WorldWideScience

Sample records for bitter gourd peroxidase

  1. Bitter Gourd: Botany, Horticulture, Breeding

    Science.gov (United States)

    Bitter gourd fruits are a good source of carbohydrates, proteins, vitamins, and minerals and have the highest nutritive value among cucurbits. Moreover, the crude protein content (11.4-20.9 g.kg-1) of bitter gourd fruits is higher than that of tomato and cucumber. This book chapter focuses on the ...

  2. Gourds: Bitter, Bottle, Wax, Snake, Sponge and Ridge

    Science.gov (United States)

    Minor cucurbits include bitter gourd, bottle gourd, wax gourd, snake gourd, and sponge and ridge gourd, which are significant dietary sources of nutrients such as vitamin A and C, iron and calcium. These cucurbits are cultivated and marketed by smallholder farmers and remain important components of ...

  3. First report of phytophthora fruit rot on bitter gourd (Mormodica charantia) and sponge gourd (Luffa cylindrica) caused by phytophthora capsici

    Science.gov (United States)

    Luffa sponge (smooth gourd) and bitter gourds (bitter melon) are specialty cucurbit vegetables cultivated in the United States (US) on a small scale for select markets. Luffa gourds are also grown for the sponge obtained from dried fruit for personal hygiene and skin care. These two cucurbits prod...

  4. Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Junjie Cui

    2017-06-01

    Full Text Available Bitter gourd (Momordica charantia is widely cultivated as a vegetable and medicinal herb in many Asian and African countries. After the sequencing of the cucumber (Cucumis sativus, watermelon (Citrullus lanatus, and melon (Cucumis melo genomes, bitter gourd became the fourth cucurbit species whose whole genome was sequenced. However, a comprehensive analysis of simple sequence repeats (SSRs in bitter gourd, including a comparison with the three aforementioned cucurbit species has not yet been published. Here, we identified a total of 188,091 and 167,160 SSR motifs in the genomes of the bitter gourd lines ‘Dali-11’ and ‘OHB3-1,’ respectively. Subsequently, the SSR content, motif lengths, and classified motif types were characterized for the bitter gourd genomes and compared among all the cucurbit genomes. Lastly, a large set of 138,727 unique in silico SSR primer pairs were designed for bitter gourd. Among these, 71 primers were selected, all of which successfully amplified SSRs from the two bitter gourd lines ‘Dali-11’ and ‘K44’. To further examine the utilization of unique SSR primers, 21 SSR markers were used to genotype a collection of 211 bitter gourd lines from all over the world. A model-based clustering method and phylogenetic analysis indicated a clear separation among the geographic groups. The genomic SSR markers developed in this study have considerable potential value in advancing bitter gourd research.

  5. Cucurbit powdery mildew-resistant bitter gourd breeding lines reveal four races of Podosphaera xanthii in Asia

    Science.gov (United States)

    Bitter gourd (Momordica charantia L.) is a commercially and nutritionally important market vegetable in Asia cultivated mainly by smallholder farmers. Cucurbit powdery mildew (CPM) caused by Podosphaera xanthii (Px) is a nearly ubiquitous and serious fungal disease of bitter gourd. Five bitter gourd...

  6. Effect of bitter gourd (Momordica charantia) on glycaemic status in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Shetty, A K; Kumar, G Suresh; Sambaiah, K; Salimath, P V

    2005-09-01

    Bitter gourd (Momordica charantia), a commonly consumed vegetable is used as an adjunct in the management of diabetes mellitus. A study was carried out to examine the effect of edible portion of bitter gourd at 10% level in the diet in streptozotocin induced diabetic rats. To evaluate the glycaemic control of bitter gourd during diabetes, diet intake, gain in body weight, water intake, urine sugar, urine volume, glomerular filtration rate and fasting blood glucose profiles were monitored. Water consumption, urine volume and urine sugar were significantly higher in diabetic controls compared to normal rats and bitter gourd feeding alleviated this rise during diabetes by about 30%. Renal hypertrophy was higher in diabetic controls and bitter gourd supplementation, partially, but effectively prevented it (38%) during diabetes. Increased glomerular filtration rate in diabetes was significantly reduced (27%) by bitter gourd. An amelioration of about 30% in fasting blood glucose was observed with bitter gourd feeding in diabetic rats. These results clearly provided experimental evidence that dried bitter gourd powder in the diet at 10% level improved diabetic status signifying its beneficial effect during diabetes.

  7. Immediate effect of bitter gourd, ash gourd, Knol-khol juices on blood sugar levels of patients with type 2 diabetes mellitus: A pilot study

    Directory of Open Access Journals (Sweden)

    G. Selvakumar

    2017-10-01

    Conclusion: This study shows the significance of hypoglycemic effects of bitter gourd and Knol khol juices among the type 2 Diabetic patients. Hence Bitter gourd juice, Knol khol juices may be beneficial in Diabetes patients to reduce the blood glucose level.

  8. Immediate effect of bitter gourd, ash gourd, Knol-khol juices on blood sugar levels of patients with type 2 diabetes mellitus: A pilot study.

    Science.gov (United States)

    Selvakumar, G; Shathirapathiy, G; Jainraj, R; Yuvaraj Paul, P

    2017-10-01

    The aim of this study was to investigate the immediate effect of bitter gourd, Knol-khol, and ash gourd juices on blood glucose level among Type II diabetes mellitus patients. In 2015, pilot study was conducted randomly enrolling 30 patients with type 2 diabetes mellitus into three groups in SRK college, India. The first group received bitter gourd juice at FBS range between 120 to 300 mg per dl. The second, third group received Knol-khol, ash gourd juice respectively in the same range of fasting blood sugar level. Blood sugar level was evaluated ½ hour interval till 2 h after received respective juices. Data were collected for statistical analysis. The mean blood glucose concentration in bitter gourd group was not statistically significant between time points, (P = .176). However, 90 min after the intake of bitter gourd juice shows statistical significant reduction of blood glucose level when compare with fasting level, (p = .049). After Knol khol juice the mean blood glucose level differed statistically significant between time points, shown in (p = .029). But no statistical changes seen in ash gourd group. As a result bitter gourd juice is immediately reducing the blood glucose level, while Knol khol juice reduces the blood sugar level gradually for longer period of 120 min. This study shows the significance of hypoglycemic effects of bitter gourd and Knol khol juices among the type 2 Diabetic patients. Hence Bitter gourd juice, Knol khol juices may be beneficial in Diabetes patients to reduce the blood glucose level.

  9. Effect of drying methods on total antioxidant capacity of bitter gourd (momordica charantia) fruit

    Science.gov (United States)

    Tan, Ee Shian; Abdullah, Aminah; Maskat, Mohammad Yusof

    2013-11-01

    The effect of thermal and non-thermal drying methods on hydrophilic and lipophilic antioxidant capacities of bitter gourd fruit was investigated in this study. The bitter gourd fruits were dried by following methods: (i) oven drying 40°C, (ii) oven drying 50°C, (iii) oven drying 60°C, (iv) microwave drying (medium low power), (v) microwave drying (medium power) and (vi) freeze drying. Pure acetone and hexane were used to extract the hydrophilic and lipophilic antioxidant compounds from dried bitter gourd fruits. Freeze dried extracts reported to have highest values in DPPH scavenging activity (hydrophilic and lipophilic fractions), FRAP (lipophilic fraction) and TPC (hydrophilic and lipophilic fraction). Thermal drying slightly increased the values of DPPH scavenging activity, FRAP and TPC assays for hydrophilic extracts. Results concluded bitter gourd fruit is a good source of natural antioxidants and its total antioxidant quality was most preserved by freeze drying. Additionally, the higher value reported in DPPH scavenging activity, FRAP and TPC assays for lipophilic extracts than the hydrophilic extracts suggested that the lipophilic antioxidant compounds of bitter gourd fruit might possess stronger antioxidant power than its counterpart.

  10. Preliminary evaluation of resistance to powdery mildew (Podosphaera xanthii) in AVRDC collections of bitter gourd (Momordica charantia L.)

    Science.gov (United States)

    Bitter gourd (Momordica charantia L.) is an important market vegetable in Asia, where it is also used in folk medicine to manage type 2 diabetes. Powdery mildew caused by Podosphaera xanthii is a serious fungal disease of bitter gourd and yield losses of up to 50% have been reported. After observi...

  11. Modulatory effect of bitter gourd (Momordica charantia LINN.) on alterations in kidney heparan sulfate in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kumar, G Suresh; Shetty, A K; Salimath, P V

    2008-01-17

    Glycoconjugates in the kidney play an important role in the maintenance of glomerular filtration barrier. Thickening of the glomerular basement membrane (GBM) is well characterized in diabetic nephropathy. Changes in GBM mainly include reduction and undersulfation of heparan sulfate, and laminin with accumulation of type IV collagen leading to kidney dysfunction and there is a need to identify therapies that arrest disease progression to end-stage renal failure. In the present investigation, effect of bitter gourd on streptozotocin-induced diabetic rats with particular emphasis on kidney heparan sulfate (HS) was studied. Earlier, our study showed partial reversal of all the diabetes-induced effects by bitter gourd. Increase in the components of glycoconjugates during diabetes was significantly decreased by bitter gourd feeding. Diabetes associated elevation in the activities of enzymes involved in the synthesis and degradation of glycosaminoglycans (GAGs) were significantly lowered by bitter gourd supplementation. GAGs composition revealed decrease in amino sugar, and uronic acid contents during diabetes and bitter gourd feeding was effective in countering this reduction. Decrease in sulfate content in the GAGs during diabetes was ameliorated by bitter gourd feeding. HS decreased by 43% in diabetic rats while bitter gourd feeding to diabetic rats showed 28% reduction. These results clearly indicate beneficial role of bitter gourd in controlling glycoconjugate and heparan sulfate related kidney complications during diabetes thus prolonging late complications of diabetes.

  12. First Report of Anthracnose on Bitter Gourd Caused by Colletotrichum gloeosporioides in Korea

    Directory of Open Access Journals (Sweden)

    Ju-Hee Kim

    2015-03-01

    Full Text Available Anthracnose occurred in bitter gourd grown in Jeongup areas of Korea in 2011. Anthracnose of bitter gourd appeared as dark brown circular spots on naturally infected leaves and fruits. The symptoms of infected leaves and fruits were small brown to dark brown spots and gradually enlarged to larger cylindrical dark brown lesions. The causal fungus of anthracnose isolated from the diseased plants was identified as Colletotrichum gloeosporioides based on the morphological and cultural characteristics and ITS rDNA sequence analysis. All isolates of C. gloeosporioides produced symptoms on the host leaves by artificial inoculation. This is the first report of anthracnose on bitter gourd caused by C. gloeosporioides in Korea.

  13. Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions.

    Science.gov (United States)

    Urasaki, Naoya; Takagi, Hiroki; Natsume, Satoshi; Uemura, Aiko; Taniai, Naoki; Miyagi, Norimichi; Fukushima, Mai; Suzuki, Shouta; Tarora, Kazuhiko; Tamaki, Moritoshi; Sakamoto, Moriaki; Terauchi, Ryohei; Matsumura, Hideo

    2017-02-01

    Bitter gourd (Momordica charantia) is an important vegetable and medicinal plant in tropical and subtropical regions globally. In this study, the draft genome sequence of a monoecious bitter gourd inbred line, OHB3-1, was analyzed. Through Illumina sequencing and de novo assembly, scaffolds of 285.5 Mb in length were generated, corresponding to ∼84% of the estimated genome size of bitter gourd (339 Mb). In this draft genome sequence, 45,859 protein-coding gene loci were identified, and transposable elements accounted for 15.3% of the whole genome. According to synteny mapping and phylogenetic analysis of conserved genes, bitter gourd was more related to watermelon (Citrullus lanatus) than to cucumber (Cucumis sativus) or melon (C. melo). Using RAD-seq analysis, 1507 marker loci were genotyped in an F2 progeny of two bitter gourd lines, resulting in an improved linkage map, comprising 11 linkage groups. By anchoring RAD tag markers, 255 scaffolds were assigned to the linkage map. Comparative analysis of genome sequences and predicted genes determined that putative trypsin-inhibitor and ribosome-inactivating genes were distinctive in the bitter gourd genome. These genes could characterize the bitter gourd as a medicinal plant. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Effect of gamma rays on morphogenesis from different explants of bitter gourd (Momordica charantia L.)

    International Nuclear Information System (INIS)

    Mustafa, M.D.; Rao, A.M.; Nirmala, N.; Mallaiah, B.

    1993-01-01

    Different doses of irradiation were used on seeds of bitter gourd to elucidate their effect of morphogenetic response. Lower doses like 2-4 kRs favoured in multiple shoots induction and higher doses proved as the lethal. (author). 13 refs., 1 tab., 1 fig

  15. Effect of bitter gourd and spent turmeric on glycoconjugate metabolism in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Vijayalakshmi, B; Kumar, G Suresh; Salimath, P V

    2009-01-01

    Changes in glycoconjugate metabolism during the development of diabetic complications and their modulation by feeding bitter gourd and spent turmeric as fiber-rich source. This was studied by measuring the contents of total sugar, uronic acid, amino sugar, and sulfate in the streptozotocin-induced diabetic rats. Total sugar content decreased in liver, spleen, and brain, while an increase was observed in heart and lungs. Uronic acid content in liver, spleen, and brain decreased, and marginal increase was observed in testis. Amino sugar content decreased in liver, spleen, lungs and heart during diabetes, and augmentation was observed to different extents. Decrease in sulfation of glycoconjugates was observed in liver, spleen, lungs and heart during diabetes and was significantly ameliorated by bitter gourd and spent turmeric, except brain. Protein content decreased in liver, while an increase was observed in brain. The studies clearly showed alteration in glycoconjugate metabolism during diabetes and amelioration to different extents by feeding bitter gourd and spent turmeric. Improvement is due to slow release of glucose by fiber in the gastrointestinal track and short-chain fatty acid production from fiber by colon microbes.

  16. Bitter gourd reduces elevated fasting plasma glucose levels in an intervention study among prediabetics in Tanzania.

    Science.gov (United States)

    Krawinkel, Michael B; Ludwig, Christine; Swai, Mark E; Yang, Ray-Yu; Chun, Kwok Pan; Habicht, Sandra D

    2018-04-24

    Impaired glucose tolerance and diabetes mellitus have become major health issues even in non-industrialized countries. As access to clinical management is often poor, dietary interventions and alternative medicines are required. For bitter gourd, Momordica charantia L., antidiabetic properties have been claimed. The main objective of the intervention study was to assess antidiabetic effects of daily bitter gourd consumption of 2.5g powder over the course of eight weeks among prediabetic individuals. In a randomized placebo-controlled single blinded clinical trial, 52 individuals with prediabetes were studied after consuming a bitter gourd or a cucumber juice. For reducing the impact of between subject differences in the study population, a crossover design was chosen with eight weeks for each study period and four weeks washout in between. Fasting plasma glucose was chosen as the primary outcome variable. Comparing the different exposures, the CROS analysis (t=-2.23, p=0.031, r=0.326) revealed a significant difference in the change of FPG of 0.31mmol/L (5.6mg/dL) with a trend (R 2 =0,42387). The number of 44 finally complete data sets achieved a power of 0.82, with a medium-to-large effect size (Cohen's d 0.62). The effect was also proven by a general linear mixed model (estimate 0.31; SE: 0.12; p: 0.01; 95%CI: 0.08; 0.54). Not all participants responded, but the higher the initial blood glucose levels were, the more pronounced the effect was. No serious adverse effects were observed. Bitter gourd supplementation appeared to have benefits in lowering elevated fasting plasma glucose in prediabetes. The findings should be replicated in other intervention studies to further investigate glucose lowering effects and the opportunity to use bitter gourd for dietary self-management, especially in places where access to professional medical care is not easily assured. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Two Paralogous Genes Encoding Auxin Efflux Carrier Differentially Expressed in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Yi-Li Li

    2017-11-01

    Full Text Available The phytohormone auxin regulates various developmental programs in plants, including cell growth, cell division and cell differentiation. The auxin efflux carriers are essential for the auxin transport. To show an involvement of auxin transporters in the coordination of fruit development in bitter gourd, a juicy fruit, we isolated novel cDNAs (referred as McPIN encoding putative auxin efflux carriers, including McPIN1, McPIN2 (allele of McPIN1 and McPIN3, from developing fruits of bitter gourd. Both McPIN1 and McPIN3 genes possess six exons and five introns. Hydropathy analysis revealed that both polypeptides have two hydrophobic regions with five transmembrane segments and a predominantly hydrophilic core. Phylogenetic analyses revealed that McPIN1 shared the highest homology to the group of Arabidopsis, cucumber and tomato PIN1, while McPIN3 belonged to another group, including Arabidopsis and tomato PIN3 as well as PIN4. This suggests different roles for McPIN1 and McPIN3 in auxin transport involved in the fruit development of bitter gourd. Maximum mRNA levels for both genes were detected in staminate and pistillate flowers. McPIN1 is expressed in a particular period of early fruit development but McPIN3 continues to be expressed until the last stage of fruit ripening. Moreover, these two genes are auxin-inducible and qualified as early auxin-response genes. Their expression patterns suggest that these two auxin transporter genes play a pivotal role in fruit setting and development.

  18. Allelopathic Stress Produced by Bitter Gourd (Momordica charantia L.

    Directory of Open Access Journals (Sweden)

    N.B. Singh

    2014-05-01

    Full Text Available The present study deals with in vitro effects of allelochemicals present in leaf and fruit leachate of Momordica charantia in vitro on plant growth and metabolism of Lycopersicon esculentum. Momordica was selected as a donor plant and tomato as recipient. Seeds of tomato were shown in pots and after germination different concentrations viz. 25, 50, 75 and 100% of leaf and fruit leachates were applied as treatment. Twenty days old seedlings were harvested for biophysical and biochemical analyses. The root and shoot length, fresh and dry weight of the seedlings decreased in dose dependent manner. The reduction in pigment and protein contents and nitrate reductase activity was concentration dependent. Membrane leakage increased as the concentration of leachates increased. Activities of antioxidant enzymes viz. superoxide dismutase (SOD, catalase (CAT and peroxidase (POX activities significantly enhanced under allelopathic stress. Inhibition of various metabolic activities under allelopathic stress resulted in decreased plant growth and development. The fruit leachate of Momordica was more inhibitory than leaf leachate.

  19. Proteomic analysis of heat treated bitter gourd (Momordica charantia L. var. Hong Kong Green) using 2D-DIGE.

    Science.gov (United States)

    Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani

    2014-04-01

    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. An Update Review on the Anthelmintic Activity of Bitter Gourd, Momordica charantia.

    Science.gov (United States)

    Poolperm, Sutthaya; Jiraungkoorskul, Wannee

    2017-01-01

    Momordica charantia (Family: Cucurbitales ), as known as bitter melon or gourd, is a daily consumption as food and traditional medicinal plant in Southeast Asia and Indo-China. It has been shown to possess anticancer, antidepressant, antidiabetic, anti-inflammatory, antimicrobial, antiobesity, antioxidant, and antiulcer properties. Its common phytochemical components include alkaloids, charantin, flavonoids, glycosides, phenolics, tannins, and terpenoids. This plant is rich in various saponins including momordicin, momordin, momordicoside, karavilagenin, karaviloside, and kuguacin, all of which have been reported to contribute to its remedial properties including antibacterial, antifungal, antiviral, and antiparasitic infections. Based on established literature on the anthelmintic activity of M. charantia and possible mode of action, this review article has attempted to compile M. charantia could be further explored for the development of potential anthelmintic drug.

  1. Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd

    Directory of Open Access Journals (Sweden)

    Ting-ni Huang

    2013-01-01

    Full Text Available This study aimed to examine the role of GLP-1 in the hypoglycemic activity of wild bitter gourd (Momordica charantia L., BG. In vitro, the GLP-1 secretion in STC-1, a murine enteroendocrine cell line, was dose dependently stimulated by water extract (WE, its fractions (WEL, >3 kD and WES, <3 kD, and a bitter compounds-rich fraction of BG. These stimulations were partially inhibited by probenecid, a bitter taste receptor inhibitor, and by U-73122, a phospholipase Cβ2 inhibitor. These results suggested that the stimulation might involve, at least in part, certain bitter taste receptors and/or PLCβ2-signaling pathway. Two cucurbitane triterpenoids isolated from BG, 19-nor-cucurbita-5(10,6,8,22-(E,24-pentaen-3β-ol, and 5β,19-epoxycucurbita-6,24-diene-3β,23ξ-diol (karavilagenine E, showed relative high efficacy in the stimulation. In vivo, mice fed BG diet showed higher insulinogenic index in an oral glucose tolerance test. A single oral dose of WE or WES pretreatment significantly improved intraperitoneal glucose tolerance. A single oral dose of WES significantly decreased glucose and increased insulin and GLP-1 in serum after 30 min. This acute hypoglycemic effect of WES was abolished by pretreatment with exendin-9, a GLP-1 receptor antagonist. Our data provide evidence that BG stimulates GLP-1 secretion which contributes, at least in part, to the antidiabetic activity of BG through an incretin effect.

  2. Wild bitter gourd improves metabolic syndrome: A preliminary dietary supplementation trial

    Directory of Open Access Journals (Sweden)

    Tsai Chung-Huang

    2012-01-01

    Full Text Available Abstract Background Bitter gourd (Momordica charantia L. is a common tropical vegetable that has been used in traditional or folk medicine to treat diabetes. Wild bitter gourd (WBG ameliorated metabolic syndrome (MetS in animal models. We aimed to preliminarily evaluate the effect of WBG supplementation on MetS in Taiwanese adults. Methods A preliminary open-label uncontrolled supplementation trial was conducted in eligible fulfilled the diagnosis of MetS from May 2008 to April 2009. A total of 42 eligible (21 men and 21 women with a mean age of 45.7 ± 11.4 years (23 to 63 years were supplemented with 4.8 gram lyophilized WBG powder in capsules daily for three months and were checked for MetS at enrollment and follow-up monthly. After supplementation was ceased, the participants were continually checked for MetS monthly over an additional three-month period. MetS incidence rate were analyzed using repeated-measures generalized linear mixed models according to the intention-to-treat principle. Results After adjusting for sex and age, the MetS incidence rate (standard error, p value decreased by 7.1% (3.7%, 0.920, 9.5% (4.3%, 0.451, 19.0% (5.7%, 0.021, 16.7% (5.4%, 0.047, 11.9% (4.7%, 0.229 and 11.9% (4.7%, 0.229 at visit 2, 3, 4, 5, 6, and 7 compared to that at baseline (visit 1, respectively. The decrease in incidence rate was highest at the end of the three-month supplementation period and it was significantly different from that at baseline (p = 0.021. The difference remained significant at end of the 4th month (one month after the cessation of supplementation (p = 0.047 but the effect diminished at the 5th and 6th months after baseline. The waist circumference also significantly decreased after the supplementation (p Conclusion This is the first report to show that WBG improved MetS in human which provides a firm base for further randomized controlled trials to evaluate the efficacy of WBG supplementation.

  3. Antifungal Potential of Indigenous Medicinal Plants against Myrothecium Leaf Spot of Bitter Gourd ( Momordica charantia L.

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2017-08-01

    Full Text Available ABSTRACT Bitter gourd is of great importance due to its usage against the treatment of numerous ailments in human beings. A comprehensive survey at four localities of Southern Punjab, Pakistan was carried out to determine the severity of Myrothecium leaf spot. Maximum disease severity was at C1 (Chak 11/NP and least at C2 (Kot Mehtab. Among isolated species Myrothecium roridum was found more prevalent and pathogenic as compared to M. verrucaria. Antifungal activity using solvent extracts of five medicinal plants (Mangifera indica, Melia azedarach, Nicotiana tabacum, Moringa oleifera and Eucalyptus globosum were evaluated against isolated species by agar well diffusion method at various concentrations (0.01, 0.10, 1.0 and 10.0 µg / mL. N. tabacum revealed maximum zone size (13.40 mm and 8.28 mm with ethanol and chloroform solvents respectively followed by M. azedarach (9.00mm and 6.48mm. However, least inhibition was observed with ethanol and chloroform extracts of E. globosum (6.04mm and 3.88mm zone size respectively. Ethanol extracts showed highest activity when compared to chloroform extracts. Qualitative phytochemical analysis showed that all the selected plants are rich in chemical compounds such as alkaloids, terpenoids, flavonoids and phenols whereas Saponins was only present in N. tabacum while absent in rest of the extracts.

  4. Histological changes in the kidneys of experimental diabetic rats fed with Momordica charantia (bitter gourd) extract.

    Science.gov (United States)

    Teoh, S L; Abd Latiff, Azian; Das, S

    2010-01-01

    Momordica charantia (MC) or bitter gourd is widely known for its antidiabetic properties. The aim of the present study was to observe the protective effect of MC extract on the kidneys of streptozotocin-induced diabetic rats. Eighteen male Sprague-Dawley rats (n=18) weighing 200+/-50 g were taken for the study. The study comprised of three groups i.e. a non-diabetic, diabetic untreated and diabetic treated with MC extract, with each group comprising of six (n=6) rats. Diabetes was induced in the overnight fasted rats by intramuscular injection of streptozotocin (50 mg/kg body weight). The MC extract (50 mg/kg body weight) was administered via oral gavage. Both the kidneys were collected on the tenth day following treatment. Histological study using Verhoeff's van Gieson (VvG) and Periodic Acid-Schiff (PAS) stains were performed. The kidneys of the diabetic rats showed thickening of the basement membrane of the Bowman's capsule, edema and hypercellurarity of the proximal tubules, necrosis and hyaline deposits. These features were found to be reversed when the MC extract was administered to the experimental animals. The MC extract acted as an antioxidant thereby preventing the oxidative damage involved in the diabetic kidney. The administration of MC extract prevents oxidative damage in diabetic nephropathy.

  5. The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd.

    Science.gov (United States)

    Heine, Gregor; Tikum, George; Horst, Walter J

    2007-01-01

    The effect of silicon (Si) supply on the infection and spread of Pythium aphanidermatum was studied in the roots of tomato [Lycopersicon esculentum (=Solanum lycopersicum), an Si excluder] and bitter gourd (Mormodica charantia, an Si intermediate accumulator). Individual roots were mounted into PVC compartmented boxes which allowed the application of Si and zoospores to defined root zones. Two days after inoculation, root growth was recorded, and P. aphanidermatum colonization of individual root sections was determined by ELISA. In tomato as well as in bitter gourd the root tip was the root section most sensitive to P. aphanidermatum infection. Application of Si did not affect severe root-growth inhibition by P. aphanidermatum in either species. However, continuous Si supply significantly inhibited the basipetal spread of the pathogen from the infected root apex in bitter gourd but not in tomato. Si application to the roots only during pretreatment or only during/after the infection of the roots failed to inhibit the spread of P. aphanidermatum. Determination and compartmentation of Si in the roots of bitter gourd revealed that apoplastic Si was not, but symplastic Si was, associated with the ability of the plant to reduce the spread of the fungus in roots. It is concluded that accumulation of Si in the root cell walls does not represent a physical barrier to the spread of P. aphanidermatum in bitter gourd and tomato roots. The maintenance of elevated symplastic Si contents is a prerequisite for Si-enhanced resistance against P. aphanidermatum.

  6. Crystallization and preliminary X-ray studies of a galactose-specific lectin from the seeds of bitter gourd (Momordica charantia)

    International Nuclear Information System (INIS)

    Chandran, Thyageshwar; Sharma, Alok; Vijayan, M.

    2010-01-01

    A galactose-specific lectin purified from the seeds of bitter gourd (M. charantia) has been crystallized and preliminary X-ray study of the crystals has been carried out. A galactose-specific lectin from the seeds of bitter gourd (Momordica charantia) is a four-chain type II ribosome-inactivating protein (RIP) resulting from covalent association through a disulfide bridge between two identical copies of a two-chain unit. The available structural information on such four-chain RIPs is meagre. The bitter gourd lectin was therefore crystallized for structural investigation and the crystals have been characterized. It is anticipated that the structure of the orthorhombic crystals will be analysed using molecular replacement by taking advantage of its sequence, and presumably structural, homology to normal two-chain type II RIPs

  7. A RAD-Based Genetic Map for Anchoring Scaffold Sequences and Identifying QTLs in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Junjie Cui

    2018-04-01

    Full Text Available Genetic mapping is a basic tool necessary for anchoring assembled scaffold sequences and for identifying QTLs controlling important traits. Though bitter gourd (Momordica charantia is both consumed and used as a medicinal, research on its genomics and genetic mapping is severely limited. Here, we report the construction of a restriction site associated DNA (RAD-based genetic map for bitter gourd using an F2 mapping population comprising 423 individuals derived from two cultivated inbred lines, the gynoecious line ‘K44’ and the monoecious line ‘Dali-11.’ This map comprised 1,009 SNP markers and spanned a total genetic distance of 2,203.95 cM across the 11 linkage groups. It anchored a total of 113 assembled scaffolds that covered about 251.32 Mb (85.48% of the 294.01 Mb assembled genome. In addition, three horticulturally important traits including sex expression, fruit epidermal structure, and immature fruit color were evaluated using a combination of qualitative and quantitative data. As a result, we identified three QTL/gene loci responsible for these traits in three environments. The QTL/gene gy/fffn/ffn, controlling sex expression involved in gynoecy, first female flower node, and female flower number was detected in the reported region. Particularly, two QTLs/genes, Fwa/Wr and w, were found to be responsible for fruit epidermal structure and white immature fruit color, respectively. This RAD-based genetic map promotes the assembly of the bitter gourd genome and the identified genetic loci will accelerate the cloning of relevant genes in the future.

  8. Effect of bitter gourd and spent turmeric on constituents of glycosaminoglycans in different tissues in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Kumar, G Suresh; Vijayalakshmi, B; Salimath, P V

    2006-06-01

    Diet is now one of the well established means in the management of diabetes. Bitter gourd and spent turmeric at 10% level were tested for their efficacy on glycosaminoglycan metabolism in various tissues viz., liver, spleen, lungs, heart and testis in control, diabetic and treated rats. The glycosaminoglycans (GAGs) were isolated from defatted and dried tissues. The contents of sulfated GAGs decreased in all the tissues and the decrease was more prominent in heart and testis. In the isolated GAGs, contents of total sugar, amino sugar, uronic acid and sulfate were studied. Decrease in total sugar content was maximum in testis. Amino sugar content decreased considerably in testis (38%) and lungs (15%). The content of uronic acid also decreased in testis (33%) besides heart (29%) and liver (25%). Sulfate groups in GAGs perform pivotal functions in many biological events and decrease in sulfate content was significant in heart (40%), testis (37%) and liver (37%). GAGs profile on the cellulose acetate electrophoresis revealed that heparan sulfate (HS), hyaluronic acid (HA) and chondroitin sulfate/dermatan sulfate (CS/DS) were present in liver, spleen and lungs. HS, CS were present in heart, DS/CS was observed in testis. The observed beneficial effects in GAGs metabolism during diabetes may be due to the presence of high amounts of dietary fibres present in bitter gourd and spent turmeric, besides, possible presence of bioactive compounds in one or both of them.

  9. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves.

    Science.gov (United States)

    Zhang, Beibei; Xie, Chengjian; Wei, Yunming; Li, Jing; Yang, Xingyong

    2015-03-01

    An antifungal protein, designated MCha-Pr, was isolated from the intercellular fluid of bitter gourd (Momordica charantia) leaves during a screen for potent antimicrobial proteins from plants. The isolation procedure involved a combination of extraction, ammonium sulphate precipitation, gel filtration on Bio-Gel P-6, ion exchange chromatography on CM-Sephadex, an additional gel filtration on HiLoad 16/60 Superdex 30, and finally, HPLC on a SOURCE 5RPC column. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry indicated that the protein had a molecular mass of 25733.46Da. Automated Edman degradation was used to determine the N-terminal sequence of MCha-Pr, and the amino acid sequence was identified as V-E-Y-T-I-T-G-N-A-G-N-T-P-G-G. The MCha-Pr protein has some similarity to the pathogenesis-related proteins from Atropa belladonna (deadly nightshade), Solanum tuberosum (potato), Ricinus communis (castor bean), and Nicotiana tabacum (tobacco). Analysis of the circular dichroism spectra indicated that MCha-Pr predominantly contains α-helix and β-sheet structures. MCha-Pr had inhibitory effects towards a variety of fungal species and the 50% inhibition of fungal growth (IC50) for Alternaria brassicae, Cercospora personata, Fusarium oxysporum, Mucor sp., and Rhizoctonia solani are 33 μM, 42 μM, 37 μM, 40 μM, and 48 μM, respectively. In addition, this antifungal protein can inhibit the germination of A. brassicae spores at 12.5 μM. These results suggest that MCha-Pr in bitter gourd leaves plays a protective role against phytopathogens and has a wide antimicrobial spectrum. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties.

    Science.gov (United States)

    Fang, E F; Ng, T B

    2011-07-01

    Bitter gourd (Momordica charantia, BG) is both a nutritious and healthy food with a distinctive bitter flavor, and it is also widely exploited in folklore medicine. This review focuses on the efficacies and molecular mechanisms of BG-induced anti-diabetic, anti-HIV, and antitumor activities contributed by over twenty active components. The intent of this review is to provide comprehensive and valuable information for medicinal researchers, drug investigators, clinicians, and even patients with an interest in BG. In conclusion, BG is a cornucopia of health and it deserves in-depth investigations for clinical application in the future.

  11. Detection and characterization of ‘Candidatus Phytoplasma asteris’ associated with littleleaf disease of bitter gourd from India by 16S rRNA phylogenetic and RFLP (in vitro and virtual analysis

    Directory of Open Access Journals (Sweden)

    Venkataravanappa Venkataravanappa

    2017-01-01

    Full Text Available Bitter gourd plants showing symptoms of little leaf disease are prevalent in farmers’ fields in the Bangalore rural district, Karnataka state, India. Twenty leaf samples from different locations were collected to determine the etiology of the disease. Using PCR and phytoplasma 16S rRNA gene-specific universal primers, we observed positive amplification for the phytoplasma specific primers in five out of twenty samples. The amplified products were cloned, sequenced and nucleotide (NT sequence comparisons were made with the available phytoplasmas’ 16S rRNA gene NT sequences in the NCBI database. The 16S rRNA gene NT sequence of bitter gourd phytoplasma shared highest identity of 81.7-96.0% with ‘Candidatus Phytoplasma asteris’ (Ca. P. asteris 16Sr I group isolates from different parts of the world. This was supported by close clustering of phytoplasma of the current study with the Ca. P. asteris 16Sr I subgroup by phylogenetic analysis. The virtual restriction fragment length polymorphism (RFLP pattern generated for the Phytoplasma from bitter gourd was in congruence with the in vitro RFLP pattern for the six enzymes. This was typical to Ca. P. asteris from the 16Sr I group. Further, virtual RFLP analysis with 11 more enzymes used for RFLP pattern prediction revealed differences only in the Mse I RFLP pattern, with a similarity coefficient of 0.91, which is less than the threshold similarity coefficient for a new subgroup. We propose that the phytoplasma detected in the present study that infects bitter gourd and causes littleleaf disease should be considered as a new subgroup of group 16Sr I (Ca. P. asteris. This is the first report of phytoplasma associated with littleleaf disease of bitter gourd from India.

  12. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.).

    Science.gov (United States)

    Poovitha, Sundar; Parani, Madasamy

    2016-07-18

    α-amylase and α-glucosidase digest the carbohydrates and increase the postprandial glucose level in diabetic patients. Inhibiting the activity of these two enzymes can control postprandial hyperglycemia, and reduce the risk of developing diabetes. Bitter gourd or balsam pear is one of the important medicinal plants used for controlling postprandial hyperglycemia in diabetes patients. However, there is limited information available on the presence of α-amylase and α-glucosidase inhibiting compounds. In the current study, the protein extracts from the fruits of M. charantia var. charantia (MCC) and M. charantia var. muricata (MCM) were tested for α-amylase and α-glucosidase inhibiting activities in vitro, and glucose lowering activity after oral administration in vivo. The protein extract from both MCC and MCM inhibited the activity of α-amylase and α-glucosidase through competitive inhibition, which was on par with Acarbose as indicated by in vitro percentage of inhibition (66 to 69 %) and IC50 (0.26 to 0.29 mg/ml). Both the protein extracts significantly reduced peak blood glucose and area under the curve in Streptozotocin-induced diabetic rats, which were orally challenged with starch and sucrose. Protein extracts from the fruits of the two varieties of bitter gourd inhibited α-amylase and α-glucosidase in vitro and lowered the blood glucose level in vivo on par with Acarbose when orally administrated to Streptozotocin-induced diabetic rats. Further studies on mechanism of action and methods of safe and biologically active delivery will help to develop an anti-diabetic oral protein drug from these plants.

  13. Development of novel simple sequence repeat markers in bitter gourd (Momordica charantia L.) through enriched genomic libraries and their utilization in analysis of genetic diversity and cross-species transferability.

    Science.gov (United States)

    Saxena, Swati; Singh, Archana; Archak, Sunil; Behera, Tushar K; John, Joseph K; Meshram, Sudhir U; Gaikwad, Ambika B

    2015-01-01

    Microsatellite or simple sequence repeat (SSR) markers are the preferred markers for genetic analyses of crop plants. The availability of a limited number of such markers in bitter gourd (Momordica charantia L.) necessitates the development and characterization of more SSR markers. These were developed from genomic libraries enriched for three dinucleotide, five trinucleotide, and two tetranucleotide core repeat motifs. Employing the strategy of polymerase chain reaction-based screening, the number of clones to be sequenced was reduced by 81 % and 93.7 % of the sequenced clones contained in microsatellite repeats. Unique primer-pairs were designed for 160 microsatellite loci, and amplicons of expected length were obtained for 151 loci (94.4 %). Evaluation of diversity in 54 bitter gourd accessions at 51 loci indicated that 20 % of the loci were polymorphic with the polymorphic information content values ranging from 0.13 to 0.77. Fifteen Indian varieties were clearly distinguished indicative of the usefulness of the developed markers. Markers at 40 loci (78.4 %) were transferable to six species, viz. Momordica cymbalaria, Momordica subangulata subsp. renigera, Momordica balsamina, Momordica dioca, Momordica cochinchinesis, and Momordica sahyadrica. The microsatellite markers reported will be useful in various genetic and molecular genetic studies in bitter gourd, a cucurbit of immense nutritive, medicinal, and economic importance.

  14. Supplementation with Hualian No. 4 wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) extract increases anti-fatigue activities and enhances exercise performance in mice.

    Science.gov (United States)

    Hsiao, Chien-Yu; Chen, Yi-Ming; Hsu, Yi-Ju; Huang, Chi-Chang; Sung, Hsin-Ching; Chen, Sheng-Shih

    2017-06-29

    Hualian No. 4 wild bitter gourd (WBG) is a specific vegetable cultivated by the Hualien District Agricultural Research and Extension Station in Taiwan. WBG is commonly consumed as a vegetable and used as a popular folk medicine. However, few studies have demonstrated the effects of WBG supplementation on exercise performance, physical fatigue and the biochemical profile. The purpose of this study was to evaluate the potential beneficial effects of WBG extract on fatigue and ergogenic functions following physiological challenge. Three groups of male ICR mice (n=8 per group) were orally administered 0, 1 or 2.5 g/kg/day of WBG for 4 weeks. They were respectively designated the vehicle, WBG-1X and WBG-2.5X groups. WBG significantly decreased body weight (BW) and epididymal fat pad (EFP) weight. Concerning physical performance, WBG supplementation dose-dependently increased grip strength and endurance swimming time. Concerning anti-fatigue activity, WBG decreased levels of serum lactate, ammonia, creatine kinase and blood urea nitrogen, and economized glucose metabolism after acute exercise challenge. Glycogen in the liver and gastrocnemius muscle dose-dependently increased with WBG treatment. Concerning the biochemical profile, WBG treatment significantly decreased alanine aminotransferase (ALT), blood urea nitrogen (BUN) and urea acid (UA), and increased total protein (TP). Therefore, 4-week supplementation with WBG may decrease white adipose weight, enhance energy economy, increase glycogen storage to enhance exercise performance and reduce fatigue.

  15. The effect of topical extract of Momordica charantia (bitter gourd) on wound healing in nondiabetic rats and in rats with diabetes induced by streptozotocin.

    Science.gov (United States)

    Teoh, S L; Latiff, A A; Das, S

    2009-10-01

    Momordica charantia (MC; bitter gourd) is a traditional herb commonly used for its antidiabetic, antioxidant, contraceptive and antibacterial properties. It is also used for the rapid healing of wounds. To observe the topical effect of MC extract on the wound-healing process in rats with diabetes induced by streptozotocin. In total, 72 Sprague-Dawley rats were used for the study. The animals were subdivided into two groups: a nondiabetic group (n = 36) and a group with diabetes induced by streptozotocin (n = 36). Both groups were subdivided further into a nontreated control group (n = 18), and a topically treated group with MC extract administered daily (n = 18). The wound was inflicted with a 6-mm punch-biopsy needle on the dorsal aspect of the thoracolumbar region. The animals were killed on the days 1, 5 and 10 after wound creation. The rate of wound closure and the total protein content was estimated. Histological study of the wound tissue at days 5 and 10 was also performed. The diabetic group exhibited delayed wound healing as compared to the normal group. Interestingly, the diabetic group treated with topical MC extract showed better results than the nontreated group. Results show that administration of MC extract improves and accelerates the process of wound healing in diabetic animals.

  16. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia)

    Science.gov (United States)

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initia...

  17. Teratogenic effect of the water extract of bitter gourd ( Momordica ...

    African Journals Online (AJOL)

    It has been reported that the water extract of the whole unripe fruit of Momordica charantia can significantly reduce blood glucose levels. However the safety of its use during pregnancy has not been fully investigated. The aim of this investigation is to determine the safety of this extract during pregnancy. The water extract of ...

  18. Ethanolic leaf extract of Langenaria breviflora (bitter gourd) inhibits ...

    African Journals Online (AJOL)

    SARAH

    2015-01-30

    Jan 30, 2015 ... ABSTRACT. Objective: Gastrointestinal toxicity remains a barrier to applications of non-steroidal anti-inflammatory drugs in ... Little wonder, researches in ... L. breviflora extract. Group 1 rats served as normal control and received only normal saline. Groups 2-5 comprised indomethacin ulcerated animals.

  19. Teratogenic effect of the water extract of bitter gourd ( Momordica ...

    African Journals Online (AJOL)

    It also showed that 31.2% of all the malformed litters had multiple congenital malformations. It also showed that the experimental rats had nine resorption sites while control had none. This demonstrates that the water extract of Momordica charantia is teratogenic in Sprague Dawley rats and should be used with caution in ...

  20. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency

    OpenAIRE

    Joseph, Baby; Jini, D

    2013-01-01

    Diabetes mellitus is among the most common disorder in developed and developing countries, and the disease is increasing rapidly in most parts of the world. It has been estimated that up to one-third of patients with diabetes mellitus use some form of complementary and alternative medicine. One plant that has received the most attention for its anti-diabetic properties is bitter melon, Momordica charantia (M. charantia), commonly referred to as bitter gourd, karela and balsam p...

  1. Genetic diversity of bottle gourd ( Lagenaria siceraria (Molina) Standl.)

    African Journals Online (AJOL)

    Bottle gourd (Lagenaria siceraria (Molina) Standl.) is an important crop in rural communities in South Africa but it remains under-researched. The objective of this study was to assess the genetic diversity present amongst bottle gourd landraces grown by smallholder farmers in South Africa using morphological traits and 11 ...

  2. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy.

    Science.gov (United States)

    Raina, Komal; Kumar, Dileep; Agarwal, Rajesh

    2016-10-01

    Recently, there is a paradigm shift that the whole food-derived components are not 'idle bystanders' but actively participate in modulating aberrant metabolic and signaling pathways in both healthy and diseased individuals. One such whole food from Cucurbitaceae family is 'bitter melon' (Momordica charantia, also called bitter gourd, balsam apple, etc.), which has gained an enormous attention in recent years as an alternative medicine in developed countries. The increased focus on bitter melon consumption could in part be due to several recent pre-clinical efficacy studies demonstrating bitter melon potential to target obesity/type II diabetes-associated metabolic aberrations as well as its pre-clinical anti-cancer efficacy against various malignancies. The bioassay-guided fractionations have also classified the bitter melon chemical constituents based on their anti-diabetic or cytotoxic effects. Thus, by definition, these bitter melon constituents are at cross roads on the bioactivity parameters; they either have selective efficacy for correcting metabolic aberrations or targeting cancer cells, or have beneficial effects in both conditions. However, given the vast, though dispersed, literature reports on the bioactivity and beneficial attributes of bitter melon constituents, a comprehensive review on the bitter melon components and the overlapping beneficial attributes is lacking; our review attempts to fulfill these unmet needs. Importantly, the recent realization that there are common risk factors associated with obesity/type II diabetes-associated metabolic aberrations and cancer, this timely review focuses on the dual efficacy of bitter melon against the risk factors associated with both diseases that could potentially impact the course of malignancy to advanced stages. Furthermore, this review also addresses a significant gap in our knowledge regarding the bitter melon drug-drug interactions which can be predicted from the available reports on bitter melon

  3. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy

    Science.gov (United States)

    Raina, Komal; Kumar, Dileep; Agarwal, Rajesh

    2016-01-01

    Recently, there is a paradigm shift that the whole food-derived components are not ‘idle bystanders’ but actively participate in modulating aberrant metabolic and signaling pathways in both healthy and diseased individuals. One such whole food from Cucurbitaceae family is ‘bitter melon’ (Momordica charantia, also called bitter gourd, balsam apple, etc.), which has gained an enormous attention in recent years as an alternative medicine in developed countries. The increased focus on bitter melon consumption could in part be due to several recent pre-clinical efficacy studies demonstrating bitter melon potential to target obesity/type II diabetes-associated metabolic aberrations as well as its pre-clinical anti-cancer efficacy against various malignancies. The bioassay-guided fractionations have also classified the bitter melon chemical constituents based on their anti-diabetic or cytotoxic effects. Thus, by definition, these bitter melon constituents are at cross roads on the bioactivity parameters; they either have selective efficacy for correcting metabolic aberrations or targeting cancer cells, or have beneficial effects in both conditions. However, given the vast, though dispersed, literature reports on the bioactivity and beneficial attributes of bitter melon constituents, a comprehensive review on the bitter melon components and the overlapping beneficial attributes is lacking; our review attempts to fulfill these unmet needs. Importantly, the recent realization that there are common risk factors associated with obesity/type II diabetes-associated metabolic aberrations and cancer, this timely review focuses on the dual efficacy of bitter melon against the risk factors associated with both diseases that could potentially impact the course of malignancy to advanced stages. Furthermore, this review also addresses a significant gap in our knowledge regarding the bitter melon drug-drug interactions which can be predicted from the available reports on bitter

  4. Mapping of the Gynoecy in Bitter Gourd (Momordica charantia) Using RAD-Seq Analysis

    Science.gov (United States)

    Matsumura, Hideo; Miyagi, Norimichi; Taniai, Naoki; Fukushima, Mai; Tarora, Kazuhiko; Shudo, Ayano; Urasaki, Naoya

    2014-01-01

    Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding. PMID:24498029

  5. Mapping of the gynoecy in bitter gourd (Momordica charantia using RAD-seq analysis.

    Directory of Open Access Journals (Sweden)

    Hideo Matsumura

    Full Text Available Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding.

  6. Bitter taste – cheese failure

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2001-10-01

    Full Text Available Bitter taste is serous and very often cheese failure in modern cheesemaking process. In this paper the sources and bitter taste development in cheese will be presented. Bitterness in cheese is linked to bitter compounds development during cheese ripening. Most of the bitter compounds come from bitter peptides, the mechanism of theirs development being due to proteasepeptidase system of the cured enzymes and the milk cultures as well as other proteases present in cheese. By the action of curd enzymes, the milk protein - casein - is firstly degraded into high molecular weight compounds possessing no bitter taste. Those compounds are then degraded, by milk protease cultures, to hydrophobic bitter peptides of low molecular weight further degraded, by bacterial endopeptidase during cheese ripening, to bitter peptides and amino acids. In the case when no balance exists, between bitter compounds development and breakdown by lactic acid bacteria peptidase, an accumulation of bitter peptides occurs thus having an influence on cheese bitterness. During cheese ripening naturally occurring milk protease – plasmin, and thermostable proteases of raw milk microflora are also involved in proteolytic process. Fat cheese lipases, initiated by lipase originating from psychrotrophic bacteria in raw milk as well as other cheese lipases, are also associated with bitter taste generation. The other sources of bitterness come from the forages, the medicament residues as well as washing and disinfecting agents. In order to eliminate these failures a special care should be taken in milk quality as well as curd and milk culture selection. At this point technological norms and procedures, aimed to maintain the proteolysis balance during cheese ripening, should be adjusted, thus eliminating the bitter taste of the cheese.

  7. Bitter (CW6)

    CSIR Research Space (South Africa)

    Estuarine and Coastal

    1981-06-01

    Full Text Available originating from the sea tend to build up the sand bar at the mouth of the Bitter, whilst the river would tend to breach it at times of flow, particularly in the winter months. Sea water probably only overtops the sandbar during exceptionally high tides...

  8. Optimized Production of Lignin Peroxidase, Manganese Peroxidase

    African Journals Online (AJOL)

    Mgina

    OPTIMIZED PRODUCTION OF LIGNIN PEROXIDASE, MANGANESE. PEROXIDASE AND LACCASE IN SUBMERGED CULTURES OF. TRAMETES TROGII USING VARIOUS GROWTH MEDIA. COMPOSITIONS. F Patrick*, G Mtui, AM Mshandete and A Kivaisi. Department of Molecular Biology and Biotechnology, College ...

  9. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    Science.gov (United States)

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants.

  10. Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication.

    Science.gov (United States)

    Kistler, Logan; Newsom, Lee A; Ryan, Timothy M; Clarke, Andrew C; Smith, Bruce D; Perry, George H

    2015-12-08

    The genus Cucurbita (squashes, pumpkins, gourds) contains numerous domesticated lineages with ancient New World origins. It was broadly distributed in the past but has declined to the point that several of the crops' progenitor species are scarce or unknown in the wild. We hypothesize that Holocene ecological shifts and megafaunal extinctions severely impacted wild Cucurbita, whereas their domestic counterparts adapted to changing conditions via symbiosis with human cultivators. First, we used high-throughput sequencing to analyze complete plastid genomes of 91 total Cucurbita samples, comprising ancient (n = 19), modern wild (n = 30), and modern domestic (n = 42) taxa. This analysis demonstrates independent domestication in eastern North America, evidence of a previously unknown pathway to domestication in northeastern Mexico, and broad archaeological distributions of taxa currently unknown in the wild. Further, sequence similarity between distant wild populations suggests recent fragmentation. Collectively, these results point to wild-type declines coinciding with widespread domestication. Second, we hypothesize that the disappearance of large herbivores struck a critical ecological blow against wild Cucurbita, and we take initial steps to consider this hypothesis through cross-mammal analyses of bitter taste receptor gene repertoires. Directly, megafauna consumed Cucurbita fruits and dispersed their seeds; wild Cucurbita were likely left without mutualistic dispersal partners in the Holocene because they are unpalatable to smaller surviving mammals with more bitter taste receptor genes. Indirectly, megafauna maintained mosaic-like landscapes ideal for Cucurbita, and vegetative changes following the megafaunal extinctions likely crowded out their disturbed-ground niche. Thus, anthropogenic landscapes provided favorable growth habitats and willing dispersal partners in the wake of ecological upheaval.

  11. Bitter melon: a panacea for inflammation and cancer

    Science.gov (United States)

    Dandawate, Prasad R.; Subramaniam, Dharmalingam; Padhye, Subhash B.; Anant, Shrikant

    2017-01-01

    Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plants known for its biological activities used in traditional system of medicines. This plant is cultivated in all over the world, including tropical areas of Asia, Amazon, east Africa, and the Caribbean and used as a vegetable as well as folk medicine. All parts of the plant, including the fruit, are commonly consumed and cooked with different vegetables, stir-fried, stuffed or used in small quantities in soups or beans to give a slightly bitter flavor and taste. The plant is reported to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity, and immunomodulatory activities. The plant extract inhibits cancer cell growth by inducing apoptosis, cell cycle arrest, autophagy and inhibiting cancer stem cells. The plant is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, saponins, fatty acids, and proteins. Some of the isolated compounds (Kuguacin J, Karaviloside XI, Kuguaglycoside C, Momordicoside Q–U, Charantin, α-eleostearic acid) and proteins (α-Momorcharin, RNase MC2, MAP30) possess potent biological activity. In the present review, we are summarizing the anti-oxidant, anti-inflammatory, and anti-cancer activities of Momordica charantia along with a short account of important chemical constituents, providing a basis for establishing detail biological activities of the plant and developing novel drug molecules based on the active chemical constituents. PMID:26968675

  12. Heterosis of Qualitative and Quantitative Characters in Sweet Gourd ...

    African Journals Online (AJOL)

    The heterotic effects and genetic components of variation for qualitative and quantitative characters were estimated in sweet gourd. The phenotypic coefficients of variation were higher than genotypic coefficient of variation for all the characters indicating that environment played a considerable role on the expression of ...

  13. Nutritional value OF Bottle Gourd ( Lagenaria siceraria ) Seeds ...

    African Journals Online (AJOL)

    ... lipid, micro and macronutrients, and if properly utilised, could contribute in solving the problem of malnutrition and also serve as raw material for agro-based industries. Keywords: Bottle gourd seeds, seed coat, proximate analysis, minerals and Amino acid composition. Global Journal of Pure and Applied Sciences Vol.

  14. Nutritional Value of Bottle Gourd (Lagenaria siceraria) seed

    African Journals Online (AJOL)

    Abdullahi Muhammad

    Whole seeds, dehulled seeds and seed coats of bottle gourd seed (Lagenaria siceraria) were analysed for their proximate, amino acids and mineral compositions. The results of the analysis showed that, whole seed has highest content of moisture (17.5 ±. 0.21%) and ash (5.80 ± 0.83%) while dehulled had highest amount ...

  15. Bitter melon: antagonist to cancer.

    Science.gov (United States)

    Nerurkar, Pratibha; Ray, Ratna B

    2010-06-01

    The incidence of cancer is increasing worldwide, in spite of substantial progress in the development of anti-cancer therapies. One approach to control cancer could be its prevention by diet, which inhibits one or more neoplastic events and reduces cancer risk. Dietary compounds offer great potential in the fight against cancer by inhibiting the carcinogenesis process through the regulation of cell homeostasis and cell-death machineries. For centuries, Ayurveda (Indian traditional medicine) has recommended the use of bitter melon (Momordica charantia) as a functional food to prevent and treat diabetes and associated complications. It is noteworthy to mention that bitter melon extract has no-to-low side effects in animals as well as in humans. The anti-tumor activity of bitter melon has recently begun to emerge. This review focuses on recent advancements in cancer chemopreventive and anti-cancer efficacy of bitter melon and its active constituents. Several groups of investigators have reported that treatment of bitter-melon-related products in a number of cancer cell lines induces cell cycle arrest and apoptosis without affecting normal cell growth. Therefore, the effect of bitter melon should be beneficial for health, and use of the non-modified dietary product is cost effective.

  16. New crops for arid lands. [Jojoba; Buffalo gourd; Bladderpod; Gumweed

    Energy Technology Data Exchange (ETDEWEB)

    Hinman, C.W.

    1984-09-28

    Five plants are described that could be grown commercially under arid conditions. Once the most valuable component has been obtained from each plant (rubber from guayule; seed oil from jojoba, buffalo gourd, and bladderpod; and resin from gumweed), the remaining material holds potential for useful products as well as fuel. It is difficult to realize the full potential of arid land plants, however, because of the complexities of developing the necessary agricultural and industrial infrastructure simultaneously. To do so, multicompany efforts or cooperative efforts between government and the private sector will be required.

  17. NMR Studies of Peroxidases.

    Science.gov (United States)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  18. Pop the Pills without Bitterness

    Indian Academy of Sciences (India)

    Structure of a taste bud. Keywords. Taste-masking, fluid bed coat- ing, microencapsulation, com- plexation, solid dispersion. Sweet sensations are most easily detected at the tip, whereas bitterness at the back of the tongue, but salty sensations are usually detected at the tip and the sides of the tongue. GENERAL I ARTICLE.

  19. Pop the Pills without Bitterness

    Indian Academy of Sciences (India)

    Masking the bitter taste of drugs is a potential tool for the improvement of patient compliance, which in tum decides the commercial success of the product. To improve the palatability of a pharmaceutical product, many techniques have been devel- oped, which have not only improved the taste of the product, but also the ...

  20. Pharmacogenetics of taste: turning bitter pills sweet?

    Science.gov (United States)

    Nagtegaal, Mariëlle J; Swen, Jesse J; Hanff, Lidwien M; Schimmel, Kirsten Jm; Guchelaar, Henk-Jan

    2014-01-01

    Poor palatability of oral drug formulations used for young children negatively influences medication intake, resulting in suboptimal treatment. Some children are more sensitive to bitter tastes than others. Bitter tasting status is currently assessed by phenotyping with 6-n-propylthiouracil (PROP) as a bitter probe. Recent studies showed that interindividual differences in PROP sensitivity can be largely explained by three SNPs in TAS2R38, encoding a bitter taste receptor. Gustin, involved in the development of taste buds, and the sweet receptor genotype potentially explain remaining parts of PROP sensitivity variability. Other TAS2 receptor bitter receptor genes may also play a role in bitter aversions. Dependent on their genotype, children may have different medication formulation preferences. Taste genetics could improve drug acceptance by enabling better-informed choices on adapting oral formulations to children's taste preferences. This paper presents an overview of recent findings concerning bitter taste genetics and discusses these in the context of pediatric drug formulation.

  1. Development of buffalo gourd (Cucurbita foetidissima) as a semiaridland starch and oil crop

    Energy Technology Data Exchange (ETDEWEB)

    DeVeaux, J.S.; Shultz, E.B. Jr.

    Cucurbita foetidissima (buffalo gourd), a semiaridland plant native to the Greater Southwest, has been utilized by humans for thousands of years, primarily as food and medicine. In recent years, buffalo gourd has been the focus of an important domestication program at the University of Arizona. This research has led to 2 main cultural systems, an annual mode for root-starch production, and a perennial mode primarily for seed-oil production. In our paper, over 75 references are analyzed to evaluate the potential of buffalo gourd as an energy, chemical-products, and food crop. Priorities are suggested, including investigation of buffalo gourd as a novel crop for New Mexico's developing fuel ethanol industry.

  2. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency

    Science.gov (United States)

    Joseph, Baby; Jini, D

    2013-01-01

    Diabetes mellitus is among the most common disorder in developed and developing countries, and the disease is increasing rapidly in most parts of the world. It has been estimated that up to one-third of patients with diabetes mellitus use some form of complementary and alternative medicine. One plant that has received the most attention for its anti-diabetic properties is bitter melon, Momordica charantia (M. charantia), commonly referred to as bitter gourd, karela and balsam pear. Its fruit is also used for the treatment of diabetes and related conditions amongst the indigenous populations of Asia, South America, India and East Africa. Abundant pre-clinical studies have documented in the anti-diabetic and hypoglycaemic effects of M. charantia through various postulated mechanisms. However, clinical trial data with human subjects are limited and flawed by poor study design and low statistical power. The present review is an attempt to highlight the antidiabetic activity as well as phytochemical and pharmacological reports on M. charantia and calls for better-designed clinical trials to further elucidate its possible therapeutic effects on diabetes.

  3. Antidiabetic effects of Momordica charantia (bitter melon and its medicinal potency

    Directory of Open Access Journals (Sweden)

    Baby Joseph

    2013-04-01

    Full Text Available Diabetes mellitus is among the most common disorder in developed and developing countries, and the disease is increasing rapidly in most parts of the world. It has been estimated that up to one-third of patients with diabetes mellitus use some form of complementary and alternative medicine. One plant that has received the most attention for its anti-diabetic properties is bitter melon, Momordica charantia (M. charantia, commonly referred to as bitter gourd, karela and balsam pear. Its fruit is also used for the treatment of diabetes and related conditions amongst the indigenous populations of Asia, South America, India and East Africa. Abundant pre-clinical studies have documented in the anti-diabetic and hypoglycaemic effects of M. charantia through various postulated mechanisms. However, clinical trial data with human subjects are limited and flawed by poor study design and low statistical power. The present review is an attempt to highlight the antidiabetic activity as well as phytochemical and pharmacological reports on M. charantia and calls for better-designed clinical trials to further elucidate its possible therapeutic effects on diabetes.

  4. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells.

    Science.gov (United States)

    Dia, Vermont P; Krishnan, Hari B

    2016-09-15

    Momordica charantia is a perennial plant with reported health benefits. BG-4, a novel peptide from Momordica charantia, was isolated, purified and characterized. The trypsin inhibitory activity of BG-4 is 8.6 times higher than purified soybean trypsin inhibitor. The high trypsin inhibitory activity of BG-4 may be responsible for its capability to cause cytotoxicity to HCT-116 and HT-29 human colon cancer cells with ED50 values of 134.4 and 217.0 μg/mL after 48 h of treatment, respectively. The mechanism involved in the cytotoxic effect may be associated with induction of apoptosis as evidenced by increased percentage of HCT-116 and HT-29 colon cancer cells undergoing apoptosis from 5.4% (untreated) to 24.8% (BG-4 treated, 125 μg/mL for 16 h) and 8.5% (untreated) to 31.9% (BG-4 treated, 125 μg/mL for 16 h), respectively. The molecular mechanistic explanation in the apoptosis inducing property of BG-4 is due to reduced expression of Bcl-2 and increased expression of Bax leading to increased expression of caspase-3 and affecting the expression of cell cycle proteins p21 and CDK2. This is the first report on the anti-cancer potential of a novel bioactive peptide isolated from Momordica charantia in vitro supporting the potential therapeutic property of BG-4 against colon cancer that must be addressed using in vivo models of colon carcinogenesis.

  5. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells

    Science.gov (United States)

    Momordica charantia is a perennial plant with reported health benefits. BG-4, a novel peptide from Momordica charantia, was isolated, purified and characterized. The trypsin inhibitory activity of BG-4 is 8.6 times higher than purified soybean trypsin inhibitor. The high trypsin inhibitory activity ...

  6. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  7. Novel Applications of Peroxidase

    Science.gov (United States)

    Rob, Abdul; Ball, Andrew S.; Tuncer, Munir; Wilson, Michael T.

    1997-02-01

    The article entitled "Novel Biocatalysts Will Work Even Better for Industry" published recently in this Journal (1) was informative and interesting. However it touched only briefly on the application of peroxidase as catalyst. Here, we would like to mention in more detail the novel applications of peroxidase in agricultural, paper pulp, water treatment, pharmaceutical, and medical situations. Firstly, the peroxidase isolated from Phanerochaete chyrosporium has been shown to detoxify herbicides such as atrazine to less toxic compounds and would certainly find potential application in agriculture (2). Secondly, the peroxidase produced by Streptomyces thermoviolaceus may find application in the paper pulp industry as a delignifying agent (3). Thirdly, it has been shown that extracellular peroxidase produced by Streptomyces avermitilis can remove the intense color from paper-mill effluent obtained after semichemical alkaline pulping of wheat straw (4), and thus this enzyme might find application as a catalyst in water treatment plants. Fourthly, the heme-containing horseradish peroxidase enzyme has been exploited in several diagnostic applications in pharmaceutics and medicine, such as the detection of human immunodeficiency virus and cystic fibrosis (5-10). Finally, recent work from our laboratory has suggested that thermophilic nonheme peroxidase produced by Thermomonospora fusca BD25 may find medical use in the diagnosis of myocardial infarction (11, 12). Literature Cited 1. Wiseman, A. J. Chem. Educ. 1996, 73, 55-58. 2. Mougin, C. Appl. Environ. Microbiol. 1994, 60, 705-708. 3. McCarthy A. J.; Peace, W.; Broda, P. Appl. Microbiol. Technol. 1985, 23, 238-244. 4. Hernandez, M; Rodriguez J; Soliveri, J; Copa, J. L; Perez, M. I; Arias, M. E. Appl. Environ. Microbiol. 1994, 60, 3909-3913. 5. Hopfer, S. M.; Aslanzadeh, J. Ann. Clin. Lab. Sci. 1995, 25, 475-480. 6. Suzuki, K; Iman, M. J. Virol. Methods 1995, 55, 347-356. 7. Nielsen, K. J. Immunoassay 1995, 16, 183-197. 8

  8. GourdBase: a genome-centered multi-omics database for the bottle gourd (Lagenaria siceraria), an economically important cucurbit crop.

    Science.gov (United States)

    Wang, Ying; Xu, Pei; Wu, Xiaohua; Wu, Xinyi; Wang, Baogen; Huang, Yunping; Hu, Yaowen; Lin, Jiandong; Lu, Zhongfu; Li, Guojing

    2018-02-26

    GourdBase is an integrative data platform for the bottle gourd to examine its multifarious intuitive morphology and annotated genome. GourdBase consists of six main modules that store and interlink multi-omic data: the genome (with transcriptomic data integrated) module, the phenome module, the markers/QTLs module, the maps (genetic, physical and comparative) module, the cultivars module, and the publications module. These modules provide access to various type of data including the annotated reference genome sequence, gene models, transcriptomic data from various tissues, physical and comparative genome maps, molecular markers in different types, phenotypic data for featuring traits including fruit shape and umami taste, and quantitative trait loci (QTLs) that underlie these traits. GourdBase is intuitive, user-friendly and interlinked and is designed to allow researchers, breeders and trained farmers to browse, search and fetch information on interests and assist in genomics-driven studies and breeding. The knowledge base and web interface can be accessed at http://www.gourdbase.cn/ .

  9. BETA (Bitter Electromagnet Testing Apparatus)

    Science.gov (United States)

    Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.

    2017-10-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.

  10. Bitter and sweet tasting molecules: it's complicated.

    Science.gov (United States)

    Di Pizio, Antonella; Ben Shoshan-Galeczki, Yaron; Hayes, John E; Niv, Masha Y

    2018-04-18

    "Bitter" and "sweet" are frequently framed in opposition, both functionally and metaphorically, in regard to affective responses, emotion, and nutrition. This oppositional relationship is complicated by the fact that some molecules are simultaneously bitter and sweet. In some cases, a small chemical modification, or a chirality switch, flips the taste from sweet to bitter. Molecules humans describe as bitter are recognized by a 25 member subfamily of class A G-protein coupled receptors (GPCRs) known as TAS2Rs. Molecules humans describe as sweet are recognized by a TAS1R2/TAS1R3 heterodimer of class C GPCRs. Here we characterize the chemical space of bitter and sweet molecules: the majority of bitter compounds show higher hydrophobicity compared to sweet compounds, while sweet molecules have a wider range of sizes. Critically, recent evidence indicates that TAS1Rs and TAS2Rs are not limited to the oral cavity; moreover, some bitterants are pharmacologically promiscuous, with the hERG potassium channel, cytochrome P450 enzymes and carbonic anhydrases as common off-targets. Further focus on polypharmacology may unravel new physiological roles for tastant molecules. Copyright © 2018. Published by Elsevier B.V.

  11. e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods.

    Science.gov (United States)

    Zheng, Suqing; Jiang, Mengying; Zhao, Chengwei; Zhu, Rui; Hu, Zhicheng; Xu, Yong; Lin, Fu

    2018-01-01

    In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program "e-Bitter" is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist.

  12. Effect of heat on loofah gourd seeds chemical composition and fatty ...

    African Journals Online (AJOL)

    Dehulled loofah gourd seeds (DLGS), Luffah cylindrica was divided into three parts namely; raw (DLGSR), boiled for 5 min at 100 oC (DLGSB) and cooked for 30 min (DGLSC). Proximate composition, amino acids, amino acid scores and energy were determined in DLGSR, DLGSB and DLGSC and fatty acids constituents ...

  13. Age-related differences in bitter taste and efficacy of bitter blockers.

    Directory of Open Access Journals (Sweden)

    Julie A Mennella

    Full Text Available Bitter taste is the primary culprit for rejection of pediatric liquid medications. We probed the underlying biology of bitter sensing and the efficacy of two known bitter blockers in children and adults.A racially diverse group of 154 children (3-10 years old and their mothers (N = 118 evaluated the effectiveness of two bitter blockers, sodium gluconate (NaG and monosodium glutamate (MSG, for five food-grade bitter compounds (quinine, denatonium benzoate, caffeine, propylthiouracil (PROP, urea using a forced-choice method of paired comparisons. The trial was registered at clinicaltrials.gov (NCT01407939.The blockers reduced bitterness in 7 of 10 bitter-blocker combinations for adults but only 3 of 10 for children, suggesting that efficacy depends on age and is also specific to each bitter-blocker combination. Only the bitterness of urea was reduced by both blockers in both age groups, whereas the bitterness of PROP was not reduced by either blocker in either age group regardless of TAS2R38 genotype. Children liked the salty taste of the blocker NaG more than did adults, but both groups liked the savory taste of MSG equally.Bitter blocking was less effective in children, and the efficacy of blocking was both age and compound specific. This knowledge will pave the way for evidence-based strategies to help develop better-tasting medicines and highlights the conclusion that adult panelists and genotyping alone may not always be appropriate in evaluating the taste of a drug geared for children.

  14. Effect of roasting on tocopherols of gourd seeds (Cucurbita pepo

    Directory of Open Access Journals (Sweden)

    Didier, Montet

    2006-12-01

    Full Text Available The effect of roasting at high temperatures on the Vitamin E in hulled gourd seeds of Cucurbita pepo was studied. Roasting at 140°C for 5 min induced a swelling of the seed with an increase in volume of 43 %, and a weight loss of 6.5 %.The seed acquired the desired puffed-up appearance. The water activity of raw seeds was 0.544 and decreased during roasting to 0.105. Cucurbita pepo seeds contained 51.0 % fat. Tocopherol content of roasted seeds was 68mg/100g oil and of non roasted seeds was 107mg/100g oil. γ-tocopherol represented 96% of the total tocopherols. Total tocopherol loss during roasting was 36%. β-tocopherol loss was the highest at 50%; for α-tocopherol it was 41% and for γ-tocopherol it was 36%.Se ha estudiado el efecto del tostado a alta temperatura sobre la vitamina E en semillas de calabaza Cucurbita pepo. El tostado a 140°C durante 5 min indujo una hinchazón de la semilla con un aumento en el volumen del 43 %, y una pérdida de peso del 6,5 %. La semilla adquirió la apariencia deseada después del tostado. La actividad del agua en la semilla cruda fue de 0,544 y disminuyó durante el tostado a 0,105. Las semillas de Cucurbita pepo contenían un 51,0 % de grasa. El contenido de tocoferol de las semillas tostadas fue de 68mg/100g y el de las semillas no tostadas de 107mg/100g de aceite. El γ-tocoferol representó el 96% de los tocoferoles totales. La pérdida de tocoferoles totales durante el tostado fue del 36% siendo la má alta la del β-tocoferol con un 50%; la del α-tocoferol fue del 41% y la del γ-tocoferol del 36%.

  15. Determination Hypoiodous Acid (HIO) By Peroxidase System Using Peroxidase Enzyme

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Hadipernata, M.; Wisnubroto; Ardianti, D. K.; Susanto, M. N.; Yusuf, M.; Demasta, E. K.

    2018-02-01

    It has been understood that peroxidase enzyme including peroxidase serves as catalyzer to enzymatic reaction among hydrogen peroxide and halides, therefore this research was done for generating hypoiodous acid (HIO) from peroxidase system using peroxidase enzyme. Hydrogen peroxide, potassium iodide, and peroxidase enzyme were used to produce HIO. Determination the amount of formed HIO was done using 2,2'-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid) or ABTS as substrate through the colorimetric measurement of hydrogen peroxide residue during reaction process using at 412 nm. The result indicated that residual hydrogen peroxide showed the minimum concentration after 60 minutes reaction time. Because the reaction started at the beginning time of mixing, hydrogen peroxide was unable to be eliminated totally to produce HIO. The reaction of peroxidase system was able to determine the beginning of mixing process but the reaction process could not eliminate the initial concentration of hydrogen peroxide indicating the maximum amount of production of HIO could be determined. In conclusion, the less of H2O2, higher HIO obtained and peroxidase enzymes can accelerate the formation of HIO.

  16. The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ringspot virus resistance locus

    Science.gov (United States)

    Bottle gourd (Lagenaria siceraria) is an important vegetable crop as well as a rootstock for other cucurbit crops. In this study, we report a high-quality 313.4-Mb genome sequence of a bottle gourd inbred line, USVL1VR-Ls, with a scaffold N50 of 8.7 Mb and the longest of 19.0 Mb. About 98.3% of the ...

  17. De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida.

    Directory of Open Access Journals (Sweden)

    Biao Jiang

    Full Text Available BACKGROUND: Wax gourd is a widely used vegetable of Cucuribtaceae, and also has important medicinal and health values. However, the genomic resources of wax gourd were scarcity, and only a few nucleotide sequences could be obtained in public databases. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined transcriptome in wax gourd. More than 44 million of high quality reads were generated from five different tissues of wax gourd using Illumina paired-end sequencing technology. Approximately 4 Gbp data were generated, and de novo assembled into 65,059 unigenes, with an N50 of 1,132 bp. Based on sequence similarity search with known protein database, 36,070 (55.4% showed significant similarity to known proteins in Nr database, and 24,969 (38.4% had BLAST hits in Swiss-Prot database. Among the annotated unigenes, 14,994 of wax gourd unigenes were assigned to GO term annotation, and 23,977 were found to have COG classifications. In addition, a total of 18,713 unigenes were assigned to 281 KEGG pathways. Furthermore, 6,242 microsatellites (simple sequence repeats were detected as potential molecular markers in wax gourd. Two hundred primer pairs for SSRs were designed for validation of the amplification and polymorphism. The result showed that 170 of the 200 primer pairs were successfully amplified and 49 (28.8% of them exhibited polymorphisms. CONCLUSION/SIGNIFICANCE: Our study enriches the genomic resources of wax gourd and provides powerful information for future studies. The availability of this ample amount of information about the transcriptome and SSRs in wax gourd could serve as valuable basis for studies on the physiology, biochemistry, molecular genetics and molecular breeding of this important vegetable crop.

  18. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Abstract. The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter ...

  19. Rheological Behavior of Renewable Polyethylene (HDPE) Composites and Sponge Gourd (Luffa cylindrica) Residue

    OpenAIRE

    Viviane Alves Escócio; Elen Beatriz Acordi Vasques Pacheco; Ana Lucia Nazareth da Silva; André de Paula Cavalcante; Leila Léa Yuan Visconte

    2015-01-01

    The present study reports the results of rheological behavior of renewable composites, based on a matrix of high density polyethylene (HDPE), made from ethanol distilled from sugarcane, and lignocellulose filler from waste generated in the processing of sponge gourds for bathing use. The composites were prepared with 10, 20, 30, and 40%wt of filler in a twin-screw extruder. The materials were analyzed in a parallel plate rheometer and a melt-flow indexer. The composite morphology was determin...

  20. Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin.

    Science.gov (United States)

    Pronin, Alexey N; Xu, Hong; Tang, Huixian; Zhang, Lan; Li, Qing; Li, Xiaodong

    2007-08-21

    Variation in human taste is a well-known phenomenon. However, little is known about the molecular basis for it. Bitter taste in humans is believed to be mediated by a family of 25 G protein-coupled receptors (hT2Rs, or TAS2Rs). Despite recent progress in the functional expression of hT2Rs in vitro, up until now, hT2R38, a receptor for phenylthiocarbamide (PTC), was the only gene directly linked to variations in human bitter taste. Here we report that polymorphism in two hT2R genes results in different receptor activities and different taste sensitivities to three bitter molecules. The hT2R43 gene allele, which encodes a protein with tryptophan in position 35, makes people very sensitive to the bitterness of the natural plant compounds aloin and aristolochic acid. People who do not possess this allele do not taste these compounds at low concentrations. The same hT2R43 gene allele makes people more sensitive to the bitterness of an artificial sweetener, saccharin. In addition, a closely related gene's (hT2R44's) allele also makes people more sensitive to the bitterness of saccharin. We also demonstrated that some people do not possess certain hT2R genes, contributing to taste variation between individuals. Our findings thus reveal new examples of variations in human taste and provide a molecular basis for them.

  1. Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells123

    Science.gov (United States)

    Lipchock, Sarah V; Mennella, Julie A; Spielman, Andrew I; Reed, Danielle R

    2013-01-01

    Background: Alleles of the receptor gene TAS2R38 are responsible in part for the variation in bitter taste perception of 6-n-propylthiouracil (PROP) and structurally similar compounds (eg, glucosinolates in cruciferous vegetables). At low concentrations, people with the PAV (“taster” amino acid sequence) form of TAS2R38 perceive these bitter compounds, whereas most with the AVI (“nontaster” amino acid sequence) form do not; heterozygotes (PAV/AVI) show the widest range of bitter perception. Objectives: The objectives were to examine individual differences in expression of PAV-TAS2R38 messenger RNA (mRNA) among heterozygotes, to test the hypotheses that the abundance of allele-specific gene expression accounts for the variation in human bitter taste perception, and to relate to dietary intake of bitter-tasting beverages and foods. Design: Heterozygous individuals (n = 22) provided psychophysical evaluation of the bitterness of PROP, glucosinolate-containing broccoli juice, non–glucosinolate-containing carrot juice, and several bitter non-TAS2R38 ligands as well as dietary recalls. Fungiform taste papillae were examined for allele-specific TAS2R38 expression by using quantitative polymerase chain reaction. Results: PAV-TAS2R38 mRNA expression was measured in 18 of 22 heterozygous subjects. Relative expression varied widely and positively correlated with ratings of bitterness intensity of PROP (P = 0.007) and broccoli juice (P = 0.004) but not of the control solutions carrot juice (P = 0.26), NaCl (P = 0.68), caffeine (P = 0.24), or urea (P = 0.47). Expression amounts were related to self-reported recent and habitual caffeine intake (P = 0.060, P = 0.005); vegetable intake was too low to analyze. Conclusions: We provide evidence that PAV-TAS2R38 expression amount correlates with individual differences in bitter sensory perception and diet. The nature of this correlation calls for additional research on the molecular mechanisms associated with some individual

  2. Identification and Validation of a New Male Sex-Specific ISSR Marker in Pointed Gourd (Trichosanthes dioica Roxb.

    Directory of Open Access Journals (Sweden)

    Sinchan Adhikari

    2014-01-01

    Full Text Available The aim of the present study was to develop a genetic sex marker for the pointed gourd (Trichosanthes dioica Roxb. to allow gender determination at any stage in the life cycle. Screening of genomic DNA with intersimple sequence repeat (ISSR primers was used to discover sex-specific touch-down polymerase chain reaction (Td-PCR amplification products. Using pooled DNA from male and female genotypes and 42 ISSR primers, a putative male specific marker (~550 bp was identified. DNA marker specific to male is an indication of existence of nonepigenetic factors involved in gender development in pointed gourd. The ISSR technique has proved to be a reliable technique in gender determination of pointed gourd genotypes at the seedling phenophase. The sex marker developed here could also be used as a starting material towards sequence characterization of sex linked genes for better understanding the developmental as well as evolutionary pathways in sexual dimorphism.

  3. Development of Insertion and Deletion Markers for Bottle Gourd Based on Restriction Site-associated DNA Sequencing Data

    Directory of Open Access Journals (Sweden)

    Xinyi WU

    2017-01-01

    Full Text Available Bottle gourd is an important cucurbit crop worldwide. To provide more available molecular markers for this crop, a bioinformatic approach was employed to develop insertion–deletions (InDels markers in bottle gourd based on restriction site-associated DNA sequencing (RAD-Seq data. A total of 892 Indels were predicted, with the length varying from 1 bp to 167 bp. Single-nucleotide InDels were the predominant types of InDels. To validate these InDels, PCR primers were designed from 162 loci where InDels longer than 2 bp were predicated. A total of 112 InDels were found to be polymorphic among 9 bottle gourd accessions under investigation. The rate of prediction accuracy was thus at a high level of 72.7%. DNA fingerprinting for 4 cultivars were performed using 8 selected Indels markers, demonstrating the usefulness of these markers.

  4. Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure.

    Science.gov (United States)

    Tian, Ke; Farrell, Gerald; Wang, Xianfan; Yang, Wenlei; Xin, Yifan; Liang, Haidong; Lewis, Elfed; Wang, Pengfei

    2017-08-07

    A fibre-optic strain sensor based on a gourd-shaped joint multimode fibre (MMF) sandwiched between two single-mode fibres (SMFs) is described both theoretically and experimentally. The cladding layers of the two MMFs are reshaped to form a hemisphere using an electrical arc method and spliced together, yielding the required gourd shape. The gourd-shaped section forms a Fabry-Perot cavity between the ends of two adjacent but non-contacting multimode fibres' core. The effectiveness of the multimode interference based on the Fabry-Perot interferometer (FPI) formed within the multimode inter-fibre section is greatly improved resulting in an experimentally determined strain sensitivity of -2.60 pm/με over the range 0-1000 με. The sensing characteristics for temperature and humidity of this optical fibre strain sensor are also investigated.

  5. Genetics of bitter perception in mice.

    Science.gov (United States)

    Whitney, G; Harder, D B

    1994-12-01

    Inbred and congenic strains exhibited several patterns of relative sensitivity to bitter tastants in 48-h, two-bottle preference tests. With segregation analyses of descendents of crosses between contrasting strains, these patterns suggested at least three genetic loci influencing bitter perception. The extensively characterized Soa (sucrose octaacetate) locus underlies one pattern. Variation at this locus had pleiotropic effects on avoidance of other acetylated sugars, plus such structurally dissimilar bitter tastants as brucine, denatonium benzoate, and quinine sulfate. Unlike SOA, however, sensitivity to quinine sulfate was polygenically determined, and produced a second characteristic pattern. At least one, possibly several, additional unlinked loci contributed to quinine differences. Phenylthiocarbamide (PTC) aversion differences exemplified a third pattern. Segregation consistent with monogenic control of PTC aversion has been reported, and within segregating populations PTC aversion did not covary with SOA or quinine sulfate avoidance. Variants of the three major patterns may be useful for analysis of specific mechanisms. While both showed the SOA pattern, strychnine differences were markedly smaller than brucine (dimethoxystrychnine) differences. Likewise, a hop extract containing primarily iso-alpha acids (e.g., isohumulone) produced an SOA-like pattern, while an extract with nonisomerized alpha-acids (e.g., humulone) did not.

  6. Sweet and bitter taste perception of women during pregnancy

    DEFF Research Database (Denmark)

    Nanou, Evangelia; Brandt, Sarah Østergaard; Weenen, Hugo

    2016-01-01

    Introduction: Changes in sweet and bitter taste perception during pregnancy have been reported in a limited number of studies leading, however, to inconclusive results. The current study aimed to investigate possible differences in perceived intensity and liking of sweetness and bitterness between...... pregnant and nonpregnant women. Methods: Forty-six pregnant and 45 nonpregnant women evaluated taste intensity and liking of five samples of each of four different products: two sweet (cake and apple + berry juice) and two bitter (salad and grapefruit juice). Product samples varied in sweetness...... and bitterness, respectively. Pregnant women completed also a self-administered questionnaire on changes in sweet and bitter taste perception due to pregnancy. Results: Perceived intensity of sweetness and bitterness was not different between pregnant and nonpregnant women for any of the products. However...

  7. Environ: E00794 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available E00794 Bitter gourd Bitter melon Medicinal herb Momordicine, Stigmasterol [CPD:C05...442], Charantin, Insulin like peptide, Ascorbate [CPD:C00072] [DR:D00018] Momordica charantia [TAX:3673] ... Cucurbitaceae Bitter gourd fruit ...

  8. EFEKTIVITAS AROMATERAPI BITTER ORANGE TERHADAP NYERI POST PARTUM SECTIO CAESAREA

    OpenAIRE

    Sri Utami

    2016-01-01

    Surgery that causes severe pain physiological response as compared to a normal delivery was called sectio caesarea. The alternative to reduce pain with bitter orange aroma therapy. Bitter orange aroma therapy is to give the effect of reducing the muscle tensions and stress the body as a whole with the goal of keeping the body and mind into a relaxed. This research was aimed to explore the effectiveness of bitter orange aroma therapy for reduction pain in post partum sectio caesarea. The metho...

  9. Rheological Behavior of Renewable Polyethylene (HDPE Composites and Sponge Gourd (Luffa cylindrica Residue

    Directory of Open Access Journals (Sweden)

    Viviane Alves Escócio

    2015-01-01

    Full Text Available The present study reports the results of rheological behavior of renewable composites, based on a matrix of high density polyethylene (HDPE, made from ethanol distilled from sugarcane, and lignocellulose filler from waste generated in the processing of sponge gourds for bathing use. The composites were prepared with 10, 20, 30, and 40%wt of filler in a twin-screw extruder. The materials were analyzed in a parallel plate rheometer and a melt-flow indexer. The composite morphology was determined by scanning electron microscopy. The composite viscosity increased with filler content, suggesting possible formation of filler agglomerates. This result was confirmed by Cole-Cole diagrams.

  10. New crops for arid lands. [Bladderpod, gumweed, guayule, jojoba, and buffalo gourd

    Energy Technology Data Exchange (ETDEWEB)

    Hinman, C.W.

    1984-09-28

    Five plants are described that could be grown commercially under arid conditions. Once the most valuable component has been obtained from each plant (rubber from guayule; seed oil from jojoba, buffalo gourd, and bladderpod; and resin from gumweed), the remaining material holds potential for useful products as well as fuel. It is difficult to realize the full potential or arid land plants, however, because of the complexities of developing the necessary agricultural and industrial infrastructure simultaneously. To do so, multicompany efforts or cooperative efforts between government and the private sector will be required. 20 references.

  11. Comparative Studies on the Fungi and Bio-Chemical Characteristics of Snake Gourd (Trichosanthes curcumerina Linn) and Tomato (Lycopersicon esculentus Mill) in Rivers State, Nigeria

    Science.gov (United States)

    Chuku, E. C.; Ogbonna, D. N.; Onuegbu, B. A.; Adeleke, M. T. V.

    Comparative studies on the fungi and biochemical characteristics of Tomatoes (Lycopersicon esculentus Mill) and the Snake gourd (Trichosanthes curcumerina Linn) products were investigated in Rivers State using various analytical procedures. Results of the proximate analysis of fresh snake gourd and tomatoes show that the essential minerals such as protein, ash, fibre, lipid, phosphorus and niacin contents were higher in snake gourd but low in carbohydrate, calcium, iron, vitamins A and C when compared to the mineral fractions of tomatoes which has high values of calcium, iron, vitamins A and C. The mycoflora predominantly associated with the fruit rot of tomato were Fusarium oxysporium, Fusarium moniliforme, Rhizopus stolonifer and Aspergillus niger, while other fungi isolates from Snake gourd include Rhizopus stolonifer, Aspergillus niger, Aspergillus tamari, Penicillium ita/icum and Neurospora crassa. Rhizopus stolonifer and Aspergillus niger were common spoilage fungi to both the Tomato and Snake gourd. All the fungal isolates were found to be pathogenic. The duration for storage of the fruits at room temperature (28±1°C) showed that Tomato could store for 5 days while Snake gourd stored for as much as 7 days. Sensory evaluation shows that Snake gourd is preferred to Tomatoes because of its culinary and medicinal importance.

  12. A histological study of the structural changes in the liver of streptozotocin-induced diabetic rats treated with or without Momordica charantia (bitter gourd).

    Science.gov (United States)

    Teoh, S L; Latiff, A A; Das, S

    2009-01-01

    Diabetic liver is associated with biochemical, physiological and pathological changes. The aim of the present study was to evaluate the histological changes following administration of Momordica charantia (MC) in the streptozotocin (STZ) induced diabetic rats. Eighteen Sprague-Dawley rats (n=18) were taken for this study. The animals were divided into 3 groups:- non-diabetic (n=6), untreated diabetic (n=6) and diabetic treated with MC extract (n=6). Diabetes was induced in the experimental rats via intravenous injection of streptozotocin (45 mg/kg body weight). MC extract (50 mg/kg body weight) was administered orally to the treated diabetic rats 10 days following induction. The liver tissues were collected on the 10th day following treatment and the histological study was performed using different staining methods which included hematoxylin and eosin (H&E), Verhoeff's van Gieson (VvG) and periodic acid Schiff (PAS). The liver of the diabetic rats showed involvement of the hepatocytes with features of inflammation. The portal triad in the diabetic liver showed extensive involvement in terms of accumulation of mucopolysaccharide deposits. Liver damage in the diabetic animals showed features of healing with administration of the MC extract. The MC extract due to its antioxidant role may be helpful in reversing the changes in the liver in diabetes mellitus.

  13. Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica

    Directory of Open Access Journals (Sweden)

    André Leandro da Silva

    2016-02-01

    Full Text Available Abstract A growing global trend for maximum use of natural resources through new processes and products has enhanced studies and exploration of renewable natural materials. In this study, cardanol, a component of the cashew nut shell liquid (CNSL, was used as a building block for the development of a thermosetting matrix, which was reinforced by raw and modified sponge gourd fibers (Luffa cylindrica. DSC and TG results showed that among biocomposites, the one reinforced by sponge gourd fibers treated with NaOH 10 wt% (BF10 had the highest thermal stability, besides the best performance in the Tensile testing, showing good incorporation, dispersion, and adhesion to polymer matrix, observed by SEM. After 80 days of simulated soil experiments, it has been discovered that the presence of treated fiber allowed better biodegradability behavior to biocomposites. The biobased thermoset plastic and biocomposites showed a good potential to several applications, such as manufacturing of articles for furniture and automotive industries, especially BF10.

  14. Widespread Occurrence of Expressed Fungal Secretory Peroxidases in Forest Soils

    OpenAIRE

    Kellner, Harald; Luis, Patricia; Pecyna, Marek J.; Barbi, Florian; Kapturska, Danuta; Krüger, Dirk; Zak, Donald R.; Marmeisse, Roland; Vandenbol, Micheline; Hofrichter, Martin

    2014-01-01

    Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin) and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase), dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g....

  15. Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources

    Science.gov (United States)

    The genetic diversity present in crop landraces represents a valuable genetic resource for breeding and genetic studies. Bottle gourd (Lagenaria siceraria) landraces in Turkey are highly genetically diverse. However, the limited genomic resources available for this crop hinder the molecular characte...

  16. Transferability of cucumber microsatellite markers used for phylogenetic analysis and population structure study in bottle gourd (Lagenaria siceraria (Mol.) Standl.).

    Science.gov (United States)

    Bhawna; Abdin, M Z; Arya, L; Verma, M

    2015-02-01

    Improved breeding for developing fruit quality in bottle gourd (Lagenaria siceraria (Mol.) Standl.) necessitates knowledge regarding its genetic diversity. To achieve this, a set of 108 locus-specific SSR markers has been developed in bottle gourd by cross-species transferability from 995 mapped Cucumis sativus SSR markers. During screening, 280 primer pairs amplified in the bottle gourd germplasm, which were further evaluated in a diverse set of 42 lines, resulting in 19 polymorphic, 89 monomorphic, 15 with multiple bands, and the rest 157 showed no or very non-specific amplification. The 19 polymorphic primer pairs produced a total of 54 alleles. Gene diversity, Shannon's information index, and Nei's coefficient of differentiation were calculated suggesting a moderate genetic variation at the species level. A model-based population structure analysis divided these germplasm into two subpopulations. This marker set will be applicable for evaluating the genetic structure for association mapping, DNA fingerprinting, and mounting linkage maps and will be a practical tool set for further genetics. This study provides one of the first quantitative views of population genetic variation in bottle gourd.

  17. variability in condensed tannins and bitterness in spider plant ...

    African Journals Online (AJOL)

    ACSS

    Spider plant (Cleome gynandra L.) contributes considerably to the nutrition and medicines of communities in southern Africa. However, its utilisation is limited by its bitterness caused by condensed tannins. Unfortunately, processing options that reduce the bitterness also remove nutritionally and medicinally useful ...

  18. Optimization of ethanol production from Garcinia kola (bitter kola ...

    African Journals Online (AJOL)

    Alkaline hydrolysis with 0.25 M sodium hydroxide has no significant effect on concentration of reducing sugar and ethanol yield. Acid hydrolysis with 2.5 M sulphuric acid and saccharification using Aspergillus niger are better methods for optimizing ethanol production from bitter kola pulp waste. Solar drying of the bitter kola ...

  19. Bitterness of saponins and their content in dry peas

    NARCIS (Netherlands)

    Heng, L.; Vincken, J.P.; Koningsveld, van G.A.; Legger, A.; Gruppen, H.; Boekel, van M.A.J.S.; Roozen, J.; Voragen, A.G.J.

    2006-01-01

    The bitterness of a saponin mixture (containing saponin B and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponin in a ratio of 1:4) and saponin B obtained from dry peas were established by a trained panel using line scaling. Both saponins were found to be bitter. However, the saponin

  20. Sudan and South Sudan's bitter and incomplete divorce

    African Journals Online (AJOL)

    Sudan and South Sudan's bitter and incomplete divorce. Copnall, James 2017. London, Hurst Publishers, 317 pp. ISBN 978-184804-830-9. Reviewed by Nicodemus Minde*. Having served as the BBC Sudan correspondent from 2009 to 2012, James. Copnall has compiled an insightful account of the bitter-sweet split of the.

  1. Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype

    Directory of Open Access Journals (Sweden)

    Guillermo Arrázola

    2012-08-01

    Full Text Available Almond kernels can be sweet, slightly bitter or bitter. Bitterness in almond (Prunus dulcis Mill. and other Prunus species is related to the content of the cyanogenic diglucoside amygdalin. When an almond containing amygdalin is chopped, glucose, benzaldehyde (bitter flavor and hydrogen cyanide (which is toxic are released. This two-year-study with 29 different almond cultivars for bitterness was carried out in order to relate the concentration of amygdalin in the kernel with the phenotype (sweet, slightly bitter or bitter and the genotype (homozygous: sweet or bitter or heterozygous: sweet or slightly bitter with an easy analytical test. Results showed that there was a clear difference in the amount of amygdalin between bitter and non-bitter cultivars. However, the content of amygdalin did not differentiate the other genotypes, since similar amounts of amygdalin can be found in the two different genotypes with the same phenotype

  2. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.

    Science.gov (United States)

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C; Souza, Milena M; Cirillo, Cintia A; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.

  3. Chromatographic separation of human salivary peroxidases.

    Science.gov (United States)

    Mäkinen, K K; Tenovuo, J

    1976-01-01

    A series of rapid and simple chromatographic purification procedures for peroxidase-like enzymes occurring in the human oral cavity is presented. Samples of whole saliva, parotid saliva, gingival exudate and various bacterial preparations contain peroxidases which were purified using molecular exclusion and ion exchange chromatography, and isoelectric focusing. Salivary lactoperoxidase can be easily separated from bacterial and leucocyte peroxidase activity by the methods presented.

  4. Identification of bitter compounds in whole wheat bread.

    Science.gov (United States)

    Jiang, Deshou; Peterson, Devin G

    2013-11-15

    Bitterness in whole wheat bread can negatively influence product acceptability and consumption. The overall goal of this project was to identify the main bitter compounds in a commercial whole wheat bread product. Sensory-guided fractionation of the crust (most bitter portion of the bread sample) utilising liquid-liquid extraction, solid-phase extraction, ultra-filtration and 2-D offline RPLC revealed multiple bitter compounds existed. The compounds with the highest bitterness intensities were selected and structurally elucidated based on accurate mass-TOF, MS/MS, 1D and 2D NMR spectroscopy. Eight bitter compounds were identified: Acortatarins A, Acortatarins C, 5-(hydroxymethyl)furfural(HMF), 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one (DDMP), N-(1-deoxy-d-fructos-1-yl)-l-tryptophan (ARP), Tryptophol (TRO), 2-(2-formyl-5-(hydroxymethyl-1H-pyrrole-1-yl)butanoic acid (PBA) and Tryptophan (TRP). Based on the structures of these compounds, two main mechanisms of bitterness generation in wheat bread were supported, fermentation and Maillard pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype

    OpenAIRE

    Arrázola, Guillermo; Sánchez P., Raquel; Dicenta, Federico; Grané Teruel, Nuria

    2012-01-01

    Almond kernels can be sweet, slightly bitter or bitter. Bitterness in almond (Prunus dulcis Mill.) and other Prunus species is related to the content of the cyanogenic diglucoside amygdalin. When an almond containing amygdalin is chopped, glucose, benzaldehyde (bitter flavor) and hydrogen cyanide (which is toxic) are released. This two-year-study with 29 different almond cultivars for bitterness was carried out in order to relate the concentration of amygdalin in the kernel with the phenotype...

  6. Role of fungal peroxidases in biological ligninolysis

    Science.gov (United States)

    Kenneth E. Hammel; Dan Cullen

    2008-01-01

    The degradation of lignin by filamentous fungi is a major route for the recycling of photosynthetically fixed carbon, and the oxidative mechanisms employed have potential biotechnological applications. The lignin peroxidases (LiPs), manganese peroxidases (MnPs), and closely related enzymes of white rot basidiomycetes are likely contributors to fungal ligninolysis. Many...

  7. Detection of bitterness-Suppression using a taste sensor

    International Nuclear Information System (INIS)

    Iiyama, Satoru; Ezaki, Shu; Toko, Kiyoshi

    2008-01-01

    We tried to detect the suppression of bitterness with a taste sensor. Quinine hydrochloride, which has a positive charge usually cause large potential change of negatively, charged membranes of the sensor. The potential change was decreased by sour substances such as acetic acid. The decrease of the potential change of response implies a decrease in the intensity of bitterness. Contrary to this, response of the sensor to sodium picrate, which has a negative charge, was diminished by sodium salts of organic acids. As the hydrophobicity of organic acids increased, the suppression of bitterness also increased. The present study is expected to provide a new quantitative technique to measure the strength of bitterness of foods and drugs in place of sensory evaluation. (author)

  8. [Preliminary analysis of bitter substances in spica of Prunella vulgaris].

    Science.gov (United States)

    Zhai, Xin; Xi, Meng-Qian; Guo, Qiao-Sheng; Han, Huan-Huan; Zhang, Xiang; Yang, Wei; Zheng, Rong-bo; Huang, Xiao-Dan; Zhu, Huan-Rong

    2014-02-01

    Volatile oil components and the contents and types of amino acid in spica of Prunella vulgaris were analysed by GC-MS and amino acid analyzer. Esters, fatty acids, aromatic hydrocarbon, ketone and several alcohol compounds were identified by mass spectrum comparison. In these ingredients, beta-ionone smelled aroma of cedar, raspberry, nerolidol showed weak sweet soft orange blossom flavor, neroli tasted sweet and fresh, nerolidol tasted sweet with light aroma of wood, hexadecanal showed a weak aroma of flowers and wax, alpha-sinensal had rich and fresh sweet orange flavor. To some extent, these types of aromatic substances can affect the taste of herbal tea or decoction made of Spica Prunellae. Among amino acids detected, natural amino acids accounted for a larger proportion, and those natural amino acids showed bitterness, slight bitterness, sourness (freshness), sweetness, slight sweetness, sourness (slight freshness). The results indicated that bitter and slightly bitter amino acids have the greatest impacts on the sense of Spica Prunellae.

  9. Variant angina associated with bitter orange in a dietary supplement.

    Science.gov (United States)

    Gange, Christopher A; Madias, Christopher; Felix-Getzik, Erika M; Weintraub, Andrew R; Estes, N A Mark

    2006-04-01

    The Food and Drug Administration has banned the sale of ephedrine-based weight-loss products because of their association with many cardiovascular adverse effects. Bitter orange is now being used as a stimulant in "ephedra-free" weight-loss supplements but was recently implicated in adverse cardiovascular sequelae. To our knowledge, this report describes the first case of variant angina associated with bitter orange in a dietary supplement.

  10. Promiscuity and selectivity of bitter molecules and their receptors.

    Science.gov (United States)

    Di Pizio, Antonella; Niv, Masha Y

    2015-07-15

    Bitter taste is essential for survival, as it protects against consuming poisonous compounds, which are often bitter. Bitter taste perception is mediated by bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs). The number of TAS2R subtypes is species-dependent, and varies from 3 in chicken to 50 in frog. TAS2Rs present an intriguing case for studying promiscuity: some of the receptors are still orphan, or have few known agonists, while others can be activated by numerous, structurally dissimilar compounds. The ligands also vary in the repertoire of TAS2Rs that they activate: some bitter compounds are selective toward a single TAS2R, while others activate multiple TAS2Rs. Selectivity/promiscuity profile of bitter taste receptors and their compounds was explored by a chemoinformatic approach. TAS2R-promiscuous and TAS2R-selective bitter molecules were found to differ in chemical features, such as AlogP, E-state, total charge, number of rings, globularity, and heavy atom count. This allowed the prediction of bitter ligand selectivity toward TAS2Rs. Interestingly, while promiscuous TAS2Rs are activated by both TAS2R-promiscuous and TAS2R-selective compounds, almost all selective TAS2Rs in human are activated by promiscuous compounds, which are recognized by other TAS2Rs anyway. Thus, unique ligands, that may have been the evolutionary driving force for development of selective TAS2Rs, still need to be unraveled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Glycosylation and thermodynamic versus kinetic stability of horseradish peroxidase

    DEFF Research Database (Denmark)

    Tams, J.W.; Welinder, Karen G.

    1998-01-01

    Glycoprotein stability, glycoprotein unfolding, horseradish peroxidase, thermodynamic stability, kinetik stability......Glycoprotein stability, glycoprotein unfolding, horseradish peroxidase, thermodynamic stability, kinetik stability...

  12. EFEKTIVITAS AROMATERAPI BITTER ORANGE TERHADAP NYERI POST PARTUM SECTIO CAESAREA

    Directory of Open Access Journals (Sweden)

    Sri Utami

    2016-10-01

    Full Text Available Surgery that causes severe pain physiological response as compared to a normal delivery was called sectio caesarea. The alternative to reduce pain with bitter orange aroma therapy. Bitter orange aroma therapy is to give the effect of reducing the muscle tensions and stress the body as a whole with the goal of keeping the body and mind into a relaxed. This research was aimed to explore the effectiveness of bitter orange aroma therapy for reduction pain in post partum sectio caesarea. The method used this research was quasi experimental with pre test and post test design with control group. The instruments used numeric rating scale to measure pain intensity. The sampling technique used purposive sampling where the quantity of research sample 34 respondents which are divided into 2 groups, namely intervention group and control group. bitter orange aroma therapy carried out for 15 minutes each day for 2 days. The univariate analysis was conducted to show pain distribution and bivariate analysis was conducted by Wicoxon and Mann Whitney. The result show that after bitter orange aroma therapy was applied towards intervered group, it was obtained that mean of respondents category pain was reducing at 3,44 (low pain with the reduction was 1,47 and mean of post partum sectio caesarea pain without given bitter orange aroma therapy in control group was 4,82 (moderate pain with the reduction was 0. The statistic showed up p value (0,000< 0,05 which mean that kneading techniques effective to reduce pain of post partum sectio caesarea. Based on the result, bitter orange aroma therapy can be recommended as nursing intervention of post partum sectio caesarea.

  13. Bitter melon therapy: an experimental treatment of HIV infection.

    Science.gov (United States)

    Rebultan, S P

    1995-01-01

    People in Asia often use a medicinal plant, bitter melon (Mamordica charantia), to treat various diseases (e.g., malaria). It has anti-viral, anti-tumor, and immune system boosting properties. Some Asians, especially Filipinos, eat bitter melon. They believe that bitter melon cleanses the blood and boosts the immune system. Rural Filipino midwives place a strong bitter melon extract in a newborn's mouth to activate the immune system. An HIV-infected man in California uses bitter melon therapy. Bitter melon therapy can be prepared by extracting juices from fresh leaves and fruits and adding purified water to the extract to control the potency. Another preparation involves bringing two pounds of leaves and fruits in a gallon of purified water to a boil, allowing it to simmer for five minutes, filtering the decoction in a sterile strainer, and storing it in the refrigerator. The therapy can be administered either orally or via the rectum. The HIV-infected California man drank 10 ounces of the juices or a combination of juices and decoction each day for five days a week during the first year. He then switched to rectal retention enema due to the bad taste. He increased the dosage to 16 ounces/day and the duration to seven days a week. He held an inserted enema bag or rectal syringe until the juices/decoction had been absorbed. Sometimes he would infuse most of the therapy two times a day. Within seven days of rectal retention enema delivery of the bitter melon therapy, his energy level increased rapidly and his physical stamina and appetite improved. One year after therapy began, his CD4 count increased greatly. Later, his CD4/CD8 ratios had returned to normal. He no longer experiences acute sinusitis or recurrent respiratory infections. He has had no serious side effects.

  14. Genetics Home Reference: eosinophil peroxidase deficiency

    Science.gov (United States)

    ... navigation Home Page Search Home Health Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Share: Email ... EPXD peroxidase and phospholipid deficiency in eosinophils Presentey anomaly Related Information How are genetic conditions and genes ...

  15. Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd.

    Science.gov (United States)

    Ali, M; Saeed, S; Sajjad, A

    2016-10-01

    In the context of global biodiversity decline, it is imperative to understand the different aspects of bee communities for sustaining the vital ecosystem service of pollination. Bee species can be assigned to functional groups (average difference among species in functionally related traits) on the basis of complementarity (trait variations exhibited by individual organisms) in their behavior but is not yet known which functional group trait is most important for seed set. In this study, first, the functional groups of bees were made based on their five selected traits (pollen deposition, visitation rate, stay time, visiting time of the day, body size) and then related to the seed set of obligate cross-pollinated Luffa gourd (Luffa aegyptiaca). We found that bee diversity and abundance differed significantly among the studied plots, but only the bee species richness was positively related to the seed set. Functional group diversity in terms of pollen deposition explained even more of the variance in seed set (r 2  = 0.74) than did the species richness (r 2  = 0.53) making it the most important trait of bee species for predicting the crop reproductive success.

  16. ACTIVE PRODUCERS OF PEROXIDASE BASIDIOMYCETES STRAINS SCREENING

    Directory of Open Access Journals (Sweden)

    T. E. Voloshko

    2013-10-01

    Full Text Available The paper is devoted to the analysis of the research data peroxidase activity of the strains of xylotrophic basidiomycetes in the dynamics of the growth. The objects of study were 57 strains, 5 of which belongs to 5 species of the order Polyporales, and 52 of which belongs to 7 species of the order Agaricales. In order to search for active producers of peroxidase the strains were cultured by the surface method in a liquid glucosepeptone medium. The accumulation of oven-dry biomass was determined by the weight method. The content of soluble protein and peroxidase activity were determined by the spectrophotometry. The studies set the level of accumulation of oven-dry biomass and peroxidase activity of the strains in 9 and 12 days of growth. The results allowed selecting the strains, which are characterized by high levels of peroxidase activity in mycelium and in the culture filtrate, including Agrocybe cylindracea 167, Pleurotus ostreatus Р-кл, Agrocybe cylindracea 960 and 218. These strains which are active producers of peroxidase may be used in the enzyme preparations obtaining technology.

  17. Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin.

    Science.gov (United States)

    Greene, Tiffani A; Alarcon, Suzanne; Thomas, Anu; Berdougo, Eli; Doranz, Benjamin J; Breslin, Paul A S; Rucker, Joseph B

    2011-01-01

    Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of

  18. Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin.

    Directory of Open Access Journals (Sweden)

    Tiffani A Greene

    Full Text Available Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs expressed in gustatory cells. Each bitter taste receptor (TAS2R responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16 responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC. While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoylbenzoic acid (probenecid, that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1 transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell

  19. Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles

    Directory of Open Access Journals (Sweden)

    Huaming Zhong

    2017-08-01

    Full Text Available As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs in reptiles, we identified Tas2r genes in 19 genomes (species corresponding to three orders of non-avian reptiles. Our results indicated contractions of Tas2r gene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of the Tas2rs with NJ and BI methods revealed that Tas2r genes of snake species formed two clades, whereas in lizards the Tas2r genes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death of intact Tas2r genes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1 gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC analyses reviewed a significant correlation between the number of Tas2r genes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require more Tas2rs genes than omnivorous and carnivorous reptiles.

  20. Additional toxic, bitter saponins from the seeds of Chenopodium quinoa.

    Science.gov (United States)

    Ma, W W; Heinstein, P F; McLaughlin, J L

    1989-01-01

    Quinoa (Chenopodium quinoa) is an important Native American food grain. Prior to consumption, the seeds must be washed with H2O to remove bitterness and improve nutritive value. From the warm-H2O extract of quinoa seeds from Mexico, saponins 1-4 were isolated by monitoring the fractionation with brine shrimp lethality and a taste test for bitterness. By chemical, spectral, and enzymatic methods, 1-4 were identified as glycosides of oleanolic acid. Saponin 4, 3-O-[(beta-D-xylopyranosyl)(1----3)]-beta-D-glucuronopyranosyl-6-O -methyl ester]-oleanolic acid, is a new natural compound.

  1. The Bitter Chemodiversity of Hops (Humulus lupulus L.).

    Science.gov (United States)

    Dresel, Michael; Vogt, Christian; Dunkel, Andreas; Hofmann, Thomas

    2016-10-03

    To map the chemodiversity of key bitter compounds in hops, a total of 75 different samples collected from the global hop market were analyzed for 117 key bitter tastants by means of a multiparametric HPLC-MS/MSMRM method. Among the compounds detected, 2'',3''-epoxyxanthohumol was detected for the first time in hops and iso¬xantho¬humol M was identified as a marker compound for varieties grown in Germany. Hop ageing experiments in the absence and presence of air oxygen, respectively, were conducted to address the stability of hop-derived compounds during long-term storage.

  2. Purification, characterization and stability of barley grain peroxidase BP1, a new type of plant peroxidase

    DEFF Research Database (Denmark)

    Rasmussen, Christine B; Henriksen, Anette; Abelskov, A. Katrine

    1997-01-01

    The major peroxidase of barley grain (BP 1) has enzymatic and spectroscopic properties that are very differeant from those of other known plant peroxidases (EC 1.11.1.7) and can therefore contribute to the understanding of the many physiological functions ascribed to these enzymes. To study...

  3. THE CURRENT STATE OF SEED PRODUCTION OF VEGETABLES AND GOURDS IN RUSSIAN FEDERATION; NATIONAL FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    S. M. Sirota

    2017-01-01

    Full Text Available The current state of seed market of vegetable and gourds in Russian Federation in the frame of national food safety program is given in the article. Russia as a country with well-developed  seed production  in the last century has now  ceded  its  position,  and according  to  last experts’ association estimations the 80%  of  required volume of seeds of vegetables and gourds, amounting from 8 to 12 thousand per year is imported.  Not  less than 15 thousands  of  hectares  are  needed  to  be  necessary  for demand  of  Russian seed  production  sector,  however, presently only 2 thousands of hectares is a total certified land used for seed production.  Moreover, the seed production sector of some countries that export seeds rises becoming a profitable branch of agriculture, and providing local employment. The lack of competitiveness in Russia causes that many foreign companies increase annually purchasing prices for seeds and their production services. Therefore, now the total volume of seeds imported  in  Russian Federation has nearly been  twice less for the last years than in 2012, but in currency earnings in exporting countries the insignificant changes can be seen, where deviation is only 19-25%  from  average annual value, that means 1675 thousand dollars per year. Besides, for the Russian budget in the ruble currency the total cost of imported seeds has become 2.5 times more expensive since 2012, but the increase of combined cost of  marketable  vegetables  has been  over  2.7  billion  of rubles.  The  main  idea  that  the  seed  production  is  a process requiring the participation of breeders, seed producers and seed companies is main factor to succeed in recovering seed production sector. Exception of any participant or ignoring his interests may destroy all process. For instance, there is a chronic problem of plagiarism and royalty nonpayment causes the break between the business and

  4. Healthy virgin olive oil: a matter of bitterness

    NARCIS (Netherlands)

    Vitaglione, P.; Savarese, M.; Paduano, A.; Scalfi, L.; Fogliano, V.; Sacchi, R.

    2015-01-01

    Virgin olive oil (VOO) is the pillar fat of Mediterranean diet. It is made from olive fruits and obtained by squeezing olives without any solvent extraction. Respect to the seed oils, an unique polar polyphenol-rich fraction gives to VOO a bitter and pungent taste. The recent substantiation by

  5. Protective properties of yoyo cleanser bitters against mercury ii ...

    African Journals Online (AJOL)

    This study was aimed at investigating the effects of oral administration of Yoyo Cleanser Bitters on the mercuric chloride-induced kidney damage in adult Wistar rats. Thirty adult Wistar rats weighing between 180 and 210 g were grouped into six groups of five rats each. Group A animals served as control that were neither ...

  6. Germination, seedling growth and ion accumulation of bitter vetch ...

    African Journals Online (AJOL)

    This study was conducted to compare the effect of NaCl levels on germination and seedling growth, and ion accumulation in five bitter vetch lines. Germination percentage (%), mean germination time (MGT, day), emergence percentage (%), shoot and root length (mm), shoot and root fresh and dry weight (mg/plant) and the ...

  7. Marketing and distribution of Garcinia kola ( Bitter kola ) in southwest ...

    African Journals Online (AJOL)

    The study evaluates the different marketing of Bitter kola (Garcinia kola) starting from the point of production with the view to improving the trade. Farmers have Garcinia trees on their farm and these were spared during land preparation for farming. Marketing of Garcinia nuts generated appreciable income to the producers ...

  8. Bitter pit in apples: pre- and postharvest factors: A review

    Directory of Open Access Journals (Sweden)

    Tomislav Jemrić

    2016-12-01

    Full Text Available Bitter pit is a physiological disorder that significantly reduces the quality of apples. Although it has been detected since the beginning of the last century, still there is little known about the mechanism of its occurrence. According to numerous studies, bitter pit is formed as a result of calcium deficiency in the fruit. Some authors cite the high concentration of gibberellins, later in the production season, most probably caused by excessive activity of the roots, as the chief causative factor. Beside Ca, there are several factors that can also contribute to its development, like imbalance among some mineral elements (N, P, K and Mg, cultivar, rootstock, the ratio of vegetative and generative growth, post-harvest treatments and the storage methods. There are some prediction models available that can estimate the risk of bitter pit in apples, but even those are not always reliable. The aim of this review was to encompass the pre and postharvest factors which cause bitter pit and point out the directions for solving this problem.

  9. Collection and marketing of Bitter Cola ( Garcinia kola ) in Nkwerre ...

    African Journals Online (AJOL)

    Constraints encountered by collectors and marketers include rot and decay during storage (99%), poor storage facilities (97%), pest and diseases (88.2%) and labour costs (68.2%). Recommendations based on the findings include providing financial resources in form of loans, grants or incentives in order to boost bitter ...

  10. Sudan and South Sudan's bitter and incomplete divorce

    African Journals Online (AJOL)

    London, Hurst Publishers, 317 pp. ISBN 978-184804-830-9. Reviewed by Nicodemus Minde*. Having served as the BBC Sudan correspondent from 2009 to 2012, James. Copnall has compiled an insightful account of the bitter-sweet split of the two Sudans (Sudan and South Sudan) in July 2009. This updated edition.

  11. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 95; Issue 3. Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations. YUAN SU DIYAN LI UMA GAUR YAN WANG NAN WU BINLONG CHEN HONGXIAN XU HUADONG YIN YAODONG HU QING ZHU. RESEARCH ARTICLE ...

  12. Growth of Bitter leaf ( Vernonia amygdalina , Del. Compositeae) and ...

    African Journals Online (AJOL)

    The growth parameters were positively correlated to rainfall, relative humidity and cloud cover. Maximum temperature was negatively correlated to the growth ... 13 no. 3/4 December (2001) pp. 227-233. KEY WORDS: bitter leaf, Vernonia amygdalina, growth characteristics climate and yield, nutritive values. Resume

  13. Toxicity studies in rats fed nature cure bitters | Aniagu | African ...

    African Journals Online (AJOL)

    Graded doses of Nature Cure Bitters (NCB) were administered daily (100, 200 and 400 mg/kg p.o) to rats for 28 days and the effects on body weight, organ weight, clinical signs, gross pathology, haematology, histology and serum biochemical parameters were evaluated. The relative weights of the heart, liver and testes of ...

  14. Preliminary studies on ethanol production from Garcinia kola (bitter ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    Because petroleum is a non-renewable resource, studies have recently been focused on getting alcohol through renewable resources such as agricultural sources6,7,8. Garcinia kola (bitter kola) is a tropical plant that grows well in Nigeria, producing fruit that is usually reddish-yellow when ripe. It is however cultivated in the ...

  15. Ruzu ® herbal bitters and glibenclamide tablets: Dissolution and in ...

    African Journals Online (AJOL)

    Background: The concomitant intake of poly-herbal medicines with orthodox drugs raises huge concerns about herb-drug interactions and patient safety, especially as the pharmacokinetic properties of these herbal medicines are not known. Objectives: This study aimed to determine the effect of Ruzu® herbal bitters on the ...

  16. Cytotoxicity testing of aqueous extract of bitter leaf ( Vernonia ...

    African Journals Online (AJOL)

    Cytotoxicity testing of aqueous extract of bitter leaf ( Vernonia amygdalina Del ) and sniper 1000EC (2,3 dichlorovinyl dimethyl phosphate) using the Alium cepa ... 96 hours and EC50 values at 95% confidence interval was determined from a plot of root length against sample concentrations using Microsoft Excel software.

  17. Biosynthesis, regulation, and domestication of bitterness in cucumber

    NARCIS (Netherlands)

    Shang, Y.; Ma, Y.; Bouwmeester, H.J.

    2014-01-01

    Cucurbitacins are triterpenoids that confer a bitter taste in cucurbits such as cucumber, melon, watermelon, squash, and pumpkin. These compounds discourage most pests on the plant and have also been shown to have antitumor properties. With genomics and biochemistry, we identified nine cucumber

  18. Bitter decoration and magneto-optical observations of vortex chains ...

    Indian Academy of Sciences (India)

    by making Bitter decorations in two groups of samples; overdoped BSCCO and underdoped YBCO. In an extremely overdoped BSCCO (Tc = 68 K), we find ..... cake and Josephson vortices is realized in highly anisotropic superconductor. Bi2Sr2CaCu2O8+y. The fundamental energy scale for the attractive interactions.

  19. Healthy virgin olive oil: a matter of bitterness.

    Science.gov (United States)

    Vitaglione, Paola; Savarese, Maria; Paduano, Antonello; Scalfi, Luca; Fogliano, Vincenzo; Sacchi, Raffaele

    2015-01-01

    Virgin olive oil (VOO) is the pillar fat of Mediterranean diet. It is made from olive fruits and obtained by squeezing olives without any solvent extraction. Respect to the seed oils, an unique polar polyphenol-rich fraction gives VOO a bitter and pungent taste. The recent substantiation by European Food Safety Authority (EFSA) of a health claim for VOO polyphenols may represent an efficient stimulus to get the maximum health benefit from one of the most valuable traditional product of Mediterranean countries educating consumers to the relationship between the VOO bitterness and its health effect. Agronomical practices and new processing technology to avoid phenolic oxidation and hydrolysis and to enhance the aromatic components of the VOO have been developed and they can be used to modulate taste and flavor to diversify the products on the market. VOOs having high concentration of phenol compounds are bitter and pungent therefore many people do not consume them, thus loosing the health benefits related to their intake. In this paper, the chemist's and nutritionist's point of view has been considered to address possible strategies to overcome the existing gap between the quality perceived by consumer and that established by expert tasters. Educational campaigns emphasizing the bitter-health link for olive oils should be developed.

  20. Value of Bitter Leaf ( Vernonia amygdalina ) Meal as Feed ...

    African Journals Online (AJOL)

    A 28-day feeding trial was conducted to evaluate the effect of bitter leaf (Vernonia amygdalina) leaf meal as feed ingredient on the performance, feed cost and carcass and organ weights of finisher broilers. The leaves were air dried under room temperature, ground and sieved through a 3 mm mesh to produce the meal.

  1. Quinoa bitterness: causes and solutions for improving product acceptability.

    Science.gov (United States)

    Suárez-Estrella, Diego; Torri, Luisa; Pagani, Maria Ambrogina; Marti, Alessandra

    2018-02-27

    Awareness of the several agronomic, environmental, and health benefits of quinoa has led to a constant increase in its production and consumption not only in South America - where it is a native crop - but also in Europe and the United States. However, producing wheat or gluten-free based products enriched with quinoa alters some quality characteristics, including sensory acceptance. Several anti-nutritional factors such as saponins are concentrated in the grain pericarp. These bitter and astringent substances may interfere with the digestion and absorption of various nutrients. Developing processes to decrease or modify the bitterness of quinoa can enhance palatability and thus consumption of quinoa. In addition to the production of sweet varieties of quinoa, other processes have been proposed. Some of them (i.e. washing, pearling and the combination of the two) have a direct effect on saponins, either by solubilisation and/or the mechanical removal of seed layers. Others, such as fermentation or germination, are able to mask the bitterness with aroma compounds and/or sugar formation. This review presents the major sources of the undesirable sensory attributes of quinoa, included bitterness, and various ways of counteracting the negative characteristics of quinoa. This article is protected by copyright. All rights reserved.

  2. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes.

    Science.gov (United States)

    Xue, Ava Yuan; Di Pizio, Antonella; Levit, Anat; Yarnitzky, Tali; Penn, Osnat; Pupko, Tal; Niv, Masha Y

    2018-01-01

    The 25 human bitter taste receptors (hT2Rs) recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays, and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity.

  3. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes

    Directory of Open Access Journals (Sweden)

    Ava Yuan Xue

    2018-03-01

    Full Text Available The 25 human bitter taste receptors (hT2Rs recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays, and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity.

  4. Genetic relationships in Cucurbita pepo (pumpkin, squash, gourd) as viewed with high frequency oligonucleotide–targeting active gene (HFO–TAG) markers

    Science.gov (United States)

    Cucurbita pepo is a highly diverse, economically important member of the Cucurbitaceae. C. pepo encompasses hundreds of cultivars of pumpkins, squash, and gourds. Although C. pepo has been scrutinized with various types of DNA markers, the relationships among the cultivar-groups of C. pepo subsp. p...

  5. Bitter Taste Responses of Gustducin-positive Taste Cells in Mouse Fungiform and Circumvallate Papillae.

    Science.gov (United States)

    Yoshida, Ryusuke; Takai, Shingo; Sanematsu, Keisuke; Margolskee, Robert F; Shigemura, Noriatsu; Ninomiya, Yuzo

    2018-01-15

    Bitter taste serves as an important signal for potentially poisonous compounds in foods to avoid their ingestion. Thousands of compounds are estimated to taste bitter and presumed to activate taste receptor cells expressing bitter taste receptors (Tas2rs) and coupled transduction components including gustducin, phospholipase Cβ2 (PLCβ2) and transient receptor potential channel M5 (TRPM5). Indeed, some gustducin-positive taste cells have been shown to respond to bitter compounds. However, there has been no systematic characterization of their response properties to multiple bitter compounds and the role of transduction molecules in these cells. In this study, we investigated bitter taste responses of gustducin-positive taste cells in situ in mouse fungiform (anterior tongue) and circumvallate (posterior tongue) papillae using transgenic mice expressing green fluorescent protein in gustducin-positive cells. The overall response profile of gustducin-positive taste cells to multiple bitter compounds (quinine, denatonium, cyclohexamide, caffeine, sucrose octaacetate, tetraethylammonium, phenylthiourea, L-phenylalanine, MgSO 4 , and high concentration of saccharin) was not significantly different between fungiform and circumvallate papillae. These bitter-sensitive taste cells were classified into several groups according to their responsiveness to multiple bitter compounds. Bitter responses of gustducin-positive taste cells were significantly suppressed by inhibitors of TRPM5 or PLCβ2. In contrast, several bitter inhibitors did not show any effect on bitter responses of taste cells. These results indicate that bitter-sensitive taste cells display heterogeneous responses and that TRPM5 and PLCβ2 are indispensable for eliciting bitter taste responses of gustducin-positive taste cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Occurrence and properties of Petunia peroxidase a

    NARCIS (Netherlands)

    Hendriks, T.

    1989-01-01

    Peroxidases are probably the most extensively studied enzymes in higher plants. Various isoenzymes occur as soluble proteins in the apoplast and in the vacuole, or are bound to membranes and cell walls. Their occurrence is often organ-specific and developmentally controlled, and there is

  7. Ficus sycomorus latex: A thermostable peroxidase

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... Peroxidase from sycamore fig Ficus sycomorus latex (POLI) was purified by heat treatment, anion exchange chromatography and molecular exclusion chromatography. The purity was determined from high specific activity (9166 units/mg protein), purification fold (28), RZ value 3.1 and a single band in.

  8. Inhibition of Heme Peroxidases by Melamine

    Directory of Open Access Journals (Sweden)

    Pattaraporn Vanachayangkul

    2012-01-01

    Full Text Available In 2008 melamine-contaminated infant formula and dairy products in China led to over 50,000 hospitalizations of children due to renal injuries. In North America during 2007 and in Asia during 2004, melamine-contaminated pet food products resulted in numerous pet deaths due to renal failure. Animal studies have confirmed the potent renal toxicity of melamine combined with cyanuric acid. We showed previously that the solubility of melamine cyanurate is low at physiologic pH and ionic strength, provoking us to speculate how toxic levels of these compounds could be transported through the circulation without crystallizing until passing into the renal filtrate. We hypothesized that melamine might be sequestered by heme proteins, which could interfere with heme enzyme activity. Four heme peroxidase enzymes were selected for study: horseradish peroxidase (HRP, lactoperoxidase (LPO, and cyclooxygenase-1 and -2 (COX-1 and -2. Melamine exhibited noncompetitive inhibition of HRP (9.5±0.7mM, and LPO showed a mixed model of inhibition (14.5±4.7mM. The inhibition of HRP and LPO was confirmed using a chemiluminescent peroxidase assay. Melamine also exhibited COX-1 inhibition, but inhibition of COX-2 was not detected. Thus, our results demonstrate that melamine inhibits the activity of three heme peroxidases.

  9. Ficus sycomorus latex: A thermostable peroxidase

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... glucanases, lipase, peroxidase and chitinase (Domsalla and Melzig, 2008; Mura ... for the production of polymers and for the biotransformation of .... POLI and lane 3 = Sephacryl S-200 POLI. Table 2. Relative activity of F. sycomorus latex POLI toward substrates. Substrate. % Relative activity. Guaiacol. 100.

  10. Peroxidase-like activity of magnetoferritin

    Czech Academy of Sciences Publication Activity Database

    Melníková, V.; Pospíšková, K.; Mitróová, Z.; Kopčanský, P.; Šafařík, Ivo

    2014-01-01

    Roč. 181, 3-4 (2014), s. 295-301 ISSN 0026-3672 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : magnetoferritin * magnetic nanoparticles * peroxidase-like activity * hydrogen peroxide * oxidative stress Subject RIV: CE - Biochemistry Impact factor: 3.741, year: 2014

  11. Thyroid peroxidase autoantibodies in euthyroid subjects

    NARCIS (Netherlands)

    Prummel, Mark F.; Wiersinga, Wilmar M.

    2005-01-01

    Thyroid peroxidase (TPO) is a key enzyme in the formation of thyroid hormones and a major autoantigen in autoimmune thyroid diseases. Titers of TPO antibodies also correlate with the degree of lymphocytic infiltration in euthyroid subjects, and they are frequently present in euthyroid subjects

  12. Guaiacol Peroxidase Zymography for the Undergraduate Laboratory

    Science.gov (United States)

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M.; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically…

  13. Ficus sycomorus latex: A thermostable peroxidase | Mohamed ...

    African Journals Online (AJOL)

    Peroxidase from sycamore fig Ficus sycomorus latex (POLI) was purified by heat treatment, anion exchange chromatography and molecular exclusion chromatography. The purity was determined from high specific activity (9166 units/mg protein), purification fold (28), RZ value 3.1 and a single band in native polyacrylamide ...

  14. Partial purification and characterization of ascorbate peroxidase ...

    African Journals Online (AJOL)

    Ascorbate peroxidase (EC 1.11.1.11; APX) was purified from ripe ber (Ziziphus mauritiana L.) fruits var. Illaichi using conventional techniques of ammonium sulphate fractionation, gel filtration through Sephadex G-100 and ion-exchange chromatography on DEAE-cellulose. The enzyme was purified about 47.4 fold with ...

  15. Widespread occurrence of expressed fungal secretory peroxidases in forest soils.

    Science.gov (United States)

    Kellner, Harald; Luis, Patricia; Pecyna, Marek J; Barbi, Florian; Kapturska, Danuta; Krüger, Dirk; Zak, Donald R; Marmeisse, Roland; Vandenbol, Micheline; Hofrichter, Martin

    2014-01-01

    Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin) and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase), dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g. unspecific/aromatic peroxygenase, chloroperoxidase). Here, we have repeatedly observed a widespread expression of all major peroxidase groups in leaf and needle litter across a range of forest ecosystems (e.g. Fagus, Picea, Acer, Quercus, and Populus spp.), which are widespread in Europe and North America. Manganese peroxidases and unspecific peroxygenases were found expressed in all nine investigated forest sites, and dye-decolorizing peroxidases were observed in five of the nine sites, thereby indicating biological significance of these enzymes for fungal physiology and ecosystem processes. Transcripts of selected secretory peroxidase genes were also analyzed in pure cultures of several litter-decomposing species and other fungi. Using this information, we were able to match, in environmental litter samples, two manganese peroxidase sequences to Mycena galopus and Mycena epipterygia and one unspecific peroxygenase transcript to Mycena galopus, suggesting an important role of this litter- and coarse woody debris-dwelling genus in the disintegration and transformation of litter aromatics and organic matter formation.

  16. Widespread occurrence of expressed fungal secretory peroxidases in forest soils.

    Directory of Open Access Journals (Sweden)

    Harald Kellner

    Full Text Available Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase, dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g. unspecific/aromatic peroxygenase, chloroperoxidase. Here, we have repeatedly observed a widespread expression of all major peroxidase groups in leaf and needle litter across a range of forest ecosystems (e.g. Fagus, Picea, Acer, Quercus, and Populus spp., which are widespread in Europe and North America. Manganese peroxidases and unspecific peroxygenases were found expressed in all nine investigated forest sites, and dye-decolorizing peroxidases were observed in five of the nine sites, thereby indicating biological significance of these enzymes for fungal physiology and ecosystem processes. Transcripts of selected secretory peroxidase genes were also analyzed in pure cultures of several litter-decomposing species and other fungi. Using this information, we were able to match, in environmental litter samples, two manganese peroxidase sequences to Mycena galopus and Mycena epipterygia and one unspecific peroxygenase transcript to Mycena galopus, suggesting an important role of this litter- and coarse woody debris-dwelling genus in the disintegration and transformation of litter aromatics and organic matter formation.

  17. Purification, characterization and stability of barley grain peroxidase BP1, a new type of plant peroxidase

    DEFF Research Database (Denmark)

    Rasmussen, Christine B; Henriksen, Anette; Abelskov, A. Katrine

    1997-01-01

    -protoporphyrin IX, which is characteristic of plant peroxidases. BP 1 is stable from pH 3 to 11, indicating that its unusual spectral characteristics do not result from enzyme instability. The thermostability is also normal with a melting temperature of 75 degrees C at pH 6.6, and 67 degrees C at pH 4.0 and 8......The major peroxidase of barley grain (BP 1) has enzymatic and spectroscopic properties that are very differeant from those of other known plant peroxidases (EC 1.11.1.7) and can therefore contribute to the understanding of the many physiological functions ascribed to these enzymes. To study.......3. It is clear that the unusual properties of BP 1 are genuine, and reflect a novel regulation of plant peroxidase function....

  18. The study of ascorbate peroxidase, catalase and peroxidase during in vitro regeneration of Argyrolobium roseum.

    Science.gov (United States)

    Habib, Darima; Chaudhary, Muhammad Fayyaz; Zia, Muhammad

    2014-01-01

    Here, we demonstrate the micropropagation protocol of Argyrolobium roseum (Camb.), an endangered herb exhibiting anti-diabetic and immune-suppressant properties, and antioxidant enzymes pattern is evaluated. Maximum callogenic response (60 %) was observed from leaf explant at 1.0 mg L(-1) 1-nephthalene acetic acid (NAA) and 0.5 mg L(-1) 6-benzyl aminopurine (BA) in Murashige and Skoog (MS) medium using hypocotyl and root explants (48 % each). Addition of AgNO3 and PVP in the culture medium led to an increase in callogenic response up to 86 % from leaf explant and 72 % from hypocotyl and root explants. The best shooting response was observed in the presence of NAA, while maximum shoot length and number of shoots were achieved based on BA-supplemented MS medium. The regenerated shoots were rooted and successfully acclimatized under greenhouse conditions. Catalase and peroxidase enzymes showed ascending pattern during in vitro plant development from seed while ascorbate peroxidase showed descending pattern. Totally reverse response of these enzymes was observed during callus induction from three different explants. During shoot induction, catalase and peroxidase increased at high rate while there was a mild reduction in ascorbate peroxidase activity. Catalase and peroxidase continuously increased; on the other hand, ascorbate peroxidase activity decreased during root development and acclimatization states. The protocol described here can be employed for the mass propagation and genetic transformation of this rare herb. This study also highlights the importance and role of ascorbate peroxidase, catalase, and peroxidase in the establishment of A. roseum in vitro culture through callogenesis and organogenesis.

  19. Peroxidase isozyme profiles in some sweet cherry rootstocks and ...

    African Journals Online (AJOL)

    PERS

    2012-01-10

    , 2005). Santamour (1980) defined role of peroxidase in graft compatibility as; 1) lignification is essential for a strong and permanent graft union; 2) peroxidase isoenzymes mediate the polymeri- zation of cinnamic alcohols to ...

  20. Bitter taste inhibiting agents for whey protein hydrolysate and whey protein hydrolysate beverages.

    Science.gov (United States)

    Leksrisompong, Pattarin; Gerard, Patrick; Lopetcharat, Kannapon; Drake, MaryAnne

    2012-08-01

    Whey protein hydrolysates (WPH) are known for bioactivity and functionality, but WPH also have a distinct bitter taste. Identification of effective bitter taste inhibiting agents for WPH would broaden the use of this ingredient. The objective of this study was to evaluate the effectiveness of 24 documented bitter taste inhibitors for WPH. Two spray-dried WPH with different levels of hydrolysis (DH) were evaluated with each potential inhibitor. Quinine hydrochloride (quinine) was presented as a control with each WPH. Percent bitter taste inhibition was reported relative to quinine bitterness. Effective bitter taste inhibitors were subsequently evaluated in WPH beverages with vanilla and chocolate flavoring followed by descriptive analysis. The compounds evaluated did not inhibit bitter taste of quinine and the 2 WPH in a similar manner (P sucralose, fructose, sucrose, adenosine 5' monophosphate (5'AMP), adenosine 5'monophosphate disodium (5'AMP Na(2) ), sodium acetate, monosodium glutamate, and sodium gluconate. Sodium chloride inhibited bitter taste of WPH with high DH but not WPH with low DH. Amino acids (l-Lysine, l-arginine) inhibited bitter taste of quinine but not WPH. All effective inhibitors in rehydrated WPH were also effective in the beverage applications. Sweeteners (fructose, sucralose, and sucrose) enhanced vanilla and chocolate flavors in beverages. Most salts and a nucleotide, while effective for bitter taste inhibition, suppressed vanilla and chocolate flavors and potentiated other flavors (that is, sour aromatic), and basic tastes (salty, sour). The bitter taste of whey protein hydrolysates (WPH) limits their use as ingredients. This study identified effective bitter taste inhibitors of WPH with different peptide composition and provides insights for effective bitter inhibitors for product applications with WPH. © 2012 Institute of Food Technologists®

  1. 21 CFR 864.7675 - Leukocyte peroxidase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte peroxidase test. 864.7675 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7675 Leukocyte peroxidase test. (a) Identification. A leukocyte peroxidase test is a device used to distinguish certain...

  2. Comparative study of peroxidase purification from apple and orange ...

    African Journals Online (AJOL)

    This paper reports the isolation and purification of peroxidase from low cost material; moreover, no significant work has been done on the isolation and purification of peroxidase from such cost effective sources (apple and orange seeds). Peroxidases had attracted considerable interest in recent years because of their ...

  3. Effect of Vitamin C on Glutathione Peroxidase Activities in Pregnant ...

    African Journals Online (AJOL)

    Glutathione peroxidase is one of the most important antioxidant enzymes in humans. We studied the relationship between serum glutathione peroxidase activity and vitamin C ingestion during normal pregnancy in women attending antenatal clinic in the University of Ilorin Teaching Hospital, Ilorin. Glutathione peroxidase ...

  4. Rebaudioside A and Rebaudioside D bitterness do not covary with Acesulfame K bitterness or polymorphisms inTAS2R9andTAS2R31.

    Science.gov (United States)

    Allen, Alissa L; McGeary, John E; Hayes, John E

    2013-09-01

    In order to reduce calories in foods and beverages, the food industry routinely uses non-nutritive sweeteners. Unfortunately, many are synthetically derived, and many consumers have a strong preference for natural sweeteners, irrespective of the safety data on synthetic non-nutritive sweeteners. Additionally, many non-nutritive sweeteners elicit aversive side tastes such as bitter and metallic in addition to sweetness. Bitterness thresholds of acesulfame-K (AceK) and saccharin are known to vary across bitter taste receptors polymorphisms in TAS2R31 . RebA has shown to activate hTAS2R4 and hTAS2R14 in vitro. Here we examined bitterness and sweetness perception of natural and synthetic non-nutritive sweeteners. In a follow-up to a previous gene-association study, participants (n=122) who had been genotyped previously rated sweet, bitter and metallic sensations from rebaudioside A (RebA), rebaudioside D (RebD), aspartame, sucrose and gentiobiose in duplicate in a single session. For comparison, we also present sweet and bitter ratings of AceK collected in the original experiment for the same participants. At similar sweetness levels, aspartame elicited less bitterness than RebD, which was significantly less bitter than RebA. The bitterness of RebA and RebD showed wide variability across individuals, and bitterness ratings for these compounds were correlated. However, RebA and RebD bitterness did not covary with AceK bitterness. Likewise, single nucleotide polymorphisms (SNPs) shown previously to explain variation in the suprathreshold bitterness of AceK (rs3741845 in TAS2R9 and rs10772423 in TAS2R31 ) did not explain variation in RebA and RebD bitterness. Because RebA activates hT2R4 and hT2R14, a SNP in TAS2R4 previously associated with variation in bitterness perception was included here; there are no known functional SNPs for TAS2R14 . In present data, a putatively functional SNP (rs2234001) in TAS2R4 did not explain variation in RebA or RebD bitterness

  5. Certification of standard reference materials containing bitter orange.

    Science.gov (United States)

    Sander, L C; Putzbach, K; Nelson, B C; Rimmer, C A; Bedner, M; Thomas, J Brown; Porter, B J; Wood, L J; Schantz, M M; Murphy, K E; Sharpless, K E; Wise, S A; Yen, J H; Siitonen, P H; Evans, R L; Nguyen Pho, A; Roman, M C; Betz, J M

    2008-07-01

    A suite of three dietary supplement standard reference materials (SRMs) containing bitter orange has been developed, and the levels of five alkaloids and caffeine have been measured by multiple analytical methods. Synephrine, octopamine, tyramine, N-methyltyramine, hordenine, total alkaloids, and caffeine were determined by as many as six analytical methods, with measurements performed at the National Institute of Standards and Technology and at two collaborating laboratories. The methods offer substantial independence, with two types of extractions, two separation methods, and four detection methods. Excellent agreement was obtained among the measurements, with data reproducibility for most methods and analytes better than 5% relative standard deviation. The bitter-orange-containing dietary supplement SRMs are intended primarily for use as measurement controls and for use in the development and validation of analytical methods.

  6. Sensorial properties of red wine polyphenols: Astringency and bitterness.

    Science.gov (United States)

    Soares, Susana; Brandão, Elsa; Mateus, Nuno; de Freitas, Victor

    2017-03-24

    Polyphenols have been the subject of numerous research over the past years, being referred as the nutraceuticals of modern life. The healthy properties of these compounds have been associated to a natural chemoprevention of 21st century major diseases such as cancer and neurodegenerative diseases (e.g. Parkinson's and Alzheimer's). This association led to an increased consumption of foodstuffs rich in these compounds such as red wine. Related to the ingestion of polyphenols are the herein revised sensorial properties (astringency and bitterness) which are not still pleasant. This review intends to be an outline both at a sensory as a molecular level of the mechanisms underlying astringency and bitterness of polyphenols. Up-to-date knowledge of this matter is discussed in detail.

  7. Synergistic Antimicrobial Effect of Tribulus terrestris and Bitter Almond Extracts

    Directory of Open Access Journals (Sweden)

    Hamid Abtahi

    2014-12-01

    Full Text Available Background: The antimicrobial effects of the extracts of different kinds of plants have been demonstrated in several studies. However, no study has been conducted so far on the synergistic effects of two herbal extracts on their germicidal effects. In this study, in addition to antibacterial effects of the aqueous, methanol or ethanol extracts of Tribulus terrestris and bitter almond on some bacteria, the synergistic effects of the extracts of these two plants were also evaluated. Materials and Methods: In this experimental study, water, methanol and ethanol extracts of seeds were screened against some bacterial strains. Seeds were extracted by percolation method. Aliquots of the extracts at variable concentrations were then incubated with different bacterial strains, and the antimicrobial activities of the extracts from seeds were determined by MIC. Three antibiotics were used as reference compounds for antibacterial activities. Seeds extract inhibited significantly the growth of the tested bacterial strains. Results: The greatest synergistic effect of T. terrestris and bitter almond extracts is detected in methanol and aqueous extracts. Among the bacterial strains tested, Staphylococcus aureus was most susceptibility. Conclusion: The results showed the highest antibacterial effect in the combination of methanol extract of T. terrestris and the aqueous extract of the bitter almond.

  8. NADH peroxidase: kinetic mechanism and nucleotide specificity

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, V.S.; Blanchard, J.S.

    1987-05-01

    NADH peroxidase is a flavoprotein reductase isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide dependent reduction of hydrogen peroxide to water. Initial velocity, product and dead-end inhibition studies have been performed and all support a ping-pong kinetic mechanism. Further support for the ping-pong nature of the kinetic mechanism are the hydrogen peroxide independent transhydrogenase activity of the enzyme, measured either with thio-NAD or with radiolabeled NAD (isotope exchange studies). Kinetic parameters will be presented for a number of reduced pyridine nucleotide analogs. Analogs which have been modified in the adenine ring exhibit much higher K/sub m/'s relative to their adenine analogs. NADH peroxidase catalyzes the stereo-specific removal of the 4S hydrogen of NADH and primary deuterium kinetic isotope effects have been determined for a number of these substrates with 4S-deuterated molecules. There is a strong correlation between their steady-state K/sub m/ and /sup D/V/K. Small values for /sup D/V are interpreted as supporting rate-limitation in the oxidative half-reaction. These data will be discussed in terms of a kinetic and chemical mechanism proposed for NADH peroxidase.

  9. NADH peroxidase: kinetic mechanism and nucleotide specificity

    International Nuclear Information System (INIS)

    Stoll, V.S.; Blanchard, J.S.

    1987-01-01

    NADH peroxidase is a flavoprotein reductase isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide dependent reduction of hydrogen peroxide to water. Initial velocity, product and dead-end inhibition studies have been performed and all support a ping-pong kinetic mechanism. Further support for the ping-pong nature of the kinetic mechanism are the hydrogen peroxide independent transhydrogenase activity of the enzyme, measured either with thio-NAD or with radiolabeled NAD (isotope exchange studies). Kinetic parameters will be presented for a number of reduced pyridine nucleotide analogs. Analogs which have been modified in the adenine ring exhibit much higher K/sub m/'s relative to their adenine analogs. NADH peroxidase catalyzes the stereo-specific removal of the 4S hydrogen of NADH and primary deuterium kinetic isotope effects have been determined for a number of these substrates with 4S-deuterated molecules. There is a strong correlation between their steady-state K/sub m/ and /sup D/V/K. Small values for /sup D/V are interpreted as supporting rate-limitation in the oxidative half-reaction. These data will be discussed in terms of a kinetic and chemical mechanism proposed for NADH peroxidase

  10. Evolution and expression of class III peroxidases.

    Science.gov (United States)

    Mathé, Catherine; Barre, Annick; Jourda, Cyril; Dunand, Christophe

    2010-08-01

    Class III peroxidases are members of a large multigenic family, only detected in the plant kingdom and absent from green algae sensu stricto (chlorophyte algae or Chlorophyta). Their evolution is thought to be related to the emergence of the land plants. However class III peroxidases are present in a lower copy number in some basal Streptophytes (Charapyceae), which predate land colonization. Gene structures are variable among organisms and within species with respect to the number of introns, but their positions are highly conserved. Their high copy number, as well as their conservation could be related to plant complexity and adaptation to increasing stresses. No specific function has been assigned to respective isoforms, but in large multigenic families, particular structure-function relations can be expected. Plant peroxidase sequences contain highly conserved residues and motifs, variable domains surrounded by conserved residues and present a low identity level among their promoter regions, further suggesting the existence of sub-functionalization of the different isoforms. 2010 Elsevier Inc. All rights reserved.

  11. Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis.

    Science.gov (United States)

    O'Sullivan, Dara; Nongonierma, Alice B; FitzGerald, Richard J

    2017-10-01

    Enzymatic hydrolysis of sodium caseinate (NaCas) may lead to the development of bitterness. Careful selection of hydrolysis conditions (i.e. enzyme preparation and duration) yielding different degrees of hydrolysis (DH) may aid in the development of low bitterness. Eighteen NaCas hydrolysates were generated with four enzyme preparations (Alcalase 2.4L, Prolyve 1000, FlavorPro Whey and pepsin) to different DH values. Hydrolysate bitterness score, assessed using a trained panel (ten assessors), generally increased at higher DH values for Alcalase, Prolyve and pepsin hydrolysates. However, all FlavorPro Whey hydrolysates (DH 0.38-10.62%) displayed low bitterness score values ( 0.05). Enzyme preparation and DH affect the bitterness of NaCas hydrolysates. The results are relevant for the generation of NaCas hydrolysates with reduced bitterness. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Bitter taste genetics--the relationship to tasting, liking, consumption and health.

    Science.gov (United States)

    Beckett, Emma L; Martin, Charlotte; Yates, Zoe; Veysey, Martin; Duesing, Konsta; Lucock, Mark

    2014-12-01

    Bitter is the most complex of human tastes, and is arguably the most important. Aversion to bitter taste is important for detecting toxic compounds in food; however, many beneficial nutrients also taste bitter and these may therefore also be avoided as a consequence of bitter taste. While many polymorphisms in TAS2R genes may result in phenotypic differences that influence the range and sensitivity of bitter compounds detected, the full extent to which individuals differ in their abilities to detect bitter compounds remains unknown. Simple logic suggests that taste phenotypes influence food preferences, intake and consequently health status. However, it is becoming clear that genetics only plays a partial role in predicting preference, intake and health outcomes, and the complex, pleiotropic relationships involved are yet to be fully elucidated.

  13. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus.

    Directory of Open Access Journals (Sweden)

    Weiwei Lei

    Full Text Available Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in

  14. Explaining tolerance for bitterness in chocolate ice cream using solid chocolate preferences

    OpenAIRE

    Harwood, Meriel L.; Loquasto, Joseph R.; Roberts, Robert F.; Ziegler, Gregory R.; Hayes, John E.

    2013-01-01

    Chocolate ice cream is commonly formulated with higher sugar levels than nonchocolate flavors to compensate for the inherent bitterness of cocoa. Bitterness, however, is an integral part of the complex flavor of chocolate. In light of the global obesity epidemic, many consumers and health professionals are concerned about the levels of added sugars in foods. Once a strategy for balancing undesirable bitterness and health concerns regarding added sugars has been developed, the task becomes det...

  15. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    Science.gov (United States)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  16. Structural motifs of syringyl peroxidases are conserved during angiosperm evolution.

    Science.gov (United States)

    Gómez Ros, Laura V; Aznar-Asensio, Ginés J; Hernandez, Jose A; Bernal, Maria A; Núñez-Flores, María J L; Cuello, Juan; Ros Barceló, Alfonso

    2007-05-16

    The most distinctive variation in the monomer composition of lignins in vascular land plants is that between the two main groups of seed plants. Thus, whereas gymnosperm (softwood) lignins are typically composed of guaiacyl (G) units, angiosperm (hardwood) lignins are largely composed of similar levels of G and syringyl (S) units. However, there are some studies that suggest that certain angiosperm peroxidases are unable to oxidize sinapyl alcohol, and a coniferyl alcohol shuttle has been proposed for oxidizing S units during the biosynthesis of lignins. With this in mind, a screening of the presence of S peroxidases in angiosperms (including woody species and forages) was performed. Contrarily to what might be expected, the intercellular washing fluids from lignifying tissues of 25 woody, herbaceous, and shrub species, belonging to both monocots and dicotyledons, all showed both S peroxidase activities and basic peroxidase isoenzymes analogous, with regard the isoelectric point, to the Zinnia elegans basic peroxidase isoenzyme, the only S peroxidase that has been fully characterized. These results led to the protein database in the search for homologies between angiosperm peroxidases and a true eudicot S peroxidase, the Z. elegans peroxidase. The findings showed that certain structural motifs of S peroxidases are conserved within the first 15 million years of angiosperm history, because they are found in peroxidases from the two major lineages of flowering plants, eumagnoliids and eudicotyledons, of note being the presence of these peroxidases in Amborella and Nymphaeales, which represent the first stages of angiosperm evolution. These phylogenetic studies also suggest that guaiacyl peroxidases apparently constitute the most "evolved state" of the plant peroxidase family evolution.

  17. Blood pressure and heart rate effects following a single dose of bitter orange.

    Science.gov (United States)

    Bui, Linda T; Nguyen, DiemThuy T; Ambrose, Peter J

    2006-01-01

    The ingredients of numerous "ephedra-free" dietary supplements used for weight loss include bitter orange, which contains sympathomimetic alkaloids such as synephrine. Due to the similarity in chemical structure to ephedrine and the potential sympathomimetic effects of synephrine, it is hypothesized that bitter orange may increase blood pressure (BP) and heart rate (HR). To determine the effects on BP and HR after a single dose of bitter orange in healthy adults. In a prospective, randomized, double-blind, placebo-controlled, crossover study, 15 young, healthy, adult subjects received either a single dose of Nature's Way Bitter Orange--a 900 mg dietary supplement extract standardized to 6% synephrine--or matching placebo, with a one week washout period. Systolic BP (SBP), diastolic BP (DBP), and HR were measured at baseline and every hour for 6 hours after administration. SBP after bitter orange was significantly increased versus placebo at hours 1-5 (p bitter orange, DBP after bitter orange was significantly increased versus placebo at hours 4 and 5 (p bitter orange versus placebo for hours 2-5 (p bitter orange versus placebo in young, healthy adults.

  18. Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma.

    Science.gov (United States)

    Oladokun, Olayide; James, Sue; Cowley, Trevor; Dehrmann, Frieda; Smart, Katherine; Hort, Joanne; Cook, David

    2017-09-01

    The impact of hop variety and hop aroma on perceived beer bitterness intensity and character was investigated using analytical and sensory methods. Beers made from malt extract were hopped with 3 distinctive hop varieties (Hersbrucker, East Kent Goldings, Zeus) to achieve equi-bitter levels. A trained sensory panel determined the bitterness character profile of each singly-hopped beer using a novel lexicon. Results showed different bitterness character profiles for each beer, with hop aroma also found to change the hop variety-derived bitterness character profiles of the beer. Rank-rating evaluations further showed the significant effect of hop aroma on selected key bitterness character attributes, by increasing perceived harsh and lingering bitterness, astringency, and bitterness intensity via cross-modal flavour interactions. This study advances understanding of the complexity of beer bitterness perception by demonstrating that hop variety selection and hop aroma both impact significantly on the perceived intensity and character of this key sensory attribute. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Renal and Hepatic Function in Hypercholesterolemic Rats Fed Jamaican Bitter Yam (Dioscorea polygonoides).

    Science.gov (United States)

    McKoy, Marsha-Lyn; Grant, Kevin; Asemota, Helen; Simon, Oswald; Omoruyi, Felix

    2015-06-01

    We reported that Jamaican bitter yam (Dioscorea polygonoides) has antilipemic potential in rats; however there is limited data on the toxicological profile of the yam. We therefore investigated the effects of bitter yam consumption for 6 or 12 weeks on renal and hepatic function in rats fed a high (4%) cholesterol diet. Twenty four rats were divided into six groups (n = 4); three of which were used for each investigation (6 or 12 weeks). One group was administered 4% cholesterol diet, while the yam group had the cholesterol diet supplemented with 5% bitter yam. The control group was fed standard rat chow. Liver and kidney function tests were performed on serum, liver and kidney. Histological studies were conducted on liver samples. Acute toxicity tests were performed in rats and mice administered a single high dose of bitter yam (10 g/kg). Activities of liver and kidney AST and ALT differed (p ≤ .02) between control rats and those fed cholesterol with bitter yam for 12 weeks. Albumin to globulin ratio was reduced (p = .03) in rats fed cholesterol with bitter yam for 6 weeks as compared to the control group. Serum urea concentration was higher (p < .05) in rats fed bitter yam as compared to normal chow for 6 weeks. The cholesterol diet caused extensive fat deposition in liver cells; however this was inhibited by co-administration of bitter yam. Long-term administration of Jamaican bitter yam may induce slight changes in renal and hepatic functions.

  20. Formulation development and evaluation of metformin chewing gum with bitter taste masking

    Directory of Open Access Journals (Sweden)

    Sayed Abolfazl Mostafavi

    2014-01-01

    Conclusion: Metfornin chewing gum had suitable appearance and appropriate invitro characteristics that fallow the pharmacopeia suggestions. This chewable gum showed bitterness suppression with a suitable release rate.

  1. Bitterness prediction of H1-antihistamines and prediction of masking effects of artificial sweeteners using an electronic tongue.

    Science.gov (United States)

    Ito, Masanori; Ikehama, Kiyoharu; Yoshida, Koichi; Haraguchi, Tamami; Yoshida, Miyako; Wada, Koichi; Uchida, Takahiro

    2013-01-30

    The study objective was to quantitatively predict a drug's bitterness and estimate bitterness masking efficiency using an electronic tongue (e-Tongue). To verify the predicted bitterness by e-Tongue, actual bitterness scores were determined by human sensory testing. In the first study, bitterness intensities of eight H(1)-antihistamines were assessed by comparing the Euclidean distances between the drug and water. The distances seemed not to represent the drug's bitterness, but to be greatly affected by acidic taste. Two sensors were ultimately selected as best suited to bitterness evaluation, and the data obtained from the two sensors depicted the actual taste map of the eight drugs. A bitterness prediction model was established with actual bitterness scores from human sensory testing. Concerning basic bitter substances, such as H(1)-antihistamines, the predictability of bitterness intensity using e-Tongue was considered to be sufficiently promising. In another study, the bitterness masking efficiency when adding an artificial sweetener was estimated using e-Tongue. Epinastine hydrochloride aqueous solutions containing different levels of acesulfame potassium and aspartame were well discriminated by e-Tongue. The bitterness masking efficiency of epinastine hydrochloride with acesulfame potassium was successfully predicted using e-Tongue by several prediction models employed in the study. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Immobilization of Peroxidase onto Magnetite Modified Polyaniline

    Directory of Open Access Journals (Sweden)

    Eduardo Fernandes Barbosa

    2012-01-01

    Full Text Available The present study describes the immobilization of horseradish peroxidase (HRP on magnetite-modified polyaniline (PANImG activated with glutaraldehyde. After the optimization of the methodology, the immobilization of HRP on PANImG produced the same yield (25% obtained for PANIG with an efficiency of 100% (active protein. The optimum pH for immobilization was displaced by the effect of the partition of protons produced in the microenvironment by the magnetite. The tests of repeated use have shown that PANImG-HRP can be used for 13 cycles with maintenance of 50% of the initial activity.

  3. Immobilization of Peroxidase onto Magnetite Modified Polyaniline

    Science.gov (United States)

    Barbosa, Eduardo Fernandes; Molina, Fernando Javier; Lopes, Flavio Marques; García-Ruíz, Pedro Antonio; Caramori, Samantha Salomão; Fernandes, Kátia Flávia

    2012-01-01

    The present study describes the immobilization of horseradish peroxidase (HRP) on magnetite-modified polyaniline (PANImG) activated with glutaraldehyde. After the optimization of the methodology, the immobilization of HRP on PANImG produced the same yield (25%) obtained for PANIG with an efficiency of 100% (active protein). The optimum pH for immobilization was displaced by the effect of the partition of protons produced in the microenvironment by the magnetite. The tests of repeated use have shown that PANImG-HRP can be used for 13 cycles with maintenance of 50% of the initial activity. PMID:22489198

  4. 3D structure prediction of lignolytic enzymes lignin peroxidase and manganese peroxidase based on homology modelling

    Directory of Open Access Journals (Sweden)

    SWAPNIL K. KALE

    2016-04-01

    Full Text Available Lignolytic enzymes have great biotechnological value in biopulping, biobleaching, and bioremediation. Manganese peroxidase (EC 1:11:1:13 and lignin peroxidase (EC 1:11:1:14 are extracellular and hem-containing peroxidases that catalyze H2O2-dependent oxidation of lignin. Because of their ability to catalyse oxidation of a wide range of organic compounds and even some inorganic compounds, they got tremendous industrial importance. In this study, 3D structure of lignin and manganese peroxidase has been predicted on the basis of homology modeling using Swiss PDB workspace. The physicochemical properties like molecular weight, isoelectric point, Grand average of hydropathy, instability and aliphatic index of the target enzymes were performed using Protparam. The predicted secondary structure of MnP has 18 helices and 6 strands, while LiP has 20 helices and 4 strands. Generated 3D structure was visualized in Pymol. The generated model for MnP and LiP has Z-score Qmean of 0.01 and -0.71, respectively. The predicted models were validated through Ramachandran Plot, which indicated that 96.1 and 95.5% of the residues are in most favored regions for MnP and LiP respectively. The quality of predicted models were assessed and confirmed by VERIFY 3D, PROCHECK and ERRAT. The modeled structure of MnP and LiP were submitted to the Protein Model Database.

  5. Comparisons of individual bitterness perception and vegetable liking and consumption among Danish consumers

    DEFF Research Database (Denmark)

    Beck, Tove Kjær; Nicklaus, Sophie; Bennedbæk-Jensen, Sidsel

    2013-01-01

    -quantitative food frequency questionnaire, a bitter threshold value test kit with quinineand a preference test with two samples of carrots differing in the degree of bitterness. All tests were conducted outside the laboratory, and the subjects (n=116, aged 18 to 79) were recruited during two different events at two...

  6. Interactions and thresholds of limonin and nomilin in bitterness perception in orange juice and other matrices

    Science.gov (United States)

    Limonin and nomilin are two bitter compounds present in citrus and are thought to cause the bitter off-flavor of Huanglongbing-infected fruit/juice. This study determined the thresholds of limonin, nomilin, and their combination in a simple matrix (sucrose and citric acid), a complex matrix (sucrose...

  7. Effect of an early bitter taste experience on subsequent feather-pecking behaviour in laying hens

    NARCIS (Netherlands)

    Harlander, A.; Beck, P.S.A.; Rodenburg, T.B.

    2010-01-01

    Recent studies showed that laying hens learn not to peck at bitter-tasting feathers from conspecifics. In the present experiment, feathers of newly hatched chicks were made distasteful by spraying them with a bitter-tasting substance (quinine). It was hypothesized that chicks could detect quinine

  8. Binding of Caffeine and Quinine by Whey Protein and the Effect on Bitterness.

    Science.gov (United States)

    Tenney, Kelsey; Hayes, John; Euston, Stephen; Elias, Ryan; Coupland, John

    2017-02-01

    Many drugs and phytochemicals are bitter, leading to noncompliance with prescriptions and avoidance of healthy foods and a need to suppress their taste. The goal of this study was to investigate the binding of bitterants (quinine and caffeine) by whey protein isolate (WPI) and the effect on perceived bitterness. Caffeine interacted minimally with WPI, while the proportion of unbound quinine decreased exponentially with protein concentration. Molecular modeling was used to show the energy of the quinine-Β-lactoglubulin interaction was an order of magnitude greater than the caffeine-Β-lactoglobulin interaction. Untrained assessors were used to assess the bitterness of caffeine (1.8, 5.7, and 18 mM) and quinine (0.056, 0.10, and 0.18 mM) solutions with 0% or 1% WPI. There was no significant effect of protein on the bitterness of caffeine solutions, but WPI decreased the bitterness of quinine relative to the same concentration in water. This is generally consistent with our hypothesis that higher binding results in lower bitterness; however the magnitude of reduction was not large and the bitterness of the protein-quinine solutions was greater than would be expected for the unbound quinine present. © 2017 Institute of Food Technologists®.

  9. Rebaudioside A and Rebaudioside D bitterness do not covary with Acesulfame K bitterness or polymorphisms in TAS2R9 and TAS2R31

    OpenAIRE

    Allen, Alissa L.; McGeary, John E.; Hayes, John E.

    2013-01-01

    In order to reduce calories in foods and beverages, the food industry routinely uses non-nutritive sweeteners. Unfortunately, many are synthetically derived, and many consumers have a strong preference for natural sweeteners, irrespective of the safety data on synthetic non-nutritive sweeteners. Additionally, many non-nutritive sweeteners elicit aversive side tastes such as bitter and metallic in addition to sweetness. Bitterness thresholds of acesulfame-K (AceK) and saccharin are known to va...

  10. Physico-chemical evaluation of bitter and non-bitter Aloe and their raw juice for human consumption.

    Science.gov (United States)

    Azam, M M; Kumar, S; Pancholy, A; Patidar, M

    2014-11-01

    In addition to Aloe vera which is bitter in taste, a non-bitter Aloe is also found in arid part of Rajasthan. This non-bitter Aloe (NBA) is sporadically cultivated as vegetable and for health drink. In spite of its cultivation and various uses, very little information is available about its detailed botanical parameters and chemical characters. This study aims to evaluate the physico-chemical characters of NBA through employing floral morphology, leaf characters and leaf gel and to compare them with those of A. vera. Of eleven floral characters studied, eight characters of NBA were significantly different from that of A. vera. Most visible difference was observed in their reproductive shoots which are highly branched in NBA (5.21 inflorescence/shoot) as compared to A. vera (1.5 inflorescence/shoot). NBA produces less leaf-biomass (-29.32 %) with less leaf-thickness (-31.44 %) but higher leaf length, width, and no. of spine/side by 17.56 %, 21.34 % and 16.11 %, respectively, with significant difference as compared to A. vera. But its polysaccharide content (0.259 %) is at par with that of A. vera. The raw juice from the leaf of NBA has very low aloin content (4.1 ppm) compared to that from A. vera (427.3 ppm) making it a safer health drink compared to the one obtained from A. vera. Thus, NBA raw juice emerged as suitable alternative to A. vera juice for human consumption.

  11. Comparison of phenolic composition of healthy apple tissues and tissues affected by bitter pit.

    Science.gov (United States)

    Zupan, Anka; Mikulic-Petkovsek, Maja; Cunja, Vlasta; Stampar, Franci; Veberic, Robert

    2013-12-11

    Bitter pit is an important Ca(2+) deficiency disorder of apple fruit (Malus domestica Borkh.), with symptoms, necrotic spots, developing during storage. The objective of this study was to determine phenolic compounds and their contents in bitter pit in comparison to healthy skin and pulp using HPLC-MS(2). The experiment was carried out on three cultivars 'Jonagored', 'Golden Delicious' and 'Pinova'. All 15 determined phenolic compounds in pulp tissues specifically affected by bitter pit were higher than those in healthy pulp. Chlorogenic acid and catechin were to 5 times higher in those affected pulp tissues. Higher content was also determined for hydroxycinnamic acids and flavanols in the peel above the bitter pit; in contrast, flavonols and anthocyanins were higher in healthy peel. Anthocyanins in healthy peel of cultivar 'Jonagored' were 10 times higher from the content in peel above the bitter pit.

  12. Variation in antioxidant enzyme activities, growth and some physiological parameters of bitter melon (Momordica charantia) under salinity and chromium stress.

    Science.gov (United States)

    Bahrami, Mahsa; Heidari, Mostafa; Ghorbani, Hadi

    2016-07-01

    In general, salinity and heavy metals interfere with several physiological processes and reduce plant growth. In order to evaluate of three levels of salinity (0, 4 and 8 ds m(-1)) and three concentration of chromium (0, 10 and 20 mg kg(-1) soil) in bitter melon (Momordica charantia), a plot experiment was conducted in greenhouse at university of Shahrood, Iran. The results revealed that chromium treatment had no significant affect on fresh and dry weight, but salinity caused reduction of fresh and dry weight in growth parameter. Salinity and chromium enhanced antioxidant enzymes activities like catalase (CAT), guaiacol peroxidase (GPX) and sodium content in leaves. However salinity and chromium treatments had no effect on potassium, phosphorus in leaves, soluble carbohydrate concentration in leaves and root, but decreased the carotenoid content in leaves. On increasing salinity from control to 8 ds m(-1) chlorophyll a, b and anthocyanin content decreased by 41.6%, 61.1% and 26.5% respectively but chromium treatments had no significant effect on these photosynthetic pigments.

  13. Evaluation of bitterness in white wine applying descriptive analysis, time-intensity analysis, and temporal dominance of sensations analysis.

    Science.gov (United States)

    Sokolowsky, Martina; Fischer, Ulrich

    2012-06-30

    Bitterness in wine, especially in white wine, is a complex and sensitive topic as it is a persistent sensation with negative connotation by consumers. However, the molecular base for bitter taste in white wines is still widely unknown yet. At the same time studies dealing with bitterness have to cope with the temporal dynamics of bitter perception. The most common method to describe bitter taste is the static measurement amongst other attributes during a descriptive analysis. A less frequently applied method, the time-intensity analysis, evaluates the temporal gustatory changes focusing on bitterness alone. The most recently developed multidimensional approach of the temporal dominance of sensations method reveals the temporal dominance of bitter taste in relation to other attributes. In order to compare the results comprised with these different sensory methodologies, 13 commercial white wines were evaluated by the same panel. To facilitate a statistical comparison, parameters were extracted from bitterness curves obtained from time-intensity and temporal dominance of sensations analysis and were compared to bitter intensity as well as bitter persistency based on descriptive analysis. Analysis of variance differentiated significantly the wines regarding all measured bitterness parameters obtained from the three sensory techniques. Comparing the information of all sensory parameters by multiple factor analysis and correlation, each technique provided additional valuable information regarding the complex bitter perception in white wine. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Diet-induced regulation of bitter taste receptor subtypes in the mouse gastrointestinal tract.

    Directory of Open Access Journals (Sweden)

    Gaia Vegezzi

    Full Text Available Bitter taste receptors and signaling molecules, which detect bitter taste in the mouth, are expressed in the gut mucosa. In this study, we tested whether two distinct bitter taste receptors, the bitter taste receptor 138 (T2R138, selectively activated by isothiocyanates, and the broadly tuned bitter taste receptor 108 (T2R108 are regulated by luminal content. Quantitative RT-PCR analysis showed that T2R138 transcript is more abundant in the colon than the small intestine and lowest in the stomach, whereas T2R108 mRNA is more abundant in the stomach compared to the intestine. Both transcripts in the stomach were markedly reduced by fasting and restored to normal levels after 4 hours re-feeding. A cholesterol-lowering diet, mimicking a diet naturally low in cholesterol and rich in bitter substances, increased T2R138 transcript, but not T2R108, in duodenum and jejunum, and not in ileum and colon. Long-term ingestion of high-fat diet increased T2R138 RNA, but not T2R108, in the colon. Similarly, α-gustducin, a bitter taste receptor signaling molecule, was reduced by fasting in the stomach and increased by lowering cholesterol in the small intestine and by high-fat diet in the colon. These data show that both short and long term changes in the luminal contents alter expression of bitter taste receptors and associated signaling molecules in the mucosa, supporting the proposed role of bitter taste receptors in luminal chemosensing in the gastrointestinal tract. Bitter taste receptors might serve as regulatory and defensive mechanism to control gut function and food intake and protect the body from the luminal environment.

  15. Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract

    Science.gov (United States)

    Vegezzi, Gaia; Anselmi, Laura; Huynh, Jennifer; Barocelli, Elisabetta; Rozengurt, Enrique; Raybould, Helen; Sternini, Catia

    2014-01-01

    Bitter taste receptors and signaling molecules, which detect bitter taste in the mouth, are expressed in the gut mucosa. In this study, we tested whether two distinct bitter taste receptors, the bitter taste receptor 138 (T2R138), selectively activated by isothiocyanates, and the broadly tuned bitter taste receptor 108 (T2R108) are regulated by luminal content. Quantitative RT-PCR analysis showed that T2R138 transcript is more abundant in the colon than the small intestine and lowest in the stomach, whereas T2R108 mRNA is more abundant in the stomach compared to the intestine. Both transcripts in the stomach were markedly reduced by fasting and restored to normal levels after 4 hours re-feeding. A cholesterol-lowering diet, mimicking a diet naturally low in cholesterol and rich in bitter substances, increased T2R138 transcript, but not T2R108, in duodenum and jejunum, and not in ileum and colon. Long-term ingestion of high-fat diet increased T2R138 RNA, but not T2R108, in the colon. Similarly, α-gustducin, a bitter taste receptor signaling molecule, was reduced by fasting in the stomach and increased by lowering cholesterol in the small intestine and by high-fat diet in the colon. These data show that both short and long term changes in the luminal contents alter expression of bitter taste receptors and associated signaling molecules in the mucosa, supporting the proposed role of bitter taste receptors in luminal chemosensing in the gastrointestinal tract. Bitter taste receptors might serve as regulatory and defensive mechanism to control gut function and food intake and protect the body from the luminal environment. PMID:25238152

  16. Bitter Melon Extract Promotes Granulation Tissue Growth and Angiogenesis in the Diabetic Wound.

    Science.gov (United States)

    Singh, Rekha; Garcia-Gomez, Ignacio; Gudehithlu, Krishnamurthy P; Singh, Ashok K

    2017-01-01

    Bitter melon is a plant fruit that has been shown to exert a hypoglycemic effect when used systemically in patients with diabetes. This study was designed to investigate the topical effect of bitter melon on diabetic wounds using the wound chamber model in rats. Two bilateral wound chambers were implanted subcutaneously in the thoracic-lumbar region of male Sprague-Dawley rats. Diabetes was induced with streptozotocin 7 days after implantation of wound chambers. After 24 hours of induction of diabetes, aqueous extract of bitter melon was injected into 1 wound chamber, and saline (0.9% sodium chloride solution) was injected into the contralateral chamber once daily for 3 days. Wound fluid was collected on day 4 for analysis, following which rats were euthanized. The granulation tissue encapsulating the wound chamber was removed and processed for histology. Controls included diabetic rats with wound chambers injected with saline (instead of bitter melon) and nondiabetic rats with wound chambers injected with bitter melon. In rats with diabetes, wound granulation tissue treated with bitter melon was well formed, with distinct cellular layers, whereas the saline-treated granulation tissue showed a severe loss of tissue organization and blood vessels. Moreover, the bitter melon treatment increased angiogenesis in the diabetic granulation tissue, marked by abundant microvessels and large blood vessels. In nondiabetic rats, no differences in wound granulation tissues were observed between saline- and bitter melon-treated groups. Bitter melon treatment had no effect on systemic blood glucose levels or insulin receptor substrate 1, suggesting that its stimulatory effect on diabetic granulation tissue was not due to alteration of systemic blood glucose levels. When applied locally to diabetic wounds, bitter melon extract prevents regression of granulation tissue and blood vessels, thus accelerating and improving wound healing.

  17. Explaining tolerance for bitterness in chocolate ice cream using solid chocolate preferences

    Science.gov (United States)

    Harwood, Meriel L.; Loquasto, Joseph R.; Roberts, Robert F.; Ziegler, Gregory R.; Hayes, John E.

    2016-01-01

    Chocolate ice cream is commonly formulated with higher sugar levels than nonchocolate flavors to compensate for the inherent bitterness of cocoa. Bitterness, however, is an integral part of the complex flavor of chocolate. In light of the global obesity epidemic, many consumers and health professionals are concerned about the levels of added sugars in foods. Once a strategy for balancing undesirable bitterness and health concerns regarding added sugars has been developed, the task becomes determining whether that product will be acceptable to the consumer. Thus, the purpose of this research was to manipulate the bitterness of chocolate ice cream to examine how this influences consumer preferences. The main goal of this study was to estimate group rejection thresholds for bitterness in chocolate ice cream, and to see if solid chocolate preferences (dark vs. milk) generalized to ice cream. A food-safe bitter ingredient, sucrose octaacetate, was added to chocolate ice cream to alter bitterness without disturbing other the sensory qualities of the ice cream samples, including texture. Untrained chocolate ice cream consumers participated in a large-scale sensory test by indicating their preferences for blinded pairs of unspiked and spiked samples, where the spiked sample had increasing levels of the added bitterant. As anticipated, the group containing individuals who prefer milk chocolate had a much lower tolerance for bitterness in their chocolate ice cream compared with the group of individuals who prefer dark chocolate; indeed, the dark chocolate group tolerated almost twice as much added bitterant in the ice cream before indicating a significant preference for the unspiked (control) ice cream. This work demonstrates the successful application of the rejection threshold method to a complex dairy food. Estimating rejection thresholds could prove to be an effective tool for determining acceptable formulations or quality limits when considering attributes that become

  18. Explaining tolerance for bitterness in chocolate ice cream using solid chocolate preferences.

    Science.gov (United States)

    Harwood, Meriel L; Loquasto, Joseph R; Roberts, Robert F; Ziegler, Gregory R; Hayes, John E

    2013-08-01

    Chocolate ice cream is commonly formulated with higher sugar levels than nonchocolate flavors to compensate for the inherent bitterness of cocoa. Bitterness, however, is an integral part of the complex flavor of chocolate. In light of the global obesity epidemic, many consumers and health professionals are concerned about the levels of added sugars in foods. Once a strategy for balancing undesirable bitterness and health concerns regarding added sugars has been developed, the task becomes determining whether that product will be acceptable to the consumer. Thus, the purpose of this research was to manipulate the bitterness of chocolate ice cream to examine how this influences consumer preferences. The main goal of this study was to estimate group rejection thresholds for bitterness in chocolate ice cream, and to see if solid chocolate preferences (dark vs. milk) generalized to ice cream. A food-safe bitter ingredient, sucrose octaacetate, was added to chocolate ice cream to alter bitterness without disturbing other the sensory qualities of the ice cream samples, including texture. Untrained chocolate ice cream consumers participated in a large-scale sensory test by indicating their preferences for blinded pairs of unspiked and spiked samples, where the spiked sample had increasing levels of the added bitterant. As anticipated, the group containing individuals who prefer milk chocolate had a much lower tolerance for bitterness in their chocolate ice cream compared with the group of individuals who prefer dark chocolate; indeed, the dark chocolate group tolerated almost twice as much added bitterant in the ice cream before indicating a significant preference for the unspiked (control) ice cream. This work demonstrates the successful application of the rejection threshold method to a complex dairy food. Estimating rejection thresholds could prove to be an effective tool for determining acceptable formulations or quality limits when considering attributes that become

  19. Oil of bitter orange: new topical antifungal agent.

    Science.gov (United States)

    Ramadan, W; Mourad, B; Ibrahim, S; Sonbol, F

    1996-06-01

    Superficial dermatophyte infection is one of the most common dermatologic diseases. Some of these infections are extremely resistant to therapy. Sixty patients participated in this study; they were classified into three groups (20 patients in each). All groups had comparable numbers of patients with tinea corporis, cruris, and pedis. Group 1 was treated with a 25% emulsion of oil of bitter orange (OBO) three times daily; group 2 was treated with 20% OBO in alcohol three times daily and group 3 was treated with pure OBO, once daily. Clinical and mycologic examinations were performed before therapy and every week until a complete cure had occurred. In group 1, 80% of patients were cured in 1 to 2 weeks and 20% in 2 to 3 weeks. In group 2, 50% were cured in 1 to 2 weeks, 30% in 2 to 3 weeks and 20% in 3 to 4 weeks. In group 3, 25% of patients did not continue the trial. Of the remaining patients, 33.3% were cured in one week, 60% in 1 to 2 weeks, and 6.7% in 2 to 3 weeks. Oil of bitter orange produced no side effects except mild irritation seen with the use of the pure form. An in vitro study showed that OBO (natural product) exerts fungistatic and fungicidal activity against a variety of pathogenic dermatophyte species. It is a promising, cheap, and available topical antifungal therapeutic agent.

  20. Structure of soybean seed coat peroxidase: a plant peroxidase with unusual stability and haem-apoprotein interactions

    DEFF Research Database (Denmark)

    Henriksen, A; Mirza, O; Indiani, C

    2001-01-01

    Soybean seed coat peroxidase (SBP) is a peroxidase with extraordinary stability and catalytic properties. It belongs to the family of class III plant peroxidases that can oxidize a wide variety of organic and inorganic substrates using hydrogen peroxide. Because the plant enzyme is a heterogeneous...... be of functional importance. SBP has one of the most solvent accessible delta-meso haem edge (the site of electron transfer from reducing substrates to the enzymatic intermediates compound I and II) so far described for a plant peroxidase and structural alignment suggests that the volume of Ile74 is a factor...

  1. [Equilibrium and kinetic parameters of interaction between peroxidase conjugates of strophanthin and anti-peroxidase antibodies].

    Science.gov (United States)

    Tarun, E I; Karaseva, E I; Metelitsa, D I

    1997-01-01

    Interactions of three horseradish peroxidase (HRP)-strophanthin conjugates containing one, two, or three glycoside molecules (HRP-Str1, 2, or 3, respectively) with polyclonal anti-HRP antibodies were studied by homogeneous enzyme immunoassay. The total peroxidase activity of free conjugates and their immune complexes was estimated from the oxidation of o-phenylenediamine. The dissociation constants of the immune complexes and the rate constants of their dissociation and formation were determined. The equilibrium and kinetic parameters were determined for the interactions of the HRP-Str2 immune complex with anti-strophanthin and anti-HRP antibodies. The determined equilibrium and kinetic parameters of the HRP-Str interactions with anti-HRP antibodies depended on the molecular weights, sizes, and structures of the antigens studied.

  2. Production of lignin peroxidase by Ganoderma leucidum using solid ...

    African Journals Online (AJOL)

    The main objectives of this study were to optimize the culture conditions for the production of lignin peroxidase by Ganoderma leucidum, economic utilization of waste corn cobs as inducers substrate by pollution free fermentation technology and to optimize the solid state fermentation (SSF) process for lignin peroxidase ...

  3. Expression, purification and characterization of a peroxidase from ...

    African Journals Online (AJOL)

    Peroxidase is one of the key enzymes of the cellular antioxidant defense system, which is mostly involved in the reduction of hydrogen peroxide. Here, a peroxidase gene, named ThPOD1 was isolated from a cDNA library, which was generated from root tissue of Tamarix hispida that was exposed to 0.4 M NaCl. The cDNA ...

  4. Heat stable peroxidases from Vigna species (V) | Mbassi | African ...

    African Journals Online (AJOL)

    Shoots of three landraces of a Vigna species from two climatic areas of Cameroon were evaluated for their content of heat-resistant peroxidases. The peroxidase activity in the three landraces was detected with a greater catalytic efficiency for oxidation of O-dianisidine relative to ABTS (2, 2'-azino-bis-(3- ...

  5. Apple and quince peroxidase activity in response to essential oils ...

    African Journals Online (AJOL)

    Jane

    2011-09-28

    Sep 28, 2011 ... activity was affected by in vivo 50 µl/100 ml concentrations of pure rosemary essential oil (reductions in peroxidase activity by 90%) when the enzyme was obtained from quince. Key words: Peroxidase, essential oil, antioxidant, apple, quince. INTRODUCTION. Enzymatic browning in fruits and vegetables ...

  6. Cloning and analysis of the ascorbate peroxidase gene promoter ...

    African Journals Online (AJOL)

    enoh

    2012-03-22

    Mar 22, 2012 ... Ascorbate peroxidase (APX) is known to catalyze the reduction of H2O2 to water and enhance plants' tolerance in stress environment. An ascorbate peroxidase protein (BnAPX) was previously isolated from Brassica napus in our laboratory and it was located in the chloroplast. In order to clarify the.

  7. Apple and quince peroxidase activity in response to essential oils ...

    African Journals Online (AJOL)

    Enzymatic browning arises by peroxidase in fruits. However, essential oils are recognized as natural antioxidant agents. So in this study, the effect of thyme, coriander and rosemary essential oils were evaluated on the reduction of peroxidase activity in apples (Malus domestica Mill. cv Golden delicious), (M. domestica Mill.

  8. Cytochrome c as a peroxidase : tuning of heme reactivity

    NARCIS (Netherlands)

    Diederix, Rutger Ernest Michiel

    2003-01-01

    This thesis describes the peroxidase activity of the electron-transfer protein cytochrome c, and how it is controlled by the protein matrix. It is shown that unfolding cytochrome c has the effect to significantly enhance its peroxidase activity of (up to several thousand-fold). This can be achieved

  9. Peroxidase-like catalytic activities of ionic metalloporphyrins ...

    Indian Academy of Sciences (India)

    The efficiency order for the various PS-MTPPS was seen to be Co>Mn>Fe, with CoTPPS showing efficiency comparable to that of horseradish peroxidase. The catalytic efficiency was found to be increasing with temperature for all the catalysts. The re-usability of these PS-MTPPS systems for peroxidase-like activity was also ...

  10. Cloning and analysis of the ascorbate peroxidase gene promoter ...

    African Journals Online (AJOL)

    Ascorbate peroxidase (APX) is known to catalyze the reduction of H2O2 to water and enhance plants' tolerance in stress environment. An ascorbate peroxidase protein (BnAPX) was previously isolated from Brassica napus in our laboratory and it was located in the chloroplast. In order to clarify the physiological function of ...

  11. Expression, purification and characterization of a peroxidase from ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... Peroxidase is one of the key enzymes of the cellular antioxidant defense system, which is mostly ... Key words: Peroxidase, prokaryotic expression, abiotic stress, Tamarix hispida. .... empty vector pET28a(+) without IPTG induction; lane 3 (L2), whole cell lysate of non-induced Rosetta gami E. coli cells.

  12. Purification and partial characterization of peroxidase from lettuce ...

    African Journals Online (AJOL)

    Peroxidase (EC1.11.1.7) was purified to homogeneity from lettuce (Lactuca sativa L.) stems by means of 40 to 80% ammonium sulfate precipitation, Sephadex G-100 gel filtration and affinity chromatography with concanavalin A. Peroxidase was purified 17.92-fold with 2.67% recovery and its molecular mass was 35 kDa on ...

  13. The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms.

    Science.gov (United States)

    Xu, Jian Z; Zhang, Jun L; Hu, Kai H; Zhang, Wei G

    2013-05-01

    Mushrooms are able to secrete lignin peroxidase (LiP) and manganese peroxidase (MnP), and able to use the cellulose as sources of carbon. This article focuses on the relation between peroxidase-secreting capacity and cultivation period of mushrooms with non-laccase activity. Methylene blue and methyl catechol qualitative assay and spectrophotometry quantitative assay show LiP secreting unvaryingly accompanies the MnP secreting in mushroom strains. The growth rates of hyphae are detected by detecting the dry hyphal mass. We link the peroxidase activities to growth rate of mushrooms and then probe into the relationship between them. The results show that there are close relationships between LiP- and/or MnP-secretory capacities and the cultivation periods of mushrooms. The strains with high LiP and MnP activities have short cultivation periods. However, those strains have long cultivation periods because of the low levels of secreted LiP and/or MnP, even no detectable LiP and/or MnP activity. This study provides the first evidence on the imitate relation between the level of secreted LiP and MnP activities and cultivation periods of mushrooms with non-laccase activity. Our study has significantly increased the understanding of the role of LiP and MnP in the growth and development of mushrooms with non-laccase activity. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    Full Text Available Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad. 'Sambok Honey' and 'Speed' as the scion and bottle gourd (Lagenaria siceraria Stanld. 'RS Dongjanggun' as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m-2 s-1. Our proteomic analysis revealed 24 and 27 differentially expressed proteins in 'Sambok Honey' and 'Speed', respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m-2 s-1 results in better protein expression responses in grafted seedlings.

  15. Synthesis and characterization of zinc sulfide quantum dots and their interaction with snake gourd (Trichosanthes anguina) seed lectin.

    Science.gov (United States)

    Ayaz Ahmed, Khan Behlol; Ahalya, Pichaikkannu; Sengan, Megarajan; Kamlekar, Ravikanth; Veerappan, Anbazhagan

    2015-12-05

    Owing to the use of quantum dots in biological labeling, and the specific interaction of lectins with tumor cells, studies on lectin-QDs interaction are of potential interest. Herein, we report a facile method to prepare zinc sulfide quantum dots (ZnS QDs) using pectin as a capping agent and studied their interaction with snake gourd seed lectin (SGSL) by fluorescence spectroscopy. The QDs were characterized by X-ray diffraction, high-resolution transmission electron microscopy, UV-Vis absorption and fluorescence spectroscopy. The thermodynamic forces governing the interaction between ZnS-QDs and SGSL have been delineated from the temperature dependent association constant. These results suggest that the binding between ZnS QDs and SGSL is governed by enthalpic forces with negative entropic contribution. The red shift of synchronous fluorescence spectra showed that the microenvironment around the tryptophan residues of SGSL was perturbed by ZnS-QDs. The obtained results suggest that the development of optical bioimaging agents by using the conjugated lectin-QDs would be possible to diagnose cancerous tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. An Empirical Study for the Mobile Food Trace ability: Private Trace ability System for the White Gourd in Tianjin, China

    Directory of Open Access Journals (Sweden)

    Liu Yu-Chuan

    2016-01-01

    Full Text Available As the food supply chain globalization became inevitable, transparency in the way agriculture was grown and handled throughout the supply chain process resulted in an important issue of ‘traceability’ in global food trade and safety for health management. Traceability in agriculture is faced with the technological challenges including food product label and identification, activity/process characterization, information systems for data capture, analysis, storage, and the integration of the overall traceable data for the supply chain, i.e., from farm to table. While some field data can be automatically acquired and transmitted by sensor networking, most agricultural activity information was recorded by manual handwriting for the traceability information systems. System architecture, operation scenarios, and the implementation examples for the mobile farming data collection system to automatically record the agricultural activities information for famers were proposed in this research. The farming information for farming activities is coded in two-dimensional labels of quick response (QR codes. By scanning the proper operation labels, the corresponding farming data can be captured and uploaded simultaneously to the back-end web server. A collaborative research project for the traceability of white gourd planting in Tianjin was performed. The system can be implemented for public traceability system data collection and importing, as well as playing the roles of a private traceability system. The consumers’ confidence for healthy food choices with clear food traceability can be improved.

  17. Developmental genetic analysis of fruit shape traits under different environmental conditions in sponge gourd (Luffa cylindrical (L Roem. Violales, Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2008-01-01

    Full Text Available Analysis of genetic main effects and genotype × environment (GE interaction effects for the fruit shape traits fruit length and fruit circumference in the sponge gourd (Luffa cylindrical (L Roem. Violales, Cucurbitaceae was conducted for diallel cross data from two planting seasons. A genetic model including fruit direct effects and maternal effects and unconditional and conditional variances analysis was used to evaluate the development of the fruit at four maturation stages. The variance analysis results indicated that fruit length and circumference were simultaneously affected by fruit direct genetic effects and maternal effects as well as GE interaction effects. Fruit direct genetic effects were relatively more important for both fruit shape traits during the whole developmental period. Gene activation was mostly due to additive effects at the first maturation stage and dominance effects were mainly active during the other three stages. The fruit shape trait correlation coefficients due to different genetic effects and the phenotypic correlation coefficients varied significantly for the various maturation stages. The results indicate that it is relatively easy to improve the two fruit shape traits for market purposes by carefully selecting the parents at the first maturation stage 3 days after flowering instead of at fruit economic maturation.

  18. The Quantum Mixed-Spin Heme State of Barley Peroxidase: A Paradigm for Class III Peroxidases

    Energy Technology Data Exchange (ETDEWEB)

    Howes, B.D.; Ma, J.; Marzocchi, M.P.; Schiodt, C.B.; Shelnutt, J.A.; Smulevich, G.; Welinder, K.G.; Zhang, J.

    1999-03-23

    Electronic absorption and resonance Raman (RR) spectra of the ferric form of barley grain peroxidase (BP 1) at various pH values both at room temperature and 20 K are . reported, together with EPR spectra at 10 K. The ferrous forms and the ferric complex with fluoride have also been studied. A quantum mechanically mixed-spin (QS) state has been identified. The QS heme species co-exists with 6- and 5-cHS heroes; the relative populations of these three spin states are found to be dependent on pH and temperature. However, the QS species remains in all cases the dominant heme spin species. Barley peroxidase appears to be further characterized by a splitting of the two vinyl stretching modes, indicating that the vinyl groups are differently conjugated with the porphyrin. An analysis of the presently available spectroscopic data for proteins from all three peroxidase classes suggests that the simultaneous occurrence of the QS heme state as well as the splitting of the two vinyl stretching modes is confined to class III enzymes. The former point is discussed in terms of the possible influences of heme deformations on heme spin state. It is found that moderate saddling alone is probably not enough to cause the QS state, although some saddling maybe necessary for the QS state.

  19. Antioxidant potential of bitter cumin (Centratherum anthelminticum (L. Kuntze seeds in in vitro models

    Directory of Open Access Journals (Sweden)

    Naidu Kamatham A

    2011-05-01

    Full Text Available Abstract Background Bitter cumin (Centratherum anthelminticum (L. Kuntze, is a medicinally important plant. Earlier, we have reported phenolic compounds, antioxidant, and anti-hyperglycemic, antimicrobial activity of bitter cumin. In this study we have further characterized the antioxidative activity of bitter cumin extracts in various in vitro models. Methods Bitter cumin seeds were extracted with a combination of acetone, methanol and water. The antioxidant activity of bitter cumin extracts were characterized in various in vitro model systems such as DPPH radical, ABTS radical scavenging, reducing power, oxidation of liposomes and oxidative damage to DNA. Results The phenolic extracts of bitter cumin at microgram concentration showed significant scavenging of DPPH and ABTS radicals, reduced phosphomolybdenum (Mo(VI to Mo(V, ferricyanide Fe(III to Fe(II, inhibited liposomes oxidation and hydroxyl radical induced damage to prokaryotic genomic DNA. The results showed a direct correlation between phenolic acid content and antioxidant activity. Conclusion Bitter cumin is a good source of natural antioxidants.

  20. Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field

    Science.gov (United States)

    Torres-Duarte, Cristina; Vazquez-Duhalt, Rafael

    Environmental protection is, doubtless, one of the most important challenges for the human kind. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons, endocrine disruptive chemicals, pesticides, dioxins, polychlorinated biphenyls, industrial dyes, and other xenobiotics are among the most important pollutants. A large variety of these xenobiotics are substrates for peroxidases and thus susceptible to enzymatic transformation. The literature reports mainly the use of horseradish peroxidase, manganese peroxidase, lignin peroxidase, and chloroperoxidase on the transformation of these pollutants. Peroxidases are enzymes able to transform a variety of compounds following a free radical mechanism, giving oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to a biological activity loss, a reduction in the bioavailability or due to the removal from aqueous phase, especially when the pollutant is found in water. In addition, when the pollutants are present in soil, peroxidases catalyze a covalent binding to soil organic matter. In most of cases, oxidized products are less toxic and easily biodegradable than the parent compounds. In spite of their versatility and potential use in environmental processes, peroxidases are not applied at large scale yet. Diverse challenges, such as stability, redox potential, and the production of large amounts, should be solved in order to apply peroxidases in the pollutant transformation. In this chapter, we critically review the transformation of different xenobiotics by peroxidases, with special attention on the identified transformation products, the probable reaction mechanisms, and the toxicity reports. Finally, the design and development of an environmental biocatalyst is discussed. The design challenges are

  1. Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism

    Science.gov (United States)

    Yuta Miki; Rebecca Pogni; Sandra Acebes; Fatima Lucas; Elena Fernandez-Fueyo; Maria Camilla Baratto; Maria I. Fernandez; Vivian De Los Rios; Francisco J. Ruiz-duenas; Adalgisa Sinicropi; Riccardo Basosi; Kenneth E. Hammel; Victor Guallar; Angel T. Martinez

    2013-01-01

    LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2...

  2. A comprehensive review on Nymphaea stellata: A traditionally used bitter.

    Science.gov (United States)

    Raja, M K Mohan Maruga; Sethiya, Neeraj Kumar; Mishra, S H

    2010-07-01

    Nymphaea stellata Willd. (Syn. Nymphaea nouchali Burman f.) (Nymphaeaceae) is an important and well-known medicinal plant, widely used in the Ayurveda and Siddha systems of medicines for the treatment of diabetes, inflammation, liver disorders, urinary disorders, menorrhagia, blenorrhagia, menstruation problem, as an aphrodisiac, and as a bitter tonic. There seems to be an agreement between the traditional use and experimental observations, such as, hepatoprotective, anti-inflammatory, and particularly antidiabetic activity. Nymphayol, a steroid isolated from the flowers has been scientifically proved to be responsible for the traditionally claimed antidiabetic activity; it reverses the damaged endocrine tissue and stimulates secretion of insulin in the β-cells. However, taking into account the magnitude of its traditional uses, the studies conducted are still negligible. This review is an attempt to provide the pharmaceutical prospective of Nymphaea stellata.

  3. A comprehensive review on Nymphaea stellata: A traditionally used bitter

    Directory of Open Access Journals (Sweden)

    M K Mohan Maruga Raja

    2010-01-01

    Full Text Available Nymphaea stellata Willd. (Syn. Nymphaea nouchali Burman f. (Nymphaeaceae is an important and well-known medicinal plant, widely used in the Ayurveda and Siddha systems of medicines for the treatment of diabetes, inflammation, liver disorders, urinary disorders, menorrhagia, blenorrhagia, menstruation problem, as an aphrodisiac, and as a bitter tonic. There seems to be an agreement between the traditional use and experimental observations, such as, hepatoprotective, anti-inflammatory, and particularly antidiabetic activity. Nymphayol, a steroid isolated from the flowers has been scientifically proved to be responsible for the traditionally claimed antidiabetic activity; it reverses the damaged endocrine tissue and stimulates secretion of insulin in the β-cells. However, taking into account the magnitude of its traditional uses, the studies conducted are still negligible. This review is an attempt to provide the pharmaceutical prospective of Nymphaea stellata.

  4. Cooling of BITTER-type electromagnetic coils with intense field

    International Nuclear Information System (INIS)

    Fournier, Jacques

    1966-01-01

    After having outlined the various problems faced when designing BITTER-type electromagnetic coils with axial cooling (evacuation of the power dissipated in the coil, electromagnetic forces, fabrication and machining technologies, corrosion and erosion due to the presence of water and to potential differences), the author of this research thesis reports the study of the cooling of such an electromagnetic coil. In order to know the heat power to be evacuated for a given field, both the power and the field must be computed, but the influence of cooling holes on these both values is not well known. Thus, the author reports the study of the influence of these holes on the power to be dissipated by these holes, and on the magnetic field. Then, he studies how this power is evacuated, and determines heat exchange relationships for the coil canals. He finally discusses how the obtained results can be used to design an advanced electromagnetic coil [fr

  5. Prunasin hydrolases localization during fruit development in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Belmonte, Fara Sáez; Borch-Jensen, Jonas

    2012-01-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose...... identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted...

  6. The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste

    Science.gov (United States)

    Mennella, Julie A.; Spector, Alan C.; Reed, Danielle R.; Coldwell, Susan E.

    2013-01-01

    Background Many active pharmaceutical ingredients taste bitter and thus are aversive to children, as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dosage forms. Objective This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors, as well as the cascade of events that lead to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. Results Medicine often tastes bitter, and because children are more bitter sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands—in animal models, through human psychophysics, or with “electronic tongues”—have limitations. Conclusions Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children

  7. The molecular characterization of the lignin-forming peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Lagrimini, L.M.

    1992-01-01

    This laboratory is committed to understanding the function of plant peroxidases via a multi-disciplinary approach. We have chosen the lignin-forming peroxidase from tobacco as the first isoenzyme to be subjected to this comprehensive approach. The goals which were set out upon the initiation of this project were as follows: (1) utilize a cDNA clone to the tobacco anionic peroxidase to generate transgenic plants which either over-produced this isoenzyme or specifically under-produced this isoenzyme via antisense RNA, (2) describe any phenotypic changes resulting from altered peroxidase expression, (3) perform morphological, physiological, and biochemical analysis of the above mentioned plants to help in determining the in planta function for this enzyme, and (4) clone and characterize the gene for the tobacco anionic peroxidase. A summary of progress thus far which includes both published and unpublished work will be presented in three sections: generation and characterization of transgenic plants, description of phenotypes, and biochemical and physiological analysis of peroxidase function, and cloning and characterization of the tobacco anionic peroxidase gene.

  8. Production and Purification of Peroxidase from Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Mohammed A. Jebor

    2017-02-01

    Full Text Available This study was conducted in the laboratories of Biology Department, College of Science, which deals with isolation and purification of peroxidase and optimization of process parameters to achieve maximum yield of peroxidase by Aspergillus niger. Solid-state fermentation of Aspergillus niger was carried out for enhanced production of peroxidase using hydrogen peroxide as the substrate of enzyme maximum activity of the enzyme was achieved under optimum growth conditions. The optimum conditions were the isolated of Aspergillus niger from soil and growth in synthetic medium, it gave high titer of peroxidase activity, the fructose as carbon source, peptone as nitrogen source, after 12 days of incubation, incubation temperature 25 °C and pH = 6.5. Peroxidase purified in four purification steps; precipitation with 70% saturation of ammonium sulfate, step of dialysis, the third by ion exchange chromatography using DEAE-Cellulose and fourth by gel filtration throughout Sephadex G-100. The specific activity of the purified enzyme was 150U/mg with 7.75 folds. The peroxidase was shown to have molecular weight of 40kDa in SDS-PAGA and about 40kDa in gel filtration.The optimum pH and temperature for peroxidase activity 7 and 35 C0 respectively.

  9. Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress.

    Science.gov (United States)

    Yang, Yanjuan; Yu, Li; Wang, Liping; Guo, Shirong

    2015-08-15

    Previously, we found that the amelioration of photosynthetic capacity by bottle gourd (Lagenaria siceraria Standl.) rootstock in watermelon seedlings (Citrullus lanatus [Thunb.] Mansf.) with salt treatment might be closely related to the enzymes in Calvin cycle such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Yang et al., 2012). We confirmed this and showed more details in this study that improved photosynthesis of watermelon plants by bottle gourd rootstock was associated with the decreased stomata resistance and the increased photochemical activity and photosynthetic metabolism with or without 100mM NaCl stress for 3 days. The analysis of gas exchange parameters showed that self-grafted plants suffered serious non-stomatal limitation to photosynthesis under salt stress while rootstock-grafted plants were mainly affected by stomata limitation in stress conditions. Further, results showed that NaCl stress markedly reduced the chlorophyll content, damaged the structure of photosynthetic apparatus, and inhibited photochemical activity and CO2 assimilation in self-grafted plants. In contrast, rootstock-grafting increased the chlorophyll content, especially chlorophyll b, and minimized the harmful effects on photosystem II (PSII) reaction center and the thylakoids structure induced by NaCl stress. Furthermore, rootstock-grafting enhanced the content and activity of Rubisco and thus elevated carbon fixation in the leaves of watermelon scions under salt stress. The gene expressions of enzymes related to ribulose-1,5-bisphosphate (RuBP) regeneration were also up-regulated by rootstock and this probably guaranteed the sufficient supply of RuBP for the operation of Calvin cycle in watermelon scions under salt stress. Thus, bottle gourd rootstock promoted photosynthesis by the activation of stomatal and non-stomatal abilities, especially the regulation of a variety of photosynthetic enzymes, including Rubisco in grafted watermelon plants under NaCl stress

  10. Redundancy among manganese peroxidases in Pleurotus ostreatus.

    Science.gov (United States)

    Salame, Tomer M; Knop, Doriv; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2013-04-01

    Manganese peroxidases (MnPs) are key players in the ligninolytic system of white rot fungi. In Pleurotus ostreatus (the oyster mushroom) these enzymes are encoded by a gene family comprising nine members, mnp1 to -9 (mnp genes). Mn(2+) amendment to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds (such as the azo dye orange II) and lignin. In Mn(2+)-amended glucose-peptone medium, mnp3, mnp4, and mnp9 were the most highly expressed mnp genes. After 7 days of incubation, the time point at which the greatest capacity for orange II decolorization was observed, mnp3 expression and the presence of MnP3 in the extracellular culture fluids were predominant. To determine the significance of MnP3 for ligninolytic functionality in Mn(2+)-sufficient cultures, mnp3 was inactivated via the Δku80 strain-based P. ostreatus gene-targeting system. In Mn(2+)-sufficient medium, inactivation of mnp3 did not significantly affect expression of nontargeted MnPs or their genes, nor did it considerably diminish the fungal Mn(2+)-mediated orange II decolorization capacity, despite the significant reduction in total MnP activity. Similarly, inactivation of either mnp4 or mnp9 did not affect orange II decolorization ability. These results indicate functional redundancy within the P. ostreatus MnP gene family, enabling compensation upon deficiency of one of its members.

  11. Carbon Nanodots as Peroxidase Nanozymes for Biosensing

    Directory of Open Access Journals (Sweden)

    Bhaskar Garg

    2016-12-01

    Full Text Available ‘Nanozymes’, a term coined by Scrimin, Pasquato, and co-workers to describe nanomaterials with enzyme-like characteristics, represent an exciting and emerging research area in the field of artificial enzymes. Indubitably, the last decade has witnessed substantial advancements in the design of a variety of functional nanoscale materials, including metal oxides and carbon-based nanomaterials, which mimic the structures and functions of naturally occurring enzymes. Among these, carbon nanodots (C-dots or carbon quantum dots (CQDs offer huge potential due to their unique properties as compared to natural enzymes and/or classical artificial enzymes. In this mini review, we discuss the peroxidase-like catalytic activities of C-dots and their applications in biosensing. The scope intends to cover not only the C-dots but also graphene quantum dots (GQDs, doped C-dots/GQDs, carbon nitride dots, and C-dots/GQDs nanocomposites. Nevertheless, this mini review is designed to be illustrative, not comprehensive.

  12. Molecular characterization of the lignin-forming peroxidase: Role in growth, development and response to stress

    Energy Technology Data Exchange (ETDEWEB)

    Lagrimini, L.M.

    1993-01-01

    This laboratory has continued its comprehensive study of the structure and function of plant peroxidases and their genes. Specifically, we are characterizing the anionic peroxidase of tobacco. During the past year we have completed the nucleotide sequence of the tobacco anionic peroxidase gene, joined the anionic peroxidase promoter to [Beta]-glucuronidase and demonstrated expression in transformed plants, measured lignin, auxin, and ethylene levels in transgenic tobacco plants over-expressing the anionic peroxidase, developed chimeric peroxidase genes to over-or under-express the anionic peroxidase in tissue specific manner in transgenic plants, and over-expressed the tobacco anionic peroxidase in transgenic tomato and sweetgum plants.

  13. Quality evaluation of Poza bitters, a new poly herbal formulation in ...

    African Journals Online (AJOL)

    70:5) showed three spots with Rf values similar to some of references used. High performance liquid chromatography fingerprint showed two retention times of poza bitters which were not similar to those of the reference standards: hesperidin ...

  14. germination of seeds from earlier fruits of bitter and sweet african ...

    African Journals Online (AJOL)

    ACSS

    2014-11-18

    , 2006). The mesocarp of the sweet bush mangoes are edible; while the endocarp of both bitter and sweet fruits are important part of African communities' diets and is marketed all over the world (Lowe et al.,. 2000; Tabuna ...

  15. Sechiumin, a ribosome-inactivating protein from the edible gourd, Sechium edule Swartz--purification, characterization, molecular cloning and expression.

    Science.gov (United States)

    Wu, T H; Chow, L P; Lin, J Y

    1998-07-15

    A new ribosome-inactivating protein (RIP), sechiumin, was purified from the seeds of edible gourd, Sechium edule Swartz by gel-filtration and ion-exchange chromatography, with an apparent relative molecular mass of 27 kDa. It inhibits the protein synthesis of rabbit reticulocyte lysate strongly with a concentration causing 50% inhibition (IC50) of 0.7 nM, but has a much lower inhibitory effect on intact HeLa cells, with an IC50 of 5000 nM. Sechiumin has a highly specific RNA N-glycosidase activity towards 28S rRNA, as does the A-chain of abrin. It suggests that sechiumin is one of the type-I ribosome-inactivating proteins. The cDNA of sechiumin has been cloned and expressed using a pET expression system in Escherichia coli. The sechiumin cDNA has 951 nucleotides, encoding a protein with 285 amino acids. The amino acid sequence deduced from the cDNA reveals that the first 21 N-terminal amino acid residues constitutes a signal peptide. Sechiumin has nearly 60% similarity to several type-I RIPs purified from the Cucurbitaceae family, such as luffin-a (62.5%) and trichosanthin (64.8%), but less similarity to other type-I RIPs. Two amino acid residues, Glu160 and Arg163, at the putative active site of sechiumin, are known to be catalytically active in ricin and abrin. The N-terminal amino acid sequence of sechiumin is very similar to that of trichosanthin. The recombinant sechiumin was obtained as an insoluble protein, and the preparation of the active soluble form was achieved by renaturing the denatured protein. These studies suggest that the recombinant sechiumin could be used for the preparation of immunotoxin as a potential cancer chemotherapeutic agent.

  16. The Diversity of Bitter Manioc (Manihot Esculenta Crantz Cultivation in a Whitewater Amazonian Landscape

    Directory of Open Access Journals (Sweden)

    James A. Fraser

    2010-04-01

    Full Text Available While bitter manioc has been one of the most important staple crops in the central Amazon for thousands of years, there have been few studies of its cultivation in the fertile whitewater landscapes of this region. Anthropological research on bitter manioc cultivation in the Amazon has focused almost exclusively on long-fallow shifting cultivation in marginal upland areas of low soil fertility. This has contributed to the persistence of the oversimplified notion that because bitter manioc is well adapted to infertile upland soils; it cannot yield well in alluvial and/or fertile soils. I hypothesized that bitter manioc cultivation would be well adapted to the fertile soils of the whitewater landscapes of the central Amazon because of the centrality of this crop to subsistence in this region. In this article, I examine one such whitewater landscape, the middle Madeira River, Amazonas, Brazil, where smallholders cultivate bitter manioc on fertile Amazonian Dark Earths (ADE and floodplain soils, and on infertile Oxisols and Ultisols. In this region, cultivation on fertile soils tends to be short-cycled, characterised by short fallowing (0–6 years and shorter cropping periods (5–12 months with a predominance of low starch fast maturing “weak” landraces. By contrast, cultivation on infertile soils is normally long-cycled, characterised by longer fallows (>10 years and longer cropping periods (1–3 years with a predominance of high starch slow maturing “strong” landraces. This diversity in bitter manioc cultivation systems (landraces, fallow periods, soils demonstrates that Amazonian farmers have adapted bitter manioc cultivation to the specific characteristics of the landscapes that they inhabit. I conclude that contrary to earlier claims, there are no ecological limitations on growing bitter manioc in fertile soils, and therefore the cultivation of this crop in floodplain and ADE soils would have been possible in the pre-Columbian period.

  17. Safety, Efficacy, and Mechanistic Studies Regarding Citrus aurantium (Bitter Orange) Extract and p‐Synephrine

    OpenAIRE

    Stohs, Sidney J.

    2017-01-01

    Citrus aurantium L. (bitter orange) extracts that contain p‐synephrine as the primary protoalkaloid are widely used for weight loss/weight management, sports performance, appetite control, energy, and mental focus and cognition. Questions have been raised about the safety of p‐synephrine because it has some structural similarity to ephedrine. This review focuses on current human, animal, in vitro, and mechanistic studies that address the safety, efficacy, and mechanisms of action of bitter or...

  18. HMF formation and colour change of bitter orange and sweet orange jams during storage

    OpenAIRE

    Kopjar, Mirela; Đurkan, Ivana; Piližota, Vlasta

    2010-01-01

    In this work influence of preparation on 5-hydroxymethylfurfural (HMF) and colour of bitter orange jams and sweet orange jams was investigated. Samples were prepared without and with treatment of oranges with ascorbic acid in order to investigate the influence on prevention of browning in jams. Samples were stored for 365 days at 4 °C and at room temperature and formation of HMF and colour change during storage were measured. After jam preparation bitter orange jams had higher HMF content tha...

  19. Modification of ginseng flavors by bitter compounds found in chocolate and coffee.

    Science.gov (United States)

    Sook Chung, Hee; Lee, Soo-Yeun

    2012-06-01

    Ginseng is not widely accepted by U.S. consumers due to its unfamiliar flavors, despite its numerous health benefits. Previous studies have suggested that the bitter compounds in chocolate and coffee may mask the off-flavors of ginseng. The objectives of this study were to: (1) profile sensory characteristics of ginseng extract solution, caffeine solution, cyclo (L-Pro-L-Val) solution, theobromine solution, and 2 model solutions simulating chocolate bitterness; and (2) determine the changes in the sensory characteristics of ginseng extract solution by the addition of the bitter compounds found in chocolate and coffee. Thirteen solutions were prepared in concentrations similar to the levels of the bitter compounds found in coffee and chocolate products. Twelve panelists participated in a descriptive analysis panel which included time-intensity ratings. Ginseng extract was characterized as sweeter, starchier, and more green tea than the other sample solutions. Those characteristics of ginseng extract were effectively modified by the addition of caffeine, cyclo (L-Pro-L-Val), and 2 model solutions. A model solution simulating dark chocolate bitterness was the least influenced in intensities of bitterness by the addition of ginseng extract. Results from time-intensity ratings show that the addition of ginseng extract increased duration time in certain bitterness of the 2 model solutions. Bitter compounds found in dark chocolate could be proposed to effectively mask the unique flavors of ginseng. Future studies blending aroma compounds of chocolate and coffee into such model solutions may be conducted to investigate the influence on the perception of the unique flavors through the congruent flavors. © 2012 Institute of Food Technologists®

  20. The Odorant ( R)-Citronellal Attenuates Caffeine Bitterness by Inhibiting the Bitter Receptors TAS2R43 and TAS2R46.

    Science.gov (United States)

    Suess, Barbara; Brockhoff, Anne; Meyerhof, Wolfgang; Hofmann, Thomas

    2018-03-14

    Sensory studies showed the volatile fraction of lemon grass and its main constituent, the odor-active citronellal, to significantly decrease the perceived bitterness of a black tea infusion as well as caffeine solutions. Seven citronellal-related derivatives were synthesized and shown to inhibit the perceived bitterness of caffeine in a structure-dependent manner. The aldehyde function at carbon 1, the ( R)-configuration of the methyl-branched carbon 3, and a hydrophobic carbon chain were found to favor the bitter inhibitory activity of citronellal; for example, even low concentrations of 25 ppm were observed to reduce bitterness perception of caffeine solution (6 mmol/L) by 32%, whereas ( R)-citronellic acid (100 pm) showed a reduction of only 21% and ( R)-citronellol (100 pm) was completely inactive. Cell-based functional experiments, conducted with the human bitter taste receptors TAS2R7, TAS2R10, TAS2R14, TAS2R43, and TAS2R46 reported to be sensitive to caffeine, revealed ( R)-citronellal to completely block caffeine-induced calcium signals in TAS2R43-expressing cells, and, to a lesser extent, in TAS2R46-expressing cells. Stimulation of TAS2R43-expressing cells with structurally different bitter agonists identified ( R)-citronellal as a general allosteric inhibitor of TAS2R43. Further structure/activity studies indicated 3-methyl-branched aliphatic aldehydes with a carbon chain of ≥4 C atoms as best TAS2R43 antagonists. Whereas odor-taste interactions have been mainly interpreted in the literature to be caused by a central neuronal integration of odors and tastes, rather than by peripheral events at the level of reception, the findings of this study open up a new dimension regarding the interaction of the two chemical senses.

  1. Composição mineral e severidade de "bitter pit" em maçãs 'Catarina' Mineral composition and bitter pit severity in 'Catarina' apples

    Directory of Open Access Journals (Sweden)

    Cassandro Vidal Talamini do Amarante

    2006-04-01

    Full Text Available Maçãs 'Catarina', colhidas na maturação comercial em pomar no município de São Joaquim-SC, foram separadas em quatro lotes de 14 frutos, de acordo com a severidade de incidência de "bitter pit": nula (nenhuma lesão/fruto, baixa (1-2 lesões/fruto, moderada (3-5 lesões/fruto e alta (6-18 lesões/fruto. Foram determinadas as concentrações de Ca, Mg, K e N na casca e na polpa de cada fruto. Foram verificadas relação linear (P 'Catarina' apples were harvested at the commercial maturity in an orchard in São Joaquim-SC and segregated in four lots of 14 fruits with different levels of bitter pit severity: null (none pit/fruit, low (1-2 pits/fruit, moderate (3-5 pits/fruit, and high (6-18 pits/fruit. Nutritional analysis (Ca, Mg, K, and N in the skin and flesh tissues were performed on individual fruits of each severity level. The average number of pits/fruit (calculated for each lot of bitter pit severity showed a negative linear relationship (P < 0.05 with the skin Ca content, and a negative linear relationship (P < 0.05 with the ratios of Mg/Ca, (K+Mg/Ca, and (K+Mg+N/Ca in the skin. For the flesh, the increasing of bitter pit severity was accompanied by significant reduction of Ca and Mg contents. The multivariate analysis (canonical discriminant analysis showed that the Mg/Ca ratio in the skin provided the best discrimination between the lots of fruit with different levels of bitter pit severity. Therefore, for 'Catarina' apples, increasing values of the Mg/Ca ratio in the skin are indicative of fruits with increasing bitter pit susceptibility.

  2. A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain-machine interface.

    Science.gov (United States)

    Qin, Zhen; Zhang, Bin; Hu, Liang; Zhuang, Liujing; Hu, Ning; Wang, Ping

    2016-04-15

    Animals' gustatory system has been widely acknowledged as one of the most sensitive chemosensing systems, especially for its ability to detect bitterness. Since bitterness usually symbolizes inedibility, the potential to use rodent's gustatory system is investigated to detect bitter compounds. In this work, the extracellular potentials of a group of neurons are recorded by chronically coupling microelectrode array to rat's gustatory cortex with brain-machine interface (BMI) technology. Local field potentials (LFPs), which represent the electrophysiological activity of neural networks, are chosen as target signals due to stable response patterns across trials and are further divided into different oscillations. As a result, different taste qualities yield quality-specific LFPs in time domain which suggests the selectivity of this in vivo bioelectronic tongue. Meanwhile, more quantitative study in frequency domain indicates that the post-stimulation power of beta and low gamma oscillations shows dependence with concentrations of denatonium benzoate, a prototypical bitter compound, and the limit of detection is deduced to be 0.076 μM, which is two orders lower than previous in vitro bioelectronic tongues and conventional electronic tongues. According to the results, this in vivo bioelectronic tongue in combination with BMI presents a promising method in highly sensitive bitterness detection and is supposed to provide new platform in measuring bitterness degree. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Perception of bitterness, sweetness and liking of different genotypes of lettuce.

    Science.gov (United States)

    Chadwick, M; Gawthrop, F; Michelmore, R W; Wagstaff, C; Methven, L

    2016-04-15

    Lettuce is an important leafy vegetable, consumed across the world, containing bitter sesquiterpenoid lactone (SL) compounds that may negatively affect consumer acceptance and consumption. We assessed liking of samples with differing absolute abundance and different ratios of bitter:sweet compounds by analysing recombinant inbred lines (RILs) from an interspecific lettuce mapping population derived from a cross between a wild (L. serriola acc. UC96US23) and domesticated lettuce (L. sativa, cv. Salinas). We found that the ratio of bitter:sweet compounds was a key determinant of bitterness perception and liking. We were able to demonstrate that SLs, such as 8-deoxylactucin-15-sulphate, contribute most strongly to bitterness perception, whilst 15-p-hydroxylphenylacetyllactucin-8-sulphate does not contribute to bitter taste. Glucose was the sugar most highly correlated with sweetness perception. There is a genetic basis to the biochemical composition of lettuce. This information will be useful in lettuce breeding programmes in order to produce leaves with more favourable taste profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    Science.gov (United States)

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  5. 6-methoxyflavanones as bitter taste receptor blockers for hTAS2R39.

    Directory of Open Access Journals (Sweden)

    Wibke S U Roland

    Full Text Available Many (dietary bitter compounds, e.g. flavonoids, activate bitter receptor hTAS2R39 in cell-based assays. Several flavonoids, amongst which some flavanones, are known not to activate this receptor. As certain flavanones are known to mask bitter taste sensorially, flavanones might act as bitter receptor antagonists. Fourteen flavanones were investigated for their potential to reduce activation of hTAS2R39 by epicatechin gallate (ECG, one of the main bitter compounds occurring in green tea. Three flavanones showed inhibitory behavior towards the activation of hTAS2R39 by ECG: 4'-fluoro-6-methoxyflavanone, 6,3'-dimethoxyflavanone, and 6-methoxyflavanone (in order of decreasing potency. The 6-methoxyflavanones also inhibited activation of hTAS2R14 (another bitter receptor activated by ECG, though to a lesser extent. Dose-response curves of ECG at various concentrations of the full antagonist 4'-fluoro-6-methoxyflavanone and wash-out experiments indicated reversible insurmountable antagonism. The same effect was observed for the structurally different agonist denatonium benzoate.

  6. Ionically Bound Peroxidase from Peach Fruit

    Directory of Open Access Journals (Sweden)

    Neves Valdir Augusto

    2002-01-01

    Full Text Available Soluble, ionically bound peroxidase (POD and polyphenoloxidase (PPO were extracted from the pulp of peach fruit during ripening at 20°C. Ionically bound form was purified 6.1-fold by DEAE-cellulose and Sephadex G-100 chromatography. The purified enzyme showed only one peak of activity on Sephadex G-100 and PAGE revealed that the enzyme was purified by the procedures adopted. The purified enzyme showed a molecular weight of 29000 Da, maximum activity at pH 5.0 and at 40ºC. The calculated apparent activation energy (Ea for the reaction was10.04 kcal/mol. The enzyme was heat-labile in the temperature range of 60 to 75ºC with a fast inactivation at 75ºC. Measurement of residual activity showed a stabilizing effect of sucrose at various temperature/sugar concentrations (0, 10, 20 %, w/w, with an activation energy (Ea for inactivation increasing with sucrose concentration from 0 to 20% (w/w. The Km and Vmax values were 9.35 and 15.38 mM for 0-dianisidine and H2O2, respectively. The bound enzyme was inhibited competitively by ferulic, caffeic and protocatechuic acids with different values of Ki,. L-cysteine, p-coumaric and indolacetic acid and Fe++ also inhibited the enzyme but at a lower grade. N-ethylmaleimide and p-CMB were not effective to inhibit the enzyme demonstrating the non-essentiality of SH groups.

  7. [Expression and characterization of Coprinus cinereus peroxidase].

    Science.gov (United States)

    Dong, Bingxue; Niu, Qiuhong; Zhang, Wei; Geng, Sanchun; Li, Peng; Yuan, Wanli; Gong, Yifeng; Liang, Kewei

    2015-03-04

    The aim of our study is to express Coprinus cinereus peroxidase (CIP) in Pichia Pastori efficiently. We synthesized CIP gene with P. pastori codon bias by our Gene Synthesis and site-specific mutagenesis platform, using DNAWorks 3.1 program to design and optimize primers. Then, we sequenced the PCR products, inserted the correct gene into expression vector pPICZαA and transformed the linearized pPICZαA-Cip DNA into P. pastori GS115. We integrated CIP gene into the genome of P. pastori, using the α-mating factor from Sacchoramyces cerevisiae as signal peptide to direct the secretion of the recombinant protein. To obtain transformants with high CIP activity, we checked transformants by nested PCR and stained 82 positive ones on YPD agar plate with 1000 mg/L Zeocin. Then, we got 6 transforments with high resistance to Zeocin and expressed them in small scale; the one exhibiting the highest activity was chosen as engineered strain and named CIP/Gs115. We purified CIP from culture medium after induction with ethanol, the maximum activity reached 487.5 U/mL on the 4th day. The purified CIP exhibited maximal activity at pH 5.0 and 25 degrees C with ABTS as substrate. The enzyme had 61.5% of the maximal activity at 45 degrees C and was stable below 40 degrees C. However, the stability was drastically reduced above 45 degrees C. The recombinant CIP remained stable between pH 4.5 and 6.5. We studied the substrate specificity on different substrates with the purified enzyme, and the optimal substrates were in the order of ABTS > 2, 6-Dimethoxyphenol > guaiacol > 2, 4-Dichlorophenol > phenol. The highly secretory expression of CIP and high special activity lay the good foundation for it' s industrial applications in waste water treatment, decolouration of dyestuffs.

  8. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  9. Partial characterization of lignin peroxidase expressed by bacterial ...

    African Journals Online (AJOL)

    Lignin peroxidase producing microorganisms were isolated from the gut of Macrotermes nigeriense (Soldier and worker termite). The microorganisms isolated were Staphylococcus aureus, Staphylococcus epidermis, Bacillus subtilis, Micrococcus luteus, Epidermophyton flocussum, Microsporum distortum, Trichophyton ...

  10. Purification and characterization of a peroxidase present in ...

    African Journals Online (AJOL)

    Purification and characterization of a peroxidase present in xilopodium exsudates of umbu plants (Spondias tuberosa A.) M dos Santos Teixeira Pinto, JM Ribeiro, FP de Araujo, NF de Melo, KVS Fernandes ...

  11. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes

    Energy Technology Data Exchange (ETDEWEB)

    Lagrimini, L.M.

    1990-12-31

    Peroxidases have been implicated in a variety of secondary metabolic reactions including lignification, cross-linking of cell wall polysaccharides, oxidation of indole-3-acetic acid, regulation of cell elongation, wound-healing, phenol oxidation, and pathogen defense. However, due to the many different isoenzymes and even more potential substrates, it has proven difficult to verify actual physiological roles for peroxidase. We are studying the molecular biology of the tobacco peroxidase genes, and have utilized genetic engineering techniques to produce transgenic plants which differ only in their expression of an individual peroxidase isoenzyme. Many of the in planta functions for any individual isoenzyme may be predicted through the morphological and physiological analysis of transformed plants.

  12. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes

    Energy Technology Data Exchange (ETDEWEB)

    Lagrimini, L.M.

    1990-01-01

    Peroxidases have been implicated in a variety of secondary metabolic reactions including lignification, cross-linking of cell wall polysaccharides, oxidation of indole-3-acetic acid, regulation of cell elongation, wound-healing, phenol oxidation, and pathogen defense. However, due to the many different isoenzymes and even more potential substrates, it has proven difficult to verify actual physiological roles for peroxidase. We are studying the molecular biology of the tobacco peroxidase genes, and have utilized genetic engineering techniques to produce transgenic plants which differ only in their expression of an individual peroxidase isoenzyme. Many of the in planta functions for any individual isoenzyme may be predicted through the morphological and physiological analysis of transformed plants.

  13. Platelet crossmatch tests using radiolabelled staphylococcal protein A or peroxidase anti-peroxidase in alloimmunised patients

    International Nuclear Information System (INIS)

    Yam, P.; Petz, L.D.; Scott, E.P.; Santos, S.

    1984-01-01

    Refractoriness to random-donor platelets as a result of alloimmunization remains a major problem in long-term platelet transfusion therapy despite the use of HLA-matched platelets. A study has been made of two methods for detection of platelet associated IgG as platelet crossmatch tests for the selection of platelet donors. These methods use radiolabelled staphylococcal protein A( 125 I-SPA) and peroxidase anti-peroxidase (PAP), respectively. One hundred and ten crossmatch tests using 125 I-SPA were performed retrospectively in 18 alloimmunized patients. The results indicated that the predictive value of a positive or a negative test was 87%; the sensitivity was 73% and the specificity was 95%. Results with the PAP test were similar. The HLA types were known for 48 donor-recipient pairs. With few exceptions, there was a correlation between the results of the platelet crossmatch tests and the effectiveness of platelet transfusion regardless of the degree of HLA match. These results indicate that platelet crossmatch tests may be valuable even when closely HLA matched donors are not available. A large-scale prospective study is warranted, particularly in highly immunized patients. (author)

  14. Effects of Momordica charantia (Bitter Melon) on Ischemic Diabetic Myocardium.

    Science.gov (United States)

    Czompa, Attila; Gyongyosi, Alexandra; Szoke, Kitti; Bak, Istvan; Csepanyi, Evelin; Haines, David D; Tosaki, Arpad; Lekli, Istvan

    2017-03-20

    Objective : A rat model is here used to test a hypothesis that Momordica charantia (Bitter melon (BM)) extract favorably alters processes in cardiovascular tissue and is systemically relevant to the pathophysiology of type 2 diabetes (T2DM) and related cardiovascular disease. Methods : Male Lean and Zucker Obese (ZO) rats were gavage-treated for six weeks with 400 mg/kg body weight bitter melon (BM) extract suspended in mucin-water vehicle, or with vehicle (Control). Animals were segregated into four treatment groups, 10 animals in each group, according to strain (Lean or ZO) and treatment (Control or BM). Following six-week treatment periods, peripheral blood was collected from selected animals, followed by sacrifice, thoracotomy and mounting of isolated working heart setup. Results : Body mass of both Lean and ZO rats was unaffected by treatment, likewise, peripheral blood fasting glucose levels showed no significant treatment-related effects. However, some BM treatment-related improvement was noted in postischemic cardiac functions when Lean, BM-treated animals were compared to vehicle treated Lean control rats. Treatment of Lean, but not ZO, rats significantly reduced the magnitude of infarcted zone in isolated hearts subjected to 30 min of ischemia followed by 2 h of working mode reperfusion. Immunohistochemical demonstration of caspase-3 expression by isolated heart tissues subjected to 30 min of ischemia followed by 2 h of reperfusion, revealed significant correlation between BM treatment and reduced expression of this enzyme in hearts obtained from both Lean and ZO animals. The hierarchy and order of caspase-3 expression from highest to lowest was as follows: ZO rats receiving vehicle > ZO rats receiving BM extract > Lean rats treated receiving vehicle > Lean rats administered BM extract. Outcomes of analyses of peripheral blood content of cardiac-related analytics: with particular relevance to clinical application was a significant elevation in blood of ZO

  15. Effects of Momordica charantia (Bitter Melon on Ischemic Diabetic Myocardium

    Directory of Open Access Journals (Sweden)

    Attila Czompa

    2017-03-01

    Full Text Available Objective: A rat model is here used to test a hypothesis that Momordica charantia (Bitter melon (BM extract favorably alters processes in cardiovascular tissue and is systemically relevant to the pathophysiology of type 2 diabetes (T2DM and related cardiovascular disease. Methods: Male Lean and Zucker Obese (ZO rats were gavage-treated for six weeks with 400 mg/kg body weight bitter melon (BM extract suspended in mucin–water vehicle, or with vehicle (Control. Animals were segregated into four treatment groups, 10 animals in each group, according to strain (Lean or ZO and treatment (Control or BM. Following six-week treatment periods, peripheral blood was collected from selected animals, followed by sacrifice, thoracotomy and mounting of isolated working heart setup. Results: Body mass of both Lean and ZO rats was unaffected by treatment, likewise, peripheral blood fasting glucose levels showed no significant treatment-related effects. However, some BM treatment-related improvement was noted in postischemic cardiac functions when Lean, BM-treated animals were compared to vehicle treated Lean control rats. Treatment of Lean, but not ZO, rats significantly reduced the magnitude of infarcted zone in isolated hearts subjected to 30 min of ischemia followed by 2 h of working mode reperfusion. Immunohistochemical demonstration of caspase-3 expression by isolated heart tissues subjected to 30 min of ischemia followed by 2 h of reperfusion, revealed significant correlation between BM treatment and reduced expression of this enzyme in hearts obtained from both Lean and ZO animals. The hierarchy and order of caspase-3 expression from highest to lowest was as follows: ZO rats receiving vehicle > ZO rats receiving BM extract > Lean rats treated receiving vehicle > Lean rats administered BM extract. Outcomes of analyses of peripheral blood content of cardiac-related analytics: with particular relevance to clinical application was a significant elevation in

  16. Study of the changes in the dietary fatty acids and physicochemical values of sweet and bitter apricot oils in pakistan

    International Nuclear Information System (INIS)

    Akhtar, H.; Hamid, S.

    2007-01-01

    The quantity of oil in local varieties of sweet and bitter apricot was found to be more than that earlier reported for the Indian varieties. Both, sweet and bitter apricot oils, were semi-drying type. Refractive index of bitter apricot oil was higher whereas, free fatty acids were more in sweet apricot oil. Amount of cyanide, cadmium, antimony, arsenic, lead and copper as well as of palmitic acid insignificantly increased with ripening, being more in bitter apricot oil. Major difference was noted in fatty acid composition. Linoleic acid was present in higher amount in sweet apricot oil (21.4%) than in bitter apricot oil (19.6%). Concentration of palmitic acid in sweet oil was 5.0%, while in bitter oil, it was 6.4%. (author)

  17. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing.

    Science.gov (United States)

    Liu, Na; Yang, Jinghua; Fu, Xinxing; Zhang, Li; Tang, Kai; Guy, Kateta Malangisha; Hu, Zhongyuan; Guo, Shaogui; Xu, Yong; Zhang, Mingfang

    2016-04-01

    Grafting is an important agricultural technique widely used to improve plant growth, yield, and adaptation to either biotic or abiotic stresses. However, the molecular mechanisms underlying grafting-induced physiological processes remain unclear. Watermelon (Citrullus lanatus L.) is an important horticultural crop worldwide. Grafting technique is commonly used in watermelon production for improving its tolerance to stresses, especially to the soil-borne fusarium wilt disease. In the present study, we used high-throughput sequencing to perform a genome-wide transcript analysis of scions from watermelon grafted onto bottle gourd and squash rootstocks. Our transcriptome and digital gene expression (DGE) profiling data provided insights into the molecular aspects of gene regulation in grafted watermelon. Compared with self-grafted watermelon, there were 787 and 3485 genes differentially expressed in watermelon grafted onto bottle gourd and squash rootstocks, respectively. These genes were associated with primary and secondary metabolism, hormone signaling, transcription factors, transporters, and response to stimuli. Grafting led to changes in expression of these genes, suggesting that they may play important roles in mediating the physiological processes of grafted seedlings. The potential roles of the grafting-responsive mRNAs in diverse biological and metabolic processes were discussed. Obviously, the data obtained in this study provide an excellent resource for unraveling the mechanisms of candidate genes function in diverse biological processes and in environmental adaptation in a graft system.

  18. The sweetness and bitterness of childhood: Insights from basic research on taste preferences.

    Science.gov (United States)

    Mennella, Julie A; Bobowski, Nuala K

    2015-12-01

    In this article, we review findings from basic, experimental research on children that suggest that the liking of sweet and the dislike of bitter tastes reflect children's basic biology. Children are born preferring sweet tastes, which attract them to mother's milk and even act as an analgesic. They prefer higher levels of sweet than do adults, with preferences declining to adult levels during middle to late adolescence, which coincides with the cessation of physical growth. The level of sweetness most preferred by children has remained heightened relative to adults for nearly a decade, despite reductions in sugar, both consumed and in the food environment. In spite of these reductions, however, children's intake of sugar remains higher than that recommended by health organizations worldwide. In contrast to sweet taste, children dislike and reject bitter taste, which protects them from ingesting poisons. Although variation in bitter taste receptor genes such as TAS2R38 accounts for people's marked differences in perceptions of the same bitter-tasting compounds, basic research revealed that these genotype-phenotype relationships are modified with age, with children of the same genotype being more bitter sensitive than adults and the changeover occurring during mid-adolescence. This heightened bitter sensitivity is also evident in the taste of the foods (green vegetables) or medicines (liquid formulations of drugs) they dislike and reject. While bitter taste can be masked or blocked to varying degrees by sugars and salts, their efficacy in modulating bitterness is not only based on the type of bitter ligand but on the person's age. Children's heightened preference for sweet and dislike of bitter, though often detrimental in the modern food environment, reflects their basic biology. Increasing knowledge of individual variation in taste due to both age and genetics will shed light on potential strategies to promote healthier eating since chronic diseases derive in

  19. Optimization of lignin peroxidase, manganese peroxidase, and Lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf

    OpenAIRE

    Sudha Hariharan; Padma Nambisan

    2013-01-01

    This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified...

  20. Exactly which synephrine alkaloids does Citrus aurantium (bitter orange) contain?

    Science.gov (United States)

    Allison, D B; Cutter, G; Poehlman, E T; Moore, D R; Barnes, S

    2005-04-01

    Following the withdrawal of ephedrine from the dietary supplement marketplace sales of products containing Citrus aurantium (CA) (bitter orange) for weight loss are believed to have increased dramatically. CA contains a number of constituents speculated to lead to weight loss, of which the most frequently cited constituent is synephrine. Concerns have been raised about the safety of products containing synephrine. To develop an adequate basis for clinical and public health recommendations, it is necessary to understand the nature of the synephrine alkaloids in CA. There are six possible isomers of synephrine (para, meta, ortho; and for each a d or l form). Some authors have stated that CA contains only p-synephrine, whereas other authors have stated that CA contains m-synephrine. This is an important distinction because the two molecules have different pharmacologic properties, which may differentially affect safety and efficacy. We are unable to identify published data that explicitly show whether CA contains p-synephrine, m-synephrine, or both. In this brief report, we show that at least one product purportedly containing synephrine alkaloids from CA contains both p-synephrine and m-synephrine. We believe this justifies further investigation into which synephrine alkaloids are present in CA and products purportedly containing synephrine alkaloids from CA and the relative quantities of each of the different isomers.

  1. Engineering a fungal peroxidase that degrades lignin at very acidic pH

    NARCIS (Netherlands)

    Fernandez-Fueyo, E.; Ruiz-Duenas, F.J.; Martinez, A.T.

    2014-01-01

    Background Ligninolytic peroxidases are divided into three families: manganese peroxidases (MnPs), lignin peroxidases (LiPs), and versatile peroxidases (VPs). The latter two are able to degrade intact lignins, as shown using nonphenolic lignin model compounds, with VP oxidizing the widest range of

  2. Sensomics analysis of key bitter compounds in the hard resin of hops (Humulus lupulus L.) and their contribution to the bitter profile of Pilsner-type beer.

    Science.gov (United States)

    Dresel, Michael; Dunkel, Andreas; Hofmann, Thomas

    2015-04-08

    Recent brewing trials indicated the occurrence of valuable bitter compounds in the hard resin fraction of hop. Aiming at the discovery of these compounds, hop's ε-resin was separated by means of a sensory guided fractionation approach and the key taste molecules were identified by means of UV/vis, LC-TOF-MS, and 1D/2D-NMR studies as well as synthetic experiments. Besides a series of literature known xanthohumol derivatives, multifidol glucosides, flavon-3-on glycosides, and p-coumaric acid esters, a total of 11 bitter tastants are reported for the first time, namely, 1",2"-dihydroxanthohumol F, 4'-hydroxytunicatachalcone, isoxantholupon, 1-methoxy-4-prenylphloroglucinol, dihydrocyclohumulohydrochinone, xanthohumols M, N, and P, and isoxanthohumols M, N, and P, respectively. Human sensory analysis revealed low bitter recognition threshold concentrations ranging from 5 (co-multifidol glucopyranoside) to 198 μmol/L (trans-p-coumaric acid ethyl ester) depending on their chemical structure. For the first time, LC-MS/MS quantitation of these taste compounds in Pilsner-type beer, followed by taste re-engineering experiments, revealed the additive contribution of iso-α-acids and the identified hard resin components to be truly necessary and sufficient for constructing the authentic bitter percept of beer. Finally, brewing trails using the ε-resin as the only hop source impressively demonstrated the possibility to produce beverages strongly enriched with prenylated hop flavonoids.

  3. Citric Acid Suppresses the Bitter Taste of Olopatadine Hydrochloride Orally Disintegrating Tablets.

    Science.gov (United States)

    Sotoyama, Mai; Uchida, Shinya; Tanaka, Shimako; Hakamata, Akio; Odagiri, Keiichi; Inui, Naoki; Watanabe, Hiroshi; Namiki, Noriyuki

    2017-01-01

    Orally disintegrating tablets (ODTs) are formulated to disintegrate upon contact with saliva, allowing administration without water. Olopatadine hydrochloride, a second-generation antihistamine, is widely used for treating allergic rhinitis. However, it has a bitter taste; therefore, the development of taste-masked olopatadine ODTs is essential. Some studies have suggested that citric acid could suppress the bitterness of drugs. However, these experiments were performed using solutions, and the taste-masking effect of citric acid on ODTs has not been evaluated using human gustatory sensation tests. Thus, this study evaluated citric acid's taste-masking effect on olopatadine ODTs. Six types of olopatadine ODTs containing 0-10% citric acid were prepared and subjected to gustatory sensation tests that were scored using the visual analog scale. The bitterness and overall palatability of olopatadine ODTs during disintegration in the mouth and after spitting out were evaluated in 11 healthy volunteers (age: 22.8±2.2 years). The hardness of the ODTs was >50 N. Disintegration time and dissolution did not differ among the different ODTs. The results of the gustatory sensation tests suggest that citric acid could suppress the bitterness of olopatadine ODTs in a dose-dependent manner. Olopatadine ODTs with a high content of citric acid (5-10%) showed poorer overall palatability than that of those without citric acid despite the bitterness suppression. ODTs containing 2.5% citric acid, yogurt flavoring, and aspartame were the most suitable formulations since they showed low bitterness and good overall palatability. Thus, citric acid is an effective bitterness-masking option for ODTs.

  4. Quantitation and bitter taste contribution of saponins in fresh and cooked white asparagus (Asparagus officinalis L.).

    Science.gov (United States)

    Dawid, Corinna; Hofmann, Thomas

    2014-02-15

    A sensitive HPLC-MS/MS method was developed enabling the simultaneous quantification of bitter-tasting mono- and bidesmosidic saponins in fresh and processed asparagus (Asparagus officinalis L.). Based on quantitative data and bitter taste recognition thresholds, dose-over-threshold factors were determined for the first time to determine the bitter impact of the individual saponins. Although 3-O-[α-L-rhamnopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl]-(25R/S)-spirost-5-ene-3β-ol was found based on dose-over-threshold factors to be the predominant bitter saponin in raw asparagus spears, 3-O-[α-L-rhamnopyranosyl-(1 → 2)-{α-L-rhamnopyranosyl-(1 → 4)}-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-(25R)-22-hydroxyfurost-5-ene-3β,26-diol, 3-O-[α-L-rhamnopyranosyl-(1 → 2)-{α-L-rhamnopyranosyl-(1 → 4)}-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-(25S)-22-hydroxyfurost-5-ene-3β,26-diol, and (25R)- and (25S)-furost-5-en-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside were found as key bitter contributors after cooking. Interestingly, the monodesmosidic saponins 5a/b were demonstrated for the first time to be the major contributor to the bitter taste of fresh asparagus spears, while the bidesmosides 1a/b and 2a/b may be considered the primary determinants for the bitter taste of cooked asparagus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Response of CEDIA amphetamines assay after a single dose of bitter orange.

    Science.gov (United States)

    Nguyen, DiemThuy T; Bui, Linda T; Ambrose, Peter J

    2006-04-01

    Bitter orange has recently been substituted as an ingredient in many "ephedra-free" dietary supplements used for weight loss. The primary active ingredient in bitter orange is synephrine. Previous reports have documented false-positive results from ephedrine with urine amphetamine assays. Because of the similarity in chemical structure of ephedrine and synephrine, it is hypothesized that ingestion of a bitter orange supplement may have the potential to cause false-positive results with urine amphetamine assays. The purpose of this study was to determine the response of the CEDIA Amphetamines Assay after ingestion of bitter orange. Six healthy adult male volunteers were administered a single oral dose of Nature's Way Bitter Orange, a 900-mg dietary supplement extract standardized to 6% synephrine. Urine specimens were collected at baseline and 3 and 6 hours post-administration. Additional urine specimens were collected from 1 subject at 9, 12, and 15 hours after administration. All specimens were analyzed by the CEDIA Amphetamines Assay. Urine specific gravity and pH also were measured. All urine specimens demonstrated a negative response to the CEDIA Amphetamines Assay. Urine specific gravity ranged from 1.007 to 1.028, and pH ranged from 5.0 to 7.0; thus, reducing the possibility that the negative results were caused by diluted specimens or reduced excretion of synephrine into alkaline urine. This information will be of value when health care providers or those who interpret drug screens are asked to provide consultation regarding the interference of bitter orange supplements with the CEDIA Amphetamines Assay. A single-dose of Nature's Way Bitter Orange was not found to cause a false-positive response to the CEDIA Amphetamines Assay in 6 healthy adult male volunteers.

  6. Assessment of bitter taste of pharmaceuticals with multisensor system employing 3 way PLS regression

    Energy Technology Data Exchange (ETDEWEB)

    Rudnitskaya, Alisa [CESAM and Chemistry Department, University of Aveiro, Aveiro (Portugal); Kirsanov, Dmitry, E-mail: d.kirsanov@gmail.com [Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); Blinova, Yulia [Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); Legin, Evgeny [Sensor Systems LLC, St. Petersburg (Russian Federation); Seleznev, Boris [Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); Clapham, David; Ives, Robert S.; Saunders, Kenneth A. [GlaxoSmithKline Pharmaceuticals, Gunnels Wood Road, Stevenage (United Kingdom); Legin, Andrey [Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation)

    2013-04-03

    Highlights: ► Chemically diverse APIs are studied with potentiometric “electronic tongue”. ► Bitter taste of APIs can be predicted with 3wayPLS regression from ET data. ► High correlation of ET assessment with human panel and rat in vivo model. -- Abstract: The application of the potentiometric multisensor system (electronic tongue, ET) for quantification of the bitter taste of structurally diverse active pharmaceutical ingredients (API) is reported. The measurements were performed using a set of bitter substances that had been assessed by a professional human sensory panel and the in vivo rat brief access taste aversion (BATA) model to produce bitterness intensity scores for each substance at different concentrations. The set consisted of eight substances, both inorganic and organic – azelastine, caffeine, chlorhexidine, potassium nitrate, naratriptan, paracetamol, quinine, and sumatriptan. With the aim of enhancing the response of the sensors to the studied APIs, measurements were carried out at different pH levels ranging from 2 to 10, thus promoting ionization of the compounds. This experiment yielded a 3 way data array (samples × sensors × pH levels) from which 3wayPLS regression models were constructed with both human panel and rat model reference data. These models revealed that artificial assessment of bitter taste with ET in the chosen set of API's is possible with average relative errors of 16% in terms of human panel bitterness score and 25% in terms of inhibition values from in vivo rat model data. Furthermore, these 3wayPLS models were applied for prediction of the bitterness in blind test samples of a further set of API's. The results of the prediction were compared with the inhibition values obtained from the in vivo rat model.

  7. Peroxidase extraction from jicama skin peels for phenol removal

    Science.gov (United States)

    Chiong, T.; Lau, S. Y.; Khor, E. H.; Danquah, M. K.

    2016-06-01

    Phenol and its derivatives exist in various types of industrial effluents, and are known to be harmful to aquatic lives even at low concentrations. Conventional treatment technologies for phenol removal are challenged with long retention time, high energy consumption and process cost. Enzymatic treatment has emerged as an alternative technology for phenol removal from wastewater. These enzymes interact with aromatic compounds including phenols in the presence of hydrogen peroxide, forming free radicals which polymerize spontaneously to produce insoluble phenolic polymers. This work aims to extract peroxidase from agricultural wastes materials and establish its application for phenol removal. Peroxidase was extracted from jicama skin peels under varying extraction conditions of pH, sample-to-buffer ratio (w/v %) and temperature. Experimental results showed that extraction process conducted at pH 10, 40% w/v and 25oC demonstrated a peroxidase activity of 0.79 U/mL. Elevated temperatures slightly enhanced the peroxidase activities. Jicama peroxidase extracted at optimum extraction conditions demonstrated a phenol removal efficiency of 87.5% at pH 7. Phenol removal efficiency was ∼ 97% in the range of 30 - 40oC, and H2O2 dosage has to be kept below 100 mM for maximum removal under phenol concentration tested.

  8. Purification, crystallization and preliminary crystallographic analysis of banyan peroxidase

    International Nuclear Information System (INIS)

    Sharma, Anurag; Palm, Gottfried J.; Kumari, Moni; Panjikar, Santosh; Jagannadham, M. V.; Hinrichs, Winfried

    2012-01-01

    Crystals of a new peroxidase, named banyan peroxidase, from the latex of F. benghalensis belonged to the trigonal space group P3 2 21 and provided X-ray diffraction data to a resolution of 1.66 Å. The anomalous signal of the intrinsic iron and calcium ions was sufficent for phasing by SAD. Plant peroxidases are extensively used in a wide range of biotechnological applications owing to their high environmental and thermal stability. A new peroxidase, named banyan peroxidase, was purified from the latex of Ficus benghalensis and crystallized. X-ray diffraction data were collected from native crystals and from bromide and xenon derivatives to resolutions of up to 1.66 Å in the trigonal space group P3 2 21, with unit-cell parameters a = b = 73.1, c = 164.6 Å. The anomalous signal of the intrinsic iron and calcium ions was sufficient for structure solution by SAD, although the sequence is not yet known

  9. Accumulation of Charantin and Expression of Triterpenoid Biosynthesis Genes in Bitter Melon (Momordica charantia).

    Science.gov (United States)

    Cuong, Do Manh; Jeon, Jin; Morgan, Abubaker M A; Kim, Changsoo; Kim, Jae Kwang; Lee, Sook Young; Park, Sang Un

    2017-08-23

    Charantin, a natural cucurbitane type triterpenoid, has been reported to have beneficial pharmacological functions such as anticancer, antidiabetic, and antibacterial activities. However, accumulation of charantin in bitter melon has been little studied. Here, we performed a transcriptome analysis to identify genes involved in the triterpenoid biosynthesis pathway in bitter melon seedlings. A total of 88,703 transcripts with an average length of 898 bp were identified in bitter melon seedlings. On the basis of a functional annotation, we identified 15 candidate genes encoding enzymes related to triterpenoid biosynthesis and analyzed their expression in different organs of mature plants. Most genes were highly expressed in flowers and/or fruit from the ripening stages. An HPLC analysis confirmed that the accumulation of charantin was highest in fruits from the ripening stage, followed by male flowers. The accumulation patterns of charantin coincide with the expression pattern of McSE and McCAS1, indicating that these genes play important roles in charantin biosynthesis in bitter melon. We also investigated optimum light conditions for enhancing charantin biosynthesis in bitter melon and found that red light was the most effective wavelength.

  10. HMF formation and colour change of bitter orange and sweet orange jams during storage

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2010-01-01

    Full Text Available In this work influence of preparation on 5-hydroxymethylfurfural (HMF and colour of bitter orange jams and sweet orange jams was investigated. Samples were prepared without and with treatment of oranges with ascorbic acid in order to investigate the influence on prevention of browning in jams. Samples were stored for 365 days at 4 °C and at room temperature and formation of HMF and colour change during storage were measured. After jam preparation bitter orange jams had higher HMF content than sweet orange jams (231 mg/kg and 58.3 mg/kg, respectively. Treatment of oranges with ascorbic acid increased formation of HMF during preparation of jams (261 mg/kg and 95 mg/kg for bitter and sweet orange jams. During storage the same tendency was observed. Also, difference in colour between sweet and bitter orange jams was observed. The highest colour change was observed in bitter orange jams (ΔE* = 5.66 with addition of ascorbic acid. In this work the importance of pH value of jams and storage temperature for HMF formation and colour was emphasised.

  11. Mass spectrometric determination of the predominant adrenergic protoalkaloids in bitter orange (Citrus aurantium).

    Science.gov (United States)

    Nelson, Bryant C; Putzbach, Karsten; Sharpless, Katherine E; Sander, Lane C

    2007-11-28

    The predominant adrenergic protoalkaloid found in the peel and fruit of bitter orange, Citrus aurantium, is synephrine. Synephrine is reputed to have thermogenic properties and is used as a dietary supplement to enhance energy and promote weight loss. However, there exists some concern that the consumption of dietary supplements containing synephrine or similar protoalkaloids may contribute to adverse cardiovascular events. This study developed and validated a positive-ion mode liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the quantitative determination of the major (synephrine) and minor (tyramine, N-methyltyramine, octopamine, and hordenine) adrenergic protoalkaloids in a suite of National Institute of Standards and Technology (NIST) bitter orange Standard Reference Materials (SRMs): SRM 3258 Bitter Orange Fruit, SRM 3259 Bitter Orange Extract, and SRM 3260 Bitter Orange Solid Oral Dosage Form. The limit of quantitation (LOQ) for all protoalkaloids is approximately 1 pg on-column, except for octopamine (20 pg on-column). Additionally, the method has a linear dynamic range of > or =3 orders of magnitude for all of the protoalkaloids. Individual, as well as "total", protoalkaloid levels (milligrams per kilogram) in the NIST SRMs were determined and compared to the levels measured by an independent liquid chromatography/fluorescence detection (LC/FD) method. Satisfactory concordance between the LC/MS/MS and LC/FD protoalkaloid measurements was demonstrated. LC/MS/MS analysis of the protoalkaloids in the SRMs resulted in mean measurement imprecision levels of < or =10% coefficient of variation (% CV).

  12. Absence of furanocoumarins in Advantra Z® (Citrus aurantium, bitter orange) extracts.

    Science.gov (United States)

    Stohs, Sidney J; Miller, Howard; Romano, Felice

    2014-09-01

    Grapefruit (Citrus paradisi) juice is known for its ability to alter drug metabolism through inhibition of the cytochrome P450-3A4 (CYP3A4) system, and result in drug-food interactions that may be life threatening. The primary active ingredients in grapefruit responsible for these effects are the furanocoumarins bergapten, bergamottin, and 6',7'-dihydroxybergamottin (DHB). Bergamottin and DHB appear to be the most important in terms of adverse drug interactions. Furanocoumarins are present in the juices and fruits of other Citrus species including C. aurantium (bitter oranges). Bergapten is the predominant furanocoumarin in bitter orange. Bitter orange extracts are widely used in products associated with weight loss, sports performance, and energy production. Questions have been raised about the potential of bitter orange extracts to cause drug interactions. This study examined the furanocoumarin content of four standardized bitter orange extracts (Advantra Z®) by liquid chromatography-mass spectroscopy. The results indicated that the total furanocoumarin content of each of the four extracts was less than 20 μg/g, amounts insufficient to exert significant effects on the metabolism of susceptible drugs in human subjects at the doses commonly used for these extracts.

  13. Safety, Efficacy, and Mechanistic Studies Regarding Citrus aurantium (Bitter Orange) Extract and p-Synephrine.

    Science.gov (United States)

    Stohs, Sidney J

    2017-10-01

    Citrus aurantium L. (bitter orange) extracts that contain p-synephrine as the primary protoalkaloid are widely used for weight loss/weight management, sports performance, appetite control, energy, and mental focus and cognition. Questions have been raised about the safety of p-synephrine because it has some structural similarity to ephedrine. This review focuses on current human, animal, in vitro, and mechanistic studies that address the safety, efficacy, and mechanisms of action of bitter orange extracts and p-synephrine. Numerous studies have been conducted with respect to p-synephrine and bitter orange extract because ephedra and ephedrine were banned from use in dietary supplements in 2004. Approximately 30 human studies indicate that p-synephrine and bitter orange extracts do not result in cardiovascular effects and do not act as stimulants at commonly used doses. Mechanistic studies suggest that p-synephrine exerts its effects through multiple actions, which are discussed. Because p-synephrine exhibits greater adrenergic receptor binding in rodents than humans, data from animals cannot be directly extrapolated to humans. This review, as well as several other assessments published in recent years, has concluded that bitter orange extract and p-synephrine are safe for use in dietary supplements and foods at the commonly used doses. Copyright © 2017 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd. Copyright © 2017 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd.

  14. Safety, Efficacy, and Mechanistic Studies Regarding Citrus aurantium (Bitter Orange) Extract and p‐Synephrine

    Science.gov (United States)

    2017-01-01

    Citrus aurantium L. (bitter orange) extracts that contain p‐synephrine as the primary protoalkaloid are widely used for weight loss/weight management, sports performance, appetite control, energy, and mental focus and cognition. Questions have been raised about the safety of p‐synephrine because it has some structural similarity to ephedrine. This review focuses on current human, animal, in vitro, and mechanistic studies that address the safety, efficacy, and mechanisms of action of bitter orange extracts and p‐synephrine. Numerous studies have been conducted with respect to p‐synephrine and bitter orange extract because ephedra and ephedrine were banned from use in dietary supplements in 2004. Approximately 30 human studies indicate that p‐synephrine and bitter orange extracts do not result in cardiovascular effects and do not act as stimulants at commonly used doses. Mechanistic studies suggest that p‐synephrine exerts its effects through multiple actions, which are discussed. Because p‐synephrine exhibits greater adrenergic receptor binding in rodents than humans, data from animals cannot be directly extrapolated to humans. This review, as well as several other assessments published in recent years, has concluded that bitter orange extract and p‐synephrine are safe for use in dietary supplements and foods at the commonly used doses. Copyright © 2017 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd. PMID:28752649

  15. Momordica charantia and type 2 diabetes: from in vitro to human studies.

    Science.gov (United States)

    Habicht, Sandra D; Ludwig, Christine; Yang, Ray-yu; Krawinkel, Michael B

    2014-01-01

    Type 2 diabetes is a growing health problem worldwide that is particularly severe in India and China. In these areas, bitter gourd (Momordica charantia) is a popular vegetable which is traditionally known to have health beneficial effects not only, but mainly, on diabetes. Bitter gourd could be a cheap possibility to help the poor in these and other countries to control their blood glucose levels. This review describes anti-diabetic effects of bitter gourd reported in the literature and discusses what still needs to be clarified for developing an evidence-based and safe use of the bitter gourd for diabetes. Analyses of bioactive compounds have shown that bitter gourd is rich in nutrients and phytochemicals of which some have anti-diabetic effects. Juices, powders, extracts, and isolated compounds have been tested in vitro and in vivo. Bitter gourd increases insulin secretion of the pancreas, decreases intestinal glucose uptake, and increases uptake and utilization of glucose in peripheral tissues. Although human studies with type 2 diabetics are weak in their design and/or results, some of the studies do indicate anti-diabetic effects in patients and safety for bitter gourd treatment in humans. In the future, well designed studies with rodents will help to understand what kind of bitter gourd variety, dosage, preparation, and duration of administration is optimal. Such results will help to design human studies which are necessary to prove the effectiveness of bitter gourd in patients.

  16. Inorganic chemistry of defensive peroxidases in the human oral cavity.

    Science.gov (United States)

    Ashby, M T

    2008-10-01

    The innate host response system is comprised of various mechanisms for orchestrating host response to microbial infection of the oral cavity. The heterogeneity of the oral cavity and the associated microenvironments that are produced give rise to different chemistries that affect the innate defense system. One focus of this review is on how these spatial differences influence the two major defensive peroxidases of the oral cavity, salivary peroxidase (SPO) and myeloperoxidase (MPO). With hydrogen peroxide (H(2)O(2)) as an oxidant, the defensive peroxidases use inorganic ions to produce antimicrobials that are generally more effective than H(2)O(2) itself. The concentrations of the inorganic substrates are different in saliva vs. gingival crevicular fluid (GCF). Thus, in the supragingival regime, SPO and MPO work in unison for the exclusive production of hypothiocyanite (OSCN(-), a reactive inorganic species), which constantly bathes nascent plaques. In contrast, MPO is introduced to the GCF during inflammatory response, and in that environment it is capable of producing hypochlorite (OCl(-)), a chemically more powerful oxidant that is implicated in host tissue damage. A second focus of this review is on inter-person variation that may contribute to different peroxidase function. Many of these differences are attributed to dietary or smoking practices that alter the concentrations of relevant inorganic species in the oral cavity (e.g.: fluoride, F(-); cyanide, CN(-); cyanate, OCN(-); thiocyanate, SCN(-); and nitrate, NO(3)(-)). Because of the complexity of the host and microflora biology and the associated chemistry, it is difficult to establish the significance of the human peroxidase systems during the pathogenesis of oral diseases. The problem is particularly complex with respect to the gingival sulcus and periodontal pockets (where the very different defensive stratagems of GCF and saliva co-mingle). Despite this complexity, intriguing in vitro and in vivo

  17. Application of Herbal Medicines with Bitter Flavor and Cold Property on Treating Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Hongdong Chen

    2015-01-01

    Full Text Available Diabetes mellitus has been a global pandemic. Traditional Chinese Medicine has been used on diabetes mellitus for thousands of years and the modern Chinese medicine studies have found a curative effect of herbal medicine with bitter flavor and cold property on diabetes. This review will introduce the theory summary of flavor and property in TCM, argument basis, the evidences from clinical trails and animal experiments, the possible antidiabetic mechanisms, and advantages on lowering glucose of herbal medicines with bitter flavor and cold property and take rhizome, Chinese rhubarb, and Momordica charantia, the three herbal medicines with bitter flavor and cold property, as examples to illustrate the exact antidiabetic effect. It is hoped that this review can provide some ideas and inspiration for the treatment of diabetes with herbal medicine.

  18. Ischemic colitis associated with use of a bitter orange-containing dietary weight-loss supplement.

    Science.gov (United States)

    Sultan, Shahnaz; Spector, Jeremy; Mitchell, Robert M

    2006-12-01

    Since the US Food and Drug Administration banned the use of dietary supplements containing ephedra in February 2004, numerous "ephedra-free" weight-loss products have appeared on the market. Many of these supplements contain compounds such as bitter orange that are similar in structure and action to ephedra. We describe a patient in whom ischemic colitis developed 1 week after initiation of a bitter orange-containing weight-loss supplement. The patient had no other predisposing factors, and discontinuation of the supplement led to immediate improvement and ultimate resolution of her symptoms. Both consumers and health care professionals should be aware of the potential harm that bitter orange-containing dietary supplements can cause and report such adverse events to the US Food and Drug Administration.

  19. Chemical and nutritional changes in bitter and sweet lupin seeds (Lupinus albus L.) during bulgur production.

    Science.gov (United States)

    Yorgancilar, Mustafa; Bilgiçli, Nermin

    2014-07-01

    In this research, bitter and sweet Lupin (Lupinus albus L.) seeds were used in bulgur production. The proximate chemical compositions and the contents of phytic acid, mineral, amino acid and fatty acid of raw material and processed lupin seeds as bulgur were determined. The sensory properties of bulgur samples were also researched. Bulgur process decreased ash, fat and phytic acid content of lupin seeds while significant increase (p sweet lupin bulgurs were found as 18.8% and 21.3%, respectively. Generally sweet lupin seeds/bulgurs showed rich essential amino acids composition than that of bitter seeds/bulgurs. Linoleic and linolenic acid content of the lupin was negatively affected by bulgur process. Bitter lupin bulgur received lower scores in terms of taste, odor and overall acceptability than sweet lupin bulgur in sensory evaluation. Sweet lupin bulgur can be used as new legume-based product with high nutritional and sensorial properties.

  20. Application of Herbal Medicines with Bitter Flavor and Cold Property on Treating Diabetes Mellitus.

    Science.gov (United States)

    Chen, Hongdong; Guo, Jing; Pang, Bing; Zhao, Linhua; Tong, Xiaolin

    2015-01-01

    Diabetes mellitus has been a global pandemic. Traditional Chinese Medicine has been used on diabetes mellitus for thousands of years and the modern Chinese medicine studies have found a curative effect of herbal medicine with bitter flavor and cold property on diabetes. This review will introduce the theory summary of flavor and property in TCM, argument basis, the evidences from clinical trails and animal experiments, the possible antidiabetic mechanisms, and advantages on lowering glucose of herbal medicines with bitter flavor and cold property and take rhizome, Chinese rhubarb, and Momordica charantia, the three herbal medicines with bitter flavor and cold property, as examples to illustrate the exact antidiabetic effect. It is hoped that this review can provide some ideas and inspiration for the treatment of diabetes with herbal medicine.

  1. Application of Herbal Medicines with Bitter Flavor and Cold Property on Treating Diabetes Mellitus

    Science.gov (United States)

    Chen, Hongdong; Guo, Jing; Pang, Bing; Zhao, Linhua; Tong, Xiaolin

    2015-01-01

    Diabetes mellitus has been a global pandemic. Traditional Chinese Medicine has been used on diabetes mellitus for thousands of years and the modern Chinese medicine studies have found a curative effect of herbal medicine with bitter flavor and cold property on diabetes. This review will introduce the theory summary of flavor and property in TCM, argument basis, the evidences from clinical trails and animal experiments, the possible antidiabetic mechanisms, and advantages on lowering glucose of herbal medicines with bitter flavor and cold property and take rhizome, Chinese rhubarb, and Momordica charantia, the three herbal medicines with bitter flavor and cold property, as examples to illustrate the exact antidiabetic effect. It is hoped that this review can provide some ideas and inspiration for the treatment of diabetes with herbal medicine. PMID:26557150

  2. Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase.

    Science.gov (United States)

    Feng, Manliang; Tachikawa, Hiroyasu; Wang, Xiaotang; Pfister, Thomas D; Gengenbach, Alan J; Lu, Yi

    2003-09-01

    Cytochrome c peroxidase (C cP) variants with an engineered Mn(II) binding site, including MnC cP [C cP(MI, G41E, V45E, H181D)], MnC cP(W191F), and MnC cP(W191F, W51F), that mimic manganese peroxidase (MnP), have been characterized by resonance Raman (RR) spectroscopy. Analysis of the Raman bands in the 200-700 cm(-1) and 1300-1650 cm(-1) regions indicates that both the coordination and spin state of the heme iron in the variants differ from that of C cP(MI), the recombinant yeast C cP containing additional Met-Ile residues at the N-terminus. At neutral pH the frequencies of the nu(3) mode indicate that a pure five-coordinate heme iron exists in C cP(MI) whereas a six-coordinate low-spin iron is the dominant species in the C cP variants with the engineered Mn(II) binding site. The H181D mutation, which weakens the proximal linkage to the heme iron, may be responsible for these spectral and structural changes. Raman spectra of the variants C cP(MI, W191F) and C cP(MI, W191F, W51F) were also obtained to clarify the structural and functional roles of mutations at two tryptophan sites. The W51F mutation was found to disrupt H-bonding to the distal water molecules and the resulting variants tended to form transitional or mixed coordination states that possess spectral and structural features similar to that of MnP. Such structural features, with a loosened distal water, may facilitate the binding of H(2)O(2) and increase the rate constant for compound I formation. This effect, in addition to the elimination of an H-bond to ferryl oxygen by the same mutation, accounts for the increased MnP specific activity of MnC cP(W191F, W51F).

  3. Peroxidase activity in Spondias dulcis = Atividade da peroxidase em Spondias dulcis

    Directory of Open Access Journals (Sweden)

    Lúcio Cardozo-Filho

    2010-10-01

    Full Text Available In this study, the best conditions to obtain crude extracts showingPeroxidase activity from Spondia dulcis (caja-mango were evaluated. Fresh fruits (25 g were blended in different sodium phosphate buffer (0.05 to 0.2 M with a pH varying from 3.0 to 9.0. The muddy material was centrifuged for 20 minutes. In order to improve POD activity, the crude extract was submitted to precipitation with ammonium sulfate at 90% saturation. This precipitated was re-suspended in sodium phosphate buffer 0.2 M pH 6.5 and then, optimum pH for activity assay (pH varying from 5.0 to 9.0 and thermal stability (exposure to different temperatures varying from 30 to 75ºC for periods between 0 to 15 minutes were determined. The best conditions for activity assay were in phosphate buffer 0.2 M at pH7.0. The results obtained for thermal inactivation study suggest that the heating at 75ºCfor 15 minutes inactivated 95% of initial POD activity.Foram avaliadas, neste trabalho, algumas condições para a obtenção de extratos brutos com atividade peroxidase de Spondias dulcis (cajá-manga. Frutas frescas (25 g foram trituradas com tampão fosfato de sódio (0,05 a 0,2 M em pHs diferentes (3,0 a 9,0. O material obtido foi centrifugado por 20 min. O extrato bruto foi submetido à precipitação com sulfato de amônio até 90% de saturação. Este precipitado foi ressuspenso em tampão fosfato de sódio 0,2 M pH 6,5 e, assim, o pH ótimo para o ensaio de atividade (pH que varia de 5,0 a 9,0 e a estabilidade térmica (exposição a temperaturas de 30, 60, 65, 70 e 75ºC por um período de 0 a 15 min. deste foram determinados. As melhores condições encontradas para o ensaio de atividade foram em tampão fosfato 0,2 M pH 7,0. Os resultados para a inativação térmica sugerem que o aquecimento a 75ºC por 15 mininativa 95% da atividade de POD inicial.

  4. Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds1[C][W][OA

    Science.gov (United States)

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-01-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet. PMID:22353576

  5. Indução de resistência à podridão‑amarga em maçãs pelo uso de eliciadores em pós‑colheita Induction of resistance to bitter rot in apples by the use of elicitors in the postharvest

    Directory of Open Access Journals (Sweden)

    Douglas Alvarez Alamino

    2013-03-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito dos eliciadores acibenzolar‑S‑metílico (ASM e proteína harpina, aplicados em pós‑colheita, na indução de resistência sistêmica à podridão‑amarga em maçãs. Realizaram-se ferimentos mecânicos em maçãs 'Royal Gala' seguidos da aplicação dos eliciadores. Doze horas depois, procedeu-se à inoculação do fungo Colletotrichum gloeosporioides. Após 72 horas, realizaram-se as avaliações quanto à área lesionada e ao número de esporos, bem como a coleta de tecido dos frutos para quantificação de proteínas, açúcares totais e redutores, fenóis totais, e para determinação da atividade das enzimas fenilalanina amônia‑liase, superóxido dismutase, catalase, peroxidase e ascorbato peroxidase. A harpina e, em menor grau, o ASM proporcionaram aumento da atividade da enzima peroxidase e a consequente redução da área lesionada e da esporulação de C. gloeosporioides nas maçãs. Esses eliciadores podem ser utilizados como ferramenta de controle no manejo integrado da podridão‑amarga, em pós‑colheita de maçãs 'Royal Gala'.The objective of this work was to evaluate the effect of the protein elicitors acibenzolar‑S‑methyl (ASM and harpin, applied during the postharvest handling, on a systemic resistance induction to bitter rot on apple. Mechanical injury were made on 'Royal Gala' apples, followed by application of the elicitors. Twelve hours later, inoculation of Colletotrichum gloeosporioides was performed. Seventy‑two hours later, evaluations were done for the injured area and the number of spores, and tissue samples were taken to determine the contents of proteins, total and reducing sugars, total phenolics, and the activity of phenylalanine ammonia‑lyase, superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase enzymes. Harpin, and to a lesser extent, ASM increased the activity of peroxidase enzyme and, in consequence, reduced the injured area

  6. Bitter orange (Citrus aurantium L.) extract subchronic 90-day safety study in rats

    OpenAIRE

    Deshmukh, N.S.; Stohs, S.J.; Magar, C.C.; Kale, A.; Sowmya, B.

    2017-01-01

    Bitter orange (Citrus aurantium L.) extracts are widely used in dietary supplements and bitter oranges are used in various juices and food products. p-Synephrine, the primary active constituent, comprises approximately 90% of total protoalkaloids. This study, performed per OECD 408 guidance, examined the 90-day subchronic safety/toxicity of an extract standardized to 50% p-synephrine at doses of 100, 300 and 1000 mg/kg/day to male and female rats. No adverse effects were observed with respect...

  7. Pungent and bitter, cytotoxic and antiviral terpenoids from some bryophytes and inedible fungi.

    Science.gov (United States)

    Asakawa, Yoshinori; Nagashima, Fumihiro; Hashimoto, Toshihiro; Toyota, Masao; Ludwiczuk, Agnieszka; Komala, Ismiarni; Ito, Takuya; Yagi, Yasuyuki

    2014-03-01

    Most liverworts elaborate characteristic odiferous, pungent and bitter tasting compounds many of which show antimicrobial, antifungal, antiviral, allergenic contact dermatitis, cytotoxic, insecticidal, anti-HIV, superoxide anion radical release, plant growth regulatory, neurotrophic, NO production inhibitory, muscle relaxant, antiobesity, piscicidal and nematocidal activities. Several inedible mushrooms produce female spider pheromones, strong antioxidant, and cytotoxic compounds. The present paper is concerned with the extraction and isolation of terpenoids from some bryophytes and inedible fungi and their pungent and bitter taste, and cytotoxic and antiviral activity.

  8. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    KAUST Repository

    Corgié, Stéphane C.

    2012-02-15

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of radiation processing on shelf life and antioxidant properties of minimally processed ready to cook (RTC) cauliflower and ash gourd

    International Nuclear Information System (INIS)

    Vaishnav, Jasraj; Tripathi, Jyoti; Variyar, Prasad S.

    2017-01-01

    The demand for minimally processed vegetables are increasing because consumers now spend less time for cooking every day due to their busy life style, while insisting on more hygienic premium quality products with minimal change in nutritional and sensory properties. Minimally processed cauliflower and ash gourd products were developed using radiation processing. Products were irradiated with different doses of gamma radiation (0.5-2.5kGy), and stored at different temperatures (4,10 and 15 °C). At optimum processing conditions (0.5 kGy; 4 °C) RTC cauliflower was analyzed for their microbial and nutritional qualities (DPPH radical scavenging activity, total phenolic content, total flavonoid content and total ascorbic acid content) during a storage period of 21 days. An irradiation dose of 0.5 kGy extended the shelf life by 7 days as compared to the control which has shelf life of 14 days, along with significant increase in DPPH radical scavenging activity and total phenolic content. While in case of RTC ash gourd, optimum processing condition (2kGy;10 ° C) improved the shelf life by 7 days in comparison to control samples which have shelflife of 5 days. Irradiated samples had total phenolic content of 103.3 ± 5.2 mg kg -1 and total antioxidant activity of 384.2 ± 9.7 mg kg -1 while corresponding values for control samples were 67.8 ± 5.4 and 115.5 ± 7.0 mg kg - 1 at the end of storage period. However no significant effect was observed in total ascorbic acid content in both the products due to radiation processing. (author)

  10. Strategies to improve palatability and increase consumption intentions for Momordica charantia (bitter melon): a vegetable commonly used for diabetes management.

    Science.gov (United States)

    Snee, Laura S; Nerurkar, Vivek R; Dooley, Dian A; Efird, Jimmy T; Shovic, Anne C; Nerurkar, Pratibha V

    2011-07-28

    Although beneficial to health, dietary phytonutrients are bitter, acid and/or astringent in taste and therefore reduce consumer choice and acceptance during food selection. Momordica charantia, commonly known as bitter melon has been traditionally used in Ayurvedic and Chinese medicine to treat diabetes and its complications. The aim of this study was to develop bitter melon-containing recipes and test their palatability and acceptability in healthy individuals for future clinical studies. A cross-sectional sensory evaluation of bitter melon-containing ethnic recipes was conducted among 50 healthy individuals. The primary endpoints assessed in this analysis were current consumption information and future intentions to consume bitter melon, before and after provision of attribute- and health-specific information. A convenience sample of 50, self-reported non-diabetic adults were recruited from the University of Hawaii. Sensory evaluations were compared using two-way ANOVA, while differences in stage of change (SOC) before and after receiving health information were analyzed by Chi-square (χ2) analyses. Our studies indicate that tomato-based recipes were acceptable to most of the participants and readily acceptable, as compared with recipes containing spices such as curry powder. Health information did not have a significant effect on willingness to consume bitter melon, but positively affected the classification of SOC. This study suggests that incorporating bitter foods in commonly consumed food dishes can mask bitter taste of bitter melon. Furthermore, providing positive health information can elicit a change in the intent to consume bitter melon-containing dishes despite mixed palatability results.

  11. Strategies to improve palatability and increase consumption intentions for Momordica charantia (bitter melon): A vegetable commonly used for diabetes management

    Science.gov (United States)

    2011-01-01

    Background Although beneficial to health, dietary phytonutrients are bitter, acid and/or astringent in taste and therefore reduce consumer choice and acceptance during food selection. Momordica charantia, commonly known as bitter melon has been traditionally used in Ayurvedic and Chinese medicine to treat diabetes and its complications. The aim of this study was to develop bitter melon-containing recipes and test their palatability and acceptability in healthy individuals for future clinical studies. Methods A cross-sectional sensory evaluation of bitter melon-containing ethnic recipes was conducted among 50 healthy individuals. The primary endpoints assessed in this analysis were current consumption information and future intentions to consume bitter melon, before and after provision of attribute- and health-specific information. A convenience sample of 50, self-reported non-diabetic adults were recruited from the University of Hawaii. Sensory evaluations were compared using two-way ANOVA, while differences in stage of change (SOC) before and after receiving health information were analyzed by Chi-square (χ2) analyses. Results Our studies indicate that tomato-based recipes were acceptable to most of the participants and readily acceptable, as compared with recipes containing spices such as curry powder. Health information did not have a significant effect on willingness to consume bitter melon, but positively affected the classification of SOC. Conclusions This study suggests that incorporating bitter foods in commonly consumed food dishes can mask bitter taste of bitter melon. Furthermore, providing positive health information can elicit a change in the intent to consume bitter melon-containing dishes despite mixed palatability results. PMID:21794176

  12. Strategies to improve palatability and increase consumption intentions for Momordica charantia (bitter melon: A vegetable commonly used for diabetes management

    Directory of Open Access Journals (Sweden)

    Shovic Anne C

    2011-07-01

    Full Text Available Abstract Background Although beneficial to health, dietary phytonutrients are bitter, acid and/or astringent in taste and therefore reduce consumer choice and acceptance during food selection. Momordica charantia, commonly known as bitter melon has been traditionally used in Ayurvedic and Chinese medicine to treat diabetes and its complications. The aim of this study was to develop bitter melon-containing recipes and test their palatability and acceptability in healthy individuals for future clinical studies. Methods A cross-sectional sensory evaluation of bitter melon-containing ethnic recipes was conducted among 50 healthy individuals. The primary endpoints assessed in this analysis were current consumption information and future intentions to consume bitter melon, before and after provision of attribute- and health-specific information. A convenience sample of 50, self-reported non-diabetic adults were recruited from the University of Hawaii. Sensory evaluations were compared using two-way ANOVA, while differences in stage of change (SOC before and after receiving health information were analyzed by Chi-square (χ2 analyses. Results Our studies indicate that tomato-based recipes were acceptable to most of the participants and readily acceptable, as compared with recipes containing spices such as curry powder. Health information did not have a significant effect on willingness to consume bitter melon, but positively affected the classification of SOC. Conclusions This study suggests that incorporating bitter foods in commonly consumed food dishes can mask bitter taste of bitter melon. Furthermore, providing positive health information can elicit a change in the intent to consume bitter melon-containing dishes despite mixed palatability results.

  13. Towards uncovering the roles of switchgrass peroxidases in plant processes

    Directory of Open Access Journals (Sweden)

    Aaron eSaathoff

    2013-06-01

    Full Text Available Herbaceous perennial plants selected as potential biofuel feedstocks had been understudied at the genomic and functional genomic levels. Recent investments, primarily by the U.S. Department of Energy, have led to the development of a number of molecular resources for bioenergy grasses, such as the partially annotated genome for switchgrass (Panicum virgatum L., and some related diploid species. In its current version, the switchgrass genome contains 65,878 gene models arising from the A and B genomes of this tetraploid grass. The availability of these gene sequences provides a framework to exploit transcriptomic data obtained from next generation sequencing platforms to address questions of biological importance. One such question pertains to discovery of genes and proteins important for biotic and abiotic stress responses, and how these components might affect biomass quality and stress response in plants engineered for a specific end purpose. It can be expected that production of switchgrass on marginal lands will expose plants to diverse stresses, including herbivory by insects. Class III plant peroxidases have been implicated in many developmental responses such as lignification and in the adaptive responses of plants to insect feeding. Here, we have analyzed the class III peroxidases encoded by the switchgrass genome, and have mined available transcriptomic datasets to develop a first understanding of the expression profiles of the class III peroxidases in different plant tissues. Lastly, we have identified switchgrass peroxidases that appear to be orthologs of enzymes shown to play key roles in lignification and plant defense responses to hemipterans.

  14. Decolourization of Direct Blue 2 by peroxidases obtained from an ...

    African Journals Online (AJOL)

    Also, an increase in toxicity, determined by Vibrio fisheri, was observed after the enzymatic oxidation of the dye. Results suggest that the oxidation of DB2 with peroxidases can be recommended as a pretreatment step before a conventional treatment process. Keywords: decolourization, Direct Blue 2, industrial waste, ...

  15. Effect of industrial wastewater ontotal protein and the peroxidase ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... The aim of this study is to investigate the effects of industrial wastewaters on protein and the peroxidase activity in Lycopersicon esculentum Mill., Capsicum annuum L., Phaseolus vulgaris L. and. Vicia faba L. Industrial wastewaters were taken from Dardanel Fisheries Company, Tekel alcoholic.

  16. Decolourization of Direct Blue 2 by peroxidases obtained from an ...

    African Journals Online (AJOL)

    2018-04-02

    Apr 2, 2018 ... Effects of different parameters like pH, temperature, reaction time, H2O2 dosage and dye concentration were tested in order to optimize the dye degradation. .... fischeri (Microtox Azure Ambiental). The reagent is a ... The impact of reaction time on the decolourization of DB2 in presence of peroxidase ...

  17. Peroxidase isozyme profiles in some sweet cherry rootstocks and ...

    African Journals Online (AJOL)

    PERS

    2012-01-10

    Jan 10, 2012 ... study in pear (Davarynejad et al., 2008 ). They proposed that presence of A band in the graft union was an indication of compatibility of Beurre Hardy and Passa with. QA, whereas the absence of this band was related to incompatibility of Dargazi, Shahmivah and Torsh pear cultivars. Similarly a peroxidase ...

  18. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  19. Suicide inactivation of horseradish peroxidase by excess hydrogen ...

    African Journals Online (AJOL)

    In reactions carried out in sodium acetate buffer, higher inactivation rates were observed when the buffer ion concentration was increased, an indication that peroxidase might be generating reactive radicals from the buffer molecules. Promethazine exerted a modest protective effect against inactivation; however, higher ...

  20. Purification and characterization of a peroxidase present in ...

    African Journals Online (AJOL)

    Marcio Pinto

    2015-02-22

    Feb 22, 2015 ... be related to oxidation of phenols by poliphenoloxidase or peroxidase, a common trouble viewed in food processing. (Mousavizadeh and Sedaghathoor, 2011). Due to the formation of xylopodium and other characteristics, umbu plants are highly resistant to drought (Silva et al., 2009). A unique umbu tree is ...

  1. Ascorbate peroxidase gene from Brassica napus enhances salt and ...

    African Journals Online (AJOL)

    A full-length cDNA clone, BnAPX (GenBank: FJ965556.1) encoding ascorbate peroxidase and isolated from Brassica napus, was successfully introduced into Arabidopsis thaliana. Investigation into the function of BnAPX demonstrated that BnAPX transgenic plants grew better than wild type under NaCl stress, and also had ...

  2. Hepatic and erythrocytic glutathione peroxidase activity in liver diseases.

    Science.gov (United States)

    Cordero, R; Ortiz, A; Hernández, R; López, V; Gómez, M M; Mena, P

    1996-09-01

    Hepatic and erythrocytic glutathione peroxidase activity, together with malondialdehyde levels, were determined as indicators of peroxidation in 83 patients from whom liver biopsies had been taken for diagnostic purposes. On histological study, the patients were classified into groups as minimal changes (including normal liver), steatosis, alcoholic hepatitis, hepatic cirrhosis, light to moderately active chronic hepatitis, and severe chronic active hepatitis. The glutathione peroxidase activity in erythrocytes showed no significant changes in any liver disease group. In the hepatic study, an increased activity was observed in steatosis with respect to the minimal changes group, this increased activity induced by the toxic agent in the initial stages of the alcoholic hepatic disease declining as the hepatic damage progressed. There was a negative correlation between the levels of hepatic malondialdehyde and hepatic glutathione peroxidase in subjects with minimal changes. This suggested the existence of an oxidative equilibrium in this group. This equilibrium is broken in the liver disease groups as was manifest in a positive correlation between malondialdehyde and glutathione peroxidase activity.

  3. Efficient production of Arthromyces ramosus peroxidase by Aspergillus awamori

    NARCIS (Netherlands)

    Lokman, B.C.; Joosten, V.; Hovenkamp, J.; Gouka, R.J.; Verrips, C.T.; Hondel, C.A.M.J.J. van den

    2003-01-01

    The heterologous production of Arthromyces ramosus peroxidase (ARP) was analysed in the filamentous fungus Aspergillus awamori under control of the inducible endoxylanase promoter. Secretion of active ARP was achieved up to 800 mg l-1 in shake flask cultures. Western blot analysis showed that an

  4. Bioepoxidation of isosafrol catalyzed by radish and turnip peroxidases

    African Journals Online (AJOL)

    Peroxidases (PODs) from radish (Raphanus sativus L.) and turnip (Brassica napus L.) were extracted and precipitated with ammonium sulfate using a simple, low cost and quick method. The activities of all ... The products of the reaction were analyzed by high resolution gas chromatography (GC) and mass spectrometry.

  5. Effect of industrial wastewater ontotal protein and the peroxidase ...

    African Journals Online (AJOL)

    The aim of this study is to investigate the effects of industrial wastewaters on protein and the peroxidase activity in Lycopersicon esculentum Mill., Capsicum annuum L., Phaseolus vulgaris L. and Vicia faba L. Industrial wastewaters were taken from Dardanel Fisheries Company, Tekel alcoholic drinks companies' ...

  6. Cloning and characterization of an ascorbate peroxidase gene ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-05-29

    May 29, 2012 ... An ascorbate peroxidase (APX) cDNA, designated MaAPX1, was isolated from banana fruit by suppression subtractive hybridization (SSH). MaAPX1 shares an extensive sequence identity (79 to. 83%) with other plant APX homologues. Southern blot analysis revealed only two copies of the APX gene in ...

  7. Changes in activities of polyphenol oxidase, ascorbate, peroxidase ...

    African Journals Online (AJOL)

    Activities of peroxidase (POD), Polyphenol oxidase (PPO), hydroperoxide and lipid contents were investigated during desiccation of cotyledonary tissues of Irvingia gabonensis at ambient temperature (26OC - 30OC), 35OC and 20OC. Activities of POD and PPO increased initially but declined in the latter desiccation period.

  8. Cross Reactivities of Rabbit Anti-Chicken Horse Radish Peroxidase ...

    African Journals Online (AJOL)

    Dr Olaleye

    (BSA) was used as blocking agent. Sera of other avian species and mammals did not react with the conjugate. It is concluded that rabbit anti chicken Horse radish peroxidase could be used to detect antibodies in chickens as well as Turkey and that BSA and NRS could be used as blocking agent without loss of reactivities.

  9. Evaluation of Crude Oil Biodegradation Efficiency and Peroxidase ...

    African Journals Online (AJOL)

    ADOWIE PERE

    biomass enhanced degradation efficiency above 80 % after 10 days for all concentration of crude oil studied. Peroxidase production increased maximally during the log phase of ... mixer with equal volume of toluene to extract hydrocarbons from the samples. The extracted crude oil was detected at 420 nm. A blank was.

  10. KINETICS OF QUERCETIN NITRATIO N BY HORSERADISH PEROXIDASE

    Directory of Open Access Journals (Sweden)

    Andrija Šmelcerović

    2013-03-01

    Full Text Available In this study we investigated the kinetics of the nitration of quercetin by horseradish peroxidase. Quercetin nitration reaction was followed by recording the spectral changes over the time at 380 nm. The reaction rate increases with increasing of the quercetin concentration and follows the Michaelis-Menten type kinetics. Kinetic parameters of the studied enzymatic reaction were determined.

  11. Optimisation of soybean peroxidase treatment of 2, 4-dichlorophenol ...

    African Journals Online (AJOL)

    In the presence of hydrogen peroxide (H2O2), peroxidase enzymes (PE) catalyse the oxidation of various chlorinated phenols to free radicals, which then combine to form insoluble polymers that precipitate out of solution. This study systematically characterises the treatment of 2, 4-dichlorophenol (2, 4-DCP) using soybean ...

  12. Optimisation of soybean peroxidase treatment of 2,4-dichlorophenol

    African Journals Online (AJOL)

    drinie

    2002-04-02

    Apr 2, 2002 ... In the presence of hydrogen peroxide (H2O2), peroxidase enzymes (PE) catalyse the oxidation of various chlorinated phenols to free radicals, which then combine to form insoluble polymers that precipitate out of solution. This study systematically characterises the treatment of 2,4-dichlorophenol (2,4-DCP) ...

  13. Some biochemical properties of guaiacol peroxidases as modified ...

    African Journals Online (AJOL)

    Some biochemical properties of guaiacol peroxidases as modified by salt stress in leaves of salt-tolerant and salt-sensitive safflower ( Carthamus tinctorius L.cv.) ... The pH profile of GP activity in leaves extract of two cultivars in control and salt stressed plants showed different pattern of pH dependency with three maxima ...

  14. Kinetics of the reaction of compound III of horseradish peroxidase ...

    African Journals Online (AJOL)

    Each reaction was first order with respect to the concentration of horseradish peroxidase. The observed rate constants were ionic strength dependent within the range of 0.06 – 0.30 M. The logarithmic values of the rate constants against the square root of the ionic strength showed that both NADPH and Compound III of ...

  15. Production of lignin peroxidase by Ganoderma leucidum using solid ...

    African Journals Online (AJOL)

    Jane

    2011-08-29

    Aug 29, 2011 ... The main objectives of this study were to optimize the culture conditions for the production of lignin peroxidase by Ganoderma leucidum, economic utilization of waste corn cobs as inducers substrate by pollution free fermentation technology and to optimize the solid state fermentation (SSF) process for.

  16. Molecular cloning and characterization of a new peroxidase gene ...

    African Journals Online (AJOL)

    length cDNA of O.violaceus peroxidase gene (OvRCI, GenBank. Acc. No. AY428037) was 1220 bp and contained an 1128 bp open reading frame encoding a protein of 375 amino acids. Homology analysis and molecular modeling revealed that ...

  17. Frequency of anti thyroid peroxidase antibody in patients of vitiligo

    International Nuclear Information System (INIS)

    Zhokhar, A.; Shaikh, Z.I.

    2013-01-01

    Objective: The objective of this study was to compare the frequency of anti thyroid peroxidase antibody in patients suffering from vitiligo with healthy control group. Type of Study: Case control study. Settings: Dermatology Department, Military Hospital, Rawalpindi, from 20th March 2010 to 20th July 2011. Material and Methods: Fifty clinically diagnosed patients of vitiligo, age = 18 yrs and both genders with no history of thyroid disease, past or current use of drugs for thyroid disorder or thyroid surgery were included as cases (Group A). Fifty healthy individuals with no evidence of vitiligo or thyroid disorder on history and physical examination and with no family history of vitiligo, matched for age and gender with cases, were included as control (Group B). Serum anti thyroid peroxidase (anti TPO) antibodies were measured using enzyme linked immunosorbent assay (ELISA) in both cases and control. Results: Eight (16%) patients in Group A were anti-thyroid peroxidase antibody positive and forty two (84%) patients were negative while one (2%) patient was anti-thyroid peroxidase antibody positive in Group B and forty nine (98%) patients were negative (p = 0.001). Conclusion: Anti TPO antibody is significantly more common in patients of vitiligo as compared to general population. (author)

  18. Selenite supplementation in euthyroid subjects with thyroid peroxidase antibodies

    NARCIS (Netherlands)

    Eskes, Silvia A.; Endert, Erik; Fliers, Eric; Birnie, Erwin; Hollenbach, Birgit; Schomburg, Lutz; Köhrle, Josef; Wiersinga, Wilmar M.

    2014-01-01

    Euthyroid thyroid peroxidase (TPO-Ab)-positive subjects are at risk for progression to subclinical and overt autoimmune hypothyroidism. Previous studies have shown a decrease in TPO-Ab and improvement of quality-of-life (QoL) in L-T4-treated hypothyroid patients upon selenium supplementation. To

  19. Cross reactivities of rabbit anti-chicken horse radish peroxidase ...

    African Journals Online (AJOL)

    The cross reactivities of rabbit anti chicken horse radish peroxidase (conjugate) was tested with sera of Chicken, Ducks, Geese, Guinea fowl, Hawks, Pigeons and Turkeys in indirect enzyme linked immunosorbent assay (ELISA) technique. Sera from mammalian species (Bat, Equine and swine) were used as negative ...

  20. Polyamines, peroxidase and proteins involved in the senescence ...

    African Journals Online (AJOL)

    Senescence is the natural aging process at the cellular level or range of phenomena associated with this process. The objective of this review was to show the involvement of substances that may be related to senescence in plants, such as polyamines, peroxidase and proteins. These substances were related with the ...

  1. Thylakoid-bound ascorbate peroxidase increases resistance to salt ...

    African Journals Online (AJOL)

    Reactive oxygen species (ROS) are cellular indicators of stress. In plants, they function as secondary messengers in response to environmental stress. Ascorbate peroxidase (APX) is an important enzyme directly involved in the scavenging of ROS. In this study, we aimed at identifying the function of the Brassica napus ...

  2. Peroxidase-like catalytic activities of ionic metalloporphyrins ...

    Indian Academy of Sciences (India)

    Unknown

    present in high concentration in the root of the horseradish plant. Others of interest are cytochrome c-peroxidase, chloroperoxidase, myeloperoxidase, ... uniformly spreading the fine paste obtained on a strip of Whatmann 41 filter paper. The reference strip contained paste made from the porphyrin-free polymer support. 3.

  3. Candida albicans biofilm on titanium: effect of peroxidase precoating

    Directory of Open Access Journals (Sweden)

    Mohamed Ahariz

    2010-08-01

    Full Text Available Mohamed Ahariz1, Philippe Courtois1,21Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, 2UER de Biologie Médicale, Haute Ecole Francisco Ferrer, Brussels, BelgiumAbstract: The present study aimed to document Candida albicans biofilm development on titanium and its modulation by a peroxidase-precoated material which can generate antimicrobials, such as hypoiodite or hypothiocyanite, from hydrogen peroxide, iodide, or thiocyanate. For this purpose, titanium (powder or foil was suspended in Sabouraud liquid medium inoculated with C. albicans ATCC10231. After continuous stirring for 2–21 days at room temperature, the supernatant was monitored by turbidimetry at 600 nm and titanium washed three times in sterile Sabouraud broth. Using the tetrazolium salt MTT-formazan assay, the titanium-adherent fungal biomass was measured as 7.50 ± 0.60 × 106 blastoconidia per gram of titanium powder (n = 30 and 0.50 ± 0.04 × 106 blastoconidia per cm² of titanium foil (n = 12. The presence of yeast on the surface of titanium was confirmed by microscopy both on fresh preparations and after calcofluor white staining. However, in the presence of peroxidase systems (lactoperoxidase with substrates such as hydrogen peroxide donor, iodide, or thiocyanate, Candida growth in both planktonic and attached phases appeared to be inhibited. Moreover, this study demonstrates the possible partition of peroxidase systems between titanium material (peroxidase-precoated and liquid environment (containing peroxidase substrates to limit C. albicans biofilm formation.Keywords: adhesion, material, oral, yeast

  4. Phenol removal by peroxidases extracted from Chinese cabbage root

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, H.I.; Jeong, Y.H. [Kangwon National Univ., Chuncheon (Korea, Republic of). Dept. of Applied Biology and Technology

    1995-12-31

    More than four million tons of Chinese cabbages are produced in Korea. Most of them are used as raw materials for Kimchi, but root parts of them are discarded as agricultural wastes. A trial for the application of agricultural waste to industrial waste water treatment was made as an effort to the efficient use of natural resources and to reduce water pollution problem simultaneously. Peroxidases of both solid and liquid phases were obtained from Chinese cabbage roots by using commercial juicer. The differences in peroxidase activity among the various cultivars of Chinese cabbages in Korea were little and electrophoretic patterns of various peroxidases will be discussed. The optimum pH and temperature for enzyme activity will be discussed also. Since peroxidases are distributed into 66% in liquid (juice) and 34% in solid phase (pulp), enzymes from both phases were applied to investigate the enzymatic removal of phenol from waste water. After phenol solution at 150 ppm being reacted with liquid phase enzyme (1,800 unit/1) for 3 hours in a batch stirred reactor, 96% of phenol could be removed through polymerization and precipitation. Also, phenol could be removed from initial 120 ppm to final 5 ppm by applying solid phase enzyme in an air lift reactor (600 unit/1). Almost equivalent efficiencies of phenol removal were observed between two systems, even though only one third of the enzymes in batch stirred reactor was applied in air lift reactor. The possible reason for this phenomenon is because peroxidases exist as immobilized forms in solid phase.

  5. Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes

    Directory of Open Access Journals (Sweden)

    Martina Vrsanska

    2016-11-01

    Full Text Available Ligninolytic enzymes, such as laccase, lignin peroxidase and manganese peroxidase, are biotechnologically-important enzymes. The ability of five white-rot fungal strains Daedaleopsis confragosa, Fomes fomentarius, Trametes gibbosa, Trametes suaveolens and Trametes versicolor to produce these enzymes has been studied. Three different copper(II complexes have been prepared ((Him[Cu(im4(H2O2](btc·3H2O, where im = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid, [Cu3(pmdien3(btc](ClO43·6H2O and [Cu3(mdpta3(btc](ClO43·4H2O, where pmdien = N,N,N′,N′′,N′′-pentamethyl-diethylenetriamine and mdpta = N,N-bis-(3-aminopropylmethyl- amine, and their potential application for laccase and peroxidases induction have been tested. The enzyme-inducing activities of the complexes were compared with that of copper sulfate, and it has been found that all of the complexes are suitable for the induction of laccase and peroxidase activities in white-rot fungi; however, the newly-synthesized complex M1 showed the greatest potential for the induction. With respect to the different copper inducers, this parameter seems to be important for enzyme activity, which depends also on the fungal strains.

  6. Possible association of acute lateral-wall myocardial infarction and bitter orange supplement.

    Science.gov (United States)

    Nykamp, Diane L; Fackih, Majed N; Compton, Anthony L

    2004-05-01

    To report a possible incidence of acute lateral-wall myocardial infarction (MI) coinciding with the use of a Citrus aurantium L. (bitter orange)-containing dietary supplement in a patient with undetected coronary vascular disease. A 55-year-old white woman presented to the emergency department with symptoms of dull aching shoulder and chest pain. A review of medications during cardiac rehabilitation revealed the patient had ingested a multicomponent dietary supplement for weight loss containing 300 mg of bitter orange (Edita's Skinny Pill) for the past year. Although the patient's past medical history did not include hypertension, coronary disease, or hyperlipidemia, an arteriogram revealed a lesion in the left main coronary artery. She did have a smoking history. She was diagnosed with acute lateral-wall MI and hospitalized for 4 days. Consumers generally consider dietary supplements safe. However, some supplements taken for weight loss contain ingredients that have been associated with cardiovascular events. Although consumers are becoming more aware of the serious adverse effects secondary to products containing ingredients such as Ma huang and ephedra, reports involving other ingredients are increasing. Bitter orange or synephrine, found in bitter orange, has been associated with adverse cardiovascular reactions. Based on the Naranjo probability scale, C. aurantium is possibly associated with this cardiovascular event. The use of C. aurantium-containing supplements may present as a risk for cardiovascular toxicity; however, additional studies/case reports are needed to validate this conclusion.

  7. Evaluation of some pollutant levels in bitter orange trees: implications for human health.

    Science.gov (United States)

    Oliva, Sabina Rossini; Valdés, Benito; Mingorance, Maria Dolores

    2008-01-01

    Samples of bitter orange (Citrus aurantium L.) fruits (epicarp and mesocarp), leaves and its fruit marmalade from sites in Seville (Andalucia, Spain) with different levels of traffic were analysed for Ba, Cd, Cu, Fe, Mn, Ni, Pb and Zn concentrations by ICP/AES. Comparative values are given from a background area. The effect of washing on metal content in epicarp and leaves was investigated. Results revealed that Ba, Fe and Mn accumulated in leaves > epicarp > mesocarp, Cu and Ni in leaves > epicarp congruent withmesocarp and Zn leaves > mesocarp > epicarp. Washing had no significant effect on epicarp metal content while it removes part of Cu, Fe and Zn deposited on leaves. Bitter orange fruits are used mainly to make marmalade; artificial contamination effects on fruit composition were investigated and the dietary intake of the elements was determined. The citrus fruits sprayed with metal solution showed a significant increase in the studied elements compared to untreated fruits. The levels of all elements studied were lower than provisional tolerable daily intake values indicating that bitter orange marmalade consumption is safe for alimentary use. Bitter orange tree exhibit differences in metal content between fruits and leaves and fruits are safe for consumption.

  8. germination of seeds from earlier fruits of bitter and sweet african ...

    African Journals Online (AJOL)

    ACSS

    2014-11-18

    Nov 18, 2014 ... mango trees and identify types of seeds suitable to overcome the climatic hindrances for uniform plantations establishment in the .... In general, these studies lack a comparative basis between bitter and sweet .... Characteristics of mango provenances tested in the Dahomey Gap in Benin. Type of ABMTs.

  9. Individual differences in bitter taste preferences are associated with antisocial personality traits.

    Science.gov (United States)

    Sagioglou, Christina; Greitemeyer, Tobias

    2016-01-01

    In two studies, we investigated how bitter taste preferences might be associated with antisocial personality traits. Two US American community samples (total N = 953; mean age = 35.65 years; 48% females) self-reported their taste preferences using two complementary preference measures and answered a number of personality questionnaires assessing Machiavellianism, psychopathy, narcissism, everyday sadism, trait aggression, and the Big Five factors of personality. The results of both studies confirmed the hypothesis that bitter taste preferences are positively associated with malevolent personality traits, with the most robust relation to everyday sadism and psychopathy. Regression analyses confirmed that this association holds when controlling for sweet, sour, and salty taste preferences and that bitter taste preferences are the overall strongest predictor compared to the other taste preferences. The data thereby provide novel insights into the relationship between personality and the ubiquitous behaviors of eating and drinking by consistently demonstrating a robust relation between increased enjoyment of bitter foods and heightened sadistic proclivities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bitter plants used as substitute of Cinchona spp. (quina) in Brazilian traditional medicine.

    Science.gov (United States)

    Cosenza, Gustavo P; Somavilla, Nádia S; Fagg, Christopher W; Brandão, Maria G L

    2013-10-07

    Bitter tasting plant species are used as tonics and have been previously used to treat intermittent fevers in Brazil, the principal symptom of malaria. Many of these species were named quina and were used as substitutes of Cinchona spp., the source of quinine. To present data on these bitter species named quina and to discuss their potential as sources of bioactive substances. Data about the plants were obtained from a survey of the literature and documents written by early naturalists and clinical doctors living in the 18th and 19th centuries in Brazil. Correlated pharmacological studies were obtained from different scientific databases. A total of 29 species were recorded. The largest number of species belonged to the Rubiaceae family (14), being Remijia ferruginea (A. St.-Hil) DC. the most representative. Strychnos pseudoquina A. St.-Hil. (Loganiaceae), Hortia brasiliana Vand. ex DC. (Rutaceae) and Solanum pseudoquina A. St.-Hil. (Solanaceae) were also frequently mentioned in the historical bibliography. Pharmacological studies have shown the presence of bitter bioactive substances useful to treat digestive disorders and/or with antimalarial activities, in all of the recorded botanic families. This study shows that several bitter species named quina were used in the past as substitute of Cinchona spp. and studying these plants can lead to the development of new products. © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Variability of amygdalin content in seeds of sweet and bitter apricot ...

    African Journals Online (AJOL)

    hope&shola

    2010-09-27

    Sep 27, 2010 ... Drug Administration for the use of Vitamin B17 as a drug in the treatment of patients (Asma and Misirli, 2007). Apricot seeds contain various amounts of amygdalin depending on cultivars. It is reported that bitter cultivars contain higher amygdalin than sweet cultivars (Gomez et al., 1998). Femenia et al.

  12. Op het grensvlak van chemie en biotechnologie (interview met Harry Bitter)

    NARCIS (Netherlands)

    Gool, van J.; Bitter, J.H.

    2015-01-01

    Harry Bitter, sinds twee jaar hoogleraar Biobased Chemistry & Technology aan de Wageningen Universiteit, pleit voor meer chemie en katalyse in het onderzoek naar biobased producten. ‘Mijn onderzoeksfocus ligt op hoe je de omzettingen van biomassa naar product zo optimaal mogelijk kunt uitvoeren.

  13. Interactions between limonin and nomilin, two bitter compounds of orange juice

    Science.gov (United States)

    As a preliminary step to understand and characterize which metabolites are responsible for the bitter off-favor of Huanglongbing infected fruit, the thresholds of limonin, nomilin, and their combination in a sugar and acid matrix, as well as in healthy ‘Valencia’ orange juice were determined by tast...

  14. Effect of acid hydrolysis of Garcinia kola (bitter kola) pulp waste on ...

    African Journals Online (AJOL)

    Effect of acid hydrolysis of bitter kola (Garcinia kola) pulp wastes on the production of CM-cellulase and -glucosidase using Aspergillus niger was investigated. Hydrolysis for 3 h with 2.5 M sulphuric acid yielded highest fermentable sugar. Acid hydrolysis enhanced CM-cellulase and -glucosidase levels by 500% at 96 h and ...

  15. Garcinia kola (Bitter Kola) as an Antimicrobial Agent: Effects on the ...

    African Journals Online (AJOL)

    Abstract: This work investigated the effects of Garcinia kola (bitter kola) on the normal flora of the mouth. Two methods were adopted in this work. In the first method, the bacterial load of saliva samples collected after chewing Garcinia kola for days 1-5 decreased drastically when compared to bacterial load from saliva ...

  16. Improved Durability and Sensitivity of Bitterness-Sensing Membrane for Medicines

    Directory of Open Access Journals (Sweden)

    Xiao Wu

    2017-11-01

    Full Text Available This paper reports the improvement of a bitterness sensor based on a lipid polymer membrane consisting of phosphoric acid di-n-decyl ester (PADE as a lipid and bis(1-butylpentyl adipate (BBPA and tributyl o-acetylcitrate (TBAC as plasticizers. Although the commercialized bitterness sensor (BT0 has high sensitivity and selectivity to the bitterness of medicines, the sensor response gradually decreases to almost zero after two years at room temperature and humidity in a laboratory. To reveal the reason for the deterioration of the response, we investigated sensor membranes by measuring the membrane potential, contact angle, and adsorption amount, as well as by performing gas chromatography-mass spectrometry (GC-MS, liquid chromatography-tandem mass spectrometry (LC-MS/MS. We found that the change in the surface charge density caused by the hydrolysis of TBAC led to the deterioration of the response. The acidic environment generated by PADE promoted TBAC hydrolysis. Finally, we succeeded in fabricating a new membrane for sensing the bitterness of medicines with higher durability and sensitivity by adjusting the proportions of the lipid and plasticizers.

  17. Extraction of bitter acids from hops and hop products using pressurized solvent extraction (PSE)

    Czech Academy of Sciences Publication Activity Database

    Čulík, J.; Jurková, M.; Horák, T.; Čejka, P.; Kellner, V.; Dvořák, J.; Karásek, Pavel; Roth, Michal

    2009-01-01

    Roč. 115, č. 3 (2009), s. 220-225 ISSN 0046-9750 R&D Projects: GA ČR GA203/08/1536; GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : hops * bitter acids * pressurized solvent extraction Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.000, year: 2009

  18. Use of local materials in the preservation of Garcinia kola (bitter kola ...

    African Journals Online (AJOL)

    Storage of Bitter kola (Garcinia kola) was carried out using different local materials to evaluate the most appropriate storage material relative to the extension of its shelf life. The materials were kept moist by wetting them throughout the period of study (8 weeks). The local materials used were sandy soil, jute bag, clay pot and ...

  19. Histological changes in the testis of rats treated with Alomo Bitter ...

    African Journals Online (AJOL)

    Considering the increasing demand for herbal aphrodisiacs, this study investigates the effect of Alomo bitters on the histology of testis in adult rats. 36 male rats of comparable weight (151.67 ± 2.89 grams) and sizes were involved in this study. The animals were assigned into four groups; a control group (A) and three test ...

  20. Prophylactic effect of paw-paw leaf and bitter leaf extracts on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (ANOVA) and significant means separated using FLSD = LSD procedure as outlined in Obi (2002). RESULTS AND DISCUSSION. In pre-soaking, paw-paw leaf (PL) extract had no significant effect (P > 0.05) on the disease incidence at. 50% anthesis. Bitter leaf (BL) extract had a high signifi- cant effect (P ...

  1. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions.

    Science.gov (United States)

    Talavera, Karel; Yasumatsu, Keiko; Yoshida, Ryusuke; Margolskee, Robert F; Voets, Thomas; Ninomiya, Yuzo; Nilius, Bernd

    2008-05-01

    Ordinary gustatory experiences, which are usually evoked by taste mixtures, are determined by multiple interactions between different taste stimuli. The most studied model for these gustatory interactions is the suppression of the responses to sweeteners by the prototype bitter compound quinine. Here we report that TRPM5, a cation channel involved in sweet taste transduction, is inhibited by quinine (EC(50)=50 microM at -50 mV) owing to a decrease in the maximal whole-cell TRPM5 conductance and an acceleration of channel closure. Notably, quinine inhibits the gustatory responses of sweet-sensitive gustatory nerves in wild-type (EC(50)= approximately 1.6 mM) but not in Trpm5 knockout mice. Quinine induces a dose- and time-dependent inhibition of TRPM5-dependent responses of single sweet-sensitive fibers to sucrose, according to the restricted diffusion of the drug into the taste tissue. Quinidine, the stereoisomer of quinine, has similar effects on TRPM5 currents and on sweet-induced gustatory responses. In contrast, the chemically unrelated bitter compound denatonium benzoate has an approximately 100-fold weaker effect on TRPM5 currents and, accordingly, at 10 mM it does not alter gustatory responses to sucrose. The inhibition of TRPM5 by bitter compounds constitutes the molecular basis of a novel mechanism of taste interactions, whereby the bitter tastant inhibits directly the sweet transduction pathway.

  2. Distribution patterns of flavonoids from three Momordica species by ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry: a metabolomic profiling approach

    CSIR Research Space (South Africa)

    Madala, NE

    2016-08-01

    Full Text Available Plants from the Momordica genus, Curcubitaceae, are used for several purposes, especially for their nutritional and medicinal properties. Commonly known as bitter gourds, melon and cucumber, these plants are characterized by a bitter taste owing...

  3. Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase

    Czech Academy of Sciences Publication Activity Database

    Rothschild, N.; Novotný, Čeněk; Šašek, Václav; Dosoretz, C. G.

    2002-01-01

    Roč. 31, - (2002), s. 627-633 ISSN 0141-0229 Institutional research plan: CEZ:AV0Z5020903 Keywords : lignin * peroxidase * heme peroxidase Subject RIV: EE - Microbiology, Virology Impact factor: 1.773, year: 2002

  4. Development of delayed bitterness and effect of harvest date in stored juice from two complex citrus hybrids.

    Science.gov (United States)

    Raithore, Smita; Dea, Sharon; McCollum, Greg; Manthey, John A; Bai, Jinhe; Leclair, Clotilde; Hijaz, Faraj; Narciso, Jan A; Baldwin, Elizabeth A; Plotto, Anne

    2016-01-30

    Mandarins and mandarin hybrids have excellent flavor and color attributes, making them good candidates for consumption as fresh fruit. When processed into juice, however, they are less palatable, as they develop delayed bitterness when stored for a period of time. In this study the kinetics of delayed bitterness in two citrus mandarin hybrid siblings, 'Ambersweet' and USDA 1-105-106, was explored by sensory and instrumental analyses. In addition to the bitter limonoids, other quality factors (i.e. sugars, acids, pH, soluble solids content (SSC), titratable acidity (TA) and the ratio SSC/TA) were also measured. The two citrus hybrid siblings had different chemical profiles, which were perceived by taste panels. USDA 1-105-106 developed delayed bitterness when the juice was stored for more than 4 h, similar to juice from 'Navel' oranges, but 'Ambersweet' did not. Bitterness in 'Ambersweet' was more affected by harvest maturity, as juice from earlier harvest had lower SSC but higher TA and bitter limonoids. Since juice of USDA 1-105-106 shows delayed bitterness when stored for more than 4 h, this cultivar is not suitable for juice processing. Our finding that siblings can differ in chemical and sensory properties emphasize the importance of post-processing storage studies before releasing cultivars for juice. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Effects of processing methods on the proximate composition and momordicosides K and L content of bitter melon vegetable.

    Science.gov (United States)

    Donya, Alice; Hettiarachchy, Navam; Liyanage, Rohana; Lay, Jackson; Chen, Pengyin; Jalaluddin, Mohammed

    2007-07-11

    Bitter melon (Mormodica charantia L.) has been associated with health benefits such as hypoglycemic, antiatherogenic, and anti-HIV activities. The vegetable, however, has an unpleasant bitter taste. The purpose of this research was to establish the effect of various processing methods on the moisture, lipid, and protein content of the Sri Lanka variety of bitter melon and to determine the effect of the processing methods on momordicosides K and L contents. The processing methods used were frying, blanching, sun drying, oven drying, freeze drying, and bitter masking with five different commercial bitter masking agents. Moisture, lipid, and protein analyses were done using standard AACC methods. Drying decreased moisture content from 92% to 9.5-10.2%. Frying lowered moisture content to 0.8% while increasing lipid content from 3.6 to 67%. Protein content remained unaffected by treatments. A liquid chromatography-electrospray ionization-mass spectrometry (LC/ESI/MS) method was used to identify momordicosides K and L in methanolic extracts of fresh and processed samples. Only extracted ion chromatographs for blanched bitter melon and bitter melon with MY 68 agent showed the absence of momordicosides K and L.

  6. Bitter orange (Citrus aurantium L. extract subchronic 90-day safety study in rats

    Directory of Open Access Journals (Sweden)

    N.S. Deshmukh

    Full Text Available Bitter orange (Citrus aurantium L. extracts are widely used in dietary supplements and bitter oranges are used in various juices and food products. p-Synephrine, the primary active constituent, comprises approximately 90% of total protoalkaloids. This study, performed per OECD 408 guidance, examined the 90-day subchronic safety/toxicity of an extract standardized to 50% p-synephrine at doses of 100, 300 and 1000 mg/kg/day to male and female rats. No adverse effects were observed with respect to any of the observed parameters of clinical signs, functional observations of sensory reactivity, grip strength and motor activity, ophthalmology, body weights, hematology, food consumption, urinalysis, organ weights, as well as gross and microscopic pathology at termination at any of the doses in either sex. Treatment at 1000 mg/kg body weight/day of the extract resulted in non-adverse effects including fully reversible signs of repetitive head burrowing in the bedding material and piloerection for short periods of time in both sexes immediately after administration, which gradually disappeared by treatment day-81. A slight and reversible elevation of BUN and urea levels in male rats, and slight to mild increase in the relative but not absolute heart weights of male and female rats was observed. Based on these results, the no-observed-effect-level (NOEL for this bitter orange extract standardized to 50% p-synephrine was 300 mg/kg, while the no-observed-adverse-effect-level (NOAEL was 1000 mg/kg. The results indicate a high degree of safety for this bitter orange extract. Keywords: Citrus aurantium, Bitter orange, p-Synephrine, Subchronic toxicity, No-observed-adverse-effect-level (NOAEL, No-observed-effect-level (NOEL

  7. Recombinant yeast as a functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp.).

    Science.gov (United States)

    Davidovich-Rikanati, Rachel; Shalev, Lior; Baranes, Nadine; Meir, Ayala; Itkin, Maxim; Cohen, Shahar; Zimbler, Kobi; Portnoy, Vitaly; Ebizuka, Yutaka; Shibuya, Masaaki; Burger, Yosef; Katzir, Nurit; Schaffer, Arthur A; Lewinsohn, Efraim; Tadmor, Ya'akov

    2015-01-01

    Cucurbitacins are a group of bitter-tasting oxygenated tetracyclic triterpenes that are produced in the family Cucurbitaceae and other plant families. The natural roles of cucurbitacins in plants are probably related to defence against pathogens and pests. Cucurbitadienol, a triterpene synthesized from oxidosqualene, is the first committed precursor to cucurbitacins produced by a specialized oxidosqualene cyclase termed cucurbitadienol synthase. We explored cucurbitacin accumulation in watermelon in relation to bitterness. Our findings show that cucurbitacins are accumulated in bitter-tasting watermelon, Citrullus lanatus var. citroides, as well as in their wild ancestor, C. colocynthis, but not in non-bitter commercial cultivars of sweet watermelon (C. lanatus var. lanatus). Molecular analysis of genes expressed in the roots of several watermelon accessions led to the isolation of three sequences (CcCDS1, CcCDS2 and ClCDS1), all displaying high similarity to the pumpkin CpCPQ, encoding a protein previously shown to possess cucurbitadienol synthase activity. We utilized the Saccharomyces cerevisiae strain BY4743, heterozygous for lanosterol synthase, to probe for possible encoded cucurbitadienol synthase activity of the expressed watermelon sequences. Functional expression of the two sequences isolated from C. colocynthis (CcCDS1 and CcCDS2) in yeast revealed that only CcCDS2 possessed cucurbitadienol synthase activity, while CcCDS1 did not display cucurbitadienol synthase activity in recombinant yeast. ClCDS1 isolated from C. lanatus var. lanatus is almost identical to CcCDS1. Our results imply that CcCDS2 plays a role in imparting bitterness to watermelon. Yeast has been an excellent diagnostic tool to determine the first committed step of cucurbitacin biosynthesis in watermelon. Copyright © 2014 John Wiley & Sons, Ltd.

  8. In vivo test of bitter (andrographis paniculata nees.) extract to ejaculated sperm quality

    Science.gov (United States)

    Sumarmin, R.; Huda, NK; Yuniarti, E.; Violita

    2018-03-01

    Sambiloto or Bitter (Andrographis paniculata Nees.), are often used to treat various diseases, such as influenza, cancer, anti-inflammation, anti-HIV, anti-mitotic and anti-fertility. This study aimed to determine the effects of the bitter (Andrographis paniculata Nees.) extract to ejaculated sperm mice quality (Mus musculus L. Swiss Webster). This research was conducted using Completely Randomized Design with 4 treatments, which are 0.0 g/b.w., (P0), 0.2 g/b.w., (P1), 0,4 g/b.w., (P3), or 0.6 g/b.w., (P4) bitter extract orally for 36 days. After treatment, the mice decapitated, dissected and collected the sperm from vas deferens. Then, the number of sperm counted by used the improved Neubauer and then stained by Eosin to count the abnormal sperm. Data analyzed by ANOVA (Analysis of Variance) then DNMRT. The results showed that the average numbers of sperm are 28.80 x 105 (P0), 19.50 x 105 (P1), 12.50 x105 (P2) and 9.50 x 105 (P3). The average abnormal sperm numbers are 18.33 x 105 (P0), 22.50 x 105 (P1), 31.50 x105 (P2) and 39.33 x 105 (P3). It showed that the effective treatment to decrease sperm number was 0.2 g/b.w., of bitter extract. It can conclude that the bitter (Andrographis paniculata Nees.) extract decreases the quality of the ejaculated sperm of mice (Mus musculus L.)

  9. Lignin-degrading Peroxidases from Genome of Selective Ligninolytic Fungus Ceriporiopsis subverispora

    Science.gov (United States)

    Elena Fernandez-Fueyo; Francisco J. Ruiz-Duenas; Yuta Miki; Marta Jesus Martinez; Kenneth E. Hammel; Angel T. Martinez

    2012-01-01

    Background: The first genome of a selective lignin degrader is available. Results: Its screening shows 26 peroxidase genes, and 5 genes were heterologously expressed and the catalytic properties investigated. Conclusion: Two new peroxidases oxidize simple and dimeric lignin models and efficiently depolymerize lignin. Significance: Although lignin peroxidase and...

  10. Determination of Bitter Orange alkaloids in dietary supplements standard reference materials by liquid chromatography with ultraviolet absorbance and fluorescence detection.

    Science.gov (United States)

    Putzbach, Karsten; Rimmer, Catherine A; Sharpless, Katherine E; Sander, Lane C

    2007-07-13

    Four adrenergic amines [synephrine, octopamine, tyramine, and n-methyltyramine] were determined in a variety of Bitter Orange containing dietary supplements. Two extraction techniques were evaluated in detail: Soxhlet extraction and sonication extraction. A liquid chromatographic separation using a reversed-phase C(18) stationary phase and the ion-pairing reagent sodium dodecyl sulfate was developed to separate the Bitter Orange alkaloids. Ultraviolet absorbance detection at 220 nm and fluorescence detection with excitation at 273 nm and emission at 304 nm were used for the alkaloid detection. The method described was used for the assignment of the levels of the predominant alkaloids in three candidate standard reference materials containing Bitter Orange.

  11. Purification and characterization of an intracellular peroxidase from Streptomyces cyaneus.

    OpenAIRE

    Mliki, A; Zimmermann, W

    1992-01-01

    An intracellular peroxidase (EC 1.11.1.7) from Streptomyces cyaneus was purified to homogeneity. The enzyme had a molecular weight of 185,000 and was composed of two subunits of equal size. It had an isoelectric point of 6.1. The enzyme had a peroxidase activity toward o-dianisidine with a Km of 17.8 microM and a pH optimum of 5.0. It also showed catalase activity with a Km of 2.07 mM H2O2 and a pH optimum of 8.0. The purified enzyme did not catalyze C alpha-C beta bond cleavage of 1,3-dihydr...

  12. Peroxidase-like catalytic activities of ionic metalloporphyrins ...

    Indian Academy of Sciences (India)

    Unknown

    The ideal pH was seen to be in the 8⋅0–8⋅5 range, with maximum effect at 8⋅2. The efficiency order for the various PS-MTPPS was seen to be Co>Mn>Fe, with CoTPPS showing efficiency comparable to that of horseradish peroxidase. The catalytic efficiency was found to be increasing with temperature for all the catalysts.

  13. Potential Applications of Peroxidases in the Fine Chemical Industries

    Science.gov (United States)

    Casella, Luigi; Monzani, Enrico; Nicolis, Stefania

    A description of selected types of reactions catalyzed by heme peroxidases is given. In particular, the discussion is focused mainly on those of potential interest for fine chemical synthesis. The division into subsections has been done fromthe point of view of the enzyme action, i.e., giving emphasis to themechanismof the enzymatic reaction, and from that of the substrate, i.e., analyzing the type of transformation promoted by the enzyme. These two approaches have several points in common.

  14. Polyphenoloxidase and peroxidase in avocado pulp (Persea americana Mill.)

    OpenAIRE

    Vanini,Lucimara Salvat; Kwiatkowski,Angela; Clemente,Edmar

    2010-01-01

    The aim of the present investigation was to evaluate the enzymatic activity of polyphenoloxidase and peroxidase in avocado pulps, from the Northwest area of Paraná-Brazil, in order to compare the varieties on their enzymatic activity for both, minimum and industrial processing. Enzymatic extracts were prepared from avocado pulp of Choquete, Fortuna and Quintal varieties, in green and ripe maturation stage. Thermal treatment was applied with temperatures 60, 65, 70, 75 and 80 °C. The enzymatic...

  15. Kinetic mechanism and nucleotide specificity of NADH peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, V.S.; Blanchard, J.S.

    1988-02-01

    NADH peroxidase is a flavoprotein isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide-dependent reduction of hydrogen peroxide to water. Initial velocity, product, and dead-end inhibition studies have been performed at pH 7.5 and support a ping-pong kinetic mechanism. In the absence of hydrogen peroxide, both transhydrogenation between NADH and thioNAD, and isotope exchange between (/sup 14/C)NADH and NAD, have been demonstrated, although in both these experiments, the maximal velocity of nucleotide exchange was less than 1.5% the maximal velocity of the peroxidatic reaction. We propose that NADH binds tightly to both oxidized and two-electron reduced enzyme. NADH oxidation proceeds stereospecifically with the transfer of the 4S hydrogen to enzyme, and then, via exchange, to water. No primary tritium kinetic isotope effect was observed, and no statistically significant primary deuterium kinetic isotope effects on V/K were determined, although primary deuterium kinetic isotope effects on V were observed in the presence and absence of sodium acetate. NADH peroxidase thus shares with other flavoprotein reductases striking kinetic, spectroscopic, and stereochemical similarities. On this basis, we propose a chemical mechanism for the peroxide cleaving reaction catalyzed by NADH peroxidase which involves the obligate formation of a flavinperoxide, and peroxo bond cleavage by nucleophilic attack by enzymatic dithiols.

  16. Kinetic mechanism and nucleotide specificity of NADH peroxidase

    International Nuclear Information System (INIS)

    Stoll, V.S.; Blanchard, J.S.

    1988-01-01

    NADH peroxidase is a flavoprotein isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide-dependent reduction of hydrogen peroxide to water. Initial velocity, product, and dead-end inhibition studies have been performed at pH 7.5 and support a ping-pong kinetic mechanism. In the absence of hydrogen peroxide, both transhydrogenation between NADH and thioNAD, and isotope exchange between [ 14 C]NADH and NAD, have been demonstrated, although in both these experiments, the maximal velocity of nucleotide exchange was less than 1.5% the maximal velocity of the peroxidatic reaction. We propose that NADH binds tightly to both oxidized and two-electron reduced enzyme. NADH oxidation proceeds stereospecifically with the transfer of the 4S hydrogen to enzyme, and then, via exchange, to water. No primary tritium kinetic isotope effect was observed, and no statistically significant primary deuterium kinetic isotope effects on V/K were determined, although primary deuterium kinetic isotope effects on V were observed in the presence and absence of sodium acetate. NADH peroxidase thus shares with other flavoprotein reductases striking kinetic, spectroscopic, and stereochemical similarities. On this basis, we propose a chemical mechanism for the peroxide cleaving reaction catalyzed by NADH peroxidase which involves the obligate formation of a flavinperoxide, and peroxo bond cleavage by nucleophilic attack by enzymatic dithiols

  17. Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts.

    Science.gov (United States)

    Marzocchi, Ettore; Grilli, Stefano; Della Ciana, Leopoldo; Prodi, Luca; Mirasoli, Mara; Roda, Aldo

    2008-06-15

    The light output of the peroxidase-catalyzed luminol chemiluminescent oxidation reaction can be greatly increased by incorporating different enhancers. Such an increase is attributed to the preferential oxidation of the enhancer by peroxidase intermediates and the rapid formation of enhancer radicals that, in turn, quickly oxidize luminol to its radical anion. These enhancers, which include substituted phenols, substituted boronic acids, indophenols, and N-alkyl phenothiazines, behave as electron transfer mediators. A further, very significant increase in light output was also observed by the addition of nucleophilic acylation catalyst to the enhancer/luminol/oxidant substrate. The effect of the new component is general and applicable to many of the known enhancers but is much more remarkable in association with phenothiazine enhancers (up to 10-fold light output). The addition of a nucleophilic acylation catalyst to these substrates lowered the limit of detection for horseradish peroxidase from 50 to 8 amol. Similar improvements were observed in "sandwich" enzyme-linked immunosorbent assays and Western blot assays.

  18. Cloning and Characterization of a cDNA Encoding a Novel Extracellular Peroxidase from Trametes versicolor

    Science.gov (United States)

    Collins, Patrick J.; O’Brien, Margaret M.; Dobson, Alan D. W.

    1999-01-01

    The white rot basidiomycete Trametes versicolor secretes a large number of peroxidases which are believed to be involved in the degradation of polymeric lignin. These peroxidases have been classified previously as lignin peroxidases or manganese peroxidases (MnP). We have isolated a novel extracellular peroxidase-encoding cDNA sequence from T. versicolor CU1, the transcript levels of which are repressed by low concentrations of Mn2+ and induced by nitrogen and carbon but not induced in response to a range of stresses which have been reported to induce MnP expression. PMID:10049906

  19. DYNAMICS OF LEAF PEROXIDASE ACTIVITY DURING ONTOGENY OF HEMP PLANTS, IN RELATION TO SEXUAL PHENOTYPE

    Directory of Open Access Journals (Sweden)

    Elena Truta

    2005-08-01

    Full Text Available During vegetation of female and male hemp plants (Cannabis sativa L., five quantitative determinations of peroxidase activities were made (40 days, 55 days, 70 days, 85 days, 105 days. Peroxidase activity presented some differences in hemp plants, between females and males, during their vegetation cycle. In female plants, before anthesis were registered peaks of peroxidase activities. The blossoming of male plants was coincident with the increase of catalitic action of peroxidase. Generally, the male plants displayed greater levels of peroxidasic activity.

  20. The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration.

    Science.gov (United States)

    Uarrota, Virgílio Gavicho; Moresco, Rodolfo; Schmidt, Eder Carlos; Bouzon, Zenilda Laurita; Nunes, Eduardo da Costa; Neubert, Enilto de Oliveira; Peruch, Luiz Augusto Martins; Rocha, Miguel; Maraschin, Marcelo

    2016-04-15

    This study aimed to investigate the role of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), polysaccharides, and protein contents associated with the early events of postharvest physiological deterioration (PPD) in cassava roots. Increases in APX and GPX activity, as well as total protein contents occurred from 3 to 5 days of storage and were correlated with the delay of PPD. Cassava samples stained with Periodic Acid-Schiff (PAS) highlighted the presence of starch and cellulose. Degradation of starch granules during PPD was also detected. Slight metachromatic reaction with toluidine blue is indicative of increasing of acidic polysaccharides and may play an important role in PPD delay. Principal component analysis (PCA) classified samples according to their levels of enzymatic activity based on the decision tree model which showed GPX and total protein amounts to be correlated with PPD. The Oriental (ORI) cultivar was more susceptible to PPD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification

    DEFF Research Database (Denmark)

    Ostergaard, L; Teilum, K; Mirza, O

    2000-01-01

    Lignins are phenolic biopolymers synthesized by terrestrial, vascular plants for mechanical support and in response to pathogen attack. Peroxidases have been proposed to catalyse the dehydrogenative polymerization of monolignols into lignins, although no specific isoenzyme has been shown...... to be involved in lignin biosynthesis. Recently we isolated an extracellular anionic peroxidase, ATP A2, from rapidly lignifying Arabidopsis cell suspension culture and cloned its cDNA. Here we show that the Atp A2 promoter directs GUS reporter gene expression in lignified tissues of transgenic plants. Moreover......, an Arabidopsis mutant with increased lignin levels compared to wild type shows increased levels of ATP A2 mRNA and of a mRNA encoding an enzyme upstream in the lignin biosynthetic pathway. The substrate specificity of ATP A2 was analysed by X-ray crystallography and docking of lignin precursors. The structure...

  2. Production and characterization of monoclonal antibodies to wall-localized peroxidases from corn seedlings

    Science.gov (United States)

    Kim, S. H.; Terry, M. E.; Hoops, P.; Dauwalder, M.; Roux, S. J.

    1988-01-01

    A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls.

  3. Variation in the Ability to Taste Bitter Thiourea Compounds: Implications for Food Acceptance, Dietary Intake, and Obesity Risk in Children.

    Science.gov (United States)

    Keller, Kathleen L; Adise, Shana

    2016-07-17

    The ability to taste bitter thiourea compounds, such as phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP), is inherited. Polymorphisms in the bitter-taste receptor TAS2R38 explain the majority of phenotypic variation in the PROP phenotype. It has been hypothesized that the PROP phenotype is a marker for perception of a variety of chemosensory experiences. In this review, we discuss studies that have investigated the relationship between bitter-taste response and dietary behaviors and chronic health in children. Investigators have hypothesized that children who are PROP tasters have lower liking and consumption of bitter foods, such as cruciferous vegetables. Additionally, several studies suggest that children who are unable to taste PROP (i.e., nontasters) like and consume more dietary fat and are prone to obesity. The relationship between the PROP phenotype and obesity is influenced by multiple confounders, including sex, food access, ethnicity, and socioeconomic status. Future studies that adjust for these variables are needed.

  4. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi

    International Nuclear Information System (INIS)

    Bonnarme, P.; Jeffries, T.W.

    1990-01-01

    Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14 CO 2 from 14 C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14 CO 2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini

  5. Effects of sesame and bitter almond seed oils on mycelium growth of Agaricus bisporus (Lange) Sing.

    OpenAIRE

    kalyoncu, Ismail Hakki; KaSik, Giyaseddin; Özcan, Musa; Özturk, Celaleddin

    1999-01-01

    Secondary mycelium growth of Agaricus bisporus from Nigde University Mushroom Research Centre (Aksaray-Nigde) was monitored in malt extract agar medium containing sesame or bitter almond seed oils. With 1 % sesame oil, highest growth was established and less growth period was determined as 27.4 days. All of the samples with sesame oil showed better growth according to the control, being the stimulative effect of sesame oil higher than that of bitter almond oil.
    <...

  6. Characterization of Bioactive Compounds in Tunisian Bitter Orange (Citrus aurantium L.) Peel and Juice and Determination of Their Antioxidant Activities

    OpenAIRE

    Jabri karoui, Iness; Marzouk, Brahim

    2013-01-01

    Citrus aurantium peel and juice aroma compounds were investigated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), whereas phenolic compounds analysis was performed by reversed-phase high-performance liquid chromatography (RP-HPLC). Limonene was the major volatile compound of bitter orange peel (90.25%) and juice (91.61%). HPLC analysis of bitter orange peel and juice methanolic extracts indicated that phenolic acids constitute their main phenolic class representin...

  7. Differential effects of bitter compounds on the taste transduction channels TRPM5 and IP3 receptor type 3.

    Science.gov (United States)

    Gees, Maarten; Alpizar, Yeranddy A; Luyten, Tomas; Parys, Jan B; Nilius, Bernd; Bultynck, Geert; Voets, Thomas; Talavera, Karel

    2014-05-01

    Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a Ca(2+)-activated nonselective cation channel involved in the transduction of sweet, bitter, and umami tastes. We previously showed that TRPM5 is a locus for the modulation of taste perception by temperature changes, and by quinine and quinidine, 2 bitter compounds that suppress gustatory responses. Here, we determined whether other bitter compounds known to modulate taste perception also affect TRPM5. We found that nicotine inhibits TRPM5 currents with an effective inhibitory concentration of ~1.3mM at -50 mV. This effect may contribute to the inhibitory effect of nicotine on gustatory responses in therapeutic and experimental settings, where nicotine is often employed at millimolar concentrations. In addition, it implies the existence of a TRPM5-independent pathway for the detection of nicotine bitterness. Nicotine seems to act from the extracellular side of the channel, reducing the maximal whole-cell conductance and inducing an acceleration of channel closure that leads to a negative shift of the activation curve. TRPM5 currents were unaffected by nicotine's metabolite cotinine, the intensive sweetener saccharin or by the bitter xanthines caffeine, theobromine, and theophylline. We also tested the effects of bitter compounds on another essential element of the sweet taste transduction pathway, the type 3 IP3 receptor (IP3R3). We found that IP3R3-mediated Ca(2+) flux is slightly enhanced by nicotine, not affected by saccharin, modestly inhibited by caffeine, theobromine, and theophylline, and strongly inhibited by quinine. Our results demonstrate that bitter compounds have differential effects on key elements of the sweet taste transduction pathway, suggesting for heterogeneous mechanisms of bitter-sweet taste interactions.

  8. Reinvestigation of the bitter compounds in carrots (Daucus carota L.) by using a molecular sensory science approach.

    Science.gov (United States)

    Schmiech, Ludger; Uemura, Daisuke; Hofmann, Thomas

    2008-11-12

    In order to reinvestigate the key molecules inducing bitter off-taste of carrots ( Daucus carota L.), a sensory-guided fractionation approach was applied to bitter carrot extracts. Besides the previously reported bitter compounds, 6-methoxymellein (1), falcarindiol (2), falcarinol (3), and falcarindiol-3-acetate (4), the following compounds were identified for the first time as bitter compounds in carrots with low bitter recognition thresholds between 8 and 47 micromol/L: vaginatin (5), isovaginatin (6), 2-epilaserine oxide (7), laserine oxide (8), laserine (14), 2-epilaserine (15), 6,8-O-ditigloyl- (9), 6-O-angeloyl-, 8-O-tigloyl- (10), 6-O-tigloyl-, 8-O-angeloyl- (11), and 6-, 8-O-diangeloyl-6 ss,8alpha,11-trihydroxygermacra-1(10) E,4 E-diene (12), as well as 8-O-angeloyl-tovarol (13) and alpha-angeloyloxy-latifolone (16). Among these bitter molecules, compounds 9, 10, 13, and 16 were not previously identified in carrots and compounds 6, 11, and 12 were yet not reported in the literature.

  9. Beneficial Role of Bitter Melon Supplementation in Obesity and Related Complications in Metabolic Syndrome

    Science.gov (United States)

    Subhan, Nusrat; Rahman, Md Mahbubur; Jain, Preeti; Reza, Hasan Mahmud

    2015-01-01

    Diabetes, obesity, and metabolic syndrome are becoming epidemic both in developed and developing countries in recent years. Complementary and alternative medicines have been used since ancient era for the treatment of diabetes and cardiovascular diseases. Bitter melon is widely used as vegetables in daily food in Bangladesh and several other countries in Asia. The fruits extract of bitter melon showed strong antioxidant and hypoglycemic activities in experimental condition both in vivo and in vitro. Recent scientific evaluation of this plant extracts also showed potential therapeutic benefit in diabetes and obesity related metabolic dysfunction in experimental animals and clinical studies. These beneficial effects are mediated probably by inducing lipid and fat metabolizing gene expression and increasing the function of AMPK and PPARs, and so forth. This review will thus focus on the recent findings on beneficial effect of Momordica charantia extracts on metabolic syndrome and discuss its potential mechanism of actions. PMID:25650336

  10. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange.

    Science.gov (United States)

    Moufida, Saïdani; Marzouk, Brahim

    2003-04-01

    This paper reports on the composition of aroma compounds and fatty acids and some physico-chemical parameters (juice percentage, acidity and total sugars) in five varieties of citrus: blood orange, sweet orange, lemon, bergamot and bitter orange. Volatile compounds and methyl esters have been analyzed by gas chromatography. Limonene is the most abundant compound of monoterpene hydrocarbons for all of the examined juices. Eighteen fatty acids have been identified in the studied citrus juices, their quantification points out that unsaturated acids predominate over the saturated ones. Mean concentration of fatty acids varies from 311.8 mg/l in blood orange juice to 678 mg/l in bitter orange juice. Copyright 2003 Elsevier Science Ltd.

  11. Beneficial Role of Bitter Melon Supplementation in Obesity and Related Complications in Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Md Ashraful Alam

    2015-01-01

    Full Text Available Diabetes, obesity, and metabolic syndrome are becoming epidemic both in developed and developing countries in recent years. Complementary and alternative medicines have been used since ancient era for the treatment of diabetes and cardiovascular diseases. Bitter melon is widely used as vegetables in daily food in Bangladesh and several other countries in Asia. The fruits extract of bitter melon showed strong antioxidant and hypoglycemic activities in experimental condition both in vivo and in vitro. Recent scientific evaluation of this plant extracts also showed potential therapeutic benefit in diabetes and obesity related metabolic dysfunction in experimental animals and clinical studies. These beneficial effects are mediated probably by inducing lipid and fat metabolizing gene expression and increasing the function of AMPK and PPARs, and so forth. This review will thus focus on the recent findings on beneficial effect of Momordica charantia extracts on metabolic syndrome and discuss its potential mechanism of actions.

  12. Bitter orange (Citrus aurantiumL.) extract subchronic 90-day safety study in rats.

    Science.gov (United States)

    Deshmukh, N S; Stohs, S J; Magar, C C; Kale, A; Sowmya, B

    2017-01-01

    Bitter orange ( Citrus aurantium L.) extracts are widely used in dietary supplements and bitter oranges are used in various juices and food products. p -Synephrine, the primary active constituent, comprises approximately 90% of total protoalkaloids. This study, performed per OECD 408 guidance, examined the 90-day subchronic safety/toxicity of an extract standardized to 50% p -synephrine at doses of 100, 300 and 1000 mg/kg/day to male and female rats. No adverse effects were observed with respect to any of the observed parameters of clinical signs, functional observations of sensory reactivity, grip strength and motor activity, ophthalmology, body weights, hematology, food consumption, urinalysis, organ weights, as well as gross and microscopic pathology at termination at any of the doses in either sex. Treatment at 1000 mg/kg body weight/day of the extract resulted in non-adverse effects including fully reversible signs of repetitive head burrowing in the bedding material and piloerection for short periods of time in both sexes immediately after administration, which gradually disappeared by treatment day-81. A slight and reversible elevation of BUN and urea levels in male rats, and slight to mild increase in the relative but not absolute heart weights of male and female rats was observed. Based on these results, the no-observed-effect-level (NOEL) for this bitter orange extract standardized to 50% p -synephrine was 300 mg/kg, while the no-observed-adverse-effect-level (NOAEL) was 1000 mg/kg. The results indicate a high degree of safety for this bitter orange extract.

  13. Comparative investigation of the sweet and bitter orange essential oil (Citrus sinensis and Citrus aurantium)

    OpenAIRE

    Sanja Kostadinovic; Marina Stefova; Diana Nikolova

    2005-01-01

    The volatile fraction composition of commercially produced sweet and bitter orange oil from fruit peels was studied using GC-MS. More than fifty components were identified in the oils using their mass spectra and linear retention indices. The monoterpene limonene was the most abundant component even though not in a quantity expected for a fresh orange essential oil. Aldehydes, followed by alcohols and esters, were the main components in the oxygenated fraction. Aldehydes were the major oxy...

  14. Chemical and nutritional changes in bitter and sweet lupin seeds (Lupinus albus L.) during bulgur production

    OpenAIRE

    Yorgancilar, Mustafa; Bilgiçli, Nermin

    2012-01-01

    In this research, bitter and sweet Lupin (Lupinus albus L.) seeds were used in bulgur production. The proximate chemical compositions and the contents of phytic acid, mineral, amino acid and fatty acid of raw material and processed lupin seeds as bulgur were determined. The sensory properties of bulgur samples were also researched. Bulgur process decreased ash, fat and phytic acid content of lupin seeds while significant increase (p 

  15. Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans.

    Science.gov (United States)

    Little, Tanya J; Gupta, Nili; Case, R Maynard; Thompson, David G; McLaughlin, John T

    2009-09-01

    In cell line and animal models, sweet and bitter tastants induce secretion of signaling peptides (e.g., glucagon-like peptide-1 and cholecystokinin) and slow gastric emptying (GE). Whether human GE and appetite responses are regulated by the sweetness or bitterness per se of ingested food is, however, unknown. We aimed to determine whether intragastric infusion of "equisweet" (Study A) or "equibitter" (Study B) solutions slow GE to the same extent, and whether a glucose solution made sweeter by the addition of saccharin will slow GE more potently than glucose alone. Healthy nonobese subjects were studied in a single-blind, randomized fashion. Subjects received 500-ml intragastric infusions of predetermined equisweet solutions of glucose (560 mosmol/kgH(2)O), fructose (290 mosmol/kgH(2)O), aspartame (200 mg), and saccharin (50 mg); twice as sweet glucose + saccharin, water (volumetric control) (Study A); or equibitter solutions of quinine (0.198 mM), naringin (1 mM), or water (Study B). GE was evaluated using a [(13)C]acetate breath test, and hunger and fullness were scored using visual analog scales. In Study A, equisweet solutions did not empty similarly. Fructose, aspartame, and saccharin did not slow GE compared with water, but glucose did (P solution (P > 0.05, compared with glucose alone). In Study B, neither bitter tastant slowed GE compared with water. None of the solutions modulated perceptions of hunger or fullness. We conclude that, in humans, the presence of sweetness and bitterness taste per se in ingested solutions does not appear to signal to influence GE or appetite perceptions.

  16. Effect of Storage Duration and Atmosphere on the Content and Price of Hop Alpha Bitter Acids

    Directory of Open Access Journals (Sweden)

    Rybka A.

    2017-12-01

    Full Text Available The quality of hops is significantly affected by the content of alpha bitter acids. Maintaining it with minimum losses lies within the competence of both the hop grower and processor depending on how they follow the optimum harvest technology, storage conditions, and post-harvest hop processing. That indicator is considerably affected by the hop storage method, i.e. whether the warehouse is air-conditioned or not, as well as the storage duration. The alpha bitter acid content should not be reduced during storage. The objective of this paper is an analysis of the alpha bitter acid content in the Saaz hop variety in a technological sequence of operations starting with drying at the grower and finishing with six-month storing at the processor, with three storage variants: an air-conditioned warehouse, non-conditioned warehouse, and a variant in which the square bale is moved after 60 days from a non-conditioned warehouse into an air-conditioned warehouse. The analysis of samples to identify the alpha bitter acid content was carried out by means of the ASBC Hops-6 and the HPLC EBC 7.7 methods. Practically in all cases the alpha content declines, although if a square bale is placed in an air-conditioned warehouse this decline is the lowest depending on the storage duration. The economic analysis shows a significant profit referring to the price of alpha contained in 1 t of hops stored in an air-conditioned warehouse. At the date of 1/11/2015 this profit was 14 706 CZK, at the date of 4/1/2016 it was 7646 CZK, and at 1/3/2016 the profit was 6587 CZK.

  17. Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations.

    Science.gov (United States)

    Su, Yuan; Li, Diyan; Gaur, Uma; Wang, Yan; Wu, Nan; Chen, Binlong; Xu, Zhongxian; Yin, Huadong; Hu, Yaodong; Zhu, Qing

    2016-09-01

    The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter taste receptor genes (Tas2rs) in chicken, here, we sequenced Tas2rs of 30 Sichuan domestic chickens and 30 Tibetan chickens. Thirteen single-nucleotide polymorphisms (SNPs) including three nonsynonymous mutations (m.359G>C, m.503C>A and m.583A>G) were detected in Tas2r1 (m. is the abbreviation for mutation); three SNPs were detected in Tas2r2, but none of them were missense mutation; eight SNPs were detected in Tas2r7 including six nonsynonymous substitutions (m.178G>A, m.421A>C, m.787C>T, m.832G>T, m.907A>T and m.943G>A). Tajima's D neutral test indicates that there is no population expansion in both populations, and the size of the population is relatively stable. All the three networks indicate that red jungle fowls share haplotypes with domestic chickens. In addition, we found that haplotypes H1 and HE1 were positively associated with high-altitude adaptation, whereas haplotypes H4 and HE4 showed a negative correlation with high-altitude adaptation in Tas2rs. Although, chicken has only three Tas2rs, our results showed that both Sichuan domestic chickens and Tibetan chickens have abundant haplotypes in Tas2rs, especially in Tas2r7, which might help chickens to recognize a wide variety of bitter-tasting compounds.

  18. The impact of bitter taste receptor genetics on culturable bacteria in chronic rhinosinusitis.

    Science.gov (United States)

    Rom, D I; Christensen, J M; Alvarado, R; Sacks, R; Harvey, R J

    2017-03-01

    Extra-oral bitter taste receptors have been associated with innate bacterial defence mechanisms. Genetic variation in T2R38 functionality has been shown to be associated with susceptibility to upper respiratory tract infections and chronic rhinosinusitis (CRS). We sought to independently assess the influence of bitter taste receptor genotype on the presence of culturable bacteria in the sinuses. A cross-sectional analysis of patients with CRS undergoing surgery was performed. Middle meatal nasal swabs were sent for microbiological evaluation at the time of the procedure. Mucosal biopsies were taken and sent for bitter taste receptor genotype analysis. Sequencing of 3 polymorphisms in the TAS2R38 gene was performed to identify genotypes as super-tasters (PAV/PAV), non-tasters (AVI/AVI) or heterozygous expression (PAV/AVI). The presence of culturable organisms and common pathogens were compared with bitter taste receptor genotypes. 25 patients (age 52.4 +/- 18.28 years, 51% female) were assessed. Super-tasters comprised 16% of the group, 24% were non-tasters and 48% had heterozygous expression. A cultured pathogen was grown in 48% of patients; 32% gram-positive, 20% gram-negative, 28% grew Staphylococcus aureus and 12% Pseudomonas aeruginosa. A non-taster genotype was predictive of colonised pathogens. Tissue eosinophilia (more than 10 HPF) was seen in 48%. Even in a small sample of patients with CRS, non-taster T2R38 genotype appears to predict the presence of culturable bacteria colonising the sinus cavity at the time of surgery for their condition. A genetic link to patients more likely to become infected is likely.

  19. Lineage-Specific Loss of Function of Bitter Taste Receptor Genes in Humans and Nonhuman Primates

    OpenAIRE

    Go, Yasuhiro; Satta, Yoko; Takenaka, Osamu; Takahata, Naoyuki

    2005-01-01

    Since the process of becoming dead genes or pseudogenes (pseudogenization) is irreversible and can occur rather rapidly under certain environmental circumstances, it is one plausible determinant for characterizing species specificity. To test this evolutionary hypothesis, we analyzed the tempo and mode of duplication and pseudogenization of bitter taste receptor (T2R) genes in humans as well as in 12 nonhuman primates. The results show that primates have accumulated more pseudogenes than mice...

  20. Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans

    Science.gov (United States)

    Little, Tanya J.; Gupta, Nili; Case, R. Maynard; Thompson, David G.; McLaughlin, John T.

    2009-01-01

    In cell line and animal models, sweet and bitter tastants induce secretion of signaling peptides (e.g., glucagon-like peptide-1 and cholecystokinin) and slow gastric emptying (GE). Whether human GE and appetite responses are regulated by the sweetness or bitterness per se of ingested food is, however, unknown. We aimed to determine whether intragastric infusion of “equisweet” (Study A) or “equibitter” (Study B) solutions slow GE to the same extent, and whether a glucose solution made sweeter by the addition of saccharin will slow GE more potently than glucose alone. Healthy nonobese subjects were studied in a single-blind, randomized fashion. Subjects received 500-ml intragastric infusions of predetermined equisweet solutions of glucose (560 mosmol/kgH2O), fructose (290 mosmol/kgH2O), aspartame (200 mg), and saccharin (50 mg); twice as sweet glucose + saccharin, water (volumetric control) (Study A); or equibitter solutions of quinine (0.198 mM), naringin (1 mM), or water (Study B). GE was evaluated using a [13C]acetate breath test, and hunger and fullness were scored using visual analog scales. In Study A, equisweet solutions did not empty similarly. Fructose, aspartame, and saccharin did not slow GE compared with water, but glucose did (P 0.05, compared with glucose alone). In Study B, neither bitter tastant slowed GE compared with water. None of the solutions modulated perceptions of hunger or fullness. We conclude that, in humans, the presence of sweetness and bitterness taste per se in ingested solutions does not appear to signal to influence GE or appetite perceptions. PMID:19535679

  1. An Optimised Aqueous Extract of Phenolic Compounds from Bitter Melon with High Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Sing Pei Tan

    2014-12-01

    Full Text Available Bitter melon (Momordica charantia L. is a tropical fruit claimed to have medicinal properties associated with its content of phenolic compounds (TPC. The aim of the study was to compare water with several organic solvents (acetone, butanol, methanol and 80% ethanol for its efficiency at extracting the TPC from freeze-dried bitter melon powder. The TPC of the extracts was measured using the Folin-Ciocalteu reagent and their antioxidant capacity (AC was evaluated using three assays. Before optimisation, the TPC and AC of the aqueous extract were 63% and 20% lower, respectively, than for the best organic solvent, 80% ethanol. However, after optimising for temperature (80 °C, time (5 min, water-to-powder ratio (40:1 mL/g, particle size (1 mm and the number of extractions of the same sample (1×, the TPC and the AC of the aqueous extract were equal or higher than for 80% ethanol. Furthermore, less solvent (40 mL water/g and less time (5 min were needed than was used for the 80% ethanol extract (100 mL/g for 1 h. Therefore, this study provides evidence to recommend the use of water as the solvent of choice for the extraction of the phenolic compounds and their associated antioxidant activities from bitter melon.

  2. Structural and Sensory Characterization of Bitter Tasting Steroidal Saponins from Asparagus Spears (Asparagus officinalis L.).

    Science.gov (United States)

    Dawid, Corinna; Hofmann, Thomas

    2012-12-05

    Application of sequential solvent extraction and iterative chromatographic separation in combination with taste dilution analysis recently revealed a series of steroidal saponins as the key contributors to the typical bitter taste of white asparagus spears (Asparagus officinalis L.). Besides six previously reported saponins, (25R)-furost-5-en-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside, (25R)-furostane-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside, and (25S)-furostane-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside, and 3-O-[{α-L-rhamnopyranosyl-(1→2)}{α-L-rhamnopyranosyl-(1→4)}-β-D-glucopyranosyl]-(25S)-spirost-5-ene-3β-ol were identified for the first time as key bitter compounds in the edible spears of white asparagus by means of LC-MS/MS, LC-TOF-MS, 1D/2D-NMR spectroscopy, and hydrolysis experiments. This paper presents the isolation, structure determination, and sensory activity of these saponins. Depending on their chemical structure, the saponins identified showed human bitter recognition thresholds between 10.9 and 199.7 μmol/L (water).

  3. Functions of human bitter taste receptors depend on N-glycosylation.

    Science.gov (United States)

    Reichling, Claudia; Meyerhof, Wolfgang; Behrens, Maik

    2008-08-01

    Human bitter taste receptors of the TAS2R gene family play a crucial role as warning sensors against the ingestion of toxic food compounds. Moreover, the genetically highly polymorphic hTAS2Rs recognize an enormous number of structurally diverse toxic and non-toxic bitter substances, and hence, may substantially influence our individual eating habits. Heterologous expression in mammalian cells is a useful tool to investigate interactions between these receptors and their agonists. However, many bitter taste receptors are poorly expressed at the cell surface of heterologous cells requiring the addition of plasma membrane export promoting epitopes to the native receptor proteins. Currently, nothing is known about amino acid motifs or other receptor-intrinsic features of TAS2Rs affecting plasma membrane association. In the present study, we analyzed the Asn-linked glycosylation of hTAS2Rs at a consensus sequence in the second extracellular loop, which is conserved among all 25 hTAS2Rs. Non-glycosylated receptors exhibit substantially lower cell surface localization and reduced association with the cellular chaperone calnexin. As the auxiliary factors receptor transporting proteins 3 and 4 are able to restore the function of non-glycosylated hTAS2R16 partially, we conclude that glycosylation is important for receptor maturation but not for its function per se.

  4. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    Science.gov (United States)

    Wang, Kai; Zhao, Huabin

    2015-09-04

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Comparative investigation of the sweet and bitter orange essential oil (Citrus sinensis and Citrus aurantium

    Directory of Open Access Journals (Sweden)

    Sanja Kostadinovic

    2005-10-01

    Full Text Available The volatile fraction composition of commercially produced sweet and bitter orange oil from fruit peels was studied using GC-MS. More than fifty components were identified in the oils using their mass spectra and linear retention indices. The monoterpene limonene was the most abundant component even though not in a quantity expected for a fresh orange essential oil. Aldehydes, followed by alcohols and esters, were the main components in the oxygenated fraction. Aldehydes were the major oxygenated components in the sweet orange oil, whereas alcohols and esters were present in higher amounts in the bitter orange oil. Among them, nonanal, decanal and linalool are the most important components for the flavour of sweet orange oil and carvon is the most important ketone for the flavour of bitter orange oil in combination with the other components. The amount of carvon gives a good indication about the freshness of the oil and the quantities of α-pinene and β-pinene, sabinene and myrcene give an indication about the natural or artificially changed composition of the essential oils.

  6. Time-intensity profile of pitanga nectar (Eugenia uniflora L.) with different sweeteners: Sweetness and bitterness.

    Science.gov (United States)

    Freitas, Mírian Luisa Faria; de Lima Dutra, Mariana Borges; Bolini, Helena Maria André

    2016-01-01

    Pitanga has been used by the Brazilian food industry mainly for juice production. This fruit shows good economic potential due to its high concentration of vitamins and minerals. The aim of the present work was to characterize the time-intensity profile of pitanga nectar sweetened with different sweeteners to verify differences on the perception of sweet and bitter tastes. The sweeteners used to replace sucrose were sucralose, aspartame, stevia 40% rebaudioside A, stevia 95% rebaudioside A, neotame, and 2:1 cyclamate/saccharin blend. Fifteen assessors were selected according to their discriminating capability and trained to participate in the time-intensity analysis for sweetness and bitterness. The samples prepared with sucralose and 2:1 cyclamate/saccharin blend presented a similar sweetness profile to the sample prepared with sucrose, and the samples prepared with sucralose and aspartame presented a similar bitterness profile to the sample prepared with sucrose. Thus, sucralose would be the most suitable sweetener to replace sucrose in pitanga nectar. © The Author(s) 2015.

  7. Influence of bitter lupin on consumption and digestibility in organic dairy cattle soya bean free diets

    Directory of Open Access Journals (Sweden)

    R. Tocci

    2010-04-01

    Full Text Available One of the main principles of organic husbandry is that animal feed must be GMO free, and soya bean is well-known as a high risk GMO alimentary source. About 25 dry dairy cattle of the Italian Holstein breed, from the Cooperativa Emilio Sereni of Borgo S. Lorenzo (FI, were fed in two successive diets: the first with extruded soya bean (A, and the second in which bitter lupin, faba bean and proteinic pea substituted the soya bean (B. We evaluated both the consumption and the apparent digestibility (using acid insoluble ash as internal marker of the two diets, repeating the trial twice. The presence of bitter lupin did not influence either the consumption of other feed, or the faecal water content. The apparent digestibility of the organic matter resulted satisfactory in both the diets, but was significantly higher in diet (A than in diet (B (71,6% vs 67,3%. In conclusion, even though we wish the cultivation of sweet lupin would be increase in Italy, we retain that also bitter lupin (mixed with other feed to increase the palatability could be used as alternative protein source in dairy cattle diets.

  8. An explanation for the natural de-bittering of Hurma olives during ripening on the tree

    International Nuclear Information System (INIS)

    Susamci, E.; Romero, C.; Tuncay, O.; Brenes, M.

    2017-01-01

    Harvested olives require further processing to make them edible due to their content in the bitter substance oleuropein. However, some olives of the Erkence cultivar naturally de-bitter on the tree giving rise to the so-called Hurma olives. In this study, the evolution of the chemical characteristics of Erkence and Hurma olives harvested from the northeast and southwest area of trees located in the Karaburun Peninsula was assayed. It was confirmed that the oleuropein content in Hurma olives was much lower (< 2000 mg/kg fresh weight) than Erkence, which reached 35.000 mg/kg fresh weight at the beginning of the season. In addition, no free or polymerized anthocyanins were found in Hurma fruit in contrast to ripened Erkence fruit. The concentration of glucose was also lower in Hurma than Erkence olives. These results suggest that the enzymatic oxidation of oleuropein could be responsible for the natural de-bittering of Hurma olives during their ripening on the tree. [es

  9. Reducing the Bitterness of Tuna (Euthynnus pelamis Dark Meat with Lactobacillus casei subsp. casei ATCC 393

    Directory of Open Access Journals (Sweden)

    Ernani S. Sant’Anna

    2004-01-01

    Full Text Available During the process of canning tuna fish, considerable amounts of dark tuna meat are left over because of its bitterness, which are then used in the production of animal food. Fermentation with Lactobacillus casei subsp. casei ATCC 393 was used as an alternative to reduce this bitter taste. Samples of meat were prepared, vacuum packed and then stored at –18 °C. The frozen dark meat was used immediately after defrosting and the experiment was carried out with 2 and 4 % of NaCl with the addition of 2 and 4 % of glucose, respectively. The dark tuna meat was inoculated with lactic acid bacteria (LAB and fermented at 10 °C for 30 days. The fermentation process was monitored through bacteriological and chemical analyses, when an increase of acidity and the corresponding decrease of pH were observed due to the prevalence of LAB. Sensorial analysis, using a test of multiple comparison, was carried out with pastes of fermented dark tuna meat and presented a significant difference when compared to the paste control, indicating the reduction of bitter taste.

  10. The safety of Citrus aurantium (bitter orange) and its primary protoalkaloid p-synephrine.

    Science.gov (United States)

    Stohs, Sidney J; Preuss, Harry G; Shara, Mohd

    2011-10-01

    Citrus aurantium (bitter orange) extract and its principal protoalkaloidal constituent p-synephrine are widely used in weight loss and weight management as well as in sports performance products. However, questions are raised frequently regarding the safety of these ingredients. The potential inherent dangers associated with the use of products containing C. aurantium extract are frequently touted, while conversely, millions of doses of dietary supplements have been consumed by possibly millions of individuals in recent years. Furthermore, millions of people consume on a daily basis various juices and food products from Citrus species that contain p-synephrine. This review summarizes current information regarding the safety of C. aurantium (bitter orange) extract and p-synephrine based on human, animal and in vitro assessments as well as receptor binding and mechanistic studies. The data indicate that based on current knowledge, the use of bitter orange extract and p-synephrine appears to be exceedingly safe with no serious adverse effects being directly attributable to these ingredients. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Purification and characterization of peroxidase from sprouted green gram (Vigna radiata) roots and removal of phenol and p-chlorophenol by immobilized peroxidase.

    Science.gov (United States)

    Basha, Shaik Akbar; Prasada Rao, Ummiti Js

    2017-08-01

    Peroxidase activity was increased during germination of green gram and such an increase may have benefits in many physiological processes. The present study aimed to investigate the optimum conditions for the extraction, purification and characterization of peroxidase from the germinated green gram roots and also its application for the removal of phenols in water. Peroxidase activity was increased by 300-fold in 5-day germinated green gram. Because the root was rich in peroxidase activity, peroxidase from roots was isolated and purified to homogeneity. The purified peroxidase showed a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis with a molecular weight of 50 kDa, an optimum pH of 5.5 and a pH stability ranging from 5 to 9. The enzyme had 50% residual activity at 70 °C. It catalyzed the oxidation of a variety of substrates. The K m value of the enzyme was 1.28 mmol L -1 for o-dianisidine and 0.045 mmol L -1 for H 2 O 2 . The enzyme lost 100% activity in the presence of dithiothreitol and cysteine. The addition of copper ion increased the enzyme activity by three-fold. Both soluble and immobilized peroxidases removed more phenol than p-chlorphenol, whereas horseradish peroxidase removed more p-chlorphenol. Thus, the green gram root peroxidase showed good pH and temperature stability, as well as the ability to remove phenolic compounds from effluent. Peroxidase with good thermal and pH stability was purified from germinated green gram roots and has the ability to oxidize phenolic compounds from waste water. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Peroxidase synthesis and activity in the interaction of soybean with Phytophthora megasperma f. sp. glycinea (Pmg)

    International Nuclear Information System (INIS)

    Chibbar, R.N.; Esnault, R.; Lee, D.; van Huystee, R.B.; Ward, E.W.B.

    1986-01-01

    Changes, in peroxidase (EC1.11.1.7) have been reported following infection. However, determinations of biosynthesis of quantities of the peroxidase protein molecule have not been made! In this study hypocotyl of soybean seedlings (Glycine max; cv Harosoy, susceptible; cv Harosoy 63, resistant) were inoculated with zoospores of Pmg. Incorporation of 35 S-methionine (supplied with inoculum) in TCA precipitates was measured. Peroxidase synthesis was measured by immuno precipitation using antibodies against a cationic and an anionic peroxidase derived from peanut cells. Specific peroxidase activity increased rapidly from 5 to 9 h following infection in the resistant reaction but not in the susceptible reaction or the water controls. There was increased synthesis of the anionic peroxidase but not of the cationic peroxidase in the resistant reaction. The anionic peroxidase did not increase in the susceptible until 15 h. The ratio of peroxidase synthesis to total protein synthesis decreased in inoculated tissues compared to control. Peroxidase synthesis is, therefore, a relative minor host response to infection

  13. Bacillary haemoglobinuria diagnosis by the peroxidase-antiperoxidase (PAP) technique.

    Science.gov (United States)

    Uzal, F A; Belak, K; Rivera, E; Robles, C A; Feinstein, R E

    1992-10-01

    A peroxidase-antiperoxidase (PAP) technique was used to diagnose bacillary haemoglobinuria in formalin-fixed, paraffin-embedded liver tissues of cattle. The PAP method revealed Clostridium haemolyticum in the zone of liver necrosis characteristic of the disease and also in culture smears of this microorganism, but C. novyi type B, C. chauvoei, C. septicum and C. perfringens types B and C remained unstained by the PAP reaction. The PAP technique performed provides a specific, simple and rapid method to diagnose bacillary haemoglobinuria.

  14. Individual Differences Among Children in Sucrose Detection Thresholds: Relationship With Age, Gender, and Bitter Taste Genotype.

    Science.gov (United States)

    Joseph, Paule Valery; Reed, Danielle R; Mennella, Julie A

    2016-01-01

    Little research has focused on whether there are individual differences among children in their sensitivity to sweet taste and, if so, the biological correlates of such differences. Our goal was to understand how variations in children's sucrose detection thresholds relate to their age and gender, taste genotype, body composition, and dietary intake of added sugars. Sucrose detection thresholds in 7- to 14-year-old children were tested individually using a validated, two-alternative, forced-choice, paired-comparison tracking method. Five genetic variants of taste genes were assayed: TAS1R3 and GNAT3 (sweet genes; one variant each) and the bitter receptor gene TAS2R38 (three variants). All children were measured for body weight and height. A subset of these children were measured for the percentage of body fat and waist circumference and provided added sugar intake by 24-hour dietary recall. Sucrose thresholds ranged from 0.23 to 153.8 mM with most of the children completing the threshold task (216/235; 92%). Some children were biologically related (i.e., siblings), and for the genetic analysis, one sibling from each family was studied. Variants in the bitter but not the sweet genes were related to sucrose threshold and sugar intake; children with two bitter-sensitive alleles could detect sucrose at lower concentrations (F(2,165) = 4.55, p = .01; rs1726866) and reported eating more added sugar (% kcal; F(2, 62) = 3.64, p = .03) than did children with less sensitive alleles. Age, gender, and indices of obesity also were related to child-to-child differences in sucrose threshold; girls were more sensitive than boys (t(214) = 2.0, p = .05), older children were more sensitive than younger children (r(214) = -.16, p = .02), and fatter (r(84) = -.22, p = .05) or more centrally obese children (r(84) = -.26, p = .02) were more sensitive relative to others. Inborn differences in bitter sensitivity may affect childhood dietary sugar intake with long-term health consequences

  15. Polyphenoloxidase and peroxidase in avocado pulp (Persea americana Mill. Polifenoloxidase e peroxidase na polpa de abacate (Persea americana Mill.

    Directory of Open Access Journals (Sweden)

    Lucimara Salvat Vanini

    2010-06-01

    Full Text Available The aim of the present investigation was to evaluate the enzymatic activity of polyphenoloxidase and peroxidase in avocado pulps, from the Northwest area of Paraná-Brazil, in order to compare the varieties on their enzymatic activity for both, minimum and industrial processing. Enzymatic extracts were prepared from avocado pulp of Choquete, Fortuna and Quintal varieties, in green and ripe maturation stage. Thermal treatment was applied with temperatures 60, 65, 70, 75 and 80 °C. The enzymatic activities were determined by using spectrophotometer. A decline of polyphenoloxidase activity was observed in all of the varieties when both, temperature and time increased. Total inactivation of enzymes was not observed in the largest temperature. Fortuna and Choquete variety showed the lowest polyphenoloxidase activity in the ripe stage. Soluble peroxidase showed activity in the green stage, whereas, ionically bound peroxidase activity increased with the change from green to ripe maturation stage in Choquete variety.O objetivo foi avaliar a atividade enzimática da polifenoloxidase (PPO e da peroxidase (POD em polpas de abacates, da região Noroeste do Paraná, Brasil, visando comparar as variedades e suas atividades enzimáticas para processamento mínimo ou industrial. Extratos enzimáticos foram preparados da polpa de abacate das variedades Choquete, Fortuna e Quintal no estágio de maturação verde e maduro. Foi aplicado tratamento térmico com temperaturas de 60, 65, 70, 75 e 80 °C. As atividades enzimáticas foram determinadas por espectrofotometria. Observou-se declínio da atividade da PPO, à medida que aumentava a temperatura e o tempo em todas as variedades. Não foi observada inativação total das enzimas na maior temperatura. As variedades Fortuna e Choquete apresentaram menor atividade da PPO no estágio maduro. A POD solúvel apresentou menor atividade no estágio verde, e, atividade da POD ionicamente ligada aumentou com a mudan

  16. Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity.

    Science.gov (United States)

    Pozdnyakova, Natalia; Makarov, Oleg; Chernyshova, Marina; Turkovskaya, Olga; Jarosz-Wilkolazka, Anna

    2013-01-10

    The inhibitor and substrate specificities of versatile peroxidase from Bjerkandera fumosa (VPBF) were studied. Two different effects were found: NaN(3), Tween-80, anthracene, and fluorene decreased the activity of VPBF, but p-aminobenzoic acid increased it. A mixed mechanism of effector influence on the activity of this enzyme was shown. The catalytic properties of VPBF in the oxidation of mono- and polycyclic aromatic compounds were studied also. 2,7-Diaminofluorene, ABTS, veratryl alcohol, and syringaldazine can be oxidized by VPBF in two ways: either directly by the enzyme or by diffusible chelated Mn(3+) as an oxidizing agent. During VPBF oxidation of 2,7-diaminofluorene, both with and without Mn(2+), biphasic kinetics with apparent saturation in both micromolar and millimolar ranges were obtained. In the case of ABTS, inhibition of VPBF activity by an excess of substrate was observed. Direct oxidation of p-aminobenzoic acid by versatile peroxidase was found for the first time. The oxidation of three- and four-ring PAHs by VPBF was investigated, and the oxidation of anthracene, phenanthrene, fluorene, pyrene, chrysene, and fluoranthene was shown. The products of PAH oxidation (9,10-anthraquinone, 9,10-phenanthrenequinone, and 9-fluorenone) catalyzed by VPBF were identified. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Horseradish peroxidase-modified porous silicon for phenol monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kermad, A., E-mail: amina_energetique@yahoo.fr [Unité de Recherche Matériaux et Energies Renouvelables (URMER), Département de Physique, Faculté des Sciences, Université Abou Baker Belkaid, B.P. 119, Tlemcen 13000 (Algeria); Sam, S., E-mail: Sabrina.sam@polytechnique.edu [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), 02 Bd. Frantz-Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Ghellai, N., E-mail: na_ghellai@yahoo.fr [Unité de Recherche Matériaux et Energies Renouvelables (URMER), Département de Physique, Faculté des Sciences, Université Abou Baker Belkaid, B.P. 119, Tlemcen 13000 (Algeria); Khaldi, K., E-mail: Khadidjaphy@yahoo.fr [Unité de Recherche Matériaux et Energies Renouvelables (URMER), Département de Physique, Faculté des Sciences, Université Abou Baker Belkaid, B.P. 119, Tlemcen 13000 (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), 02 Bd. Frantz-Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria)

    2013-11-01

    Highlights: • Horseradish peroxidase enzyme (HRP) was covalently immobilized on porous silicon (PSi) surface. • Multistep strategy was used allowing the maintaining of the enzymatic activity of the immobilized enzyme. • Direct electron transfer has occurred between the immobilized enzyme and the surface. • Electrochemical measurements showed a response of HRP-modified PSi toward phenol in the presence of H{sub 2}O{sub 2}. -- Abstract: In this study, horseradish peroxidase enzyme (HRP) was covalently immobilized on porous silicon (PSi) surface using multistep strategy. First, acid terminations were generated on hydrogenated PSi surface by thermal hydrosilylation of undecylenic acid. Then, the carboxyl-terminated monolayer was transformed to active ester (succinimidyl ester) using N-hydroxysuccinimide (NHS) in the presence of the coupling agent N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC). Subsequently, the enzyme was anchored on the surface via an amidation reaction. The structure of the PSi layers was observed by scanning electron microscopy (SEM). Infrared spectroscopy (FTIR) and contact angle measurements confirmed the efficiency of the modification at each step of the functionalization. Cyclic voltammetry was recorded using the HRP-modified PSi as working electrode. The results show that the enzymatic activity of the immobilized HRP is preserved and in the presence of hydrogen peroxide, the enzyme oxidizes phenolic molecules which were subsequently reduced at the modified-PSi electrode.

  18. Horseradish peroxidase-modified porous silicon for phenol monitoring

    International Nuclear Information System (INIS)

    Kermad, A.; Sam, S.; Ghellai, N.; Khaldi, K.; Gabouze, N.

    2013-01-01

    Highlights: • Horseradish peroxidase enzyme (HRP) was covalently immobilized on porous silicon (PSi) surface. • Multistep strategy was used allowing the maintaining of the enzymatic activity of the immobilized enzyme. • Direct electron transfer has occurred between the immobilized enzyme and the surface. • Electrochemical measurements showed a response of HRP-modified PSi toward phenol in the presence of H 2 O 2 . -- Abstract: In this study, horseradish peroxidase enzyme (HRP) was covalently immobilized on porous silicon (PSi) surface using multistep strategy. First, acid terminations were generated on hydrogenated PSi surface by thermal hydrosilylation of undecylenic acid. Then, the carboxyl-terminated monolayer was transformed to active ester (succinimidyl ester) using N-hydroxysuccinimide (NHS) in the presence of the coupling agent N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC). Subsequently, the enzyme was anchored on the surface via an amidation reaction. The structure of the PSi layers was observed by scanning electron microscopy (SEM). Infrared spectroscopy (FTIR) and contact angle measurements confirmed the efficiency of the modification at each step of the functionalization. Cyclic voltammetry was recorded using the HRP-modified PSi as working electrode. The results show that the enzymatic activity of the immobilized HRP is preserved and in the presence of hydrogen peroxide, the enzyme oxidizes phenolic molecules which were subsequently reduced at the modified-PSi electrode

  19. Is Root Catalase a Bifunctional Catalase-Peroxidase?

    Science.gov (United States)

    Chioti, Vasileia; Zervoudakis, George

    2017-05-25

    Plant catalases exhibit spatial and temporal distribution of their activity. Moreover, except from the typical monofunctional catalase, a bifunctional catalase-peroxidase has been reported. The aim of this study was to investigate whether the leaf and root catalases from six different plant species ( Lactuca sativa , Cichorium endivia , Apium graveolens , Petroselinum crispum, Lycopersicon esculentum , and Solanum melongena ) correspond to the monofunctional or the bifunctional type based on their sensitivity to the inhibitor 3-amino-1,2,4-triazole (3-AT). The leaf catalases from all species seem to be monofunctional since they are very sensitive to 3-AT. On the other hand, the root enzymes from Lactuca sativa , Cichorium endivia , Lycopersicon esculentum , and Solanum melongena seem to be bifunctional catalase-peroxidases, considering that they are relatively insensitive to 3-AT, whereas the catalases from Apium graveolens and Petroselinum crispum display the same monofunctional characteristics as the leaves' enzymes. The leaf catalase activity is usually higher ( Lactuca sativa , Petroselinum crispum , and Solanum melongena ) or similar ( Cichorium endivia and Apium graveolens ) to the root one, except for the enzyme from Lycopersicon esculentum , while in all plant species the leaf protein concentration is significantly higher than the root protein concentration. These results suggest that there are differences between leaf and root catalases-differences that may correspond to their physiological role.

  20. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan

    2014-02-20

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater.

    Science.gov (United States)

    Duan, Xiaonan; Corgié, Stéphane C; Aneshansley, Daniel J; Wang, Peng; Walker, Larry P; Giannelis, Emmanuel P

    2014-04-04

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2 O2 , producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Effects on Gluten Strength and Bread Volume of Adding Soybean Peroxidase Enzyme to Wheat Flour

    OpenAIRE

    Kirby, Ratia

    2007-01-01

    The Effects on Gluten Strength and Bread Volume of Adding Soybean Peroxidase Enzyme to Wheat Flour Ratia Kirby ABSTRACT Soy peroxidase enzyme obtained from isoelectic precipitation procedures was added to all-purpose flour (APF) to assess its effects on the rheological properties and consumer acceptability of yeast bread. A pH 4.8 isoelectrically precipitated fraction from soybeans was used because it produced the most precipitate and had about the same peroxidase activity as the...

  3. Acquisition of Heat Stable Enzymes from Thermophilic Microorganisms: Peroxidases, Ureases, and Glucose Oxidases.

    Science.gov (United States)

    1992-04-01

    peroxidase production. The addition of methyl viologen ( Paraquat ) at micromolar levels generated a stress that resulted in an increased cellular...130 supematant from 10,000 MW cutoff Horseradish peroxidase has a molecular weight of 40,000 (Glenn). Most other peroxidases from plants , fungi, and...this project resulted in selection of two bacteria producing thermally stable urease. Origin Urease is found in many plants , bacteria, fungi, yeast and

  4. Association of salivary peroxidase activity and concentration with periodontal health: A validity study.

    Science.gov (United States)

    Memarzadeh Zahedani, Maral; Schwahn, Christian; Baguhl, Romy; Kocher, Thomas; Below, Harald; Welk, Alexander

    2017-08-01

    Whereas the relationship between myeloperoxidase and periodontitis has been widely examined that between salivary peroxidase and periodontitis has received little attention. We examined how periodontitis depends on both salivary peroxidase activity and concentration. A full mouth, clinical assessment of probing depth was performed in a sample of 46 participants aged 25-54 years. To minimise bias, these data were corrected by data from the general population (Study of Health in Pomerania). Using five repeated measurements of activity and concentration over 1 day, we assessed daily biological variability and increased the reliability of salivary peroxidase measurements. Salivary peroxidase activity was associated with probing depth (interquartile range effect = -0.48; robust estimates of 95% confidence interval: -0.90 to -0.31; p = .0052), and its effect was not confounded by salivary peroxidase concentration. In turn, the effect of salivary peroxidase concentration was confounded by salivary peroxidase activity, and it was smaller than that of activity. We found an inverse association between salivary peroxidase activity and probing depth. Thus, our results imply that salivary peroxidase activity could be a protective factor against periodontitis. However, large, well-designed studies are needed to explore the causal mechanisms of this association. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    Science.gov (United States)

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Red blood cell glutathione peroxidase activity in female nulligravid and pregnant rats

    Directory of Open Access Journals (Sweden)

    Martino Guglielmo

    2009-01-01

    Full Text Available Abstract Background The alterations of the glutathione peroxidase enzyme complex system occur in physiological conditions such as aging and oxidative stress consequent to strenuous exercise. Methods Authors optimize the spectrophotometric method to measure glutathione peroxidase activity in rat red blood cell membranes. Results The optimization, when applied to age paired rats, both nulligravid and pregnant, shows that pregnancy induces, at seventeen d of pregnancy, an increase of both reactive oxygen substance concentration in red blood cells and membrane glutathione peroxidase activity. Conclusion The glutathione peroxidase increase in erythrocyte membranes is induced by systemic oxidative stress long lasting rat pregnancy.

  7. [Comparative analysis of ergogenic efficacy of energy drinks components (caffeine and bitter orange extract) in combination with alcohol].

    Science.gov (United States)

    Anuchin, A M; Iuvs, G G

    2014-01-01

    Estimation of ergogenic effects of caffeine and bitter orange exract combined with alcohol is presented in the article. Investigations were performed on 3 groups (8 animals in each group) of male Wistar rats aged 4 months. Animals in group 1 were treated orally for 7 days, the mixture comprising caffeine and alcohol (0.6 g of caffeine, 72 ml of ethanol, water to 1 liter) in an amount equivalent to 4.28 mg caffeine per kg of body weight. Animals in group 2 received a mixture containing bitter orange extract and alcohol (1 g bitter orange extract, 72 ml of ethanol, water to 1 liter) in an amount equivalent to 0.43 mg of synephrine per kg body weight. Animals in the control group received the same volume (7.1 ml/kg) 7.2% aqueous solution of ethanol. Group of animals consumed caffeine in mixture with alcohol and the control group exhibited a significant weight gain, while the body weight of animals treated with the extract of bitter orange didn't significantly change. Using the methodology of the open field the effects of caffeine and bitter orange extract in combination with alcohol on the ratio of the active components of the orienting-exploratory behavior and passive-defensive behavior have been determined. Administration of mixture with caffeine increased locomotory activity by 164%, administration of bitter orange extract didn't affect this performance. Introduction of caffeine containing mixture significantly reduced the level of situational anxiety, which was manifested in the reduction of time spent by the animal in the center of the arena. The effects of ergogenic components on the performance of static and dynamic muscle endurance have been investigated. Single administration of the mixture containing caffeine, after 30 min caused a significant increase in performance and, consequently, endurance of glycolytic muscle fibers measured using the "inverted grid" test. Animals from this group produced 186% more work compared with control animals. Acute

  8. Peroxidase (POD and polyphenoloxidase (PPO in grape (Vitis vinifera L. Peroxidase (POD e polifenoloxidase (PPO em uva (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Estela de Pieri Troiani

    2003-06-01

    Full Text Available The enzimatic activity of peroxidase (POD and polyphenoloxidase (PPO extracted from three grape cultivars (Vitis vinifera L., cultivated in Marialva city, state of Paraná, was evaluated in this study. The enzymatic extracts were prepared starting from the Rubi, Borbon and Benitaka grape cultivars pulp and peel. The activity of the peroxidase was 53.00 units/100 g in the extract from the Rubi cultivar peel, and 327.00 units/100 g from the Benitaka cultivar, these values being superior to those observed in the same cultivars pulp extracts, which were 7.67 units/100 g and 44.00 units/100 g respectively. However, the result was opposite in the Borbon cultivar, with values of 141.11 units/100 g in the pulp and 11.50 units/100 g in the peel being found. The results of the polyphenoloxidase in the Borbon cultivar activity were 100.18 units/100 g in the pulp and 102.60 units/100 g in the peel, and in the Rubi and Benitaka cultivars were 60.40 units/100 g, 48.62 units/100 g in the pulp and 17.40 units/100 g, and 26.20 units/100 g in the peel, respectively. Protein determination was carried out in each extract, and the results found in the pulp and peel, respectively, were 0.56 and 0.64 mg/100 g for cultivar Benitaka, 1.38 and 6.45 mg/100 g for cultivar Rubi, and 21.38 and 5.68 mg/100 g for Borbon. The extracts were submitted to thermal treatments (60°C, 65°C, 70°C and 75°C for a 1 to 10 minutes period to observe the behavior of the peroxidase and polyphenoloxidase enzymatic activity, being verified a continuous decrease of the peroxidase and polyphenoloxidase activities as a result of the thermal treatment. The extracts of the Rubi and Benitaka cultivars were more heat stable than the extract from the Borbon cultivar for both enzymes. However, the temperatures used were not enough for a total inactivation of the enzymes.Neste trabalho, estudou-se a atividade enzimática da peroxidase (POD e da polifenoloxidase (PPO extraídas de três cultivares de

  9. A qNMR approach for bitterness phenotyping and QTL identification in an F1 apricot progeny.

    Science.gov (United States)

    Cervellati, Claudia; Paetz, Christian; Dondini, Luca; Tartarini, Stefano; Bassi, Daniele; Schneider, Bernd; Masia, Andrea

    2012-06-30

    In apricot the bitter flavor of seeds is determined by the amount of amygdalin, a cyanogenic glucoside whose cleavage by endogenous enzymes, upon seed crushing, releases toxic hydrogen cyanide. The presence of such a poisonous compound is an obstacle to the use and commercialization of apricot seeds for human or animal nutrition. To investigate the genetic loci involved in the determination of the bitter phenotype a combined genetic and biochemical approach was used, involving a candidate gene analysis and a fine phenotyping via quantitative nuclear magnetic resonance, on an F1 apricot progeny. Seven functional markers were developed and positioned on the genetic maps of the parental lines Lito and BO81604311 and seven putative QTLs for the bitterness level were determined. In conclusion, this analysis has revealed some loci involved in the shaping of the bitterness degree; has proven the complexity of the bitter trait in apricot, reporting an high variance of the QTLs found over the years; has showed the critical importance of the phenotyping step, whose precision and accuracy is a pre-requisite when studying such a multifactorial character. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Study of the effects of the casein derived bitter tastant on the melanophores in milieu with the melatonin receptors.

    Science.gov (United States)

    Mubashshir, Md; Ahmed, Fraz; Ovais, Mohd

    2011-10-01

    The present study was undertaken to ascertain whether the casein derived bitter tastant Cyclo (Leu-Trp) [CLT] has an affinity or not for the particular receptors of the pineal hormone, melatonin, on the melanophores of a major carp Labeo rohita (Ham.). The bitter tastant CLT, in the dose range of 3.34×10(-16) M to 3.34×10(-4) M, has induced an aggregatory effect but not in a dose dependent manner. Binding of CLT with the receptors may vary at different concentrations. Denervation of the melanophores has shown a complete inhibition of the CLT mediated aggregation. Prazosin has partially inhibited the aggregatory effect of CLT. Moreover, the bitter tastant's response is mediated through the α2 adrenoceptors only at particular dose ranges. The MT1 and MT2 melatonin receptor antagonist luzindole and the MT2 specific antagonist K185 have perfectly blocked the aggregatory effects of CLT. We have found that the CLT mediated aggregatory effect is dependent upon the release of neurotransmitters and the two subtypes of melatonin (MT) receptors (MT1 and MT2) possess a perfect affinity towards the bitter tastant CLT. Our study demands a need to further make a clinical research on the effects of bitter tastants on the physiology of the biological rhythm maintaining hormone melatonin.

  11. A 60day double-blind, placebo-controlled safety study involving Citrus aurantium (bitter orange) extract.

    Science.gov (United States)

    Kaats, Gilbert R; Miller, Howard; Preuss, Harry G; Stohs, Sidney J

    2013-05-01

    Bitter orange (Citrus aurantium) extract and its primary protoalkaloid p-synephrine are widely consumed in dietary supplements for weight management and sports performance. p-Synephrine is also present in foods derived from a variety of Citrus species. Bitter orange extract is commonly used in combination with multiple herbal ingredients. Most clinical studies conducted on bitter orange extract alone have involved single doses. The purpose of this study was to assess the safety of bitter orange extract (approximately 49mg p-synephrine) alone or in combination with naringin and hesperidin twice daily given to 25 healthy subjects per group for 60days in a double-blinded, placebo-controlled protocol. No significant changes occurred in systolic or diastolic blood pressures, blood chemistries or blood cell counts in control or p-synephrine treated groups. Small, clinically insignificant differences in heart rates were observed between the p-synephrine plus naringin and hesperidin group and the p-synephrine alone as well as the placebo group. No adverse effects were reported in the three groups. Bitter orange extract and p-synephrine appear to be without adverse effects at a dose of up to 98mg daily for 60days based on the parameters measured. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Host-guest kinetic interactions between HP-β-cyclodextrin and drugs for prediction of bitter taste masking.

    Science.gov (United States)

    Guo, Zhen; Wu, Fei; Singh, Vikramjeet; Guo, Tao; Ren, Xiaohong; Yin, Xianzhen; Shao, Qun; York, Peter; Patterson, Laurence H; Zhang, Jiwen

    2017-06-05

    Cyclodextrins (CD) are widely used bitter taste masking agents, for which the binding equilibrium constant (K) for the drug-CD complex is a conventional parameter for quantitating the taste masking effects. However, some exceptions have been reported to the expected relationship between K and bitterness reduction and the relationship between kinetic parameters of a drug-CD interaction, including association rate constant (K a ) and disassociation rate constant (K d ), and taste masking remains unexplored. In this study, based upon a database of kinetic parameters of drugs-HP-β-CD generated by Surface Plasmon Resonance Imaging for 485 drugs, the host-guest kinetic interactions between drugs and HP-β-CD for prediction of taste masking effects have been investigated. The taste masking effects of HP-β-CD for 13 bitter drugs were quantitatively determined using an electronic gustatory system (α-Astree e-Tongue). Statistical software was used to establish a model based on Euclidean distance measurements, K a and K d of the bitter drugs/HP-β-CD-complexes (R 2 =0.96 and Pkinetics of drug-CD interactions and taste masking was established and providing a new strategy for predicting the cyclodextrin mediated bitter taste masking. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Validation of a paper-disk approach to facilitate the sensory evaluation of bitterness in dairy protein hydrolysates from a newly developed food-grade fractionation system.

    Science.gov (United States)

    Murray, Niamh M; O'Riordan, Dolores; Jacquier, Jean-Christophe; O'Sullivan, Michael; Cohen, Joshua L; Heymann, Hildegarde; Barile, Daniela; Dallas, David C

    2017-06-01

    Casein-hydrolysates (NaCaH) are desirable functional ingredients, but their bitterness impedes usage in foods. This study sought to validate a paper-disk approach to help evaluate bitterness in NaCaHs and to develop a food-grade approach to separate a NaCaH into distinct fractions, which could be evaluated by a sensory panel. Membrane filtration generated sensory evaluation. Bitterness differences observed in the membrane fractions using this sensory evaluation approach reflected those observed for the same fractions presented as a liquid. The flash-chromatography fractions increased in bitterness with an increase in hydrophobicity, except for the 50% EtOH fraction which had little bitterness. Amino acid analysis of the fractions showed enrichment of different essential amino acids in both the bitter and less bitter fractions. The developed food-grade fractionation system, allowed for a simple and reasonably scaled approach to separating a NaCaH, into physicochemically different fractions that could be evaluated by a sensory panel. The method of sensory evaluation used in this study, in which NaCaH samples are impregnated into paper-disks, provided potential solutions for issues such as sample insolubility and limited quantities of sample. As the impregnated paper-disk samples were dehydrated, their long storage life could also be suitable for sensory evaluations distributed by mail for large consumer studies. The research, in this study, allowed for a greater understanding of the physicochemical basis for bitterness in this NaCaH. As some essential amino acids were enriched in the less bitter fractions, selective removal of bitter fractions could allow for the incorporation of the less bitter NaCaH fractions into food products for added nutritional value, without negatively impacting sensory properties. There is potential for this approach to be applied to other food ingredients with undesirable tastes, such as polyphenols.

  14. Model of the process with piecewise-constant extremals to minimize losses of vitamins during the melting of melons and gourds

    Directory of Open Access Journals (Sweden)

    E. V. Inochkina

    2017-01-01

    Full Text Available The extension of periods of storage of fruits of gourds is an urgent task processing industry. The most developed and available for injection is a method of dehydration of raw materials due to supply of heat transfer fluids. In addition to solid dry frame in raw materials is 80–90% water. In the period of moisture removal from raw material changes of thermal-physical and structural-mechanical and physicochemical characteristics. The ratio of water and dry matter in vegetative raw materials largely determines the modes of drying and storage conditions of the finished product. During drying, there are a number of limitations: the drying temperature should not exceed the degradation temperature of vitamins and proteins, and the magnitude of course, the moisture content of the product depends on the reaction prevention malonodinitrile sugars at the critical moisture content. An important problem of the drying of production is quality control stages of drying, the dynamics of which is quite difficult to describe using mathematical models. The main factors of optimization of industrial drying processes is preservation of valuable components of the feedstock, the drying time, energy and resource conservation. Development of effective control algorithm for the process of dehydration of raw materials described in the article on the example of drying of slices of melon. Experimental approach a two-stage process of drying of melon varieties Taman, the proposed regression model with the relaxation-based on humidity and content of vitamin C from the variable in time temperature and pressure, based on the available literature and own experimental data. According to the optimal control of the drying process to search for the thermobaric regime that maximizes the vitamin C content at the end of the drying, under specified conditions, the humidity. The main findings are the solution of the problem for the case of piecewise constant temperature and pressure in

  15. Evolution and loss of long-fringed petals: a case study using a dated phylogeny of the snake gourds, Trichosanthes (Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    de Boer Hugo J

    2012-07-01

    Full Text Available Abstract Background The Cucurbitaceae genus Trichosanthes comprises 90–100 species that occur from India to Japan and southeast to Australia and Fiji. Most species have large white or pale yellow petals with conspicuously fringed margins, the fringes sometimes several cm long. Pollination is usually by hawkmoths. Previous molecular data for a small number of species suggested that a monophyletic Trichosanthes might include the Asian genera Gymnopetalum (four species, lacking long petal fringes and Hodgsonia (two species with petals fringed. Here we test these groups’ relationships using a species sampling of c. 60% and 4759 nucleotides of nuclear and plastid DNA. To infer the time and direction of the geographic expansion of the Trichosanthes clade we employ molecular clock dating and statistical biogeographic reconstruction, and we also address the gain or loss of petal fringes. Results Trichosanthes is monophyletic as long as it includes Gymnopetalum, which itself is polyphyletic. The closest relative of Trichosanthes appears to be the sponge gourds, Luffa, while Hodgsonia is more distantly related. Of six morphology-based sections in Trichosanthes with more than one species, three are supported by the molecular results; two new sections appear warranted. Molecular dating and biogeographic analyses suggest an Oligocene origin of Trichosanthes in Eurasia or East Asia, followed by diversification and spread throughout the Malesian biogeographic region and into the Australian continent. Conclusions Long-fringed corollas evolved independently in Hodgsonia and Trichosanthes, followed by two losses in the latter coincident with shifts to other pollinators but not with long-distance dispersal events. Together with the Caribbean Linnaeosicyos, the Madagascan Ampelosicyos and the tropical African Telfairia, these cucurbit lineages represent an ideal system for more detailed studies of the evolution and function of petal fringes in plant

  16. Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners.

    Science.gov (United States)

    Roudnitzky, Natacha; Bufe, Bernd; Thalmann, Sophie; Kuhn, Christina; Gunn, Howard C; Xing, Chao; Crider, Bill P; Behrens, Maik; Meyerhof, Wolfgang; Wooding, Stephen P

    2011-09-01

    Bitter taste perception is initiated by TAS2R receptors, which respond to agonists by triggering depolarization of taste bud cells. Mutations in TAS2Rs are known to affect taste phenotypes by altering receptor function. Evidence that TAS2Rs overlap in ligand specificity suggests that they may also contribute joint effects. To explore this aspect of gustation, we examined bitter perception of saccharin and acesulfame K, widely used artificial sweeteners with aversive aftertastes. Both substances are agonists of TAS2R31 and -43, which belong to a five-member subfamily (TAS2R30-46) responsive to a diverse constellation of compounds. We analyzed sequence variation and linkage structure in the ∼140 kb genomic region encoding TAS2R30-46, taste responses to the two sweeteners in subjects, and functional characteristics of receptor alleles. Whole-gene sequences from TAS2R30-46 in 60 Caucasian subjects revealed extensive diversity including 34 missense mutations, two nonsense mutations and high-frequency copy-number variants. Thirty markers, including non-synonymous variants in all five genes, were associated (P 0.95). Haplotype analyses revealed that most associations were spurious, arising from LD with variants in TAS2R31. In vitro assays confirmed the functional importance of four TAS2R31 mutations, which had independent effects on receptor response. The existence of high LD spanning functionally distinct TAS2R loci predicts that bitter taste responses to many compounds will be strongly correlated even when they are mediated by different genes. Integrative approaches combining phenotypic, genetic and functional analysis will be essential in dissecting these complex relationships.

  17. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    Directory of Open Access Journals (Sweden)

    Yumie Morimoto-Kobayashi

    Full Text Available Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1 expression in brown adipose tissue (BAT was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA. Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional

  18. Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats

    Directory of Open Access Journals (Sweden)

    Muraki Etsuko

    2012-05-01

    Full Text Available Abstract Background Various therapeutic effects of fenugreek (Trigonella foenum-graecum L. on metabolic disorders have been reported. However, the bitterness of fenugreek makes it hard for humans to eat sufficient doses of it for achieving therapeutic effects. Fenugreek contains bitter saponins such as protodioscin. Fenugreek with reduced bitterness (FRB is prepared by treating fenugreek with beta-glucosidase. This study has been undertaken to evaluate the effects of FRB on metabolic disorders in rats. Methods Forty Sprague–Dawley rats were fed with high-fat high-sucrose (HFS diet for 12 week to induce mild glucose and lipid disorders. Afterwards, the rats were divided into 5 groups. In the experiment 1, each group (n = 8 was fed with HFS, or HFS containing 2.4% fenugreek, or HFS containing 1.2%, 2.4% and 4.8% FRB, respectively, for 12 week. In the experiment 2, we examined the effects of lower doses of FRB (0.12%, 0.24% and 1.2% under the same protocol (n = 7 in each groups. Results In the experiment 1, FRB dose-dependently reduced food intake, body weight gain, epididymal white adipose tissue (EWAT and soleus muscle weight. FRB also lowered plasma and hepatic lipid levels and increased fecal lipid levels, both dose-dependently. The Plasma total cholesterol levels (mmol/L in the three FRB and Ctrl groups were 1.58 ± 0.09, 1.45 ± 0.05*, 1.29 ± 0.07* and 2.00 ± 0.18, respectively (*; P P P  Conclusions Thus we have demonstrated that FRB (1.2 ~ 4.8% prevents diet-induced metabolic disorders such as insulin resistance, dyslipidemia and fatty liver.

  19. Trpm5 null mice respond to bitter, sweet, and umami compounds.

    Science.gov (United States)

    Damak, Sami; Rong, Minqing; Yasumatsu, Keiko; Kokrashvili, Zaza; Pérez, Cristian A; Shigemura, Noriatsu; Yoshida, Ryusuke; Mosinger, Bedrich; Glendinning, John I; Ninomiya, Yuzo; Margolskee, Robert F

    2006-03-01

    Trpm5 is a calcium-activated cation channel expressed selectively in taste receptor cells. A previous study reported that mice with an internal deletion of Trpm5, lacking exons 15-19 encoding transmembrane segments 1-5, showed no taste-mediated responses to bitter, sweet, and umami compounds. We independently generated knockout mice null for Trpm5 protein expression due to deletion of Trpm5's promoter region and exons 1-4 (including the translation start site). We examined the taste-mediated responses of Trpm5 null mice and wild-type (WT) mice using three procedures: gustatory nerve recording [chorda tympani (CT) and glossopharyngeal (NG) nerves], initial lick responses, and 24-h two-bottle preference tests. With bitter compounds, the Trpm5 null mice showed reduced, but not abolished, avoidance (as indicated by licking responses and preference ratios higher than those of WT), a normal CT response, and a greatly diminished NG response. With sweet compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, and absent or greatly reduced nerve responses. With umami compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, a normal NG response, and a greatly diminished CT response. Our results demonstrate that the consequences of eliminating Trmp5 expression vary depending upon the taste quality and the lingual taste field examined. Thus, while Trpm5 is an important factor in many taste responses, its absence does not eliminate all taste responses. We conclude that Trpm5-dependent and Trpm5-independent pathways underlie bitter, sweet, and umami tastes.

  20. Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa.

    Science.gov (United States)

    Barham, Henry P; Cooper, Sarah E; Anderson, Catherine B; Tizzano, Marco; Kingdom, Todd T; Finger, Tom E; Kinnamon, Sue C; Ramakrishnan, Vijay R

    2013-06-01

    Solitary chemosensory cells (SCCs) are specialized cells in the respiratory epithelium that respond to noxious chemicals including bacterial signaling molecules. SCCs express components of bitter taste transduction including the taste receptor type 2 (TAS2R) bitter taste receptors and downstream signaling effectors: α-Gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential cation channel subfamily M member 5 (TRPM5). When activated, SCCs evoke neurogenic reflexes, resulting in local inflammation. The purpose of this study was to test for the presence SCCs in human sinonasal epithelium, and to test for a correlation with inflammatory disease processes such as allergic rhinitis and chronic rhinosinusitis. Patient demographics and biopsies of human sinonasal mucosa were obtained from control patients (n = 7) and those with allergic rhinitis and/or chronic rhinosinusitis (n = 15). Reverse transcription polymerase chain reaction (RT-PCR), quantitative PCR (qPCR), and immunohistochemistry were used to determine whether expression of signaling effectors was altered in diseased patients. RT-PCR demonstrated that bitter taste receptors TAS2R4, TAS2R14, and TAS2R46, and downstream signaling effectors α-Gustducin, PLCβ2, and TRPM5 are expressed in the inferior turbinate, middle turbinate, septum, and uncinate of both control and diseased patients. PLCβ2/TRPM5-immunoreactive SCCs were identified in the sinonasal mucosa of both control and diseased patients. qPCR showed similar expression of α-Gustducin and TRPM5 in the uncinate process of control and diseased groups, and there was no correlation between level of expression and 22-item Sino-Nasal Outcomes Test (SNOT-22) or pain scores. SCCs are present in human sinonasal mucosa in functionally relevant areas. Expression level of signaling effectors was similar in control and diseased patients and did not correlate with measures of pain and inflammation. Further study into these pathways may provide insight

  1. Asparagus byproducts as a new source of peroxidases.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; Lopez, Sergio; Vazquez-Castilla, Sara; Rodriguez-Arcos, Rocio; Jimenez-Araujo, Ana; Guillen-Bejarano, Rafael

    2013-07-03

    Soluble peroxidase (POD) from asparagus byproducts was purified by ion exchange chromatographies, and its kinetic and catalytic properties were studied. The isoelectric point of the purified isoperoxidases was 9.1, and the optimum pH and temperature values were 4.0 and 25 °C, respectively. The cationic asparagus POD (CAP) midpoint inactivation temperature was 57 °C, which favors its use in industrial processes. The Km values of cationic asparagus POD for H₂O₂ and ABTS were 0.318 and 0.634 mM, respectively. The purified CAP is economically obtained from raw materials using a simple protocol and possesses features that make it advantageous for the potential use of this enzyme in a large number of processes with demonstrated requirements of thermostable POD. The results indicate that CAP can be used as a potential candidate for removing phenolic contaminants.

  2. Erythrocytic glutathione peroxidase: Its relationship to plasma selenium in man

    International Nuclear Information System (INIS)

    Perona, G.; Cellerino, R.; Guidi, G.C.; Moschini, G.; Stievano, B.M.; Tregnaghi, C.

    1977-01-01

    Erythrocytic glutathione-peroxidase (GSH-Px) activity and plasma selenium concentrations were measured in 14 patients: 7 with iron deficiency and 7 with raised serum iron levels. The decreased enzymatic activity in iron deficiency was confirmed. Plasma selenium was significantly lower in patients with lower serum iron; furthermore there is a significant correlation between serum iron and plasma selenium concentrations. Another correlation even more significant was found between plasma selenium and enzyme activity in all the cases we studied. These data suggests that the importance of iron for GSH-Px activity may be merely due to its relationship with selenium and that plasma selenium concentration may be of critical importance for enzyme activity. (author)

  3. Computational Modeling of the Catalytic Cycle of Glutathione Peroxidase Nanomimic.

    Science.gov (United States)

    Kheirabadi, Ramesh; Izadyar, Mohammad

    2016-12-29

    To elucidate the role of a derivative of ebselen as a mimic of the antioxidant selenoenzyme glutathione peroxidase, density functional theory and solvent-assisted proton exchange (SAPE) were applied to model the reaction mechanism in a catalytic cycle. This mimic plays the role of glutathione peroxidase through a four-step catalytic cycle. The first step is described as the oxidation of 1 in the presence of hydrogen peroxide, while selenoxide is reduced by methanthiol at the second step. In the third step of the reaction, the reduction of selenenylsulfide occurs by methanthiol, and the selenenic acid is dehydrated at the final step. Based on the kinetic parameters, step 4 is the rate-determining step (RDS) of the reaction. The bond strength of the atoms involved in the RDS is discussed with the quantum theory of atoms in molecules (QTAIM). Low value of electron density, ρ(r), and positive Laplacian values are the evidence for the covalent nature of the hydrogen bonds rupture (O 30 -H 31 , O 33 -H 34 ). A change in the sign of the Laplacian, L(r), from the positive value in the reactant to a negative character at the transition state indicates the depletion of the charge density, confirming the N 5 -H 10 and O 11 -Se 1 bond breaking. The analysis of electron location function (ELF) and localized orbital locator (LOL) of the Se 1 -N 5 and Se 1 -O 11 bonds have been done by multi-WFN program. High values of ELF and LOL at the transition state regions between the Se, N, and O atoms display the bond formation. Finally, the main donor-acceptor interaction energies were analyzed using the natural bond orbital analysis for investigation of their stabilization effects on the critical bonds at the RDS.

  4. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration

    Directory of Open Access Journals (Sweden)

    Bradley A. Carlson

    2016-10-01

    Full Text Available The selenoenzyme glutathione peroxidase 4 (Gpx4 is an essential mammalian glutathione peroxidase, which protects cells against detrimental lipid peroxidation and governs a novel form of regulated necrotic cell death, called ferroptosis. To study the relevance of Gpx4 and of another vitally important selenoprotein, cytosolic thioredoxin reductase (Txnrd1, for liver function, mice with conditional deletion of Gpx4 in hepatocytes were studied, along with those lacking Txnrd1 and selenocysteine (Sec tRNA (Trsp in hepatocytes. Unlike Txnrd1- and Trsp-deficient mice, Gpx4−/− mice died shortly after birth and presented extensive hepatocyte degeneration. Similar to Txnrd1-deficient livers, Gpx4−/− livers manifested upregulation of nuclear factor (erythroid-derived-like 2 (Nrf2 response genes. Remarkably, Gpx4−/− pups born from mothers fed a vitamin E-enriched diet survived, yet this protection was reversible as subsequent vitamin E deprivation caused death of Gpx4-deficient mice ~4 weeks thereafter. Abrogation of selenoprotein expression in Gpx4−/− mice did not result in viable mice, indicating that the combined deficiency aggravated the loss of Gpx4 in liver. By contrast, combined Trsp/Txnrd1-deficient mice were born, but had significantly shorter lifespans than either single knockout, suggesting that Txnrd1 plays an important role in supporting liver function of mice lacking Trsp. In sum our study demonstrates that the ferroptosis regulator Gpx4 is critical for hepatocyte survival and proper liver function, and that vitamin E can compensate for its loss by protecting cells against deleterious lipid peroxidation.

  5. The Roles of Glutathione Peroxidases during Embryo Development

    Science.gov (United States)

    Ufer, Christoph; Wang, Chi Chiu

    2011-01-01

    Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency – in contrast to all other GPx family members – leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis

  6. Radioimmunoassay for the citrus bitter principle, naringin, and related flavonoid-7-O-neohesperidosides

    Energy Technology Data Exchange (ETDEWEB)

    Jourdan, P.S.; Weiler, E.W.; Mansell, R.L.

    1982-02-01

    An immunoassay for the citrus bitter principle, naringin, and related flavonoid-7-O-neohesperidosides is reported. The assay detects ca. 2 ng of naringin and can be used to quantify this compound in the parts per billion (ppb) range in crude grapefruit juice and extracts of other plant tissues. The antiserum used is highly reactive with the 2-rhamnosyl-1-glucopyranose at the C-7 position but not with e.g. the isomeric 6-rhamnosyl-1-glucopyranose moiety and can, thus, be used to identify the stereochemistry of this disaccharide moiety at the C-7 position of flavanoids. The assay involves a directly iodinated naringin-(/sup 125/I) as immunotracer.

  7. Substandard, Spurious, Falsely-Labelled, Falsified and Counterfeit (SSFFC Drugs: Time to Take a Bitter Pill

    Directory of Open Access Journals (Sweden)

    Geetha Mani

    2016-10-01

    Full Text Available Substandard, Spurious, Falsely-Labelled, Falsified and Counterfeit (SSFFC drugs are an emerging public health concern in India. With one of the huge pharmaceutical sectors in the world, India has a varied prevalence of SSSFC drugs ranging from 0.04% to 34% according to various studies. Apart from severe health consequences, SSSFC drugs also weaken community's trust in the health care system. India is tackling the epidemic of SSSFC drugs through various existing and new regulatory measures. Considering the calamitous consequences of this silent epidemic, it is time to prescribe a bitter pill.

  8. Association of a bitter taste receptor mutation with Balkan Endemic Nephropathy (BEN

    Directory of Open Access Journals (Sweden)

    Wooding Stephen P

    2012-10-01

    Full Text Available Abstract Background Balkan Endemic Nephropathy (BEN is late-onset kidney disease thought to arise from chronic exposure to aristolochic acid, a phytotoxin that contaminates wheat supplies in rural areas of Eastern Europe. It has recently been demonstrated that humans are capable of perceiving aristolochic acid at concentrations below 40 nM as the result of high-affinity interactions with the TAS2R43 bitter taste receptor. Further, TAS2R43 harbors high-frequency loss-of-function mutations resulting in 50-fold variability in perception. This suggests that genetic variation in TAS2R43 might affect susceptibility to BEN, with individuals carrying functional forms of the receptor being protected by an ability to detect tainted foods. Methods To determine whether genetic variation in TAS2R43 predicts BEN susceptibility, we examined genotype-phenotype associations in a case–control study. A cohort of 88 affected and 99 control subjects from western Bulgaria were genotyped with respect to two key missense variants and a polymorphic whole-gene deletion of TAS2R43 (W35S, H212R, and wt/Δ, which are known to affect taste sensitivity to aristolochic acid. Tests for association between haplotypes and BEN status were then performed. Results Three major TAS2R43 haplotypes observed in previous studies (TAS2R43-W35/H212, -S35/R212 and –Δ were present at high frequencies (0.17, 0.36, and 0.47 respectively in our sample, and a significant association between genotype and BEN status was present (P = 0.020; odds ratio 1.18. However, contrary to expectation, BEN was positively associated with TAS2R43-W35/H212, a highly responsive allele previously shown to confer elevated bitter sensitivity to aristolochic acid, which should drive aversion but might also affect absorption, altering toxin activation. Conclusions Our findings are at strong odds with the prediction that carriers of functional alleles of TAS2R43 are protected from BEN by an ability to detect and

  9. Bio-active Compounds of Bitter Melon Genotypes (Momordica charantia L. in Relation to Their Physiological Functions

    Directory of Open Access Journals (Sweden)

    Navam S. Hettiarachchy

    2011-02-01

    Full Text Available Background: Bitter Melon (Momordica charantia L is one of the most popular cooked vegetables in many Asian countries. Its experimental use in mice has indicated improvement in glucose tolerance against Type II diabetes and reduction in blood cholesterol. However, it has not been proven which alkaloids, polypeptides, or their combinations in the Bitter Melon extract are responsible for the medicinal effects. Green and white varieties of Bitter Melon differ strikingly in their bitter tastes, green being much more bitter than white. It is not yet known whether they are different in their special nutritional and hypoglycemic properties. Nutritional qualities of Bitter Melons such as protein, amino acids, minerals, and polyphenolics contents were determined using four selected varieties such as Indian Green [IG], Indian White [IW], Chinese Green [CG], and Chinese White [CW] grown at the University of Arkansas at Pine Bluff [UAPB] Agricultural Research Center. Results indicated that protein levels of IW were significantly higher than IG in both flesh and seed. Methods: Four Bitter Melon varieties, Indian Green [IG], Indian White [IW], Chinese Green [CG] and Chinese White [CW] were used for phytochemical analyses to determine protein contents, protein hydrolysis, amino acids contents, and their antioxidant and antimutagenic activities. All analyses were conducted following standard methods. Statistical analyses wereconducted using JMP 5 software package [SAS]. The Tukey’s HSD procedure was used for the significance of differences at the 5% level. Results: Moisture contents across the four varieties of Bitter Melon flesh ranged between 92.4 and 93.5%, and that of seed ranged between 53.3 and 75.9%. Protein contents of the flesh were highest in IW [9.8%] and lowest in CG [8.4%]. Seed protein contents were the highest in IW [31.3%] and lowest in IG [27.0%]. Overall, white varieties had higher protein contents than the green varieties. Compared with soy

  10. Epidemiological survey on prevalence and associated risk factors of bitter taste among inpatients from four Grade 3A hospitals in Beijing

    Directory of Open Access Journals (Sweden)

    Pengfei Si

    2017-01-01

    Conclusion: Bitter taste is a common symptom in hospitalized patients, especially in patients with gastroesophageal reflux and liver and gallbladder diseases and the link to smoking, dietary and emotional stress. It is found that smoking is a sole risk factor for the manifestation of bitter taste.

  11. Quickly-released peroxidase of moss in defense against fungal invaders.

    Science.gov (United States)

    Lehtonen, Mikko T; Akita, Motomu; Kalkkinen, Nisse; Ahola-Iivarinen, Elina; Rönnholm, Gunilla; Somervuo, Panu; Thelander, Mattias; Valkonen, Jari P T

    2009-01-01

    Mosses (Bryophyta) are nonvascular plants that constitute a large part of the photosynthesizing biomass and carbon storage on Earth. Little is known about how this important portion of flora maintains its health status. This study assessed whether the moss, Physcomitrella patens, responds to treatment with chitosan, a fungal cell wall-derived compound inducing defense against fungal pathogens in vascular plants. Application of chitosan to liquid culture of P. patens caused a rapid increase in peroxidase activity in the medium. For identification of the peroxidase(s), matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF)/MS, other methods and the whole-genome sequence of P. patens were utilized. Peroxidase gene knock-out mutants were made and inoculated with fungi. The peroxidase activity resulted from a single secreted class III peroxidase (Prx34) which belonged to a P. patens specific phylogenetic cluster in analysis of the 45 putative class III peroxidases of P. patens and those of Arabidopsis and rice. Saprophytic and pathogenic fungi isolated from another moss killed the Prx34 knockout mutants but did not damage wild-type P. patens. The data point out the first specific host factor that is pivotal for pathogen defense in a nonvascular plant. Furthermore, results provide conclusive evidence that class III peroxidases in plants are needed in defense against hostile invasion by fungi.

  12. Use of an immuno-peroxidase staining method for the detection of ...

    African Journals Online (AJOL)

    Immunopurified antigens of axenic E. histolytica were used to produce rabbit hyper-immune sera. Immunoglobulin G (IgG) was purified from hyper-immune sera and coupled to peroxidase using a two-step procedure. The IgG-peroxidase conjugate was then evaluated by detection of E. histolytica in 128 stool samples and ...

  13. Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum

    NARCIS (Netherlands)

    Fraaije, Marco W.; Roubroeks, Hanno P.; Hagen, Wilfred R.; Berkel, Willem J.H. van

    1996-01-01

    The first dimeric catalase-peroxidase of eucaryotic origin, an intracellular hydroperoxidase from Penicillium simplicissimum which exhibited both catalase and peroxidase activities, has been isolated. The enzyme has an apparent molecular mass of about 170 kDa and is composed of two identical

  14. The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features

    Science.gov (United States)

    Luis F. Larrondo; Angel Gonzalez; Tomas Perez-Acle; Dan Cullen; Rafael Vicuna

    2005-01-01

    Inspection of the genome of the ligninolytic basidiomycete Phanerochaete chrysosporium revealed an unusual peroxidase-like sequence. The corresponding full length cDNA was sequenced and an archetypal secretion signal predicted. The deduced mature protein (NoP, novel peroxidase) contains 295 aa residues and is therefore considerably shorter than other Class II (fungal)...

  15. Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid

    NARCIS (Netherlands)

    Oudgenoeg, G.; Hilhorst, H.; Piersma, S.R.; Boeriu, C.G.; Gruppen, H.; Voragen, A.G.J.; Laane, C.

    2001-01-01

    The tyrosine-containing peptide Gly-Tyr-Gly (GYG) was oxidatively cross-linked by horseradish peroxidase in the presence of hydrogen peroxide. As products, covalently coupled di- to pentamers of the peptide were identified by LC-MS. Oxidative cross-linking of ferulic acid with horseradish peroxidase

  16. Regional localization of the gene for thyroid peroxidase to human chromosome 2pter----p12

    NARCIS (Netherlands)

    de Vijlder, J. J.; Dinsart, C.; Libert, F.; Geurts van Kessel, A.; Bikker, H.; Bolhuis, P. A.; Vassart, G.

    1988-01-01

    A 2.0-kb thyroid peroxidase cDNA of human origin was used as probe for Southern blot hybridization of genomic DNA from human somatic cells and human-rodent somatic cell hybrids. The results showed that the gene coding for human thyroid peroxidase is located on chromosome. 2. Further analysis of

  17. Inflammatory peroxidases promote breast cancer progression in mice via regulation of the tumour microenvironment.

    Science.gov (United States)

    Panagopoulos, Vasilios; Leach, Damien A; Zinonos, Irene; Ponomarev, Vladimir; Licari, Giovanni; Liapis, Vasilios; Ingman, Wendy V; Anderson, Peter; DeNichilo, Mark O; Evdokiou, Andreas

    2017-04-01

    Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, well known for their antimicrobial activity, are released in high quantities by infiltrating immune cells in breast cancer. However, the functional importance of their presence within the tumour microenvironment is unclear. We have recently described a new role for peroxidases as key regulators of fibroblast and endothelial cell functionality. In the present study, we investigate for the first time, the ability of peroxidases to promote breast cancer development and progression. Using the 4T1 syngeneic murine orthotopic breast cancer model, we examined whether increased levels of peroxidases in developing mammary tumours influences primary tumour growth and metastasis. We showed that MPO and EPO stimulation increased mammary tumour growth and enhanced lung metastases, effects that were associated with reduced tumour necrosis, increased collagen deposition and neo-vascularisation within the primary tumour. In vitro, peroxidase treatment, robustly stimulated human mammary fibroblast migration and collagen type I and type VI secretion. Mechanistically, peroxidases induced the transcription of pro-tumorigenic and metastatic MMP1, MMP3 and COX-2 genes. Taken together, these findings identify peroxidases as key contributors to cancer progression by augmenting pro-tumorigenic collagen production and angiogenesis. Importantly, this identifies inflammatory peroxidases as therapeutic targets in breast cancer therapy.

  18. TAS2R38 and CA6 genetic polymorphisms, frequency of bitter food intake, and blood biomarkers among elderly woman.

    Science.gov (United States)

    Mikołajczyk-Stecyna, Joanna; Malinowska, Anna M; Chmurzynska, Agata

    2017-09-01

    Taste sensitivity is one of the most important biological determinants of food choice. Three SNPs of the TAS2R38 gene (rs713598, rs1726866, and rs10246939) give rise to two common haplotypes: PAV and AVI. These haplotypes, as well as an SNP within the CA6 gene (rs2274333) that encodes carbonic anhydrase VI (CA6), correlate with bitterness perception. The extent of consumption of bitter food may influence some health outcomes. The aim of this study is thus to investigate the impact of the TAS2R38 and CA6 genetic polymorphisms on the choice of bitter food, BMI, blood lipoprotein, and glucose concentrations as well as systemic inflammation in elderly women. The associations between the TAS2R38 diplotype, CA6 genotype, and the intake of bitter-tasting foods were studied in a group of 118 Polish women over 60 years of age. The intake of Brassica vegetables, grapefruit, and coffee was assessed using a food frequency questionnaire. Biochemical parameters were measured using the spectrophotometric method. Genotyping was performed using the high resolution melting method. We found a correlation between lipid profile, glucose and CRP levels, and frequency of bitter food intake. The AVI/AVI subjects drank coffee more frequently than did the PAV/PAV homozygotes, as did the A carriers of CA6 in comparison with the GG homozygotes. We also observed that simultaneous carriers of the PAV haplotype and A allele of TAS2R38 and CA6, respectively, choose white cabbage more frequent and had lower plasma levels of CRP and glucose than did AVI/AVI and GG homozygotes. In elderly women, the TAS2R38 and CA6 polymorphisms may affect the frequency of consumption of coffee and white cabbage, but not of other bitter-tasting foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Origin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in Africa.

    Science.gov (United States)

    Campbell, Michael C; Ranciaro, Alessia; Zinshteyn, Daniel; Rawlings-Goss, Renata; Hirbo, Jibril; Thompson, Simon; Woldemeskel, Dawit; Froment, Alain; Rucker, Joseph B; Omar, Sabah A; Bodo, Jean-Marie; Nyambo, Thomas; Belay, Gurja; Drayna, Dennis; Breslin, Paul A S; Tishkoff, Sarah A

    2014-02-01

    Bitter taste perception influences human nutrition and health, and the genetic variation underlying this trait may play a role in disease susceptibility. To better understand the genetic architecture and patterns of phenotypic variability of bitter taste perception, we sequenced a 996 bp region, encompassing the coding exon of TAS2R16, a bitter taste receptor gene, in 595 individuals from 74 African populations and in 94 non-Africans from 11 populations. We also performed genotype-phenotype association analyses of threshold levels of sensitivity to salicin, a bitter anti-inflammatory compound, in 296 individuals from Central and East Africa. In addition, we characterized TAS2R16 mutants in vitro to investigate the effects of polymorphic loci identified at this locus on receptor function. Here, we report striking signatures of positive selection, including significant Fay and Wu's H statistics predominantly in East Africa, indicating strong local adaptation and greater genetic structure among African populations than expected under neutrality. Furthermore, we observed a "star-like" phylogeny for haplotypes with the derived allele at polymorphic site 516 associated with increased bitter taste perception that is consistent with a model of selection for "high-sensitivity" variation. In contrast, haplotypes carrying the "low-sensitivity" ancestral allele at site 516 showed evidence of strong purifying selection. We also demonstrated, for the first time, the functional effect of nonsynonymous variation at site 516 on salicin phenotypic variance in vivo in diverse Africans and showed that most other nonsynonymous substitutions have weak or no effect on cell surface expression in vitro, suggesting that one main polymorphism at TAS2R16 influences salicin recognition. Additionally, we detected geographic differences in levels of bitter taste perception in Africa not previously reported and infer an East African origin for high salicin sensitivity in human populations.

  20. Polyvinylpyrrolidone (PVP)-Capped Pt Nanocubes with Superior Peroxidase-Like Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Haihang [Department of Chemistry, Michigan Technological University, Houghton Michigan 49931 United States; Liu, Yuzi [Center for Nanoscale Materials, Argonne National Laboratory, Argonne Illinois 60439 United States; Chhabra, Ashima [Department of Chemistry, Michigan Technological University, Houghton Michigan 49931 United States; Lilla, Emily [Department of Chemistry, Michigan Technological University, Houghton Michigan 49931 United States; Xia, Xiaohu [Department of Chemistry, Michigan Technological University, Houghton Michigan 49931 United States

    2016-12-21

    Peroxidase mimics of inorganic nanoparticles are expected to circumvent the inherent issues of natural peroxidases, providing enhanced performance in important applications such as diagnosis and imaging. Despite the report of a variety of peroxidase mimics in the past decade, very limited progress has been made on improving their catalytic efficiency. The catalytic efficiencies of most previously reported mimics are only up to one order of magnitude higher than those of natural peroxidases. In this work, we demonstrate a type of highly efficient peroxidase mimic – polyvinylpyrrolidone (PVP)-capped Pt nanocubes of sub-10 nm in size. These PVP-capped Pt cubes are ~200-fold more active than the natural counterparts and exhibit a record-high specific catalytic efficiency. In addition to the superior efficiency, the new mimic shows several other promising features, including excellent stabilities, well-controlled uniformity in both size and shape, controllable sizes, and facile and scalable production.

  1. Métodos para predição de bitter pit em maçãs 'Fuji' e 'Braeburn' Methods for bitter pit prediction in Fuji and Braeburn apples

    Directory of Open Access Journals (Sweden)

    Ivan Sestari

    2009-07-01

    Full Text Available Experimentos foram conduzidos com objetivo de avaliar a eficiência de métodos para predição da ocorrência de bitter pit em maçãs 'Fuji' e 'Braeburn' em duas épocas de amostragem. Os frutos, provenientes de seis pomares distintos, três para cada cultivar, foram coletados antecipadamente (20 dias em relação à colheita e na data prevista para a colheita comercial. Os métodos de predição utilizados foram: a infiltração dos frutos com solução 0,10M MgCl2 mais 0,01% Tween-20 e 0,4M de sorbitol; b imersão dos frutos em solução com 2500nL L-1 de ethephon mais 0,01% Tween-20. Os frutos foram armazenados em atmosfera controlada (AC por cinco meses mais 12 dias, a 20°C, simulando a incidência real de bitter pit em armazenamento comercial. Cada tratamento foi constituído por quatro repetições de 25 frutos. A incidência e severidade de bitter pit, prevista por ambos os métodos foi semelhante à ocorrência real de bitter pit após o armazenamento em atmosfera controlada para cada uma das cultivares utilizadas, quando os frutos foram amostrados antecipadamente em relação à colheita comercial. Na avaliação realizada com frutos amostrados na colheita comercial, nenhum dos métodos foi capaz de prever a incidência de bitter pit após o armazenamento de maneira confiável. Para ambas as cultivares, a infiltração com magnésio e a imersão dos frutos em ethephon só são eficientes na predição da incidência de bitter pit em frutos coletados 20 dias antes da colheita comercial.Experiments were carried out with objective to evaluate the efficiency of methods for bitter pit prediction in 'Fuji' and 'Braeburn' apples sampled at two harvest dates. Fruits from 6 orchards, three for each cultivar, were sampled earlier (20 days before harvest and at commercial harvest date. The prediction methods assessed were: infiltration of apples with 0.10M MgCl2 solution containing 0.01% Tween-20 and 0.4M sorbitol; and immersion of fruits in 2

  2. Some bioactive compounds and antioxidant activities of the bitter almond kernel (prunus dulcis var. amara)

    International Nuclear Information System (INIS)

    Keser, S.; Yilmaz, O.

    2014-01-01

    in this study, it was determined antioxidant activities and phenolic, flavonoid, phytosterol, lipid soluble vitamin and fatty acid contents of bitter almond kernel extract (bae). antioxidant activities of bae was investigated by dppho, abtso+, oho radical scavenging, metal chelating activity and determination of lipid peroxidation levels (tbars). bae was scavenged 83.49% of the abts radical, 68.34% of the hydroxyl radical, and 68.65% of the dpph radical. this extract was shown 49.36% of the metal chelating activity myricetin (1831.52 mu g/g), kaempferol (104.52 mu g/g), naringenin (2.51 mu g/g), vanillic acid (91.70 mu g/g), caffeic acid (85.92 mu g/g), ferulic acid (27.11 mu g/g) rosmarinic acid (0.95 mu g/g), hydroxycinnamic acid (1.35 mu g/g), delta-tocopherol (4.95 mg/kg), mu-tocopherol (104.15 mg/kg), vitamin k (42.25 mg/kg), beta-sitosterol (366.95 mg/kg) and stigmasterol (242.65 mg/kg) were determined in the bae. the major fatty acids were oleic acid (70.61%) and linoleic acid (20.68%) in the bae. these results indicate that bitter almond can be a good natural source of fatty acids, lipid soluble vitamins, phytosterols, flavonoid, phenolic compounds. (author)

  3. Bitter orange (Citrus aurantium L. peel essential oil compositions obtained with different methods

    Directory of Open Access Journals (Sweden)

    Muharrem GÖLÜKCÜ

    2015-12-01

    Full Text Available Citrus essential oils are one of the most widely used essential oils in the world. They could be obtained by cold press, hydro-distillation etc. In this study, the effects of cold press and hydro‑distillation applications on essential composition of bitter orange peel oil were investigated. Additionally changes in essential oil compositions by drying were presented. Essential oil composition was affected from extraction techniques and drying process. Limonene was determined as the main component of bitter orange essential oil (94.00-94.65%. The other highest components were β-myrcene (1.77-1.90%, linalool (0.53-0.81%, β-pinene (0.29-0.72% and α‑pinene (0.45-0.51% in descending order. As a result, the essential oil compositions of oil obtained by cold-press were more similar to fresh peel oil than the oils obtained by hydro distillation. On the other hand, the essential oil content of fresh sample significantly decreased during drying process. While essential oil content was 3.00% for the fresh peel, it was 2.50% for dried one. These results showed that drying process only affected essential oil content not its oil composition.

  4. In vitro evaluation of potential bitterness-masking terpenoids from the Canada goldenrod (Solidago canadensis).

    Science.gov (United States)

    Li, Jie; Pan, Li; Fletcher, Joshua N; Lv, Wei; Deng, Ye; Vincent, Michael A; Slack, Jay P; McCluskey, T Scott; Jia, Zhonghua; Cushman, Mark; Kinghorn, A Douglas

    2014-07-25

    In a screening of extracts of selected plants native to Ohio against the human bitterness receptor hTAS2R31, a chloroform-soluble extract of the aerial parts of Solidago canadensis (Canada goldenrod) was determined to have hTAS2R31 antagonistic activity and, thus, was fractionated for isolation of potential bitterness-masking agents. One new labdane diterpenoid, solidagol (1), and six known terpenoids, including two labdane diterpenoids (2 and 3), three clerodane diterpenoids (6β-angeloyloxykolavenic acid, 6β-tigloyloxykolavenic acid, and crotonic acid), and a triterpenoid (longispinogenin), were isolated. Among these compounds, 3β-acetoxycopalic acid (2) was found to be the first member of the labdane diterpene class shown to have inhibitory activity against hTAS2R31 activation (IC50 8 μM). A homology model of hTAS2R31 was constructed, and the molecular docking of 2 to this model indicated that this diterpenoid binds well to the active site of hTAS2R31, whereas this was not the case for the closely structurally related compound 3 (sempervirenic acid). The content of 2 in the chloroform-soluble portion of the methanolic extract of S. canadensis was up to 2.24 g/100 g dry weight, as determined by HPLC.

  5. Key Phytochemicals Contributing to the Bitter Off-Taste of Oat (Avena sativa L.).

    Science.gov (United States)

    Günther-Jordanland, Kirsten; Dawid, Corinna; Dietz, Maximilian; Hofmann, Thomas

    2016-12-28

    Sensory-directed fractionation of extracts prepared from oat flour (Avena sativa L.) followed by LC-TOF-MS, LC-MS/MS, and 1D/2D-NMR experiments revealed avenanthramides and saponins as the key phytochemicals contributing to the typical astringent and bitter off-taste of oat. Besides avenacosides A and B, two previously unreported bitter-tasting bidesmosidic saponins were identified, namely, 3-(O-α-l-rhamnopyranosyl(1→2)-[β-d-glucopyranosyl(1→3)-β-d-glucopyranosyl(1→4)]-β-d-glucopyranosid)-26-O-β-d-glucopyranosyl-(25R)-furost-5-ene-3β,22,26-triol, and 3-(O-α-l-rhamnopyranosyl(1→2)-[β-d-glucopyranosyl(1→4)]-β-d-glucopyranosid)-26-O-β-d-glucopyranosyl-(25R)-furost-5-ene-3β,22,26-triol. Depending on the chemical structure of the saponins and avenanthramides, sensory studies revealed human orosensory recognition thresholds of these phytochemicals to range between 3 and 170 μmol/L.

  6. Isolation of bitter acids from hops (Humulus lupulus L.) using countercurrent chromatography.

    Science.gov (United States)

    Dahlberg, Clinton J; Harris, Guy; Urban, Jan; Tripp, Matthew L; Bland, Jeffrey S; Carroll, Brian J

    2012-05-01

    Commercially available hops (Humulus lupulus L.) bitter acid extracts contain a mixture of three major congeners (co-, n-, and ad-) in addition to cis/trans diastereomers for each congener. Individual isomerized α-acids were obtained by the consecutive application of two separate countercurrent chromatography methods. First, individual isomerized α-acid congeners as a mixture of cis/trans diastereomers were obtained using a solvent system consisting of hexane and aqueous buffer. The second purification, capable of separating cis/trans diastereomers, was accomplished using a quaternary solvent system; an alternative procedure using β-cyclodextrin followed by countercurrent chromatography was also investigated. The NaBH(4) reduction of the purified isomerized α-acid compounds followed by countercurrent chromatography purification resulted in individual ρ iso α-acids (>95%). Similarly, catalytic hydrogenation of the purified isomerized α-acid compounds followed by countercurrent chromatography purification produced individual tetrahydro isomerized α-acids (>95%). Reported herein is a widely applicable approach that focuses on three critical variables--solvent system composition, pH, and buffer-to-sample ratio--that enable the efficient purification of individual bitter acids (≥95%) from commercially available hops extracts. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of gamma irradiation on bitter pit of apple fruits (Malus Domestica Borkh)

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    2000-12-01

    Tow varieties of apple fruits Golden and Starking were irradiated with 0, 0.5, 1.0, 1.5 kGy and with 0, 1.0, 1.5 kGy respectively. Irradiated and unirradiated fruits were stored at 1 to 2 centigrade and relative humidity of 80 to 90%. Fruit quality (firmness, skin thickness and bitter pit) and juice characteristics (moisture, ash, carbohydrates, organic acids, Ph, and viscosity), were determined during storage periods (0, 3 and 6 months). The used doses of gamma irradiation significantly decreased the percentage and intensity of bitter pit. Irradiated fruits were softer immediately after irradiation and through storage periods, there were no differences in firmness between irradiated and unirradiated fruits. Gamma irradiation increased the thickness of skin in Golden fruits and decreased it in Starking. Juice production from both varieties immediately after irradiation was not affected by gamma irradiation. However the juice produced from irradiated fruits had higher organic acids (citric and malic acids), viscosity and Ph values than the control. (author)

  8. Intensity of bitterness of processed yerba mate leaves originated in two contrasted light environments

    Directory of Open Access Journals (Sweden)

    Miroslava Rakocevic

    2008-06-01

    Full Text Available The bitterness intensity of beverage prepared from the leaves produced on the males and females of yerba mate (Ilex paraguariensis, grown in the forest understory and monoculture, was evaluated. The leaves were grouped by their position (in the crown and on the branch tips and by the leaf age. The leaf gas exchange, leaf temperature and photosynthetic photon flux density were observed. Inter and intra-specific competition for light and self-shading showed the same effect on yerba mate beverage taste. All the shading types resulted in bitterer taste of the processed yerba mate leaves compared to the leaves originated under the direct sun exposure. The leaves from the plants grown in the monoculture showed less bitterness than those grown in the forest understory. This conclusion was completely opposite to the conventionally accepted paradigm of the yerba mate industries. The leaves from the tips (younger leaves of the plants grown in the monoculture resulted a beverage of softer taste; the males produced less bitter leaves in any light environment (forest understory or in the crown in monoculture. The taste was related to the photosynthetic and transpiration rate, and leaf temperature. Stronger bitterness of the leaves provided from the shade conditions was related to the decreased leaf temperature and transpiration in the diurnal scale.Mediu-se a intensidade de amargor da bebida preparada a partir de folhas da erva-mate (Ilex paraguariensis de diversas idades, situadas em duas posições na copa (interior e ponteiras, produzidas por plantas masculinas e femininas cultivadas na floresta antropizada e em monocultura. As trocas gasosas foliares, a temperatura de folhas e a densidade de fluxo de fótons fotossinteticamente ativos também foram medidas. Com isso verificou-se que a idéia corrente de que o sombreamento está diretamente relacionado ao sabor suave do chimarrão é completamente equivocada, já que as competições inter- e intra

  9. Bitter Orange

    Science.gov (United States)

    ... current list of banned drugs. The fruit, peel, flower, and oil are used and can be taken ... E-mail: info@nccih.nih.gov PubMed® A service of the National Library of Medicine, PubMed® contains ...

  10. Bromophenol blue discoloration using peroxidase immobilized on highly activated corncob powder

    Directory of Open Access Journals (Sweden)

    Júlio César Vinueza Galárraga

    2013-08-01

    Full Text Available The aim of the present study was to evaluate the efficacy of peroxidase immobilized on corncob powder for the discoloration of dye. Peroxidase was extracted from soybean seed coat, followed by amination of the surface of the tertiary structure. The aminated peroxidase was immobilized on highly activated corncob powder and employed for the discoloration of bromophenol blue. Amination was performed with 10 or 50 mmol.L-1 carbodiimide and 1 mol.L-1 ethylenediamine. The amount of protein in the extract was 0.235 ± 0.011 mg.mL-1 and specific peroxidase activity was 86.06 ± 1.52 µmol min-1 . mg-1, using 1 mmol.L-1 ABTS as substrate. Ten mmol.L-1 and 50 mmol.L-1 aminated peroxidase retained 88 and 100% of the initial activity. Following covalent immobilization on a corncob powder-glyoxyl support, 10 and 50 mmol.L-1 aminated peroxidase retained 74 and 86% of activity, respectively. Derivatives were used for the discoloration of 0.02 mmol.L-1 bromophenol blue solution. After 30 min, 93 and 89% discoloration was achieved with the 10 mmol.L-1 and 50 mmol.L-1 derivatives, respectively. Moreover, these derivatives retained 60% of the catalytic properties when used three times. Peroxidase extracted from soybean seed coat immobilized on a low-cost corncob powder support exhibited improved thermal stability.

  11. A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin1

    Science.gov (United States)

    Quiroga, Mónica; Guerrero, Consuelo; Botella, Miguel A.; Barceló, Araceli; Amaya, Iraida; Medina, María I.; Alonso, Francisco J.; de Forchetti, Silvia Milrad; Tigier, Horacio; Valpuesta, Victoriano

    2000-01-01

    The last step in the synthesis of lignin and suberin has been proposed to be catalyzed by peroxidases, although other proteins may also be involved. To determine which peroxidases are involved in the synthesis of lignin and suberin, five peroxidases from tomato (Lycopersicon esculentum) roots, representing the majority of the peroxidase activity in this organ, have been partially purified and characterized kinetically. The purified peroxidases with isoelectric point (pI) values of 3.6 and 9.6 showed the highest catalytic efficiency when the substrate used was syringaldazine, an analog of lignin monomer. Using a combination of transgenic expression and antibody recognition, we now show that the peroxidase pI 9.6 is probably encoded by TPX1, a tomato peroxidase gene we have previously isolated. In situ RNA hybridization revealed that TPX1 expression is restricted to cells undergoing synthesis of lignin and suberin. Salt stress has been reported to induce the synthesis of lignin and/or suberin. This stress applied to tomato caused changes in the expression pattern of TPX1 and induced the TPX1 protein. We propose that the TPX1 product is involved in the synthesis of lignin and suberin. PMID:10759507

  12. Characterization of Plant Peroxidases and Their Potential for Degradation of Dyes: a Review.

    Science.gov (United States)

    Kalsoom, Umme; Bhatti, Haq Nawaz; Asgher, Muhammad

    2015-07-01

    Peroxidases are ubiquitously found in all vascular plants and are promising biocatalysts for oxidization of wide range of aromatic substrates including various industrial dyes. Peroxidases can catalyze degradation of chemical structure of aromatic dyes either by precipitation or by opening the aromatic ring structure. Both soluble and immobilized peroxidases have been successfully used in batches as well as in continuous processes for the treatment of aromatic dyes present in industrial effluents. Plant peroxidases are stable catalysts that retain their activities over a broad range of pH and temperatures. The performance of an enzyme for degradation process depends upon the structure of dyes and the operational parameters like concentration of enzyme, H2O2 and dye, incubation time, pH, and temperature. Recalcitrant dyes can also be mineralized by plant peroxidases in the presence of redox mediators. Thus, plant peroxidases are easily available, inexpensive, and ecofriendly biocatalysts for the treatment of wastewaters containing a wide spectrum of textile and non-textile synthetic dyes. This article reviews the recent developments in isolation and characterization of plant peroxidases and their applications for bioremediation of synthetic dyes.

  13. Direct Electrochemistry of Horseradish Peroxidase-Gold Nanoparticles Conjugate

    Directory of Open Access Journals (Sweden)

    Chanchal K. Mitra

    2009-02-01

    Full Text Available We have studied the direct electrochemistry of horseradish peroxidase (HRP coupled to gold nanoparticles (AuNP using electrochemical techniques, which provide some insight in the application of biosensors as tools for diagnostics because HRP is widely used in clinical diagnostics kits. AuNP capped with (i glutathione and (ii lipoic acid was covalently linked to HRP. The immobilized HRP/AuNP conjugate showed characteristic redox peaks at a gold electrode. It displayed good electrocatalytic response to the reduction of H2O2, with good sensitivity and without any electron mediator. The covalent linking of HRP and AuNP did not affect the activity of the enzyme significantly. The response of the electrode towards the different concentrations of H2O2 showed the characteristics of Michaelis Menten enzyme kinetics with an optimum pH between 7.0 to 8.0. The preparation of the sensor involves single layer of enzyme, which can be carried out efficiently and is also highly reproducible when compared to other systems involving the layer-by-layer assembly, adsorption or encapsulation of the enzyme. The immobilized AuNP-HRP can be used for immunosensor applications

  14. The multihued palette of dye-decolorizing peroxidases.

    Science.gov (United States)

    Singh, Rahul; Eltis, Lindsay D

    2015-05-15

    Dye-decolorizing peroxidases (DyPs; EC 1.11.1.19) are heme enzymes that comprise a family of the dimeric α+β barrel structural superfamily of proteins. The first DyP, identified relatively recently in the fungus Bjerkandera adusta, was characterized for its ability to catalyze the decolorization of anthraquinone-based industrial dyes. These enzymes are now known to be present in all three domains of life, but do not appear to occur in plants or animals. They are involved in a range of physiological processes, although in many cases their roles remain unknown. This has not prevented the development of their biocatalytic potential, which includes the transformation of lignin. This review highlights the functional diversity of DyPs in the light of phylogenetic, structural and biochemical data. The phylogenetic analysis reveals the existence of at least five classes of DyPs. Their potential physiological roles are discussed based in part on synteny analyses. Finally, the considerable biotechnological potential of DyPs is summarized. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  15. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Thyroid peroxidase activity is inhibited by amino acids

    Directory of Open Access Journals (Sweden)

    D.P. Carvalho

    2000-03-01

    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  17. Thyroid Peroxidase Antibody and Screening for Postpartum Thyroid Dysfunction

    Directory of Open Access Journals (Sweden)

    Mohamed A. Adlan

    2011-01-01

    Full Text Available Postpartum thyroid dysfunction (PPTD is a common disorder which causes considerable morbidity in affected women. The availability of effective treatment for hypothyroid PPTD, the occurrence of the disease in subsequent pregnancies and the need to identify subjects who develop long term hypothyroidism, has prompted discussion about screening for this disorder. There is currently no consensus about screening as investigations hitherto have been variable in their design, definitions and assay frequency and methodology. There is also a lack of consensus about a suitable screening tool although thyroid peroxidase antibody (TPOAb is a leading contender. We present data about the use of TPOAb in early pregnancy and its value as a screening tool. Although its positive predictive value is moderate, its sensitivity and specificity when used in early pregnancy are comparable or better compared to other times during pregnancy and the postpartum period. Recent studies have also confirmed this strategy to be cost effective and to compare favourably with other screening strategies. We also explore the advantages of universal screening.

  18. Colorimetric peroxidase mimetic assay for uranyl detection in sea water

    KAUST Repository

    Zhang, Dingyuan

    2015-03-04

    Uranyl (UO2 2+) is a form of uranium in aqueous solution that represents the greatest risk to human health because of its bioavailability. Different sensing techniques have been used with very sensitive detection limits especially the recently reported uranyl-specific DNAzymes systems. However, to the best of our knowledge, few efficient detection methods have been reported for uranyl sensing in seawater. Herein, gold nanoclusters (AuNCs) are employed in an efficient spectroscopic method to detect uranyl ion (UO2 2+) with a detection limit of 1.86 ÎM. In the absence of UO2 2+, the BSA-stabilized AuNCs (BSA-AuNCs) showed an intrinsic peroxidase-like activity. In the presence of UO2 2+, this activity can be efficiently restrained. The preliminary quenching mechanism and selectivity of UO2 2+ was also investigated and compared with other ions. This design strategy could be useful in understanding the binding affinity of protein-stabilized AuNCs to UO2 2+ and consequently prompt the recycling of UO2 2+ from seawater.

  19. Increasing the scale of peroxidase production by Streptomyces sp. strain BSII#1.

    Science.gov (United States)

    Musengi, A; Khan, N; Le Roes-Hill, M; Pletschke, B I; Burton, S G

    2014-03-01

    To optimize peroxidase production by Streptomyces sp. strain BSII#1, up to 3 l culture volumes. Peroxidase production by Streptomyces sp. strain BSII#1 was optimized in terms of production temperature and pH and the use of lignin-based model chemical inducers. The highest peroxidase activity (1·30 ± 0·04 U ml(-1) ) in 10 ml culture volume was achieved in a complex production medium (pH 8·0) at 37°C in the presence of 0·1 mmol l(-1) veratryl alcohol, which was greater than those reported previously. Scale-up to 100 and 400 ml culture volumes resulted in decreased peroxidase production (0·53 ± 0·10 and 0·26 ± 0·08 U ml(-1) , respectively). However, increased aeration improved peroxidase production with the highest production achieved using an airlift bioreactor (4·76 ± 0·46 U ml(-1) in 3 l culture volume). Veratryl alcohol (0·1 mmol l(-1) ) is an effective inducer of peroxidase production by Streptomyces sp. strain BSII#1. However, improved aeration increased peroxidase production in larger volumes without the use of an inducer, surpassing induced yields in an optimized small-scale process. Only a limited number of reports in literature have focused on the up-scaling of bacterial peroxidase production. There remains opportunity for feasible large-scale production of bacterial peroxidases with potentially novel biocatalytic properties. © 2013 The Society for Applied Microbiology.

  20. Development of preparative and analytical methods of the hop bitter acid oxide fraction and chemical properties of its components.

    Science.gov (United States)

    Taniguchi, Yoshimasa; Matsukura, Yasuko; Taniguchi, Harumi; Koizumi, Hideki; Katayama, Mikio

    2015-01-01

    The bitter acids in hops (Humulus lupulus L.) and beer, such as α-, β-, and iso-α-acids, are known to affect beer quality and display various physiological effects. However, these compounds readily oxidize, and the effect of the oxides on the properties of beer or their potential health benefits are not well understood. In this study, we developed a simple preparative method for the bitter acid oxide fraction derived from hops and designated the constituents as matured hop bitter acids (MHBA). HPLC-PDA-ESI/HRMS and MS(2) revealed that MHBA are primarily composed of α-acid-derived oxides, which possess a common β-tricarbonyl moiety in their structures similar to α-, β-, and iso-α-acids. We also developed a quantitative analytical method of whole MHBA by HPLC, which showed high precision and reproducibility. Using our newly developed method, the concentration of whole MHBA in several commercial beers was evaluated. Our results will promote the study of bitter acid oxides.

  1. An evidence-based systematic review of bitter orange (Citrus aurantium) by the Natural Standard Research Collaboration.

    Science.gov (United States)

    Ulbricht, Catherine; Costa, Dawn; Giese, Nicole; Isaac, Richard; Liu, Angela; Liu, Yanze; Osho, Olufemi; Poon, Linda; Rusie, Erica; Stock, Tera; Weissner, Wendy; Windsor, Regina C

    2013-12-01

    An evidence-based systematic review of bitter orange (Citrus aurantium) by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated, reproducible grading rationale. This article includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.

  2. First report of Colletotrichum godetiae causing bitter rot on ‘Golden Delicious’ apples in the Netherlands

    NARCIS (Netherlands)

    Wenneker, M.; Pham, K.T.K.; Lemmers, M.E.C.; Boer, de F.A.; Lans, van der A.M.; Leeuwen, van P.J.; Hollinger, T.C.

    2016-01-01

    Apple (Malus domestica) is an important fruit crop in the Netherlands, with a total production of 418,000 tons in 2011. Symptoms of apple bitter rot were observed on ‘Golden Delicious’ apples in the Netherlands in July 2013 after 9 months of storage in a packing house at controlled atmosphere.

  3. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds

    International Nuclear Information System (INIS)

    Behrens, Maik; Brockhoff, Anne; Kuhn, Christina; Bufe, Bernd; Winnig, Marcel; Meyerhof, Wolfgang

    2004-01-01

    The recent advances in the functional expression of TAS2Rs in heterologous systems resulted in the identification of bitter tastants that specifically activate receptors of this family. All bitter taste receptors reported to date exhibit a pronounced selectivity for single substances or structurally related bitter compounds. In the present study we demonstrate the expression of the hTAS2R14 gene by RT-PCR analyses and in situ hybridisation in human circumvallate papillae. By functional expression in HEK-293T cells we show that hTAS2R14 displays a, so far, unique broad tuning towards a variety of structurally diverse bitter compounds, including the potent neurotoxins, (-)-α-thujone, the pharmacologically active component of absinthe, and picrotoxinin, a poisonous substance of fishberries. The observed activation of heterologously expressed hTAS2R14 by low concentrations of (-)-α-thujone and picrotoxinin suggests that the receptor is sufficiently sensitive to caution us against the ingestion of toxic amounts of these substances

  4. Impacts of 1-Methylcyclopropene and controlled atmosphere established during conditioning on development of bitter pit in ‘Honeycrisp’ apples

    Science.gov (United States)

    ‘Honeycrisp’ apples are susceptible to develop the physiological disorder bitter pit. This disorder typically develops during storage, but pre-harvest lesion development can also occur. ‘Honeycrisp’ is also chilling sensitive and fruit is typically held at 10-20 oC after harvest for up to 7d to re...

  5. Redução da severidade da podridão-amarga de maçã em pós-colheita pela imersão de frutos em quitosana Reduction of the severity of apple bitter rot by fruit immersion in chitosan

    Directory of Open Access Journals (Sweden)

    Ricardo Barbosa Felipini

    2009-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a aplicação de quitosana no controle da podridão-amarga da maçã em pós-colheita e seus efeitos sobre Colletotrichum acutatum e a atividade da peroxidase nos frutos. Frutos previamente infectados com o patógeno foram imersos em suspensões de quitosana com diferentes concentrações e pHs. Para estudar possíveis mecanismos de ação envolvidos no controle da doença, foram realizados testes in vitro, para avaliar o efeito da quitosana sobre a germinação de conídios de C. acutatum e sobre o crescimento micelial. Foi avaliada a capacidade da quitosana de induzir a síntese de enzimas relacionadas à defesa da planta (peroxidases, por meio de ensaio espectrofotométrico. Houve efeito de doses e de pH da quitosana sobre a redução da severidade da podridão-amarga em maçã. A suspensão de quitosana a 10 g L-1 e pH 4 foi a mais apropriada tecnicamente para o controle da doença, pois reduziu a severidade em 26%. O polissacarídeo não elevou a atividade de peroxidases nos frutos, mas reduziu a germinação de conídios e o crescimento micelial do patógeno. A quitosana aplicada em pós-colheita é uma medida alternativa aos fungicidas para o manejo da podridão-amarga.The objective of this work was to evaluate the aplication of chitosan on the control of apple bitter rot in postharvest conditions and its effects on Colletotrichum acutatum and fruit peroxidase activity. Apple fruit previously infected with the pathogen were immersed in chitosan suspensions with different concentrations and pHs. To study some possible action mechanisms, in vitro tests were carried out to evaluate the effect of chitosan on spore germination and mycelial growth of C. acutatum. The capacity of chitosan to induce the synthesis of defense enzymes (peroxidases was evaluated in fruits by spectrofotometric assay. Different doses and pH of chitosan were found to be effective in the reduction of the disease severity. Chitosan at

  6. Molecular characterization of the lignin-forming peroxidase: Role in growth, development and response to stress. Progress summary report, April 1, 1992--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lagrimini, L.M.

    1993-03-01

    This laboratory has continued its comprehensive study of the structure and function of plant peroxidases and their genes. Specifically, we are characterizing the anionic peroxidase of tobacco. During the past year we have completed the nucleotide sequence of the tobacco anionic peroxidase gene, joined the anionic peroxidase promoter to {Beta}-glucuronidase and demonstrated expression in transformed plants, measured lignin, auxin, and ethylene levels in transgenic tobacco plants over-expressing the anionic peroxidase, developed chimeric peroxidase genes to over-or under-express the anionic peroxidase in tissue specific manner in transgenic plants, and over-expressed the tobacco anionic peroxidase in transgenic tomato and sweetgum plants.

  7. Inhibition of Heme Peroxidase During Phenol Derivatives Oxidation. Possible Molecular Cloaking of the Active Center

    Directory of Open Access Journals (Sweden)

    Juozas Kulys

    2005-10-01

    Full Text Available Abstract: Ab initio quantum chemical calculations have been applied to the study of the molecular structure of phenol derivatives and oligomers produced during peroxidasecatalyzed oxidation. The interaction of substrates and oligomers with Arthromyces ramosus peroxidase was analyzed by docking methods. The most possible interaction site of oligomers is an active center of the peroxidase. The complexation energy increases with increasing oligomer length. However, the complexed oligomers do not form a precise (for the reaction hydrogen bonding network in the active center of the enzyme. It seems likely that strong but non productive docking of the oligomers determines peroxidase inhibition during the reaction.

  8. Convergent adaptations: bitter manioc cultivation systems in fertile anthropogenic dark earths and floodplain soils in Central Amazonia.

    Directory of Open Access Journals (Sweden)

    James Angus Fraser

    Full Text Available Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open

  9. Quantification of amygdalin in nonbitter, semibitter, and bitter almonds (Prunus dulcis) by UHPLC-(ESI)QqQ MS/MS.

    Science.gov (United States)

    Lee, Jihyun; Zhang, Gong; Wood, Elizabeth; Rogel Castillo, Cristian; Mitchell, Alyson E

    2013-08-14

    Amygdalin is a cynaogenic diglucoside responsible for the bitterness of almonds. Almonds display three flavor phenotypes, nonbitter, semibitter, and bitter. Herein, the amygdalin content of 20 varieties of nonbitter, semibitter, and bitter almonds from four primary growing regions of California was determined using solid-phase extraction and ultrahigh-pressure liquid chromatography electrospray triple-quadrupole mass spectrometry (UHPLC-(ESI)QqQ MS/MS). The detection limit for this method is ≤ 0.1 ng/mL (3 times the signal-to-noise ratio) and the LOQ is 0.33 ng/mL (10 times the signal-to-noise ratio), allowing for the reliable quantitation of trace levels of amygdalin in nonbitter almonds (0.13 mg/kg almond). Results indicate that amygdalin concentrations for the three flavor phenotypes were significantly different (p < 0.001). The mean concentrations of amygdalin in nonbitter, semibitter, and bitter almonds are 63.13 ± 57.54, 992.24 ± 513.04, and 40060.34 ± 7855.26 mg/kg, respectively. Levels of amygdalin ranged from 2.16 to 157.44 mg/kg in nonbitter, from 523.50 to 1772.75 mg/kg in semibitter, and from 33006.60 to 53998.30 mg/kg in bitter almonds. These results suggest that phenotype classification may be achieved on the basis of amygdalin levels. Growing region had a statistically significant effect on the amygdalin concentration in commercial varieties (p < 0.05).

  10. Convergent Adaptations: Bitter Manioc Cultivation Systems in Fertile Anthropogenic Dark Earths and Floodplain Soils in Central Amazonia

    Science.gov (United States)

    Fraser, James Angus; Alves-Pereira, Alessandro; Junqueira, André Braga; Peroni, Nivaldo; Clement, Charles Roland

    2012-01-01

    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for

  11. Relationship between the Amount of Bitter Substances Adsorbed onto Lipid/Polymer Membrane and the Electric Response of Taste Sensors

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2014-09-01

    Full Text Available The bitterness of bitter substances can be measured by the change in the membrane electric potential caused by adsorption (CPA using a taste sensor (electronic tongue. In this study, we examined the relationship between the CPA value due to an acidic bitter substance and the amount of the bitter substance adsorbed onto lipid/polymer membranes, which contain different lipid contents, used in the taste sensor. We used iso-α-acid which is an acidic bitter substance found in several foods and beverages. The amount of adsorbed iso-α-acid, which was determined by spectroscopy, showed a maximum at the lipid concentration 0.1 wt % of the membrane, and the same phenomenon was observed for the CPA value. At the higher lipid concentration, however, the amount adsorbed decreased and then remained constant, while the CPA value decreased monotonically to zero. This constant adsorption amount was observed when the membrane potential in the reference solution did not change with increasing lipid concentration. The decrease in CPA value in spite of the constant adsorption amount is caused by a decrease in the sensitivity of the membrane as the surface charge density increases. The reason why the peaks appeared in both the CPA value and adsorption amount is based on the contradictory adsorption properties of iso-α-acid. The increasing charged lipid concentration of the membrane causes an increasing electrostatic attractive interaction between iso-α-acid and the membrane, but simultaneously causes a decreasing hydrophobic interaction that results in decreasing adsorption of iso-α-acid, which also has hydrophobic properties, onto the membrane. Estimates of the amount of adsorption suggest that iso-α-acid molecules are adsorbed onto both the surface and interior of the membrane.

  12. A review of the human clinical studies involving Citrus aurantium (bitter orange) extract and its primary protoalkaloid p-synephrine.

    Science.gov (United States)

    Stohs, Sidney J; Preuss, Harry G; Shara, Mohd

    2012-01-01

    This review summarizes the published as well as unpublished human studies involving Citrus aurantium (bitter orange) extract and its primary protoalkaloid p-synephrine, providing information and an assessment of the safety and efficacy of these widely used products. The results of over 20 studies involving a total of approximately 360 subjects that consumed p-synephrine alone or in combination with other ingredients are reviewed and critiqued. Over 50 % of the subjects involved in these studies were overweight/obese, and approximately two-thirds of these overweight/obese subjects consumed caffeine (132-528 mg/day) in conjunction with p-synephrine (10-53 mg/day). Bitter orange/p-synephrine containing products were consumed for up to 12 weeks. Approximately 44 % of the subjects consumed a bitter orange/p-synephrine only product, while the remainder consumed a complex product that contained multiple ingredients in addition to p-synephrine. In general, bitter orange extract alone (p-synephrine) or in combination with other herbal ingredients did not produce significant adverse events as an increase in heart rate or blood pressure, or alter electrocardiographic data, serum chemistry, blood cell counts or urinalysis. p-Synephrine alone as well as in combination products were shown to increase resting metabolic rate and energy expenditure, and modest increases in weight loss were observed with bitter orange extract/p-synephrine-containing products when given for six to 12 weeks. Longer term studies are needed to further assess the efficacy of these products and affirm their safety under these conditions.

  13. Polyphenol oxidase and peroxidase in different sugarcane cultivars, in Presidente Prudente region; Polifenoloxidases e peroxidase em diferentes variedades de cana-de-acucar na regiao de Presidente Prudente

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Tadeu A.; Gomes, Danilo B.; Marques, Patricia A.A.; Alves, Vagner C. [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil). Curso de Agronomia], Emails: tmarques@unoeste.br, pmarques@unoeste.br, vagner@unoeste.br

    2009-07-01

    The objective in present work was compare three sugarcane cultivars (RB 72-454, RB 86-7515, IAC 86-2480), evaluating the content of polyphenoloxidase and peroxidase. These determinations had aimed at to detect possible differences between varieties thus and being to differentiate them with regard to the products most interesting to be elaborated, ethanol production or sugar production. The varieties had presented differences of behavior for studied enzymes. The activity of polyphenoloxidase was superior the activity of peroxidase. The enzyme peroxidase was presented in bigger indices in the dry and cold periods. The enzyme polyphenoloxidase was presented well changeable, but with strong trend of bigger values in the rainy periods. It can be said that distinct periods for the best use of the varieties in the sugar production or alcohol exist. (author)

  14. A code for calculating force and temperature of a bitter plate type toroidal field coil system

    International Nuclear Information System (INIS)

    Christensen, U.

    1989-01-01

    To assist the design effort of the TF coils for CIT, a set of programs was developed to calculate the transient spatial distribution of the current density, the temperature and the forces in the TF coil conductor region. The TF coils are of the Bitter (disk) type design and therefore have negligible variation of current density in the toroidal direction. During the TF pulse, voltages are induced which cause the field and current to diffuse in the minor radial direction. This penetration, combined with the increase of resistance due to the temperature rise determines the distribution of the current. After the current distribution has been determined, the in-plane (TF-TF) and the out-of-plane (TF-PF) forces in the conductor are computed. The predicted currents and temperatures have been independently corroborated using the SPARK code which has been modified for this type of problem. 6 figs

  15. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review.

    Science.gov (United States)

    Leung, Lawrence; Birtwhistle, Richard; Kotecha, Jyoti; Hannah, Susan; Cuthbertson, Sharon

    2009-12-01

    It has been estimated that up to one-third of patients with diabetes mellitus use some form of complementary and alternative medicine. Momordica charantia (bitter melon) is a popular fruit used for the treatment of diabetes and related conditions amongst the indigenous populations of Asia, South America, India and East Africa. Abundant pre-clinical studies have documented the anti-diabetic and hypoglycaemic effects of M. charantia through various postulated mechanisms. However, clinical trial data with human subjects are limited and flawed by poor study design and low statistical power. The present article reviews the clinical data regarding the anti-diabetic potentials of M. charantia and calls for better-designed clinical trials to further elucidate its possible therapeutic effects.

  16. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process

    Directory of Open Access Journals (Sweden)

    Rui Yatabe

    2015-09-01

    Full Text Available It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG, which is called “preconditioning”. However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS. After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB, contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods.

  17. Prostaglandin endoperoxide H synthases: peroxidase hydroperoxide specificity and cyclooxygenase activation.

    Science.gov (United States)

    Liu, Jiayan; Seibold, Steve A; Rieke, Caroline J; Song, Inseok; Cukier, Robert I; Smith, William L

    2007-06-22

    The cyclooxygenase (COX) activity of prostaglandin endoperoxide H synthases (PGHSs) converts arachidonic acid and O2 to prostaglandin G2 (PGG2). PGHS peroxidase (POX) activity reduces PGG2 to PGH2. The first step in POX catalysis is formation of an oxyferryl heme radical cation (Compound I), which undergoes intramolecular electron transfer forming Intermediate II having an oxyferryl heme and a Tyr-385 radical required for COX catalysis. PGHS POX catalyzes heterolytic cleavage of primary and secondary hydroperoxides much more readily than H2O2, but the basis for this specificity has been unresolved. Several large amino acids form a hydrophobic "dome" over part of the heme, but when these residues were mutated to alanines there was little effect on Compound I formation from H2O2 or 15-hydroperoxyeicosatetraenoic acid, a surrogate substrate for PGG2. Ab initio calculations of heterolytic bond dissociation energies of the peroxyl groups of small peroxides indicated that they are almost the same. Molecular Dynamics simulations suggest that PGG2 binds the POX site through a peroxyl-iron bond, a hydrogen bond with His-207 and van der Waals interactions involving methylene groups adjoining the carbon bearing the peroxyl group and the protoporphyrin IX. We speculate that these latter interactions, which are not possible with H2O2, are major contributors to PGHS POX specificity. The distal Gln-203 four residues removed from His-207 have been thought to be essential for Compound I formation. However, Q203V PGHS-1 and PGHS-2 mutants catalyzed heterolytic cleavage of peroxides and exhibited native COX activity. PGHSs are homodimers with each monomer having a POX site and COX site. Cross-talk occurs between the COX sites of adjoining monomers. However, no cross-talk between the POX and COX sites of monomers was detected in a PGHS-2 heterodimer comprised of a Q203R monomer having an inactive POX site and a G533A monomer with an inactive COX site.

  18. In vitro free radical metabolism of phenolphthalein by peroxidases.

    Science.gov (United States)

    Sipe, H J; Corbett, J T; Mason, R P

    1997-04-01

    Phenolphthalein, a widely used laxative, is the active ingredient in more than a dozen commercial nonprescription formulations. Fast-flow EPR studies of the reaction of phenolphthalein with horseradish peroxidase (HRP) and hydrogen peroxide permit the direct detection of two free radicals. One has EPR parameters characteristic of phenoxyl radicals. The other has a broad unresolved spectrum, possibly arising from free radical polymeric products of the initial phenoxyl radical. EPR spin-trapping studies of incubations of phenolphthalein with lactoperoxidase, reduced glutathione (GSH), and hydrogen peroxide with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrate stimulated production of DMPO/.SG compared with an identical incubation lacking phenolphthalein. In the absence of DMPO, measurements with a Clark-type oxygen electrode show that molecular oxygen is consumed by a sequence of reactions initiated by the glutathione thiyl radical. Enhanced production of DMPO superoxide radical adduct is also found in a system of phenolphthalein, NADH, and lactoperoxidase. In this system the phenolphthalein phenoxyl radical abstracts hydrogen from NADH to generate NAD., which is not spin trapped by DMPO, but reacts with molecular oxygen to produce the superoxide radical detected by EPR. In the absence of DMPO, the oxygen consumption is measured using the Clark-type electrode. Production of ascorbate radical anion is also enhanced in a system of phenolphthalein, ascorbic acid, hydrogen peroxide, and lactoperoxidase. Ascorbate inhibits oxygen consumption when phenolphthalein is metabolized in the presence of either glutathione or NADH by reducing radical intermediates to their parent molecules and forming the relatively stable ascorbate anion radical. The detection of enhanced free radical production in these three systems, a consequence of futile metabolism (or redox cycling), suggests that phenolphthalein may be a significant source of oxidative stress in physiological systems

  19. Anti diabetic effect of Momordica charantia (bitter melone on alloxan induced diabetic rabbits.

    Directory of Open Access Journals (Sweden)

    Yakaiah Vangoori, Mishra SS, Ambudas B, Ramesh P, Meghavani G, Deepika K, Prathibha A

    2013-02-01

    Full Text Available Objective: to investigate the anti diabetic effect of the bitter melon on Alloxan induced diabetes in experimental animals (rabbits. Materials and Methods: the alcohol extract of whole fruit was tested for its efficacy in Alloxan (150mg/kg induced diabetic rabbit. The diabetic rabbits were divided into 5groups. Group I (control received 2% gumacasia, groupie (positive control received standard drug Metformin (62.5mg+2%GA, group III, IV, V (T1 T2 T3 were treated orally with a daily dose of 0.5(gm 1gm, 1.5gm respectively for 35 days, for all diabetic rabbits after giving TEST,NC,PC preparations, the blood samples were collected and determined the blood glucose level 0,1,3,24hrs intervals. 0hr reading is before drug giving and remaining 3 readings after drugs giving. 24th her reading is considered as 0hr reading for the next day. Results: administration of alcohol of an extract of bitter melon produced a dose dependent decrease in blood glucose levels in Alloxan induced rabbits. There was a significant fall in blood sugar level in High dose (1.5GM/kg in comparison to low dose (0.5gm/kg and median dose (1gm/kg shown by LSD test. This is comparable to the effect of Metformin. Conclusion: the results of this study show that chronic oral administration of an extract of Momordica charantia fruit at an appropriate dosage may be good alternative anti diabetic agent.

  20. Impact of Prior Consumption on Sour, Sweet, Salty, and Bitter Tastes.

    Science.gov (United States)

    Christina, Josephine; Palma-Salgado, Sindy; Clark, Diana; Kahraman, Ozan; Lee, Soo-Yeun

    2016-02-01

    Food sensory tests generally require panelists to abstain from food or beverage consumption 30 min to an hour before a tasting session. However, investigators do not have a complete control over panelists' intentional or unintentional consumption prior to a tasting session. Currently, it is unclear how prior consumption impacts the results of the tasting session. The aim of this study was to determine the effects of temporary and lingering mouth irritation caused by the consumption of coffee, orange juice, and gum within 1, 15, or 30 min prior to the tasting session on the perception of 4 basic tastes: sweet, salty, sour, and bitter. Fifty-two panelists were served a beverage (orange juice, coffee, and water) or were asked to chew a piece of gum, and then, remained in the waiting room for 1, 15, or 30 min. They were then asked to report taste intensities using 15-cm unstructured line scales. Mean intensities of all tastes were not significantly different when orange juice was a primer at 1, 15, and 30 min when compared to water. Mean intensities of bitter were significantly lower when coffee was a primer at 1, 15, and 30 min than when water was a primer. Mean intensities of sweet were significantly lower when gum was a primer at 1 and 15 min than when water was a primer. The findings showed that it is necessary for 30 min or more waiting period of no food or beverage consumption prior to sensory testing. © 2015 Institute of Food Technologists®

  1. Extraction, Chemical Composition, and Antifungal Activity of Essential Oil of Bitter Almond

    Directory of Open Access Journals (Sweden)

    Huiling Geng

    2016-08-01

    Full Text Available The essential oil from the powder residual of dried bitter almond, a novel and environmentally-friendly fungicide, was successfully extracted in a 0.7% yield by hydro-distillation under optimized conditions. The chemical composition of bitter almond essential oil (BAEO was analyzed by gas chromatography–mass spectrometry (GC–MS. Twenty-one different components representing 99.90% of the total essential oil were identified, of which benzaldehyde (62.52%, benzoic acid (14.80%, and hexadecane (3.97% were the most abundant components. Furthermore, the in vitro and in vivo antifungal activities of BAEO against common plant pathogenic fungi were evaluated by the mycelium linear growth rate method and pot test, respectively. It was documented that 1 mg/mL of BAEO could variously inhibit all tested pathogenic fungi with the inhibition rates of 44.8%~100%. Among the tested 19 strains of fungi, the median effective concentration (EC50 values of BAEO against Alternaria brassicae and Alternaria solani were only 50.2 and 103.2 μg/mL, respectively, which were higher than those of other fungi. The in vivo antifungal activity of BAEO against Gloeosporium orbiculare was much higher than Blumeria graminis. The protective efficacy for the former was up to 98.07% at 10 mg/mL and the treatment efficacy was 93.41% at 12 mg/mL. The above results indicated that BAEO has the great potential to be developed as a botanical and agricultural fungicide.

  2. Extraction, Chemical Composition, and Antifungal Activity of Essential Oil of Bitter Almond

    Science.gov (United States)

    Geng, Huiling; Yu, Xinchi; Lu, Ailin; Cao, Haoqiang; Zhou, Bohang; Zhou, Le; Zhao, Zhong

    2016-01-01

    The essential oil from the powder residual of dried bitter almond, a novel and environmentally-friendly fungicide, was successfully extracted in a 0.7% yield by hydro-distillation under optimized conditions. The chemical composition of bitter almond essential oil (BAEO) was analyzed by gas chromatography–mass spectrometry (GC–MS). Twenty-one different components representing 99.90% of the total essential oil were identified, of which benzaldehyde (62.52%), benzoic acid (14.80%), and hexadecane (3.97%) were the most abundant components. Furthermore, the in vitro and in vivo antifungal activities of BAEO against common plant pathogenic fungi were evaluated by the mycelium linear growth rate method and pot test, respectively. It was documented that 1 mg/mL of BAEO could variously inhibit all tested pathogenic fungi with the inhibition rates of 44.8%~100%. Among the tested 19 strains of fungi, the median effective concentration (EC50) values of BAEO against Alternaria brassicae and Alternaria solani were only 50.2 and 103.2 μg/mL, respectively, which were higher than those of other fungi. The in vivo antifungal activity of BAEO against Gloeosporium orbiculare was much higher than Blumeria graminis. The protective efficacy for the former was up to 98.07% at 10 mg/mL and the treatment efficacy was 93.41% at 12 mg/mL. The above results indicated that BAEO has the great potential to be developed as a botanical and agricultural fungicide. PMID:27589723

  3. Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal “bitter taste” cue

    Science.gov (United States)

    Davidson, Terry L.; Powley, Terry L.

    2011-01-01

    The discovery that cells in the gastrointestinal (GI) tract express the same molecular receptors and intracellular signaling components known to be involved in taste has generated great interest in potential functions of such post-oral “taste” receptors in the control of food intake. To determine whether taste cues in the GI tract are detected and can directly influence behavior, the present study used a microbehavioral analysis of intake, in which rats drank from lickometers that were programmed to simultaneously deliver a brief yoked infusion of a taste stimulus to the intestines. Specifically, in daily 30-min sessions, thirsty rats with indwelling intraduodenal catheters were trained to drink hypotonic (0.12 M) sodium chloride (NaCl) and simultaneously self-infuse a 0.12 M NaCl solution. Once trained, in a subsequent series of intestinal taste probe trials, rats reduced licking during a 6-min infusion period, when a bitter stimulus denatonium benzoate (DB; 10 mM) was added to the NaCl vehicle for infusion, apparently conditioning a mild taste aversion. Presentation of the DB in isomolar lithium chloride (LiCl) for intestinal infusions accelerated the development of the response across trials and strengthened the temporal resolution of the early licking suppression in response to the arrival of the DB in the intestine. In an experiment to evaluate whether CCK is involved as a paracrine signal in transducing the intestinal taste of DB, the CCK-1R antagonist devazepide partially blocked the response to intestinal DB. In contrast to their ability to detect and avoid the bitter taste in the intestine, rats did not modify their licking to saccharin intraduodenal probe infusions. The intestinal taste aversion paradigm developed here provides a sensitive and effective protocol for evaluating which tastants—and concentrations of tastants—in the lumen of the gut can control ingestion. PMID:21865540

  4. Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal "bitter taste" cue.

    Science.gov (United States)

    Schier, Lindsey A; Davidson, Terry L; Powley, Terry L

    2011-11-01

    The discovery that cells in the gastrointestinal (GI) tract express the same molecular receptors and intracellular signaling components known to be involved in taste has generated great interest in potential functions of such post-oral "taste" receptors in the control of food intake. To determine whether taste cues in the GI tract are detected and can directly influence behavior, the present study used a microbehavioral analysis of intake, in which rats drank from lickometers that were programmed to simultaneously deliver a brief yoked infusion of a taste stimulus to the intestines. Specifically, in daily 30-min sessions, thirsty rats with indwelling intraduodenal catheters were trained to drink hypotonic (0.12 M) sodium chloride (NaCl) and simultaneously self-infuse a 0.12 M NaCl solution. Once trained, in a subsequent series of intestinal taste probe trials, rats reduced licking during a 6-min infusion period, when a bitter stimulus denatonium benzoate (DB; 10 mM) was added to the NaCl vehicle for infusion, apparently conditioning a mild taste aversion. Presentation of the DB in isomolar lithium chloride (LiCl) for intestinal infusions accelerated the development of the response across trials and strengthened the temporal resolution of the early licking suppression in response to the arrival of the DB in the intestine. In an experiment to evaluate whether CCK is involved as a paracrine signal in transducing the intestinal taste of DB, the CCK-1R antagonist devazepide partially blocked the response to intestinal DB. In contrast to their ability to detect and avoid the bitter taste in the intestine, rats did not modify their licking to saccharin intraduodenal probe infusions. The intestinal taste aversion paradigm developed here provides a sensitive and effective protocol for evaluating which tastants-and concentrations of tastants-in the lumen of the gut can control ingestion.

  5. Degradation of disperse dye from textile effluent by free and immobilized Cucurbita pepo peroxidase

    Directory of Open Access Journals (Sweden)

    Abouseoud M.

    2012-06-01

    Full Text Available Disperse dyes constitute the largest group of dyes used in local textile industry. This work evaluates the potential of the Cucurbita peroxidase(C-peroxidase extracted from courgette in the decolourization of disperse dye in free and immobilized form. The optimal conditions for immobilization of C-peroxidase in Ca-alginate were identified. The immobilization was optimized at 2%(w/v of sodium alginate and 0.2 M of calcium chloride. After optimization of treatment parameters, the results indicate that at pH 2, dye concentration: 80 mg/L(for FCP and 180 mg/L(for ICP, H2O2 dose: 0,02M (for FCP and 0,12M(for ICP, the decolourization by free and immobilized C-peroxidase were 72.02% and 69.71 % respectively. The degradation pathway and the metabolic products formed after the degradation were also predicted using UV–vis spectroscopy analysis.

  6. Dependence of Guaiacol Peroxidase Activity on pH in Officinal Plant Leaves

    Directory of Open Access Journals (Sweden)

    Zhivetyev, M. A.

    2013-02-01

    Full Text Available For the first time, the guaiacol peroxidase activity have been studied at different pH in lamina of Achillea asiatica Serg., Veronica chamaedrys L., Taraxacum officinale Wigg., Alchemilla subcrenata Buser.

  7. Degradation of disperse dye from textile effluent by free and immobilized Cucurbita pepo peroxidase

    Science.gov (United States)

    Boucherit, N.; Abouseoud, M.; Adour, L.

    2012-06-01

    Disperse dyes constitute the largest group of dyes used in local textile industry. This work evaluates the potential of the Cucurbita peroxidase(C-peroxidase) extracted from courgette in the decolourization of disperse dye in free and immobilized form. The optimal conditions for immobilization of C-peroxidase in Ca-alginate were identified. The immobilization was optimized at 2%(w/v) of sodium alginate and 0.2 M of calcium chloride. After optimization of treatment parameters, the results indicate that at pH 2, dye concentration: 80 mg/L(for FCP) and 180 mg/L(for ICP), H2O2 dose: 0,02M (for FCP) and 0,12M(for ICP), the decolourization by free and immobilized C-peroxidase were 72.02% and 69.71 % respectively. The degradation pathway and the metabolic products formed after the degradation were also predicted using UV-vis spectroscopy analysis.

  8. The effect of acid rain stress on chlorophyll, peroxidase of the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y.; Yetang, H.; Xianke, Y.; Shunzhen, F.; Shanql, W.

    1998-01-01

    Full text: Based on pot experiment, the effect of acid rain stress on chlorophyll, peroxidase of wheat, the relationship of them and the conservation of rare earth elements has been studied. The result showed: stress of acid rain resulted in decrease of chlorophyll content and a/b values, chlorophyll a/b value and chlorophyll content is positive correlation with pH value of acid rain: peroxidase activity was gradually rise with pH value decrease, which indirectly increased decomposition intensity of chlorophyll. Decreased content and a/b value of chlorophyll further speeded blade decay affected the transport and transformation of light energy and metabolism of carbohydrates. After being treated by rare earth elements content and pH value of chlorophyll and peroxidase activity could be relatively stable. Therefore, under lower acidity condition, rare earth elements can influence the effect of acid rain on chlorophyll and peroxidase activity of wheat

  9. Removal of Phenol from Synthetic and Industrial Wastewater by Potato Pulp Peroxidases.

    Science.gov (United States)

    Kurnik, Katarzyna; Treder, Krzysztof; Skorupa-Kłaput, Monika; Tretyn, Andrzej; Tyburski, Jarosław

    Plant peroxidases have strong potential utility for decontamination of phenol-polluted wastewater. However, large-scale use of these enzymes for phenol depollution requires a source of cheap, abundant, and easily accessible peroxidase-containing material. In this study, we show that potato pulp, a waste product of the starch industry, contains large amounts of active peroxidases. We demonstrate that potato pulp may serve as a tool for peroxidase-based remediation of phenol pollution. The phenol removal efficiency of potato pulp was over 95 % for optimized phenol concentrations. The potato pulp enzymes maintained their activity at pH 4 to 8 and were stable over a wide temperature range. Phenol solutions treated with potato pulp showed a significant reduction in toxicity compared with untreated phenol solutions. Finally we determined that this method may be employed to remove phenol from industrial effluent with over 90 % removal efficiency under optimal conditions.

  10. Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides.

    Science.gov (United States)

    Zhao, Ruisheng; Zhao, Xiang; Gao, Xingfa

    2015-01-12

    Nanocarbon oxides have been proved to possess great peroxidase-like activity, catalyzing the oxidation of many peroxidase substrates, such as 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine dihydrochloride (OPD), accompanied by a significant color change. This chromogenic reaction is widely used to detect glucose and occult blood. The chromogenic reaction was intensively investigated with density functional theory and molecular-level insights into the nature of peroxidase-like activity were gained. A radical mechanism was unraveled and the carboxyl groups of nanocarbon oxides were identified as the reactive sites. Aromatic domains connected with the carboxyl groups were critical to the peroxidase-like activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Epitope recognition patterns of thyroid peroxidase autoantibodies in healthy individuals and patients with Hashimoto's thyroiditis*

    DEFF Research Database (Denmark)

    Nielsen, Claus H; Brix, Thomas H; Gardas, Andrzej

    2008-01-01

    Thyroid peroxidase antibodies (TPOAb) are markers of autoimmune thyroid disease (AITD), including Hashimoto's thyroiditis (HT), but naturally occurring TPOAb are also detectable in healthy, euthyroid individuals. In AITD, circulating TPOAb react mainly with two immunodominant regions (IDR), IDR...

  12. A catalytic approach to estimate the redox potential of heme-peroxidases

    International Nuclear Information System (INIS)

    Ayala, Marcela; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-01-01

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple

  13. CDNA cloning, characterization and expression of an endosperm-specific barley peroxidase

    DEFF Research Database (Denmark)

    Rasmussen, Søren Kjærsgård; Welinder, K.G.; Hejgaard, J.

    1991-01-01

    A barley peroxidase (BP 1) of pI ca. 8.5 and M(r) 37000 has been purified from mature barley grains. Using antibodies towards peroxidase BP 1, a cDNA clone (pcR7) was isolated from cDNA expression library. The nucleotide sequence of pcR7 gave a derived amino acid sequence identical to the 158 C...

  14. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells.

    Science.gov (United States)

    Pham, Hung; Hui, Hongxiang; Morvaridi, Susan; Cai, Jiena; Zhang, Sanqi; Tan, Jun; Wu, Vincent; Levin, Nancy; Knudsen, Beatrice; Goddard, William A; Pandol, Stephen J; Abrol, Ravinder

    2016-07-01

    The bitter taste receptor TAS2R38 is a G protein coupled receptor (GPCR) that has been found in many extra-oral locations like the gastrointestinal (GI) system, respiratory system, and brain, though its function at these locations is only beginning to be understood. To probe the receptor's potential metabolic role, immunohistochemistry of human ileum tissues was performed, which showed that the receptor was co-localized with glucagon-like peptide 1 (GLP-1) in L-cells. In a previous study, we had modeled the structure of this receptor for its many taste-variant haplotypes (Tan et al. 2011), including the taster haplotype PAV. The structure of this haplotype was then used in a virtual ligand screening pipeline using a collection of ∼2.5 million purchasable molecules from the ZINC database. Three compounds (Z7, Z3, Z1) were purchased from the top hits and tested along with PTU (known TAS2R38 agonist) in in vitro and in vivo assays. The dose-response study of the effect of PTU and Z7 on GLP-1 release using wild-type and TAS2R38 knockout HuTu-80 cells showed that the receptor TAS2R38 plays a major role in GLP-1 release due to these molecules. In vivo studies of PTU and the three compounds showed that they each increase GLP-1 release. PTU was also chemical linked to cellulose to slow its absorption and when tested in vivo, it showed an enhanced and prolonged GLP-1 release. These results suggest that the GI lumen location of TAS2R38 on the L-cell makes it a relatively safe drug target as systemic absorption is not needed for a TAS2R38 agonist drug to effect GLP-1 release. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  16. Structure-activity relationships and molecular docking of thirteen synthesized flavonoids as horseradish peroxidase inhibitors.

    Science.gov (United States)

    Mahfoudi, Reguia; Djeridane, Amar; Benarous, Khedidja; Gaydou, Emile M; Yousfi, Mohamed

    2017-10-01

    For the first time, the structure-activity relationships of thirteen synthesized flavonoids have been investigated by evaluating their ability to modulate horseradish peroxidase (HRP) catalytic activity. Indeed, a modified spectrophotometrically method was carried out and optimized using 4-methylcatechol (4-MC) as peroxidase co-substrate. The results show that these flavonoids exhibit a great capacity to inhibit peroxidase with Ki values ranged from 0.14±0.01 to 65±0.04mM. Molecular docking has been achieved using Auto Dock Vina program to discuss the nature of interactions and the mechanism of inhibition. According to the docking results, all the flavonoids have shown great binding affinity to peroxidase. These molecular modeling studies suggested that pyran-4-one cycle acts as an inhibition key for peroxidase. Therefore, potent peroxidase inhibitors are flavonoids with these structural requirements: the presence of the hydroxyl (OH) group in 7, 5 and 4' positions and the absence of the methoxy (O-CH 3 ) group. Apigenin contributed better in HRP inhibitory activity. The present study has shown that the studied flavonoids could be promising HRP inhibitors, which can help in developing new molecules to control thyroid diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation.

    LENUS (Irish Health Repository)

    Walsh, Marie-Therese

    2011-11-01

    Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1\\/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.

  18. Characterization of Peroxidase Changes in Tolerant and Susceptible Soybeans Challenged by Soybean Aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Marchi-Werle, L; Heng-Moss, T M; Hunt, T E; Baldin, E L L; Baird, L M

    2014-10-01

    Changes in protein content, peroxidase activity, and isozyme profiles in response to soybean aphid feeding were documented at V1 (fully developed leaves at unifoliate node, first trifoliate leaf unrolled) and V3 (fully developed leaf at second trifoliate node, third trifoliate leaf unrolled) stages of soybean aphid-tolerant (KS4202) and -susceptible (SD76R) soybeans. Protein content was similar between infested and control V1 and V3 stage plants for both KS4202 and SD76R at 6, 16, and 22 d after aphid introduction. Enzyme kinetics studies documented that control and aphid-infested KS4202 V1 stage and SD76R V1 and V3 stages had similar levels of peroxidase activity at the three time points evaluated. In contrast, KS4202 aphid-infested plants at the V3 stage had significantly higher peroxidase activity levels than control plants at 6 and 22 d after aphid introduction. The differences in peroxidase activity observed between infested and control V3 stage KS4202 plants at these two time points suggest that peroxidases may be playing multiple roles in the tolerant plant. Native gels stained for peroxidase were able to detect differences in the isozyme profiles of aphid-infested and control plants for both KS4202 and SD76R. © 2014 Entomological Society of America.

  19. Aquatic ecosystem health and trophic status classification of the Bitter Lakes along the main connecting link between the Red Sea and the Mediterranean.

    Science.gov (United States)

    El-Serehy, Hamed A; Abdallah, Hala S; Al-Misned, Fahad A; Irshad, Rizwan; Al-Farraj, Saleh A; Almalki, Esam S

    2018-02-01

    The Bitter Lakes are the most significant water bodies of the Suez Canal, comprising 85% of the water volume, but spreading over only 24% of the length of the canal. The present study aims at investigation of the trophic status of the Bitter Lakes employing various trophic state indices, biotic and abiotic parameters, thus reporting the health of the Lake ecosystem according to the internationally accepted classification criteria's. The composition and abundance of phytoplankton with a dominance of diatoms and a decreased population density of 4315-7376 ind. l -1 reflect the oligotrophic nature of this water body. The intense growth of diatoms in the Bitter Lakes depends on silicate availability, in addition to nitrate and phosphate. If the trophic state index (TSI) is applied to the lakes under study it records that the Bitter Lakes have an index under 40. Moreover, in the total chlorophyll- a measurements of 0.35-0.96 µg l -1 there are more indicative of little algal biomass and lower biological productivity. At 0.76-2.3 µg l -1 , meanwhile, the low quantity of Phosphorus is a further measure of low biological productivity. In the Bitter Lakes, TN/TP ratios are high and recorded 147.4, and 184.7 for minimum and maximum ratios, respectively. These values indicate that in Bitter lakes, the limiting nutrient is phosphorus and confirm the oligotrophic status of the Bitter Lakes. The latter conclusion is supported by Secchi disc water clarity measurements, showing that light can penetrate, and thus algae can photosynthesize, as deep as >13 m. This study, therefore, showed that the Bitter Lakes of the Suez Canal exhibit oligotrophic conditions with clear water, low productivity and with no algal blooming.

  20. Aquatic ecosystem health and trophic status classification of the Bitter Lakes along the main connecting link between the Red Sea and the Mediterranean

    Directory of Open Access Journals (Sweden)

    Hamed A. El-Serehy

    2018-02-01

    Full Text Available The Bitter Lakes are the most significant water bodies of the Suez Canal, comprising 85% of the water volume, but spreading over only 24% of the length of the canal. The present study aims at investigation of the trophic status of the Bitter Lakes employing various trophic state indices, biotic and abiotic parameters, thus reporting the health of the Lake ecosystem according to the internationally accepted classification criteria’s. The composition and abundance of phytoplankton with a dominance of diatoms and a decreased population density of 4315–7376 ind. l−1 reflect the oligotrophic nature of this water body. The intense growth of diatoms in the Bitter Lakes depends on silicate availability, in addition to nitrate and phosphate. If the trophic state index (TSI is applied to the lakes under study it records that the Bitter Lakes have an index under 40. Moreover, in the total chlorophyll-a measurements of 0.35–0.96 µg l−1 there are more indicative of little algal biomass and lower biological productivity. At 0.76–2.3 µg l−1, meanwhile, the low quantity of Phosphorus is a further measure of low biological productivity. In the Bitter Lakes, TN/TP ratios are high and recorded 147.4, and 184.7 for minimum and maximum ratios, respectively. These values indicate that in Bitter lakes, the limiting nutrient is phosphorus and confirm the oligotrophic status of the Bitter Lakes. The latter conclusion is supported by Secchi disc water clarity measurements, showing that light can penetrate, and thus algae can photosynthesize, as deep as >13 m. This study, therefore, showed that the Bitter Lakes of the Suez Canal exhibit oligotrophic conditions with clear water, low productivity and with no algal blooming.