sisal fiber is researched by orthogonal experiment. Under a fixed mix proportion, mixing solutions, asphalt heating temperature, aggregate heating temperature and shaping temperature are selected as test factors. The variety of mixing and shaping in pavement construction is simulated by designing a L9 orthogonal table for Marshall tests. Range Analysis Method is used to analyze test results, and then the optimal scheme of mixing and shaping for fiber bituminous concrete mixture is determined. The optimal scheme is "synchronization method of mixing+asphalt heating temperature of 175℃+aggregate heating temperature of 206℃ + shaping temperature of 165℃”. Last, the influence mechanism of test factors on test indicators is analyzed.

  15. 热黏结剂对低阶煤制取型煤的热态性能影响%STUDY ON INFLUENCE OF HEAT BINDER ON PROPERTIES OF BRIQUETTE FROM LOW RANK BITUMINOUS COALS UNDER HOT STATE

    Institute of Scientific and Technical Information of China (English)

    黄山秀; 马名杰

    2013-01-01

    选用煤焦油沥青、高黏结肥煤作为热黏结剂,分别以不同的掺入量和低阶烟煤粉煤及其他原料混合制取型煤.型煤样品热强度测定结果表明:以煤焦油沥青为热黏结剂的型煤热强度高于以高黏结肥煤为热黏结剂的型煤热强度,进一步对型煤微观结构电镜分析也证实了以煤焦油沥青为热黏结剂的型煤其黏结性能和防水性相对较好,电镜切片表明,煤焦油沥青热态下析出的挥发分经过胶质体时产生的气泡相互作用能使胶质体受压形成更坚固的整体网状结构;研究还发现煤焦油沥青的粒度对型煤热强度也有一定的影响.%Two different materials such as coal tar pitch, fat coal with high adhesion were chosen as the heat binder, which were mixed into the powder of low rank bituminous coals from Shenmu or Yuzhou and other raw materials to make coal briquette in different ration. The determination results show that the thermal strength of coal briquette with tar pitch is higher than that of coal briquette with fat coal. Further analysis of micro-structure of coal briquette by electron microscopic also verifies that the cohesion and water resistance of coal briquette with tar pitch is stronger, and it is because that interaction of air bubble poduced by volatile separated under hot state through colloid pressures the colloid and form the stronger net-structure on coal granules surface. Moreover, the particle size of tar pitch also have certain effect on thermal strength of coal briquette.

  16. Experimental Study on Minimum Ignition Temperature of Bituminous Coal Dust Cloud%烟煤煤尘云最低着火温度实验研究

    Institute of Scientific and Technical Information of China (English)

    邓军; 屈姣; 王秋红; 谢长春

    2014-01-01

    In this PaPer,study and measurement were carried out on the minimum ignition temPerature of three kinds of bituminous coal dust clouds by using the Godbert-Greenwald heating furnace,including the non-caking coal taken from Dafusi Mine in Binxian County,the gas coal from Kouzi East Mine in Anhui Province and the lean coal from 301 working face of Tianchi Mine in Shanxi Province. It was found out from the exPerimental results that the ash content of the gas coal,non-caking coal and lean coal increased in turn,their volatile content reduced in turn,their fixed carbon content increased in turn,and the water content of the lean coal,gas coal and non-caking coal increased in turn;the minimum ignition temPerature of the three kinds of bituminous coal dust clouds decreased with the reduction of their Particle sizes;based on their minimum ignition temPeratures,it was found out that the hardest ignited coal dust was the lean coal and the easiest ignited coal dust was gas coal. This study can Provide an exPerimental basic for the safe Production in coal mines.%为了研究彬县大佛寺矿不粘煤、安徽口孜东矿气煤、山西天池矿301工作面瘦煤等3种烟煤的煤尘云最低着火温度,实验采用Godbert-Greenwald加热炉对以上3种烟煤的煤尘云最低着火温度进行了测试。研究发现气煤、不粘煤、瘦煤的灰分依次增大,挥发分依次减小,固定碳依次增大,水分随瘦煤、气煤、不粘煤依次增大;这3种烟煤煤尘云的最低着火温度都随煤尘粒径的减小而降低;根据最低着火温度,得知煤尘云被引燃的难易程度依次为瘦煤、不粘煤、气煤。此基础研究可为煤矿的安全生产提供实验依据。

  17. Adsorption of bituminous components at oil/water interfaces investigated by quartz crystal microbalance: implications to the stability of water-in-oil emulsions.

    Science.gov (United States)

    Goual, Lamia; Horváth-Szabó, Géza; Masliyah, Jacob H; Xu, Zhenghe

    2005-08-30

    Silica-gel-coated QCM crystals oscillating in a thickness shear mode are used to measure adsorption of bituminous components in water-saturated heptol (1/1 vol ratio of a heptane/toluene mixture) at the oil/water interface. In addition to the viscoelasticity of the adsorbed film, the effects of the bulk liquid density and viscosity as well as the liquid trapped in interfacial cavities are taken into account for the calculation of adsorbed mass. Asphaltenes in heptol adsorb continuously at the oil/water interface, while resins (the surface-active species in maltenes) show adsorption saturation in the same solvent. For Athabasca bitumen in heptol, two adsorption regimes are observed depending on concentration. At low concentrations, a slow, non-steady-state, and irreversible adsorption takes place. At high concentrations, a steady-state adsorption with limited reversibility results in a quick adsorption saturation. The threshold concentration between these adsorption regimes is 1.5 wt % and 8 wt % for oil/water and oil/gold interfaces, respectively. The threshold concentration, the total adsorbed amount, and the flux of non-steady-state adsorption depend on the resin-to-asphaltene ratio. The threshold concentration is related to the earlier reported critical bitumen concentration characterizing the rigid-to-flexible transition of the interfacial film. We propose a new mechanism based on the change of the effective resin-to-asphaltene ratio with dilution to explain both the adsorption behavior and emulsion stability. PMID:16114932

  18. The impact of geology on the performance of a bituminous surfaced pavement—a case study from southeastern Nigeria

    Science.gov (United States)

    Okagbue, C. O.; Uma, K. O.

    One of the multi-million Naira dual carriageways in Nigeria, the Enugu-Port Harcourt expressway, has continued to experience failure at some sections, namely the stretches covering Lokpaukwu, Lokpanta, and Leru. This road section which, unlike others, does not respond to regular and routine maintenance, is concentrated on one geologic formation, the Eze Aku Shale which has been intruded by a dolerite sill. The emplacement of the dolerite sill had resulted in intense fracturing of the shales in the vicinity of the intrusions which includes portions of where the express road crosses. The road problem is most severe where the dolerite sill is traced right under and across the road. There is evidence from the study that the road problem is linked to the geological/hydrogeological conditions of the area. For example, the problematic section of the road is built on a considerably jointed, fractured and weathered shale formation as a subgrade. The subgrade ultimately has low bearing capacity. The road is almost at the foot of an escarpment where there is a concentration of natural groundwater discharge. Most of the discharge zones including natural water courses are now almost blocked resulting in increased groundwater storage and rise in water table under the highway pavement. This leads to fast deterioration of the base course materials. The dolerite sill, where it crosses the road, is less than 2 m below the grade level. It impedes vertical infiltration as well as lateral groundwater flow. Thus its position with respect to the highway grade elevation leads to an almost perpetual wetting of the base and sub-base materials.

  19. Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR

    Energy Technology Data Exchange (ETDEWEB)

    Tom Campbell

    2008-12-31

    This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

  20. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    Science.gov (United States)

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  1. Methane and carbon dioxide adsorption capacity of bituminous coals from the Ostrava-Karvina Coal District, Upper Silesian Basin, Czech Republic

    Science.gov (United States)

    Weniger, P.; Busch, A.; Krooss, B. M.; Francu, J.; Francu, E.

    2009-04-01

    In the context of a joint Czech-German project, experimental and analytical methods are being applied to improve the understanding of compositional variation of coal-related gas in the SW part of the Upper Silesian Basin (Czech Republic). According to present understanding, the gas composition is controlled by generation (thermal vs. microbial), migration and adsorption/desorption processes. In particular the effects of the sorption processes on the chemical and isotopic composition of coal gases are only poorly explored. During the first stage of this project, the gas adsorption capacity has been determined for coal samples representing the paralic Ostrava Formation (Namurian A) and the limnic Karviná Formation (Namurian B-C). For this purpose, high pressure adsorption isotherms have been measured for methane and carbon dioxide on medium and low volatile bituminous coal (VRr 1.2-1.8%) from the production face of two collieries in the study area. Adsorption isotherms have been measured for pressures up to 25 MPa for CO2 and up to 17 MPa for methane at 20˚ C and 45˚ C. Isotherms were measured on dry, moisture-equilibrated and "as received" samples (moisture content: 0.5-1.7%, mineral-matter-free) using a manometric method. Sorption capacities for CH4 at 45˚ C ranged from 18 to 27 Std. cm3/g (0.7 to 1.1 mmol/g) coal, dry ash-free (daf), showing an increase of sorption capacity with increasing coal rank. For CO2, sorption capacities were generally higher than for methane, ranging from 35-40 Std. cm3/g (1.4-1.7 mmol/g) coal (daf). Equilibrium moisture contents, determined by a modified ASTM method, were significantly higher than the "as received" moisture. Sorption capacities measured on moisture-equilibrated samples were generally lower than those measured on dry or "as received" samples. Methane excess sorption isotherms show a type I Langmuir form and could be approximated using the Langmuir function. Excess sorption isotherms for CO2 show a decrease in

  2. Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal

    International Nuclear Information System (INIS)

    Highlights: • Integrated, moving bed chemical looping reactor with iron-oxide based oxygen carrier. • Coal carbon conversion from 84.8% to 99.9%, thermal capacity 7.4 to 27.7 kWth, O2 demand less than 1.3%. • Dynamic temperature of moving bed reducer is established and tracked during coal injection. • CH4 and CO present at initial coal injection, eliminated after oxygen carrier activated. • Lower coal injection had higher volatiles residence time and conversion. - Abstract: The iron-based Coal-Direct Chemical Looping (CDCL) combustion process is an alternative to conventional oxy-combustion technologies, where the oxygen used for fuel conversion in the CDCL process is provided by an iron-oxide based oxygen carrier instead of an air separation unit. The iron oxide is reduced using coal in the reducer reactor, producing highly-pure CO2 in the flue gas, and the reduced iron oxide is regenerated in a separate combustor reactor using air. The CDCL process at Ohio State has been developed and demonstrated in a 25 kWth sub-pilot unit, and it is the first chemical looping demonstration unit with a circulating moving bed reactor for solid fuel conversion. To date, the CDCL sub-pilot unit at OSU has been operated for more than 680 h, with a 200-h continuous operation, providing important data on long term operability as well as parametric optimization. This paper discusses recent parametric operational experience with sub-bituminous coal as the fuel, where dynamic changes in variables were performed to observe the effects on the unit itself. Measurements included temperature, pressure, and gas concentrations from the reducer and combustor. Furthermore, effects of different variables, such as flue gas recycle ratios (enhancer gas flow rates), feed port injection, and temperature, were observed. Tests confirmed high coal conversions with high purity of CO2 achieved in the flue gas. Overall, the moving bed design of the reducer results in nearly full coal conversion

  3. On the oxidation of the dissolved organic matter in Boom clay by NaNO3 and NaNO2 from disposed Eurobitum bituminized waste

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In Belgium, Boom Clay is studied as a potential host clay formation for the final disposal of EUROBITUM bituminized waste, which consists of 60 wt% hard bitumen (Mexphalt R85/40) and 40 wt% waste. The main salts that are present in the bituminized waste are NaNO3, 20-30 wt%, and CaSO4, 4-6 wt%. After disposal of the waste in the clay, an uptake of pore water by the embedded, dehydrated and hygroscopic salts will lead to a swelling of the waste and to a release of the salts into the Boom Clay. A possible consequence of the salt release is the oxidation of the clay by nitrate and, possibly, nitrite, resulting in a lower reducing capacity of the clay towards redox sensitive radionuclides, which in turn could have an impact on the migration behaviour of these radionuclides. The extent of oxidation of authigenic Boom Clay redox sensitive components, like organic matter and pyrite is studied at the SCK.CEN. As a first step in the study of the influence of nitrate and nitrite on the redoxactive Boom Clay components, we performed batch tests with dissolved organic matter (DOM). DOM was exposed to different concentrations of nitrate and nitrite for more than one year in both biotic and abiotic conditions. This paper will discuss the results obtained by exposing DOM to nitrate and nitrite and comparing two methods for the determination of its redox capacity. NaNO3 or NaNO2, previously stored under inert atmosphere to remove all oxygen gas, was added to Boom Clay water collected from a piezometer to obtain final salt concentrations of 0.1 and 0.005 M NaNO3, or 0.05 and 0.005 M NaNO2. Sodium azide, also stored under inert atmosphere, was added (0.2 wt. %) to inhibit the microbial activity in the tests, creating abiotic conditions. All solutions were prepared in an anaerobic glove box. The nitrate and nitrite reduction by DOM was followed by analysing the concentrations of nitrate, nitrite and ammonium in the solutions and of

  4. Thermal relaxation of bituminous coal to improve donation ability of hydrogen radicals in flash pyrolysis; Sekitan kozo kanwa ni yoru suiso radical kyoyo noryoku no kojo wo mezashita netsubunkai mae shori

    Energy Technology Data Exchange (ETDEWEB)

    Mori, T.; Isoda, T.; Kusakabe, K.; Morooka, S. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hayashi, J. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    In terms of coal conversion reaction, the behavior of bituminous coal heated beyond a glass transition point was examined on the basis of pyrolyzed products, and the effect of an increase in proton mobility on promotion of coal decomposition was evaluated. In experiment, after Illinois bituminous coal specimen was heated up to a specific temperature in N2 or He gas flow at a rate of 5K/min, the specimen was directly transferred to a pyrolyzer for instantaneous pyrolysis. As the experimental result, the glass transition temperature of the Illinois coal specimen was calculated to be 589K from a differential scanning calorimetry (DSC) profile. From the pyrolysis result of the Illinois coal specimen heated up to 623K, the char yield decreased by 3kg as compared with that of the original coal, while the tar yield increased by 4kg up to 27kg per 100kg of the original coal. This tar increase was larger than that of cooled coal. These results suggested that the donation of hydrogen radicals to coal fragments is improved with an increase in proton mobility. 4 refs., 4 figs., 1 tab.

  5. Study of stabilization/solidification processes (of solid porous wastes) based on hydraulic or bituminous binders; Etude des procedes de stabilisation/solidification (des dechets solides poreux) a base de liants hydrauliques ou de liants bitumineux

    Energy Technology Data Exchange (ETDEWEB)

    Sing-Teniere, Ch.

    1998-02-01

    The first part of this thesis presents the regulatory framework and the technical context linked with the study of stabilized/solidified wastes and with the evaluation of stabilization/solidification processes. A presentation of the two type of ultimate wastes under study (a used catalyst and an activated charcoal) and an analysis of the processes is given. The second part is devoted to the experimental characterization of both types of porous wastes. The third part deals with the processing of such wastes using an hydraulic binder. The study stresses on both on the stabilization/solidification efficiency of the process and on the conditions of its implementation. The same work is made for a process that uses a bituminous binder. Some choice criteria for the selection of the better process are deduced from the examination of the overall data collected. The waste characterization methodology is applied six times: two times for the raw wastes, two times for the same wastes processed with an hydraulic binder, and two times for the same wastes processed with a bituminous binder. (J.S.)

  6. Techno-economic Comparison of IGCC Systems Employing Bituminous and Lignite%基于烟煤、褐煤的IGCC系统技术经济性对比

    Institute of Scientific and Technical Information of China (English)

    李政; 梁心玉; 薛亚丽

    2012-01-01

    近年来,褐煤提质技术的发展使得褐煤的高效利用成为可能。基于一种先进的褐煤干燥技术—内部废热利用流化床干燥(wirbelschicht-trocknung mit interner abw rmenu-tzung,WTA),采用ASPEN Plus软件及美国电力研究协会(electric power research institute,EPRI)的技术评价准则(technical assessment guide,TAG),分别对烟煤整体煤气化联合循环(integrated gasification combined cycle,IGCC)电站和褐煤IGCC电站进行技术经济性分析。详细介绍了WTA单元及燃气轮机变工况的建模方法。计算结果表明,引入WTA技术后,褐煤IGCC电站的发电效率比采用传统干燥方式时约提高4.6个百分点,整体性能与烟煤IGCC电站相差不大;而褐煤IGCC电站的发电成本比烟煤IGCC电站低24.4%。高效的褐煤干燥技术能显著提高褐煤IGCC电站的效率,而褐煤低廉的价格又对降低发电成本十分有利,褐煤很可能成为比烟煤更适合IGCC的燃料。%The development of lignite upgrading has enabled the efficient utilization of lignite recently.Based on the description of an advanced lignite drying techniquewirbelschicht-trocknung mit interner abw rmenutzung(WTA),techno-economic analysis of two integrated gasification combined cycle(IGCC) systems employing bituminous and lignite were performed by using ASPEN Plus software and the EPRI technical assessment guide.The WTA model and gas turbine off-design model were explained in detail.The result shows that pre-drying lignite by WTA can increase the net thermal efficiency of lignite IGCC power plant by up to 4.6% points compared to traditional lignite drying technology,making the performance of lignite IGCC as good as bituminous IGCC;but the cost of electricity of lignite IGCC is 24.4% lower than that of bituminous IGCC.Advanced drying technique can improve the performance of lignite IGCC and lignite’s cheap price helps to bring down the cost of electricity.Therefore lignite is

  7. The Cathedral of S. Giorgio in Ragusa Ibla (Italy): characterization of construction materials and their chromatic alteration

    Science.gov (United States)

    Barone, Germana; La Russa, Mauro Francesco; Lo Giudice, Antonino; Mazzoleni, Paolo; Pezzino, Antonino

    2008-08-01

    The Cathedral of St. Giorgio in Ragusa Ibla (Sicily) is one of the most important Baroque monuments of eastern Sicily. The restoration of the monument underway has put forward notable questions regarding the stone materials used and their state of degradation. The façade appears to be made mainly of a creamy white calcarenite, and of mortars and plasters. However, detailed analysis has highlighted a more complex use of the raw material. The mortar and plaster have a different composition in regards to their architectural use while the natural stone material is distinguished not only by a creamy-white calcarenite but also by a dark coloured bituminous calcarenite (pitch rock), which now appears whiter because of superficial chromatic alterations. This process was reproduced in the laboratory using an accelerated aging technique on samples of bituminous calcarenite, which allowed the cause of the alternation to be identified as photo-oxidation of the asphaltenes. Following this process of photo-oxidation, other forms of chromatic alterations affected the façade (brown orange-coloured patinas). FTIR, Scanning Electron Microscope and thin section microscopic observation allowed the characterization of also the products of this process to be carried out, highlighting the complex mechanism which the processes underwent.

  8. Model formulations for the mathematical-statistical evaluation of operation data as a planning assistance in the assessment of face operations in the bituminous coal mining. Modellansaetze fuer die mathematisch-statistische Auswertung von Betriebsdaten als Planungshilfsmittel bei der Einschaetzung von Strebbetrieben im Steinkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Griesenbrock, H.P.

    1982-06-14

    Regression models based on comprehensive operating data collections were developed and tested for a sure assessment of the haulage capacity of face conveyors in the Ruhr bituminous coal mining. Starting from a critical view of the previously developed models for the assessment of face operations a factorial model has been developed considering the data in the form of utilization coefficients the parameters of which are not directly but iteratively determinable.

  9. Bituminous coal production in the Appalachian basin: past, present, and future: Chapter D.3 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Polyak, Désirée E.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Although small quantities of coal first were produced from the Appalachian basin in the early 1700s, the first production statistics of significance were gathered during the census of 1830 (Eavenson, 1942). Since then, about 35 billion short tons of bituminous coal have been produced from the Appalachian basin from an original potential coal reserve (PCR(o)) estimated to range from about 60 to 90 billion short tons. The term “reserve” refers to economically producible coal, and a “potential coal reserve” (PCR(n)) is an estimate of the amount of coal economically recoverable in a region (State, coal field) over a defined time period (n = number of years) and under a range of economic, societal, and technological conditions. Thus, the current cumulative production plus the PCR(n) equals an estimated cumulative production (ECP(n)). The maps in this report (oversized figures 1, 2, 3, and 4) were produced from a digital database of historical and current coal production records by county. Sources of the original data include various State geological surveys, the U.S. Geological Survey, the former U.S. Bureau of Mines, and the U.S. Department of Energy’s Energy Information Administration. This report is part of the U.S. Geological Survey’s National Coal Resource Assessment Project.

  10. 基于热重分析法的烟煤掺烧褐煤特性研究%Combustion Characteristics of Bituminous Coal Blended with Lignite Using Thermo-gravimetric Method

    Institute of Scientific and Technical Information of China (English)

    杨志斌; 马莹; 戴新; 赵建军; 关彦军; 张锴

    2015-01-01

    针对电厂掺烧褐煤缺乏相关理论指导的技术需求,采用热重分析方法系统考察了包煤、准煤和褐煤的单独燃烧特性,并将两种烟煤分别以10%、30%、50%和70%的比例在相同条件下与褐煤混合燃烧,根据各燃料燃烧特征参数计算了单一煤种及其不同掺混比例的着火指数、燃尽指数和综合燃烧指数。结果表明,褐煤最易着火和燃尽;包煤着火特性较好,但在550~660℃范围内出现难燃峰致使燃尽特性变差;准煤的着火特性最差,燃尽特性略优于包煤;将包煤和准煤与褐煤掺混后燃烧特性有所改善,各燃烧特征温度降低,且综合燃烧指数随褐煤掺烧比例的增加而增加。建议在电厂实际应用时,褐煤的掺烧比例控制在30%-50%之间。%Based on the actual requirement for fundamental theory of blending lignite in coal-fired power stations, combustion characteristics of lignite, bituminous coal and their blends were investigated by using thermogravimetric method ( TGA) in this paper.Lignite was blended with two types of bituminous coals in proportions of 10%, 30%, 50%and 70%, respectively.The ignition index, burnout index and comprehensive combustion index of single and mixed fuels were calculated by means of combustion characteristic parameters.The results show that lig-nite displays the best ignition and burnout performace, Bao coal is easier to ignite but hard to burn out in the tem-perature range of 550 and 660℃.Compared to Bao coal, Zhun coal is the hardest to ignite but better to burn out. The performance of combustion can be improved after blending lignite, which is largely because the comprehensive combustion index of blended coals increases with the increasing ratio of lignite.Therefore, the blending ratio of lig-nite suggested lignite ration should be controlled between 30%and 50%.

  11. EFFECT OF COAL-SWELLING AND SYNCHRONOUSLY SUPPORTED CATALYSTS ON COPROCESSING OF BITUMINOUS COAL AND HEAVY OILS%同步溶胀-担载催化剂对烟煤-重油共炼的影响

    Institute of Scientific and Technical Information of China (English)

    戈军; 石斌; 郭龙德; 郭智慧; 田华; 张建芳

    2011-01-01

    以Fe(NO3)3和Na2S分别作为催化剂前体和原位硫化剂,在20℃下分别用水、甲醇(M)、N-N二甲基甲酰胺(DMF)和二甲亚砜(DMSO)对神华烟煤溶胀12 h,同步溶胀-担载催化剂后的烟煤脱除溶剂后与轮古常渣(LGAR)和杜84超稠油(Du84)在2:1油煤质量比,8 MPa冷氢压,420℃,1h的条件下进行加氢共处理.结果表明,神华烟煤经过溶胀处理后与两种重油共处理的液化率都明显提高,煤的转化率明显增大;三种有机溶胀剂相比,DMF同步溶胀促进液化效果最好,其次为DMSO,甲醇最差.两种配油相比,Du84比LGAR更适合煤-重油共处理.XRD分析表明,同步溶胀-担载法制备的溶胀煤栽铁催化剂以非晶态和高分散的状态存在于溶胀煤表面,在共处理中催化剂最终转化为Fe1-xS.在煤-重油共处理中,经DMF同步溶胀-担载的催化剂失活,结晶相对不明显.%Fe(NO3)3 as catalytic precursor and Na2S as in-situ presulfurizer were impregnated on the Shenhua bituminous coals which were synchronously swollen with H2O, methanol, N-N dimethylformamide (DMF) or dimethyl sulfoxide(DMSO) at 20 'C for 12 h. Then the swollen coals were prepared by vacuum drying. The co-processing of swollen Shenhua coal and two heavy oils(LGAR and Du84) was carried on under the condition of the mass ratio of 2:1 oil to coal, 8 Mpa cold hydrogen pressure,420℃ and 1 h. The coprocessing of the swollen bituminous coal and LGAR or Du84 was significantly improved on the coal liquefaction. Among the three swelling solvents, the improvement of DMF was the highest, that of DMSO was the better and methanol were the lowest. Du84 was favor in the coprocessing than LGAR. By XRD analysis, the iron catalysts on the swollen coal with Fe(NO3)3 synchronously impregnated with the solvents were amorphous and highly dispersed on coal surface and could transform into Fe1-x S in the coprocessing. During the coprocessing, the deactivation of the catalyst synchronously impregnated on

  12. Explosion characteristics of pulverised torrefied and raw Norway spruce (Picea abies) and Southern pine (Pinus palustris) in comparison to bituminous coal

    International Nuclear Information System (INIS)

    Pre-treatments, such as torrefaction, can improve biomass fuels properties. Dedicated and coal co-firing plants, in which pulverised biomass and torrefied biomass can be used, are exposed to explosion hazards during handling, storage and transport from the mills to the boiler. Data on the explosion characteristics of biomass and torrefied biomass are scarce. This study presents explosion characteristics (maximum explosion pressure, deflagration index and minimum explosible concentration) of two torrefied wood samples and compares their reactivity to that of their corresponding untreated biomass materials and to a sample of Kellingley coal. Torrefied biomass samples showed higher reactivity, overpressures were around 9 bar (0.9 MPa, 1 bar = 105 Pa) for all biomass samples irrespective of size or sample composition. Derived laminar burning velocities ranged between 0.1–0.12 m s−1, and were therefore similar to that of coal (0.12 m s−1). The differences in explosion reactivity influence the design of explosion protection measures and can be used to introduce suitable modifications for safe operations with torrefied biomass. - Highlights: • Explosion characteristics were measured for two torrefied biomass samples. • Properties were compared to those of coal and corresponding untreated biomass. • Maximum explosion overpressures were similar for all biomass at about 9 bar. • Torrefied biomass was more reactive than coal and untreated biomass. • Biomass explosion data can be used to design better safety systems

  13. Experimental study on the characteristics of NOx emissions from 600 MW supercritical bituminous coal fired boiler with swirl burner%600MW超临界旋流燃烧烟煤锅炉NOx排放特性试验

    Institute of Scientific and Technical Information of China (English)

    岳峻峰; 秦鹏; 邹磊; 梁绍华; 张恩先; 黄磊

    2012-01-01

    针对某厂1台600MW超临界低NOx轴向旋流燃烧烟煤锅炉特点,通过变工况(氧量、不同层燃烧器风量分配方式、二次风比率、二次风旋流强度、三次风旋流强度、同层燃烧器风量分配方式和负荷等)试验,分析了锅炉NOx排放特性.试验结果表明:对于燃用烟煤的采用低NOx旋流燃烧器的锅炉,运行氧量燃尽风份额、锅炉负荷及同层燃烧器风量分配方式是NOx排放的主要影响因素.为控制NOx排放,保持锅炉原有热效率,燃烧调整的原则为:(1)在保证锅炉运行安全的前提下应尽量采用低氧燃烧;(2)采用大比例的燃尽风份额;(3)运行负荷不应过低;(4)同层燃烧器风量分配采用双峰方式.%NOx. emissions from a 600 MW supercritical boiler with swirl burner were investigated by performing a serial of tests such as changing O2 concentration, air-distribution of different level burners, secondary air ratio, secondary and tertiary air swirl strength, air-distribution of the burners in same level and boiler load. The test results show that for the bituminous coal fired boiler with swirl burner, the O2 concentration, over fire air (OFA) ratio, boiler load and air-distribution mode of the burners in same level are the main factors affecting NOx emissions. In order to reduce NOx emissions and keep higher boiler efficiency, the following principles about combustion adjustment should be obeyed: (1) the O2 concentration should be kept in the premise of ensuring safe operalion of boiler as lower as possible;{2) large proportion of OFA should be adopted; (3) boiler load should not be loo low; (4) two-peak air distribution mode should be taken among the same level burners.

  14. Service life model for bituminous roofing

    DEFF Research Database (Denmark)

    Brandt, Erik; Bunch-Nielsen, Tommy

    Paperet beskriver opbygningen af en levetidsmodel for tagpap. Desuden beskrives resultater af undersøgelser af en række tage der har været i brug 10-15 år og hvordan resultaterne af undersøgelser af disse indvirker på modellen....

  15. Development of New Bituminous Pavement Design Method

    DEFF Research Database (Denmark)

    Ullidtz, Per

    The report and work of COST Action 333 sets in place the foundation for a coherent, cost-effective and harmonised European pavement design method. In order to do this, the work programme focused on information gathering, identification of requirements and the selection of the necessary design...

  16. Understanding Materials

    Science.gov (United States)

    Katsioloudis, Petros J.

    2010-01-01

    Almost everything people have ever done has involved materials. Historical evidence indicates that "engineered materials" have been available and utilized for the benefit of humankind since the Neolithic period, beginning about 10,000 BC. Some of these materials have been in existence for thousands of years. At first, materials consisted of wood,…

  17. Materials Development

    Institute of Scientific and Technical Information of China (English)

    Brian Tomlinson

    2005-01-01

    @@ Introduction Materials development is both a field of study and a practical undertaking. As a field it studies the principles and procedures of the design, implementation and evaluation and adaptation of language teaching materials, by teachers for their own classrooms and by materials writers for sale or distribution. Ideally these two aspects of materials development are interactive in that the theoretical studies inform and are informed by the development and use of classroom materials (e. g. Tomlinson 1998c).

  18. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  19. Functional materials

    International Nuclear Information System (INIS)

    It is a compilation of chapters written by active researchers and offer information and critical insights about semiconducting materials and devices, dielectric and ferroelectric materials, magnetic materials, composites and other functional materials. In the book, the functional materials are discussed from the mixed valences and stoichiometry points of view, to understand the structural evolution and transformation of different material systems - in particular, the role played by crystal structures in property control of functional materials using advanced characterization techniques. The book examines the properties, soft-chemistry preparations, electronic structures and crystal structures of transition and rare earth metals and their oxides. The book presents a strong argument that functional materials system is the future direction of the multidisciplinary research involving physics, chemistry, materials science and electrical engineering, with emphasis on device applications. Papers relevant to INIS are indexed separately

  20. Contrast Materials

    Science.gov (United States)

    ... adverse reaction, you should tell your doctor about: allergies to contrast materials, food, drugs, dyes, preservatives, or animals medications ... These include: previous adverse reactions to iodine-based contrast materials history of ... disease dehydration sickle cell anemia , polycythemia and ...

  1. Analytic Materials

    CERN Document Server

    Milton, Graeme W

    2016-01-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer $p$. If $p$ takes its maximum value then we have a complete analytic material. Otherwise it is incomplete analytic material of rank $p$. For two-dimensional materials further progress can be made in the identification of analytic materials by using the well-known fact that a $90^\\circ$ rotation applied to a divergence free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.

  2. Relationship between high incidence of lung cancer among non-smoking women and silica in C1 bituminous coal in Xuanwei, Yunnan Province, China%云南省宣威地区非吸烟女性肺癌与C1烟煤中二氧化硅的关系

    Institute of Scientific and Technical Information of China (English)

    李光剑; 黄云超; 田林玮; 刘拥军; 郭律; 肖义泽; 侯文俊; 杨堃; 陈颖

    2013-01-01

    二氧化硅颗粒物进入室内空气中随悬浮颗粒物吸入肺部”的迁移富集路线.%Objective To measure the content of silica in C1 bituminous coal and its combustion products in the high-incidence area of lung cancer in Xuanwei,Yunnan Province,China and to investigate the relationship between high incidence of lung cancer among non-smoking women and silica produced naturally in C1 bituminous coal in Xuan Wei.Methods The C1 bituminous coal widely used in the high-incidence area of lung cancer in Xuanwei was selected as experiment group,while the C2+1,K7,and M30 bituminous coal that was mined and used in the low-incidence area of lung cancer in Xuanwei for more than 10 years were selected as control group.Fourteen paraffin-embedded cancer tissue samples from the non-smoking women with non-small cell lung cancer who were born in Xuanwei and were at least the 3rd generation of the family living there were collected from the department of pathology,the ahird affiliated hospital of kunming medical university (tumor hospital of yunnan province).Titrimetric potassium silicofluoride method was used to measure the content of silica in raw coal and its bottom ashes in 20 samples from the experimental group and control group.Scanning electron microscopy (SEM) was used to observe the morphology of silica particles in C1 bituminous coal and its bottom ashes,and scanning electron microscopy coupled with energy dispersive X-ray analyzer (SEM-EDX) was used to analyze the microscopic composition.Transmission electron microscope (TEM) was used to observe the morphology of silica particles in the bottom ashes and coal soot of C1 bituminous coal as well as the lung cancer tissue from the non-smoking women in Xuanwei,and transmission electron microscope coupled with energy dispersive X-ray analyzer (TEM-EDX) was used to analyze the microscopic composition.The silica particles were separated from the coal soot and bottom ashes and characterized by physical method

  3. Materials Engineering

    OpenAIRE

    Fidancevska, Emilija; Srebrenkoska, Vineta

    2013-01-01

    The material presented in this book is the last part from the five books series which are resulte of the aforementioned project. Sustainable development, pariculary for industry was the base for developing of these educative materials. Part of the contents presented in the previous books covered the temas which generally are connected with sustainable development, but this book coveres the types of materials in general and the management of the waste materials. The nowdays f...

  4. Engineering materials

    OpenAIRE

    Kumaraswamy, Mohan

    2002-01-01

    One element of the CIVCAL project Web-based resources containing images, tables, texts and associated data of the Engineering Materials such as concrete, metals and wood. Portland Cement Concrete is a particulate composite consisting of a continuous binder phase, the cementitious matrix and a dispersed particulate phase, the aggregates. Metals as construction material are an important construction material. They possess characteristics such as strength, stiffness, toughness and ductili...

  5. Material Systems

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Mortensen, Henrik Rubæk; Mullins, Michael;

    2009-01-01

    This paper describes and reflects upon the results of an investigative project which explores the setting up of a material system - a parametric and generative assembly consisting of and taking into consideration material properties, manufacturing constraints and geometric behavior. The project...... approaches the subject through the construction of a logic-driven system aiming to explore the possibilities of a material system that fulfills spatial, structural and performative requirements concurrently and how these are negotiated in situations where they might be conflicting....

  6. Surface properties of activated carbon from different raw materials

    Institute of Scientific and Technical Information of China (English)

    Zhang XiangLan; Zhang Yan; Liu Qiong; Zhou Wei

    2012-01-01

    Activated carbons (ACs) with different surface properties were prepared from different raw materials.N2 adsorption,pH value,Boehm titration,Temperature-programmed reduction (TPR) and FTIR were employed to characterize the pore structure and surface chemical properties of the ACs.The results show that AC from bituminous coal (AC-B) has more meso-pores,higher pH value,more carboxylic groups and basic site than ACs from coconut shell and hawthorn(AC-C,AC-H).Oxygen in the mixture gas has great effect on SO2 catalytic oxidation/oxidation ability of AC-B.In the absence of oxygen,the adsorbed SO2 on AC-B is 0.16 mmol/g and the conversion ratio of adsorbed SO2 to SO3 is 22,07%; while in the presence of oxygen,the adsorbed amount of SO2 is 0.42 mmol/g,and all of the adsorbed SO2 was totally converted to SO3.This feature of AC-B is consistent with its higher pH value,basic site and the reaction ability with H2 from TPR.The conversion ratios of SO2 absorbed on both AC-C and AC-H were 100%,respectively.

  7. Materializing ideas

    DEFF Research Database (Denmark)

    Strandvad, Sara Malou

    2011-01-01

    Based on a qualitative study of development processes in the Danish film industry, this article sketches a socio-material perspective for analysing the production of culture. Whereas previous studies of cultural production have identified social factors in cultural production, this article sets out...... it is becoming materialized....

  8. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    . The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  9. Composite material

    Science.gov (United States)

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  10. Polymer Materials

    Institute of Scientific and Technical Information of China (English)

    Charles C. Han; DONG Jinyong; NIU Hui; CHENG He; HUANG Ye; ZHENG Jianfen; XU Shanshan

    2011-01-01

    @@ Since the second half of the 20th century, polymer materials have already become an essential part of our daily life.The use of polymeric materials has already exceeded that of metals and ceramics in terms of volume and is intimately connected to our clothing, food, household use, transportation, and medical needs.Meanwhile it also brought some recycle and environmental problems.In the 21 st century, human beings are facing ever increasing challenges on environmental protection, energy shortage, and health-medical problems, which have made even higher demand on polymer materials due to its light weight, flexibility and high functionality.

  11. Thermoluminescent materials

    International Nuclear Information System (INIS)

    Thermoluminescence is the emission of light from substances when they are heated. This phenomena is observed for many synthetic and natural substances. These thermoluminescent materials must be ionic crystals, covalent crystals, and molecular crystals - an insulator or a semiconductor, but metals do not exhibit luminescent properties because they could not storage radiation energy. Most research has been devoted to the discovery and development of materials suitable for thermoluminescence dosemeters, and some phosphors are used routinely in dosimetric applications. But for other purposes, many interesting materials have been suggested and investigated. (author)

  12. Utopian Materialities

    DEFF Research Database (Denmark)

    Elgaard-Jensen, Torben

    2004-01-01

    In various ways, this paper makes the counter-intuitive claim that the utopian and the material are thoroughlyinterdependent, rather than worlds apart. First, through a reading of Thomas More's Utopia, it is argued thatUtopia is the product of particular kinds of relations, rather than merely a...... detachment from the known world.Second, the utopianism of a new economy firm is examined. It is argued that the physical set-up of the firm -in particular the distribution of tables and chairs - evoke a number of alternatives to ordinary work practice.In this way the materialities of the firm are crucial to...... its persuasive image of being the office of the future.The notion that utopia is achieved through material arrangements is finally related to the analysis of facts andfictions in ANT. It is argued, that even though Utopias are neither fact nor fiction, they are both material andeffective on the...

  13. Reference Materials

    Science.gov (United States)

    Merkus, Henk G.

    Reference materials for measurement of particle size and porosity may be used for calibration or qualification of instruments or for validation of operating procedures or operators. They cover a broad range of materials. On the one hand there are the certified reference materials, for which governmental institutes have certified one or more typical size or porosity values. Then, there is a large group of reference materials from commercial companies. And on the other hand there are typical products in a given line of industry, where size or porosity values come from the analysis laboratory itself or from some round-robin test in a group of industrial laboratories. Their regular application is essential for adequate quality control of particle size and porosity measurement, as required in e.g., ISO 17025 on quality management. In relation to this, some quality requirements for certification are presented.

  14. Background Material

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Hyytiäinen, Kari; Saraiva, Sofia;

    2016-01-01

    This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders.......This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders....

  15. Encountering Materiality

    DEFF Research Database (Denmark)

    Svabo, Connie

    2016-01-01

    DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016.......DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016....

  16. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  17. Touching Materiality

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Rosén

    2012-01-01

    Dripping ink pens, colourful paint on skin, vegetables pots on a school roof. In interviews with three generations of former school pupils, memories of material objects bore a relation to everyday school life in the past. Interwoven, these objects entered the memorising processes, taking the inte......Dripping ink pens, colourful paint on skin, vegetables pots on a school roof. In interviews with three generations of former school pupils, memories of material objects bore a relation to everyday school life in the past. Interwoven, these objects entered the memorising processes, taking...... the interviewer and interviewee beyond an exclusively linguistic understanding of memory. This article analyses how the shifting objects of materiality in personal and generational school memories connects to material as well as sensuous experiences of everyday school life and its complex processes of learning....... Drawing on anthropological writings, the article argues that the objects of materiality are part of important but non-verbalised memories of schooling. The Dutch philosopher Eelco Runia’s notions of presence and metonymy are incorporated as tools for approaching objects of materiality in memory studies....

  18. Relationship between high incidence of lung cancer among non-smoking women and silica in C1 bituminous coal in Xuanwei, Yunnan Province, China%云南省宣威地区非吸烟女性肺癌与C1烟煤中二氧化硅的关系

    Institute of Scientific and Technical Information of China (English)

    李光剑; 黄云超; 田林玮; 刘拥军; 郭律; 肖义泽; 侯文俊; 杨堃; 陈颖

    2013-01-01

    二氧化硅颗粒物进入室内空气中随悬浮颗粒物吸入肺部”的迁移富集路线.%Objective To measure the content of silica in C1 bituminous coal and its combustion products in the high-incidence area of lung cancer in Xuanwei,Yunnan Province,China and to investigate the relationship between high incidence of lung cancer among non-smoking women and silica produced naturally in C1 bituminous coal in Xuan Wei.Methods The C1 bituminous coal widely used in the high-incidence area of lung cancer in Xuanwei was selected as experiment group,while the C2+1,K7,and M30 bituminous coal that was mined and used in the low-incidence area of lung cancer in Xuanwei for more than 10 years were selected as control group.Fourteen paraffin-embedded cancer tissue samples from the non-smoking women with non-small cell lung cancer who were born in Xuanwei and were at least the 3rd generation of the family living there were collected from the department of pathology,the ahird affiliated hospital of kunming medical university (tumor hospital of yunnan province).Titrimetric potassium silicofluoride method was used to measure the content of silica in raw coal and its bottom ashes in 20 samples from the experimental group and control group.Scanning electron microscopy (SEM) was used to observe the morphology of silica particles in C1 bituminous coal and its bottom ashes,and scanning electron microscopy coupled with energy dispersive X-ray analyzer (SEM-EDX) was used to analyze the microscopic composition.Transmission electron microscope (TEM) was used to observe the morphology of silica particles in the bottom ashes and coal soot of C1 bituminous coal as well as the lung cancer tissue from the non-smoking women in Xuanwei,and transmission electron microscope coupled with energy dispersive X-ray analyzer (TEM-EDX) was used to analyze the microscopic composition.The silica particles were separated from the coal soot and bottom ashes and characterized by physical method

  19. Virtual materiality

    DEFF Research Database (Denmark)

    Søndergaard, Dorte Marie

    There are two questions that feed the curiosity of this paper: a theoretical question connected to the conceptualization of materiality across the real/virtual divide and an empirical question connected to the understanding of virtual experiences in children’s lives when studied in relation...... as their recounts of them and 3. the consumption of other media products like movies, reality shows, YouTube videos etc. How do we theorize ‘matter’ in such dimensions? Is it possible to theorize virtual matter as ‘materiality’ in line with any real life materiality? What conceptualization will help us understand...... the character and effects of the skeleton army, which came across the sea to drown the boys in Phillip’s school class: a central scene in one of the dreams he recounted? Are the boat and the water in that dream materialities? Discourse? Part of some kind of enacted subjectivity? How will our decision of which...

  20. Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials

    International Nuclear Information System (INIS)

    Polish bituminous (PB) and South African (SA) coal fly ash (FA) samples, derived from pilot-scale circulated fluidized bed (CFB) combustion facilities, were utilized as raw materials for the synthesis of zeolitic products. The two FAs underwent a hydrothermal activation with 1 M NaOH solution. Two different FA/NaOH solution/ratios (50, 100 g/L) were applied for each sample and several zeolitic materials were formed. The experimental products were characterized by means of X-ray diffraction (XRD) and energy dispersive X-ray coupled-scanning electron microscope (EDX/SEM), while X-ray fluorescence (XRF) was applied for the determination of their chemical composition. The zeolitic products were also evaluated in terms of their cation exchange capacity (CEC), specific surface area (SSA), specific gravity (SG), particle size distribution (PSD), pH and the range of their micro- and macroporosity. Afterwards the hybrid materials were tested for their ability of adsorbing Cr, Pb, Ni, Cu, Cd and Zn from contaminated liquids. Main parameters for the precipitation of the heavy metals, as it was concluded from the experimental results, are the mineralogical composition of the initial fly ashes, as well as the type and the amount of the produced zeolite and specifically the mechanism by which the metals ions are hold on the substrate.

  1. Research on swelling clays and bitumen as sealing materials for radioactive waste repositories

    International Nuclear Information System (INIS)

    This report describes a programme of research to investigate the performance of composite seals incorporating adjacent blocks of swelling clay and bitumen. It is shown that the interaction of the materials can promote a self-sealing mechanism which prevents water penetration, even when defects are present in the bitumen layer. A review of the swelling properties of highly compacted bentonite and magnesium oxide is presented, and the characteristic sealing properties of bituminous materials are described. On the basis of this review, it is concluded that bentonite is the preferred candidate material for use in composite clay/bitumen seals for intermediate-level radioactive waste repositories. However, it is thought that magnesium oxide may have other sealing applications for high-level waste repositories. A programme of laboratory experiments is described in which relevant swelling and intrusion properties of highly compacted bentonite blocks and the annealing characteristics of oxidised and hard-grade industrial bitumens are examined. The results of composite sealing experiments involving different water penetration routes are reported, and factors governing the mechanism of self-sealing are described. The validation of the sealing concept at a laboratory scale indicates that composite bentonite/bitumen seals could form highly effective barriers for the containment of radioactive wastes. Accordingly, recommendations are made concerning the development of the research, including the implementation of full-scale demonstration experiments to simulate conditions in an underground repository. 13 tabs., 41 figs., 62 refs

  2. Layered materials

    Science.gov (United States)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  3. Electronic materials

    CERN Document Server

    Kwok, H L

    2010-01-01

    The electronic properties of solids have become of increasing importance in the age of information technology. The study of solids and materials, while having originated from the disciplines of physics and chemistry, has evolved independently over the past few decades. The classical treatment of solid-state physics, which emphasized classifications, theories and fundamental physical principles, is no longer able to bridge the gap between materials advances and applications. In particular, the more recent developments in device physics and technology have not necessarily been driven by new conc

  4. Emerging Materiality

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege; Breinbjerg, Morten; Pold, Søren

    2009-01-01

    The authors examine how materiality emerges from complex chains of mediation in creative software use. The primarily theoretical argument is inspired and illustrated by interviews with two composers of electronic music. The authors argue that computer mediated activity should not primarily...

  5. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  6. Magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeppesen, Stinus

    2008-10-15

    New and improved magnetocaloric materials are one of the cornerstones in the development of room temperature magnetic refrigeration. Magnetic refrigeration has been used since the 1930ies in cryogenic applications, but has since the discovery of room temperature refrigerants received enormous attention. This Ph.D. work has been mainly concerned with developing a new technique to characterize the magnetocaloric effect (MCE) and using this technique in the investigations on new and improved magnetocaloric materials. For this purpose a novel differential scanning calorimeter (DSC) with applied magnetic fields was developed for measuring heat capacity as function of magnetic field. Measurements using the developed DSC demonstrate a very high sensitivity, fast measurements and good agreement with results obtained by other techniques. Furthermore, two material systems have been described in this work. Both systems take basis in the mixed-valence manganite system La{sub 1-x}Ca{sub x}MnO{sub 3} well known from research on colossal magnetoresistance (CMR). The mixed-valence manganite crystallizes in the perovskite structure of general formula ABO{sub 3}. The first material system is designed to investigate the influence of low level Cu doping on the B-site. Six different samples were prepared with over-stoichiometric compositions La{sub 0.67}Ca{sub 0.33}Mn{sub 1.05}Cu{sub x}O{sub 3}, x=0, 1, 2, 3, 4 and 5%. All compositions crystallized well in the same perovskite structure, but the morphology of the samples changed drastically with doping. Investigation on the magnetocaloric properties revealed that small levels of Cu up to around 3% could improve the magnetocaloric performance of the materials. Furthermore, Cu could be used to tune the temperature interval without deteriorating the MCE, which is a much desired characteristic for potential use in magnetic refrigerators. A less comprehensive part of the work has been concerned with the investigation of doping on the A

  7. Classy material

    OpenAIRE

    Mark Miodownik

    2005-01-01

    The usefulness of glass and it's impact on our culture is discussed. Glass is irreplaceable as our main transparent protection against the wind, rain, heat, and cold, and is therefore, the key to our trains, plains, automobiles, and buildings. The transparency and inertness of glass pushed chemistry forward by allowing color changes of chemical reactions to be measured and gas evolution to be observed, so that glass became the essential material for chemistry. Glass is used by the physicists ...

  8. Material monitoring

    International Nuclear Information System (INIS)

    Waste Reduction Operations Complex (WROC) facilities are located at the Idaho National Engineering Laboratory (INEL). The overall goal for the Pollution Prevention/Waste Minimization Unit is to identify and establish the correct amount of waste generated so that it can be reduced. Quarterly, the INEL Pollution Prevention (P2) Unit compares the projected amount of waste generated per process with the actual amount generated. Examples of waste streams that would be addresses for our facility would include be are not limited to: Maintenance, Upgrades, Office and Scrap Metal. There are three potential sources of this variance: inaccurate identification of those who generate the waste; inaccurate identification of the process that generates the waste; and inaccurate measurement of the actual amount generated. The Materials Monitoring Program was proposed to identify the sources of variance and reduce the variance to an acceptable level. Prior to the implementation of the Material Monitoring Program, all information that was gathered and recorded was done so through an informal estimation of waste generated by various personnel concerned with each processes. Due to the inaccuracy of the prior information gathering system, the Material Monitoring Program was established. The heart of this program consists of two main parts. In the first part potential waste generators provide information on projected waste generation process. In the second part, Maintenance, Office, Scrap Metal and Facility Upgrade wastes from given processes is disposed within the appropriate bin dedicated to that process. The Material Monitoring Program allows for the more accurate gathering of information on the various waste types that are being generated quarterly

  9. Material monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, W.; Zirker, L.; Hancock, J.A.

    1995-11-01

    Waste Reduction Operations Complex (WROC) facilities are located at the Idaho National Engineering Laboratory (INEL). The overall goal for the Pollution Prevention/Waste Minimization Unit is to identify and establish the correct amount of waste generated so that it can be reduced. Quarterly, the INEL Pollution Prevention (P2) Unit compares the projected amount of waste generated per process with the actual amount generated. Examples of waste streams that would be addresses for our facility would include be are not limited to: Maintenance, Upgrades, Office and Scrap Metal. There are three potential sources of this variance: inaccurate identification of those who generate the waste; inaccurate identification of the process that generates the waste; and inaccurate measurement of the actual amount generated. The Materials Monitoring Program was proposed to identify the sources of variance and reduce the variance to an acceptable level. Prior to the implementation of the Material Monitoring Program, all information that was gathered and recorded was done so through an informal estimation of waste generated by various personnel concerned with each processes. Due to the inaccuracy of the prior information gathering system, the Material Monitoring Program was established. The heart of this program consists of two main parts. In the first part potential waste generators provide information on projected waste generation process. In the second part, Maintenance, Office, Scrap Metal and Facility Upgrade wastes from given processes is disposed within the appropriate bin dedicated to that process. The Material Monitoring Program allows for the more accurate gathering of information on the various waste types that are being generated quarterly.

  10. Prosthesis Material

    Science.gov (United States)

    2004-01-01

    In this photograph, Amputee Amie Bradly uses a NASA-developed prosthesis to paint her fingernails. Derived from foam insulation technology used to protect the Space Shuttle External Tank from excessive heat, FAB/CAD, a subsidiary of the Harshberger Prosthetic and Orthotic Center, utilized the technology to replace the heavy, fragile plaster they used to produce master molds for prosthetics. The new material was lighter, cheaper and easier to manufacture than plaster, resulting in lower costs to the customer.

  11. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  12. FOREWORD: Materials metrology Materials metrology

    Science.gov (United States)

    Bennett, Seton; Valdés, Joaquin

    2010-04-01

    It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable

  13. Low extraction recovery of fullerene from carbonaceous geological materials spiked with C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Jehlicka, J.; Frank, O.; Hamplova, V.; Pokorna, Z.; Juha, L.; Bohacek, Z.; Weishauptova, Z. [Charles University, Prague (Czech Republic). Inst. for Geochemical Mineral & Mineral Resources

    2005-08-01

    Soxhlet extraction, sonication, and ultracritical extraction were tested with respect to their capacity to extract fullerenes from natural carbonaceous materials. Toluene solutions with various contents of synthetic C{sub 60} were added to powdered graphite, shungite, bituminous coal, and quartz, with final C{sub 60} concentration 0.1-100 ppm. The C{sub 60}-doped materials were leached in three kinds of extraction apparatus. High-performance liquid chromatography (HPLC) was used to analyse the fullerene content in the obtained toluene extracts. Surprisingly low yields of the C{sub 60} extraction (most of them well below 5%) were determined for all the carbonaceous matrices and all the extraction techniques employed in the fullerene isolation. This finding has serious consequences for better understanding of the reported fullerene occurrence in the geological environment, because a greatly limited extraction yield can be responsible for some negative results of fullerene analyses in various geological samples. Both fullerene stability in solvents and fullerene interaction with the surfaces of geological carbonaceous matrices are discussed to explain the obtained results.

  14. Blackening of fault gouge by comminution and pyrolysis of carbonaceous materials during earthquake slip

    Science.gov (United States)

    Kaneki, Shunya; Hirono, Tetsuro

    2016-05-01

    Black fault gouges sometimes develop, mainly in sedimentary rocks, but the cause of the color transformation is not well understood. Here we demonstrated the blackening of synthetic mixtures of montmorillonite and bituminous coal and of montmorillonite and magnetite in milling, heating, and friction experiments. Mixed samples with a higher volume fraction of coal or magnetite before the experiments showed lower L* values (lightness index; lower values indicate darker blacks), because coal and magnetite are intrinsically black. The milling and heating experiments showed that the L* values of mixed samples of montmorillonite and coal drastically decreased with longer milling times and higher temperatures. The L* values of mixed samples of montmorillonite and magnetite also decreased with longer milling times, but no notable change was observed in the samples after the heating experiments. Because comminution by milling induces granulation of the constituent materials, blackening of the experimental samples was primarily caused by dispersal through the sample of fine black particles such as coal and magnetite, but it could be strengthened by adsorption onto host particles of organic gases produced by pyrolysis of carbonaceous material at high temperature. The friction experiment with mixed samples of montmorillonite and coal produced the remarkably low L* values. Friction induces both comminution and heating of samples, so the blackening could be greater than after either milling or heating alone. Therefore, relatively black fault gouges, compared with the surrounding host rocks, might have experienced comminution and heating, probably related to earthquake slip. Thus, black coloration could be one of the important information on fieldwork.

  15. Construction material

    Science.gov (United States)

    Wagh, Arun S.; Antink, Allison L.

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  16. Energy materials

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2011-01-01

    In an age of global industrialisation and population growth, the area of energy is one that is very much in the public consciousness. Fundamental scientific research is recognised as being crucial to delivering solutions to these issues, particularly to yield novel means of providing efficient, ideally recyclable, ways of converting, transporting and delivering energy. This volume considers a selection of the state-of-the-art materials that are being designed to meet some of the energy challenges we face today. Topics are carefully chosen that show how the skill of the synthetic chemist can

  17. Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational

  18. The Role of Bituminous Sands in Extending the Petroleum Era Beyond 2000 A. D. (Summary Le rôle des sables bitumineux pour prolonger l'ère du pétrole au-delà de l'an 2000 (résumé

    Directory of Open Access Journals (Sweden)

    Carrigy M.

    2006-10-01

    Full Text Available Bituminous sand is an energy resource that is receiving increasing attention and there is a strong interest by the international community in co-operating in the development of new methods of exploration, and in the solution of common technological problems to reduce the time when oil from this enormous energy source is available. A detailed knowledge of the geological setting and the reservoir is of paramount importance to the assessment of the magnitude of the resource, its successful exploitation and to facilitate the transfer of the highly complicated recovery technology from one deposit to another. Much research also remains to be done to improve our understanding of the origin of the bitumen and the factors controlling the location of its accumulation. Based on the scant information we have, it is estimated that bituminous sand deposits contain from 5 to 10 x 10. 12 (trillion barrels of crude bitumen and are surely large enough to make a significant contribution to extending the petroleum era until alternative energy sources are developed. However, great amounts of synthetic oil from this source will probably not be brought onto the market until after the year 2000 A. D. because of the high capital cost, and large numbers of skilled technicians required to bring them into production. In the more industrialized nations where the demand for portable liquid fuel is strongest, notably Canada, Venezuela, and USA, billions of dollars are being spent on exploring and exploiting their bituminous sand resources. It is, however, in those undeveloped nations, who cannot afford to buy light crude oil, and who have bituminous deposits, where exploitation of this resource should have its greatest impact. It is therefore imperative that all geologists be aware of the new technologies that are now available to turn these low-grade hydrocarbons into high-grade products. Une attention croissante est accordée aux sables bitumineux comme source d

  19. Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational

  20. PREFACE: Superconducting materials Superconducting materials

    Science.gov (United States)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  1. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Science.gov (United States)

    Krausová, Ivana; Mizera, Jiří; Řanda, Zdeněk; Chvátil, David; Krist, Pavel

    2015-01-01

    Reliable determination of low concentrations of fluorine in geological and coal samples is difficult. It usually requires tedious decomposition and dissolution of the sample followed by chemical conversion of fluorine into its anionic form. The present paper examines possibilities of non-destructive determination of fluorine, mainly in minerals, rocks and coal, by instrumental photon activation analysis (IPAA) using the MT-25 microtron. The fluorine assay consists of counting the positron-electron annihilation line of 18F at 511 keV, which is a product of the photonuclear reaction 19F(γ, n)18F and a pure positron emitter. The assay is complicated by the simultaneous formation of other positron emitters. The main contributors to interference in geological samples are from 45Ti and 34mCl, whereas those from 44Sc and 89Zr are minor. Optimizing beam energy and irradiation-decay-counting times, together with using interfering element calibration standards, allowed reliable IPAA determination of fluorine in selected USGS and CRPG geochemical reference materials, NIST coal reference materials, and NIST RM 8414 Bovine Muscle. In agreement with the published data obtained by PIGE, the results of the F assay by IPAA have revealed erroneous reference values provided for the NIST reference materials SRM 1632 Bituminous Coal and RM 8414 Bovine Muscle. The detection limits in rock and coal samples are in the range of 10-100 μg g-1.

  2. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2016-03-29

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  3. Operation of flue gas fan during mixed burning of bituminous coal in a lean coal-fired boiler:problems and solutions%贫煤锅炉掺烧烟煤热炉烟风机运行问题及其解决措施

    Institute of Scientific and Technical Information of China (English)

    张兴豪; 范庆伟; 张立欣

    2014-01-01

    介绍了华能南京电厂贫煤锅炉的抽炉烟干燥技术,分析了该锅炉掺烧烟煤后热炉烟风机磨损、积灰、振动、出力不足等问题。对此,通过对热炉烟风机实施选型优化、叶片防磨治理、合理安排检修等措施后,大大延长了热炉烟风机使用周期和寿命,减少了检修时间和检修费用,保证了贫煤锅炉掺烧烟煤制粉系统的安全性和可靠性。%The flue gas drying technology implemented in lean coal-fired boiler of Nanj ing Power Plant was introduced.Problems such as hot flue gas fan abrasion,deposited ash vibrancy,and insufficient output oc-curred on this boiler were investigated.Moreover,solutions for the above problems were put forward. Through fan type selection optimization,fan blade abrasion resistant treatment,reasonable arrangement of maintenance and other measures,the problems of fan blade abrasion and deposited ash vibrancy were well solved,and the service life of flue gas fan was significantly prolonged,the time and cost of maintenance were reduced,and the safety and reliability of bituminous coal pulverizing system in lean coal-fired boiler were ensured.

  4. The materials physics companion

    CERN Document Server

    Fischer-Cripps, Anthony C

    2014-01-01

    Introduction to Materials Physics: Structure of matter. Solid state physics. Dynamic properties of solids. Dielectric Properties of Materials: Dielectric properties. Ferroelectric and piezoelectric materials. Dielectric breakdown. Applications of dielectrics. Magnetic Properties of Materials: Magnetic properties. Magnetic moment. Spontaneous magnetization. Superconductivity.

  5. Photorefractive Materials and Their Applications 2 Materials

    CERN Document Server

    Günter, Peter

    2007-01-01

    Photorefractive Materials and Their Applications 2: Materials is the second of three volumes within the Springer Series in Optical Sciences. The book gives a comprehensive review of the most important photorefractive materials and discusses the physical properties of organic and inorganic crystals as well as poled polymers. In this volume, photorefractive effects have been investigated at wavelengths covering the UV, visible and near infrared. Researchers in the field and graduate students of solid-state physics and engineering will gain a thorough understanding of the properties of materials in photorefractive applications. The other two volumes are: Photorefractive Materials and Their Applications 1: Basic Effects. Photorefractive Materials and Their Applications 3: Applications.

  6. Modified sulphur cement: A low porosity encapsulation material for low, medium and alpha waste

    International Nuclear Information System (INIS)

    Modified sulphur cement, available under the trade name Chement 2000, is a thermoplastic candidate material for the matrix of low, intermediate and alpha radioactive waste. The main source of sulphur is the desulphurization of fossil fuels. In view of the future increase of this product a modified compound of sulphur has been developed at the US Bureau of Mines. Modified sulphur cement as matrix material has properties in common with Portland or blast furnace cement and bitumen. The mechanical strength is comparable to hydraulic cement products. The process to incorporate waste materials is identical to bitumization. The leachability and the resistance to attack by chemicals is nearly the same as for bituminized products. This study showed also that the radiation resistance is high without radiolytic gas production and without change in dimensions (swelling). The rigidity of the matrix is a disadvantage when internal pressures are built up. The thermal conductivity and the heat of combustion of sulphur is low resulting in slow damage to the waste form under fire conditions, even when the temperature of self ignition in air is 2200C. The low leachability, the very slow effective diffusion of H2O and HTO, and the low permeability is due to the small pore diameters in the modified sulphur matrix. The loading capacity of modified sulphur cement depends on grain size and distribution and is for ungraded ashes, precipitates, dried sludges, etc., in the order of 40-50% of weight. The price of Chement 2000 per tonne is equal to those of blown bitumen

  7. 路面材料负载纳米二氧化钛光催化降解氮氧化物%PHOTOCATALYTIC OXIDATION OF NITROGEN OXIDES BY NANO-TiO2 IMMOBILIZED ON ROAD SURFACE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    钱春香; 赵联芳; 付大放; 李丽; 王瑞兴

    2005-01-01

    随着汽车工业的发展,汽车尾气排放的氮氧化物对环境造成了巨大污染.以路面材料为载体,研究了负载型纳米二氧化钛对氮氧化物的降解作用.研究表明:水泥混凝土负载的光催化剂具有优越的光催化功能,而沥青混合料的较差.从载体对气体的吸附能力、吸光性和透光性等方面进-步研究了这两类载体的差异,提出了负载型纳米二氧化钛光催化降解氮氧化物的机理模型.%With the development of automobile industry, the tail gas of motor vehicles is one of major air pollution sources.Effects of nano-TiO2 photocatalytic oxidation immobilized on road surface materials on nitrogen oxides were investigated. Results show that the photocatalyst immobilized on concrete exhibits excellent photocatalysis, while the photocatalysis of bituminous mixture is poor. Differences between concrete and bituminous admixture as carriers in the adsorb-ability of molecule to air on surface, the light absorption and the light transmissibility are discussed. Moreover the mechanism model for photocatalytic oxidation of nitrogen oxides by supportive nano-TiO2 photocatalyst is put forward.

  8. Material efficiency: providing material services with less material production.

    Science.gov (United States)

    Allwood, Julian M; Ashby, Michael F; Gutowski, Timothy G; Worrell, Ernst

    2013-03-13

    Material efficiency, as discussed in this Meeting Issue, entails the pursuit of the technical strategies, business models, consumer preferences and policy instruments that would lead to a substantial reduction in the production of high-volume energy-intensive materials required to deliver human well-being. This paper, which introduces a Discussion Meeting Issue on the topic of material efficiency, aims to give an overview of current thinking on the topic, spanning environmental, engineering, economics, sociology and policy issues. The motivations for material efficiency include reducing energy demand, reducing the emissions and other environmental impacts of industry, and increasing national resource security. There are many technical strategies that might bring it about, and these could mainly be implemented today if preferred by customers or producers. However, current economic structures favour the substitution of material for labour, and consumer preferences for material consumption appear to continue even beyond the point at which increased consumption provides any increase in well-being. Therefore, policy will be required to stimulate material efficiency. A theoretically ideal policy measure, such as a carbon price, would internalize the externality of emissions associated with material production, and thus motivate change directly. However, implementation of such a measure has proved elusive, and instead the adjustment of existing government purchasing policies or existing regulations-- for instance to do with building design, planning or vehicle standards--is likely to have a more immediate effect.

  9. Thermoelectric materials and devices

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Talcott, Noel A. (Inventor)

    2011-01-01

    New thermoelectric materials comprise highly [111]-oriented twinned group IV alloys on the basal plane of trigonal substrates, which exhibit a high thermoelectric figure of merit and good material performance, and devices made with these materials.

  10. Sporty materials uncovered

    OpenAIRE

    Kevin Edwards

    2004-01-01

    Materials in Sports Equipment is a welcome addition to books on materials engineering, says Kevin Edwards. It fills a gap in coverage of the important sports market, where advances in materials can lead to improved performance.

  11. Digestive Diseases Materials

    Science.gov (United States)

    ... Image Library Digestive Disease, Nutrition, and Weight-control Materials Healthy eating, physical activity, and weight control materials available from NIDDK's Weight-control Information Network(WIN) ...

  12. High Temperature Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The High Temperature Materials Lab provides the Navy and industry with affordable high temperature materials for advanced propulsion systems. Asset List: Arc Melter...

  13. Environmental impact of highway construction and repair materials on surface and ground waters. Case study: crumb rubber asphalt concrete.

    Science.gov (United States)

    Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J

    2003-01-01

    The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters. PMID:14522190

  14. Identification and significance of accessory minerals from a bituminous coal

    Science.gov (United States)

    Finkelman, R.B.; Stanton, R.W.

    1978-01-01

    A scanning electron microscope (SEM) has been used to study the in situ accessory minerals in polished blocks and pellets of petrographically analysed samples of the Waynesburg coal (hvb). Individual grains from the low-temperature ash (LTA) of the same coal were also studied. The visual resolution of the SEM permitted the detection of submicron mineral grains, which could then be analysed by the attached energy-dispersive system. Emphasis was placed on the highly reflective grains in the carbominerite bands. Among the most abundant accessory minerals observed were rutile, zircon, and rare-earth-bearing minerals. Small (1-5 ??m) particles of what may be authigenic iron-rich chromite and a nickel silicate form rims on quartz grains. The SEM also permits the observation of grain morphology and mineral intergrowths. These data are useful in determining authigenicity and diagenic alteration. Substances in density splits of LTA include authigenic, detrital, extraterrestrial magnetite, tourmaline, and evaporite (?) minerals, and a fluorine-bearing amphibole. This analytical approach allows the determination of specific sites for many of the trace elements in coals. In the Waynesburg coal, most of the chromium is in the iron-chromium rims, the fluorine is in the amphibole, and the rare-earth elements are in rare-earth-bearing minerals. The ability to relate trace-element data to specific minerals will aid in predicting the behaviour of elements in coal during combustion, liquefaction, gasification, weathering, and leaching processes. This ability also permits insight into the degree of mobility of these elements in coal and provides clues to sedimentological and diagenetic conditions. ?? 1978.

  15. Some thoughts on the organic structure of bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J. W.

    1978-01-01

    Our current operating hypothesis is that coal consists of a cross linked macromolecular network of high aromatic clusters held together by linkages which include ethers and methylene groups. These clusters are arranged like beads on a string with 3 to 5 beads between branch points. Coal can be liqufied most readily by cleaving the links between the clusters. Doing chemistry on the clusters in the whole coal is very difficult because of the problems of getting to the clusters by reagents. It is fortunate that the linkages between clusters are quite reactive. But even with this, it is clear that coal liquefaction is a formidable chemical problem. There is much wisdom is Sternberg's suggestion that the chemistry of the freed clusters (pre-asphaltenes) be developed. Our model indicates that the chemistry which results in freeing the clusters from the network also should be explored and broadened.

  16. A STUDY OF BITUMINOUS SHUNGITE BINDER ON THE SCANNING MICROSCOPE

    Directory of Open Access Journals (Sweden)

    K. A. Andrianov

    2012-07-01

    Full Text Available Statement of the problem. It is possible to improve working conditions of road pavement and to use it more efficiently by regulating water-thermal conditions of the subgrade thereby reducing humidity in the design period and mitigating its seasonal changes.Results and conclusions. It is suggested to use extruded foam polystyrene as a heating layer. The thermal fluctuation approach was applied to failure and deformation processes. Physical constants for the analytical description of these processes at varying temperatures and stresses are calculated. The technique for determining acting stresses and temperatures was described. The prediction of the durability of extruded foam polystyrene in road structure is presented.

  17. Use of waste plastic in construction of bituminous road

    OpenAIRE

    Abhijeet Jirge; Karan patil; Mrs.Vidula Swami; Suhas patil; Sushil patil; Karan salokhe

    2012-01-01

    Bottles, containers and packing strips etc. is increasing day by day. As a result amount of waste plastic also increases. This leads to various environmental problems. Many of the wastes produced today will remain in the environment for many years leading to various environmental concerns. Therefore it is necessary to utilize thewastes effectively with technical development in each field. Many by-products are being produced using the plastic wastes. Our present work is helping to take care of...

  18. Use of waste plastic in construction of bituminous road

    Directory of Open Access Journals (Sweden)

    Abhijeet Jirge

    2012-05-01

    Full Text Available Bottles, containers and packing strips etc. is increasing day by day. As a result amount of waste plastic also increases. This leads to various environmental problems. Many of the wastes produced today will remain in the environment for many years leading to various environmental concerns. Therefore it is necessary to utilize thewastes effectively with technical development in each field. Many by-products are being produced using the plastic wastes. Our present work is helping to take care of these aspects. Plastic waste, consisting of carry bags, cups and other utilized plastic can be used as a coating over aggregate and this coated stone can be used for roadconstruction. The mix polymer coated aggregate and tyre modified bitumen have shown higher strength. Use of this mix for road construction helps to use plastics waste. Once the plastic waste is separated from municipal solid waste, the organic matter can be converted into manure and used. Our paper will discuss in detail theprocess and its successful applications.

  19. A STUDY OF BITUMINOUS SHUNGITE BINDER ON THE SCANNING MICROSCOPE

    OpenAIRE

    K. A. Andrianov; D V Ivanov; V. P. Yartsev

    2012-01-01

    Statement of the problem. It is possible to improve working conditions of road pavement and to use it more efficiently by regulating water-thermal conditions of the subgrade thereby reducing humidity in the design period and mitigating its seasonal changes.Results and conclusions. It is suggested to use extruded foam polystyrene as a heating layer. The thermal fluctuation approach was applied to failure and deformation processes. Physical constants for the analytical description of these proc...

  20. Characterisation of cemented/bituminized LAW and MAW waste products

    International Nuclear Information System (INIS)

    In the context of work for characterising low and medium activity waste products, investigations were carried out to determine the release of radioactivity from binding waste in given accidents, such as mechanical and thermal loading for the operating phase of a final store. The effects of mechanical loads on MAW cement products and the effects of thermal laods on MAW cement and MAW bitumen products were examined. The release of fine dust reaching the lungs, with a particle size of ≤10 μm from a 200 litre roller seam cement binder with a maximum mechanical load of 3x105 Nm covering the accident case is about 1.5 g and therefore corresponds to ≅ 10-4% of the total radio-activity inventory for homogeneous products. With thermal loading (60 minute oil fire, 8000C) ≅ 10-3% of the radioactivity inventory is released via the release of water from the waste binder. The activity release of MAW bitumen products containing NaNO3 (175 litre drum) with thermal load is considerably higher, as due to the NaNO3 content of the products, after an induction period of about 20 minutes there is an exothermal reaction between the bitumen and the NaNO3, which leads to burning of the bitumen with considerable aerosol formation. The Na losses are about 32% and the Pu losses, derived from the results of laboratory experiments with samples containing Eu and Pu and samples containing Eu on the original size, are only 15% maximum, even with complete burn up. It was shown for all the investigations with samples of the original size that the effects of the load cases considered can be reduced or completely avoided by additional packing (concrete shielding). (orig./RB)

  1. Physically Functional Materials

    DEFF Research Database (Denmark)

    2002-01-01

    of information (holographic data storage), nonlinear optics (NLO), as photoconductors, photonic band-gap materials, electrically conducting materials, electroluminescent materials, piezo-electric materials, pyroelectric materials, magnetic materials, ferromagnetic materials, ferroelectric materials...... acids or peptides having azobenzenes or other physicially functional groups, e.g., photoresponsive groups, as side chains. These compounds may be synthesized using solid phase peptide synthesis techniques. Materials, e.g., thin films, comprising such compounds may be used for optical storage......, photorefractive materials, or materials in which light-induced conformational changes can be produced. Optical anisotropy may reversibly be generated with polarized laser light whereby a hologram is formed. First order diffraction efficiencies of up to around 80% have been obtained....

  2. Problem of the NPP liquid radioactive wastes processing and disposal

    International Nuclear Information System (INIS)

    Modern methods of NPP radioactive waste processing and disposal are briefly presented, bituminization with the following disposal in the clayey soil in particular. Soviet installations of liquid waste bituminization and results of proving ground preservation of bituminic blocks are briefly described. These results indicate a possibility of bituminic material disposal with specific activity of 1 Ci/l directly in the soil without waterproofing. High safety and effectivity of waste bituminization is shown in comparison with preservation variant of liquid radioactive concentrates in capacities

  3. Materials and Nanotechnology

    International Nuclear Information System (INIS)

    The Materials and Nanotechnology Program is divided into subprograms in the following areas: Ceramic Materials, Composite Materials, Metallic Materials, Physical / Chemical Characterization and Nanomaterials. The subprograms are further divided in to broad topics in research, development and innovations. Within each topic, several R and D projects are carried out

  4. Tritium breeding materials

    International Nuclear Information System (INIS)

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  5. Materials and Nanotechnology

    International Nuclear Information System (INIS)

    The focus of the Materials and Nanotechnology Program is technology development related to processing, analysis, testing and characterization of materials in general. The Program is divided into subprograms in broad areas such as ceramic, composite and metallic materials as well as characterization of physical and chemical properties of materials

  6. Materials Analysis and Modeling of Underfill Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Nicholas B [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  7. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  8. Giant magnetostrictive materials

    Institute of Scientific and Technical Information of China (English)

    LIU JingHua; JIANG ChengBao; XU HuiBin

    2012-01-01

    Giant magnetostrictive materials are a kind of functional materials developed since 1970s,known as their large magnetostrain and high energy density.In this paper,an introduction of magnetosttiction and the history of magnetostrictive materials are described firstly.Then we review the recent developments of both rare earth and non-rare earth magnetostrictive materials.Finally,the tendency of developing new giant magnetostrictive materials is presented.

  9. Enhanced magnetocaloric effect material

    Science.gov (United States)

    Lewis, Laura J. H.

    2006-07-18

    A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.

  10. Joining of dissimilar materials

    Science.gov (United States)

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  11. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    2016-01-01

    Materials formed by organisms, also known as biological materials, exhibit outstanding structural properties. The range of materials formed in nature is remarkable and their functions include support, protection, motion, sensing, storage, and maintenance of physiological homeostasis. These complex...... materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...

  12. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  13. Methods of materiality

    DEFF Research Database (Denmark)

    Aagaard, Jesper; Matthiesen, Noomi

    2016-01-01

    that researchers should start paying attention to the material world (consisting of both human bodies and material objects) and what it means for how people live their lives. It is argued that this can be done by incorporating the concept of material presence to capture embodied and material layers of existence......, and the method of participant observation is suggested as a viable approach to achieve this end. An empirical example of how authority is produced in a parent-teacher conference, not only through language but also through material objects and embodied being, is then presented. The article concludes by suggesting...... practical guidelines for incorporating attention to materiality in qualitative research....

  14. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  15. Materials Test Branch

    Science.gov (United States)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  16. [Elastomeric impression materials].

    Science.gov (United States)

    Anagnostopoulos, T; Tsokas, K

    1990-01-01

    A review of the literature on elastomeric impression materials, is presented in this paper. The article mentions the composition and the most important properties of the elastomeric impression materials used in dental practice. The clinical significance of these materials, physical and mechanical properties are also emphasized. In addition some new elastomeric impression materials with improved properties and a new (experimental) light-cured impression material, are mentioned. Another part of this article is the biocompatibility of these materials. In the end the great significance of handling is outlined. PMID:2130039

  17. Materials Discovery: Informatic Strategies for Optical Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, Kim F.; Webb-Robertson, Bobbie-Jo M.; Jones, Dumont M.

    2007-01-15

    Information-based materials discovery offers a structured method to evolve materials signatures based upon their physical properties, and to direct searches using performance-based criteria. In this current paper, we focus on the crystal structure aspects of an optical material and construct an information-based model to determine the proclivity of a particular AB composition to exhibit multiple crystal system behavior. Exploratory data methods used both supervised (support-vector machines) and unsupervised (disorder-reduction and principal-component) classification methods for structural signature development; revealing complementary valid signatures. Examination of the relative contributions of the materials chemistry descriptors within these signatures indicates a strong role for Mendeleev number chemistry which must be balanced against the cationic/anionic radius ratio and electronegativity differences of constituents within the unit cell.

  18. EC Transmission Line Materials

    International Nuclear Information System (INIS)

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH and CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. (Ref. 2) Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  19. EC Transmission Line Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Tim S [ORNL

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  20. Practical materials characterization

    CERN Document Server

    2014-01-01

    Presents cross-comparison between materials characterization techniquesIncludes clear specifications of strengths and limitations of each technique for specific materials characterization problemFocuses on applications and clear data interpretation without extensive mathematics

  1. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  2. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  3. Renewable smart materials

    Science.gov (United States)

    Kim, Hyun Chan; Mun, Seongcheol; Ko, Hyun-U.; Zhai, Lindong; Kafy, Abdullahil; Kim, Jaehwan

    2016-07-01

    The use of renewable materials is essential in future technologies to harmonize with our living environment. Renewable materials can maintain our resources from the environment so as to overcome degradation of natural environmental services and diminished productivity. This paper reviews recent advancement of renewable materials for smart material applications, including wood, cellulose, chitin, lignin, and their sensors, actuators and energy storage applications. To further improve functionality of renewable materials, hybrid composites of inorganic functional materials are introduced by incorporating carbon nanotubes, titanium dioxide and tin oxide conducting polymers and ionic liquids. Since renewable materials have many advantages of biocompatible, sustainable, biodegradable, high mechanical strength and versatile modification behaviors, more research efforts need to be focused on the development of renewable smart materials.

  4. Advanced functional materials

    CERN Document Server

    2011-01-01

    This book reviews the results of recent research on new materials arising from progress in polymer, ceramic, sensor, and fuel cell technology, including advanced inorganic-organic-hybrid polymeric materials, high functional sensor, and microbial fuel cells.

  5. Informing material specification

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Karmon, Ayelet

    2012-01-01

    programmable architectural design tools and advanced computer numerically controlled (CNC) knitting machines we understand the practice of textile design as a particular class of material design that enables variegation across both material and structure. Our aim for the experiments is firstly: the design......Architecture is entering a radical rethinking of its material practice. Advancements in material science and more complex models of material simulation as well as the interfaces between design and fabrication are fundamentally changing the way we conceive and design our built environment. This new...... technological platform allows an unprecedented control over the material. Creating direct links between the space of design and the space of fabrication, the idea of the hyper specified material developed in direct response to defined design criteria calls upon a new material practice in which designers...

  6. Modern electronic materials

    CERN Document Server

    Watkins, John B

    2013-01-01

    Modern Electronic Materials focuses on the development of electronic components. The book first discusses the history of electronic components, including early developments up to 1900, developments up to World War II, post-war developments, and a comparison of present microelectric techniques. The text takes a look at resistive materials. Topics include resistor requirements, basic properties, evaporated film resistors, thick film resistors, and special resistors. The text examines dielectric materials. Considerations include basic properties, evaporated dielectric materials, ceramic dielectri

  7. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  8. Materials Genome Initiative Element

    Science.gov (United States)

    Vickers, John

    2015-01-01

    NASA is committed to developing new materials and manufacturing methods that can enable new missions with ever increasing mission demands. Typically, the development and certification of new materials and manufacturing methods in the aerospace industry has required more than 20 years of development time with a costly testing and certification program. To reduce the cost and time to mature these emerging technologies, NASA is developing computational materials tools to improve understanding of the material and guide the certification process.

  9. Computing and Material

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2013-01-01

    The digital is often said to bring us away from material. The adverse is true: digital design and fabrication grants new interfaces towards material and allows architectural design to engage with material on architectural scale in a way that is further reaching than ever before....

  10. Raw material versus processing

    International Nuclear Information System (INIS)

    Some brazilian aspects related with the obtainment of raw materials for advanced ceramic products are described. The necessity of import raw materials by the advanced ceramic industries is mentioned, generating dangerous depedence for the country. The brazilian mineral reserves for using in raw materials of advanced ceramic are also cited. (C.G.C.)

  11. Meanings of Materials

    NARCIS (Netherlands)

    Karana, E.

    2009-01-01

    This book is about meanings we attribute to materials of the objects around us. Materials convey meanings: they look traditional, they express luxury, they are associated with factories, or they conjure up one’s childhood. How do materials obtain these meanings? How do they interact with other e

  12. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons are the ch...... awarded the Nobel Prize in chemistry “for the discovery and development of conductive polymers”....

  13. Fusion reactor materials

    International Nuclear Information System (INIS)

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  14. Magnetism Materials and Applications

    CERN Document Server

    Trémolet de Lacheisserie, Étienne; Schlenker, Michel

    2005-01-01

    This book treats permanent magnet (hard) materials, magnetically soft materials for low-frequency applications and for high-frequency electronics, magnetostrictive materials, superconductors, magnetic-thin films and multilayers, and ferrofluids. Chapters are dedicated to magnetic recording, the role of magnetism in magnetic resonance imaging (MRI), and instrumentation for magnetic measurements.   

  15. Articulating Material Criteria

    DEFF Research Database (Denmark)

    Hasling, Karen Marie

    2013-01-01

    , imitate and articulate the students’ inclusion of materials. This paper particularly discusses the experiences made and ideas generated after the execution of a material science course for second year students, with emphasis on the concept of the material selection matrix as an educational tool...

  16. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  17. Safer Aviation Materials Tested

    Science.gov (United States)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation

  18. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  19. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  20. Terminology of carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, G.N.; Nagornyi, V.G.; Ostrovskii, V.S.

    1986-07-01

    The need is discussed to standardize definition of carbonaceous material. Terms related to carbonaceous materials and their products are selected and analyzed. Diagramatic representation is given of relationships between carbonaceous materials. Carbon has two forms of structure, cubic and hexagonal, characterized by sp/sup 3/-hybrid groups of atoms forming spatial system of tetrahedral bonds. Hexagonal form of carbon is represented by natural materials such as graphite, shungite, anthracite and a number of artificial materials obtained during thermal treatment of organic substances at temperatures above carbonization temperature. 4 references.

  1. New materials in defence

    International Nuclear Information System (INIS)

    National defence is very important and always needs new such materials which have technological and socio-economic development of human society. The types of materials used by a society reflect its level of sophistication. These modern materials are basically the same conventional materials but with a greater knowledge content which include superalloys, modern polymers, engineering ceramics and the advanced composite. The production and use of new materials is playing and important role in the recent development in the defence industry. (A.B.)

  2. Applied Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Applied Electromagnetism and Materials picks up where the author's Basic Electromagnetism and Materials left off by presenting practical and relevant technological information about electromagnetic material properties and their applications. This book is aimed at senior undergraduate and graduate students as well as researchers in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics and semiconductors, to non-linear effects and electromagnetic cavities, to ion-beam applications in materials science.

  3. Microporous polymeric materials

    Directory of Open Access Journals (Sweden)

    Peter M Budd

    2004-04-01

    Full Text Available Microporous materials are solids that contain interconnected pores of molecular dimensions (i.e. <2 nm. Such materials possess large surface areas, typically 300-1500 m2 g−1, and are of great technological importance for adsorption and heterogeneous catalysis1. There are two main classes of microporous materials widely used in industry: crystalline zeolites (aluminosilicates and activated carbons. In the past decade, there has been an intense effort to optimize the porosity of these materials for various applications2,3. However, it is recognized that the design of entirely new microporous materials would open up exciting opportunities for fundamental research and industrial applications3.

  4. Comprehensive nuclear materials

    CERN Document Server

    Allen, Todd; Stoller, Roger; Yamanaka, Shinsuke

    2012-01-01

    Comprehensive Nuclear Materials encapsulates a panorama of fundamental information on the vast variety of materials employed in the broad field of nuclear technology. The work addresses, in five volumes, 3,400 pages and over 120 chapter-length articles, the full panorama of historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. It synthesizes the most pertinent research to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

  5. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric......In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...

  6. Multicomponent polymeric materials

    CERN Document Server

    Thomas, Sabu; Saha, Prosenjit

    2016-01-01

    The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing an...

  7. Dealloying and Dealloyed Materials

    Science.gov (United States)

    McCue, Ian; Benn, Ellen; Gaskey, Bernard; Erlebacher, Jonah

    2016-07-01

    A successful working model for nanoporosity evolution during dealloying was introduced 15 years ago. Since that time, the field has rapidly expanded, with research groups from across the world studying dealloying and dealloyed materials. Dealloying has grown into a rich field, with some groups focusing on fundamentals and mechanisms of dealloying, other groups creating new porous metals and alloys, and even more groups studying their properties. Dealloying was originally considered only in the context of corrosion, but now it is considered a facile self-organization technique to fabricate high-surface-area, bicontinuous nanoporous materials. Owing to their high interfacial area and the versatility of metallic materials, nanoporous metals have found application in catalysis, sensing, actuation, electrolytic and ultracapacitor materials, high-temperature templates/scaffolds, battery anodes, and radiation damage–tolerant materials. In this review, we discuss the fundamental materials principles underlying the formation of dealloyed materials and then look at two major applications: catalysis and nanomechanics.

  8. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.

    2011-02-01

    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena that modify the expected device performance. These reactions have become more challenging and more difficult to control as new materials have been introduced and as device sizes have entered the deep nanoscale. To provide an overview of this field of inquiry, this issue of MRS Bulletin includes articles on gate and contact materials for Si-based devices, junction contact materials for Si-based devices, and contact materials for alternate channel substrates (Ge and III-V), nanodevices. © 2011 Materials Research Society.

  9. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  10. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko.

  11. Materials and structures

    Science.gov (United States)

    Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul

    1992-08-01

    Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.

  12. Materials research for fusion

    Science.gov (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  13. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  14. Fusion reactor materials

    International Nuclear Information System (INIS)

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  15. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  16. ANS materials databook

    Energy Technology Data Exchange (ETDEWEB)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  17. Emerging smart materials systems

    Energy Technology Data Exchange (ETDEWEB)

    Strock, H.B. [Strock Technology Associates Inc., Holden, MA (United States)

    1996-04-01

    Smart materials systems are nonliving systems that integrate the functions of sensing, actuation, logic and control to respond adaptively to changes in their condition or the environment to which they are exposed, in a useful and usually repetitive manner. Smart materials possess both sensing and actuation capability. They can adaptively respond to changing stimuli, e.g., the variable darkening of photochromic glass or plastic on exposure to sunlight. Such passively smart materials behavior has relatively limited, although marketable, functionality.

  18. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  19. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  20. DEVELOPMENT OF LEARNING MATERIAL

    OpenAIRE

    Salminen, Tomi

    2011-01-01

    The purpose of this thesis was to develop learning material to support the Quality tools lectures. The topic of this thesis was generated by Pasi-Waltteri Valtanen, out of need for learning material that supports the Quality tools lectures. Topics which the learning material was creates were Quality Function Deployment (QFD), Design of Experiments (DOE), Failure Mode and Effect Analysis (FMEA), Statistical Process Control (SPC) and the Taguchi method These topics were chosen beca...

  1. Optimized manufacturable porous materials

    OpenAIRE

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard; Sigmund, Ole

    2012-01-01

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge to include manufacturing constraints in the optimization.This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be man...

  2. Asian material culture

    OpenAIRE

    2009-01-01

    This exciting, richly illustrated volume gives the reader a unique insight into the materiality of Asian cultures and the ways in which objects and practices can simultaneously embody and exhibit aesthetic and functional characteristics, everyday and spiritual aspirations. Material culture is examined from a variety of perspectives and the authors rigorously investigate the creation and meaning of material object, and their associated practices within the context of time and place. All chapte...

  3. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Femtosecond laser materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  5. Femtosecond laser materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  6. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  7. A Material Focus

    DEFF Research Database (Denmark)

    Vallgårda, Anna K. A.; Sokoler, Tomas

    2009-01-01

    In this paper we build on the notion of computational composites, which hold a material perspective on computational technology. We argue that a focus on the material aspects of the technology could be a fruitful approach to achieve new expressions and to gain a new view on the technology's role...... in design. We study two of the computer's material properties: computed causality and connectability and through developing two computational composites that utilize these properties we begin to explore their potential expressions....

  8. Materials information data bank

    Energy Technology Data Exchange (ETDEWEB)

    Mead, K.E.

    1978-03-01

    A major concern in the design of weapons systems is compatibility of materials with each other and with the enclosed environment. Usually these systems require long-term storage and must have high reliability at the end of this storage period. Materials selection is thus based on past experience and on laboratory-accelerated testing to assure this long-term reliability. To assist in materials selection, a computerized materials data bank has been established. In addition to references on personnel and documents, this data bank provides annotated information on materials so that the designer and materials engineer can draw on it for guidance in selecting materials. The primary purpose of the data bank is to provide materials compatibility data. However, the structure of the system permits the data bank to be used for storage and retrieval of general materials information. The data bank storage and information retrieval philosophy is discussed and procedures for information gathering are outlined. Examples of data entries and a list of search routines are presented to demonstrate the usefulness and versatility of the system.

  9. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  10. Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  11. Reactor Materials Research

    International Nuclear Information System (INIS)

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  12. [Materials for construction sector].

    Science.gov (United States)

    Macchia, C

    2012-01-01

    The construction sector is characterized by high complexity due to several factors. There are a lot of processes within the building sites and they need the use of different materials with the help of appropriate technologies. Traditional materials have evolved and diversified, meanwhile new products and materials appeared and still appear, offering services which meet user needs, but that often involve risks to the health of workers. Research in the field of materials, promoted and carried out at various levels, has led to interesting results, encoded in the form of rules and laws.

  13. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  14. Smuggling special nuclear materials

    International Nuclear Information System (INIS)

    Ever since the collapse of the former Soviet Union reports have circulated with increasing frequency concerning attempts to smuggle materials from that country's civil and military nuclear programs. Such an increase obviously raises a number of concerns (outlined in the author's introduction), chief among which is the possibility that these materials might eventually fall into the hands of proliferant states or terrorist groups. The following issues are presented: significance of materials being smuggled; sources and smuggling routes; potential customers; international efforts to reduce nuclear smuggling; long-term disposition of fissile materials. (author)

  15. The Materials Genome Project

    Science.gov (United States)

    Aourag, H.

    2008-09-01

    In the past, the search for new and improved materials was characterized mostly by the use of empirical, trial- and-error methods. This picture of materials science has been changing as the knowledge and understanding of fundamental processes governing a material's properties and performance (namely, composition, structure, history, and environment) have increased. In a number of cases, it is now possible to predict a material's properties before it has even been manufactured thus greatly reducing the time spent on testing and development. The objective of modern materials science is to tailor a material (starting with its chemical composition, constituent phases, and microstructure) in order to obtain a desired set of properties suitable for a given application. In the short term, the traditional "empirical" methods for developing new materials will be complemented to a greater degree by theoretical predictions. In some areas, computer simulation is already used by industry to weed out costly or improbable synthesis routes. Can novel materials with optimized properties be designed by computers? Advances in modelling methods at the atomic level coupled with rapid increases in computer capabilities over the last decade have led scientists to answer this question with a resounding "yes'. The ability to design new materials from quantum mechanical principles with computers is currently one of the fastest growing and most exciting areas of theoretical research in the world. The methods allow scientists to evaluate and prescreen new materials "in silico" (in vitro), rather than through time consuming experimentation. The Materials Genome Project is to pursue the theory of large scale modeling as well as powerful methods to construct new materials, with optimized properties. Indeed, it is the intimate synergy between our ability to predict accurately from quantum theory how atoms can be assembled to form new materials and our capacity to synthesize novel materials atom

  16. Materials information data bank

    International Nuclear Information System (INIS)

    A major concern in the design of weapons systems is compatibility of materials with each other and with the enclosed environment. Usually these systems require long-term storage and must have high reliability at the end of this storage period. Materials selection is thus based on past experience and on laboratory-accelerated testing to assure this long-term reliability. To assist in materials selection, a computerized materials data bank has been established. In addition to references on personnel and documents, this data bank provides annotated information on materials so that the designer and materials engineer can draw on it for guidance in selecting materials. The primary purpose of the data bank is to provide materials compatibility data. However, the structure of the system permits the data bank to be used for storage and retrieval of general materials information. The data bank storage and information retrieval philosophy is discussed and procedures for information gathering are outlined. Examples of data entries and a list of search routines are presented to demonstrate the usefulness and versatility of the system

  17. Functional Hybrid Materials

    Science.gov (United States)

    Gómez-Romero, Pedro; Sanchez, Clément

    2004-04-01

    Functional Hybrid Materials consist of both organic and inorganic components, assembled for the purpose of generating desirable properties and functionalities. The aim is twofold: to bring out or enhance advantageous chemical, electrochemical, magnetic or electronic characteristics and at the same time to reduce or wholly suppress undesirable properties or effects. Another target is the creation of entirely new material behavior. The vast number of hybrid material components available has opened up a wide and diversified field of fascinating research. In this book, a team of highly renowned experts gives an in-depth overview, illustrating the superiority of well-designed hybrid materials and their potential applications.

  18. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  19. Materials for Slack Diaphragms

    Science.gov (United States)

    Puschmann, Traute

    1940-01-01

    This report deals with systematic experiments carried out on five diaphragm materials with different pretreatment, for the purpose of ascertaining the suitability of such materials for slack diaphragms. The relationship of deflection and load, temperature and moisture, was recorded. Of the explored materials, synthetic leather, balloon cloth, goldbeaters skin, Igelit and Buna, synthetic leather treated with castor oil is the most suitable material for the small pressure range required. Balloon cloth is nearly as good, while goldbeaters skin, Igelit and Buna were found to be below the required standards.

  20. Materials development for TESOL

    CERN Document Server

    Mishan, Freda

    2015-01-01

    Materials development has become much more important in the field of TESOL in the last twenty years: modules on materials development are now commonplace on MA TESOL courses around the world. The overall aim of the book is to introduce readers to a wide range of theoretical and practical issues in materials development to enable them to make informed and principled choices in the selection, evaluation, adaptation and production of materials. The book aims to show how these choices need to be informed by an awareness of culture, context and purpose.

  1. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  2. Multifunctional Composite Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  3. Mechanics of materials model

    Science.gov (United States)

    Meister, Jeffrey P.

    1987-01-01

    The Mechanics of Materials Model (MOMM) is a three-dimensional inelastic structural analysis code for use as an early design stage tool for hot section components. MOMM is a stiffness method finite element code that uses a network of beams to characterize component behavior. The MOMM contains three material models to account for inelastic material behavior. These include the simplified material model, which assumes a bilinear stress-strain response; the state-of-the-art model, which utilizes the classical elastic-plastic-creep strain decomposition; and Walker's viscoplastic model, which accounts for the interaction between creep and plasticity that occurs under cyclic loading conditions.

  4. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  5. Material transport by tyred vehicles in coal mines. Final report; Logistica del transporto di materiale tramite mezzi gommati in miniere di carbone. Rapporto finale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The research was carried out at the Monte Sinni mine, a sub-bituminous coal mine located in the south west of Sardinia (Italy). The aim of the research has been to develop a control system for materials flow and for the traffic of the tyred vehicles designed specifically for coal mines. In particular, it has been tried to simulate control of each materials supply step starting from the surface stores to the working sites and vice-versa. The hardware has been supplied by Montan-Forschung (Germany) and the software has been produced by Tele Data Software in Cagliari (Italy). Instrumentation is made up by two physically separated parts. The first has been designed to control the run of the trolley truck and allows the exchange of both data and voice between the driver and a main receiving station. The second controls the run of each transport unit by means of data bearing tags (TPD) which are provided with a fixed numerical identification code and are attached to the units. The transport cycle is controlled by the operating software installed on a personal computer that operates as a `main station`. The control-system of the materials flow has given satisfactory results that have allowed the research to achieve its aims. The future application of the system in the mine will bring about certain advantages also by an economic point of view, mostly due to reduction of the materials supply times, as well as the impossibility of shunting mistakes and miscarriages of the load or part of it.

  6. Biogenic Impact on Materials

    Science.gov (United States)

    Stephan, Ina; Askew, Peter; Gorbushina, Anna; Grinda, Manfred; Hertel, Horst; Krumbein, Wolfgang; Müller, Rolf-Joachim; Pantke, Michael; Plarre, Rüdiger (Rudy); Schmitt, Guenter; Schwibbert, Karin

    Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made.

  7. Materials inventory management manual

    Science.gov (United States)

    1992-01-01

    This NASA Materials Inventory Management Manual (NHB 4100.1) is issued pursuant to Section 203(c)(1) of the National Aeronautics and Space Act of 1958 (42 USC 2473). It sets forth policy, performance standards, and procedures governing the acquisition, management and use of materials. This Manual is effective upon receipt.

  8. MULTISCALE PHENOMENA IN MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  9. The materiality of Code

    DEFF Research Database (Denmark)

    Soon, Winnie

    2014-01-01

    to understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...

  10. The Materiality of Research

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    In this feature essay, Ninna Meier reflects on the materiality of the writing – and re-writing – process in academic research. She explores the ways in which our ever-accummulating thoughts come to form layers on the material objects in which we write our notes and discusses the pleasures of co-authorship....

  11. Transport of Radioactive Materials

    International Nuclear Information System (INIS)

    This address overviews the following aspects: concepts on transport of radioactive materials, quantities used to limit the transport, packages, types of packages, labeling, index transport calculation, tags, labeling, vehicle's requirements and documents required to authorize transportation. These requirements are considered in the regulation of transport of radioactive material that is in drafting step

  12. The Computational Materials Repository

    DEFF Research Database (Denmark)

    Landis, David D.; Hummelshøj, Jens S.; Nestorov, Svetlozar;

    2012-01-01

    The possibilities for designing new materials based on quantum physics calculations are rapidly growing, but these design efforts lead to a significant increase in the amount of computational data created. The Computational Materials Repository (CMR) addresses this data challenge and provides...

  13. Radioactivity in building materials

    International Nuclear Information System (INIS)

    The present report, drawn up at the request of the former Minister of Public Health and Environmental Affairs of the Netherlands, discusses the potential radiological consequences for the population of the Netherlands of using waste materials as building materials in housing construction. (Auth.)

  14. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  15. Packaging Your Training Materials

    Science.gov (United States)

    Espeland, Pamela

    1977-01-01

    The types of packaging and packaging materials to use for training materials should be determined during the planning of the training programs, according to the packaging market. Five steps to follow in shopping for packaging are presented, along with a list of packaging manufacturers. (MF)

  16. Light as experiential material

    DEFF Research Database (Denmark)

    Søndergaard, Karin; Petersen, Kjell Yngve

    2013-01-01

    'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education.......'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education....

  17. Light as experiential material

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin

    2013-01-01

    'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which the experience and design of architectural lighting can be approached in research and education......'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which the experience and design of architectural lighting can be approached in research and education...

  18. Environmental materials and interfaces

    International Nuclear Information System (INIS)

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig

  19. Gravitation in Material Media

    Science.gov (United States)

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  20. Materials modified by irradiation

    International Nuclear Information System (INIS)

    Application of radiation in pharmaceutical sciences and cosmetology, polymer materials, food industry, environment, health camre products and packing production is described. Nanotechnology is described more detailed, because it is less known as irradiation using technology. Economic influence of the irradiation on the materials value addition is shown

  1. Material Fatigue Testing System

    Science.gov (United States)

    Gilley, P. J. (Inventor)

    1973-01-01

    A system for cyclicly applying a varying load to a material under test is described. It includes a load sensor which senses the magnitude of load being applied to a material, and, upon sensing a selected magnitude of loading, causes the load to be maintained for a predetermined time and then cause the system to resume cyclical loading.

  2. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies r

  3. 75 FR 68384 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2010-11-05

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of Opening of Additional Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  4. 76 FR 35918 - Nixon Presidential Historical Materials; Opening of Materials

    Science.gov (United States)

    2011-06-20

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials; Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of Opening of Additional Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  5. 78 FR 42805 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2013-07-17

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ] ACTION: Notice of Opening of Additional Nixon Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the...

  6. 75 FR 30863 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2010-06-02

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of opening of additional materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  7. 77 FR 58179 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2012-09-19

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration ACTION: Notice of opening of additional materials SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  8. 76 FR 62856 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2011-10-11

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of opening of additional materials. SUMMARY: This notice announces the opening of Nixon Presidential Historical Materials by the Richard Nixon...

  9. 77 FR 31400 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2012-05-25

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of Opening of Additional Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  10. 76 FR 27092 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2011-05-10

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of opening of additional materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  11. Combinatorial materials synthesis

    Directory of Open Access Journals (Sweden)

    Ichiro Takeuchi

    2005-10-01

    Full Text Available The pace at which major technological changes take place is often dictated by the rate at which new materials are discovered, and the timely arrival of new materials has always played a key role in bringing advances to our society. It is no wonder then that the so-called combinatorial or high-throughput strategy has been embraced by practitioners of materials science in virtually every field. High-throughput experimentation allows simultaneous synthesis and screening of large arrays of different materials. Pioneered by the pharmaceutical industry, the combinatorial method is now widely considered to be a watershed in accelerating the discovery and optimization of new materials1–5.

  12. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  13. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  14. Hysteresis in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    von Moos, Lars

    characterization of the magnetocaloric effect (MCE) in these materials is done through conventional indirect magnetometric and calorimetric methods, as well as newly developed direct methods. The determination of the MCE due to a magnetic field change is in principle given by the isofield material entropy curves......In this thesis the effects of hysteresis on magnetocaloric material properties and their performance in magnetic refrigeration devices are investigated. This is done through an experimental and model study of first order magnetocaloric materials MnFe(P,As) and Gd5Si2Ge2. The experimental......, obtained at the initial low and final high field. However, in first order materials thermal entropy hysteresis loops are obtained through characterization, corresponding to measurements done in an increasing and a decreasing temperature mode. Indirectly determining the MCE through the use of the Maxwell...

  15. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  16. Materials and nanotechnology

    International Nuclear Information System (INIS)

    The focus of the Materials and Nanotechnology Program is technology development related to processing, analysis, testing and characterization of materials in general. These are achieved through execution of R&D projects in engineering and materials science, cooperative projects with private and public sector companies, universities and other research institutes. Besides technology development, this Program also fosters training and human resource development in association with the University of São Paulo and many industrial sectors. This Program is divided into sub-programs in broad areas such as ceramic, composite and metallic materials as well as characterization of physical and chemical properties of materials. The sub-programs are further divided into general topics and within each topic, R&D projects. A brief description of progress in each topic during the last three years follows. (author)

  17. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  18. Materials of Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  19. Materials at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory

  20. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  1. NSUF Irradiated Materials Library

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  2. Optical materials and applications

    CERN Document Server

    Wakaki, Moriaki; Kudo, Keiei

    2012-01-01

    The definition of optical material has expanded in recent years, largely because of IT advances that have led to rapid growth in optoelectronics applications. Helping to explain this evolution, Optical Materials and Applications presents contributions from leading experts who explore the basic concepts of optical materials and the many typical applications in which they are used. An invaluable reference for readers ranging from professionals to technical managers to graduate engineering students, this book covers everything from traditional principles to more cutting-edge topics. It also detai

  3. Mechanics of soft materials

    CERN Document Server

    Volokh, Konstantin

    2016-01-01

    This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .

  4. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  5. Advanced healthcare materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Advanced materials are attracting strong interest in the fundamental as well as applied sciences and are being extensively explored for their potential usage in a range of healthcare technological and biological applications. Advanced Healthcare Nanomaterials summarises the current status of knowledge in the fields of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, up and coming bio-engineering devices. The book highlights the key features which enable engineers to design stimuli-responsive smart nanoparticles, novel biomaterials, nan

  6. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Holden, T.M.

    1995-10-01

    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  7. Chemicals in material cycles

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas Fruergaard

    2015-01-01

    Material recycling has been found beneficial in terms of resource and energy performance and is greatly promoted throughout the world. A variety of chemicals is used in materials as additives and data on their presence is sparse. The present work dealt with paper as recyclable material...... and diisobutyl phthalate (DiBP) as chemical in focus. The results showed variations, between 0.83 and 32 μg/g, in the presence of DiBP in Danish waste paper and board and potential accumulation due to recycling....

  8. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  9. Materials for syngas coolers

    Science.gov (United States)

    Perkins, R. A.; Morse, G.; Coons, W. C.

    1982-08-01

    A technical basis for materials selection and laboratory testing of practical boiler tube materials which will provide reliable long term service in syngas coolers for coal gasification combined cycle power plants is outlined. The resistance of low alloy steel, stainless steels, and aluminum rich coatings to attach by a high sulfur, medium Btu coal gasification atmosphere was evaluated at 300 to 500 deg C. The materials may have adequate resistance for long time service in radiant coolers operating up to 500 deg C on high sulfur medium Btu gas. Performance is analyzed for thermodynamic and kinetic properties and recommendations for long term tests and development of protective coatings are presented.

  10. Materials response to irradiation

    International Nuclear Information System (INIS)

    Radiation-induced changes in the mechanical properties of metals, e.g. due to the embrittlement necessitate irradiation experiments with HTR-specific neutron spectra. These experiments help to determine materials behaviour and establish basic data for design and safety testing, especially with a view to the high fluence and temperature loads on absorber cans. The experiments are carried out up to maximum operational fluence (>= 1022nsub(th)/cm2). Results so far have shown the importance of the materials structure for assurance of sufficient residual ductility after irradiation. Secondary experiments, e.g. on He implantation and radiation response of the absorber material B4C, are mentioned. (orig.)

  11. Macrocyclic fragrance materials

    DEFF Research Database (Denmark)

    Salvito, Daniel; Lapczynski, Aurelia; Sachse-Vasquez, Christen;

    2011-01-01

    A screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a “group approach” is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds...... for compounds within two subgroups (15 macrocyclic ketones and 15 macrocyclic lactones/lactides) were used to estimate the aquatic ecological risk potential for these subgroups. It is reasonable to separate these fragrance materials into the two subgroups based on the likely metabolic pathway required...... for both regions is materials, and minimal in stream dilution (3:1), the conservatively predicted exposure concentrations for macrocyclic ketones would range from

  12. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  13. Intelligent Radiative Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An opportunity to boost energy efficiency in homes and buildings exists through the design of functional radiative properties in glass and other building materials....

  14. Materials research at CMAM

    Science.gov (United States)

    Zucchiatti, Alessandro

    2013-07-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  15. Moldable cork ablation material

    Science.gov (United States)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  16. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard;

    to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM...

  17. Material and Virtuality

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    world and a physical world can interchange. The paper suggest an approach where an overlapping of virtuality and the tangible material output from digital fabrication machines create a method of using materialisation tools as instruments to connect the reality of materials and to an exploring process....... In this paper investigations in sheet steel form a substance of concrete experiments. The experiments set up shuttling processes in between different domains. Through those processes connections and intermingling between information from digital drawing and materiality is created. The dialogues established...... through these experiments is both tangible and directly connected to real actions in digital drawing or material processing but also the base for theoretical contemplations of the relation between virtual and actual and control and uncertainty....

  18. Materials Sciences Programs

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. (GHT)

  19. The Materiality of Learning

    DEFF Research Database (Denmark)

    Sørensen, Estrid

    The field of educational research lacks a methodology for the study of learning that does not begin with humans, their aims, and their interests. The Materiality of Learning seeks to overcome this human-centered mentality by developing a novel spatial approach to the materiality of learning....... Drawing on science and technology studies (STS), Estrid Sørensen compares an Internet-based 3D virtual environment project in a fourth-grade class with the class's work with traditional learning materials, including blackboards, textbooks, notebooks, pencils, and rulers. Taking into account pupils......' and teachers' physical bodies, Professor Sørensen analyzes the multiple forms of technology, knowledge, and presence that are enacted with the materials. Featuring detailed ethnographic descriptions and useful end-of-chapter summaries, this book is an important reference for professionals and graduate...

  20. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  1. Objects, materiality and meaning

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Lindegaard, Hanne

    2008-01-01

    The present research work investigates the relation between physical objects, their materiality, understood as the physical substances they are made from, and the communication from the objects. In product design of physical objects the communicative aspects are just as important as the function...... of the object, and the designers aim is therefore to tune both in order to achieve a desired goal. To do so the designer basically has 2 options: Alteration of the physical shape of the object and the selection of materials. Through the manipulation of shape and materials can symbolic and sensory information...... be written into the object. The materials are therefore carriers of communication, even though this is dependent of the cultural context and the environment which the object will be part of. However the designer has only minor influence on those....

  2. Nuclear material operations manuals

    International Nuclear Information System (INIS)

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  3. Materials research at CMAM

    International Nuclear Information System (INIS)

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming

  4. Mechanics of moving materials

    CERN Document Server

    Banichuk, Nikolay; Neittaanmäki, Pekka; Saksa, Tytti; Tuovinen, Tero

    2014-01-01

    This book deals with theoretical aspects of modelling the mechanical behaviour of manufacturing, processing, transportation or other systems in which the processed or supporting material is travelling through the system. Examples of such applications include paper making, transmission cables, band saws, printing presses, manufacturing of plastic films and sheets, and extrusion of aluminium foil, textiles and other materials.   The work focuses on out-of-plane dynamics and stability analysis for isotropic and orthotropic travelling elastic and viscoelastic materials, with and without fluid-structure interaction, using analytical and semi-analytical approaches.  Also topics such as fracturing and fatigue are discussed in the context of moving materials. The last part of the book deals with optimization problems involving physical constraints arising from the stability and fatigue analyses, including uncertainties in the parameters.   The book is intended for researchers and specialists in the field, providin...

  5. Reversible hydrogen storage materials

    Science.gov (United States)

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  6. Evaluation of learning materials

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe; Hansen, Thomas Illum

    2011-01-01

    This paper presents a holistic framework for evaluating learning materials and designs for learning. A holistic evaluation comprises investigations of the potential learning potential, the actualized learning potential, and the actual learning. Each aspect is explained and exemplified through...

  7. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  8. Materials Test Station

    Data.gov (United States)

    Federal Laboratory Consortium — When completed, the Materials Test Station at the Los Alamos Neutron Science Center will meet mission need. MTS will provide the only fast-reactor-like irradiation...

  9. Photoconductivity in Dirac materials

    Directory of Open Access Journals (Sweden)

    J. M. Shao

    2015-11-01

    Full Text Available Two-dimensional (2D Dirac materials including graphene and the surface of a three-dimensional (3D topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.

  10. Photoconductivity in Dirac materials

    Energy Technology Data Exchange (ETDEWEB)

    Shao, J. M.; Yang, G. W., E-mail: stsygw@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials & Engineering, School of Physics & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong (China)

    2015-11-15

    Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.

  11. Quasicrystals: Making invisible materials

    CERN Document Server

    Boriskina, Svetlana V

    2016-01-01

    All-dielectric photonic quasicrystals may act as zero-refractive-index homogeneous materials despite their lack of translational symmetry and periodicity, stretching wavelengths to infinity and offering applications in light wavefront sculpting and optical cloaking.

  12. Nuclear material operations manual

    International Nuclear Information System (INIS)

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  13. CHARACTERIZATION OF DAMAGED MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P C; Dehaven, M; McClelland, M; Chidester, S; Maienschein, J L

    2006-06-23

    Thermal damage experiments were conducted on LX-04, LX-10, and LX-17 at high temperatures. Both pristine and damaged samples were characterized for their material properties. A pycnometer was used to determine sample true density and porosity. Gas permeability was measured in a newly procured system (diffusion permeameter). Burn rate was measured in the LLNL strand burner. Weight losses upon thermal exposure were insignificant. Damaged pressed parts expanded, resulting in a reduction of bulk density by up to 10%. Both gas permeabilities and burn rates of the damaged samples increased by several orders of magnitude due to higher porosity and lower density. Moduli of the damaged materials decreased significantly, an indication that the materials became weaker mechanically. Damaged materials were more sensitive to shock initiation at high temperatures. No significant sensitization was observed when the damaged samples were tested at room temperature.

  14. Designing through Material

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2014-01-01

    of control through digital drawing and fabrication and the field of materials and their properties and capacities. Within this span the project is situated in a shuttling between the virtual and the actual, investigating levels of control and uncertainty originating from these (Fig. 1). Throughout...... be a part, a component or part of a component in a larger context or construction. Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion...... as an opportunity to connect the digital environment with the reality of materials – and use realisation and materialisation to generate architectural developments and findings through an iterative mode of thinking about the dialogue between drawing, materials and fabrication. Consequently the interest and mind...

  15. Building Materials Property Table

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  16. Materials engineering data base

    Science.gov (United States)

    1995-01-01

    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  17. 2002 materials report

    International Nuclear Information System (INIS)

    This report is the very first devoted to the researches carried out in all centres of the French atomic energy commission (CEA) in the domain of materials. Each material, technology or process is presented with some explanations. The report is divided in three chapters dealing with: 1 - the nano-materials and the engineering of surfaces: surface functionalization (new coatings for cutting tools, new CVD process for the deposition of carbon nano-tubes, nano-structured metallic films, polymerization by gaseous phase deposition, electro-chromium systems, functional coatings by sol-gel process, sol-gel processing of optical fibers, modeling of the plasma projection process); nano-particulates and emerging materials (synthesis of SiCN nano-particulates by laser pyrolysis, hot-forming of Si/C/N/O nano-metric powders by isostatic compression, synthesis of aligned carbon nano-tubes by pyrolysis of mixed aerosols, elaboration and characterization of new oxide-type materials in supercritical CO2 phase, fluorescent semiconductor nano-crystals for labelling, fibrillary proteins and their behaviour at interfaces); 2 - materials engineering and numerical materials (simulation of the welding process by YAG laser pulses, welded joints reliability, control of precipitation microstructures by the addition of nucleating agents, optimization of pressing cycles for the forming of industrial parts by matrix compaction, mechanical and thermal pre-dimensioning of thermo-structural composites, modeling of the behaviour of thermo-structural composites, joints follow up system for innovative welding control process); joining technologies (feasibility study for the fabrication by diffusion welding of the first wall panels of ITER reactor, welding of spent fuel containers for long lasting storage, electron beam welding of aluminium 6061 and hot cracking risk, hybrid welding technology, heat source model for TIG welding, cladding of the amplifying plates of the Megajoule laser facility

  18. Modeling multiphase materials processes

    CERN Document Server

    Iguchi, Manabu

    2010-01-01

    ""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

  19. Material Nuclear Culture, Exhibition

    OpenAIRE

    Carpenter, Ele; Mabb, David; Craighead, Alison; Crowe, Nick; Schuppli, Susan; Takeuchi, Kota; Erika, Kobayashi

    2016-01-01

    Material Nuclear Culture is an exhibition of contemporary artists responses to the physical qualities and material traces of the aesthetics, traditions and legacy of nuclear powered submarines in the UK. Whilst the MOD is currently undertaking a public consultation process on how and where to dismantle and store Britain’s old subs the long term problems of storing radioactive waste remain unresolved. The exhibition will include new sculptural, film, sound and installation works by David ...

  20. A new material practice

    OpenAIRE

    Tamke, Martin; Nicholas, Paul; Ramsgaard Thomsen, Mette

    2012-01-01

    The first generation of digital architecture was fascinated with the extension of digital possibilities into the physical world. Today, we are seeing the emergence of a new material practice. This practice is focusing on a design and production process that is seeking an understanding of the aggregated behavior of matter in an environment. Advances in material science and in computational tools are creating new opportunities within architectural design. However, these approaches are challengi...

  1. Food Packaging Materials

    Science.gov (United States)

    1978-01-01

    The photos show a few of the food products packaged in Alure, a metallized plastic material developed and manufactured by St. Regis Paper Company's Flexible Packaging Division, Dallas, Texas. The material incorporates a metallized film originally developed for space applications. Among the suppliers of the film to St. Regis is King-Seeley Thermos Company, Winchester, Ma'ssachusetts. Initially used by NASA as a signal-bouncing reflective coating for the Echo 1 communications satellite, the film was developed by a company later absorbed by King-Seeley. The metallized film was also used as insulating material for components of a number of other spacecraft. St. Regis developed Alure to meet a multiple packaging material need: good eye appeal, product protection for long periods and the ability to be used successfully on a wide variety of food packaging equipment. When the cost of aluminum foil skyrocketed, packagers sought substitute metallized materials but experiments with a number of them uncovered problems; some were too expensive, some did not adequately protect the product, some were difficult for the machinery to handle. Alure offers a solution. St. Regis created Alure by sandwiching the metallized film between layers of plastics. The resulting laminated metallized material has the superior eye appeal of foil but is less expensive and more easily machined. Alure effectively blocks out light, moisture and oxygen and therefore gives the packaged food long shelf life. A major packaging firm conducted its own tests of the material and confirmed the advantages of machinability and shelf life, adding that it runs faster on machines than materials used in the past and it decreases product waste; the net effect is increased productivity.

  2. Beam-Material Interaction

    CERN Document Server

    Mokhov, N V

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high- intensity energetic particle beam interactions with accelerator, generic target , and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and envir onment in challenging current and future application

  3. Transport of radioactive materials

    International Nuclear Information System (INIS)

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  4. Auxetic materials and structures

    CERN Document Server

    Lim, Teik-Cheng

    2015-01-01

    This book describes the fundamentals of the mechanics and design of auxetic solids and structures, which possess a negative Poisson’s ratio. It will benefit two groups of readers: (a) industry practitioners, such as product and structural designers, who need to control mechanical stress distributions using auxetic materials, and (b) academic researchers and students who intend to produce structures with unique mechanical and other physical properties using auxetic materials.

  5. Designing with residual materials

    OpenAIRE

    Walhout, W.; Wever, R; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies remain in the more artistic domain, with relatively labor-intensive products, and small batch sizes. Moving beyond such small-scale activities would likely require a standardized innovation process....

  6. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  7. Ceramic Laser Materials

    Energy Technology Data Exchange (ETDEWEB)

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  8. Architects and Materials

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    . One of the reasons the digital drawing has become essential is clearly because of the level of interchange and versatility it provides. However, this is also where much capacity is still left unexplored and unused. Digital material has enormous potential to intermingle with the world, in which we live...... and for which architecture is created. Through the interface of digital drawing, data can feed into digital production, linking the architect directly to the materials. Drawing can morph directly into materialisation instead of representation....

  9. Beam-Material Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N. V. [Fermilab; Cerutti, F. [CERN

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  10. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  11. Thermal barrier coating materials

    Directory of Open Access Journals (Sweden)

    David R. Clarke

    2005-06-01

    Full Text Available Improved thermal barrier coatings (TBCs will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ. We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  12. Designing Material Materialising Design

    DEFF Research Database (Denmark)

    Nicholas, Paul

    2013-01-01

    Designing Material Materialising Design documents five projects developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts, School of Architecture. These projects explore the idea that new designed materials might require new design methods....... Focusing on fibre reinforced composites, this book sustains an exploration into the design and making of elastically tailored architectural structures that rely on the use of computational design to predict sensitive interdependencies between geometry and behaviour. Developing novel concepts...

  13. Nuclear Material Management Abstract

    International Nuclear Information System (INIS)

    Nevada Test Site (NTS) has transitioned from its historical and critical role of weapons testing to another critical role for the nation. This new role focuses on being a integral element in solving the multiple challenges facing the National Nuclear Security Administration (NNSA) with nuclear material management. NTS is positioned to be a solution for other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to consolidate and modernize the production complex . With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through disposition and consolidation. This includes moving material from other sites to NTS. State of the art nuclear material management and control practices at NTS are essential for NTS to ensure that assigned activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS activities and challenges will be addressed

  14. Shape memory materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  15. LDEF materials data bases

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  16. EDITORIAL: Materially speaking!

    Science.gov (United States)

    Cornwall, Malcolm G.

    1997-05-01

    We live in a highly materialistic age. This is true not only for our spiritual outlook - or lack of it - but undeniably so for the physical world in which we live. Materials, which are the feature of this special issue, provide literally the fabric on which the modern world is built. Materials science is the systematic study of the physical properties and behaviour of solids with practical applications and importance (if the utility of the material is not explicit or important we are probably in the realm of solid state physics!). Materials in this sense are the stuff of which cars and computers, jet aircraft and washing machines, tower blocks and saucepans, bridges and golf clubs are made. The science of materials therefore encompasses most of the things that form the infrastructure of modern life. But perhaps it is its very ubiquity that removes the mystique, the glamour, the 'zing' from the subject. In contrast, anything cosmological, astronomical or 'fundamental' (as in 'particle'), i.e. of little or no practical significance to our day-to-day lives, excites the curiosity of many able young people. Witness the profusion of books about galaxies and black holes, and quarks and GUTs which strain the popular science shelves of the bookshops. I'm probably being heretical, but perhaps the over-hyping of the very large and the very small has indeed attracted the able few into the serious study of physics, but because of its inherent mathematical complexity and esoteric remoteness maybe it has put off the average youngster who would nevertheless enjoy and succeed in physics-based higher education (and, not incidentally, help fill the seriously depleted lecture theatres in many university physics - and engineering - departments). Materials science on the other hand deals with an intermediate range of things which, give or take an order of magnitude or three, are person-sized as well as person useful. It is - therefore? - undoubtedly one of the less glamorous of the

  17. Structural materials assessment

    International Nuclear Information System (INIS)

    The selection of first wall and structural materials is strongly dependent on the proposed design of breeding blanket components and the targets for a fusion reactor development. An envelope of parameters which have to be covered in future R and D activities and which have been adapted in different proposals has been compiled. A short description of interesting material groups like ferritic-martensitic steels, vanadium alloys and ceramic composites, major criteria for their selection and a survey on existing irradiation data is given. This is followed by a comparative assessment of relevant properties and an identification of major issues for each material group. A more detailed proposal for the future R and D activities is then developed for the ferritic-martensitic steels, the present reference material for the European Breeding Blankets. It describes different phases of development necessary for the qualification of this material for DEMO and gives time schedules which are compatible with parallel component developments. A more selective strategy is proposed for the development of vanadium alloys and the ceramic composite material SiC/SiC. For these alternatives work should be concentrated on identified high-risk issues, before a comprehensive development programme is started. The necessity of efficient irradiation facilities to study the irradiation behaviour of the materials under simulation - and realistic fusion conditions is discussed. The availability of high flux fission reactors and necessary extensions of irradiation rigs for the next decade is stressed. Finally it is shown that for the qualification of materials under realistic fusion conditions a high-energetic, high-flux neutron source is mandatory. An accelerator-driven d-Li neutron source (IFMIF) can fulfil essential users requirements as test bed for materials and can technically be made available in due time. In combination with ITER and DEMO, where a concept verification and full scale

  18. Laboratory Investigations of the High Temperature Corrosion of Various Materials in Simulated oxy-fuel and Conventional Coal Firing

    International Nuclear Information System (INIS)

    Laboratory exposures in horizontal tube furnaces were conducted to test various materials for corrosion resistance in simulated oxy-fuel firing and conventional coal firing environments. Two different exposures were done at 630 C for 672 hours. The reaction atmosphere, consisting of CO2, H2O, O2, N2 and SO2, was mixed to resemble that of oxy-fuel firing in the first exposure and that of conventional coal firing in the second exposure (N2 was added during the second exposure only). Four different materials were tested in the first exposure; Sanicro 63, Alloy 800HT, 304L and 304HCu. In the second exposure four different materials were tested; 304L, Alloy 800HT, Kanthal APMT and NiCrAl. Apart from cleaned sample coupons, some samples pre-exposed in a test rig under oxy-fuel conditions with lignite as fuel and some pre-exposed with bituminous coal as fuel were investigated in the first exposure. In the second exposure some samples were pre-exposed in a rig under conventional firing conditions with lignite as fuel. The corrosion attack on the investigated samples was analysed by gravimetry, x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive x-ray (EDX). The SEM/EDX analysis was made on both the sample envelope and metallographic cross sections of the samples. The results show that there is small difference in the corrosion attack between the two environments. There was also little difference in oxide morphology and composition between cleaned samples and pre-exposed samples of the same material. The austenitic chromia former 304HCu suffered the most extensive corrosion attack in the oxy-fuel environment. In the conventional air firing environment 304L showed the highest mass gain. Chromia formers with higher chromium concentrations performed better, especially the super austenitic Alloy 800HT, with its high chromium concentration, formed a thin and protective corundum type oxide. The nickel based Sanicro 63 showed very low corrosion

  19. Laboratory Investigations of the High Temperature Corrosion of Various Materials in Simulated oxy-fuel and Conventional Coal Firing

    Energy Technology Data Exchange (ETDEWEB)

    Folkeson, N.; Pettersson, J.; Svensson, J.E. [Chalmers Univ. of Technology (Sweden); Hjornhede, A. [Vattenfall Power Consultant AB (Sweden); Montgomery, M. [Vattenfall Heat Nordic/DTU Mekanik (Denmark); Bjurman, M. [Vattenfall Research and Development AB (Sweden)

    2009-07-01

    Laboratory exposures in horizontal tube furnaces were conducted to test various materials for corrosion resistance in simulated oxy-fuel firing and conventional coal firing environments. Two different exposures were done at 630 C for 672 hours. The reaction atmosphere, consisting of CO{sub 2}, H{sub 2}O, O{sub 2}, N{sub 2} and SO{sub 2}, was mixed to resemble that of oxy-fuel firing in the first exposure and that of conventional coal firing in the second exposure (N{sub 2} was added during the second exposure only). Four different materials were tested in the first exposure; Sanicro 63, Alloy 800HT, 304L and 304HCu. In the second exposure four different materials were tested; 304L, Alloy 800HT, Kanthal APMT and NiCrAl. Apart from cleaned sample coupons, some samples pre-exposed in a test rig under oxy-fuel conditions with lignite as fuel and some pre-exposed with bituminous coal as fuel were investigated in the first exposure. In the second exposure some samples were pre-exposed in a rig under conventional firing conditions with lignite as fuel. The corrosion attack on the investigated samples was analysed by gravimetry, x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive x-ray (EDX). The SEM/EDX analysis was made on both the sample envelope and metallographic cross sections of the samples. The results show that there is small difference in the corrosion attack between the two environments. There was also little difference in oxide morphology and composition between cleaned samples and pre-exposed samples of the same material. The austenitic chromia former 304HCu suffered the most extensive corrosion attack in the oxy-fuel environment. In the conventional air firing environment 304L showed the highest mass gain. Chromia formers with higher chromium concentrations performed better, especially the super austenitic Alloy 800HT, with its high chromium concentration, formed a thin and protective corundum type oxide. The nickel based

  20. Thermodynamics of Thermoelectric Materials

    Science.gov (United States)

    Doak, Jeff W.

    One challenge facing society is the responsible use of our energy resources. Increasing the efficiency of energy generation provides one path to solving this challenge. One commonality among most current energy generation methods is that waste heat is generated during the generation process. Thermoelectrics can provide a solution to increasing the efficiency of power generation and automotive systems by converting waste heat directly to electricity. The current barrier to implementation of thermoelectric systems is the low efficiencies of underlying thermoelectric materials. The efficiency of a thermoelectric material depends on the electronic and thermal transport properties of the material; a good thermoelectric material should be an electronic conductor and a thermal insulator, traits which generally oppose one another. The thermal properties of a thermoelectric material can be improved by forming nanoscale precipitates with the material which scatter phonons, reducing the thermal conductivity. The electronic properties of a thermoelectric material can be improved by doping the material to increase the electronic conductivity or by alloying the material to favorably alter its band structure. The ability of these chemical modifications to affect the thermoelectric efficiency of material are ultimately governed by the chemical thermodynamics of the system. PbTe is a prototypical thermoelectric material: Alloying PbTe with PbS (or other materials) creates nanostructures which scatter phonons and reduce the lattice thermal conductivity. Doping PbTe with Na increases the hole concentration, increasing the electronic conductivity. In this work, we investigate the thermodynamics of PbTe and similar systems using first principles to understand the underlying mechanisms controlling the formation of nanostructures and the amount of doping allowed in these systems. In this work we: 1) investigate the thermodynamics of pseudo-binary alloys of IV--VI systems to identify the

  1. BUILDING MATERIALS RECLAMATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  2. Building Materials Reclamation Program

    International Nuclear Information System (INIS)

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C and D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C and D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C and D materials. Table 1 summarizes the six subprojects, including the C and D material studied and the graduate student and the faculty advisor on each subproject.

  3. [Elastomeric impression materials].

    Science.gov (United States)

    Levartovsky, S; Folkman, M; Alter, E; Pilo, R

    2011-04-01

    Elastomeric impression materials are in common use. The impression taken should be highly precise, thus, requiring specific care when manipulatingthese materials. There are 4 groups of elastomers; polysulfide, condensation silicone, addition silicone and polyether; each differ in their setting mechanism and their physical and chemical properties. This review elaborates the major properties of elastomers and its implications on their use. The impression material is inserted into the patient's mouth in a viscous state and transforms into viscoelastic state, upon withdrawal, influencing the residual deformation. The requirements are minimal residual deformation or maximal elastic recovery. As the mouth is a wet environment a major consideration is hydrophilicity. The wettability which is estimated by measuring either the contact angle of a droplet of water and the substrate post setting or the contact angle of a droplet of impression material and the wet tooth pre setting, determines the interaction of the material with both mouth fluids and gypsum. As the primary end target is to obtain a model depicting accurately the oral details, an attention to the impressions' compatibility with gypsum should also be given. Many studies were conducted to get a thorough understanding of the hydrophilic properties of each material, and the mechanism utilized, such as surfactants in hydrophilic PVS. Polyether is the only material that is truly hydrophilic; it exhibits the lowest contact angle, during and after setting. Recent studies show that during setting the Polyether hydrophilicity is increased compared to the condition after setting. Dimensional stability, a crucial property of the impression, is affected by the physical and chemical attributes of the material, such as its tear strength. Polysulfide has the highest tear strength. Tear Strength is affected by two major parameters, viscosity, a built-in property, and how fast the impression is pulled out of the mouth, the

  4. Materials Science Programs

    International Nuclear Information System (INIS)

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  5. Hydrazine Materials Compatibility Database

    Science.gov (United States)

    Schmidt, E. W.

    2004-10-01

    Anhydrous hydrazine and its methyl derivatives MMH and UDMH have been safely used as monopropellants and bipropellant fuels in thousands of satellites and space probes, hundreds of expendable launch vehicles and hundreds of piloted reusable launch vehicle flights. The term hydrazine(s) is used here to describe the three propellant hydrazines and their mixtures. Over the years, a significant amount of experience has accumulated in the selection of compatible materials of construction for these and other rocket propellants. Only a few materials incompatibility issues have arisen in the recent past. New materials of construction have become available during the past decades which have not yet been extensively tested for long-term compatibility with hydrazine(s). These new materials promise lightweight (i. e., lighter weight) propulsion system designs and increased payloads in launch vehicles and satellites. Other new materials offer reduced contamination caused by leached ingredients, e. g. less silica leaching from diaphragms in propellant management devices in propellant tanks. This translates into longer mission life.

  6. Panel 3 - material science

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, John L [Los Alamos National Laboratory; Yip, Sidney [MIT

    2010-01-01

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  7. A Material Conferring Hemocompatibility.

    Science.gov (United States)

    Everett, William; Scurr, David J; Rammou, Anna; Darbyshire, Arnold; Hamilton, George; de Mel, Achala

    2016-01-01

    There is a need for biomimetic materials for use in blood-contacting devices. Blood contacting surfaces maintain their patency through physico-chemical properties of a functional endothelium. A poly(carbonate-urea) urethane (PCU) is used as a base material to examine the feasibility of L-Arginine methyl ester (L-AME) functionalized material for use in implants and coatings. The study hypothesizes that L-AME, incorporated into PCU, functions as a bioactive porogen, releasing upon contact with blood to interact with endothelial nitric oxide synthase (eNOS) present in blood. Endothelial progenitor cells (EPC) were successfully cultured on L-AME functionalized material, indicating that L-AME -increases cell viability. L-AME functionalized material potentially has broad applications in blood-contacting medical devices, as well as various other applications requiring endogenous up-regulation of nitric oxide, such as wound healing. This study presents an in-vitro investigation to demonstrate the novel anti-thrombogenic properties of L-AME, when in solution and when present within a polyurethane-based polymer. PMID:27264087

  8. Nanostructured materials in potentiometry.

    Science.gov (United States)

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  9. Neutron shielding material

    International Nuclear Information System (INIS)

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  10. Dynamic Strength of Materials

    Science.gov (United States)

    Chhabildas, Lalit

    2011-06-01

    Historically when shock loading techniques became accessible in the early fifties it was assumed that materials behave like fluids implying that materials cannot support any shear stresses. Early and careful investigation in the sixties by G. R. Fowles in aluminum indicated otherwise. When he compared his Hugoniot compression measurements to hydrostatic pressure compression measurements in the pressure volume plane he noticed that the shock data lay above the hydrostatic compression curve - which laid the ground work for what is the basis for elastic-plastic theories that exist today. In this talk, a brief historical perspective on strength measurements in materials will be discussed including how time-resolved techniques have played a role in allowing estimates of the strength of materials at over Mbar stress. This is crucial especially at high stresses since we are determining values that are small compared to the loading stress. Even though we have made considerable progress in our understanding of materials, there are still many anomalies and unanswered questions. Some of these anomalies are fertile grounds for further and future research and will be mentioned.

  11. EDITORIAL: Electroactive polymer materials

    Science.gov (United States)

    Bar-Cohen, Yoseph; Kim, Kwang J.; Ryeol Choi, Hyouk; Madden, John D. W.

    2007-04-01

    Imitating nature's mechanisms offers enormous potential for the improvement of our lives and the tools we use. This field of the study and imitation of, and inspiration from, nature's methods, designs and processes is known as biomimetics. Artificial muscles, i.e. electroactive polymers (EAPs), are one of the emerging technologies enabling biomimetics. Polymers that can be stimulated to change shape or size have been known for many years. The activation mechanisms of such polymers include electrical, chemical, pneumatic, optical and magnetic. Electrical excitation is one of the most attractive stimulators able to produce elastic deformation in polymers. The convenience and practicality of electrical stimulation and the continual improvement in capabilities make EAP materials some of the most attractive among activatable polymers (Bar-Cohen Y (ed) 2004 Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges 2nd edn, vol PM136 (Bellingham, WA: SPIE Press) pp 1-765). As polymers, EAP materials offer many appealing characteristics that include low weight, fracture tolerance and pliability. Furthermore, they can be configured into almost any conceivable shape and their properties can be tailored to suit a broad range of requirements. These capabilities and the significant change of shape or size under electrical stimulation while being able to endure many cycles of actuation are inspiring many potential possibilities for EAP materials among engineers and scientists in many different disciplines. Practitioners in biomimetics are particularly excited about these materials since they can be used to mimic the movements of animals and insects. Potentially, mechanisms actuated by EAPs will enable engineers to create devices previously imaginable only in science fiction. For many years EAP materials received relatively little attention due to their poor actuation capability and the small number of available materials. In the last fifteen

  12. Strong, Lightweight, Porous Materials

    Science.gov (United States)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  13. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George

    2013-01-01

    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  14. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  15. Heat-resistant materials

    CERN Document Server

    1997-01-01

    This handbook covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials selection guidelines for industrial applications, and life-assessment methods. Also included is information on comparative properties that allows the ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion-resistant coatings for superalloys, and design guidelines for applications involving creep and/or oxidation. Contents: General introduction (high-temperature materials characteristics, and mechanical and corrosion properties, and industrial applications); Properties of Ferrous Heat-Resistant Alloys (carbon, alloy, and stainless steels; alloy cast irons; and high alloy cast steels); Properties of superalloys (metallurgy and processing, mechanical and corrosion properties, degradation, and protective coa...

  16. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  17. Nuclear material accounting handbook

    International Nuclear Information System (INIS)

    The handbook documents existing best practices and methods used to account for nuclear material and to prepare the required nuclear material accounting reports for submission to the IAEA. It provides a description of the processes and steps necessary for the establishment, implementation and maintenance of nuclear material accounting and control at the material balance area, facility and State levels, and defines the relevant terms. This handbook serves the needs of State personnel at various levels, including State authorities, facility operators and participants in training programmes. It can assist in developing and maintaining accounting systems which will support a State's ability to account for its nuclear material such that the IAEA can verify State declarations, and at the same time support the State's ability to ensure its nuclear security. In addition, the handbook is useful for IAEA staff, who is closely involved with nuclear material accounting. The handbook includes the steps and procedures a State needs to set up and maintain to provide assurance that it can account for its nuclear material and submit the prescribed nuclear material accounting reports defined in Section 1 and described in Sections 3 and 4 in terms of the relevant agreement(s), thereby enabling the IAEA to discharge its verification function as defined in Section 1 and described in Sections 3 and 4. The contents of the handbook are based on the model safeguards agreement and, where applicable, there will also be reference to the model additional protocol. As a State using The handbook consists of five sections. In Section 1, definitions or descriptions of terms used are provided in relation to where the IAEA applies safeguards or, for that matter, accounting for and control of nuclear material in a State. The IAEA's approach in applying safeguards in a State is also defined and briefly described, with special emphasis on verification. In Section 2, the obligations of the State

  18. Radioactive material storage

    International Nuclear Information System (INIS)

    Purpose: To make a spent fuel accommodating box movable and accommodate spent fuels at a position farther than the side wall of the storage installation and to draw the spent fuel near to the side wall with the lapse of the storage time, thereby attenuating the radiation effectively and increasing the storage capacity. Constitution: A space (box) accommodating radioactive materials is made movable, and the radiation is effectively shielded by the attenuation of the radioactive materials in storage due to the lapse of the storage time and the shielding of the radiation due to the liquefied shielding material up to the shielding wall of the storage installation, whereby the shielding wall of the storage installation is made thin and the capacity in the installation is enlarged, thus the accommodation capacity, that is, the storage capacity being increased. (Yoshihara, H.)

  19. Edible packaging materials.

    Science.gov (United States)

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications. PMID:22129343

  20. Optimized nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  1. A new material practice

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul; Ramsgaard Thomsen, Mette

    2012-01-01

    The first generation of digital architecture was fascinated with the extension of digital possibilities into the physical world. Today, we are seeing the emergence of a new material practice. This practice is focusing on a design and production process that is seeking an understanding of the aggr...... of the aggregated behavior of matter in an environment. Advances in material science and in computational tools are creating new opportunities within architectural design. However, these approaches are challenging the current practices of design and representation.......The first generation of digital architecture was fascinated with the extension of digital possibilities into the physical world. Today, we are seeing the emergence of a new material practice. This practice is focusing on a design and production process that is seeking an understanding...

  2. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus......, linear-viscoelastic analysis methods are justified from the age of approximately 10 hours.The rheological properties of plain cement paste are determined. These properties are the principal material properties needed in any stress analysis of concrete. Shrinkage (autogeneous or drying) of mortar...... and concrete and associated internal stress states are examples of analysis made in this report. In this context is discussed that concrete strength is not an invariable material property. It is a property the potentials of which is highly and negatively influenced by any damage caused by stress concentrations...

  3. Edible packaging materials.

    Science.gov (United States)

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  4. Interactions of tritium and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Michio; Yamaguchi, Kenji; Tanaka, Satoru; Ono, Futaba (Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.); Yamamoto, Takuya

    1993-11-01

    In D-T burning fusion reactors, problems related to tritium-material interactions are vitally important. From this point of view, plasma-material interactions, blanket breeder material-tritium interactions, safety aspects of tritium-material interactions and tritium storage materials are reviewed with emphasis on the works going on in the authors' laboratories. (author) 83 refs.

  5. Aerogel/polymer composite materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  6. Materiality, Practice and Body

    DEFF Research Database (Denmark)

    Johansen, Stine Liv; Skovbjerg-Karoff, Helle

    2009-01-01

    In order to understand the interaction between human and technology, the relationship must be emphasized as a triangulation between materiality, body and practice. By introducing play situations from a just finished empirical study in three bigger cities in Denmark, this paper will address...... the interplay from the human‟s point of view, as a body doing a certain practice, which is constantly produced by taking approaches which comes from phenomenology and practice theory. We introduce aspects of play understood as a dynamic between materiality, body and practice with the goal of inspiring not only...

  7. Structure - materials - production

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders; Gammel, Peder; Busch, Jens

    2002-01-01

    For the last six years th Aarhus School of Architecture has introduced the first year students (there are about 200 students admitted each year) to structure, materials, design and production through a five week course in collaboration with a group of local companies.......For the last six years th Aarhus School of Architecture has introduced the first year students (there are about 200 students admitted each year) to structure, materials, design and production through a five week course in collaboration with a group of local companies....

  8. Magnetic refrigeration materials

    Institute of Scientific and Technical Information of China (English)

    戴闻; 沈保根; 高政祥

    2001-01-01

    Magnetic refrigeration has drawn much attention because of its greater efficiency and higher reliability than the traditional gas-cycle refrigeration technology. Recently, a kind of new materials with a giant magnetocaloric effect in the subroom temperature range, Gd5 (Six Ge1- x)4, was discovered, which boosts the search for high-performance magnetic refrigerants. However, the intermetallic compounds Gd5 (SixGe1 - x )4 belong to the first order transition materials; their performance in practical magnetic refrigeration cycles remains controversial. In this paper the developing tendency of the refrigerants are discussed on the basis of our work.

  9. Structural and Material Instability

    DEFF Research Database (Denmark)

    Cifuentes, Gustavo Cifuentes

    This work is a small contribution to the general problem of structural and material instability. In this work, the main subject is the analysis of cracking and failure of structural elements made from quasi-brittle materials like concrete. The analysis is made using the finite element method. Three....... Numerical problems associated with the use of elements with embedded cracks based on the extended finite element method are presented in the next part of this work. And an alternative procedure is used in order to successfully remove these numerical problems. In the final part of this work, a computer...

  10. Supercapacitors specialities - Materials review

    Energy Technology Data Exchange (ETDEWEB)

    Obreja, Vasile V. N. [National Research and Development Institute for Microtechnologies (IMT-Bucuresti), Bucharest, 126A Erou Iancu Nicolae Street, 077190 (Romania)

    2014-06-16

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes

  11. Supercapacitors specialities - Materials review

    International Nuclear Information System (INIS)

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes

  12. Kurdish. Materials Status Report.

    Science.gov (United States)

    Center for Applied Linguistics, Washington, DC. Language/Area Reference Center.

    The materials status report for Kurdish is one of a series intended to provide the nonspecialist with a picture of the availability and quality of texts for teaching a given language to English speakers. Each report consists of: (1) a brief narrative description of the language, the areas where it is spoken, its major dialects, its writing system,…

  13. Ordering, materiality and multiplicity

    DEFF Research Database (Denmark)

    van der Duim, René; Ren, Carina Bregnholm; Jóhannesson, Gunnar Thór

    2013-01-01

    In this article we discuss how ANT has been translated into tourism research and show how it has impacted the field by presenting three concepts integral to the ANT approach: ordering, materiality and multiplicity. We first introduce ANT and draw attention to current ANT studies in tourism...

  14. Shakespeare Materials. Potpourri 7.

    Science.gov (United States)

    Mathis, N. Reed

    This publication provides a source of practical ideas for teaching Shakespeare, taken from materials in the teaching notebooks of N. Reed Mathis, a Shakespeare specialist. It contains: (1) "As You Like It"--a study guide and composition topics; (2) "Romeo and Juliet"--an objective-type final exam; (3) "Sonnets"--a way of analyzing a poem, critical…

  15. GRAPHENE: A NEW MATERIAL

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2011-07-01

    Full Text Available The paper presents the properties of a new but allready known material – graphene. Graphene is a 2-dimensional network of carbon atoms. Are presented the estonished characteristics of this form of carbon, alongwith some interesting field of use.

  16. RECON training materials

    International Nuclear Information System (INIS)

    This collection of materials for use in a DOE/RECON training session includes information about terminal commands, logging on, document availability, search strategy models, and some of the data bases available on DOE/RECON. An evaluation questionnaire is included

  17. Fusion reactor materials

    International Nuclear Information System (INIS)

    At the Belgian Nuclear Research Centre SCK-CEN, activities related to fusion focus on environmental tolerance of opto-electronic components. The objective of this program is to contribute to the knowledge on the behaviour, during and after neutron irradiation, of fusion-reactor materials and components. The main scientific activities for 1997 are summarized

  18. Carbon nanotube composite materials

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  19. Materials Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  20. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  1. Making Biological Materials

    Institute of Scientific and Technical Information of China (English)

    Julian F.V.Vincent

    2005-01-01

    @@ 1 Chemistry and synthesis 1.1 Production and control of materials These days there can be few people who do not know that proteins are defined by DNA. DNA is made of two strands, each of which has along it, like a string of fairy lights, side branches that meet between the strands and hold them together.

  2. Material Induced Anisotropic Damage

    NARCIS (Netherlands)

    Niazi, M.S.; Wisselink, H.H.; Meinders, V.T.; Boogaard, van den A.H.; Hora, P.

    2012-01-01

    The anisotropy in damage can be driven by two different phenomena; anisotropic defor-mation state named Load Induced Anisotropic Damage (LIAD) and anisotropic (shape and/or distribution) second phase particles named Material Induced Anisotropic Damage (MIAD). Most anisotropic damage models are based

  3. Geological and Inorganic Materials.

    Science.gov (United States)

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  4. Rudiments of materials science

    CERN Document Server

    Pillai, SO

    2007-01-01

    Writing a comprehensive book on Materials Science for the benefit of undergraduate courses in Science and Engineering was a day dream of the first author, Dr. S.O. Pillai for a long period. However, the dream became true after a lapse of couple of years. Lucid and logical exposition of the subject matter is the special feature of this book.

  5. Weightless Materials Science

    Science.gov (United States)

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  6. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ainscow, J.W.H.

    1928-11-19

    Carbonaceous materials such as coal or oil shale are distilled by being passed in a continuous stream through a retort heated externally and at temperatures increasing from the inlet to the outlet end, the distillates being taken off through openings in the retort wall.

  7. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  8. Ceramic catalyst materials

    Energy Technology Data Exchange (ETDEWEB)

    Sault, A.G.; Gardner, T.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hanprasopwattanna, A.; Reardon, J.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  9. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  10. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic....... This results in high transport costs. The building materials situation in Greenland may potentially be improved by intensifying the reuse of building materials or by promoting the local production of building materials....

  11. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  12. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    R V Ramanujan

    2003-02-01

    Research and development in nanostructured materials is one of the most intensely studied areas in science. As a result of concerted R & D efforts, nanostructured electronic and magnetic materials have achieved commercial success. Specific examples of novel industrially important nanostructured electronic and magnetic materials are provided. Advantages of nanocrystalline magnetic materials in the context of both materials and devices are discussed. Several high technology examples of the use of nanostructured magnetic materials are presented. Methods of processing nanostructured materials are described and the examples of sol gel, rapid solidification and powder injection moulding as potential processing methods for making nanostructured materials are outlined. Some opportunities and challenges are discussed.

  13. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  14. Transportation of nuclear materials

    International Nuclear Information System (INIS)

    The United States Department of Energy's Transportation Management Division (TMD) is responsible for assuring that the Department's shipments of nuclear materials are made in a safe, secure, efficient and economic manner. While stringent regulatory standards for materials packaging, carrier training and shipment routing are designed and followed to ensure a high level of f = safety in transportation, concerns about the risks of such shipments are often significant within communities along a shipping route. To address these concerns, DOE/TMD is 1988 began a cooperative program with public safety, health and planning professionals from the large city and urban county membership of the Urban Consortium for Technology Initiatives. With a focus on local issues, these practitioners defined a series of general concerns and assistance needs in areas of coordination, training, information and responder resources, marking and placarding, and costs and education

  15. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  16. Ultrasonic Processing of Materials

    Science.gov (United States)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  17. Materials Testing and Automation

    Science.gov (United States)

    Cooper, Wayne D.; Zweigoron, Ronald B.

    1980-07-01

    The advent of automation in materials testing has been in large part responsible for recent radical changes in the materials testing field: Tests virtually impossible to perform without a computer have become more straightforward to conduct. In addition, standardized tests may be performed with enhanced efficiency and repeatability. A typical automated system is described in terms of its primary subsystems — an analog station, a digital computer, and a processor interface. The processor interface links the analog functions with the digital computer; it includes data acquisition, command function generation, and test control functions. Features of automated testing are described with emphasis on calculated variable control, control of a variable that is computed by the processor and cannot be read directly from a transducer. Three calculated variable tests are described: a yield surface probe test, a thermomechanical fatigue test, and a constant-stress-intensity range crack-growth test. Future developments are discussed.

  18. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  19. Micarta propellers I : materials

    Science.gov (United States)

    Caldwell, F W; Clay, N S

    1924-01-01

    Here, values for tension, compression edgewise of laminations, and transverse flatwise of laminations are given for Micarta made with various kinds of sheet material. The corresponding values for white oak are given for comparison. It was found by destructive and service tests that Micarta made with a good grade of cotton duck will give satisfactory service with most designs. In propellers having detachable blades, it is desirable that the root of the blade be of a small cross section to decrease the weight of the metal hub. Here the use of the special fabric or wood veneer offers advantages due to greater tensile strength. These materials, especially the wood veneer, produce stiffer blades than duck. This is also a value in controllable and reversible pitch designs where it is desirable that the plan form of the blades be symmetrical.

  20. Cohesion in real materials

    International Nuclear Information System (INIS)

    Theoretically calculated values of cohesion force density are compared with their values in real materials. Cohesion at the interface of twin inclusions in niobium at 4.2 K, slip bands in niobium at 77 K, slip bands in niobium oxidized and predeformed at 295 K after cooling down to 77 K, in slip bands of different hardened and tempered steels, at the boundaries of Al99.999 grains - in the process of torsional vibrations at 523 K, have been determined. To calculate cohesion force density and dry friction coefficient a two-member formula of dry friction is used. In all the cases cohesion force density of real materials was below its values calculated theoretically. Excess of yield limit and strengthening curve under compression over yield limit and strengthening curve under tension is explaind as a result of summation and subtraction of external stresses and cohesion forces

  1. Environmental Mineralogical Materials

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Basic properties, including surface absorption, porous filtration, ion exchange, heat effect and chemical solubility of environmental mineralogical materials, are widely applied to the pollution prevention environment improvement. The pollunian prevenition environmenr means the quality improvement of surface water, groundwater, river, lake and ground reservoir: the improvement of soil, the disposal of nuclear waste, the purification of domestic sewage, the collection of smoke and dust and the treatment of waste water. The prospective investigation and utilization of environmental mineralogical materials have been dealt with in more detail by the author of this paper with emphases on the prevention and control of soil contamination by heavy metals, on the quality im provement and treatment of surface water and groundwater,and on the collection of smoke and dust arising from burning coals.

  2. Sulphate resistant shielding material

    International Nuclear Information System (INIS)

    The shielding material of the present invention is provided with sulfuric acid resistance and contains bentonite put to ion exchange treatment with barium ions as an effective ingredient. When mortars and concretes are exposed to the circumstance of sulfate, the effective ingredient functions to take place reaction between intruding sulfate and the barium ions to form insoluble barium sulfate thereby reducing chemical corrosion of mortars and concretes caused by sulfate. Cement materials, water and aggregates can optionally be contained in addition to bentonite and bentonite put to ion exchange treatment. Chemical corrosion of concretes and mortars due to intrusion of the sulfate can be prevented, and it is useful as an artificial barrier, for example, in radioactive active waste processing facilities. (T.M.)

  3. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2008-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  4. Ritualizing and Materializing Citizenship

    DEFF Research Database (Denmark)

    Damsholt, Tine

    2009-01-01

      This paper focuses on the possible transformation of the self in citizenship ceremonies in Western countries. It is argued that the transformation in these life defining moments is not only a question of ritual objectification or intentionality. The rituals are often experienced as emotional by....... These transformations engage a so called ‘ontological choreography' in which processes of ritual objectification and subjectification are intertwined, involving materiality, performativity, structural constraint, and the co-dependence of the performers....

  5. Nano structured Magnetic Materials

    International Nuclear Information System (INIS)

    The saga of nanostructured magnetic materials (NMMs) has prevailed since the discovery of the first giant magnetoresistance (GMR) effect in metals in 1988. NMMs represent a unique system that incorporates the interplay between the properties associated with spin degrees of freedom and the nanoscaled structures, which provide a very strong platform for exploring both basic science and technical applications in the fields of solid-state physics, chemistry, materials science, and engineering. In fact, an active research field called “spintronics,” which has a big overlap with NMMs, has emerged and prevailed very recently. Through manipulation of spin of electrons in solids, a wide variety of NMMs and devices have been playing a prominent role in information processing and transport in our modern life. A rich variety of materials, such as transition metals, manganite, wide bandgap semiconductors, and nanocomposites, have already been developed for generating well-controlled nanostructures with new functionalities. Many scientists believe that the 21st century will be a “Century of Spin.” Nanomaterials and nanotechnologies have provided historical opportunities for research and development of novel spintronics materials and devices. NMSs manifest fascinating properties compared to the bulks because of size effect and quantum effect. Nanotechnologies have been proven to be an effective way to fabricate devices with fine nanostructures. The combination of spintronics and nanomaterials will undisputedly open new pathways in solid-state physics. The present special issue focuses on the recent development in the understanding of the synthesis, the studies on magnetic properties of nanostructures, and their potential applications based on the multiple functionalities.

  6. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  7. Ceramic Laser Materials

    OpenAIRE

    Guillermo Villalobos; Jasbinder Sanghera; Ishwar Aggarwal; Bryan Sadowski; Jesse Frantz; Colin Baker; Brandon Shaw; Woohong Kim

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers,...

  8. Electrochemistry reveals archaeological materials

    OpenAIRE

    Costa, Virginia; Leyssens, Karen; Adriaens, Annemie; Richard, N.; Scholz, Fritz

    2010-01-01

    The characterization of materials constituting cultural artefacts is a challenging step in their conservation, due to the object’s uniqueness and the reduced number of conservation institutes able to supply non-destructive analysis. We propose an alternative analytical tool, which combines accessibility (low cost and portable) and high sensitivity, based on electrochemical linear sweep voltammetry (LSV) with paraffin impregnated graphite electrode (PIGE). To investigate the composition of “wh...

  9. Materials for advanced packaging

    CERN Document Server

    Lu, Daniel

    2010-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  10. Materials in the economy; material flows, scarcity, and the environment

    Science.gov (United States)

    Wagner, Lorie A.

    2002-01-01

    The importance of materials to the economy of the United States is described, including the levels of consumption and uses of materials. The paths (or flows) that materials take from extraction, through processing, to consumer products, and then final disposition are illustrated. Scarcity and environmental issues as they relate to the flow of materials are discussed. Examples for the three main themes of the report (material flows, scarcity, and the environment) are presented.

  11. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

    Science.gov (United States)

    Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy; Chen, Wei; Richards, William Davidson; Dacek, Stephen; Cholia, Shreyas; Gunter, Dan; Skinner, David; Ceder, Gerbrand; Persson, Kristin A.

    2013-07-01

    Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ``rapid-prototyping'' of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design.

  12. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  13. Stimuli-Adaptable Materials

    DEFF Research Database (Denmark)

    Frankær, Sarah Maria Grundahl

    The work presented in this Thesis deals with the development of a stimuli-adaptable polymer material based on the UV-induced dimerisation of cinnamic acid and its derivatives. It is in the nature of an adhesive to adhere very well to its substrate and therefore problems can arise upon removal...... of the adhesive. This is also known from skin adhesives where it is very undesirable to cause damage to the skin. The overall idea of this project was to resolve this problem by developing a material which could switch between an adhesive and a non-adhesive state. Switchable adhesion is known in the literature...... but the presented work has a new approach to the field by basing itself on the idea of developing a network into which a photo-active polymer is mixed and which function as an adhesive. Upon irradiation with UV-light for a short time a non-adhering inter-penetrating network material would be formed. Two simple...

  14. Radiation shielding materials

    International Nuclear Information System (INIS)

    Purpose: To obtain putty-like shielding materials excellent in the radiation shielding and packing workability for use in penetrations of electrical wires or pipeways in a nuclear installation. Constitution: A putty-like material is prepared from 100 parts by weight of a binder comprising a grease or the like having viscosity of greater than 5000 cst or an immiscible consistency of greater than 100 (JIS K 2220 (1980) para. 5.3.4) at 25 0C and from 1200 to 4000 parts by weight of high density inorganic powder such as lead powder or lead oxide powder having a density of greater than 5 g/cm3 and such a particle size that more than 95 % thereof passes through a 145 mesh sieve. The putty-like material is adjusted such that it has 1 - 35 mm of softness (JIS A 5752) at normal temperature, more than 1 g/5 sec of injection amount and a density of greater than 4 g/cm3. In this way, non-curable radiation shielding agent with excellent X-ray or γ-ray shielding property and being capable of packed densely to void portions can be obtained. (Ikeda, J.)

  15. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  16. RLG's Cultural Materials Initiative

    Directory of Open Access Journals (Sweden)

    Karen Smith-Yoshimura

    2001-10-01

    Full Text Available

    頁次:5-12

    RLG members have formed a "Cultural Materials Alliance" to develop a pool of digitized research materials and a coherent, integrated discovery service. Alliance members are identifying best practices to create and describe digital surrogates and a rights-management framework addressing institutional intellectual-property mandates. The paper outlines the issues addressed in developing this new research resource that will promote "cultural heritage" in an unprecedented way. Examples from the RLG Cultural Materials service to be released later in 2001 will illustrate the work done so far.

  17. Energy Education Materials Inventory

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The two volumes of the Energy Education Materials Inventory (EEMI) comprise an annotated bibliography of widely available energy education materials and reference sources. This systematic listing is designed to provide a source book which will facilitate access to these educational resources and hasten the inclusion of energy-focused learning experiences in kindergarten through grade twelve. EEMI Volume II expands Volume I and contains items that have become available since its completion in May, 1976. The inventory consists of three major parts. A core section entitled Media contains titles and descriptive information on educational materials, categorized according to medium. The other two major sections - Grade Level and Subject - are cross indexes of the items for which citations appear in the Media Section. These contain titles categorized according to grade level and subject and show the page numbers of the full citations. The general subject area covered includes the following: alternative energy sources (wood, fuel from organic wastes, geothermal energy, nuclear power, solar energy, tidal power, wind energy); energy conservation, consumption, and utilization; energy policy and legislation, environmental/social aspects of energy technology; and fossil fuels (coal, natural gas, petroleum). (RWR)

  18. Steam generator materials

    International Nuclear Information System (INIS)

    In order to keep the nuclear power plant(NPP)s safe and increase their operating efficiency, axial stress corrosion cracking(SCC)(IGA/IGSCC, PWSCC, PbSCC) test techniques were developed and SCC property data of the archive steam generator tubing materials having been used in nuclear power plants operating in Korea were produced. The data obtained in this study were data-based, which will be used to clarify the damage mechanisms, to operate the plants safely, and to increase the lifetime of the tubing. In addition, the basic technologies for the improvement of the SCC property of the tubing materials, for new SCC inhibition, for damaged tube repair, and for manufacturing processes of the tubing were developed. In the 1 phase of this long term research, basic SCC test data obtained from the archive steam generator tubing materials used in NPPs operating in Korea were established. These basic technologies developed in the 1 phase will be used in developing process optimization during the 2 phase in order to develop application technologies to the field nuclear power plants

  19. Material and energy productivity.

    Science.gov (United States)

    Steinberger, Julia K; Krausmann, Fridolin

    2011-02-15

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives. PMID:21210661

  20. Fracturing rigid materials.

    Science.gov (United States)

    Bao, Zhaosheng; Hong, Jeong-Mo; Teran, Joseph; Fedkiw, Ronald

    2007-01-01

    We propose a novel approach to fracturing (and denting) brittle materials. To avoid the computational burden imposed by the stringent time step restrictions of explicit methods or with solving nonlinear systems of equations for implicit methods, we treat the material as a fully rigid body in the limit of infinite stiffness. In addition to a triangulated surface mesh and level set volume for collisions, each rigid body is outfitted with a tetrahedral mesh upon which finite element analysis can be carried out to provide a stress map for fracture criteria. We demonstrate that the commonly used stress criteria can lead to arbitrary fracture (especially for stiff materials) and instead propose the notion of a time averaged stress directly into the FEM analysis. When objects fracture, the virtual node algorithm provides new triangle and tetrahedral meshes in a straightforward and robust fashion. Although each new rigid body can be rasterized to obtain a new level set, small shards can be difficult to accurately resolve. Therefore, we propose a novel collision handling technique for treating both rigid bodies and rigid body thin shells represented by only a triangle mesh. PMID:17218752

  1. Entropy, materials, and posterity

    Science.gov (United States)

    Cloud, P.

    1977-01-01

    Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work - be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states. But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder - for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard. Except as we may prize a thing for its intrinsic qualities - beauty, leisure, love, or gold - low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue. The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations

  2. Simulation Methods for Functional Materials

    Institute of Scientific and Technical Information of China (English)

    Youqi Yang

    2004-01-01

    @@ Functional materials embrace a broad area, ranging from functional information materials to special polymers, from special chemicals for printing to materials used in making paints. Inasmuch as most functional materials are particulate, the present contribution is considered pertinent to the present FORUM.

  3. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  4. Multifunctional reactive nanocomposite materials

    Science.gov (United States)

    Stamatis, Demitrios

    Many multifunctional nanocomposite materials have been developed for use in propellants, explosives, pyrotechnics, and reactive structures. These materials exhibit high reaction rates due to their developed reaction interfacial area. Two applications addressed in this work include nanocomposite powders prepared by arrested reactive milling (ARM) for burn rate modifiers and reactive structures. In burn rate modifiers, addition of reactive nanocomposite powders to aluminized propellants increases the burn rate of aluminum and thus the overall reaction rate of an energetic formulation. Replacing only a small fraction of aluminum by 8Al·MoO3 and 2B·Ti nanocomposite powders enhances the reaction rate with little change to the thermodynamic performance of the formulation; both the rate of pressure rise and maximum pressure measured in the constant volume explosion test increase. For reactive structures, nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by ARM and consolidated using a uniaxial die. Consolidated samples had densities greater than 90% of theoretical maximum density while maintaining their high reactivity. Pellets prepared using 8Al·MoO3 powders were ignited by a CO2 laser. Ignition delays increased at lower laser powers and greater pellet densities. A simplified numerical model describing heating and thermal initiation of the reactive pellets predicted adequately the observed effects of both laser power and pellet density on the measured ignition delays. To investigate the reaction mechanisms in nanocomposite thermites, two types of nanocomposite reactive materials with the same bulk compositions 8Al·MoO3 were prepared by different methods. One of the materials was manufactured by ARM and the other, so called metastable interstitial composite (MIC), by mixing of nano-scaled individual powders. Clear differences in the low-temperature redox reactions, welldetectable by differential scanning calorimetry

  5. Platinum Group Metals New Material

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; ZHANG Jiankang; WANG Saibei; HU Jieqiong; LIU Manmen; CHEN Yongtai; ZHANG Jiming; YANG Youcai; YANG Yunfeng; ZHANG Guoquan

    2012-01-01

    Platinum group metals (PGM) include six elements,namely Pt,Pd,Rh,Ir,Os and Ru.PGM and their alloys are the important fundamental materials for modern industry and national defense construction,they have special physical and chemical properties,widely used in metallurgy,chemical,electric,electronic,information,energy,environmental protection,aviation,aerospace,navigation and other high technology industry.Platinum group metals and their alloys,which have good plasticity and processability,can be processed to electrical contact materials,resistance materials,solder,electronic paste,temperature-measurement materials,elastic materials,magnetic materials and high temperature structural materials.

  6. Searching for better plasmonic materials

    DEFF Research Database (Denmark)

    West, P.; Ishii, S.; Naik, G.;

    2010-01-01

    of fabrication. A comparative study of various materials including metals, metal alloys and heavily doped semiconductors is presented. The performance of each material is evaluated based on quality factors defined for each class of plasmonic devices. Most importantly, this paper outlines an approach...... challenges due to losses encountered in the constituent plasmonic materials. These large losses seriously limit the practicality of these metals for many novel applications. This paper provides an overview of alternative plasmonic materials along with motivation for each material choice and important aspects...... for realizing optimal plasmonic material properties for specific frequencies and applications, thereby providing a reference for those searching for better plasmonic materials....

  7. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  8. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  9. Irradiation environment and materials behavior

    International Nuclear Information System (INIS)

    Irradiation environment is unique for materials used in a nuclear energy system. Material itself as well as irradiation and environmental conditions determine the material behaviour. In this review, general directions of research and development of materials in an irradiation environment together with the role of materials science are discussed first, and then recent materials problems are described for energy systems which are already existing (LWR), under development (FBR) and to be realized in the future (CTR). Topics selected are (1) irradiation embrittlement of pressure vessel steels for LWRs, (2) high fluence performance of cladding and wrapper materials for fuel subassemblies of FBRs and (3) high fluence irradiation effects in the first wall and blanket structural materials of a fusion reactor. Several common topics in those materials issues are selected and discussed. Suggestions are made on some elements of radiation effects which might be purposely utilized in the process of preparing innovative materials. (J.P.N.) 69 refs

  10. Tough composite materials: Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    A series of studies on tough composite materials is presented in this book. These composite materials are strong, but lightweight; and they are being used as metal replacements in applications where weight reduction is important. The material covered here provides an overview of NASA and other research aimed at improving composite material performance and increasing the understanding of composite material behavior. The book covers composite fracture toughness and impact characterization, constituent properties and interrelationships, matrix synthesis and characterization, and selected additional subjects.

  11. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  12. Cathode materials review

    Science.gov (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  13. Cathode materials review

    International Nuclear Information System (INIS)

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research

  14. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  15. New auxetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Grima, J.N

    2000-06-01

    Materials with negative Poisson's ratios (auxetic) exhibit the very unusual property of becoming wider when stretched and narrower when squashed. This thesis presents a global classification system for auxetics based on the geometry and deformation mechanisms. Analytical expressions for the mechanical properties of several new two and three dimensional auxetic structures are derived. These structures involve rotating polygons, chiral units, re-entrant units, sliding wedges and helices. It is observed that the auxetic behaviour is scale independent and hence the structures may be implemented at either the macro, micro or nano level. These auxetic structures are used to explain the negative Poisson's ratios in a number of auxetic materials. A chiral structure is used to model auxetic polyurethane foams having broken ribs. A three dimensional re-entrant hinging/stretching structure is used to model auxetic ex-PTFE. Both models offer significant improvements when compared to previous work. Auxetic structures are also used as models for designing novel nanostructural molecular auxetics. In most cases, the auxeticity of these materials is confirmed through detailed molecular modelling. For example, crystalline molecular polyphenylacetylene networks based on the 'rotating triangles structure' are predicted to exhibit Poisson's ratios as low as -1, in accordance with their analytical models. These molecular networks are particularly interesting as they have all the six on-axis Poisson's ratios being concurrently negative. Their polycrystalline aggregates are also likely to be auxetic. The actual values of the mechanical properties are found to be dependent on the details of the molecular formulae (e.g. predicted single crystalline +0.25>V{sub zy}>-0.97, 250GPa>E{sub z}>2.4GPa). Some of these specific properties may be explained through the analytical models and offer the possibility of being able to design materials with tailor-made mechanical

  16. Heat Pipe Materials Compatibility

    Science.gov (United States)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  17. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  18. New Materialism: Interviews & Cartographies

    OpenAIRE

    van der Tuin, I.; Dolphijn, R.

    2012-01-01

    This book is the first monograph on the theme of “new materialism,” an emerging trend in 21st century thought that has already left its mark in such fields as philosophy, cultural theory, feminism, science studies, and the arts. The first part of the book contains elaborate interviews with some of the most prominent new materialist scholars of today: Rosi Braidotti, Manuel DeLanda, Karen Barad, and Quentin Meillassoux. The second part situates the new materialist tradition in contemporary tho...

  19. Ultrasonic materials characterization

    Science.gov (United States)

    Smith, R. L.

    1987-02-01

    The National NDT Center at Harwell has been developing methods for the characterization of materials using ultrasonics. This paper reviews the progress made in applying ultrasonic attenuation measurements to the determination of such quantities as grain size and dislocation content. A method, ultrasonic attenuation spectral analysis, has been developed, which enables the contributions of scattering and absorption to the total attenuation to be separated. The theoretical advances that have been made are also described. Some of the practical applications of the technique are illustrated and future development discussed.

  20. Nuclear Systems Materials Handbook

    International Nuclear Information System (INIS)

    The NSM Handbook is a multi-volume document being compiled on a continuing basis to meet the broad materials data requirements of those involved in the development of advanced nuclear energy systems. The present focus of the Handbook is upon nuclear systems that have not yet achieved commercial status, with near-term emphasis on the nation's Liquid Metal Fast Breeder Reactor Program. Actual use of the Handbook extends to other advanced nuclear concepts sharing the same needs, and to many nonnuclear engineering activities as well