WorldWideScience

Sample records for bistable systems driven

  1. Asymptotic work distributions in driven bistable systems

    International Nuclear Information System (INIS)

    Nickelsen, D; Engel, A

    2012-01-01

    The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.

  2. Stochastic resonance in bistable systems driven by harmonic noise

    International Nuclear Information System (INIS)

    Neiman, A.; Schimansky-Geier, L.

    1994-01-01

    We study stochastic resonance in a bistable system which is excited simultaneously by white and harmonic noise which we understand as the signal. In our case the spectral line of the signal has a finite width as it occurs in many real situations. Using techniques of cumulant analysis as well as computer simulations we find that the effect of stochastic resonance is preserved in the case of harmonic noise excitation. Moreover we show that the width of the spectral line of the signal at the output can be decreased via stochastic resonance. The last could be of importance in the practical using of the stochastic resonance

  3. Stochastic resonance in an asymmetric bistable system driven by multiplicative colored noise and additive white noise

    International Nuclear Information System (INIS)

    Zhou Bingchang; Xu Wei

    2008-01-01

    The phenomenon of stochastic resonance (SR) in a bistable system driven by multiplicative colored and additive white noises and a periodic rectangular signal with a constant component is studied by using the unified colored noise approximation and the theory of signal-to-noise (SNR) in the adiabatic limit. The analytic expression of the SNR is obtained for arbitrary signal amplitude without being restricted to small amplitudes. The SNR is a non-monotonic function of intensities of multiplicative colored and additive white noises and correlation time of multiplicative colored noise, so SR exhibits in the bistable system. The effects of potential asymmetry r and correlation time τ of multiplicative colored noise on SNR are opposite. Moreover, It is more sensitive to control SR through adjusting the additive white noise intensity D than adjusting the multiplicative colored noise intensity Q

  4. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dongxu, E-mail: sudx@iis.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 1538505 (Japan); Zheng, Rencheng; Nakano, Kimihiko [Institute of Industrial Science, The University of Tokyo, Tokyo 1538505 (Japan); Cartmell, Matthew P [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2014-11-15

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  5. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    International Nuclear Information System (INIS)

    Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P

    2014-01-01

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation

  6. Mean first-passage time of an asymmetric bistable system driven by colour-correlated noise

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Yan; Xu Wei

    2007-01-01

    In this paper, the effect of every parameter (including p, q,r, λ,τ) on the mean first-passage time (MFPT) is investigated in an asymmetric bistable system driven by colour-correlated noise. The expression of MFPT has been obtained by applying the steepest-descent approximation. Numerical results show that (1) the intensity of multiplicative noise p and the intensity of additive noise q play different roles in the MFPT of the system, (2) suppression appears on the curve of the MFPT with small λ (e.g. λ< 0.5) but there is a peak on the curve of the MFPT when λ is big (e.g.λ> 0.5), and (3) with different values of r (e.g. r = 0.1, 0.5, 1.5), the effort of τ on the MFPT is diverse.

  7. Stochastic resonance and MFPT in an asymmetric bistable system driven by correlated multiplicative colored noise and additive white noise

    Science.gov (United States)

    Shi, Pei-Ming; Li, Qun; Han, Dong-Ying

    2017-06-01

    This paper investigates a new asymmetric bistable model driven by correlated multiplicative colored noise and additive white noise. The mean first-passage time (MFPT) and the signal-to-noise ratio (SNR) as the indexes of evaluating the model are researched. Based on the two-state theory and the adiabatic approximation theory, the expressions of MFPT and SNR have been obtained for the asymmetric bistable system driven by a periodic signal, correlated multiplicative colored noise and additive noise. Simulation results show that it is easier to generate stochastic resonance (SR) to adjust the intensity of correlation strength λ. Meanwhile, the decrease of asymmetric coefficient r2 and the increase of noise intensity are beneficial to realize the transition between the two steady states in the system. At the same time, the twice SR phenomena can be observed by adjusting additive white noise and correlation strength. The influence of asymmetry of potential function on the MFPTs in two different directions is different.

  8. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.

    Science.gov (United States)

    Wang, Rong; Gao, Jin-Yue

    2005-09-01

    In this paper we propose a new scheme to achieve chaos control and synchronization in Bragg acousto-optic bistable systems. In the scheme, we use the output of one system to drive two identical chaotic systems. Using the maximal conditional Lyapunov exponent (MCLE) as the criterion, we analyze the conditions for realizing chaos synchronization. Numerical calculation shows that the two identical systems in chaos with negative MCLEs and driven by a chaotic system can go into chaotic synchronization whether or not they were in chaos initially. The two systems can go into different periodic states from chaos following an inverse period-doubling bifurcation route as well when driven by a periodic system.

  9. The unsaturated bistable stochastic resonance system.

    Science.gov (United States)

    Zhao, Wenli; Wang, Juan; Wang, Linze

    2013-09-01

    We investigated the characteristics of the output saturation of the classical continuous bistable system (saturation bistable system) and its impact on stochastic resonance (SR). We further proposed a piecewise bistable SR system (unsaturated bistable system) and developed the expression of signal-to-noise ratio (SNR) using the adiabatic approximation theory. Compared with the saturation bistable system, the SNR is significantly improved in our unsaturated bistable SR system. The numerical simulation showed that the unsaturated bistable system performed better in extracting weak signals from strong background noise than the saturation bistable system.

  10. Bistable microvalve and microcatheter system

    Science.gov (United States)

    Seward, Kirk Patrick

    2003-05-20

    A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.

  11. Analytic descriptions of stochastic bistable systems under force ramp.

    Science.gov (United States)

    Friddle, Raymond W

    2016-05-01

    Solving the two-state master equation with time-dependent rates, the ubiquitous driven bistable system, is a long-standing problem that does not permit a complete solution for all driving rates. Here we show an accurate approximation to this problem by considering the system in the control parameter regime. The results are immediately applicable to a diverse range of bistable systems including single-molecule mechanics.

  12. Optimization of Bistable Viscoelastic Systems

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2014-01-01

    driving pressure corresponding to the point of bistability, such that the effect is enhanced. The point of bistability is, however, not explicitly contained in the solution, so we opt for a heuristic approach based on the dissipation ratio between the asymmetric and unstable symmetric flow solutions. We...... find a design that significantly reduces the driving pressure required for bistability, and furthermore is in agreement with the approach followed by experimental researchers. Furthermore, by comparing the two asymmetric solutions, we succesfully apply the same approach to a problem with two fluids...

  13. Transient Properties of a Bistable System with Delay Time Driven by Non-Gaussian and Gaussian Noises: Mean First-Passage Time

    International Nuclear Information System (INIS)

    Li Dongxi; Xu Wei; Guo Yongfeng; Li Gaojie

    2008-01-01

    The mean first-passage time of a bistable system with time-delayed feedback driven by multiplicative non-Gaussian noise and additive Gaussian white noise is investigated. Firstly, the non-Markov process is reduced to the Markov process through a path-integral approach; Secondly, the approximate Fokker-Planck equation is obtained by applying the unified coloured noise approximation, the small time delay approximation and the Novikov Theorem. The functional analysis and simplification are employed to obtain the approximate expressions of MFPT. The effects of non-Gaussian parameter (measures deviation from Gaussian character) r, the delay time τ, the noise correlation time τ 0 , the intensities D and α of noise on the MFPT are discussed. It is found that the escape time could be reduced by increasing the delay time τ, the noise correlation time τ 0 , or by reducing the intensities D and α. As far as we know, this is the first time to consider the effect of delay time on the mean first-passage time in the stochastic dynamical system

  14. Bistable Microvalve For Use With Microcatheter System

    Science.gov (United States)

    Seward, Kirk Patrick

    2003-12-16

    A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can be opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.

  15. Bi-stability in accelerator driven 233U breeders

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. On the other hand, the indigenous U availability is limited and hence there is a strong incentive for breeding. Moreover the large Th deposits in the country provide a clear incentive to develop Th related technologies. Th has the additional advantage that it produces very little trans-uranic waste. While Pu fuelled fast reactors using advanced metallic fuel can have high breeding ratios due to the hard spectrum in such reactors, Th fuelled critical reactors can at best be self sustaining or marginal breeders. A possible way to improve the breeding of Th fueled reactors is to use an external neutron source as is done in ADSs. ADSs can not only give improved breeding but also permit greater flexibility in type of fuel that may be used and have the potential to considerably simplify the Th fuel cycle as in the case of the Th burner. In this paper we study various issues associated with breeding in ADSs such as the energy economics of breeding in ADSs using various types of neutron sources and the effect of the reactor spectrum and the discharge fluence (or irradiation time) of the fuel on the breeding performance. We show that even with non-fissioning, non-power- producing targets such as Pb or LBE it is possible to choose the fuel irradiation time so that the breeder produces sufficient power to drive the accelerator and export the balance to the grid, without significantly diminishing the 233 U breeding rate. By increasing the discharge fluence (irradiation time) it is possible to increase the power. However, the 233 U production rate falls off rapidly to about half its maximum value. This is the Th burner region. As the equations governing the breeding process are non

  16. Nonlinear response and bistability of driven ion acoustic waves

    Science.gov (United States)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  17. Effects of linear and nonlinear time-delayed feedback on the noise-enhanced stability phenomenon in a periodically driven bistable system

    International Nuclear Information System (INIS)

    Jia, Zheng-Lin; Mei, Dong-Cheng

    2011-01-01

    We investigate numerically the effects of time delay on the phenomenon of noise-enhanced stability (NES) in a periodically modulated bistable system. Three types of time-delayed feedback, including linear delayed feedback, nonlinear delayed feedback and global delayed feedback, are considered. We find a non-monotonic behaviour of the mean first-passage time (MFPT) as a function of the delay time τ, with a maximum in the case of linear delayed feedback and with a minimum in the case of nonlinear delayed feedback. There are two peculiar values of τ around which the NES phenomenon is enhanced or weakened. For the case of global delayed feedback, the increase of τ always weakens the NES phenomenon. Moreover, we also show that the amplitude A and the frequency Ω of the periodic forcing play an opposite role in the NES phenomenon, i.e. the increase of A weakens the NES effect while the increase of Ω enhances it. These observations demonstrate that the time-delayed feedback can be used as a feasible control scheme for the NES phenomenon

  18. An Optically Driven Bistable Janus Rotor with Patterned Metal Coatings.

    Science.gov (United States)

    Zong, Yiwu; Liu, Jing; Liu, Rui; Guo, Honglian; Yang, Mingcheng; Li, Zhiyuan; Chen, Ke

    2015-11-24

    Bistable rotation is realized for a gold-coated Janus colloidal particle in an infrared optical trap. The metal coating on the Janus particles are patterned by sputtering gold on a monolayer of closely packed polystyrene particles. The Janus particle is observed to stably rotate in an optical trap. Both the direction and the rate of rotation can be experimentally controlled. Numerical calculations reveal that the bistable rotation is the result of spontaneous symmetry breaking induced by the uneven curvature of the coating patterns on the Janus sphere. Our results thus provide a simple method to construct large quantities of fully functional rotary motors for nano- or microdevices.

  19. A silicon-nanowire memory driven by optical gradient force induced bistability

    Energy Technology Data Exchange (ETDEWEB)

    Dong, B. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Cai, H., E-mail: caih@ime.a-star.edu.sg; Gu, Y. D.; Kwong, D. L. [Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Chin, L. K.; Ng, G. I.; Ser, W. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, J. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, Z. C. [School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Liu, A. Q., E-mail: eaqliu@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  20. Bifurcation of transition paths induced by coupled bistable systems.

    Science.gov (United States)

    Tian, Chengzhe; Mitarai, Namiko

    2016-06-07

    We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier.

  1. Controllable optical bistability and multistability in a graphene monolayer system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duo, E-mail: zhangduo10@126.com [School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Sun, Zhaoyu [School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Ding, Chunling [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Yu, Rong [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Yang, Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-02-15

    We theoretically investigate the behavior of optical bistability (OB) and optical multistability (OM) in a graphene monolayer system driven by an elliptically polarized control field and a right-hand circularly polarized probe field. Our numerical results show that it is easy to realize the transition from OB to OM or vice versa by adjusting the frequency detunings of the probe field and the control field, as well as the polarization-dependent phase difference between the two components of the control laser field. The influences of the intensity of the control field and the cooperation parameter on the OB behavior are also discussed in detail. These results may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

  2. Asymmetric Effects on Escape Rates of Bistable System

    International Nuclear Information System (INIS)

    Wang Canjun; Mei Dongcheng; Dai Zucheng

    2011-01-01

    The asymmetric effects on the escape rates from the stable states x ± in the bistable system are analyzed. The results indicate that the multiplicative noise and the additive noise always enhance the particle escape from stable states x ± of bistable. However, the asymmetric parameter r enhances the particle escape from stable state x + , and holds back the particle escape from stable state x - . (general)

  3. Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Perc, Matjaz; Gosak, Marko [Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska cesta 160, SI-2000 Maribor (Slovenia)], E-mail: matjaz.perc@uni-mb.si

    2008-05-15

    We study the phenomenon of stochastic resonance on diffusive, small-world and scale-free networks consisting of bistable overdamped oscillators. Important thereby is the fact that the external subthreshold periodic forcing is introduced only to a single oscillator of the network. Hence, the forcing acts as a pacemaker trying to impose its rhythm on the whole network through the unit to which it is introduced. Without the addition of additive spatiotemporal noise, however, the whole network, including the unit that is directly exposed to the pacemaker, remains trapped forever in one of the two stable steady states of the local dynamics. We show that the correlation between the frequency of subthreshold pacemaker activity and the response of the network is resonantly dependent on the intensity of additive noise. The reported pacemaker-driven stochastic resonance depends most significantly on the coupling strength and the underlying network structure. Namely, the outreach of the pacemaker obeys the classic diffusion law in the case of nearest-neighbor interactions, thus being proportional to the square root of the coupling strength, whereas it becomes superdiffusive by an appropriate small-world or scale-free topology of the interaction network. In particular, the scale-free topology is identified as being optimal for the dissemination of localized rhythmic activity across the whole network. Also, we show that the ratio between the clustering coefficient and the characteristic path length is the crucial quantity defining the ability of a small-world network to facilitate the outreach of the pacemaker-emitted subthreshold rhythm. We additionally confirm these findings by using the FitzHugh-Nagumo excitable system as an alternative to the bistable overdamped oscillator.

  4. Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators

    International Nuclear Information System (INIS)

    Perc, Matjaz; Gosak, Marko

    2008-01-01

    We study the phenomenon of stochastic resonance on diffusive, small-world and scale-free networks consisting of bistable overdamped oscillators. Important thereby is the fact that the external subthreshold periodic forcing is introduced only to a single oscillator of the network. Hence, the forcing acts as a pacemaker trying to impose its rhythm on the whole network through the unit to which it is introduced. Without the addition of additive spatiotemporal noise, however, the whole network, including the unit that is directly exposed to the pacemaker, remains trapped forever in one of the two stable steady states of the local dynamics. We show that the correlation between the frequency of subthreshold pacemaker activity and the response of the network is resonantly dependent on the intensity of additive noise. The reported pacemaker-driven stochastic resonance depends most significantly on the coupling strength and the underlying network structure. Namely, the outreach of the pacemaker obeys the classic diffusion law in the case of nearest-neighbor interactions, thus being proportional to the square root of the coupling strength, whereas it becomes superdiffusive by an appropriate small-world or scale-free topology of the interaction network. In particular, the scale-free topology is identified as being optimal for the dissemination of localized rhythmic activity across the whole network. Also, we show that the ratio between the clustering coefficient and the characteristic path length is the crucial quantity defining the ability of a small-world network to facilitate the outreach of the pacemaker-emitted subthreshold rhythm. We additionally confirm these findings by using the FitzHugh-Nagumo excitable system as an alternative to the bistable overdamped oscillator

  5. Chaos in a new bistable rotating electromechanical system

    International Nuclear Information System (INIS)

    Tsapla Fotsa, R.; Woafo, P.

    2016-01-01

    Highlights: • A new electromechanical system with rotating arm and bistable potential energy is studied. • The bistability is generated by the interaction of three permanent magnets, one fixed at the end of the arm and two other fixed at equal distance relative to the central position of the arm. • It exhibits dissipative and Hamiltonian chaos. • Such a bistable electromechanical system can be used as the actuation part of chaotic sieves and mixers. - Abstract: A device consisting of an induction motor activating a rotating rigid arm is designed and comprises a bistable potential due to the presence of three permanent magnets. Its mathematical equations are established and the numerical results both in the absence and in the presence of magnets are compared. The generation of chaotic behavior is achieved using two different external excitations: sinewave and square wave. In the presence of magnets, the system presents periodic and dissipative chaotic dynamics. Approximating the global potential energy to a bistable quartic potential, the Melnikov method is used to derive the conditions for the appearance of Hamiltonian chaos. Such a device can be used for industrial and domestic applications for mixing and sieving activities.

  6. Evaluation of bistable systems versus matched filters in detecting bipolar pulse signals

    OpenAIRE

    Duan, Fabing; Abbott, Derek; Gao, Qisheng

    2004-01-01

    This paper presents a thorough evaluation of a bistable system versus a matched filter in detecting bipolar pulse signals. The detectability of the bistable system can be optimized by adding noise, i.e. the stochastic resonance (SR) phenomenon. This SR effect is also demonstrated by approximate statistical detection theory of the bistable system and corresponding numerical simulations. Furthermore, the performance comparison results between the bistable system and the matched filter show that...

  7. Entanglement and bistability in coupled quantum dots inside a driven cavity

    International Nuclear Information System (INIS)

    Mitra, Arnab; Vyas, Reeta

    2010-01-01

    Generation and dissipation of entanglement between two coupled quantum dots (QDs) in a cavity driven by a coherent field is studied. We find that it is possible to generate and sustain a large amount of entanglement between the quantum dots in the steady state, even in the presence of strong decay in both the cavity and the dots. We investigate the effect of different parameters (decay rates, coupling strengths, and detunings) on entanglement. We find that the cavity field shows bistability and study the effect of relevant parameters on the existence of this bistable behavior. We also study the correlation between the cavity field and the entanglement between the dots. The experimental viability of the proposed scheme is discussed.

  8. Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.

    Science.gov (United States)

    Bianca, C; Lemarchand, A

    2014-06-14

    This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.

  9. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    Science.gov (United States)

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  10. Coupling-induced oscillations in nonhomogeneous, overdamped, bistable systems

    International Nuclear Information System (INIS)

    Hernandez, Mayra; In, Visarath; Longhini, Patrick; Palacios, Antonio; Bulsara, Adi; Kho, Andy

    2008-01-01

    Coupling-induced oscillations in a homogeneous network of overdamped bistable systems have been previously studied both theoretically and experimentally for a system of N (odd) elements, unidirectionally coupled in a ring topology. In this work, we extend the analysis of this system to include a network of nonhomogeneous elements with respect to the parameter that controls the topology of the potential function and the bistability of each element. In particular, we quantify the effects of the nonhomogeneity on the onset of oscillations and the response of the network to external (assumed to be constant and very small) perturbations, using our (recently developed) coupled core fluxgate magnetometer as a representative system. The potential applications of this work include signal detection and characterization for a large class of sensor systems

  11. Coupling-induced oscillations in nonhomogeneous, overdamped, bistable systems

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Mayra [Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182 (United States)], E-mail: mayra.alina@yahoo.com; In, Visarath [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: visarath.in@navy.mil; Longhini, Patrick [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: longhini@navy.mil; Palacios, Antonio [Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182 (United States)], E-mail: palacios@euler.sdsu.edu; Bulsara, Adi [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: bulsara@spawar.navy.mil; Kho, Andy [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: kho@spawar.navy.mil

    2008-06-09

    Coupling-induced oscillations in a homogeneous network of overdamped bistable systems have been previously studied both theoretically and experimentally for a system of N (odd) elements, unidirectionally coupled in a ring topology. In this work, we extend the analysis of this system to include a network of nonhomogeneous elements with respect to the parameter that controls the topology of the potential function and the bistability of each element. In particular, we quantify the effects of the nonhomogeneity on the onset of oscillations and the response of the network to external (assumed to be constant and very small) perturbations, using our (recently developed) coupled core fluxgate magnetometer as a representative system. The potential applications of this work include signal detection and characterization for a large class of sensor systems.

  12. Stochastic dynamics of a delayed bistable system with multiplicative noise

    Energy Technology Data Exchange (ETDEWEB)

    Dung, Nguyen Tien, E-mail: dung-nguyentien10@yahoo.com, E-mail: dungnt@fpt.edu.vn [Department of Mathematics, FPT University, No 8 Ton That Thuyet, My Dinh, Tu Liem, Hanoi (Viet Nam)

    2014-05-15

    In this paper we investigate the properties of a delayed bistable system under the effect of multiplicative noise. We first prove the existence and uniqueness of the positive solution and show that its moments are uniformly bounded. Then, we study stochastic dynamics of the solution in long time, the lower and upper bounds for the paths and an estimate for the average value are provided.

  13. Traveling waves in the discrete fast buffered bistable system.

    Science.gov (United States)

    Tsai, Je-Chiang; Sneyd, James

    2007-11-01

    We study the existence and uniqueness of traveling wave solutions of the discrete buffered bistable equation. Buffered excitable systems are used to model, among other things, the propagation of waves of increased calcium concentration, and discrete models are often used to describe the propagation of such waves across multiple cells. We derive necessary conditions for the existence of waves, and, under some restrictive technical assumptions, we derive sufficient conditions. When the wave exists it is unique and stable.

  14. Effect on the mean first passage time in symmetrical bistable systems by cross-correlation between noises

    International Nuclear Information System (INIS)

    Wang, J.; Cao, L.; Wu, D.J.

    2003-01-01

    We present an analytic investigation of the mean first passage time in two opposite directions (from the left well to the right well and from right to left) by studying symmetrical bistable systems driven by correlated Gaussian white noises, and prove that the mean first passage time in two opposite directions is not symmetrical any more when noises are correlated. As examples, the mean first passage time in the quartic bistable model and the sawtooth bistable model are calculated, respectively. From the analytic results of the mean first passage time, we testify further the relation T(from x - to x + ,λ)≠T(from x + to x - ,λ) in the same area of the parameter plan. Moreover, it is found that the dependences of T + (i.e., T(from x - to x + ,λ)) and T - (i.e., T(from x + to x - ,λ)) upon the multiplicative noise intensity Q and the additive noise intensity D exhibit entirely different properties. For same areas of the parameter plan: in the quartic bistable system, when the T + vs. Q curve exhibits a maximum, while the T - vs. Q curve is monotonous; when the T + vs. D curve is monotonous, while the T - vs. D curve experiences a phase transition from decreasing monotonously to possessing one minimum. Increasing Q, when the T + vs. D curve experiences a phase transition from decreasing monotonously to possessing one maximum, while the T - vs. D curve only increases monotonously. Similar behaviours also exist in the sawtooth bistable model

  15. Experimental chaotic quantification in bistable vortex induced vibration systems

    Science.gov (United States)

    Huynh, B. H.; Tjahjowidodo, T.

    2017-02-01

    The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear

  16. Noise-induced coherence in bistable systems with multiple time delays

    International Nuclear Information System (INIS)

    Jiang Yu; Dong, Shi-Hai; Lozada-Cassou, M.

    2004-01-01

    We study the correlation properties of noise-driven bistable systems with multiple time-delay feedbacks. For small noisy perturbation and feedback magnitude, we derive the autocorrelation function and the power spectrum based on the two-state model with transition rates depending on the earlier states of the system. A comparison between the single and double time delays reveals that the auto correlation functions exhibit exponential decay with small undulation for the double time delays, in contrast with the remarkable oscillatory behavior at small time lags for the single time delay

  17. Controlling the optical bistability and multistability in a two-level pumped-probe system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Sahrai, Mostafa; Masoumeh Mousavi, Seyede

    2010-01-01

    We study the behavior of the optical bistability (OB) and multistability (OM) in a two-level pumped-probe atomic system by means of a unidirectional ring cavity. We show that the optical bistability in a two-level atomic system can be controlled by adjusting the intensity of the pump field and the detuning between two fields. We find that applying the pumping field decreases the threshold of the optical bistability.

  18. Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device

    KAUST Repository

    Raisch, A.

    2014-07-01

    We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.

  19. Bubbling and bistability in two parameter discrete systems

    Indian Academy of Sciences (India)

    The birth of X *. · is concurrent with the ... for bistability viz. a½, and the higher order bistability points a¾, etc. are marked. The quadrilateral marked as ... The characteristics of 2 parameter 1-d maps that exhibit bubbling/bistability related to their ...

  20. Bistable traveling waves for a competitive-cooperative system with nonlocal delays

    Science.gov (United States)

    Tian, Yanling; Zhao, Xiao-Qiang

    2018-04-01

    This paper is devoted to the study of bistable traveling waves for a competitive-cooperative reaction and diffusion system with nonlocal time delays. The existence of bistable waves is established by appealing to the theory of monotone semiflows and the finite-delay approximations. Then the global stability of such traveling waves is obtained via a squeezing technique and a dynamical systems approach.

  1. A review of the recent research on vibration energy harvesting via bistable systems

    International Nuclear Information System (INIS)

    Harne, R L; Wang, K W

    2013-01-01

    The investigation of the conversion of vibrational energy into electrical power has become a major field of research. In recent years, bistable energy harvesting devices have attracted significant attention due to some of their unique features. Through a snap-through action, bistable systems transition from one stable state to the other, which could cause large amplitude motion and dramatically increase power generation. Due to their nonlinear characteristics, such devices may be effective across a broad-frequency bandwidth. Consequently, a rapid engagement of research has been undertaken to understand bistable electromechanical dynamics and to utilize the insight for the development of improved designs. This paper reviews, consolidates, and reports on the major efforts and findings documented in the literature. A common analytical framework for bistable electromechanical dynamics is presented, the principal results are provided, the wide variety of bistable energy harvesters are described, and some remaining challenges and proposed solutions are summarized. (topical review)

  2. Bubbling and bistability in two parameter discrete systems

    OpenAIRE

    Ambika, G.; Sujatha, N. V.

    2000-01-01

    We present a graphical analysis of the mechanisms underlying the occurrences of bubbling sequences and bistability regions in the bifurcation scenario of a special class of one dimensional two parameter maps. The main result of the analysis is that whether it is bubbling or bistability is decided by the sign of the third derivative at the inflection point of the map function.

  3. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    International Nuclear Information System (INIS)

    Chang Zeng-Guang; Zhang Jing-Tao; Niu Yue-Ping; Gong Shang-Qing

    2012-01-01

    We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type

  4. Stochastic resonance in a stochastic bistable system with additive noises and square–wave signal

    International Nuclear Information System (INIS)

    Feng, Guo; Xiang-Dong, Luo; Shao-Fu, Li; Yu-Rong, Zhou

    2010-01-01

    This paper considers the stochastic resonance in a stochastic bistable system driven by a periodic square-wave signal and a static force as well as by additive white noise and dichotomous noise from the viewpoint of signal-to-noise ratio. It finds that the signal-to-noise ratio appears as stochastic resonance behaviour when it is plotted as a function of the noise strength of the white noise and dichotomous noise, as a function of the system parameters, or as a function of the static force. Moreover, the influence of the strength of the stochastic potential force and the correlation rate of the dichotomous noise on the signal-to-noise ratio is investigated. (general)

  5. Heat dissipation and information flow for delayed bistable Langevin systems near coherence resonance.

    Science.gov (United States)

    Xiao, Tiejun

    2016-11-01

    In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.

  6. Exogenously-driven perceptual alternation of a bistable image: From the perspective of the visual change detection process.

    Science.gov (United States)

    Urakawa, Tomokazu; Aragaki, Tomoya; Araki, Osamu

    2017-07-13

    Based on the predictive coding framework, the present behavioral study focused on the automatic visual change detection process, which yields a concomitant prediction error, as one of the visual processes relevant to the exogenously-driven perceptual alternation of a bistable image. According to this perspective, we speculated that the automatic visual change detection process with an enhanced prediction error is relevant to the greater induction of exogenously-driven perceptual alternation and attempted to test this hypothesis. A modified version of the oddball paradigm was used based on previous electroencephalographic studies on visual change detection, in which the deviant and standard defined by the bar's orientation were symmetrically presented around a continuously presented Necker cube (a bistable image). By manipulating inter-stimulus intervals and the number of standard repetitions, we set three experimental blocks: HM, IM, and LM blocks, in which the strength of the prediction error to the deviant relative to the standard was expected to gradually decrease in that order. The results obtained showed that the deviant significantly increased perceptual alternation of the Necker cube over that by the standard from before to after the presentation of the deviant. Furthermore, the differential proportion of the deviant relative to the standard significantly decreased from the HM block to the IM and LM blocks. These results are consistent with our hypothesis, supporting the involvement of the automatic visual change detection process in the induction of exogenously-driven perceptual alternation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cell individuality: the bistable gene expression of the type III secretion system in Dickeya dadantii 3937.

    Science.gov (United States)

    Zeng, Quan; Laiosa, Michael D; Steeber, Douglas A; Biddle, Eulandria M; Peng, Quan; Yang, Ching-Hong

    2012-01-01

    Dickeya dadantii 3937 is a gram-negative phytopathogenic bacterium that expresses genes encoding a type III secretion system (T3SS) in a bistable pattern when cultured in a homogeneous minimal media. In this work, we further characterized the bistable gene expression of T3SS at the single-cell level. We demonstrated that bistable expression of the HrpL-regulon genes, such as hrpA and hrpN, is controlled by the same regulatory mechanism. We also showed that the expression level of the T3SS master regulatory gene hrpL plays an important role in the development of the bistable expression of hrpA. A high expression level of hrpL is required but unable to guarantee the high-state expression of hrpA in a cell. In addition, bistable expression patterns of T3SS genes in other gram-negative pathogens of the Enterobacteriaceae and Pseudomonadaceae families were also described in this study. This suggests that the T3SS bistability might be a conserved population behavior in several gram-negative bacterial pathogens.

  8. Experimental Analysis of a Coupled Energy Harvesting System with Monostable and Bistable Configuration

    International Nuclear Information System (INIS)

    Hoffmann, D; Folkmer, B; Manoli, Y

    2014-01-01

    In this paper we present experimental results from an energy harvesting system with two coupled energy harvesters. The energy conversion mechanism of the two coupled energy harvesters is based on the electromagnetic principle. The coupling is generated by two magnets in a repulsive arrangement. In this manner a bistable configuration can be obtained if the gap between the magnets is sufficiently small. We demonstrate that the total power output can be increased in comparison to a linear reference system, if specific conditions are fulfilled. In this respect, the highest power output occurs in the nonlinear region of a monostable system configuration, mostly near the transition to a bistable configuration. On the other hand, the results also indicate, that a bistable operating mode does not necessarily enhance the power output of the coupled system

  9. Optical bistability using quantum interference in V-type atoms

    International Nuclear Information System (INIS)

    Anton, M A; Calderon, Oscar G

    2002-01-01

    The behaviour of a V-type three-level atomic system in a ring cavity driven by a coherent field is studied. We consider a V configuration under conditions such that interference between decay channels is important. We find that when quantum interference is taken into account, optical bistability can be realized with a considerable decrease in the threshold intensity and the cooperative parameter. On the other hand, we also include the finite bandwidth of the driving field and study its role in the optical bistable response. It is found that at certain linewidths of the driving field optical bistability is obtained even if the system satisfies the trapping condition and the threshold intensity can be controlled. Furthermore, a change from the optical bistability due to quantum interference to the usual bistable behaviour based on saturation occurs as the driving field linewidth increases

  10. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise

    International Nuclear Information System (INIS)

    Shu Chang-Zheng; Nie Lin-Ru; Zhou Zhong-Rao

    2012-01-01

    Stochastic resonance (SR)-like and resonance suppression (RS)-like phenomena in a time-delayed bistable system driven by additive white noise are investigated by means of stochastic simulations of the power spectrum, the quality factor of the power spectrum, and the mean first-passage time (MFPT) of the system. The calculative results indicate that: (i) as the system is driven by a small periodic signal, the quality factor as a function delay time exhibits a maximal value at smaller noise intensities, i.e., an SR-like phenomenon. With the increment in additive noise intensity, the extremum gradually disappears and the quality factor decreases monotonously with delay time. (ii) As the additive noise intensity is smaller, the curve of the MFPT with respect to delay time displays a peak, i.e., an RS-like phenomenon. At higher levels of noise, however, the non-monotonic behavior is lost. (general)

  11. Dynamics of interface in three-dimensional anisotropic bistable reaction-diffusion system

    International Nuclear Information System (INIS)

    He Zhizhu; Liu, Jing

    2010-01-01

    This paper presents a theoretical investigation of dynamics of interface (wave front) in three-dimensional (3D) reaction-diffusion (RD) system for bistable media with anisotropy constructed by means of anisotropic surface tension. An equation of motion for the wave front is derived to carry out stability analysis of transverse perturbations, which discloses mechanism of pattern formation such as labyrinthine in 3D bistable media. Particularly, the effects of anisotropy on wave propagation are studied. It was found that, sufficiently strong anisotropy can induce dynamical instabilities and lead to breakup of the wave front. With the fast-inhibitor limit, the bistable system can further be described by a variational dynamics so that the boundary integral method is adopted to study the dynamics of wave fronts.

  12. Optically levitated nanoparticle as a model system for stochastic bistable dynamics.

    Science.gov (United States)

    Ricci, F; Rica, R A; Spasenović, M; Gieseler, J; Rondin, L; Novotny, L; Quidant, R

    2017-05-09

    Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.

  13. Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions

    Science.gov (United States)

    Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.

    2018-01-01

    Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the

  14. Noise and time delay induce critical point in a bistable system

    Science.gov (United States)

    Zhang, Jianqiang; Nie, Linru; Yu, Lilong; Zhang, Xinyu

    2014-07-01

    We study relaxation time Tc of time-delayed bistable system driven by two cross-correlated Gaussian white noises that one is multiplicative and the other is additive. By means of numerical calculations, the results indicate that: (i) Combination of noise and time delay can induce two critical points about the relaxation time at some certain noise cross-correlation strength λ under the condition that the multiplicative intensity D equals to the additive noise intensity α. (ii) For each fixed D or α, there are two symmetrical critical points which locates in the regions of positive and negative correlations, respectively. Namely, as λ equals to the critical value λc, Tc is independent of the delay time and the result of Tc versus τ is a horizontal line, but as |λ|>|λc| (or |λ|decreases) with the delay time increasing. (iii) In the presence of D = α, the change of λc with D is two symmetrical curves about the axis of λc = 0, and the critical value λc is close to zero for a smaller D, which approaches to +1 or -1 for a greater D.

  15. Bistable luminescence of trivalent rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Sole, Jose Garcia; Ramirez O, Maria de la; Rodenas, Airan; Jaque, Daniel; Bausa, Luisa; Bettinelli, Marco; Speghini, Adolfo; Cavalli, Enrico; Ivleva, Lioudmila

    2006-01-01

    In this work, we have examined three new bistable systems based on the luminescence of three different crystals activated with trivalent rare earth ions. We have focussed our attention on Yb 3+ ions activators, for which the most relevant results are obtained. The first crystal, Sr 0.6 Ba 0.4 Nb 2 O 6 , is a ferroelectric material with a relatively low phase transition temperature (∼370 K), which provides bistability in the luminescence of Yb 3+ ions due to the thermal hysteresis associated with phase transition. The second crystal, LiNbO 3 , provides an intrinsic bistability in the luminescence of Yb 3+ ions, which is driven by changes in the excitation intensity. In the third crystal, NdPO 4 , a new mechanism of excitation intensity driven bistability is obtained when activated with Yb 3+ ions, due to a interplay between the Nd 3+ ↔Yb 3+ energy transfer and back transfer processes

  16. Effects of error feedback on a nonlinear bistable system with stochastic resonance

    International Nuclear Information System (INIS)

    Li Jian-Long; Zhou Hui

    2012-01-01

    In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing

  17. Optical bistability and multistability in a three-level Δ-type atomic system under the nonresonant condition

    International Nuclear Information System (INIS)

    Ai-Xi, Chen; Zhi-Ping, Wang; De-Hai, Chen; Yan-Qiu, Xu

    2009-01-01

    Under a nonresonant condition, we theoretically investigate hybrid absorptive-dispersive optical bistability and multistability behaviours in a three-level Δ-type system by using a microwave field to drive a hyperfine transition between two upper excited states inside a unidirectional ring cavity. We find that the optical bistability and multistability behaviours can be controlled by adjusting the intensity of the microwave field or the intensity of the coherent coupling field. Furthermore, our studies show an interesting phenomenon of the transition from the optical bistability to the optical multistability only by changing the negative detuning of the coupling field into the positive detuning of the coupling field. (classical areas of phenomenology)

  18. Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion.

    Science.gov (United States)

    Zemskov, Evgeny P; Tsyganov, Mikhail A; Horsthemke, Werner

    2017-01-01

    We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.

  19. Control of stochastic resonance in bistable systems by using periodic signals

    International Nuclear Information System (INIS)

    Min, Lin; Li-Min, Fang; Yong-Jun, Zheng

    2009-01-01

    According to the characteristic structure of double wells in bistable systems, this paper analyses stochastic fluctuations in the single potential well and probability transitions between the two potential wells and proposes a method of controlling stochastic resonance by using a periodic signal. Results of theoretical analysis and numerical simulation show that the phenomenon of stochastic resonance happens when the time scales of the periodic signal and the noise-induced probability transitions between the two potential wells achieve stochastic synchronization. By adding a bistable system with a controllable periodic signal, fluctuations in the single potential well can be effectively controlled, thus affecting the probability transitions between the two potential wells. In this way, an effective control can be achieved which allows one to either enhance or realize stochastic resonance

  20. Statistical approach to bistable behaviour of a nonlinear system in a stationary field

    International Nuclear Information System (INIS)

    Luks, A.; Perina, J.; Perinova, V.; Bertolotti, M.; Sibilia, C.

    1984-01-01

    The quantum statistical properties of an elastic scattering process are investigated comprising crossed light beams which are in interaction with a particle (electron) beam treated as ''two-step'' system. Using the master equation and the generalized Fokker-Planck equation techniques, the integrated intensities are characterized by their probability distributions and it is demonstrated that single modes exhibit two-peak bistable behaviour. (author)

  1. Traveling and Pinned Fronts in Bistable Reaction-Diffusion Systems on Networks

    Science.gov (United States)

    Kouvaris, Nikos E.; Kori, Hiroshi; Mikhailov, Alexander S.

    2012-01-01

    Traveling fronts and stationary localized patterns in bistable reaction-diffusion systems have been broadly studied for classical continuous media and regular lattices. Analogs of such non-equilibrium patterns are also possible in networks. Here, we consider traveling and stationary patterns in bistable one-component systems on random Erdös-Rényi, scale-free and hierarchical tree networks. As revealed through numerical simulations, traveling fronts exist in network-organized systems. They represent waves of transition from one stable state into another, spreading over the entire network. The fronts can furthermore be pinned, thus forming stationary structures. While pinning of fronts has previously been considered for chains of diffusively coupled bistable elements, the network architecture brings about significant differences. An important role is played by the degree (the number of connections) of a node. For regular trees with a fixed branching factor, the pinning conditions are analytically determined. For large Erdös-Rényi and scale-free networks, the mean-field theory for stationary patterns is constructed. PMID:23028746

  2. Phase-dependent optical bistability and multistability in a semiconductor quantum well system

    International Nuclear Information System (INIS)

    Wang Zhiping; Fan Hongyi

    2010-01-01

    We theoretically investigate the hybrid absorptive-dispersive optical bistability and multistability in a four-level inverted-Y quantum well system inside a unidirectional ring cavity. We find that the coupling field, the pumping field as well as the cycling field can affect the optical bistability and multistability dramatically, which can be used to manipulate efficiently the threshold intensity and the hysteresis loop. The effects of the relative phase and the electronic cooperation parameter on the OB and OM are also studied. Our study is much more practical than its atomic counterpart due to its flexible design and the wide adjustable parameters. Thus, it may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

  3. Controlling bistability by linear augmentation

    International Nuclear Information System (INIS)

    Sharma, Pooja Rani; Shrimali, Manish Dev; Prasad, Awadhesh; Feudel, Ulrike

    2013-01-01

    In many bistable oscillating systems only one of the attractors is desired to possessing certain system performance. We present a method to drive a bistable system to a desired target attractor by annihilating the other one. This shift from bistability to monostability is achieved by augmentation of the nonlinear oscillator with a linear control system. For a proper choice of the control function one of the attractors disappears at a critical coupling strength in an control-induced boundary crisis. This transition from bistability to monostability is demonstrated with two paradigmatic examples, the autonomous Chua oscillator and a neuronal system with a periodic input signal.

  4. Bistable behaviour of biexciton population in a dense exciton-biexciton system in semiconductors

    International Nuclear Information System (INIS)

    Nguyen Ba An.

    1986-05-01

    The steady state bistable behaviour of biexciton population in a dense exciton-biexciton semiconductor is considered. The intrinsic optical feedback is provided by the recombination mechanism. The exciton-biexciton and biexciton-biexciton interactions play the role of non-linearity responsible for biexciton bistability to occur. The conditions leading to the effect of bistability are obtained and two-parameter phase transition diagrams are drawn for both intensity and frequency bistable phenomena. (author)

  5. Amplification without inversion, fast light and optical bistability in a duplicated two-level system

    International Nuclear Information System (INIS)

    Ebrahimi Zohravi, Lida; Vafafard, Azar; Mahmoudi, Mohammad

    2014-01-01

    The optical properties of a weak probe field in a duplicated two-level system are investigated in multi-photon resonance (MPR) condition and beyond it. It is shown that by changing the relative phase of applied fields, the absorption switches to the amplification without inversion in MPR condition. By applying the Floquet decomposition to the equations of motion beyond MPR condition, it is shown that the phase-dependent behavior is valid only in MPR condition. Moreover, it is demonstrated that the group velocity of light pulse can be controlled by the intensity of the applied fields and the gain-assisted superluminal light propagation (fast light) is obtained in this system. In addition, the optical bistability (OB) behavior of the system is studied beyond MPR condition. We apply an indirect incoherent pumping field to the system and it is found that the group velocity and OB behavior of the system can be controlled by the incoherent pumping rate. - Highlights: • We studied the optical properties of DTL system under MPR condition and beyond it. • By changing the relative phase, the absorption switches to the amplification without inversion in MPR condition. • The gain-assisted superluminal light propagation (fast light) is obtained in this system. • The optical bistability (OB) behavior of the system is studied beyond MPR condition. • The incoherent pumping rate has a major role in controlling the group velocity and OB behavior of the system

  6. Optical bistability and multistability driven by external magnetic field in a dielectric slab doped with nanodiamond nitrogen vacancy centres

    Science.gov (United States)

    Nasehi, R.; Norouzi, F.

    2016-08-01

    The theoretical investigation of controlling the optical bistability (OB) and optical multistability (OM) in a dielectric medium doped with nanodiamond nitrogen vacancy centres under optical excitation are reported. The shape of the OB curve from dielectric slab can be tuned by changing the external magnetic field and polarization of the control beam. The effect of the intensity of the control laser field and the frequency detuning of probe laser field on the OB and OM behaviour are also discussed in this paper. The results obtained can be used for realizing an all-optical bistable switching or development of nanoelectronic devices.

  7. Divergence of relative difference in Gaussian distribution function and stochastic resonance in a bistable system with frictionless state transition

    Science.gov (United States)

    Kasai, Seiya; Ichiki, Akihisa; Tadokoro, Yukihiro

    2018-03-01

    A bistable system efficiently detects a weak signal by adding noise, which is referred to as stochastic resonance. A previous theory deals with friction in state transition; however, this hypothesis is inadequate when friction force is negligible such as in nano- and molecular-scale systems. We show that, when the transition occurs without friction, the sensitivity of the bistable system to a Gaussian-noise-imposed weak signal becomes significantly high. The sensitivity is determined by the relative difference in noise distribution function. We find that the relative difference in Gaussian distribution function diverges in its tail edge, resulting in a high sensitivity in the present system.

  8. Bistable Mechanisms for Space Applications.

    Science.gov (United States)

    Zirbel, Shannon A; Tolman, Kyler A; Trease, Brian P; Howell, Larry L

    2016-01-01

    Compliant bistable mechanisms are monolithic devices with two stable equilibrium positions separated by an unstable equilibrium position. They show promise in space applications as nonexplosive release mechanisms in deployment systems, thereby eliminating friction and improving the reliability and precision of those mechanical devices. This paper presents both analytical and numerical models that are used to predict bistable behavior and can be used to create bistable mechanisms in materials not previously feasible for compliant mechanisms. Materials compatible with space applications are evaluated for use as bistable mechanisms and prototypes are fabricated in three different materials. Pin-puller and cutter release mechanisms are proposed as potential space applications.

  9. Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure

    International Nuclear Information System (INIS)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H.

    2016-01-01

    The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the optical multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained

  10. Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H., E-mail: Rahimpour@guilan.ac.ir [Computational Nanophysics Laboratory (CNL), Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2016-01-14

    The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the optical multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained.

  11. Optical bistability without the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Sharaby, Yasser A., E-mail: Yasser_Sharaby@hotmail.co [Physics Department, Faculty of Applied Sciences, Suez Canal University, Suez (Egypt); Joshi, Amitabh, E-mail: ajoshi@eiu.ed [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States); Hassan, Shoukry S., E-mail: Shoukryhassan@hotmail.co [Mathematics Department, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2010-04-26

    Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.

  12. Optical bistability without the rotating wave approximation

    International Nuclear Information System (INIS)

    Sharaby, Yasser A.; Joshi, Amitabh; Hassan, Shoukry S.

    2010-01-01

    Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.

  13. Optical bistability controlling light with light

    CERN Document Server

    Gibbs, Hyatt

    1985-01-01

    Optical Bistability: Controlling Light with Light focuses on optical bistability in nonlinear optical systems. Emphasis is on passive (non-laser) systems that exhibit reversible bistability with input intensity as the hysteresis variable, along with the physics and the potential applications of such systems for nonlinear optical signal processing. This book consists of seven chapters and begins with a historical overview of optical bistability in lasers and passive systems. The next chapter describes steady-state theories of optical bistability, including the Bonifacio-Lugiato model, as we

  14. Noise activated bistable sensor based on chaotic system with output defined by temporal coding and firing rate.

    Science.gov (United States)

    Korneta, Wojciech; Gomes, Iacyel

    2017-11-01

    Traditional bistable sensors use external bias signal to drive its response between states and their detection strategy is based on the output power spectral density or the residence time difference (RTD) in two sensor states. Recently, the noise activated nonlinear dynamic sensors driven only by noise based on RTD technique have been proposed. Here, we present experimental results of dc voltage measurements by noise-driven bistable sensor based on electronic Chua's circuit operating in a chaotic regime where two single scroll attractors coexist. The output of the sensor is quantified by the proportion of the time the sensor stays in one state to the total observation time and by the spike-count rate with spikes defined by crossings between attractors. The relationship between the stimuli and particular observable for different noise intensities is obtained, the usefulness of each coding scheme is discussed, and the optimal noise intensity for detection is indicated. It is shown that the obtained relationship is the same for any observation time when population coding is used. The optimal time window for both detection and the number of units in population coding is found. Our results may be useful for analyses and understanding of the neural activity and in designing bistable storage elements at length scales where thermal fluctuations drastically increase and the effect of noise must be taken into consideration.

  15. The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions.

    Science.gov (United States)

    de la Cruz, Roberto; Guerrero, Pilar; Spill, Fabian; Alarcón, Tomás

    2015-08-21

    We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the chemical master equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provides the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species is order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.

  16. The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Roberto; Alarcón, Tomás de la [Centre de Recerca Matemàtica. Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Guerrero, Pilar [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Spill, Fabian [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2015-08-21

    We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the chemical master equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provides the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species is order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.

  17. Numerical analysis of intrinsic bistability and chromatic switching in Tm3+ single-doped systems under photon avalanche pumping scheme

    International Nuclear Information System (INIS)

    Li Li; Zhang Xinlu; Chen Lixue

    2008-01-01

    In this paper, we predict and numerically demonstrate the intrinsic intensity bistability, spectra bistability and chromatic switching of visible-infrared emission in Tm 3+ single-doped systems that are pumped by the photon avalanche scheme at 648 nm. Based on the coupled rate equation theory, the evolutions of the populations at various Tm 3+ energy levels, emission spectra and fluorescence intensity versus pump excitation are numerically investigated in detail. The results show that intrinsic optical bistability (IOB) associated with emission spectra and luminescence intensity takes place in the vicinity of the avalanche threshold (∼10 kW cm -2 ). When the pump excitation rises above the switching threshold (∼17.5 kW cm -2 ), the chromatic switching between the infrared (1716 nm) and the visible blue (452/469 nm) spectra can be performed. Moreover, the influences of system parameters on IOB and the origin of chromatic switching are discussed. These unique characteristics of Tm 3+ -doped systems would lead to the new possibility of the development of pump-controlled all-solid-state luminescence switches and optical bistability switches.

  18. Decision making in noisy bistable systems with time-dependent asymmetry

    Science.gov (United States)

    Nené, Nuno R.; Zaikin, Alexey

    2013-01-01

    Our work draws special attention to the importance of the effects of time-dependent parameters on decision making in bistable systems. Here, we extend previous studies of the mechanism known as speed-dependent cellular decision making in genetic circuits by performing an analytical treatment of the canonical supercritical pitchfork bifurcation problem with an additional time-dependent asymmetry and control parameter. This model has an analogous behavior to the genetic switch. In the presence of transient asymmetries and fluctuations, slow passage through the critical region in both systems increases substantially the probability of specific decision outcomes. We also study the relevance for attractor selection of reaching maximum values for the external asymmetry before and after the critical region. Overall, maximum asymmetries should be reached at an instant where the position of the critical point allows for compensation of the detrimental effects of noise in retaining memory of the transient asymmetries.

  19. Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems

    International Nuclear Information System (INIS)

    Liu Jian; Zhai Qi-Qing; Wang You-Guo; Liu Jin

    2016-01-01

    In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system (P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated (BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate (BER) and maximize the channel capacity (CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio (SNR) environments. (paper)

  20. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.

    Science.gov (United States)

    Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo

    2015-07-08

    We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

  1. Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal

    International Nuclear Information System (INIS)

    Yong-Feng, Guo; Wei, Xu; Liang, Wang

    2010-01-01

    This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)

  2. Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models

    International Nuclear Information System (INIS)

    Wu Shiliang; Li Wantong

    2009-01-01

    This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called interval monotone condition. Under such a weak monotone condition, the existence and comparison theorem of solutions is first established for reaction-diffusion systems on R by appealing to the theory of abstract differential equations. The global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts are then proved by the elementary super- and sub-solution comparison and squeezing methods for nonlinear evolution equations. Finally, these abstract results are applied to a two species competition-diffusion model and a system modeling man-environment-man epidemics.

  3. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system.

    Science.gov (United States)

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-22

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS 2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits 'U-shaped' bistable FWM signals. We also map out bistability phase diagrams within the system's parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS 2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  4. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker-Planck Systems

    International Nuclear Information System (INIS)

    Yan-Mei, Kang; Yao-Lin, Jiang

    2008-01-01

    To explore the influence of anomalous diffusion on stochastic resonance (SR) more deeply and effectively, the method of moments is extended to subdiffusive overdamped bistable fractional Fokker-Planck systems for calculating the long-time linear dynamic response. It is found that the method of moments attains high accuracy with the truncation order N = 10, and in normal diffusion such obtained spectral amplification factor (SAF) of the first-order harmonic is also confirmed by stochastic simulation. Observing the SAF of the odd-order harmonics we find some interesting results, i.e. for smaller driving frequency the decrease of sub diffusion exponent inhibits the stochastic resonance (SR), while for larger driving frequency the decrease of sub diffusion exponent enhances the second SR peak, but the first one vanishes and a double SR is induced in the third-order harmonic at the same time. These observations suggest that the anomalous diffusion has important influence on the bistable dynamics

  5. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system

    Science.gov (United States)

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-01

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits ‘U-shaped’ bistable FWM signals. We also map out bistability phase diagrams within the system’s parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  6. Controlling the optical bistability via quantum interference in a four-level N-type atomic system

    International Nuclear Information System (INIS)

    Sahrai, M.; Asadpour, S.H.; Mahrami, H.; Sadighi-Bonabi, R.

    2011-01-01

    We investigate the optical bistability (OB) and optical multi-stability (OM) in a four-level N-type atomic system. The effect of spontaneously generated coherence (SGC) on OB and OM is then discussed. It is found that SGC makes the medium phase dependent, so the optical bistability and multi-stability threshold can be controlled via relative phase between applied fields. We realize that the frequency detuning of probe and coupling fields with the corresponding atomic transition plays an important role in creation OB and OM. Moreover, the effect of laser coupling fields and an incoherent pumping field on reduction of OB and OM threshold is then discussed. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. The effect of spontaneously generated coherence on OB is discussed. → Spontaneously generated coherence makes the medium phase dependent. → The frequency of coupling field can reduce OB threshold. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.

  7. Bistability of Cavity Magnon Polaritons

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.

    2018-01-01

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  8. A bistable mechanism for directional sensing

    International Nuclear Information System (INIS)

    Beta, C; Amselem, G; Bodenschatz, E

    2008-01-01

    We present a generic mechanism for directional sensing in eukaryotic cells that is based on bistable dynamics. As the key feature of this modeling approach, the velocity of trigger waves in the bistable sensing system changes its sign across cells that are exposed to an external chemoattractant gradient. This is achieved by combining a two-component activator/inhibitor system with a bistable switch that induces an identical symmetry breaking for arbitrary gradient input signals. A simple kinetic example is designed to illustrate the dynamics of a bistable directional sensing mechanism in numerical simulations

  9. Information Geometry of Non-Equilibrium Processes in a Bistable System with a Cubic Damping

    Directory of Open Access Journals (Sweden)

    Rainer Hollerbach

    2017-06-01

    Full Text Available A probabilistic description is essential for understanding the dynamics of stochastic systems far from equilibrium, given uncertainty inherent in the systems. To compare different Probability Density Functions (PDFs, it is extremely useful to quantify the difference among different PDFs by assigning an appropriate metric to probability such that the distance increases with the difference between the two PDFs. This metric structure then provides a key link between stochastic systems and information geometry. For a non-equilibrium process, we define an infinitesimal distance at any time by comparing two PDFs at times infinitesimally apart and sum these distances in time. The total distance along the trajectory of the system quantifies the total number of different states that the system undergoes in time and is called the information length. By using this concept, we investigate the information geometry of non-equilibrium processes involved in disorder-order transitions between the critical and subcritical states in a bistable system. Specifically, we compute time-dependent PDFs, information length, the rate of change in information length, entropy change and Fisher information in disorder-to-order and order-to-disorder transitions and discuss similarities and disparities between the two transitions. In particular, we show that the total information length in order-to-disorder transition is much larger than that in disorder-to-order transition and elucidate the link to the drastically different evolution of entropy in both transitions. We also provide the comparison of the results with those in the case of the transition between the subcritical and supercritical states and discuss implications for fitness.

  10. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, M.; Culcer, M.; Brandea, I.; Anghel, M.

    2001-01-01

    The paper presents a integrated vacuum system which was designed and manufactured in our institute. The main parts of this system are the power supply unit for turbo-melecular pumps and the vacuummeter. Both parts of the system are driven by means of a personal computer using a serial communication, according to the RS 232 hardware standard.(author)

  11. Exact modelling of the optical bistability in ferroelectics via two-wave mixing: A system with full nonlinearity

    Science.gov (United States)

    Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.

    2018-05-01

    In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.

  12. Bistable diverter valve in microfluidics

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Bandulasena, H.C.H.

    2011-01-01

    Roč. 50, č. 5 (2011), s. 1225-1233 ISSN 0723-4864 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * bistable diverter valves * pressure-driven microfluidics Subject RIV: BK - Fluid Dynamics Impact factor: 1.735, year: 2011 http://www.springerlink.com/content/x4907p1908151522/

  13. A quintuple quantum dot system for electrical and optical control of multi/bistability in a telecommunication window

    International Nuclear Information System (INIS)

    Mehmannavaz, Mohammad Reza; Sattari, Hamed

    2015-01-01

    We propose a model for a quintuple coupled quantum dot system based on a GaAs/AlGaAs heterostructure. Then, we analyze the optical bistability (OB) and optical multistability (OM) behaviours and transition between the regimes at a wavelength of λ=1.550 μm. We take the benefit of consecutive and parallel interdot tunnelling and an incoherent pumping field for electrical and even optical control of the processes. It is shown that OB, OM and transition between them can be accomplished and controlled by adjusting the rate of the inter-dot tunnellings (electrical bias), probe wavelength detuning and rate of the optical incoherent pumping field. By proper choice of the controlling parameters, the bistable hysteresis loop becomes narrower, which makes it easier for the cavity field to reach saturation. We interpret the OB and OM behaviours by discussing the absorption of the active medium. We also investigate switching time between the two stable states when the output field jumps from a lower branch to an upper branch. Such a controllable OB/OM and transition between them in multiple QD molecules at a wavelength of 1.550 μm, may provide some new possibilities for technological applications in optoelectronics, solid-state quantum information science and systems dealing with signal processing. (letter)

  14. Bistable perception modeled as competing stochastic integrations at two levels.

    Science.gov (United States)

    Gigante, Guido; Mattia, Maurizio; Braun, Jochen; Del Giudice, Paolo

    2009-07-01

    We propose a novel explanation for bistable perception, namely, the collective dynamics of multiple neural populations that are individually meta-stable. Distributed representations of sensory input and of perceptual state build gradually through noise-driven transitions in these populations, until the competition between alternative representations is resolved by a threshold mechanism. The perpetual repetition of this collective race to threshold renders perception bistable. This collective dynamics - which is largely uncoupled from the time-scales that govern individual populations or neurons - explains many hitherto puzzling observations about bistable perception: the wide range of mean alternation rates exhibited by bistable phenomena, the consistent variability of successive dominance periods, and the stabilizing effect of past perceptual states. It also predicts a number of previously unsuspected relationships between observable quantities characterizing bistable perception. We conclude that bistable perception reflects the collective nature of neural decision making rather than properties of individual populations or neurons.

  15. Bistability, electric potentials and sensor behaviour in an enzymatic reaction system

    International Nuclear Information System (INIS)

    Malchow, H.; Felber, F.

    1987-07-01

    A special ionic enzyme kinetics in a continuously stirred flow reactor which is membrane coupled to a reservoir is considered starting from a general expression for the substrate dependence of enzymatic reaction rates including pH effects. Both bistability of the reaction and electric potentials between the interior and exterior of the reactor can be observed having regard to mass and charge conservation as well as global electroneutrality. The sudden jumps at critical concentration values from one stable solution branch to the other on a hysteresis loop are supposed to be the basic action principle of a non-equilibrium concentration threshold sensor. (author). 38 refs, 3 figs

  16. Controlling the optical bistability beyond the multi-photon resonance condition in a three-level closed-loop atomic system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Nozari, Narges; Vafafard, Azar; Sahrai, Mostafa

    2012-01-01

    We investigate the optical bistability behavior of a three-level closed-loop atomic system beyond the multi-photon resonance condition. Using the Floquet decomposition, we solve the time-dependent equations of motion, beyond the multi-photon resonance condition. By identifying the different scattering processes contributing to the medium response, it is shown that in general the optical bistability behavior of the system is not phase-dependent. The phase dependence is due to the scattering of the driving and coupling fields into the probe field at a frequency, which, in general, differs from the probe field frequency. - Highlights: → We investigate optical bistability of a three-level closed-loop atomic system, beyond the multi-photon resonance condition. → By applying Floquet decomposition to the equation of motion, the different scattering processes contributing to the medium response are determined. → It is shown that the phase dependence of optical bistability arises from the scattering of the driving and coupling fields into the probe field frequency.

  17. Transcriptional delay stabilizes bistable gene networks.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R

    2013-08-02

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner.

  18. Stochastic resonance in a bistable system subject to multi-time-delayed feedback and aperiodic signal

    International Nuclear Information System (INIS)

    Li Jianlong; Zeng Lingzao

    2010-01-01

    We discuss in detail the effects of the multi-time-delayed feedback driven by an aperiodic signal on the output of a stochastic resonance (SR) system. The effective potential function and dynamical probability density function (PDF) are derived. To measure the performance of the SR system in the presence of a binary random signal, the bit error rate (BER) defined by the dynamical PDF is employed, as is commonly used in digital communications. We find that the delay time, strength of the feedback, and number of time-delayed terms can change the effective potential function and the effective amplitude of the signal, and then affect the BER of the SR system. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the multi-time-delayed feedback on SR and give a guidance to nonlinear systems in the application of information processing.

  19. Bistable Reflective Etalon (BRET)

    National Research Council Canada - National Science Library

    Shellenbarger, Zane

    2003-01-01

    This project designed, fabricated, and characterized normal-incidence etalon structures at 1550 nm wavelength operation for application, as bistable elements, to photonic analog-to-digital conversion...

  20. On Rank Driven Dynamical Systems

    Science.gov (United States)

    Veerman, J. J. P.; Prieto, F. J.

    2014-08-01

    We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.

  1. Bistability in a self-assembling system confined by elastic walls: Exact results in a one-dimensional lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Pȩkalski, J.; Ciach, A. [Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland); Almarza, N. G. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain)

    2015-01-07

    The impact of confinement on self-assembly of particles interacting with short-range attraction and long-range repulsion potential is studied for thermodynamic states corresponding to local ordering of clusters or layers in the bulk. Exact and asymptotic expressions for the local density and for the effective potential between the confining surfaces are obtained for a one-dimensional lattice model introduced by J. Pȩkalski et al. [J. Chem. Phys. 138, 144903 (2013)]. The simple asymptotic formulas are shown to be in good quantitative agreement with exact results for slits containing at least 5 layers. We observe that the incommensurability of the system size and the average distance between the clusters or layers in the bulk leads to structural deformations that are different for different values of the chemical potential μ. The change of the type of defects is reflected in the dependence of density on μ that has a shape characteristic for phase transitions. Our results may help to avoid misinterpretation of the change of the type of defects as a phase transition in simulations of inhomogeneous systems. Finally, we show that a system confined by soft elastic walls may exhibit bistability such that two system sizes that differ approximately by the average distance between the clusters or layers are almost equally probable. This may happen when the equilibrium separation between the soft boundaries of an empty slit corresponds to the largest stress in the confined self-assembling system.

  2. Optical bistability and multistability in polaritonic materials doped with nanoparticles

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate the optical bistability and multistability in polaritonic materials doped with nanoparticles inside an optical ring cavity. It is found that the optical bistability and multistability can be easily controlled by adjusting the corresponding parameters of the system properly. The effect of the dipole–dipole interaction has also been included in the formulation, which leads to interesting phenomena. Our scheme opens up the possibility of controling the optical bistability and multistability in polaritonic materials doped with nanoparticles. (letter)

  3. Controllable optical bistability in photonic-crystal one-atom laser

    International Nuclear Information System (INIS)

    Guo Xiaoyong; Lue Shuchen

    2009-01-01

    We investigate the property of optical bistability in a photonic-crystal one-atom laser when nonlinear microcavity is present. The physical system consists of a coherently driven two-level light emitter strongly coupled to a high-quality microcavity which is embedded within a photonic crystal and another coherent probing field which has incident into the microcavity. In our case, the microcavity is fabricated by nonlinear material and placed as an impurity in photonic crystal. This study reveals that such a system can exhibit optical bistability. The dependence of threshold value and hysteresis loop on the photonic band gap of the photonic crystal, driving field Rabi frequency and dephasing processes, are studied. Our results clearly illustrate the ability to control optical bistability through suitable photonic-crystal architectures and external coherent driving field, and this study suggests that in a photonic-crystal nonlinear microcavity, the one-atom laser acts as an effective controllable bistable device in the design of all-light digital computing systems in the near future.

  4. Inhibitors Alter the Stochasticity of Regulatory Proteins to Force Cells to Switch to the Other State in the Bistable System.

    Science.gov (United States)

    Jhang, Wun-Sin; Lo, Shih-Chiang; Yeh, Chen-Chao; Shu, Che-Chi

    2017-06-30

    The cellular behaviors under the control of genetic circuits are subject to stochastic fluctuations, or noise. The stochasticity in gene regulation, far from a nuisance, has been gradually appreciated for its unusual function in cellular activities. In this work, with Chemical Master Equation (CME), we discovered that the addition of inhibitors altered the stochasticity of regulatory proteins. For a bistable system of a mutually inhibitory network, such a change of noise led to the migration of cells in the bimodal distribution. We proposed that the consumption of regulatory protein caused by the addition of inhibitor is not the only reason for pushing cells to the specific state; the change of the intracellular stochasticity is also the main cause for the redistribution. For the level of the inhibitor capable of driving 99% of cells, if there is no consumption of regulatory protein, 88% of cells were guided to the specific state. It implied that cells were pushed, by the inhibitor, to the specific state due to the change of stochasticity.

  5. Resonances in a periodically driven bosonic system

    NARCIS (Netherlands)

    Quelle, Anton; de Morais Smith, Cristiane

    2017-01-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better

  6. Transmutation and accelerator driven systems

    International Nuclear Information System (INIS)

    Shapira, J.P.

    2001-01-01

    Full text: Today, countries who are presently involved in nuclear energy are facing many challenges to maintain this option open for the next few decades. Among them, management of nuclear wastes produced in nuclear reactors and in fuel cycle operations has become a very strong environmental issue among the public. In most countries with sizeable commercial nuclear programs, deep geological disposal of ultimate highly active and long-lived nuclear wastes is considered as the reference long-term management scheme. But, many questions arise on the possibility to demonstrate that such wastes can be dealt in such a way as to protect the future generations and the environment. The characteristics of nuclear wastes, the various back end policies concerning spent fuels and the nuclear wastes long-term management options will be first described. Then recent proposals, based on transmutation, especially those using accelerator driven systems (ADS) and/or thorium will be presented. Finally, the possibility for the nuclear physics community to play a part in alleviating the nuclear wastes burden will be pointed out. (author)

  7. Steady state statistical correlations predict bistability in reaction motifs.

    Science.gov (United States)

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  8. Toward Self-Control Systems for Neurogenic Underactive Bladder: A Triboelectric Nanogenerator Sensor Integrated with a Bistable Micro-Actuator.

    Science.gov (United States)

    Arab Hassani, Faezeh; Mogan, Roshini P; Gammad, Gil G L; Wang, Hao; Yen, Shih-Cheng; Thakor, Nitish V; Lee, Chengkuo

    2018-04-24

    Aging, neurologic diseases, and diabetes are a few risk factors that may lead to underactive bladder (UAB) syndrome. Despite all of the serious consequences of UAB, current solutions, the most common being ureteric catheterization, are all accompanied by serious shortcomings. The necessity of multiple catheterizations per day for a physically able patient not only reduces the quality of life with constant discomfort and pain but also can end up causing serious complications. Here, we present a bistable actuator to empty the bladder by incorporating shape memory alloy components integrated on flexible polyvinyl chloride sheets. The introduction of two compression and restoration phases for the actuator allows for repeated actuation for a more complete voiding of the bladder. The proposed actuator exhibits one of the highest reported voiding percentages of up to 78% of the bladder volume in an anesthetized rat after only 20 s of actuation. This amount of voiding is comparable to the common catheterization method, and its one time implantation onto the bladder rectifies the drawbacks of multiple catheterizations per day. Furthermore, the scaling of the device for animal models larger than rats can be easily achieved by adjusting the number of nitinol springs. For neurogenic UAB patients with degraded nerve function as well as degenerated detrusor muscle, we integrate a flexible triboelectric nanogenerator sensor with the actuator to detect the fullness of the bladder. The sensitivity of this sensor to the filling status of the bladder shows its capability for defining a self-control system in the future that would allow autonomous micturition.

  9. Hybrid optoelectronic device with multiple bistable outputs

    Energy Technology Data Exchange (ETDEWEB)

    Costazo-Caso, Pablo A; Jin Yiye; Gelh, Michael; Granieri, Sergio; Siahmakoun, Azad, E-mail: pcostanzo@ing.unlp.edu.are, E-mail: granieri@rose-hulma.edu, E-mail: siahmako@rose-hulma.edu [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803 (United States)

    2011-01-01

    Optoelectronic circuits which exhibit optical and electrical bistability with hysteresis behavior are proposed and experimentally demonstrated. The systems are based on semiconductor optical amplifiers (SOA), bipolar junction transistors (BJT), PIN photodiodes (PD) and laser diodes externally modulated with integrated electro-absorption modulators (LD-EAM). The device operates based on two independent phenomena leading to both electrical bistability and optical bistability. The electrical bistability is due to the series connection of two p-i-n structures (SOA, BJT, PD or LD) in reverse bias. The optical bistability is consequence of the quantum confined Stark effect (QCSE) in the multi-quantum well (MQW) structure in the intrinsic region of the device. This effect produces the optical modulation of the transmitted light through the SOA (or reflected from the PD). Finally, because the optical transmission of the SOA (in reverse bias) and the reflected light from the PD are so small, a LD-EAM modulated by the voltage across these devices are employed to obtain a higher output optical power. Experiments show that the maximum switching frequency is in MHz range and the rise/fall times lower than 1 us. The temporal response is mainly limited by the electrical capacitance of the devices and the parasitic inductances of the connecting wires. The effects of these components can be reduced in current integration technologies.

  10. A study on stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point with the moment method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guangjun [State Key Laboratory of Mechanical Structural Strength and Vibration, School of Architectural Engineering and Mechanics, Xi' an Jiaotong University, Xi' an, Shaanxi (China); Xu Jianxue [State Key Laboratory of Mechanical Structural Strength and Vibration, School of Architectural Engineering and Mechanics, Xi' an Jiaotong University, Xi' an, Shaanxi (China)] e-mail: jxxu@mail.xjtu.edu.cn

    2006-02-01

    This paper analyzes the stochastic resonance induced by a novel transition of one-dimensional bistable system in the neighborhood of bifurcation point with the method of moment, which refer to the transition of system motion among a potential well of stable fixed point before bifurcation of original system and double-well potential of two coexisting stable fixed points after original system bifurcation at the presence of internal noise. The results show: the semi-analytical result of stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point may be obtained, and the semi-analytical result is in accord with the one of Monte Carlo simulation qualitatively, the occurrence of stochastic resonance is related to the bifurcation of noisy nonlinear dynamical system moment equations, which induce the transfer of energy of ensemble average (Ex) of system response in each frequency component and make the energy of ensemble average of system response concentrate on the frequency of input signal, stochastic resonance occurs.

  11. A study on stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point with the moment method

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xu Jianxue

    2006-01-01

    This paper analyzes the stochastic resonance induced by a novel transition of one-dimensional bistable system in the neighborhood of bifurcation point with the method of moment, which refer to the transition of system motion among a potential well of stable fixed point before bifurcation of original system and double-well potential of two coexisting stable fixed points after original system bifurcation at the presence of internal noise. The results show: the semi-analytical result of stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point may be obtained, and the semi-analytical result is in accord with the one of Monte Carlo simulation qualitatively, the occurrence of stochastic resonance is related to the bifurcation of noisy nonlinear dynamical system moment equations, which induce the transfer of energy of ensemble average (Ex) of system response in each frequency component and make the energy of ensemble average of system response concentrate on the frequency of input signal, stochastic resonance occurs

  12. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  13. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  14. Shock propagation in locally driven granular systems

    Science.gov (United States)

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  15. Unidirectional Transition Waves in Bistable Lattices.

    Science.gov (United States)

    Nadkarni, Neel; Arrieta, Andres F; Chong, Christopher; Kochmann, Dennis M; Daraio, Chiara

    2016-06-17

    We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.

  16. Comments to accelerator-driven system

    International Nuclear Information System (INIS)

    Taka aki, Matsumoto

    2003-01-01

    Accelerator-driven system (ADS) that was a subcritical nuclear reactor driven by a high power proton accelerator was recently studied by several large organisations over the world. This paper described two comments for ADS: philosophical and technological ones. The latter was made from a view point of micro ball lightning (BL) that was newly discovered by the author. Negative and positive aspects of micro BL for ADS were discussed. (author)

  17. Transient and chaotic low-energy transfers in a system with bistable nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F., E-mail: francesco.romeo@uniroma1.it [Department of Structural and Geotechnical Engineering, SAPIENZA University of Rome, Rome (Italy); Manevitch, L. I. [Institute of Chemical Physics, RAS, Moscow (Russian Federation); Bergman, L. A.; Vakakis, A. [College of Engineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61820 (United States)

    2015-05-15

    The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensional projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions.

  18. A bistable model of cell polarity.

    Directory of Open Access Journals (Sweden)

    Matteo Semplice

    Full Text Available Ultrasensitivity, as described by Goldbeter and Koshland, has been considered for a long time as a way to realize bistable switches in biological systems. It is not as well recognized that when ultrasensitivity and reinforcing feedback loops are present in a spatially distributed system such as the cell plasmamembrane, they may induce bistability and spatial separation of the system into distinct signaling phases. Here we suggest that bistability of ultrasensitive signaling pathways in a diffusive environment provides a basic mechanism to realize cell membrane polarity. Cell membrane polarization is a fundamental process implicated in several basic biological phenomena, such as differentiation, proliferation, migration and morphogenesis of unicellular and multicellular organisms. We describe a simple, solvable model of cell membrane polarization based on the coupling of membrane diffusion with bistable enzymatic dynamics. The model can reproduce a broad range of symmetry-breaking events, such as those observed in eukaryotic directional sensing, the apico-basal polarization of epithelium cells, the polarization of budding and mating yeast, and the formation of Ras nanoclusters in several cell types.

  19. What is refractive optical bistability

    International Nuclear Information System (INIS)

    Dzhehov, Tomislav

    1993-01-01

    The basic elements of the theory of refractive optical bistability, assuming mediums with linear absorption are given. Special attention is paid to bistable etalons of semiconductor materials an oxide glasses, since some of them are considered as promising components for optical bistability applications. The design optimization of such devices for minimum switching intensity is analyzed. Computer simulation of the transfer characteristic recording for two InSb etalons is presented. (author)

  20. Test-driven modeling of embedded systems

    DEFF Research Database (Denmark)

    Munck, Allan; Madsen, Jan

    2015-01-01

    To benefit maximally from model-based systems engineering (MBSE) trustworthy high quality models are required. From the software disciplines it is known that test-driven development (TDD) can significantly increase the quality of the products. Using a test-driven approach with MBSE may have...... a similar positive effect on the quality of the system models and the resulting products and may therefore be desirable. To define a test-driven model-based systems engineering (TD-MBSE) approach, we must define this approach for numerous sub disciplines such as modeling of requirements, use cases...... suggest that our method provides a sound foundation for rapid development of high quality system models....

  1. Bistable microelectromechanical actuator

    Science.gov (United States)

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  2. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Brandea, Iulian; Anghel, Mihai

    2001-01-01

    The monitoring of industrial plants by virtual instrumentation represents the most modern trend in the domain of electronic equipment. The integrated vacuum system presented here has several facilities, including the automated data storing of measurement results on hard disk and providing warning messages for operators when the measured parameters are lower or higher upper than the fixed values. The system can also work stand-alone, receiving the commands from the keyboards placed on his front panel but, when it is included in a automation complex system, a remote control from PC is necessary . Both parts of the system, power supply unit for turbo-molecular pump and the vacuum gage, are controlled by an 80C31 microcontroller. Because this microcontroller has a built-in circuitry for a serial communication, we established a serial communication between the PC and the power supply unit for turbo-molecular pump and the vacuum gage, according to the RS-232 hardware standard. As software, after careful evaluation of several options, we chose to develop a hybrid software packing using two different software development tools: LabVIEW, and assembly language. We chose LabVIEW because it is dedicated to data acquisition and communications, containing libraries for data collection, analysis, display and storage. (authors)

  3. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  4. Amplification of weak signals via the non-adiabatic regime of stochastic resonance in a bistable dynamical system with time delay

    International Nuclear Information System (INIS)

    Du Luchun; Mei Dongcheng

    2011-01-01

    The non-adiabatic regime of stochastic resonance (SR) in a bistable system with time delay, an additive white noise and a periodic signal was investigated. The signal power amplification η was employed to characterize the SR of the system. The simulation results indicate that (i) in the case of intermediate frequency Ω of the periodic signal, the typical behavior of SR is lowered monotonically by increasing the delay time τ; in the case of large Ω, τ weakens the SR behavior and then enhances it, with a non-monotonic behavior as a function of time delay; (ii) time delay induces SR when A is above the threshold, whereas no such resonance exists in the absence of time delay; (iii) time delay induces a transition from bimodal to unimodal configuration of η; (iv) varying the particular form of time delay results in different phenomena.

  5. Bistable responses in bacterial genetic networks: Designs and dynamical consequences

    Science.gov (United States)

    Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.

    2011-01-01

    A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588

  6. Distributed processing in bistable perception

    NARCIS (Netherlands)

    Knapen, T.H.J.

    2007-01-01

    A very incisive way of studying visual awareness and the mechanisms that underlie it, it to use bistable perception. In bistable perception, an observer's perceptual state alternates between one interpretation and its mutually exclusive counterpart while the stimulus remains the same. This gives us

  7. Quantitative system validation in model driven design

    DEFF Research Database (Denmark)

    Hermanns, Hilger; Larsen, Kim Guldstrand; Raskin, Jean-Francois

    2010-01-01

    The European STREP project Quasimodo1 develops theory, techniques and tool components for handling quantitative constraints in model-driven development of real-time embedded systems, covering in particular real-time, hybrid and stochastic aspects. This tutorial highlights the advances made, focus...

  8. Regularity, variability and bi-stability in the activity of cerebellar purkinje cells.

    Science.gov (United States)

    Rokni, Dan; Tal, Zohar; Byk, Hananel; Yarom, Yosef

    2009-01-01

    Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state), and a quiescent hyperpolarized state (down state). A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  9. Regularity, variabilty and bi-stability in the activity of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2009-11-01

    Full Text Available Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state, and a quiescent hyperpolarized state (down state. A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in-vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  10. Resonances in a periodically driven bosonic system

    Science.gov (United States)

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  11. Resonances in a periodically driven bosonic system.

    Science.gov (United States)

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  12. Vlasov dynamics of periodically driven systems

    Science.gov (United States)

    Banerjee, Soumyadip; Shah, Kushal

    2018-04-01

    Analytical solutions of the Vlasov equation for periodically driven systems are of importance in several areas of plasma physics and dynamical systems and are usually approximated using ponderomotive theory. In this paper, we derive the plasma distribution function predicted by ponderomotive theory using Hamiltonian averaging theory and compare it with solutions obtained by the method of characteristics. Our results show that though ponderomotive theory is relatively much easier to use, its predictions are very restrictive and are likely to be very different from the actual distribution function of the system. We also analyse all possible initial conditions which lead to periodic solutions of the Vlasov equation for periodically driven systems and conjecture that the irreducible polynomial corresponding to the initial condition must only have squares of the spatial and momentum coordinate. The resulting distribution function for other initial conditions is aperiodic and can lead to complex relaxation processes within the plasma.

  13. Noise-driven phenomena in hysteretic systems

    CERN Document Server

    Dimian, Mihai

    2014-01-01

    Noise-Driven Phenomena in Hysteretic Systems provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft© - a robust simulation environment designed to perform complex hysteresis modeling – that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteret...

  14. A genetic bistable switch utilizing nonlinear protein degradation.

    Science.gov (United States)

    Huang, Daniel; Holtz, William J; Maharbiz, Michel M

    2012-07-09

    Bistability is a fundamental property in engineered and natural systems, conferring the ability to switch and retain states. Synthetic bistable switches in prokaryotes have mainly utilized transcriptional components in their construction. Using both transcriptional and enzymatic components, creating a hybrid system, allows for wider bistable parameter ranges in a circuit. In this paper, we demonstrate a tunable family of hybrid bistable switches in E. coli using both transcriptional components and an enzymatic component. The design contains two linked positive feedback loops. The first loop utilizes the lambda repressor, CI, and the second positive feedback loop incorporates the Lon protease found in Mesoplasma florum (mf-Lon). We experimentally tested for bistable behavior in exponential growth phase, and found that our hybrid bistable switch was able to retain its state in the absence of an input signal throughout 40 cycles of cell division. We also tested the transient behavior of our switch and found that switching speeds can be tuned by changing the expression rate of mf-Lon. To our knowledge, this work demonstrates the first use of dynamic expression of an orthogonal and heterologous protease to tune a nonlinear protein degradation circuit. The hybrid switch is potentially a more robust and tunable topology for use in prokaryotic systems.

  15. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  16. Bulk chirality effect for symmetric bistable switching of liquid crystals on topologically self-patterned degenerate anchoring surface.

    Science.gov (United States)

    Park, Min-Kyu; Joo, Kyung-Il; Kim, Hak-Rin

    2017-06-26

    We demonstrate a bistable switching liquid crystal (LC) mode utilizing a topologically self-structured dual-groove surface for degenerated easy axes of LC anchoring. In our study, the effect of the bulk elastic distortion of the LC directors on the bistable anchoring surface is theoretically analyzed for balanced bistable states based on a free energy diagram. By adjusting bulk LC chirality, we developed ideally symmetric and stable bistable anchoring and switching properties, which can be driven by a low in-plane pulsed field of about 0.7 V/µm. The fabricated device has a contrast ratio of 196:1.

  17. Oscillations in the bistable regime of neuronal networks.

    Science.gov (United States)

    Roxin, Alex; Compte, Albert

    2016-07-01

    Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent activity observed in several cortical areas during working memory tasks. In network models this kind of bistability arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN) bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks) robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both bistability and oscillatory activity have been intensively studied in network models, there has not been much focus on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime, their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the bistable regime can, in principle, have arbitrarily low frequency.

  18. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  19. Accelerating Science Driven System Design With RAMP

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzynek, John [Univ. of California, Berkeley, CA (United States)

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  20. Model Driven Development of Data Sensitive Systems

    DEFF Research Database (Denmark)

    Olsen, Petur

    2014-01-01

    storage systems, where the actual values of the data is not relevant for the behavior of the system. For many systems the values are important. For instance the control flow of the system can be dependent on the input values. We call this type of system data sensitive, as the execution is sensitive...... to the values of variables. This theses strives to improve model-driven development of such data-sensitive systems. This is done by addressing three research questions. In the first we combine state-based modeling and abstract interpretation, in order to ease modeling of data-sensitive systems, while allowing...... efficient model-checking and model-based testing. In the second we develop automatic abstraction learning used together with model learning, in order to allow fully automatic learning of data-sensitive systems to allow learning of larger systems. In the third we develop an approach for modeling and model-based...

  1. On stability of accelerator driven systems

    International Nuclear Information System (INIS)

    Makai, Mihaly

    2003-01-01

    An unsolved problem of energy production in nuclear reactors is the waste management. A large portion of the nuclear waste is the spent fuel. At present, two possibilities are seen. The first one is to 'wrap up' all the radioactive waste safely and to bury it at a remote quiet place where it can rest undisturbed until its activity decreases to a tolerable level. The second one is to exploit the excitation energy still present in the nuclear waste. In order to release that energy, the spent fuel is bombarded by high energy particles obtained from an accelerator. The resulting system is called accelerator driven system (ADS). In an ADS, the spent fuel forms a subcritical reactor, which is driven by an external source. (author)

  2. Weapon plutonium in accelerator driven power system

    International Nuclear Information System (INIS)

    Shvedov, O.V.; Murin, B.P.; Kochurov, B.P.; Shubin, Yu.M.; Volk, V.I.; Bogdanov, P.V.

    1997-01-01

    Accelerator Driven Systems are planned to be developed for the use (or destruction) of dozens of tons of weapon-grade Plutonium (W-Pu) resulted from the reducing of nuclear weapons. In the paper are compared the parameters of various types of accelerators, the physical properties of various types of targets and blankets, and the results of fuel cycle simulation. Some economical aspects are also discussed

  3. Genes contribute to the switching dynamics of bistable perception.

    Science.gov (United States)

    Shannon, Robert W; Patrick, Christopher J; Jiang, Yi; Bernat, Edward; He, Sheng

    2011-03-09

    Ordinarily, the visual system provides an unambiguous representation of the world. However, at times alternative plausible interpretations of a given stimulus arise, resulting in a dynamic perceptual alternation of the differing interpretations, commonly referred to as bistable or rivalrous perception. Recent research suggests that common neural mechanisms may be involved in the dynamics of very different types of bistable phenomena. Further, evidence has emerged that genetic factors may be involved in determining the rate of switch for at least one form of bistable perception, known as binocular rivalry. The current study evaluated whether genetic factors contribute to the switching dynamics for distinctly different variants of bistable perception in the same participant sample. Switching rates were recorded for MZ and DZ twin participants in two different bistable perception tasks, binocular rivalry and the Necker Cube. Strong concordance in switching rates across both tasks was evident for MZ but not DZ twins, indicating that genetic factors indeed contribute to the dynamics of multiple forms of bistable perception.

  4. Bistable amphoteric centers in semiconductors

    International Nuclear Information System (INIS)

    Nikitina, A. G.; Zuev, V. V.

    2008-01-01

    It is shown that, at thermodynamic equilibrium, the release of charge carriers from the localized states of bistable amphoteric centers into quasi-free states depends on the degree of compensation. This brings about different functional dependences of the concentration of free charge carriers on temperature. It is found that, in uncompensated semiconductors, the concentration of free charge carriers follows the same dependence in the case of bistable amphoteric centers and bistable amphoteric U - centers, although the distributions of charge carriers over the charge states and configurations are different for these types of centers. The results can be used for interpreting various experimental data insufficiently explained in the context of the traditional approach

  5. A Miniature Coupled Bistable Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Zhu, D; Arthur, D C; Beeby, S P

    2014-01-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator

  6. Interlinked bistable mechanisms generate robust mitotic transitions.

    Science.gov (United States)

    Hutter, Lukas H; Rata, Scott; Hochegger, Helfrid; Novák, Béla

    2017-10-18

    The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit, 1 and the mitotic checkpoint. 2 Each of the two control systems is characterized by two interlinked bistable switches. In the case of mitotic checkpoint control, these switches are mutually activating, whereas in the case of the mitotic entry/exit network, the switches are mutually inhibiting. In this Perspective we describe the qualitative features of these regulatory motifs and show that having two interlinked bistable mechanisms further enhances robustness and irreversibility. We speculate that these network motifs also underlie other cell cycle transitions and cellular transitions between distinct biochemical states.

  7. Temporal nonlocality in bistable perception

    Science.gov (United States)

    Atmanspacher, Harald; Filk, Thomas

    2012-12-01

    A novel conceptual framework for theoretical psychology is presented and illustrated for the example of bistable perception. A basic formal feature of this framework is the non-commutativity of operations acting on mental states. A corresponding model for the bistable perception of ambiguous stimuli, the Necker-Zeno model, is sketched and some empirical evidence for it so far is described. It is discussed how a temporal nonlocality of mental states, predicted by the model, can be understood and tested.

  8. Bistable energy harvesting enhancement with an auxiliary linear oscillator

    Science.gov (United States)

    Harne, R. L.; Thota, M.; Wang, K. W.

    2013-12-01

    Recent work has indicated that linear vibrational energy harvesters with an appended degree-of-freedom (DOF) may be advantageous for introducing new dynamic forms to extend the operational bandwidth. Given the additional interest in bistable harvester designs, which exhibit a propitious snap through effect from one stable state to the other, it is a logical extension to explore the influence of an added DOF to a bistable system. However, bistable snap through is not a resonant phenomenon, which tempers the presumption that the dynamics induced by an additional DOF on bistable designs would inherently be beneficial as for linear systems. This paper presents two analytical formulations to assess the fundamental and superharmonic steady-state dynamics of an excited bistable energy harvester to which is attached an auxiliary linear oscillator. From an energy harvesting perspective, the model predicts that the additional linear DOF uniformly amplifies the bistable harvester response magnitude and generated power for excitation frequencies less than the attachment’s resonance while improved power density spans a bandwidth below this frequency. Analyses predict bandwidths having co-existent responses composed of a unique proportion of fundamental and superharmonic dynamics. Experiments validate key analytical predictions and observe the ability for the coupled system to develop an advantageous multi-harmonic interwell response when the initial conditions are insufficient for continuous high-energy orbit at the excitation frequency. Overall, the addition of an auxiliary linear oscillator to a bistable harvester is found to be an effective means of enhancing the energy harvesting performance and robustness.

  9. Two Bistable Switches Govern M Phase Entry.

    Science.gov (United States)

    Mochida, Satoru; Rata, Scott; Hino, Hirotsugu; Nagai, Takeharu; Novák, Béla

    2016-12-19

    The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2-4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations-evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Statistical mechanics of driven diffusive systems

    CERN Document Server

    Schmittmann, B

    1995-01-01

    Far-from-equilibrium phenomena, while abundant in nature, are not nearly as well understood as their equilibrium counterparts. On the theoretical side, progress is slowed by the lack of a simple framework, such as the Boltzmann-Gbbs paradigm in the case of equilibrium thermodynamics. On the experimental side, the enormous structural complexity of real systems poses serious obstacles to comprehension. Similar difficulties have been overcome in equilibrium statistical mechanics by focusing on model systems. Even if they seem too simplistic for known physical systems, models give us considerable insight, provided they capture the essential physics. They serve as important theoretical testing grounds where the relationship between the generic physical behavior and the key ingredients of a successful theory can be identified and understood in detail. Within the vast realm of non-equilibrium physics, driven diffusive systems form a subset with particularly interesting properties. As a prototype model for these syst...

  11. Topical Meeting on Optical Bistability Held at Rochester, New York on 15-17 June 1983.

    Science.gov (United States)

    1983-01-01

    ThB16-1 SELF-BEATING INSTABILITIES IN BISTABLE DEVICES J.A. MARTIN-PEREDA .. M.A. MURIEL DEPARTAMENTO DE ELECTRONICA CUANTICA E.T.S. ING...OPTICAL BISTABLL SYSTEMS J.A. MARTIN PEREDA M.A. MURIEL ; DEPARTAMENIO DE ELECTRONICA CUANTICA E.T.S. ING. TELLCOMUNICACION UNIVERSIDAD POLITECNICA DE

  12. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  13. GABA shapes the dynamics of bistable perception

    NARCIS (Netherlands)

    van Loon, A.M.; Knapen, T.; Scholte, H.S.; St. John-Saaltink, E.; Donner, T.H.; Lamme, V.A.F.

    2013-01-01

    Sometimes, perception fluctuates spontaneously between two distinct interpretations of a constant sensory input. These bistable perceptual phenomena provide a unique window into the neural mechanisms that create the contents of conscious perception. Models of bistable perception posit that mutual

  14. Minor actinide transmutation in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike [IANUS, TU Darmstadt (Germany)

    2015-07-01

    Transmutation of radioactive waste, the legacy of nuclear energy use, gains rising interest. This includes the development of facilities able to transmute minor actinides (MA) into stable or short-lived isotopes before final disposal. The most common proposal is to use a double-strata approach with accelerator-driven-systems (ADS) for the efficient transmutation of MA and power reactors to dispose plutonium. An ADS consists of a sub-critical core that reaches criticality with neutrons supplied by a spallation target. An MCNP model of the ADS system Multi Purpose Research Reactor for Hightech Applications will be presented. Depletion calculations have been performed for both standard MOX fuel and transmutation fuel with an increased content of minor actinides. The resulting transmutation rates for MAs are compared to published values. Special attention is given to selected fission products such as Tc-99 and I-129, which impact the radiation from the spent fuel significantly.

  15. Non-resonant energy harvesting via an adaptive bistable potential

    International Nuclear Information System (INIS)

    Hosseinloo, Ashkan Haji; Turitsyn, Konstantin

    2016-01-01

    Narrow bandwidth and easy detuning, inefficiency in broadband and non-stationary excitations, and difficulties in matching a linear harvester’s resonance frequency to low-frequency excitations at small scales, have convinced researchers to investigate nonlinear, and in particular bistable, energy harvesters in recent years. However, bistable harvesters suffer from co-existing low and high energy orbits, and sensitivity to initial conditions, and have recently been proven inefficient when subjected to many real-world random and non-stationary excitations. Here, we propose a novel non-resonant buy-low-sell-high strategy that can significantly improve the harvester’s effectiveness at low frequencies in a much more robust fashion. This strategy could be realized by a passive adaptive bistable system. Simulation results confirm the high effectiveness of the adaptive bistable system following a buy-low-sell-high logic when subjected to harmonic and random non-stationary walking excitations compared to its conventional bistable and linear counterparts. (paper)

  16. Numerical and experimental study of bistable plates for morphing structures

    Science.gov (United States)

    Nicassio, F.; Scarselli, G.; Avanzini, G.; Del Core, G.

    2017-04-01

    This study is concerned with the activation energy threshold of bistable composite plates in order to tailor a bistable system for specific aeronautical applications. The aim is to explore potential configurations of the bistable plates and their dynamic behavior for designing novel morphing structure suitable for aerodynamic surfaces and, as a possible further application, for power harvesters. Bistable laminates have two stable mechanical shapes that can withstand aerodynamic loads without additional constraint forces or locking mechanisms. This kind of structures, when properly loaded, snap-through from one stable configuration to another, causing large strains that can also be used for power harvesting scopes. The transition between the stable states of the composite laminate can be triggered, in principle, simply by aerodynamic loads (pilot, disturbance or passive inputs) without the need of servo-activated control systems. Both numerical simulations based on Finite Element models and experimental testing based on different activating forcing spectra are used to validate this concept. The results show that dynamic activation of bistable plates depend on different parameters that need to be carefully managed for their use as aircraft passive wing flaps.

  17. Dissipation-driven quantum phase transitions in collective spin systems

    International Nuclear Information System (INIS)

    Morrison, S; Parkins, A S

    2008-01-01

    We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)

  18. Optical bistability via quantum interference from incoherent pumping and spontaneous emission

    International Nuclear Information System (INIS)

    Sahrai, M.; Asadpour, S.H.; Sadighi-Bonabi, R.

    2011-01-01

    We theoretically investigate the optical bistability (OB) in a V-type three-level atomic system confined in a unidirectional ring cavity via incoherent pumping field. It is shown that the threshold of optical bistability can be controlled by the rate of an incoherent pumping field and by interference mechanism arising from the spontaneous emission and incoherent pumping field. We demonstrate that the optical bistability converts to optical multi-stability (OM) by the quantum interference mechanism. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. → The threshold of optical bistability can be controlled by the quantum interferences. → OB converts to optical multi-stability (OM) by the quantum interferences. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.

  19. Driven topological systems in the classical limit

    Science.gov (United States)

    Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel

    2017-03-01

    Periodically driven quantum systems can exhibit topologically nontrivial behavior, even when their quasienergy bands have zero Chern numbers. Much work has been conducted on noninteracting quantum-mechanical models where this kind of behavior is present. However, the inclusion of interactions in out-of-equilibrium quantum systems can prove to be quite challenging. On the other hand, the classical counterpart of hard-core interactions can be simulated efficiently via constrained random walks. The noninteracting model, proposed by Rudner et al. [Phys. Rev. X 3, 031005 (2013), 10.1103/PhysRevX.3.031005], has a special point for which the system is equivalent to a classical random walk. We consider the classical counterpart of this model, which is exact at a special point even when hard-core interactions are present, and show how these quantitatively affect the edge currents in a strip geometry. We find that the interacting classical system is well described by a mean-field theory. Using this we simulate the dynamics of the classical system, which show that the interactions play the role of Markovian, or time-dependent disorder. By comparing the evolution of classical and quantum edge currents in small lattices, we find regimes where the classical limit considered gives good insight into the quantum problem.

  20. Fundamental role of bistability in optimal homeostatic control

    Science.gov (United States)

    Wang, Guanyu

    2013-03-01

    Bistability is a fundamental phenomenon in nature and has a number of fine properties. However, these properties are consequences of bistability at the physiological level, which do not explain why it had to emerge during evolution. Using optimal homeostasis as the first principle and Pontryagin's Maximum Principle as the optimization approach, I find that bistability emerges as an indispensable control mechanism. Because the mathematical model is general and the result is independent of parameters, it is likely that most biological systems use bistability to control homeostasis. Glucose homeostasis represents a good example. It turns out that bistability is the only solution to a dilemma in glucose homeostasis: high insulin efficiency is required for rapid plasma glucose clearance, whereas an insulin sparing state is required to guarantee the brain's safety during fasting. This new perspective can illuminate studies on the twin epidemics of obesity and diabetes and the corresponding intervening strategies. For example, overnutrition and sedentary lifestyle may represent sudden environmental changes that cause the lose of optimality, which may contribute to the marked rise of obesity and diabetes in our generation.

  1. Linear population allocation by bistable switches in response to transient stimulation.

    Science.gov (United States)

    Srimani, Jaydeep K; Yao, Guang; Neu, John; Tanouchi, Yu; Lee, Tae Jun; You, Lingchong

    2014-01-01

    Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON). While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness.

  2. Kinetic parameters for source driven systems

    International Nuclear Information System (INIS)

    Dulla, S.; Ravetto, P.; Carta, M.; D'Angelo, A.

    2006-01-01

    The definition of the characteristic kinetic parameters of a subcritical source-driven system constitutes an interesting problem in reactor physics with important consequences for practical applications. Consistent and physically meaningful values of the parameters allow to obtain accurate results from kinetic simulation tools and to correctly interpret kinetic experiments. For subcritical systems a preliminary problem arises for the adoption of a suitable weighting function to be used in the projection procedure to derive a point model. The present work illustrates a consistent factorization-projection procedure which leads to the definition of the kinetic parameters in a straightforward manner. The reactivity term is introduced coherently with the generalized perturbation theory applied to the source multiplication factor ks, which is thus given a physical role in the kinetic model. The effective prompt lifetime is introduced on the assumption that a neutron generation can be initiated by both the fission process and the source emission. Results are presented for simplified configurations to fully comprehend the physical features and for a more complicated highly decoupled system treated in transport theory. (authors)

  3. Uncertainty assessment for accelerator-driven systems

    International Nuclear Information System (INIS)

    Finck, P. J.; Gomes, I.; Micklich, B.; Palmiotti, G.

    1999-01-01

    The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe, Russia, Japan, and the U.S. A general consensus has been reached in adopting for the subcritical component a fast spectrum liquid metal cooled configuration. Both a lead-bismuth eutectic, sodium and gas are being considered as a coolant; each has advantages and disadvantages. The major expected advantage is that subcriticality avoids reactivity induced transients. The potentially large subcriticality margin also should allow for the introduction of very significant quantities of waste products (minor Actinides and Fission Products) which negatively impact the safety characteristics of standard cores. In the U.S. these arguments are the basis for the development of the Accelerator Transmutation of Waste (ATW), which has significant potential in reducing nuclear waste levels. Up to now, neutronic calculations have not attached uncertainties on the values of the main nuclear integral parameters that characterize the system. Many of these parameters (e.g., degree of subcriticality) are crucial to demonstrate the validity and feasibility of this concept. In this paper we will consider uncertainties related to nuclear data only. The present knowledge of the cross sections of many isotopes that are not usually utilized in existing reactors (like Bi, Pb-207, Pb-208, and also Minor Actinides and Fission Products) suggests that uncertainties in the integral parameters will be significantly larger than for conventional reactor systems, and this raises concerns on the neutronic performance of those systems

  4. Dynamical critical phenomena in driven-dissipative systems.

    Science.gov (United States)

    Sieberer, L M; Huber, S D; Altman, E; Diehl, S

    2013-05-10

    We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.

  5. Excitonic bistabilities, instabilities and chaos in laser-pumped semiconductor

    International Nuclear Information System (INIS)

    Nguyen Ba An; Nguyen Trung Dan; Hoang Xuan Nguyen

    1992-07-01

    The Hurwitz criteria are used for a stability analysis of the steady state excitonic optical bistability curves in a semiconductor pumped by an external laser resonant with the exciton level. Besides the middle branch of the bistability curves which is unstable in the sense of the linear stability theory, we have found other domains of instability in the upper and lower branches of the steady state curves. Numerical results show that a possible route to chaos in the photon-exciton system is period-doubling self-oscillation process. The influence of the presence of free carriers that coexist with the excitons is also discussed. (author). 16 refs, 6 figs

  6. Excitonic optical bistability in n-type doped semiconductors

    International Nuclear Information System (INIS)

    Nguyen Ba An; Le Thi Cat Tuong

    1991-07-01

    A resonant monochromatic pump laser generates coherent excitons in an n-type doped semiconductor. Both exciton-exciton and exciton-donor interactions come into play. The former interaction can give rise to the appearance of optical bistability which is heavily influenced by the latter one. When optical bistability occurs at a fixed laser frequency both its holding intensity and hysteresis loop size are shown to decrease with increasing donor concentration. Two possibilities are suggested for experimentally determining one of the two parameters of the system - the exciton-donor coupling constant and the donor concentration, if the other parameter is known beforehand. (author). 36 refs, 2 figs

  7. Flexible Bistable Cholesteric Reflective Displays

    Science.gov (United States)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  8. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  9. Design of a bistable switch to control cellular uptake.

    Science.gov (United States)

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  10. Bi-stability in cooperative transport by ants in the presence of obstacles.

    Directory of Open Access Journals (Sweden)

    Jonathan E Ron

    2018-05-01

    Full Text Available To cooperatively carry large food items to the nest, individual ants conform their efforts and coordinate their motion. Throughout this expedition, collective motion is driven both by internal interactions between the carrying ants and a response to newly arrived informed ants that orient the cargo towards the nest. During the transport process, the carrying group must overcome obstacles that block their path to the nest. Here, we investigate the dynamics of cooperative transport, when the motion of the ants is frustrated by a linear obstacle that obstructs the motion of the cargo. The obstacle contains a narrow opening that serves as the only available passage to the nest, and through which single ants can pass but not with the cargo. We provide an analytical model for the ant-cargo system in the constrained environment that predicts a bi-stable dynamic behavior between an oscillatory mode of motion along the obstacle and a convergent mode of motion near the opening. Using both experiments and simulations, we show how for small cargo sizes, the system exhibits spontaneous transitions between these two modes of motion due to fluctuations in the applied force on the cargo. The bi-stability provides two possible problem solving strategies for overcoming the obstacle, either by attempting to pass through the opening, or take large excursions to circumvent the obstacle.

  11. Pattern formation in the bistable Gray-Scott model

    DEFF Research Database (Denmark)

    Mazin, W.; Rasmussen, K.E.; Mosekilde, Erik

    1996-01-01

    The paper presents a computer simulation study of a variety of far-from-equilibrium phenomena that can arise in a bistable chemical reaction-diffusion system which also displays Turing and Hopf instabilities. The Turing bifurcation curve and the wave number for the patterns of maximum linear grow...

  12. Materials issues in accelerator driven-systems

    International Nuclear Information System (INIS)

    Al Mazouzi, A.

    2008-01-01

    Full text of publication follows. Nuclear energy has to cope with critical topics to resolve the economical question of increasing energy demand and, in particular, the public acceptability demands: - increasing the absolute safety of the installations; - managing more efficiently the nuclear waste; In that respect, the development of a new type of nuclear installation coping with above constraints of technological as well as socio-economical nature may be of high importance for the future of sustainable energy provision. An accelerator-driven system (ADS) - a subcritical core, operated as a waste burner for minor actinides (MAs) and long-lived fission products (LLFPs) or as nuclear amplifier for energy production, fed with primary neutrons by a spallation source - has the potential to cope with above constraints and to pave the way to a more environmentally safe and acceptable nuclear energy production. Within the framework of EUROTRANS, the European community has launched a broad R and D programme in collaboration with partners from Europe and abroad (USA, Japan), to address the technical, technological and fundamental issues related to the realisation of an experimental machine that is intended to allow: - continuation, and extension of the present knowledge towards ADS, in the field of reactor materials, fuel and reactor physics research; - enhancement and triggering of new R and D activities such as nuclear waste transmutation, ADS technology, liquid metal embrittlement, The present lecture will cover the main aspects of the design of an experimental XT-ADS taking as example the work that has been performed at SCK.CEN within MYRRHA project. The safety aspect of such machine will be addressed on terms of structural material performance, with emphasis on issues related to the interaction between structural materials (austenitic and ferritic martensitic steels) and the liquid metal coolant (lead-alloys). Finally, a discussion will be given on the open issues and

  13. System driven technology selection for future European launch systems

    Science.gov (United States)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  14. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  15. Bistability in a laser with injected signal

    International Nuclear Information System (INIS)

    Dorobantu, I.A.; Vlad, V.I.; Ursu, I.

    1987-04-01

    A unified description of bistability is given in free running lasers, optical bistable devices, ring lasers and lasers with an injected signal (LIS). A general review of laser instabilities is also presented in the frame of the theory of elementary catastrophes, emphasizing the apparence of higher order catastrophes in the case of a LIS suggesting thus a possibility to devise from first principles the whole hierarchy of laser instabilities. Experimental results on the bistability in the polarisation of LIS are also discussed. (authors)

  16. Bistable minimum energy structures (BiMES) for binary robotics

    International Nuclear Information System (INIS)

    Follador, M; Conn, A T; Rossiter, J

    2015-01-01

    Bistable minimum energy structures (BiMES) are devices derived from the union of the concepts of dielectric elastomer minimum energy structures and bistable systems. This article presents this novel approach to active, elastic and bistable structures. BiMES are based on dielectric elastomer actuators (DEAs), which act as antagonists and provide the actuation for switching between the two equilibrium positions. A central elastic beam is the backbone of the structure and is buckled into the minimum energy configurations by the action of the two DEAs. The theory and the model of the device are presented, and also its fabrication process. BiMES are considered as fundamental units for more complex structures, which are presented and fabricated as proof of concept. Two different ways of combining the multiple units are proposed: a parallel configuration, to make a simple gripper, and a serial configuration, to generate a binary device. The possibility of using the bistable system as a continuous bender actuator, by modulating the actuation voltage of the two DEAs, was also investigated. (paper)

  17. Delay-enhanced stability and stochastic resonance in perception bistability under non-Gaussian noise

    International Nuclear Information System (INIS)

    Yang, Tao; Zeng, Chunhua; Liu, Ruifen; Wang, Hua; Mei, Dongcheng

    2015-01-01

    In this paper we investigate the effect of time delay in an attractor network model of perception bistability driven by non-Gaussian noise. Using delay Langevin and Fokker–Planck approaches, the theoretical analysis of the model is presented. It is found that the mean first-passage time (MFPT) as a function of the time delay exhibits a maximum, which is identified as the characteristic of the delay-enhanced stability of the system. This is different to the case of noise-enhanced stability. The non-Gaussian noise-enhanced stability of the system is also analyzed. The signal-to-noise ratio (SNR) as a function of the noise intensity exhibits a maximum. This maximum implies the identifying characteristic of stochastic resonance (SR), and the time delay and non-Gaussian noise can enhance the SR phenomenon. (paper)

  18. Problems in the neutron dynamics of source-driven systems

    International Nuclear Information System (INIS)

    Ravetto, P.

    2001-01-01

    The present paper presents some neutronic features of source-driven neutron multiplying systems, with special regards to dynamics, discussing the validity and limitations of classical methods, developed for systems in the vicinity of criticality. Specific characteristics, such as source dominance and the role of delayed neutron emissions are illustrated. Some dynamic peculiarities of innovative concepts proposed for accelerator-driven systems, such as fluid-fuel, are also discussed. The second portion of the work formulates the quasi-static methods for source-driven systems, evidencing its novel features and presenting some numerical results. (author)

  19. On the bistable zone of milling processes.

    Science.gov (United States)

    Dombovari, Zoltan; Stepan, Gabor

    2015-09-28

    A modal-based model of milling machine tools subjected to time-periodic nonlinear cutting forces is introduced. The model describes the phenomenon of bistability for certain cutting parameters. In engineering, these parameter domains are referred to as unsafe zones, where steady-state milling may switch to chatter for certain perturbations. In mathematical terms, these are the parameter domains where the periodic solution of the corresponding nonlinear, time-periodic delay differential equation is linearly stable, but its domain of attraction is limited due to the existence of an unstable quasi-periodic solution emerging from a secondary Hopf bifurcation. A semi-numerical method is presented to identify the borders of these bistable zones by tracking the motion of the milling tool edges as they might leave the surface of the workpiece during the cutting operation. This requires the tracking of unstable quasi-periodic solutions and the checking of their grazing to a time-periodic switching surface in the infinite-dimensional phase space. As the parameters of the linear structural behaviour of the tool/machine tool system can be obtained by means of standard modal testing, the developed numerical algorithm provides efficient support for the design of milling processes with quick estimates of those parameter domains where chatter can still appear in spite of setting the parameters into linearly stable domains. © 2015 The Authors.

  20. A broadband electromagnetic energy harvester with a coupled bistable structure

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupled bistable energy harvester can achieve bistable operation with lower excitation amplitude and generate more output power than both conventional bistable and linear energy harvesters under white noise excitation

  1. Parallel Array Bistable Stochastic Resonance System with Independent Input and Its Signal-to-Noise Ratio Improvement

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-01-01

    with independent components and averaged output; second, we give a deduction of the output signal-to-noise ratio (SNR for this system to show the performance. Our examples show the enhancement of the system and how different parameters influence the performance of the proposed parallel array.

  2. Real-space renormalization group approach to driven diffusive systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanney, T [SUPA and School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Stinchcombe, R B [Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2006-11-24

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase.

  3. Real-space renormalization group approach to driven diffusive systems

    International Nuclear Information System (INIS)

    Hanney, T; Stinchcombe, R B

    2006-01-01

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase

  4. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-01-01

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory

  5. Brain networks underlying bistable perception.

    Science.gov (United States)

    Baker, Daniel H; Karapanagiotidis, Theodoros; Coggan, David D; Wailes-Newson, Kirstie; Smallwood, Jonathan

    2015-10-01

    Bistable stimuli, such as the Necker Cube, demonstrate that experience can change in the absence of changes in the environment. Such phenomena can be used to assess stimulus-independent aspects of conscious experience. The current study used resting state functional magnetic resonance imaging (rs-fMRI) to index stimulus-independent changes in neural activity to understand the neural architecture that determines dominance durations during bistable perception (using binocular rivalry and Necker cube stimuli). Anterior regions of the Superior Parietal Lobule (SPL) exhibited robust connectivity with regions of primary sensorimotor cortex. The strength of this region's connectivity with the striatum predicted shorter dominance durations during binocular rivalry, whereas its connectivity to pre-motor cortex predicted longer dominance durations for the Necker Cube. Posterior regions of the SPL, on the other hand, were coupled to associative cortex in the temporal and frontal lobes. The posterior SPL's connectivity to the temporal lobe predicted longer dominance during binocular rivalry. In conjunction with prior work, these data suggest that the anterior SPL contributes to perceptual rivalry through the inhibition of incongruent bottom up information, whereas the posterior SPL influences rivalry by supporting the current interpretation of a bistable stimulus. Our data suggests that the functional connectivity of the SPL with regions of sensory, motor, and associative cortex allows it to regulate the interpretation of the environment that forms the focus of conscious attention at a specific moment in time. Copyright © 2015. Published by Elsevier Inc.

  6. Bistable behavior of the lac operon in E. coli when induced with a mixture of lactose and TMG

    Directory of Open Access Journals (Sweden)

    Orlando Díaz-Hernández

    2010-07-01

    Full Text Available In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG. In accordance with previously published experimental results and computer simulations, our simulations predict that: (1 when the system is induced by TMG, the system shows a discernible bistable behavior while, (2 when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions.

  7. Bistable behavior of the lac operon in E. coli when induced with a mixture of lactose and TMG.

    Science.gov (United States)

    Díaz-Hernández, Orlando; Santillán, Moisés

    2010-01-01

    In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG). In accordance with previously published experimental results and computer simulations, our simulations predict that: (1) when the system is induced by TMG, the system shows a discernible bistable behavior while, (2) when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions.

  8. Nuclear data requirements for accelerator driven sub-critical systems

    Indian Academy of Sciences (India)

    The development of accelerator driven sub-critical systems (ADSS) require significant amount of new nuclear data in extended energy regions as well as for a variety of new materials. This paper reviews these perspectives in the Indian context.

  9. Accelerator driven radiation clean nuclear power system conceptual research symposium

    International Nuclear Information System (INIS)

    Zhao Zhixiang

    2000-06-01

    The R and D of ADS (Accelerators Driven Subcritical System) in China introduced. 31 theses are presented. It includes the basic principle of ADS, accelerators, sub-critical reactors, neutron physics, nuclear data, partitioning and transmutation

  10. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  11. Controller synthesis for negative imaginary systems: a data driven approach

    KAUST Repository

    Mabrok, Mohamed; Petersen, Ian R.

    2016-01-01

    -driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller

  12. Geometric and potential dynamics interpretation of the optic ring resonator bistability

    Science.gov (United States)

    Chiangga, S.; Chittha, T.; Frank, T. D.

    2015-07-01

    The optical bistability is a fundamental nonlinear feature of the ring resonator. A geometric and potential dynamics interpretation of the bistability is given. Accordingly, the bistability of the nonlinear system is shown to be a consequence of geometric laws of vector calculus describing the resonator ring. In contrast, the so-called transcendental relations that have been obtained in the literature in order to describe the optical wave are interpreted in terms of potential dynamical systems. The proposed novel interpretation provides new insights into the nature of the ring resonator optical bistability. The fundamental work by Rukhlenko, Premaratne and Agrawal (2010) as well as a more recent study by Chiangga, Pitakwongsaporn, Frank and Yupapin (2013) are considered.

  13. Harnessing the bistable composite shells to design a tunable phononic band gap structure

    Science.gov (United States)

    Li, Yi; Xu, Yanlong

    2018-02-01

    By proposing a system composed of an array of bistable composite shells immersed in air, we develop a new class of periodic structure to control the propagation of sound. Through numerical investigation, we find that the acoustic band gap of this system can be switched on and off by triggering the snap through deformation of the bistable composite shells. The shape of cross section and filling fraction of unit cell can be altered by different number of bistable composite shells, and they have strong impact on the position and width of the band gap. The proposed concept paves the way of using the bistable structures to design a new class of metamaterials that can be enable to manipulate sound.

  14. A bistable switch in dynamic thiodepsipeptide folding and template-directed ligation.

    Science.gov (United States)

    Mukherjee, Rakesh; Cohen-Luria, Rivka; Wagner, Nathaniel; Ashkenasy, Gonen

    2015-10-12

    Bistable reaction networks provide living cells with chemically controlled mechanisms for long-term memory storage. Such networks are also often switchable and can be flipped from one state to the other. We target here a major challenge in systems chemistry research, namely developing synthetic, non-enzymatic, networks that mimic such a complex function. Therefore, we describe a dynamic network that depending on initial thiodepsipeptide concentrations leads to one of two distinct steady states. This bistable system is readily switched by applying the appropriate stimuli. The relationship between the reaction network topology and its capacity to invoke bistability is then analyzed by control experiments and theory. We suggest that demonstrating bistable behavior using synthetic networks further highlights their possible role in early evolution, and may shine light on potential utility for novel applications, such as chemical memories. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bistable dynamics of a levitated nanoparticle (Presentation Recording)

    Science.gov (United States)

    Ricci, Francesco; Spasenovic, M.; Rica, Raúl A.; Novotny, Lukas; Quidant, Romain

    2015-08-01

    Bistable systems are ubiquitous in nature. Classical examples in chemistry and biology include relaxation kinetics in chemical reactions [1] and stochastic resonance processes such as neuron firing [2,3]. Likewise, bistable systems play a key role in signal processing and information handling at the nanoscale, giving rise to intriguing applications such as optical switches [4], coherent signal amplification [5,6] and weak forces detection [5]. The interest and applicability of bistable systems are intimately connected with the complexity of their dynamics, typically due to the presence of a large number of parameters and nonlinearities. Appropriate modeling is therefore challenging. Alternatively, the possibility to experimentally recreate bistable systems in a clean and controlled way has recently become very appealing, but elusive and complicated. With this aim, we combined optical tweezers with a novel active feedback-cooling scheme to develop a well-defined opto-mechanical platform reaching unprecedented performances in terms of Q-factor, frequency stability and force sensitivity [7,8]. Our experimental system consists of a single nanoparticle levitated in high vacuum with optical tweezers, which behaves as a non-linear (Duffing) oscillator under appropriate conditions. Here, we prove it to be an ideal tool for a deep study of bistability. We demonstrate bistability of the nanoparticle by noise activated switching between two oscillation states, discussing our results in terms of a double-well potential model. We also show the flexibility of our system in shaping the potential at will, in order to meet the conditions prescribed by any bistable system that could therefore then be simulated with our setup. References [1] T. Amemiya, T. Ohmori, M. Nakaiwa, T. Yamamoto, and T. Yamaguchi, "Modeling of Nonlinear Chemical Reaction Systems and Two-Parameter Stochastic Resonance," J. Biol. Phys. 25 (1999) 73 [2] F. Moss, L. M. Ward, and W. G. Sannita, "Stochastic

  16. A novel bistable energy harvesting concept

    International Nuclear Information System (INIS)

    Scarselli, G; Nicassio, F; Pinto, F; Ciampa, F; Iervolino, O; Meo, M

    2016-01-01

    Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a ‘lever effect’ aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures’ constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%–6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments. (paper)

  17. Unstable Modes and Order Parameters of Bistable Signaling Pathways at Saddle-Node Bifurcations: A Theoretical Study Based on Synergetics

    Directory of Open Access Journals (Sweden)

    Till D. Frank

    2016-01-01

    Full Text Available Mathematical modeling has become an indispensable part of systems biology which is a discipline that has become increasingly popular in recent years. In this context, our understanding of bistable signaling pathways in terms of mathematical modeling is of particular importance because such bistable components perform crucial functions in living cells. Bistable signaling pathways can act as switches or memory functions and can determine cell fate. In the present study, properties of mathematical models of bistable signaling pathways are examined from the perspective of synergetics, a theory of self-organization and pattern formation founded by Hermann Haken. At the heart of synergetics is the concept of so-called unstable modes or order parameters that determine the behavior of systems as a whole close to bifurcation points. How to determine these order parameters for bistable signaling pathways at saddle-node bifurcation points is shown. The procedure is outlined in general and an explicit example is worked out in detail.

  18. A minimal model of burst-noise induced bistability.

    Directory of Open Access Journals (Sweden)

    Johannes Falk

    Full Text Available We investigate the influence of intrinsic noise on stable states of a one-dimensional dynamical system that shows in its deterministic version a saddle-node bifurcation between monostable and bistable behaviour. The system is a modified version of the Schlögl model, which is a chemical reaction system with only one type of molecule. The strength of the intrinsic noise is varied without changing the deterministic description by introducing bursts in the autocatalytic production step. We study the transitions between monostable and bistable behavior in this system by evaluating the number of maxima of the stationary probability distribution. We find that changing the size of bursts can destroy and even induce saddle-node bifurcations. This means that a bursty production of molecules can qualitatively change the dynamics of a chemical reaction system even when the deterministic description remains unchanged.

  19. Data-driven modelling of LTI systems using symbolic regression

    NARCIS (Netherlands)

    Khandelwal, D.; Toth, R.; Van den Hof, P.M.J.

    2017-01-01

    The aim of this project is to automate the task of data-driven identification of dynamical systems. The underlying goal is to develop an identification tool that models a physical system without distinguishing between classes of systems such as linear, nonlinear or possibly even hybrid systems. Such

  20. Bistability of heat transfer of a viscous liquid under conditions of flow channel

    International Nuclear Information System (INIS)

    Melkikh, A.V.; Seleznev, V.D.

    2001-01-01

    The heat exchange model for a viscous liquid flowing under the pressure drop effect in a tube, surrounded by the medium with a lower temperature, is considered. It is shown that the system bistable behavior is possible by availability of the liquid viscosity exponential dependence on the temperature and by negligible dissipative heat release. The transitions between cold and hot flows in this case should proceed by a jump. The liquid and channel parameters, whereby the bistability may be observed, are determined [ru

  1. Diversity and functional properties of bistable pigments.

    Science.gov (United States)

    Tsukamoto, Hisao; Terakita, Akihisa

    2010-11-01

    Rhodopsin and related opsin-based pigments, which are photosensitive membrane proteins, have been extensively studied using a wide variety of techniques, with rhodopsin being the most understood G protein-coupled receptor (GPCR). Animals use various opsin-based pigments for vision and a wide variety of non-visual functions. Many functionally varied pigments are roughly divided into two kinds, based on their photoreaction: bistable and monostable pigments. Bistable pigments are thermally stable before and after photo-activation, but monostable pigments are stable only before activation. Here, we review the diversity of bistable pigments and their molecular characteristics. We also discuss the mechanisms underlying different molecular characteristics of bistable and monostable pigments. In addition, the potential of bistable pigments as a GPCR model is proposed.

  2. Proliferation Potential of Accelerator-Driven Systems: Feasibility Calculations

    International Nuclear Information System (INIS)

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-01-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium

  3. A bistable electromagnetically actuated rotary gate microvalve

    International Nuclear Information System (INIS)

    Luharuka, Rajesh; Hesketh, Peter J

    2008-01-01

    Two types of rotary gate microvalves are developed for flow modulation in microfluidic systems. These microvalves have been tested for an open flow rate of up to 100 sccm and operate under a differential pressure of 6 psig with flow modulation of up to 100. The microvalve consists of a suspended gate that rotates in the plane of the chip to regulate flow through the orifice. The gate is suspended by a novel fully compliant in-plane rotary bistable micromechanism (IPRBM) that advantageously constrains the gate in all degrees of freedom except for in-plane rotational motion. Multiple inlet/outlet orifices provide flexibility of operating the microvalve in three different flow configurations. The rotary gate microvalve is switched with an external electromagnetic actuator. The suspended gate is made of a soft magnetic material and its electromagnetic actuation is based on the operating principle of a variable-reluctance stepper motor

  4. Data driven propulsion system weight prediction model

    Science.gov (United States)

    Gerth, Richard J.

    1994-10-01

    The objective of the research was to develop a method to predict the weight of paper engines, i.e., engines that are in the early stages of development. The impetus for the project was the Single Stage To Orbit (SSTO) project, where engineers need to evaluate alternative engine designs. Since the SSTO is a performance driven project the performance models for alternative designs were well understood. The next tradeoff is weight. Since it is known that engine weight varies with thrust levels, a model is required that would allow discrimination between engines that produce the same thrust. Above all, the model had to be rooted in data with assumptions that could be justified based on the data. The general approach was to collect data on as many existing engines as possible and build a statistical model of the engines weight as a function of various component performance parameters. This was considered a reasonable level to begin the project because the data would be readily available, and it would be at the level of most paper engines, prior to detailed component design.

  5. System and safety studies of accelerator driven transmutation systems

    International Nuclear Information System (INIS)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details

  6. System and safety studies of accelerator driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  7. Scheduling Driven Partitioning of Heterogeneous Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1998-01-01

    In this paper we present an algorithm for system level hardware/software partitioning of heterogeneous embedded systems. The system is represented as an abstract graph which captures both data-flow and the flow of control. Given an architecture consisting of several processors, ASICs and shared...... busses, our partitioning algorithm finds the partitioning with the smallest hardware cost and is able to predict and guarantee the performance of the system in terms of worst case delay....

  8. A broadband electromagnetic energy harvester with a coupled bistable structure

    OpenAIRE

    Zhu, Dibin; Beeby, Steve

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupl...

  9. Model driven geo-information systems development

    NARCIS (Netherlands)

    Morales Guarin, J.M.; Ferreira Pires, Luis; van Sinderen, Marten J.; Williams, A.D.

    Continuous change of user requirements has become a constant for geo-information systems. Designing systems that can adapt to such changes requires an appropriate design methodology that supports abstraction, modularity and other mechanisms to capture the essence of the system and help controlling

  10. Bistability in autoimmune diseases

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Mosekilde, Erik; Lund, Ole

    2011-01-01

    Autoimmune diseases damage host tissue, which, in turn, may trigger a stronger immune response. Systems characterized by such positive feedback loops can display co-existing stable steady states. In a mathematical model of autoimmune disease, one steady state may correspond to the healthy state...

  11. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Chapin, D.L.; Mills, R.G.

    1976-01-01

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238 U-- 239 Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239 Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  12. Equilibrium and stochastic resonance in finite chains of noisy bistable elements

    International Nuclear Information System (INIS)

    Morillo, Manuel; Gomez-Ordonez, Jose; Casado, Jose Manuel

    2010-01-01

    Graphical abstract: We analyze the dependence of the equilibrium distribution of a collective variable of a chain on relevant parameters including the chain size and its connectivity. We also analyze the stochastic resonance effect of the same variable. - Abstract: Using numerical simulations, we analyze equilibrium properties of finite chains of coupled noisy bistable units and their response to weak time periodic forces. Finite chains with global as well as local (nearest neighbors) coupling are considered. We focus on the study of a collective variable defined as the arithmetic mean of the variables characterizing each element of the chain. By contrast with the case of infinite size chains, where the coexistence of several equilibrium distributions for the same values of parameters is possible, for finite chains just a single equilibrium distribution exists for given values of the parameters. We demonstrate that, regardless of the chain connectivity, there exist transition lines separating regions in parameter space where the equilibrium distribution function is either monomodal or multimodal. The location of the transition line depends on the chain connectivity and the size of the system. For driven chains, the response of the system shows stochastic resonant effects. For the two types of chains considered, both the power spectral amplification and the signal-to-noise ratio of the collective variable are analyzed as the noise strength, the coupling parameter and the number of bistable units in the system are varied. Compared with the effects observed in single unit systems, the collective variable shows a strong enhancement of the stochastic resonance effects.

  13. MODEL DRIVEN DEVELOPMENT OF ONLINE BANKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bresfelean Vasile Paul

    2011-07-01

    Full Text Available In case of online applications the cycle of software development varies from the routine. The online environment, the variety of users, the treatability of the mass of information created by them, the reusability and the accessibility from different devices are all factors of these systems complexity. The use of model drive approach brings several advantages that ease up the development process. Working prototypes that simplify client relationship and serve as the base of model tests can be easily made from models describing the system. These systems make possible for the banks clients to make their desired actions from anywhere. The user has the possibility of accessing information or making transactions.

  14. Quantum thermodynamics for driven dissipative bosonic systems

    Science.gov (United States)

    Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham

    2018-02-01

    We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.

  15. Modeling the Thermosphere as a Driven-Dissipative Thermodynamic System

    Science.gov (United States)

    2013-03-01

    8 Figure 2: Illustration of the geocentric solar magnetospheric coordinate system............15 Figure 3: Diagram of the...to test new methods of modeling the thermospheric environment. Thermosphere as a Driven-Dissipative Thermodynamic System One approach for modeling... approach uses empirical coupling and relaxation constants to model the 4 input of energy to the thermosphere from the solar wind during

  16. Information system design for demand-driven supply networks

    OpenAIRE

    Selk, Bernhard

    2004-01-01

    Information system design for demand-driven supply networks : integrating CRM & SCM / B. Selk, K. Turowski, C. Winnewisser. - In: EIS : Fourth International ICSC Symposium on Engineering of Intelligent Systems, EIS 2004. [Elektronische Ressource]. - Millet, Alberta : ICSC Interdisciplinary Research Canada, 2004. - 8 S. auf CD-ROM

  17. International conference on sub-critical accelerator driven systems. Proceedings

    International Nuclear Information System (INIS)

    Litovkina, L.P.; Titarenko, Yu.E.

    1999-01-01

    The International Meeting on Sub-Critical Accelerator Driven Systems was organized by the State Scientific Center - Institute for Theoretical and Experimental Physics with participation of Atomic Ministry of RF. The Meeting objective was to analyze the recent achievements and tendencies of the accelerator-driven systems development. The Meeting program covers a broad range of problems including the accelerator-driven systems (ADS) conceptual design; analyzing the ADS role in nuclear fuel cycle; accuracy of modeling the main parameters of ADS; conceptual design of high-current accelerators. Moreover, the results of recent experimental and theoretical studies on nuclear data accumulation to support the ADS technologies are presented. About 70 scientists from the main scientific centers of Russia, as well as scientists from USA, France, Belgium, India, and Yugoslavia, attended the meeting and presented 44 works [ru

  18. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive and it is import......Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive...... traditionally are a pressure and a temperature sensor. In this thesis, a novel maximum slope-seeking (MSS) control method is developed. This has resulted in a control implementation, which successfully has been able to control the evaporator superheat in four widely different refrigeration system test...... problems. The method utilizes the qualitative nonlinearity in the system and harmonic analysis of a perturbation signal to reach an unknown, but suitable, operating point. Another important control task in refrigeration systems is to maintain the temperature of the refrigerated space or foodstuff within...

  19. Portable database driven control system for SPEAR

    Energy Technology Data Exchange (ETDEWEB)

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-04-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system. 10 refs., 1 fig.

  20. Portable database driven control system for SPEAR

    International Nuclear Information System (INIS)

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-04-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system. 10 refs., 1 fig

  1. Dynamic Data Driven Applications Systems (DDDAS)

    Science.gov (United States)

    2012-05-03

    response) – Earthquakes, hurricanes, tornados, wildfires, floods, landslides, tsunamis, … • Critical Infrastructure systems – Electric-powergrid...Multiphase Flow Weather and Climate Structural Mechanics Seismic Processing Aerodynamics Geophysical Fluids Quantum Chemistry Actinide Chemistry...Alloys • Approach and Objectives:  Consider porous SMAs:  similar macroscopic behavior but mass /weight is less, and thus attractive for

  2. Collaborative Systems Driven Aircraft Configuration Design Optimization

    OpenAIRE

    Shiva Prakasha, Prajwal; Ciampa, Pier Davide; Nagel, Björn

    2016-01-01

    A Collaborative, Inside-Out Aircraft Design approach is presented in this paper. An approach using physics based analysis to evaluate the correlations between the airframe design, as well as sub-systems integration from the early design process, and to exploit the synergies within a simultaneous optimization process. Further, the disciplinary analysis modules involved in the optimization task are located in different organization. Hence, the Airframe and Subsystem design tools are integrated ...

  3. The Database Driven ATLAS Trigger Configuration System

    CERN Document Server

    Martyniuk, Alex; The ATLAS collaboration

    2015-01-01

    This contribution describes the trigger selection configuration system of the ATLAS low- and high-level trigger (HLT) and the upgrades it received in preparation for LHC Run 2. The ATLAS trigger configuration system is responsible for applying the physics selection parameters for the online data taking at both trigger levels and the proper connection of the trigger lines across those levels. Here the low-level trigger consists of the already existing central trigger (CT) and the new Level-1 Topological trigger (L1Topo), which has been added for Run 2. In detail the tasks of the configuration system during the online data taking are Application of the selection criteria, e.g. energy cuts, minimum multiplicities, trigger object correlation, at the three trigger components L1Topo, CT, and HLT On-the-fly, e.g. rate-dependent, generation and application of prescale factors to the CT and HLT to adjust the trigger rates to the data taking conditions, such as falling luminosity or rate spikes in the detector readout ...

  4. Phase transformations and systems driven far from equilibrium

    International Nuclear Information System (INIS)

    Ma, E.; Atzmon, M.; Bellon, P.; Trivedi, R.

    1998-01-01

    This volume compiles invited and contributed papers that were presented at Symposium B of the 1997 Materials Research Society Fall Meeting, Phase Transformations and Systems Driven Far From Equilibrium, which was held December 1--5, in Boston, Massachusetts. While this symposium followed the tradition of previous MRS symposia on the fundamental topic of phase transformations, this year the emphasis was on materials systems driven far from equilibrium. The central theme of the majority of the work presented is the understanding of the thermodynamics and kinetics of phase transformations, with significant coverage of metastable materials and externally forced transformations driven, for example, by energy beams or mechanical deformation. The papers are arranged in seven sections: solidification theory and experiments; nucleation; solid state transformations and microstructural evolution; beam-induced transformations; amorphous solids; interfacial and thin film transformations; and nanophases and mechanical alloying. One hundred three papers have been processed separately for inclusion on the data base

  5. Possible hysteresis loops of resonatorless optical bistability

    International Nuclear Information System (INIS)

    Nguyen Ba An; Le Thi Cat Tuong.

    1990-05-01

    We qualitatively show that hysteresis loops of intrinsic optical bistability phenomena without any additional feedback may be of various shapes including those of a butterfly and a three-winged bow. (author). 15 refs, 4 figs

  6. Space charge effects and electronic bistability

    International Nuclear Information System (INIS)

    Ruffini, A.; Strumia, F.; Tommasi, O.

    1996-01-01

    The excitation of metastable states in an atomic beam apparatus by means of electron collision is a widespread technique. The authors have observed a large bistable behaviour in apparatus designed to provide an intense and collimated beam of metastable helium by excitation with orthogonally impinging electrons. This bistable behaviour largely affects the efficiency of the apparatus and is therefore worth of being carefully investigated. The apparatus has an electrode configuration equivalent to that of a tetrode valve with large intergrid distances. The bistability consists in a hysteresis cycle in the curve of the anode current vs. grid voltage. Experimental measurements, supported by a simple theoretical model and by numerical simulation, stress out the crucial role played by space charge effects for the onset of bistability. A comparison with previous observations of this phenomenon is given. Spontaneous current oscillations with various shapes have been recorded in one of the two curves of the hysteresis cycle

  7. Bistable fluidic valve is electrically switched

    Science.gov (United States)

    Fiet, O.; Salvinski, R. J.

    1970-01-01

    Bistable control valve is selectively switched by direct application of an electrical field to divert fluid from one output channel to another. Valve is inexpensive, has no moving parts, and operates on fluids which are relatively poor electrical conductors.

  8. Order and chaos in the nonlinear response of driven nuclear spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E; Derighetti, B; Holzner, R; Ravani, M [Zurich Univ. (Switzerland). Inst. fuer Physik

    1984-01-01

    The authors report on observations of ordered and chaotic behavior of a nonlinear system of strongly polarized nuclear spins inside the tuning coil of an NMR detector. The combined system: spins plus LC-circuit, may act as a nonlinear bistable absorber or a spin-flip laser, depending on the sign of the nuclear spin polarization. For the NMR laser experimental evidence is presented for limit-cycle behavior, sequences of bifurcations which lead to chaos, intermittency, multistability, and pronounced hysteresis effects. The experimental facts are compared with computer solutions of appropriate Bloch equations for the macroscopic order parameters.

  9. Origami Mechanics: Bistability and Isometries

    Science.gov (United States)

    Adda-Bedia, Mokhtar; Lechenault, Frederic; Morphogenesis; multiscale phenomena Team

    2015-03-01

    Origami structures are usually seen as assemblies of rigid faces articulated around creases with hinge-like behaviour. Their deployment and degrees of freedom are purely kinematic, resulting only from the geometry of the crease network. However, in real folded structures, the base material can deform outside the creases. In such situations, face bending competes with crease actuation in a morphogenetic way. In order to rationalise this interplay, we investigate the mechanical behaviour of an infinite sheet on which one or more straight creases meet at a single vertex. We find that these structures generically exhibit bistability, in the sense that they can snap through from one metastable configuration to another. Furthermore, we uncover a new class of isometry of the plane, which corresponds to metastable states of a creased sheet for which the hoop stress vanishes, an instability mechanism that is also responsible for the wrinkling of thin plates.

  10. GABA shapes the dynamics of bistable perception.

    Science.gov (United States)

    van Loon, Anouk M; Knapen, Tomas; Scholte, H Steven; St John-Saaltink, Elexa; Donner, Tobias H; Lamme, Victor A F

    2013-05-06

    Sometimes, perception fluctuates spontaneously between two distinct interpretations of a constant sensory input. These bistable perceptual phenomena provide a unique window into the neural mechanisms that create the contents of conscious perception. Models of bistable perception posit that mutual inhibition between stimulus-selective neural populations in visual cortex plays a key role in these spontaneous perceptual fluctuations. However, a direct link between neural inhibition and bistable perception has not yet been established experimentally. Here, we link perceptual dynamics in three distinct bistable visual illusions (binocular rivalry, motion-induced blindness, and structure from motion) to measurements of gamma-aminobutyric acid (GABA) concentrations in human visual cortex (as measured with magnetic resonance spectroscopy) and to pharmacological stimulation of the GABAA receptor by means of lorazepam. As predicted by a model of neural interactions underlying bistability, both higher GABA concentrations in visual cortex and lorazepam administration induced slower perceptual dynamics, as reflected in a reduced number of perceptual switches and a lengthening of percept durations. Thus, we show that GABA, the main inhibitory neurotransmitter, shapes the dynamics of bistable perception. These results pave the way for future studies into the competitive neural interactions across the visual cortical hierarchy that elicit conscious perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Precision medicine driven by cancer systems biology.

    Science.gov (United States)

    Filipp, Fabian V

    2017-03-01

    Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance.

  12. Economics of fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    The economic analysis of symbiotic energy systems in which U233 (to fuel advanced converters burning U233 fuel) is generated in blankets surrounding fusioning D-T plasma's depends on factors such as the plasma performance parameters, ore costs, and the relative costs of Fusion Breeders (CTR) to Advanced Fission Converters. The analysis also depends on detailed information such as initial, final makeup fuel requirements, fuel isotopics, reprocessing and fabrication costs, reprocessing losses (1%) and delays (2 years), the cost of money, and the effect of the underutilization of the factory thermal installation at the beginning of cycle. In this paper we present the results of calculations of overall fuel cycle and power costs, ore requirements, proliferation resistance and possibilities for grid expansion, based on detailed mass and energy flow diagrams and standard US INFCE cost data and introduction constraints, for realistic symbiotic scenarios involving CTR's (used as drivers) and denatured CANDU's (used as U233 burners). We compare the results with those obtained for other strategies involving heterogeneous LMFBR's which burn Pu to produce U233 for U233-burners such as the advanced CANDU converters

  13. Dataset-driven research for improving recommender systems for learning

    NARCIS (Netherlands)

    Verbert, Katrien; Drachsler, Hendrik; Manouselis, Nikos; Wolpers, Martin; Vuorikari, Riina; Duval, Erik

    2011-01-01

    Verbert, K., Drachsler, H., Manouselis, N., Wolpers, M., Vuorikari, R., & Duval, E. (2011). Dataset-driven research for improving recommender systems for learning. In Ph. Long, & G. Siemens (Eds.), Proceedings of 1st International Conference Learning Analytics & Knowledge (pp. 44-53). February,

  14. Nonlinear dynamics of a parametrically driven sine-Gordon system

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Kivshar, Yuri S.; Samuelsen, Mogens Rugholm

    1993-01-01

    We consider a sine-Gordon system, driven by an ac parametric force in the presence of loss. It is demonstrated that a breather can be maintained in a steady state at half of the external frequency. In the small-amplitude limit the effect is described by an effective nonlinear Schrodinger equation...

  15. Reactivity Monitoring of Accelerator-Driven Nuclear Reactor Systems

    NARCIS (Netherlands)

    Uyttenhove, W.

    2016-01-01

    This thesis provides a methodology and set-up of a reactivity monitoring tool for Accelerator-Driven Systems (ADS). The reactivity monitoring tool should guarantee the operation of an ADS at a safe margin from criticality. Robustness is assured in different aspects of the monitoring tool: the choice

  16. Introduction of fusion driven subcritical system plasma design

    International Nuclear Information System (INIS)

    Bin Wu

    2003-01-01

    Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present

  17. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  18. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  19. Periodic and quasiperiodic revivals in periodically driven interacting quantum systems

    Science.gov (United States)

    Luitz, David J.; Lazarides, Achilleas; Bar Lev, Yevgeny

    2018-01-01

    Recently it has been shown that interparticle interactions generically destroy dynamical localization in periodically driven systems, resulting in diffusive transport and heating. In this Rapid Communication we rigorously construct a family of interacting driven systems which are dynamically localized and effectively decoupled from the external driving potential. We show that these systems exhibit tunable periodic or quasiperiodic revivals of the many-body wave function and thus of all physical observables. By numerically examining spinless fermions on a one-dimensional lattice we show that the analytically obtained revivals of such systems remain stable for finite systems with open boundary conditions while having a finite lifetime in the presence of static spatial disorder. We find this lifetime to be inversely proportional to the disorder strength.

  20. Quantum revivals in periodically driven systems close to nonlinear resonances

    International Nuclear Information System (INIS)

    Saif, Farhan; Fortunato, Mauro

    2002-01-01

    We calculate the quantum revival time for a wave packet initially well localized in a one-dimensional potential in the presence of an external periodic modulating field. The dependence of the revival time on various parameters of the driven system is shown analytically. As an example of an application of our approach, we compare the analytically obtained values of the revival time for various modulation strengths with the numerically computed ones in the case of a driven gravitational cavity. We show that they are in very good agreement

  1. Brain mechanisms for simple perception and bistable perception.

    Science.gov (United States)

    Wang, Megan; Arteaga, Daniel; He, Biyu J

    2013-08-27

    When faced with ambiguous sensory inputs, subjective perception alternates between the different interpretations in a stochastic manner. Such multistable perception phenomena have intrigued scientists and laymen alike for over a century. Despite rigorous investigations, the underlying mechanisms of multistable perception remain elusive. Recent studies using multivariate pattern analysis revealed that activity patterns in posterior visual areas correlate with fluctuating percepts. However, increasing evidence suggests that vision--and perception at large--is an active inferential process involving hierarchical brain systems. We applied searchlight multivariate pattern analysis to functional magnetic resonance imaging signals across the human brain to decode perceptual content during bistable perception and simple unambiguous perception. Although perceptually reflective activity patterns during simple perception localized predominantly to posterior visual regions, bistable perception involved additionally many higher-order frontoparietal and temporal regions. Moreover, compared with simple perception, both top-down and bottom-up influences were dramatically enhanced during bistable perception. We further studied the intermittent presentation of ambiguous images--a condition that is known to elicit perceptual memory. Compared with continuous presentation, intermittent presentation recruited even more higher-order regions and was accompanied by further strengthened top-down influences but relatively weakened bottom-up influences. Taken together, these results strongly support an active top-down inferential process in perception.

  2. Group decision support system for customer-driven product design

    Science.gov (United States)

    Lin, Zhihang; Chen, Hang; Chen, Kuen; Che, Ada

    2000-10-01

    This paper describes the work on the development of a group decision support system for customer driven product design. The customer driven is to develop products, which meet all customer requirements in whole life cycle of products. A process model of decision during product primary design is proposed to formulate the structured, semi-structured and unstructured decision problems. The framework for the decision support system is presented that integrated both advances in the group decision making and distributed artificial intelligent. The system consists of the product primary design tool kit and the collaborative platform with multi-agent structure. The collaborative platform of the system and the product primary design tool kit, including the VOC (Voice of Customer) tool, QFD (Quality Function Deployment) tool, the Conceptual design tool, Reliability analysis tool and the cost and profit forecasting tool, are indicated.

  3. Network-driven design principles for neuromorphic systems

    OpenAIRE

    Partzsch, Johannes; Sch?ffny, Rene

    2015-01-01

    Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures i...

  4. Documentation Driven Development for Complex Real-Time Systems

    Science.gov (United States)

    2004-12-01

    This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real

  5. THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

    International Nuclear Information System (INIS)

    Gazol, Adriana; Kim, Jongsoo

    2013-01-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function (Σ-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n ∼ –3 ), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from ∼0.2 to ∼5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n ∼> 7.1 cm –3 ) goes from ∼1.1 to ∼16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the Σ-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  6. A Model-Driven Development Method for Management Information Systems

    Science.gov (United States)

    Mizuno, Tomoki; Matsumoto, Keinosuke; Mori, Naoki

    Traditionally, a Management Information System (MIS) has been developed without using formal methods. By the informal methods, the MIS is developed on its lifecycle without having any models. It causes many problems such as lack of the reliability of system design specifications. In order to overcome these problems, a model theory approach was proposed. The approach is based on an idea that a system can be modeled by automata and set theory. However, it is very difficult to generate automata of the system to be developed right from the start. On the other hand, there is a model-driven development method that can flexibly correspond to changes of business logics or implementing technologies. In the model-driven development, a system is modeled using a modeling language such as UML. This paper proposes a new development method for management information systems applying the model-driven development method to a component of the model theory approach. The experiment has shown that a reduced amount of efforts is more than 30% of all the efforts.

  7. Hysteretic behavior of spin-crossover noise driven system

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iurii [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Maksymov, Artur, E-mail: maxyartur@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC, 20059 (United States); Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, Suceava 720229 (Romania)

    2016-04-01

    The influence of white Gaussian noise on hysteretic behavior of spin-crossover system is analyzed in the framework of stochastic Langevin dynamics. Various stochastic simulations are performed and several important properties of spin-transition in spin-crossover system driven by noise are reproduced. The numerical results are tested against the stationary probability function and the associated dynamic potential obtained from Fokker–Planck equation corresponding to spin-crossover Langevin dynamics. The dependence of light-induced optical hysteresis width and non-hysteretic transition curve slope on the noise intensity is illustrated. The role of low-spin and high-spin phase stabilities in the hysteretic behavior of noise-driven spin-crossover system is discussed.

  8. Nonadiabatic population transfer in a driven four-level system

    International Nuclear Information System (INIS)

    Prants, S.V.

    1994-01-01

    The coherent dynamics of a four-level quantum system with an arbitrary level configuration is described analytically in the modulated polychromatic laser field. The method of dynamical symmetries is invoked to develop the formalism for explicit calculation of the evolution matrix of the system in the resonance fields. The method is free of the usual adiabatic-passage, weak-field approximations, and approximation of the slowly varying amplitudes. The conditions for occurrence of the coherent effects of the total inversion and the total depletion of the initial level of a system driven simultaneously driven simultaneously at several transitions by the laser pulses of arbitrary shape are derived analytically. The obtained results can be applied to problems of the control of quantum processes in multilevel atoms and molecules. 14 refs

  9. Dynamic Systems Driven by Non-Poissonian Impulses

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    interarrival times. The moment equations for the augmented Poisson driven system are derived and closed by an ordinary cumulant neglect closure at the order N=4. The obtained moments are compared with these obtained by Monte Carlo simulations for both the original process with lognormally distributed......Dynamic systems under random trains of impulses driven by renewal point processes are studied. Then the system state variables no longer form a Markov vector as it is in the case of Poisson impulses. A general format is given for the replacing an ordinary renewal process by an equivalent Poisson...... process at the expense of the introduction of auxiliary state variables. A technique is devised for truncating the hierarchy of stochastic equations governing the auxiliary state variables. For the generalized Erlang process, suitable for approximating a wide class of renewal processes, the technique...

  10. Universality in driven-dissipative quantum many-body systems

    International Nuclear Information System (INIS)

    Sieberer, L.M.

    2015-01-01

    Recent experimental investigations of condensation phenomena in driven-dissipative quantum many-body systems raise the question of what kind of novel universal behavior can emerge under non-equilibrium conditions. We explore various aspects of universality in this context. Our results are of relevance for a variety of open quantum systems on the interface of quantum optics and condensed matter physics, ranging from exciton-polariton condensates to cold atomic gases. In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase transition in driven open quantum systems in three spatial dimensions. Although thermodynamic equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency regime is described by a critical exponent which is specific to the non-equilibrium transition, and places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our theoretical approach is based on the functional renormalization group within the framework of Keldysh non-equilibrium field theory, which is equivalent to a microscopic description of the open system dynamics in terms of a many-body quantum master equation. Universal behavior in the coherence properties of driven-dissipative condensates in reduced dimensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However, we find evidence that even isotropic systems may have a finite superfluidity fraction. In one-dimensional systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-Zhang equation. In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which makes them distinct from generic driven open systems. The novel

  11. Controller synthesis for negative imaginary systems: a data driven approach

    KAUST Repository

    Mabrok, Mohamed

    2016-02-17

    The negative imaginary (NI) property occurs in many important applications. For instance, flexible structure systems with collocated force actuators and position sensors can be modelled as negative imaginary systems. In this study, a data-driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller response is used to identify the controller transfer function using system identification methods. © The Institution of Engineering and Technology 2016.

  12. Involvement of the visual change detection process in facilitating perceptual alternation in the bistable image.

    Science.gov (United States)

    Urakawa, Tomokazu; Bunya, Mao; Araki, Osamu

    2017-08-01

    A bistable image induces one of two perceptual alternatives. When the bistable visual image is continuously viewed, the percept of the image alternates from one possible percept to the other. Perceptual alternation was previously reported to be induced by an exogenous perturbation in the bistable image, and this perturbation was theoretically interpreted to cause neural noise, prompting a transition between two stable perceptual states. However, little is known experimentally about the visual processing of exogenously driven perceptual alternation. Based on the findings of a previous behavioral study (Urakawa et al. in Perception 45:474-482, 2016), the present study hypothesized that the automatic visual change detection process, which is relevant to the detection of a visual change in a sequence of visual events, has an enhancing effect on the induction of perceptual alternation, similar to neural noise. In order to clarify this issue, we developed a novel experimental paradigm in which visual mismatch negativity (vMMN), an electroencephalographic brain response that reflects visual change detection, was evoked while participants continuously viewed the bistable image. In terms of inter-individual differences in neural and behavioral data, we found that enhancements in the peak amplitude of vMMN1, early vMMN at a latency of approximately 150 ms, correlated with increases in the proportion of perceptual alternation across participants. Our results indicate the involvement of automatic visual change detection in the induction of perceptual alternation, similar to neural noise, thereby providing a deeper insight into the neural mechanisms underlying exogenously driven perceptual alternation in the bistable image.

  13. Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier

    Science.gov (United States)

    Wang, Guangqing; Liao, Wei-Hsin; Yang, Binqiang; Wang, Xuebao; Xu, Wentan; Li, Xiuling

    2018-05-01

    Bistable piezoelectric energy harvesters are being increasingly seen as an alternative to batteries in low-power devices. However, their energy harvesting characteristics are limited. To enhance these, we use a configuration including an elastic magnifier to amplify base excitation and provide sufficient kinetic energy to overcome potential well barriers, thus leading to large-amplitude bistable motion. We derive the distributed parameter mathematical model of this configuration by using Hamilton's principle. We then investigate the nonlinear dynamic behaviors and energetic characteristics and analyze the bifurcation for the equilibrium solution of the model. The simulations and experiments show high electromechanical responses and energy generation characteristics of the proposed system over a broad frequency band. The results suggest that, compared with a typical bistable piezoelectric energy harvester, the proposed energy harvester system with an elastic magnifier can provide higher output over a broader frequency band at lower excitation levels by adjusting the system's mass and stiffness ratios.

  14. Atom-loss-induced quantum optical bi-stability switch

    International Nuclear Information System (INIS)

    Wu Bao-Jun; Cui Fu-Cheng

    2012-01-01

    We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose—Einstein condensate and an optical cavity with the two sides coupled dispersively. By adopting discrete-mode approximation for the condensate, taking atom loss as a necessary part of the model to analyze the evolution of the system, while using trial and error method to find out steady states of the system as a reference, numerical simulation demonstrates that with a constant pump, atom loss will trigger a quantum optical bi-stability switch, which predicts a new interesting phenomenon for experiments to verify

  15. Neutron Transport Methods for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Nicholas Tsoulfanidis; Elmer Lewis

    2005-01-01

    The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National Laboratory. The work has fallen into three categories. First, the treatment of the source for neutrons originating from the spallation target which drives the neutronics calculations of the ADS. Second, the generalization of the nodal variational method to treat the R-Z geometry configurations frequently needed for scoping calculations in Accelerator Driven Systems. Third, the treatment of void regions within variational nodal methods as needed to treat the accelerator beam tube

  16. A Cost Benefit Analysis of an Accelerator Driven Transmutation System

    International Nuclear Information System (INIS)

    Westlen, D.; Gudowski, W.; Wallenius, J.; Tucek, K.

    2002-01-01

    This paper estimates the economical costs and benefits associated with a nuclear waste transmutation strategy. An 800 MWth, fast neutron spectrum, subcritical core design has been used in the study (the so called Sing-Sing Core). Three different fuel cycle scenarios have been compared. The main purpose of the paper has been to identify the cost drivers of a partitioning and transmutation strategy, and to estimate the cost of electricity generated in a nuclear park with operating accelerator driven systems. It has been found that directing all transuranic discharges from spent light water reactor (LWR) uranium oxide (UOX) fuel to accelerator driven systems leads to a cost increase for nuclear power of 50±15%, while introduction of a mixed oxide (MOX) burning step in the LWRs diminishes the cost penalty to 35±10%. (authors)

  17. Theory of many-body localization in periodically driven systems

    International Nuclear Information System (INIS)

    Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François

    2016-01-01

    We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau–Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.

  18. Entanglement replication in driven dissipative many-body systems.

    Science.gov (United States)

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  19. Variable speed gas engine-driven air compressor system

    Science.gov (United States)

    Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.

    1992-11-01

    Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.

  20. Ashing vs. electric generation in accelerator driven system

    International Nuclear Information System (INIS)

    Solanilla, Roberto B.

    1999-01-01

    Accelerator Driven Systems have been conceived as an alternative for the processing of the radioactive wastes contained in spent fuel elements from nuclear power plants. These systems are formed by the coupling of a nuclear reactor - preferably a subcritical reactor - with a particle accelerator providing particles with energy in the order of the GeV. The long-lived fission products and actinides of the spent fuels are transformed by nuclear reactions in stable isotopes or in short-lived radioisotopes. The basic parameters for the electric energy production of the different systems are analysed. (author)

  1. Keldysh field theory for driven open quantum systems.

    Science.gov (United States)

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  2. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    Science.gov (United States)

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  3. Models of charge transport and transfer in molecular switch tunnel junctions of bistable catenanes and rotaxanes

    International Nuclear Information System (INIS)

    Flood, Amar H.; Wong, Eric W.; Stoddart, J. Fraser

    2006-01-01

    The processes by which charge transfer can occur play a foundational role in molecular electronics. Here we consider simplified models of the transfer processes that could be present in bistable molecular switch tunnel junction (MSTJ) devices during one complete cycle of the device from its low- to high- and back to low-conductance state. The bistable molecular switches, which are composed of a monolayer of either switchable catenanes or rotaxanes, exist in either a ground-state co-conformation or a metastable one in which the conduction properties of the two co-conformations, when measured at small biases (+0.1 V), are significantly different irrespective of whether transport is dominated by tunneling or hopping. The voltage-driven generation (±2 V) of molecule-based redox states, which are sufficiently long-lived to allow the relative mechanical movements necessary to switch between the two co-conformations, rely upon unequal charge transfer rates on to and/or off of the molecules. Surface-enhanced Raman spectroscopy has been used to image the ground state of the bistable rotaxane in MSTJ-like devices. Consideration of these models provide new ways of looking at molecular electronic devices that rely, not only on nanoscale charge-transport, but also upon the bustling world of molecular motion in mechanically interlocked bistable molecules

  4. Investigation of bistable perception with the "silhouette spinner": sit still, spin the dancer with your will.

    Science.gov (United States)

    Liu, Chao-Hsuan; Tzeng, Ovid J L; Hung, Daisy L; Tseng, Philip; Juan, Chi-Hung

    2012-05-01

    Many studies have used static and non-biologically related stimuli to investigate bistable perception and found that the percept is usually dominated by their intrinsic nature with some influence of voluntary control from the viewer. Here we used a dynamic stimulus of a rotating human body, the silhouette spinner illusion, to investigate how the viewers' intentions may affect their percepts. In two experiments, we manipulated observer intention (active or passive), fixation position (body or feet), and spinning velocity (fast, medium, or slow). Our results showed that the normalized alternating rate between two bistable percepts was greater when (1) participants actively attempted to switch percepts, (2) when participants fixated at the spinner's feet rather than the body, inducing as many as 25 switches of the bistable percepts within 1 min, and (3) when they watched the spinner at high velocity. These results suggest that a dynamic biologically-bistable percept can be quickly alternated by the viewers' intention. Furthermore, the higher alternating rate in the feet condition compared to the body condition suggests a role for biological meaningfulness in determining bistable percepts, where 'biologically plausible' interpretations are favored by the visual system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Intrinsic Bistability and Critical Slowing in Tm3+/Yb3+ Codoped Laser Crystal with the Photon Avalanche Mechanism

    International Nuclear Information System (INIS)

    Li, Li; Li-Xue, Chen; Xin-Lu, Zhang

    2009-01-01

    We present theoretically a novel intrinsic optical bistability (IOB) in the Tm 3+ /Yb 3+ codoped system with a photon avalanche mechanism. Numerical simulations based on the rate equation model demonstrate distinct IOB hysteresis and critical slowing dynamics around the avalanche thresholds. Such an IOB characteristic in Tm 3+ /Yb 3+ codoped crystal has potential applications in solid-state bistable optical displays and luminescence switchers in visible-infrared spectra. (fundamental areas of phenomenology (including applications))

  6. New superconducting cyclotron driven scanning proton therapy systems

    International Nuclear Information System (INIS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-01-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  7. Perceptual incongruence influences bistability and cortical activation.

    Directory of Open Access Journals (Sweden)

    Gijs Joost Brouwer

    Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.

  8. Longitudinal magnetic bistability of electroplated wires

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Garcia-Miquel, H.; Vazquez, M.; Svalov, A.V.; Vas'kovskiy, V.O.

    2002-01-01

    Fe 20 Ni 74 Co 6 and Fe 20 Ni 64 Co 16 1 μm thick magnetic tubes electroplated onto Cu 98 Be 2 conductive wire have been investigated in as-deposited state, after heat treatment under longitudinal magnetic field for 1 h at 330 deg. C, and after rf-sputtering deposition of the additional 2 μm Fe 19 Ni 81 layer. Heat treatments and an additional layer deposition modify the shape of hysteresis loops. Magnetically bistable behaviour, observed after the field annealing at a temperature of 330 deg. C, is studied as a function of the length of the samples. This is the first report by our knowledge on the bistable behaviour of the electroplated wires. The bistability of these wires is promising for applications such as tagging or pulse generator applications

  9. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  10. Balancing bistable perception during self-motion.

    Science.gov (United States)

    van Elk, Michiel; Blanke, Olaf

    2012-10-01

    In two experiments we investigated whether bistable visual perception is influenced by passive own body displacements due to vestibular stimulation. For this we passively rotated our participants around the vertical (yaw) axis while observing different rotating bistable stimuli (bodily or non-bodily) with different ambiguous motion directions. Based on previous work on multimodal effects on bistable perception, we hypothesized that vestibular stimulation should alter bistable perception and that the effects should differ for bodily versus non-bodily stimuli. In the first experiment, it was found that the rotation bias (i.e., the difference between the percentage of time that a CW or CCW rotation was perceived) was selectively modulated by vestibular stimulation: the perceived duration of the bodily stimuli was longer for the rotation direction congruent with the subject's own body rotation, whereas the opposite was true for the non-bodily stimulus (Necker cube). The results found in the second experiment extend the findings from the first experiment and show that these vestibular effects on bistable perception only occur when the axis of rotation of the bodily stimulus matches the axis of passive own body rotation. These findings indicate that the effect of vestibular stimulation on the rotation bias depends on the stimulus that is presented and the rotation axis of the stimulus. Although most studies on vestibular processing have traditionally focused on multisensory signal integration for posture, balance, and heading direction, the present data show that vestibular self-motion influences the perception of bistable bodily stimuli revealing the importance of vestibular mechanisms for visual consciousness.

  11. Stability properties of cold blanket systems for current driven modes

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1977-12-01

    The stability problem of the boundary regions of cold blanket systems with induced currents parallel to the lines of force is formulated. Particular interest is focused on two types of modes: first electrostatic modes driven by the combined effects of a transverse resistivity gradient due to a spatially non-uniform electron temperature and a longitudinal current, second electromagnetic kink like modes driven by the torque arising from a transverse current density gradient and magnetic field perturbations. It is found that the combination of various dissipative and neutral gas effects introduces strong stabilizing effects within specific parameter ranges. For particular steady-state models investigated it is shown that these effects become of importance in laboratory plasmas at relatively high densities, low temperatures and moderate magnetic field strengths. Stability diagrams based on specific steady-state cold plasma blanket models will be presented

  12. The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response

    International Nuclear Information System (INIS)

    Tiwari, Abhinav; Igoshin, Oleg A; Balázsi, Gábor; Gennaro, Maria Laura

    2010-01-01

    Bacterial persistence is the phenomenon in which a genetically identical fraction of a bacterial population can survive exposure to stress by reduction or cessation of growth. Persistence in mycobacteria has been recently linked to a stress-response network, consisting of the MprA/MprB two-component system and alternative sigma factor σ E . This network contains multiple positive transcriptional feedback loops which may give rise to bistability, making it a good candidate for controlling the mycobacterial persistence switch. To analyze the possibility of bistability, we develop a method that involves decoupling of the network into transcriptional and post-translational interaction modules. As a result we reduce the dimensionality of the dynamical system and independently analyze input–output relations in the two modules to formulate a necessary condition for bistability in terms of their logarithmic gains. We show that neither the positive autoregulation in the MprA/MprB network nor the σ E -mediated transcriptional feedback is sufficient to induce bistability in a biochemically realistic parameter range. Nonetheless, inclusion of the post-translational regulation of σ E by RseA increases the effective cooperativity of the system, resulting in bistability that is robust to parameter variation. We predict that overexpression or deletion of RseA, the key element controlling the ultrasensitive response, can eliminate bistability

  13. Bistable Topological Insulator with Exciton-Polaritons

    Science.gov (United States)

    Kartashov, Yaroslav V.; Skryabin, Dmitry V.

    2017-12-01

    The functionality of many nonlinear and quantum optical devices relies on the effect of optical bistability. Using microcavity exciton-polaritons in a honeycomb arrangement of microcavity pillars, we report the resonance response and bistability of topological edge states. A balance between the pump, loss, and nonlinearity ensures a broad range of dynamical stability and controls the distribution of power between counterpropagating states on the opposite edges of the honeycomb lattice stripe. Tuning energy and polarization of the pump photons, while keeping their momentum constant, we demonstrate control of the propagation direction of the dominant edge state. Our results facilitate the development of practical applications of topological photonics.

  14. Data driven information system for supervision of judicial open

    Directory of Open Access Journals (Sweden)

    Ming LI

    2016-08-01

    Full Text Available Aiming at the four outstanding problems of informationized supervision for judicial publicity, the judicial public data is classified based on data driven to form the finally valuable data. Then, the functional structure, technical structure and business structure of the data processing system are put forward, including data collection module, data reduction module, data analysis module, data application module and data security module, etc. The development of the data processing system based on these structures can effectively reduce work intensity of judicial open iformation management, summarize the work state, find the problems, and promote the level of judicial publicity.

  15. Role of accelerator-driven systems in waste incineration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, M.; Slessarev, I.; Tchistiakov, A. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires; Spiro, M.; Terrien, Y.; Mouney, H.; Vergnes, J.

    1997-12-31

    At CEA accelerator-driven systems (ADS) are studied in the frame of the R and D required to answer the request of a law voted in 1991 by the French Parliament, `to search for solutions allowing to partition and transmute long lived radioactive wastes, in order to reduce their volume and toxicity`. These systems (called `INCAs`) are still at a conceptual level. However, the role of ADS has been clarified as a first step, and this will be the subject of the present paper. (author)

  16. ? filtering for stochastic systems driven by Poisson processes

    Science.gov (United States)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  17. Modelling of two-zone accelerator-driven systems

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2012-09-01

    Full Text Available Neutron-physical modelings of two-zone subcritical reactor driven by high-intensity neutron generator are considered. The cascade principle in subcritical reactors, the use of which can hypothetically substantially amplify the neutron flux from the external source is discussed in this article. The theoretical preconditions of the cascade principle are discussed, and the directions of practical realization of the cascade subcritical system are considered, namely the possible methods of neutron feedback between reactor sections elimination. The results of Monte Carlo neutron-physical modeling of the cascade subcritical systems are presented and discussed.

  18. Bistable firing properties of soleus motor units in unrestrained rats

    DEFF Research Database (Denmark)

    EKEN, T.; KIEHN, O.

    1989-01-01

    of the motoneuron pool by stimulation of la afferents, or inhibition by stimulation of skin afferents. The shifts were not related to gross limb movements. This phenomenon is referred to as a bistable firing pattern. Bistable firing also occurred spontaneously during quiet standing. Typically the firing frequency...... was unchanged or only phasically influenced. These results demonstrate for the first time a bistable firing pattern during postural activity in the intact animal. The firing pattern closely resembles the bistable behaviour described in spinal motoneurons in reduced preparations, where it is due to the presence...... of a plateau potential. This suggests that the bistable firing is unexplained by plateau potentials also in the intact animal....

  19. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  20. Neuromechanistic Model of Auditory Bistability.

    Directory of Open Access Journals (Sweden)

    James Rankin

    2015-11-01

    Full Text Available Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1. Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept-a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.

  1. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  2. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.

    Science.gov (United States)

    Kazantsev, V B; Asatryan, S Yu

    2011-09-01

    Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.

  3. Traffic and related self-driven many-particle systems

    Science.gov (United States)

    Helbing, Dirk

    2001-10-01

    Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

  4. Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations

    Science.gov (United States)

    Samoilov, Michael; Plyasunov, Sergey; Arkin, Adam P.

    2005-02-01

    Stochastic effects in biomolecular systems have now been recognized as a major physiologically and evolutionarily important factor in the development and function of many living organisms. Nevertheless, they are often thought of as providing only moderate refinements to the behaviors otherwise predicted by the classical deterministic system description. In this work we show by using both analytical and numerical investigation that at least in one ubiquitous class of (bio)chemical-reaction mechanisms, enzymatic futile cycles, the external noise may induce a bistable oscillatory (dynamic switching) behavior that is both quantitatively and qualitatively different from what is predicted or possible deterministically. We further demonstrate that the noise required to produce these distinct properties can itself be caused by a set of auxiliary chemical reactions, making it feasible for biological systems of sufficient complexity to generate such behavior internally. This new stochastic dynamics then serves to confer additional functional modalities on the enzymatic futile cycle mechanism that include stochastic amplification and signaling, the characteristics of which could be controlled by both the type and parameters of the driving noise. Hence, such noise-induced phenomena may, among other roles, potentially offer a novel type of control mechanism in pathways that contain these cycles and the like units. In particular, observations of endogenous or externally driven noise-induced dynamics in regulatory networks may thus provide additional insight into their topology, structure, and kinetics. network motif | signal transduction | chemical reaction | synthetic biology | systems biology

  5. Policy Driven Development: Flexible Policy Insertion for Large Scale Systems.

    Science.gov (United States)

    Demchak, Barry; Krüger, Ingolf

    2012-07-01

    The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection. We created the Policy Driven Development (PDD) methodology to address these development latencies by enabling the flexible injection of decision points into existing workflows at runtime , thus enabling policy composition that integrates requirements furnished by multiple, oblivious stakeholder groups. Using PDD, we designed and implemented a production cyberinfrastructure that demonstrates policy and workflow injection that quickly implements stakeholder requirements, including features not contemplated in the original system design. PDD provides a path to quickly and cost effectively evolve such applications over a long lifetime.

  6. Data-Driven Assistance Functions for Industrial Automation Systems

    International Nuclear Information System (INIS)

    Windmann, Stefan; Niggemann, Oliver

    2015-01-01

    The increasing amount of data in industrial automation systems overburdens the user in process control and diagnosis tasks. One possibility to cope with these challenges consists of using smart assistance systems that automatically monitor and optimize processes. This article deals with aspects of data-driven assistance systems such as assistance functions, process models and data acquisition. The paper describes novel approaches for self-diagnosis and self-optimization, and shows how these assistance functions can be integrated in different industrial environments. The considered assistance functions are based on process models that are automatically learned from process data. Fault detection and isolation is based on the comparison of observations of the real system with predictions obtained by application of the process models. The process models are further employed for energy efficiency optimization of industrial processes. Experimental results are presented for fault detection and energy efficiency optimization of a drive system. (paper)

  7. Advances in Optimizing Weather Driven Electric Power Systems.

    Science.gov (United States)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  8. A universal piezo-driven ultrasonic cell microinjection system.

    Science.gov (United States)

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  9. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field.

    Science.gov (United States)

    Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D

    2017-08-01

    We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.

  10. Thiol-modified MoS2 nanosheets as a functional layer for electrical bistable devices

    Science.gov (United States)

    Li, Guan; Tan, Fenxue; Lv, Bokun; Wu, Mengying; Wang, Ruiqi; Lu, Yue; Li, Xu; Li, Zhiqiang; Teng, Feng

    2018-01-01

    Molybdenum disulfide nanosheets have been synthesized by one-pot method using 1-ODT as sulfur source and surfactant. The structure, morphology and optical properties of samples were investigated by XRD, FTIR, Abs spectrum and TEM patterns. The XRD pattern indicated that the as-obtained MoS2 belong to hexagonal system. The as-obtained MoS2 nanosheets blending with PVK could be used to fabricate an electrically bistable devices through a simple spin-coating method and the device exhibited an obvious electrical bistability properties. The charge transport mechanism of the device was discussed based on the filamentary switching models.

  11. Application of the Asymptotic Taylor Expansion Method to Bistable Potentials

    Directory of Open Access Journals (Sweden)

    Okan Ozer

    2013-01-01

    Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.

  12. Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S.S., E-mail: Shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain); Manchester Metropolitan University, Dept. of Computing, Maths. and Digital Technology, Manchester M1 5GD (United Kingdom); Sharaby, Y.A., E-mail: Yasser_Sharaby@hotmail.com [Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt); Ali, M.F.M., E-mail: dr.mona.fathy@hotmail.com [Department of Mathematics: Faculty of Science, Ain Shams University, Cairo (Egypt); Joshi, A., E-mail: ajoshi@eiu.edu [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States)

    2012-10-15

    The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.

  13. Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects

    International Nuclear Information System (INIS)

    Hassan, S.S.; Sharaby, Y.A.; Ali, M.F.M.; Joshi, A.

    2012-01-01

    The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.

  14. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  15. The physics design of accelerator-driven transmutation systems

    International Nuclear Information System (INIS)

    Venneri, F.

    1995-01-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power

  16. The physics design of accelerator-driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, less expensive and more environmentally sound approach to nuclear power.

  17. Model-driven dependability assessment of software systems

    CERN Document Server

    Bernardi, Simona; Petriu, Dorina C

    2013-01-01

    In this book, the authors present cutting-edge model-driven techniques for modeling and analysis of software dependability. Most of them are based on the use of UML as software specification language. From the software system specification point of view, such techniques exploit the standard extension mechanisms of UML (i.e., UML profiling). UML profiles enable software engineers to add non-functional properties to the software model, in addition to the functional ones. The authors detail the state of the art on UML profile proposals for dependability specification and rigorously describe the t

  18. Present status and issues for accelerator driven transmutation system

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    2003-01-01

    Proper treatment of high-level nuclear wastes (HLW) that are produced in operation of nuclear power plants is one of the most important problems for further utilization of nuclear energy. The purpose of the accelerator driven nuclear waste transmutation system (ADS) is to transmute these nuclei to stable or short-lived nuclei by various radiation-induced nuclear reactions. When ADS for HLW can be realized, burden to deep geological disposal can be considerably reduced. In the paper, present status and issues for ADS will be discussed. (author)

  19. System on chip module configured for event-driven architecture

    Science.gov (United States)

    Robbins, Kevin; Brady, Charles E.; Ashlock, Tad A.

    2017-10-17

    A system on chip (SoC) module is described herein, wherein the SoC modules comprise a processor subsystem and a hardware logic subsystem. The processor subsystem and hardware logic subsystem are in communication with one another, and transmit event messages between one another. The processor subsystem executes software actors, while the hardware logic subsystem includes hardware actors, the software actors and hardware actors conform to an event-driven architecture, such that the software actors receive and generate event messages and the hardware actors receive and generate event messages.

  20. Transmutation of 129I Using an Accelerator-Driven System

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Takano, Hideki

    2002-01-01

    A conceptual blanket design for 129 I transmutation is proposed for an accelerator-driven system (ADS) that is designed to transmute minor actinides (MAs). In this ADS, 250 kg/yr of MA and 56 kg/yr of iodine are simultaneously transmuted, and they correspond to the quantities generated from ∼10 units of existing light water reactors. Furthermore, an introduction scenario and the benefit of iodine transmutation are studied for future introduction of fast breeder reactors. It is shown that the transmutation of iodine benefits the concept of underground disposal

  1. Metastable and bistable defects in silicon

    International Nuclear Information System (INIS)

    Mukashev, Bulat N; Abdullin, Kh A; Gorelkinskii, Yurii V

    2000-01-01

    Existing data on the properties and structure of metastable and bistable defects in silicon are analyzed. Primary radiation-induced defects (vacancies, self-interstitial atoms, and Frenkel pairs), complexes of oxygen, carbon, hydrogen, and other impurity atoms and defects with negative correlation energy are considered. (reviews of topical problems)

  2. Organic bistable light-emitting devices

    Science.gov (United States)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang

    2002-01-01

    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  3. A CW Gunn diode bistable switching element.

    Science.gov (United States)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  4. A Quality-Driven Methodology for Information Systems Integration

    Directory of Open Access Journals (Sweden)

    Iyad Zikra

    2017-10-01

    Full Text Available Information systems integration is an essential instrument for organizations to attain advantage in today’s growing and fast changing business and technology landscapes. Integration solutions generate added value by combining the functionality and services of heterogeneous and diverse systems. Existing integration environments tend to rely heavily on technical, platform-dependent skills. Consequently, the solutions that they enable are not optimally aligned with the envisioned business goals of the organization. Furthermore, the gap between the goals and the solutions complicates the task of evaluating the quality of integration solutions. To address these challenges, we propose a quality-driven, model-driven methodology for designing and developing integration solutions. The methodology spans organizational and systems design details, providing a holistic view of the integration solution and its underlying business goals. A multi-view meta-model provides the basis for the integration design. Quality factors that affect various aspects of the integration solution guide and inform the progress of the methodology. An example business case is presented to demonstrate the application of the methodology.

  5. Discrete changes of current statistics in periodically driven stochastic systems

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Sinitsyn, N A

    2010-01-01

    We demonstrate that the counting statistics of currents in periodically driven ergodic stochastic systems can show sharp changes of some of its properties in response to continuous changes of the driving protocol. To describe this effect, we introduce a new topological phase factor in the evolution of the moment generating function which is akin to the topological geometric phase in the evolution of a periodically driven quantum mechanical system with time-reversal symmetry. This phase leads to the prediction of a sign change for the difference of the probabilities to find even and odd numbers of particles transferred in a stochastic system in response to cyclic evolution of control parameters. The driving protocols that lead to this sign change should enclose specific degeneracy points in the space of control parameters. The relation between the topology of the paths in the control parameter space and the sign changes can be described in terms of the first Stiefel–Whitney class of topological invariants. (letter)

  6. Propensity for Bistability of Bursting and Silence in the Leech Heart Interneuron

    Directory of Open Access Journals (Sweden)

    Tatiana Dashevskiy

    2018-02-01

    Full Text Available The coexistence of neuronal activity regimes has been reported under normal and pathological conditions. Such multistability could enhance the flexibility of the nervous system and has many implications for motor control, memory, and decision making. Multistability is commonly promoted by neuromodulation targeting specific membrane ionic currents. Here, we investigated how modulation of different ionic currents could affect the neuronal propensity for bistability. We considered a leech heart interneuron model. It exhibits bistability of bursting and silence in a narrow range of the leak current parameters, conductance (gleak and reversal potential (Eleak. We assessed the propensity for bistability of the model by using bifurcation diagrams. On the diagram (gleak, Eleak, we mapped bursting and silent regimes. For the canonical value of Eleak we determined the range of gleak which supported the bistability. We use this range as an index of propensity for bistability. We investigated how this index was affected by alterations of ionic currents. We systematically changed their conductances, one at a time, and built corresponding bifurcation diagrams in parameter planes of the maximal conductance of a given current and the leak conductance. We found that conductance of only one current substantially affected the index of propensity; the increase of the maximal conductance of the hyperpolarization-activated cationic current increased the propensity index. The second conductance with the strongest effect was the conductance of the low-threshold fast Ca2+ current; its reduction increased the propensity index although the effect was about two times smaller in magnitude. Analyzing the model with both changes applied simultaneously, we found that the diagram (gleak, Eleak showed a progressively expanded area of bistability of bursting and silence.

  7. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    high costs. However heat sinks are unavoidable from a system perspective and there are potential cost savings since a low-pressure steam turbines will not be required if heat driven cooling is implemented. The fuel utilization for some technologies (not necessarily the best technology) was evaluated in two different scenarios: 1) with electricity production from coal; and 2) with electricity production from natural gas. It is shown in the scenarios that the heat driven cooling technologies give lower fuel consumption as compared producing electricity as an intermediate product before cooling is produced. Further it should be noted that electricity is produced, not consumed, if heat is used directly for the production of cooling. We claim that cost effective solutions for district heat driven chillers and/or combined production of electricity and district cooling can be found in all climates with high enough density of heating and cooling demands. It was found that district heat driven chillers can be very energy efficient in warm and humid climates since desiccant systems are an effective way of handling latent cooling loads. In dry climates, with low latent loads, water distributed cooling has a large potential and absorption cooling will give high fuel utilization seen from a system perspective. In climates where water shortage is a problem it is possible that the temperature lift of the conventional absorption chiller has to be increased in order to be able to use dry cooling towers. The temperature lift can be increased by changing the chiller design or by using a different working pair. Heat driven cooling can be integrated into an energy system in different ways. In USA and Japan, district heating is not well developed. Instead small, distributed combined heat and power (CHP) plants with high exhaust temperatures are widespread. Cooling is often produced, in these regions, through absorption cooling (using heat from CHP) or compression chillers depending on

  8. Alternative definitions of kinetic parameters for accelerator driven systems

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2012-01-01

    Highlights: ► New definition of kinetic parameters for accelerator driven systems. ► Difference between effective and average delayed neutron fraction. ► Difference between effective and average prompt neutron lifetime. ► Effect of the neutron source (Cf, D–D, D–T) on k src . ► Effect of the (n, xn) reactions and source energy-angle distribution on k src . - Abstract: This study introduces a new formulation of kinetic parameters for accelerator driven systems and it is structured into two parts. The first part is dedicated to the classic definition of the kinetic parameters and compares different calculation methodologies. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and the prompt neutron lifetime. This new definition takes into account neutrons from the external neutron source and (n, xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly located in Belarus. This facility can be driven by californium, deuterium–deuterium (D–D), or deuterium–tritium (D–T) external neutron sources. For the D–T neutron source, (n, xn) reactions must be taken into account in order to produce accurate results because the average energy of D–T source neutrons is 14.1 MeV, a value which is much higher than the threshold energy of the (n, 2n) cross section of uranium isotopes.

  9. Client and event driven data hub system at CDF

    International Nuclear Information System (INIS)

    Kilminster, Ben; McFarland, Kevin; Vaiciulis, Tony; Matsunaga, Hiroyuki; Shimojima, Makoto

    2001-01-01

    The Consumer-Server Logger (CSL) system at the Collider Detector at Fermilab is a client and event driven data hub capable of receiving physics events from multiple connections, and logging them to multiple streams while distributing them to multiple online analysis programs (consumers). Its multiple-partitioned design allows data flowing through different paths of the detector sub-systems to be processed separately. The CSL system, using a set of internal memory buffers and message queues mapped to the location of events within its programs, and running on an SGI 2200 Server, is able to process at least the required 20 MB/s of constant event logging (75 Hz of 250 KB events) while also filtering up to 10 MB/s to consumers requesting specific types of events

  10. Data-driven system to predict academic grades and dropout

    Science.gov (United States)

    Rovira, Sergi; Puertas, Eloi

    2017-01-01

    Nowadays, the role of a tutor is more important than ever to prevent students dropout and improve their academic performance. This work proposes a data-driven system to extract relevant information hidden in the student academic data and, thus, help tutors to offer their pupils a more proactive personal guidance. In particular, our system, based on machine learning techniques, makes predictions of dropout intention and courses grades of students, as well as personalized course recommendations. Moreover, we present different visualizations which help in the interpretation of the results. In the experimental validation, we show that the system obtains promising results with data from the degree studies in Law, Computer Science and Mathematics of the Universitat de Barcelona. PMID:28196078

  11. Triggered Snap-Through of Bistable Shells

    Science.gov (United States)

    Cai, Yijie; Huang, Shicheng; Trase, Ian; Hu, Nan; Chen, Zi

    Elastic bistable shells are common structures in nature and engineering, such as the lobes of the Venus flytrap or the surface of a toy jumping poppers. Despite their ubiquity, the parameters that control the bistability of such structures are not well understood. In this study, we explore how the geometrical features of radially symmetric elastic shells affect the shape and potential energy of a shell's stable states, and how to tune certain parameters in order to generate a snap-through transition from a convex semi-stable state to concave stable state. We fabricated a series of elastic shells with varying geometric parameters out of silicone rubber and measured the resulting potential energy in the semi-stable state. Finite element simulations were also conducted in order to determine the deformation and stress in the shells during snap-through. It was found that the energy of the semi-stable state is controlled by only two geometric parameters and a dimensionless ratio. We also noted two distinct transitions during snap-through, one between monostability and semi-bistability (the state a popper toy is in before it snaps-through and jumps), and a second transition between semi-bistability and true bistability. This work shows that it is possible to use a set of simple parameters to tailor the energy landscape of an elastic shell in order to generate complex trigger motions for their potential use in smart applications. Z.C. acknowledge support from Society in Science-Branco Weiss Fellowship, administered by ETH Zurich.

  12. Performance evaluation of solar photovoltaic panel driven refrigeration system

    Science.gov (United States)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  13. Data driven CAN node reliability assessment for manufacturing system

    Science.gov (United States)

    Zhang, Leiming; Yuan, Yong; Lei, Yong

    2017-01-01

    The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using network error event data.

  14. First-passage time in a bistable potential with colored noise

    International Nuclear Information System (INIS)

    Ramirez-Piscina, L.; Maria Sancho, J.; Javier de la Rubia, F.; Lindenberg, K.; Tsironis, G.P.

    1989-01-01

    A precise digital simulation of a bistable system under the effect of colored noise is carried out. A set of data for the mean first-passage time is obtained. The results are interpreted and compared with presently available theories, which are revisited following a new insight. Discrepancies that have been discussed in the literature are understood within our framework

  15. Data-Driven Predictive Direct Load Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Knudsen, Torben; Wisniewski, Rafal

    2015-01-01

    A predictive control using subspace identification is applied for the smart grid integration of refrigeration systems under a direct load control scheme. A realistic demand response scenario based on regulation of the electrical power consumption is considered. A receding horizon optimal control...... is proposed to fulfil two important objectives: to secure high coefficient of performance and to participate in power consumption management. Moreover, a new method for design of input signals for system identification is put forward. The control method is fully data driven without an explicit use of model...... against real data. The performance improvement results in a 22% reduction in the energy consumption. A comparative simulation is accomplished showing the superiority of the method over the existing approaches in terms of the load following performance....

  16. Selection of initial events of accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Wang Qianglong; Hu Liqin; Wang Jiaqun; Li Yazhou; Yang Zhiyi

    2013-01-01

    The Probabilistic Safety Assessment (PSA) is an important tool in reactor safety analysis and a significant reference to the design and operation of reactor. It is the origin and foundation of the PSA for a reactor to select the initial events. Accelerator Driven Subcritical System (ADS) has advanced design characteristics, complicated subsystems and little engineering and operating experience, which makes it much more difficult to identify the initial events of ADS. Based on the current design project of ADS, the system's safety characteristics and special issues were analyzed in this article. After a series of deductions with Master Logic Diagram (MLD) and considering the relating experience of other advanced research reactors, a preliminary initial events was listed finally, which provided the foundation for the next safety assessment. (authors)

  17. Computational Model of a Biomass Driven Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Munyeowaji Mbikan

    2017-02-01

    Full Text Available The impact of vapour compression refrigeration is the main push for scientists to find an alternative sustainable technology. Vapour absorption is an ideal technology which makes use of waste heat or renewable heat, such as biomass, to drive absorption chillers from medium to large applications. In this paper, the aim was to investigate the feasibility of a biomass driven aqua-ammonia absorption system. An estimation of the solid biomass fuel quantity required to provide heat for the operation of a vapour absorption refrigeration cycle (VARC is presented; the quantity of biomass required depends on the fuel density and the efficiency of the combustion and heat transfer systems. A single-stage aqua-ammonia refrigeration system analysis routine was developed to evaluate the system performance and ascertain the rate of energy transfer required to operate the system, and hence, the biomass quantity needed. In conclusion, this study demonstrated the results of the performance of a computational model of an aqua-ammonia system under a range of parameters. The model showed good agreement with published experimental data.

  18. Boundary conditions for open quantum systems driven far from equilibrium

    Science.gov (United States)

    Frensley, William R.

    1990-07-01

    This is a study of simple kinetic models of open systems, in the sense of systems that can exchange conserved particles with their environment. The system is assumed to be one dimensional and situated between two particle reservoirs. Such a system is readily driven far from equilibrium if the chemical potentials of the reservoirs differ appreciably. The openness of the system modifies the spatial boundary conditions on the single-particle Liouville-von Neumann equation, leading to a non-Hermitian Liouville operator. If the open-system boundary conditions are time reversible, exponentially growing (unphysical) solutions are introduced into the time dependence of the density matrix. This problem is avoided by applying time-irreversible boundary conditions to the Wigner distribution function. These boundary conditions model the external environment as ideal particle reservoirs with properties analogous to those of a blackbody. This time-irreversible model may be numerically evaluated in a discrete approximation and has been applied to the study of a resonant-tunneling semiconductor diode. The physical and mathematical properties of the irreversible kinetic model, in both its discrete and its continuum formulations, are examined in detail. The model demonstrates the distinction in kinetic theory between commutator superoperators, which may become non-Hermitian to describe irreversible behavior, and anticommutator superoperators, which remain Hermitian and are used to evaluate physical observables.

  19. Bistable scattering in graphene-coated dielectric nanowires.

    Science.gov (United States)

    Li, Rujiang; Wang, Huaping; Zheng, Bin; Dehdashti, Shahram; Li, Erping; Chen, Hongsheng

    2017-06-22

    In nonlinear plasmonics, the switching threshold of optical bistability is limited by the weak nonlinear responses from the conventional Kerr dielectric media. Considering the giant nonlinear susceptibility of graphene, here we develop a nonlinear scattering model under the mean field approximation and study the bistable scattering in graphene-coated dielectric nanowires based on the semi-analytical solutions. We find that the switching intensities of bistable scattering can be smaller than 1 MW cm -2 at the working frequency. To further decrease the switching intensities, we show that the most important factor that restricts the bistable scattering is the relaxation time of graphene. Our work not only reveals some general characteristics of graphene-based bistable scattering, but also provides a guidance to further applications of optical bistability in the high speed all-optical signal processing.

  20. MYRRHA project: an Accelerator Driven System (ADS) Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, H

    2000-07-01

    The goal of the MYRRHA project is to investigate the design, development and realisation of a versatile neutron source based on an Accelerator Driven System (ADS). Efforts in 1999 were focussed on the optimisation of a high-performance device with a maximum neutron flux for MA irradiation experiments of 1.10{sup 1}'5 n/cm{sup 2}.s with neutron energies exceeding 0.75 MeV and about 3.10{sup 15} n/cm{sup 2}.s for all energies. Design proposals for different MYRRHA ADS components including the accelerator and the spallation source were elaborated. Potential applications of an ADS neutron source as well as various engineering aspects are discussed.

  1. MYRRHA: a multipurpose accelerator driven system for research and development

    International Nuclear Information System (INIS)

    Tichelen Van, K.; Malambu, E.; Benoit, Ph.; Kupschus, P.; Ait Abderrahim, H.; Vandeplassche, D.; Ternier, S.; Jongen, Y.

    2001-01-01

    The development of a new nuclear installation that is able to fulfil the economical, social, environmental and technological demands, is a cornerstone for the future provision of sustainable energy. Accelerator Driven Systems (ADS) can pave the way for a more environmentally safe and acceptable nuclear energy production. Fundamental and applied R and D are crucial in the development of ADS technologies and demand the availability of appropriate prototype installations. In answer to this need and in order to update its current irradiation potential, the Belgian Nuclear Research Centre (SCK·CEN), in partnership with Ion Beam Applications s. a. (IBA), is launching the MYRRHA project. It is focussed on the design, development and realisation of a modular and flexible irradiation facility based on the ADS concept. This paper describes the concept, the applications foreseen in the MYRRHA installation and the accompanying design activities currently being performed at SCK·CEN and IBA. (authors)

  2. Economic analysis of the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican; Chu Delin; Hu Liqin

    2004-01-01

    The economic performance of the Fusion-Driven Subcritical system (FDS) is discussed. At first, as an example, the impacts of parameters, such as plasma aspect-ratio, elongation, normalized beta, on-axis toroidal field and the blanket energy-gain are analyzed on the costs of the typical case (moderate aspect-ratio) of FDS. Then, the economic characteristics of the 3 possible scenarios of FDS are estimated with respect to the neutronics parameters. The results calculated with the SYSCODE developed by the FDS team show that the cost of electricity of Scenario-1 (low aspect-ratio) and Scenario-2 (moderate aspect-ratio) of FDS is cheaper than that of pure fusion power plant at the same plane size (1 GW e ). The cost of electricity of the FDS power plant depends heavily on the functions of blanket and the blanket energy-gain. (authors)

  3. Radiological Hazard of Spallation Products in Accelerator-Driven System

    International Nuclear Information System (INIS)

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-01-01

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs

  4. MYRRHA: A multipurpose accelerator driven system for research and development

    International Nuclear Information System (INIS)

    Van Tichelen, K.; Malambu, E.; Benoit, Ph.; Kupschus, P.; Ait Abderrahim, H.

    2000-01-01

    The development of a new nuclear installation that is able to fulfil the economical, social, environmental and technological demands, is of first importance for the future of sustainable energy provision. Accelerator Driven Systems can pave the way for a more environ- mentally safe and acceptable nuclear energy production. Fundamental and applied R and D are crucial in the development of ADS technologies and demand the availability of appropriate prototype installations. In answer to this need and in order to update its current irradiation potential, the Belgian Nuclear Research Centre (SCK.CEN) has launched the Myrrha project. It is focussed on the design, development and realisation of a modular and flexible irradiation facility based on ADS. This paper describes the concept, the applications fore- seen in the Myrrha installation and the accompanying design activities currently being performed at SCK.CEN. (authors)

  5. MYRRHA project: an Accelerator Driven System (ADS) Prototype

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    2000-01-01

    The goal of the MYRRHA project is to investigate the design, development and realisation of a versatile neutron source based on an Accelerator Driven System (ADS). Efforts in 1999 were focussed on the optimisation of a high-performance device with a maximum neutron flux for MA irradiation experiments of 1.10 1 '5 n/cm 2 .s with neutron energies exceeding 0.75 MeV and about 3.10 15 n/cm 2 .s for all energies. Design proposals for different MYRRHA ADS components including the accelerator and the spallation source were elaborated. Potential applications of an ADS neutron source as well as various engineering aspects are discussed

  6. Thermal hydraulics of accelerator driven system: validation and analysis

    International Nuclear Information System (INIS)

    Kumari, I.; Khanna, A.

    2014-01-01

    This paper presents validation of RELAP5/Mod4.0 code modified to incorporate Lead Bismuth Eutectic (LBE)fluid properties for simulation of Accelerator Driven System (ADS) against Barone's NACIE facility.Results of mass flow rates (MFR), Reynolds number, heat transfer coefficients, temperatures and temperature difference for three powers (10.8, 21.7 and 32.5 kW) under natural circulation of LBE match with Barone's values within 7%,18%,37%, 5% and 8% of relative error respectively. After this validation Indian ADS for thermal power of 15 kW has been simulated. Simulated profiles of temperature, MFR and pressure drop LBE and air are reported. Air and LBE temperatures of present work match with literature design values within 5% of relative error. (author)

  7. Safety and control of accelerator-driven subcritical systems

    Energy Technology Data Exchange (ETDEWEB)

    Rief, H. [Ispra Establishment (Italy); Takahashi, H. [Brookhaven National Laboratory, Long Island, NY (United States)

    1995-10-01

    To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut down the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.

  8. Parallel replica dynamics method for bistable stochastic reaction networks: Simulation and sensitivity analysis

    Science.gov (United States)

    Wang, Ting; Plecháč, Petr

    2017-12-01

    Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.

  9. Parallel replica dynamics method for bistable stochastic reaction networks: Simulation and sensitivity analysis.

    Science.gov (United States)

    Wang, Ting; Plecháč, Petr

    2017-12-21

    Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.

  10. Bistability and displacement fluctuations in a quantum nanomechanical oscillator

    Science.gov (United States)

    Avriller, R.; Murr, B.; Pistolesi, F.

    2018-04-01

    Remarkable features have been predicted for the mechanical fluctuations at the bistability transition of a classical oscillator coupled capacitively to a quantum dot [Micchi et al., Phys. Rev. Lett. 115, 206802 (2015), 10.1103/PhysRevLett.115.206802]. These results have been obtained in the regime ℏ ω0≪kBT ≪ℏ Γ , where ω0, T , and Γ are the mechanical resonating frequency, the temperature, and the tunneling rate, respectively. A similar behavior could be expected in the quantum regime of ℏ Γ ≪kBT ≪ℏ ω0 . We thus calculate the energy- and displacement-fluctuation spectra and study their behavior as a function of the electromechanical coupling constant when the system enters the Frank-Condon regime. We find that in analogy with the classical case, the energy-fluctuation spectrum and the displacement spectrum widths show a maximum for values of the coupling constant at which a mechanical bistability is established.

  11. A Reliable Bistable Board Implementation through I/O Redundancy

    International Nuclear Information System (INIS)

    Kim, Min Gyu; Chung, Tae Hyok; Lee, Youn Sang; Kim, Tae Hee; Song, Seung Hwan

    2010-01-01

    Nuclear power plant safety systems and related equipment used in the design, including an accident in all driving conditions that must be proven In addition, the safety-related equipment that is derived according to the digitization of the safety equipment is the most important factors. Therefore, it is necessary to prove that the device was satisfied the requirements for a given performance for safety-related digital equipment for the life of the installation. These proven is done through the process, design verification of the equipment, production management, such as installation and maintenance. Among other things, it is most important to implement of the performance and reliability features the safety-related equipment in the design phase. In this paper, Bistable Board implemented to generate a ESF sign-on signal throughout the signal processing of input signal from sensors. Also, for the reliable signal input and output, I/O Module that implements the redundancy increases the reliability of the Bistable Board , to verify the performance of safety-related equipment

  12. Durable bistable auxetics made of rigid solids

    Science.gov (United States)

    Shang, Xiao; Liu, Lu; Rafsanjani, Ahmad; Pasini, Damiano

    2018-02-01

    Bistable Auxetic Metamaterials (BAMs) are a class of monolithic perforated periodic structures with negative Poisson's ratio. Under tension, a BAM can expand and reach a second state of equilibrium through a globally large shape transformation that is ensured by the flexibility of its elastomeric base material. However, if made from a rigid polymer, or metal, BAM ceases to function due to the inevitable rupture of its ligaments. The goal of this work is to extend the unique functionality of the original kirigami architecture of BAM to a rigid solid base material. We use experiments and numerical simulations to assess performance, bistability and durability of rigid BAMs at 10,000 cycles. Geometric maps are presented to elucidate the role of the main descriptors of BAM architecture. The proposed design enables the realization of BAM from a large palette of materials, including elastic-perfectly plastic materials and potentially brittle materials.

  13. Network-driven design principles for neuromorphic systems

    Directory of Open Access Journals (Sweden)

    Johannes ePartzsch

    2015-10-01

    Full Text Available Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems.

  14. Network-driven design principles for neuromorphic systems.

    Science.gov (United States)

    Partzsch, Johannes; Schüffny, Rene

    2015-01-01

    Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems.

  15. Computer codes and methods for simulating accelerator driven systems

    International Nuclear Information System (INIS)

    Sartori, E.; Byung Chan Na

    2003-01-01

    A large set of computer codes and associated data libraries have been developed by nuclear research and industry over the past half century. A large number of them are in the public domain and can be obtained under agreed conditions from different Information Centres. The areas covered comprise: basic nuclear data and models, reactor spectra and cell calculations, static and dynamic reactor analysis, criticality, radiation shielding, dosimetry and material damage, fuel behaviour, safety and hazard analysis, heat conduction and fluid flow in reactor systems, spent fuel and waste management (handling, transportation, and storage), economics of fuel cycles, impact on the environment of nuclear activities etc. These codes and models have been developed mostly for critical systems used for research or power generation and other technological applications. Many of them have not been designed for accelerator driven systems (ADS), but with competent use, they can be used for studying such systems or can form the basis for adapting existing methods to the specific needs of ADS's. The present paper describes the types of methods, codes and associated data available and their role in the applications. It provides Web addresses for facilitating searches for such tools. Some indications are given on the effect of non appropriate or 'blind' use of existing tools to ADS. Reference is made to available experimental data that can be used for validating the methods use. Finally, some international activities linked to the different computational aspects are described briefly. (author)

  16. Operational Characteristics of an Accelerator Driven Fissile Solution System

    International Nuclear Information System (INIS)

    Kimpland, Robert Herbert

    2016-01-01

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the form of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a ''generic'' Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system

  17. Dynamics of unidirectionally coupled bistable Henon maps

    International Nuclear Information System (INIS)

    Sausedo-Solorio, J.M.; Pisarchik, A.N.

    2011-01-01

    We study dynamics of two bistable Henon maps coupled in a master-slave configuration. In the case of coexistence of two periodic orbits, the slave map evolves into the master map state after transients, which duration determines synchronization time and obeys a -1/2 power law with respect to the coupling strength. This scaling law is almost independent of the map parameter. In the case of coexistence of chaotic and periodic attractors, very complex dynamics is observed, including the emergence of new attractors as the coupling strength is increased. The attractor of the master map always exists in the slave map independently of the coupling strength. For a high coupling strength, complete synchronization can be achieved only for the attractor similar to that of the master map. -- Highlights: → We study dynamics of two bistable Henon maps coupled in a master-slave configuration. → Synchronization time for periodic orbits obeys a -1/2 power law with respect to coupling. → For a high coupling strength, the slave map remains bistable. → Complete synchronization can be achieved only when both maps stay at the same attractor.

  18. The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression.

    Science.gov (United States)

    Kroken, Abby R; Chen, Camille K; Evans, David J; Yahr, Timothy L; Fleiszig, Suzanne M J

    2018-05-01

    Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103Δ exoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. IMPORTANCE P. aeruginosa is often referred to as an extracellular

  19. Two-level systems driven by large-amplitude fields

    Science.gov (United States)

    Nori, F.; Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.

    2009-03-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition, (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems. S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Two-level systems driven by large-amplitude fields, Phys. Rev. A 75, 063414 (2007). S. Ashhab et al, unpublished.

  20. Advanced Computational Models for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Talamo, A.; Ravetto, P.; Gudowsk, W.

    2012-01-01

    In the nuclear engineering scientific community, Accelerator Driven Systems (ADSs) have been proposed and investigated for the transmutation of nuclear waste, especially plutonium and minor actinides. These fuels have a quite low effective delayed neutron fraction relative to uranium fuel, therefore the subcriticality of the core offers a unique safety feature with respect to critical reactors. The intrinsic safety of ADS allows the elimination of the operational control rods, hence the reactivity excess during burnup can be managed by the intensity of the proton beam, fuel shuffling, and eventually by burnable poisons. However, the intrinsic safety of a subcritical system does not guarantee that ADSs are immune from severe accidents (core melting), since the decay heat of an ADS is very similar to the one of a critical system. Normally, ADSs operate with an effective multiplication factor between 0.98 and 0.92, which means that the spallation neutron source contributes little to the neutron population. In addition, for 1 GeV incident protons and lead-bismuth target, about 50% of the spallation neutrons has energy below 1 MeV and only 15% of spallation neutrons has energies above 3 MeV. In the light of these remarks, the transmutation performances of ADS are very close to those of critical reactors.

  1. Controlling the optical bistability and transmission coefficient in a four-level atomic medium

    International Nuclear Information System (INIS)

    Asadpour, Seyyed Hossein; Eslami-Majd, Abdullah

    2012-01-01

    A novel four level atomic configuration is proposed for controlling the optical bistability and transmission coefficient with application on all-optical switching. Two circularly polarized components from a weak linearly-polarized probe beam are interacted separately by two transitions of this medium. A coherent coupling field has derived another atomic transition. It is demonstrated that the transmission coefficient of two orthogonally polarized beams at different frequencies can be achieved by adjusting the magnitude of the external magnetic field. It is found that the threshold of the optical bistability can be controlled by magnitude of the external magnetic field. Also, it is shown that optical bistability can be converted to optical multistability by switching the two orthogonally polarized beams. - Highlights: ► An inverted Y-type four level atomic system is proposed. ► Transmission coefficient can be controlled by a novel interesting parameter. ► Optical bistability and multistability can be achieved via external magnetic field. ► It is shown that our proposed model is suitable for all optical switching application.

  2. Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times

    International Nuclear Information System (INIS)

    Tiwari, Abhinav; Igoshin, Oleg A

    2012-01-01

    Biochemical regulatory networks governing diverse cellular processes such as stress-response, differentiation and cell cycle often contain coupled feedback loops. We aim at understanding how features of feedback architecture, such as the number of loops, the sign of the loops and the type of their coupling, affect network dynamical performance. Specifically, we investigate how bistability range, maximum open-loop gain and switching times of a network with transcriptional positive feedback are affected by additive or multiplicative coupling with another positive- or negative-feedback loop. We show that a network's bistability range is positively correlated with its maximum open-loop gain and that both quantities depend on the sign of the feedback loops and the type of feedback coupling. Moreover, we find that the addition of positive feedback could decrease the bistability range if we control the basal level in the signal-response curves of the two systems. Furthermore, the addition of negative feedback has the capacity to increase the bistability range if its dissociation constant is much lower than that of the positive feedback. We also find that the addition of a positive feedback to a bistable network increases the robustness of its bistability range, whereas the addition of a negative feedback decreases it. Finally, we show that the switching time for a transition from a high to a low steady state increases with the effective fold change in gene regulation. In summary, we show that the effect of coupled feedback loops on the bistability range and switching times depends on the underlying mechanistic details. (paper)

  3. Thorium utilization in heavy water moderated Accelerator Driven Systems

    International Nuclear Information System (INIS)

    Bajpai, Anil; Degweker, S.B.; Ghosh, Biplab

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. With limited indigenous U availability and the presence of large Th deposits in the country, there is a clear incentive to develop Th related technologies. India also has vast experience in design, construction and operation of heavy water moderated reactors. Heavy water moderated reactors employing solid Th fuels can be self sustaining, but the discharge burnups are too low to be economical. A possible way to improve the performance such reactors is to use an external neutron source as is done in ADS. This paper discusses our studies on Th utilization in heavy water moderated ADSs. The study is carried out at the lattice level. The time averaged k-infinity of the Th bundle from zero burnup up to the discharge burnup is taken to be the same as the core (ensemble) averaged k-infinity. For the purpose of the analysis we have chosen standard PHWR and AHWR assemblies. Variation of the pitch and coolant (H 2 O/D 2 O) are studied. Both, the once through cycle and the recycling option are studied. In the latter case the study is carried out for various enrichments (% 233 U in Th) of the recycled Th fuel bundles. The code DTF as modified for lattice and burnup calculations (BURNTRAN) was used for carrying out the study. The once through cycle represents the most attractive ADS concept (Th burner ADS) possible for Th utilization. It avoids reprocessing of Th spent fuel and in the ideal situation the use of any fissile material either initially or for sustaining itself. The gain in this system is however rather low requiring a high power accelerator and a substantial fraction of the power generated to be fed back to the accelerator. The self sustaining Th-U cycle in a heavy moderated ADS

  4. Transmutation of nuclear waste in accelerator-driven systems

    CERN Document Server

    Herrera-Martínez, A

    2004-01-01

    Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven systems (ADSs) for nuclear waste transmutation and energy production would address these problems in a simple, clean and economically viable, and therefore sustainable, manner. This thesis covers the major nuclear physics aspects of ADSs, in particular the spallation process and the core neutronics specific to this type of systems. The need for accurate nuclear data is described, together with a detailed analysis of the specific isotopes and energy ranges in which this data needs to be improved and the impact of their uncertainty. Preliminary experimental results for some of these isotopes, produced by the Neutron Time-of-Flight (n_TOF) ...

  5. Macroscopic multigroup constants for accelerator driven system core calculation

    International Nuclear Information System (INIS)

    Heimlich, Adino; Santos, Rubens Souza dos

    2011-01-01

    The high-level wastes stored in facilities above ground or shallow repositories, in close connection with its nuclear power plant, can take almost 106 years before the radiotoxicity became of the order of the background. While the disposal issue is not urgent from a technical viewpoint, it is recognized that extended storage in the facilities is not acceptable since these ones cannot provide sufficient isolation in the long term and neither is it ethical to leave the waste problem to future generations. A technique to diminish this time is to transmute these long-lived elements into short-lived elements. The approach is to use an Accelerator Driven System (ADS), a sub-critical arrangement which uses a Spallation Neutron Source (SNS), after separation the minor actinides and the long-lived fission products (LLFP), to convert them to short-lived isotopes. As an advanced reactor fuel, still today, there is a few data around these type of core systems. In this paper we generate macroscopic multigroup constants for use in calculations of a typical ADS fuel, take into consideration, the ENDF/BVI data file. Four energy groups are chosen to collapse the data from ENDF/B-VI data file by PREPRO code. A typical MOX fuel cell is used to validate the methodology. The results are used to calculate one typical subcritical ADS core. (author)

  6. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    Directory of Open Access Journals (Sweden)

    Alberto Fernández-Isabel

    2015-06-01

    Full Text Available Intelligent Transportation Systems (ITSs integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.

  7. Expert system driven fuzzy control application to power reactors

    International Nuclear Information System (INIS)

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-01-01

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ''supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment

  8. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  9. Bistable polarization switching in a continuous wave ruby laser

    Science.gov (United States)

    Lawandy, N. M.; Afzal, R. Sohrab

    1988-01-01

    Bistability in the output power, polarization state, and mode volume of an argon-ion laser pumped single mode ruby laser at 6943 A has been observed. The laser operates in a radially confined mode which exhibits hysteresis and bistability only when the pump polarization is parallel to the c-axis.

  10. Bistable soliton states and switching in doubly inhomogeneously ...

    Indian Academy of Sciences (India)

    Dec. 2001 physics pp. 969–979. Bistable soliton states and switching in doubly inhomogeneously doped fiber couplers. AJIT KUMAR. Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India. Abstract. Switching between the bistable soliton states in a doubly and inhomogeneously doped.

  11. Multistability in Bistable Ferroelectric Materials toward Adaptive Applications

    NARCIS (Netherlands)

    Ghosh, Anirban; Koster, Gertjan; Rijnders, Augustinus J.H.M.

    2016-01-01

    Traditionally thermodynamically bistable ferroic materials are used for nonvolatile operations based on logic gates (e.g., in the form of field effect transistors). But, this inherent bistability in these class of materials limits their applicability for adaptive operations. Emulating biological

  12. Coherent-feedback-induced controllable optical bistability and photon blockade

    International Nuclear Information System (INIS)

    Liu, Yu-Long; Liu, Zhong-Peng; Zhang, Jing

    2015-01-01

    It is well known that some nonlinear phenomena such as strong photon blockade are difficult to observe in optomechanical systems with current experimental technology. Here we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers quantum nonlinearity from the controller to the controlled cavity causing destructive quantum interference to occur, and making it possible to observe strong nonlinear effects. With the help of the coherent feedback loop, large and tunable bistability and strong photon blockade of the cavity modes can be achieved even in the optomechanical weak coupling regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomena. We hope that our work can give new perspectives on engineering nonlinear interactions in quantum systems. (paper)

  13. Chimera states in an ensemble of linearly locally coupled bistable oscillators

    Science.gov (United States)

    Shchapin, D. S.; Dmitrichev, A. S.; Nekorkin, V. I.

    2017-11-01

    Chimera states in a system with linear local connections have been studied. The system is a ring ensemble of analog bistable self-excited oscillators with a resistive coupling. It has been shown that the existence of chimera states is not due to the nonidentity of oscillators and noise, which is always present in real experiments, but is due to the nonlinear dynamics of the system on invariant tori with various dimensions.

  14. Thermal hydraulics of accelerator driven system windowless targets

    Directory of Open Access Journals (Sweden)

    Bruno ePanella

    2015-07-01

    Full Text Available The study of the fluid dynamics of the windowless spallation target of an Accelerator Driven System (ADS is presented. Several target mockup configurations have been investigated: the first one was a symmetrical target, that was made by two concentric cylinders, the other configurations are not symmetrical. In the experiments water has been used as hydraulic equivalent to lead-bismuth eutectic fluid. The experiments have been carried out at room temperature and flow rate up to 24 kg/s. The fluid velocity components have been measured by an ultrasound technique. The velocity field of the liquid within the target region either for the approximately axial-symmetrical configuration or for the not symmetrical ones as a function of the flow rate and the initial liquid level is presented. A comparison of experimental data with the prediction of the finite volume FLUENT code is also presented. Moreover the results of a 2D-3D numerical analysis that investigates the effect on the steady state thermal and flow fields due to the insertion of guide vanes in the windowless target unit of the EFIT project ADS nuclear reactor are presented, by analysing both the cold flow case (absence of power generation and the hot flow case (nominal power generation inside the target unit.

  15. Orbitally-driven magnetism in light actinide systems

    International Nuclear Information System (INIS)

    Cooper, B.R.; Los Alamos National Lab.

    1987-01-01

    We are interested in understanding the solid-state behavior characteristic of the transition regime between itinerant (bonding) and localized (correlated ionic) f-electron behavior in light actinide (uranium, neptunium and plutonium) systems. For the light actinides, the degree of f-electron localization is sensitive to chemical environment and varies widely depending on specific compound or alloy. It is important for any meaningful theory to reflect this sensitivity to chemical environment. We have focussed our attention initially on magnetic behavior, since the pertinent orbitally-driven magnetic behavior is both interesting in itself and valuable as a diagnostic tool for the f-electron behavior and sensitivity to chemical environment. The key aspect of the electronic behavior is the hybridization (mixing) of the f electrons with band electrons of other than f atomic parentage. To treat effects of hybridization quantitatively, we transform the physical mixing mathematically to resonant scattering of band electrons off f electrons. Anisotropic magnetic properties provide a way to measure the weighting of resonant scattering channels, and this weighting reflects the sensitivity to chemical environment. (orig.)

  16. KIPT accelerator-driven system design and performance

    International Nuclear Information System (INIS)

    Gohar, Y.; Bolshinsky, I.; Karnaukhov, I.

    2015-01-01

    facilities and it can be used for studying accelerator-driven systems. The facility utilisation study shows that this neutron source facility has excellent capability for producing different medical isotopes. Several horizontal neutron channels are incorporated to perform basic research, including cold neutron source. This paper highlights the design, the performed analyses, and the current status of the facility. (authors)

  17. Critical slowing down in driven-dissipative Bose-Hubbard lattices

    Science.gov (United States)

    Vicentini, Filippo; Minganti, Fabrizio; Rota, Riccardo; Orso, Giuliano; Ciuti, Cristiano

    2018-01-01

    We explore theoretically the dynamical properties of a first-order dissipative phase transition in coherently driven Bose-Hubbard systems, describing, e.g., lattices of coupled nonlinear optical cavities. Via stochastic trajectory calculations based on the truncated Wigner approximation, we investigate the dynamical behavior as a function of system size for one-dimensional (1D) and 2D square lattices in the regime where mean-field theory predicts nonlinear bistability. We show that a critical slowing down emerges for increasing number of sites in 2D square lattices, while it is absent in 1D arrays. We characterize the peculiar properties of the collective phases in the critical region.

  18. Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity.

    Science.gov (United States)

    Li, Jian-Bo; Xiao, Si; Liang, Shan; He, Meng-Dong; Luo, Jian-Hua; Kim, Nam-Chol; Chen, Li-Qun

    2017-10-16

    We perform a theoretical study of the bistable four-wave mixing (FWM) response in a coupled system comprised of a semiconductor quantum dot (SQD) and a photonic crystal (PC) nanocavity in which the SQD is embedded. It is shown that the shape of the FWM spectrum can switch among single-peaked, double-peaked, triple-peaked, and four-peaked arising from the vacuum Rabi splitting and the exciton-nanocavity coupling. Especially, we map out bistability phase diagrams within a parameter subspace of the system, and find that it is easy to turn on or off the bistable FWM response by only adjusting the excitation frequency or the pumping intensity. Our results offer a feasible means for measuring the SQD-PC nanocavity coupling strength and open a new avenue to design optical switches and memories.

  19. Bistable flows in precessing spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Cébron, D, E-mail: david.cebron@ujf-grenoble.fr [Université Grenoble Alpes, CNRS, ISTerre, Grenoble (France)

    2015-04-15

    Precession driven flows are found in any rotating container filled with liquid, when the rotation axis itself rotates about a secondary axis that is fixed in an inertial frame of reference. Because of its relevance for planetary fluid layers, many works consider spheroidal containers, where the uniform vorticity component of the bulk flow is reliably given by the well-known equations obtained by Busse (1968 J. Fluid Mech. 33 739–51). So far however, no analytical result for the solutions is available. Moreover, the cases where multiple flows can coexist have not been investigated in detail since their discovery by Noir et al (2003 Geophys. J. Int. 154 407–16). In this work we aim at deriving analytical results for the solutions, aiming in particular at first estimating the ranges of parameters where multiple solutions exist, and second studying quantitatively their stability. Using the models recently proposed by Noir and Cébron (2013 J. Fluid Mech. 737 412–39), which are more generic in the inviscid limit than the equations of Busse, we analytically describe these solutions, their conditions of existence, and their stability in a systematic manner. We then successfully compare these analytical results with the theory of Busse (1968). Dynamical model equations are finally proposed to investigate the stability of the solutions, which describe the bifurcation of the unstable flow solution. We also report for the first time the possibility that time-dependent multiple flows can coexist in precessing triaxial ellipsoids. Numerical integrations of the algebraic and differential equations have been efficiently performed with the dedicated script FLIPPER (supplementary material). (paper)

  20. Interaction-driven versus disorder-driven transport in ultra-dilute GaAs two-dimensional hole systems

    Science.gov (United States)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2012-02-01

    It is well-known that the insulating behavior in the two-dimensional metal-to-insulator transition demonstrates a finite temperature conduction via hopping. Recently, however, some very strongly interacting higher purity two-dimensional electron systems at temperatures T->0 demonstrate certain nonactivated insulating behaviors that are absent in more disordered systems. Through measuring in dark the T-dependence of the conductivity of ultra-high quality 2D holes with charge densities down to 7x10^8 cm-2, an approximate power-law behavior is identified. Moreover, for the lowest charge densities, the exponent exhibits a linearly decreasing density-dependence which suggests an interaction-driven nature. Such an electron state is fragile to even a slight increase of disorder which causes a crossover from nonactivated to activated conduction. The non-activated conduction may well be an universal interaction-driven signature of an electron state of strongly correlated (semiquantum) liquid.

  1. A hierarchical stochastic model for bistable perception.

    Directory of Open Access Journals (Sweden)

    Stefan Albert

    2017-11-01

    Full Text Available Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM, which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group

  2. A hierarchical stochastic model for bistable perception.

    Science.gov (United States)

    Albert, Stefan; Schmack, Katharina; Sterzer, Philipp; Schneider, Gaby

    2017-11-01

    Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM) for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM), which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group differences to

  3. Stabilization of breathers in a parametrically driven sine-Gordon system with loss

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Kivshar, Yu. S.; Samuelsen, Mogens Rugholm

    1991-01-01

    We demonstrate that in a parametrically driven sine-Gordon system with loss, a breather, if driven, can be maintained in a steady state at half the external frequency. In the small-amplitude limit the system is described by the effective perturbed nonlinear Schrödinger equation. For an arbitrary...

  4. A Timing-Driven Partitioning System for Multiple FPGAs

    Directory of Open Access Journals (Sweden)

    Kalapi Roy

    1996-01-01

    Full Text Available Field-programmable systems with multiple FPGAs on a PCB or an MCM are being used by system designers when a single FPGA is not sufficient. We address the problem of partitioning a large technology mapped FPGA circuit onto multiple FPGA devices of a specific target technology. The physical characteristics of the multiple FPGA system (MFS pose additional constraints to the circuit partitioning algorithms: the capacity of each FPGA, the timing constraints, the number of I/Os per FPGA, and the pre-designed interconnection patterns of each FPGA and the package. Existing partitioning techniques which minimize just the cut sizes of partitions fail to satisfy the above challenges. We therefore present a timing driven N-way partitioning algorithm based on simulated annealing for technology-mapped FPGA circuits. The signal path delays are estimated during partitioning using a timing model specific to a multiple FPGA architecture. The model combines all possible delay factors in a system with multiple FPGA chips of a target technology. Furthermore, we have incorporated a new dynamic net-weighting scheme to minimize the number of pin-outs for each chip. Finally, we have developed a graph-based global router for pin assignment which can handle the pre-routed connections of our MFS structure. In order to reduce the time spent in the simulated annealing phase of the partitioner, clusters of circuit components are identified by a new linear-time bottom-up clustering algorithm. The annealing-based N-way partitioner executes four times faster using the clusters as opposed to a flat netlist with improved partitioning results. For several industrial circuits, our approach outperforms the recursive min-cut bi-partitioning algorithm by 35% in terms of nets cut. Our approach also outperforms an industrial FPGA partitioner by 73% on average in terms of unroutable nets. Using the performance optimization capabilities in our approach we have successfully partitioned the

  5. Optical wall dynamics induced by coexistence of monostable and bistable spatial regions.

    Science.gov (United States)

    Odent, V; Louvergneaux, E; Clerc, M G; Andrade-Silva, I

    2016-11-01

    When nonequilibrium extended homogeneous systems exhibit multistability, it leads to the presence of domain walls between the existing equilibria. Depending on the stability of the steady states, the dynamics differs. Here, we consider the interface dynamics in the case of a spatially inhomogeneous system, namely, an optical system where the control parameter is spatially Gaussian. Then interfaces connect the monostable and the bistable nonuniform states that are associated with two distinct spatial regions. The coexistence of these two regions of different stability induces relaxation dynamics and the propagation of a wall with a time-dependent speed. We emphasize analytically these two dynamical behaviors using a generic bistable model. Experimentally, an inhomogeneous Gaussian light beam traveling through either a dye-doped liquid crystal cell or a Kerr cavity depicts these behaviors, in agreement with the theoretical predictions.

  6. Lake Restoration in Terms of Ecological Resilience: a Numerical Study of Biomanipulations under Bistable Conditions

    Directory of Open Access Journals (Sweden)

    Takashi Amemiya

    2005-12-01

    Full Text Available An abstract version of the comprehensive aquatic simulation model (CASM is found to exhibit bistability under intermediate loading of nutrient input, supporting the alternative-stable-states theory and field observations for shallow lakes. Our simulations of biomanipulations under the bistable conditions reveal that a reduction in the abundance of zooplanktivorous fish cannot switch the system from a turbid to a clear state. Rather, a direct reduction of phytoplankton and detritus was found to be most effective to make this switch in the present model. These results imply that multiple manipulations may be effective for practical restorations of lakes. We discuss the present results of biomanipulations in terms of ecological resilience in multivariable systems or natural systems.

  7. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for

  8. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    International Nuclear Information System (INIS)

    Wallenius, J.; Carlsson, Johan; Gudowski, W.

    1997-12-01

    In November 1996, SKB started financing of the project ''System and safety studies of accelerator driven transmutation systems and development of a spallation target''. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for

  9. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Carlsson, Johan; Gudowski, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1997-12-01

    In November 1996, SKB started financing of the project ``System and safety studies of accelerator driven transmutation systems and development of a spallation target``. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for. 13 refs, 6 figs.

  10. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for.

  11. Present status of laser driven fusion--fission energy systems

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.

    1978-01-01

    The potential of laser fusion driven hybrids to produce fissile fuel and/or electricity has been investigated in the laser program at the Lawrence Livermore Laboratory (LLL) for several years. Our earlier studies used neutronic methods of analysis to estimate hybrid performance. The results were encouraging, but it was apparent that a more accurate assessment of the hybrid's potential would require studies which treat the engineering, environmental, and economic issues as well as the neutronic aspects. More recently, we have collaborated with Bechtel and Westinghouse Corporations in two engineering design studies of laser fusion driven hybrid power plants. With Bechtel, we have been engaged in a joint effort to design a laser fusion driven hybrid which emphasizes fissile fuel production while the primary objective of our joint effort with Westinghouse has been to design a hybrid which emphasizes power production. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering their most important operational parameters

  12. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  13. Second-Order Multiagent Systems with Event-Driven Consensus Control

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-01-01

    Full Text Available Event-driven control scheduling strategies for multiagent systems play a key role in future use of embedded microprocessors of limited resources that gather information and actuate the agent control updates. In this paper, a distributed event-driven consensus problem is considered for a multi-agent system with second-order dynamics. Firstly, two kinds of event-driven control laws are, respectively, designed for both leaderless and leader-follower systems. Then, the input-to-state stability of the closed-loop multi-agent system with the proposed event-driven consensus control is analyzed and the bound of the inter-event times is ensured. Finally, some numerical examples are presented to validate the proposed event-driven consensus control.

  14. MYRRHA: a multipurpose accelerator driven system for research and development

    International Nuclear Information System (INIS)

    Benoit, Ph.; Ait Abderrahim, H.; Kupschus, P.; Malambu, E.; Tichelen, K. van; Arien, B.; Vermeersch, F.; Jongen, Y.; Vandeplassche, D.; Ternier, S.

    2001-01-01

    SCK-CEN, the Belgian Nuclear Research Centre, and IBA s.a., Ion Beam Application, a world leader in accelerator technology, want to fulfil a prominent role in the Accelerator Driven Systems field and are designing an ADS prototype, the MYRRHA Project, and conducting an associated R and D programme. The partners are foreseeing MYRRHA as a first step towards the European ADS-Demo facility. The project focuses primarily on ADS related research, i.e. structural materials and nuclear fuel research, liquid metals and associated aspects, sub-critical reactor physics and subsequently on applications such as waste transmutation, radioisotope production and safety research on sub-critical systems. In this respect, the MYRRHA system should become a new major research infrastructure for the European partners presently involved in the ADS Demo development, supporting and enabling the international R and D programs. Ion Beam Applications, the Belgium world leader in particle accelerators, had joined the MYRRHA Project to perform the accelerator development. Currently the study and preliminary conceptual design of the MYRRHA system is going on and an intensive R and D programme is conducted to assess the most risky points of the present design. This study will define the final choice of the characteristics of the facility depending on the selected fields of application to be achieved. The MYRRHA concept, as it is today, is based on the coupling of an upgraded commercial proton accelerator with a spallation target surrounded by a subcritical neutron-multiplying medium. Its design is determined by the versatility m applications that should be made possible. Further technical and/or strategic developments of the project might change the concept. A cyclotron, based on positive ion acceleration technology brings the protons up to an energy level of 350 MeV. The nominal current is 5 mA of protons. The spallation target system consists in a circuit with, at the upper part, a free

  15. Basins of attraction of the bistable region of time-delayed cutting dynamics

    Science.gov (United States)

    Yan, Yao; Xu, Jian; Wiercigroch, Marian

    2017-09-01

    This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.

  16. Basins of attraction of the bistable region of time-delayed cutting dynamics.

    Science.gov (United States)

    Yan, Yao; Xu, Jian; Wiercigroch, Marian

    2017-09-01

    This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.

  17. Surface Organization Influences Bistable Vision

    Science.gov (United States)

    Graf, Erich W.; Adams, Wendy J.

    2008-01-01

    A priority for the visual system is to construct 3-dimensional surfaces from visual primitives. Information is combined across individual cues to form a robust representation of the external world. Here, it is shown that surface completion relying on multiple visual cues influences relative dominance during binocular rivalry. The shape of a…

  18. Validation of Portable Muscle Tone Measurement Device Based on a Motor-Driven System

    National Research Council Canada - National Science Library

    Chen, Jia-Jin

    2001-01-01

    .... The aim of this study is to extend a sophisticated motor-driven measurement system, developed in our previous research, as a validation platform for developing a portable muscle tone measurement system...

  19. Stability, Bistability, and Critical Thresholds in Fire-prone Forested Landscapes: How Frequency and Intensity of Disturbance Interact and Influence Forest Cover

    Science.gov (United States)

    Miller, A. D.

    2015-12-01

    Many aspects of disturbance processes can have large impacts on the composition of plant communities, and associated changes in land cover type in turn have biogeochemical feedbacks to climate. In particular, changes to disturbance regimes can potentially change the number and stability of equilibrial states, and plant community states can differ dramatically in their carbon (C) dynamics, energy balance, and hydrology. Using the Klamath region of northern California as a model system, we present a theoretical analysis of how changes to climate and associated fire dynamics can disrupt high-carbon, long-lived conifer forests and replace them with shrub-chaparral communities that have much lower biomass and are more pyrogenic. Specifically, we develop a tractable model of plant community dynamics, structured by size class, life-history traits, lottery-type competition, and species-specific responses to disturbance. We assess the stability of different states in terms of disturbance frequency and intensity, and quantitatively partition long-term low-density population growth rates into mechanisms that influence critical transitions from stable to bistable behavior. Our findings show how different aspects of disturbance act and interact to control competitive outcomes and stable states, hence ecosystem-atmosphere C exchange. Forests tend to dominate in low frequency and intensity regimes, while shrubs dominate at high fire frequency and intensity. In other regimes, the system is bistable, and the fate of the system depends both on initial conditions and random chance. Importantly, the system can cross a critical threshold where hysteresis prevents easy return to the prior forested state. We conclude that changes in disturbance-recovery dynamics driven by projected climate change can shift this system away from forest dominated in the direction of shrub-dominated landscape. This will result in a large net C release from the landscape, and alter biophysical ecosystem

  20. Single coil bistable, bidirectional micromechanical actuator

    Science.gov (United States)

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  1. Deployable structures using bistable reeled composites

    Science.gov (United States)

    Daton-Lovett, Andrew J.; Compton-Bishop, Quentin M.; Curry, Richard G.

    2000-06-01

    This paper describes an innovative, patented use of composite materials developed by RolaTube Technology Ltd. to make smart deployable structures. Bi-stable reeled composites (BRCs) can alternate between two stable forms; that of a strong, rigid structure and that of a compact coil of flat-wound material. Bi-stability arises as a result of the manipulation of Poisson's ratio and isotropy in the various layers of the material. BRCs are made of fiber- reinforced composite materials, most often with a thermoplastic matrix. A range of fibers and polymer matrices can be used according to the requirements of the operating environment. Samples of a BRC structure were constructed using layers of unidirectional, fiber-reinforced thermoplastic sheet with the layers at different angles. The whole assembly was then consolidated under conditions of elevated temperature and pressure. The properties of the BRC are described and the result of a series of experiments performed on the sample to determine the tensile strength of the BRC structure are reported. A full analysis using finite element methods is being undertaken in collaboration with the University of Cambridge, England. The first commercial use has been to fabricate boom and drive mechanisms for the remote inspection of industrial plant.

  2. Data-Driven Cyber-Physical Systems via Real-Time Stream Analytics and Machine Learning

    OpenAIRE

    Akkaya, Ilge

    2016-01-01

    Emerging distributed cyber-physical systems (CPSs) integrate a wide range of heterogeneous components that need to be orchestrated in a dynamic environment. While model-based techniques are commonly used in CPS design, they be- come inadequate in capturing the complexity as systems become larger and extremely dynamic. The adaptive nature of the systems makes data-driven approaches highly desirable, if not necessary.Traditionally, data-driven systems utilize large volumes of static data sets t...

  3. Ca++ dependent bistability induced by serotonin in spinal motoneurons

    DEFF Research Database (Denmark)

    Hounsgaard, J.; Kiehn, O.

    1985-01-01

    The plateau potential, responsible for the bistable state of spinal motoneurons, recently described in the decerebrate cat, was suggested to depend on serotonin (Hounsgaard et al. 1984). In an in vitro preparation of the spinal cord of the turtle we now show that serotonin, applied directly...... to the bath, transforms the intrinsic response properties of motoneurons, uncovering a plateau potential and voltage sensitive bistability. The changes induced by serotonin were blocked by Mn++, while the plateau potential and the bistability remained after application of tetrodotoxin. We conclude...... that serotonin controls the expression of a Ca++ dependent plateau potential in motoneurons....

  4. Indicators of Arctic Sea Ice Bistability in Climate Model Simulations and Observations

    Science.gov (United States)

    2014-09-30

    associated with the ice - albedo feedback and the seasonal melt and growth of sea ice , as well as horizontal climate variations on a global domain. (2...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Indicators of Arctic Sea Ice Bistability in Climate...possibility that the climate system supports multiple Arctic sea ice states that are relevant for the evolution of sea ice during the next several

  5. Advances in pulsed-power-driven radiography system design

    International Nuclear Information System (INIS)

    Portillo, Salvador; Hinshelwood, David D.; Rovang, Dean Curtis; Cordova, Steve Ray; Oliver, Bryan Velten; Weber, Bruce V.; Welch, Dale Robert; Shelton, Bradley Allen; Sceiford, Matthew E.; Cooperstein, Gerald; Gignac, Raymond Edward; Puetz, Elizabeth A.; Rose, David Vincent; Barker, Dennis L.; Van De Valde, David M.; Droemer, Darryl W.; Wilkins, Frank Lee; Molina, Isidro; Jaramillo, Deanna M.; Swanekamp, Stephen Brian; Commisso, Robert J.; Bailey, Vernon Leslie; Maenchen, John Eric; Johnson, David Lee; Griffin, Fawn A.; Hahn, Kelly Denise; Smith, Ian

    2004-01-01

    Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.

  6. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M; Stanculescu, A [International Atomic Energy Agency, Vienna (Austria); Paver, N [University of Trieste and INFN, Trieste (Italy)

    2003-06-15

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems.

  7. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  8. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    International Nuclear Information System (INIS)

    Herman, M.; Stanculescu, A.; Paver, N.

    2003-01-01

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems

  9. Double-well chimeras in 2D lattice of chaotic bistable elements

    Science.gov (United States)

    Shepelev, I. A.; Bukh, A. V.; Vadivasova, T. E.; Anishchenko, V. S.; Zakharova, A.

    2018-01-01

    We investigate spatio-temporal dynamics of a 2D ensemble of nonlocally coupled chaotic cubic maps in a bistability regime. In particular, we perform a detailed study on the transition ;coherence - incoherence; for varying coupling strength for a fixed interaction radius. For the 2D ensemble we show the appearance of amplitude and phase chimera states previously reported for 1D ensembles of nonlocally coupled chaotic systems. Moreover, we uncover a novel type of chimera state, double-well chimera, which occurs due to the interplay of the bistability of the local dynamics and the 2D ensemble structure. Additionally, we find double-well chimera behavior for steady states which we call double-well chimera death. A distinguishing feature of chimera patterns observed in the lattice is that they mainly combine clusters of different chimera types: phase, amplitude and double-well chimeras.

  10. Input-Independent Energy Harvesting in Bistable Lattices from Transition Waves.

    Science.gov (United States)

    Hwang, Myungwon; Arrieta, Andres F

    2018-02-26

    We demonstrate the utilisation of transition waves for realising input-invariant, frequency-independent energy harvesting in 1D lattices of bistable elements. We propose a metamaterial-inspired design with an integrated electromechanical transduction mechanism to the unit cell, rendering the power conversion capability an intrinsic property of the lattice. Moreover, focusing of transmitted energy to desired locations is demonstrated numerically and experimentally by introducing engineered defects in the form of perturbation in mass or inter-element forcing. We achieve further localisation of energy and numerically observe a breather-like mode for the first time in this type of lattice, improving the harvesting performance by an order of magnitude. Our approach considers generic bistable unit cells and thus provides a universal mechanism to harvest energy and realise metamaterials effectively behaving as a capacitor and power delivery system.

  11. Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Lindner, Netanel; Berg, Erez

    2013-01-01

    revealed phenomena that cannot be characterized by analogy to the topological classification framework for static systems. In particular, in driven systems in two dimensions (2D), robust chiral edge states can appear even though the Chern numbers of all the bulk Floquet bands are zero. Here, we elucidate...... the crucial distinctions between static and driven 2D systems, and construct a new topological invariant that yields the correct edge-state structure in the driven case. We provide formulations in both the time and frequency domains, which afford additional insight into the origins of the “anomalous” spectra...... that arise in driven systems. Possibilities for realizing these phenomena in solid-state and cold-atomic systems are discussed....

  12. Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda.

    Directory of Open Access Journals (Sweden)

    Michael Bednarz

    Full Text Available The lysis/lysogeny switch of bacteriophage lambda serves as a paradigm for binary cell fate decision, long-term maintenance of cellular state and stimulus-triggered switching between states. In the literature, the system is often referred to as "bistable." However, it remains unclear whether this term provides an accurate description or is instead a misnomer. Here we address this question directly. We first quantify transcriptional regulation governing lysogenic maintenance using a single-cell fluorescence reporter. We then use the single-cell data to derive a stochastic theoretical model for the underlying regulatory network. We use the model to predict the steady states of the system and then validate these predictions experimentally. Specifically, a regime of bistability, and the resulting hysteretic behavior, are observed. Beyond the steady states, the theoretical model successfully predicts the kinetics of switching from lysogeny to lysis. Our results show how the physics-inspired concept of bistability can be reliably used to describe cellular phenotype, and how an experimentally-calibrated theoretical model can have accurate predictive power for cell-state switching.

  13. Numerical and Experimental Studies on Nonlinear Dynamics and Performance of a Bistable Piezoelectric Cantilever Generator

    Directory of Open Access Journals (Sweden)

    Kangkang Guo

    2015-01-01

    Full Text Available A piezo-magneto-elastically coupled distributed-parameter model of a bistable piezoelectric cantilever generator is developed by using the generalized Hamilton principle. The influence of the spacing between two adjacent magnets on the static bifurcation characteristics of the system is studied and the range of magnet spacing corresponding to the bistable states is obtained. Numerical and experimental studies are carried out to analyze the bifurcation, response characteristics, and their impact on the electrical output performance under varying external excitations. Results indicate that interwell limit cycle motion of the beam around the two centers corresponds to optimum power output; interwell chaotic motion and multiperiodic motion including intrawell oscillations are less effective. At a given frequency, the phenomena of symmetric-breaking and amplitude-phase modulation are observed with increase of base excitation. Both period-doubling bifurcation and intermittency routes to chaotic motion in the bistable system are found. It can be observed that the power output is not proportional to the excitation level because of the bifurcation behaviours.

  14. Interaction of multiarmed spirals in bistable media.

    Science.gov (United States)

    He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng

    2013-05-01

    We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.

  15. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...... stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail....

  16. Cops or Robbers — a Bistable Society

    Science.gov (United States)

    Kułakowski, K.

    The norm game described by Axelrod in 1985 was recently treated with the master equation formalism. Here we discuss the equations, where (i) those who break the norm cannot punish and those who punish cannot break the norm, (ii) the tendency to punish is suppressed if the majority breaks the norm. The second mechanism is new. For some values of the parameters the solution shows the saddle-point bifurcation. Then, two stable solutions are possible, where the majority breaks the norm or the majority punishes. This means, that the norm breaking can be discontinuous, when measured in the social scale. The bistable character is reproduced also with new computer simulations on the Erdös-Rényi directed network.

  17. Seabed resident event driven profiling system (SREP). Concept, design and tests

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.A.M.Q.; Afzulpurkar, S.; Maurya, P.K.; Fernandes, L.; Madhan, R.; Desa, E.S.; Dabolkar, N.A.; Navelkar, G.S.; Naik, L.; Shetye, V.G.; Shetty, N.B.; Prabhudesai, S.P.; Nagvekar, S.; Vimalakumari, D.

    The seabed resident event driven profiling system (SREP) described here offers a novel, optimized approach to profiling in coastal waters from seabed to sea surface during the rough seas encountered in the southwest monsoon season (June...

  18. Autonomous Soil Assessment System: A Data-Driven Approach to Planetary Mobility Hazard Detection

    Science.gov (United States)

    Raimalwala, K.; Faragalli, M.; Reid, E.

    2018-04-01

    The Autonomous Soil Assessment System predicts mobility hazards for rovers. Its development and performance are presented, with focus on its data-driven models, machine learning algorithms, and real-time sensor data fusion for predictive analytics.

  19. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  20. Does visual attention drive the dynamics of bistable perception?

    Science.gov (United States)

    Dieter, Kevin C; Brascamp, Jan; Tadin, Duje; Blake, Randolph

    2016-10-01

    How does attention interact with incoming sensory information to determine what we perceive? One domain in which this question has received serious consideration is that of bistable perception: a captivating class of phenomena that involves fluctuating visual experience in the face of physically unchanging sensory input. Here, some investigations have yielded support for the idea that attention alone determines what is seen, while others have implicated entirely attention-independent processes in driving alternations during bistable perception. We review the body of literature addressing this divide and conclude that in fact both sides are correct-depending on the form of bistable perception being considered. Converging evidence suggests that visual attention is required for alternations in the type of bistable perception called binocular rivalry, while alternations during other types of bistable perception appear to continue without requiring attention. We discuss some implications of this differential effect of attention for our understanding of the mechanisms underlying bistable perception, and examine how these mechanisms operate during our everyday visual experiences.

  1. Numerical simulation of nonlinear dynamical systems driven by commutative noise

    International Nuclear Information System (INIS)

    Carbonell, F.; Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la

    2007-01-01

    The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations

  2. Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems

    Directory of Open Access Journals (Sweden)

    Emre eNeftci

    2014-01-01

    Full Text Available Restricted Boltzmann Machines (RBMs and Deep Belief Networks have been demonstrated to perform efficiently in variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The reverberating activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP carries out the weight updates in an online, asynchronous fashion.We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  3. Event-driven contrastive divergence for spiking neuromorphic systems.

    Science.gov (United States)

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2013-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  4. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics

    Science.gov (United States)

    Lee, Hyo-Chang

    2018-03-01

    Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied

  5. Dynamics and bistability in a reduced model of the lac operon

    Science.gov (United States)

    Yildirim, Necmettin; Santillán, Moisés; Horike, Daisuke; Mackey, Michael C.

    2004-06-01

    It is known that the lac operon regulatory pathway is capable of showing bistable behavior. This is an important complex feature, arising from the nonlinearity of the involved mechanisms, which is essential to understand the dynamic behavior of this molecular regulatory system. To find which of the mechanisms involved in the regulation of the lac operon is the origin of bistability, we take a previously published model which accounts for the dynamics of mRNA, lactose, allolactose, permease and β-galactosidase involvement and simplify it by ignoring permease dynamics (assuming a constant permease concentration). To test the behavior of the reduced model, three existing sets of data on β-galactosidase levels as a function of time are simulated and we obtain a reasonable agreement between the data and the model predictions. The steady states of the reduced model were numerically and analytically analyzed and it was shown that it may indeed display bistability, depending on the extracellular lactose concentration and growth rate.

  6. About using of ion accelerators in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Chigrinov, S; Kevitskaya, A; Petlevskij, V; Rutkovskaya, C [Belarussian Academy of Sciences, Minsk-Sosny (Belarus). Radiation Physics and Chemistry Inst.

    1997-12-31

    The prospects of using deuteron and alpha particle beams in Accelerator Driven Molten Salt Breeder for simultaneous production of uranium 233 and of thermal power are discussed, disregarding the problems of reactor construction and design. It is shown that by replacing the proton beam by beams of deuterons or alpha particles the energy cost of one neutron can be reduced from 11.5 MeV down to 9.3-10 MeV. The average energy of neutrons increases from 17.7 MeV to 24.3 MeV or 28.2 MeV, respectively. Thus, the gain in the number of fissile nuclei and in thermal power production of at least 1.2 - 1.3 times can be expected in ACMB. (J.U.). 1 tab., 3 figs., 4 refs.

  7. Activation of Transducin by Bistable Pigment Parapinopsin in the Pineal Organ of Lower Vertebrates.

    Science.gov (United States)

    Kawano-Yamashita, Emi; Koyanagi, Mitsumasa; Wada, Seiji; Tsukamoto, Hisao; Nagata, Takashi; Terakita, Akihisa

    2015-01-01

    Pineal organs of lower vertebrates contain several kinds of photosensitive molecules, opsins that are suggested to be involved in different light-regulated physiological functions. We previously reported that parapinopsin is an ultraviolet (UV)-sensitive opsin that underlies hyperpolarization of the pineal photoreceptor cells of lower vertebrates to achieve pineal wavelength discrimination. Although, parapinopsin is phylogenetically close to vertebrate visual opsins, it exhibits a property similar to invertebrate visual opsins and melanopsin: the photoproduct of parapinopsin is stable and reverts to the original dark states, demonstrating the nature of bistable pigments. Therefore, it is of evolutionary interest to identify a phototransduction cascade driven by parapinopsin and to compare it with that in vertebrate visual cells. Here, we showed that parapinopsin is coupled to vertebrate visual G protein transducin in the pufferfish, zebrafish, and lamprey pineal organs. Biochemical analyses demonstrated that parapinopsins activated transducin in vitro in a light-dependent manner, similar to vertebrate visual opsins. Interestingly, transducin activation by parapinopsin was provoked and terminated by UV- and subsequent orange-lights irradiations, respectively, due to the bistable nature of parapinopsin, which could contribute to a wavelength-dependent control of a second messenger level in the cell as a unique optogenetic tool. Immunohistochemical examination revealed that parapinopsin was colocalized with Gt2 in the teleost, which possesses rod and cone types of transducin, Gt1, and Gt2. On the other hand, in the lamprey, which does not possess the Gt2 gene, in situ hybridization suggested that parapinopsin-expressing photoreceptor cells contained Gt1 type transducin GtS, indicating that lamprey parapinopsin may use GtS in place of Gt2. Because it is widely accepted that vertebrate visual opsins having a bleaching nature have evolved from non-bleaching opsins

  8. General Purpose Data-Driven System Monitoring for Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern space propulsion and exploration system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using...

  9. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-05-01

    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  10. An analytical approach for predicting the energy capture and conversion by impulsively-excited bistable vibration energy harvesters

    Science.gov (United States)

    Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.

    2016-07-01

    Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.

  11. Dynamics and control of twisting bi-stable structures

    Science.gov (United States)

    Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.

    2018-02-01

    Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states

  12. Design of Efficient Sound Systems for Low Voltage Battery Driven Applications

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Oortgiesen, Rien; Knott, Arnold

    2016-01-01

    The efficiency of portable battery driven sound systems is crucial as it relates to both the playback time and cost of the system. This paper presents design considerations when designing such systems. This include loudspeaker and amplifier design. Using a low resistance voice coil realized...

  13. Air driven fiber optic coupled pulser system for ZT-40

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Brousseau, A.T.

    1977-01-01

    The design, construction, and operation of an air powered fiber optic coupled pulser system for initiating various high-voltage systems in the ZT-40 experiment is displayed. The air fiber optic system provides complete electrical isolation of the experimental high-voltage circuits from the digital timing and control circuits. In addition, this pulser system prevents cross talk between individual output channels and eliminates trigger system ground loops. The system uses an additional fiber optic bundle to confirm pulser output in the screen room

  14. Disposition of nuclear waste using subcritical accelerator-driven systems

    International Nuclear Information System (INIS)

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-01-01

    Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power

  15. Towards cross-hierarchy simulation of collisionless driven reconnection in an open system

    OpenAIRE

    R., HORIUCHI; H., OHTANI; A., ISHIZAWA

    2006-01-01

    The basic idea of a cross-hierarchy model for magnetic reconnection in an open system is proposed, where a microscopic system is surrounded by a macroscopic system and the interaction between the two systems is expressed by the plasma inflow and outflow through the system boundary. Collisionless driven reconnection in two-dimensional and three-dimensional open systems is demonstrated using an open particle simulation model developed as a microscopic part of a cross-hierarchy model. It is foun...

  16. A framework for semantic driven electronic examination system for ...

    African Journals Online (AJOL)

    The framework is implemented using Java programming language and a prototype of the proposed system is tested and compared with the existing system. Results show that words that are synonymous to any given correct answer are equally recognize as correct option. Hence, the e - examination system reliability, ...

  17. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    Science.gov (United States)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.

  18. Speech-driven environmental control systems--a qualitative analysis of users' perceptions.

    Science.gov (United States)

    Judge, Simon; Robertson, Zoë; Hawley, Mark; Enderby, Pam

    2009-05-01

    To explore users' experiences and perceptions of speech-driven environmental control systems (SPECS) as part of a larger project aiming to develop a new SPECS. The motivation for this part of the project was to add to the evidence base for the use of SPECS and to determine the key design specifications for a new speech-driven system from a user's perspective. Semi-structured interviews were conducted with 12 users of SPECS from around the United Kingdom. These interviews were transcribed and analysed using a qualitative method based on framework analysis. Reliability is the main influence on the use of SPECS. All the participants gave examples of occasions when their speech-driven system was unreliable; in some instances, this unreliability was reported as not being a problem (e.g., for changing television channels); however, it was perceived as a problem for more safety critical functions (e.g., opening a door). Reliability was cited by participants as the reason for using a switch-operated system as back up. Benefits of speech-driven systems focused on speech operation enabling access when other methods were not possible; quicker operation and better aesthetic considerations. Overall, there was a perception of increased independence from the use of speech-driven environmental control. In general, speech was considered a useful method of operating environmental controls by the participants interviewed; however, their perceptions regarding reliability often influenced their decision to have backup or alternative systems for certain functions.

  19. Model and information abstraction for description-driven systems

    International Nuclear Information System (INIS)

    Estrella, F.; McClatchey, R.; Kovacs, Z.; Goff, J.-M.L.

    2001-01-01

    A crucial factor in the creation of adaptable systems dealing with changing requirements is the suitability of the underlying technology in allowing the evolution of the system. A reflective system utilizes an open architecture where implicit system aspects are reified to become explicit first-class (meta-data) objects. These implicit system aspects are often fundamental structures which are inaccessible and immutable, and their reification as meta-data objects can serve as the basis for changes and extensions to the system, making it self-describing. To address the evolvability issue, the author proposes a reflective architecture based on two orthogonal abstractions-model abstraction and information abstraction. In this architecture the modeling abstractions allow for the separation of the description meta-data from the system aspects they represent so that they can be managed and versioned independently, asynchronously and explicitly

  20. Optical bistability induced by quantum coherence in a negative index atomic medium

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju

    2013-01-01

    Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Model-Driven Test Generation of Distributed Systems

    Science.gov (United States)

    Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin

    2012-01-01

    This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.

  2. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-01-01

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  3. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Day, Christy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  4. Bistability and Biofilm Formation in Bacillus subtilis

    Science.gov (United States)

    Chai, Yunrong; Chu, Frances; Kolter, Roberto; Losick, Richard

    2008-01-01

    Summary Biofilms of Bacillus subtilis consist of long chains of cells that are held together in bundles by an extracellular matrix of exopolysaccharide and the protein TasA. The exopolysaccharide is produced by enzymes encoded by the epsA-O operon and the gene encoding TasA is located in the yqxM-sipW-tasA operon. Both operons are under the control of the repressor SinR. Derepression is mediated by the antirepressor SinI, which binds to SinR with a 1:1 stoichiometry. Paradoxically, in medium promoting derepression of the matrix operons, the overall concentration of SinR in the culture greatly exceeded that of SinI. We show that under biofilm-promoting conditions sinI, which is under the control of the response regulator Spo0A, was expressed only in a small subpopulation of cells, whereas sinR was expressed in almost all cells. Activation of Spo0A is known to be subject to a bistable switch, and we infer that SinI reaches levels sufficient to trigger matrix production only in the subpopulation of cells in which Spo0A is active. Additionally, evidence suggests that sinI is expressed at intermediate, but not low or high, levels of Spo0A activity, which may explain why certain nutritional conditions are more effective in promoting biofilm formation than others. PMID:18047568

  5. Bistability of mangrove forests and competition with freshwater plants

    Science.gov (United States)

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  6. Dynamic control of a bistable wing under aerodynamic loading

    International Nuclear Information System (INIS)

    Bilgen, Onur; Arrieta, Andres F; Friswell, Michael I; Hagedorn, Peter

    2013-01-01

    The aerodynamic evaluation of a dynamic control technique applied to a bistable unsymmetrical cross-ply composite plate with surface bonded piezoelectric actuators is presented. The plate is clamped on one end to form a low-aspect-ratio wing. A previously proposed dynamic control method, utilizing bending resonance in different stable equilibrium positions, is used to induce snap-through between the two equilibrium states. Compared to quasi-static actuation, driving the bistable plate near resonance using surface bonded piezoelectric materials requires, theoretically, a lower peak excitation voltage to achieve snap-through. First, a set of extensive wind tunnel experiments are conducted on the passive bistable wing to understand the change in the dynamic behavior under various aerodynamic conditions. The passive wing demonstrated sufficient bending stiffness to sustain its shape under aerodynamic loading while preserving the desired bistable behavior. Next, by the use of the resonant control technique, the plate is turned into an effectively monostable structure, or alternatively, both stable equilibrium positions can be reached actively from the other stable equilibrium. Dynamic forward and reverse snap-through is demonstrated in the wind tunnel which shows both the effectiveness of the piezoelectric actuation as well as the load carrying capability of both states of the bistable wing. (paper)

  7. Frontoparietal cortex mediates perceptual transitions in bistable perception.

    Science.gov (United States)

    Weilnhammer, Veith A; Ludwig, Karin; Hesselmann, Guido; Sterzer, Philipp

    2013-10-02

    During bistable vision, perception oscillates between two mutually exclusive percepts despite constant sensory input. Greater BOLD responses in frontoparietal cortex have been shown to be associated with endogenous perceptual transitions compared with "replay" transitions designed to closely match bistability in both perceptual quality and timing. It has remained controversial, however, whether this enhanced activity reflects causal influences of these regions on processing at the sensory level or, alternatively, an effect of stimulus differences that result in, for example, longer durations of perceptual transitions in bistable perception compared with replay conditions. Using a rotating Lissajous figure in an fMRI experiment on 15 human participants, we controlled for potential confounds of differences in transition duration and confirmed previous findings of greater activity in frontoparietal areas for transitions during bistable perception. In addition, we applied dynamic causal modeling to identify the neural model that best explains the observed BOLD signals in terms of effective connectivity. We found that enhanced activity for perceptual transitions is associated with a modulation of top-down connectivity from frontal to visual cortex, thus arguing for a crucial role of frontoparietal cortex in perceptual transitions during bistable perception.

  8. A bistable mechanism for chord extension morphing rotors

    Science.gov (United States)

    Johnson, Terrence; Frecker, Mary; Gandhi, Farhan

    2009-03-01

    Research efforts have shown that helicopter rotor blade morphing is an effective means to improve flight performance. Previous example of rotor blade morphing include using smart-materials for trailing deflection and rotor blade twist and tip twist, the development of a comfortable airfoil using compliant mechanisms, the use of a Gurney flap for air-flow deflection and centrifugal force actuated device to increase the span of the blade. In this paper we explore the use of a bistable mechanism for rotor morphing, specifically, blade chord extension using a bistable arc. Increasing the chord of the rotor blade is expected to generate more lift-load and improve helicopter performance. Bistable or "snap through" mechanisms have multiple stable equilibrium states and are a novel way to achieve large actuation output stroke. Bistable mechanisms do not require energy input to maintain a stable equilibrium state as both states do not require locking. In this work, we introduce a methodology for the design of bistable arcs for chord morphing using the finite element analysis and pseudo-rigid body model, to study the effect of different arc types, applied loads and rigidity on arc performance.

  9. Preliminary analysis of advanced equilibrium configuration for the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Chu Delin; Wu Bin; Wu Yican

    2003-01-01

    The Fusion-Driven Subcritical System (FDS) is a subcritical nuclear energy system driven by fusion neutron source. In this paper, an advanced plasma configuration for FDS system has been proposed, which aims at high beta, high bootstrap current and good confinement. A fixed-boundary equilibrium code has been used to obtain ideal equilibrium configuration. In order to determine the feasibility of FDS operation, a two-dimensional time-dependent free boundary simulation code has been adopted to simulate time-scale evolution of plasma current profile and boundary position. By analyses, the Reversed Shear mode as the most attractive one has been recommended for the FDS equilibrium configuration design

  10. Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance practices. The guidebook is the successor to DOE’s 1997 Energy Management for Motor Driven Systems. It builds on its predecessor publication by including topics such as power transmission systems and matching driven equipment to process requirements in addition to motors.

  11. Reduced equations of motion for quantum systems driven by diffusive Markov processes.

    Science.gov (United States)

    Sarovar, Mohan; Grace, Matthew D

    2012-09-28

    The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.

  12. The derivation of a bistable criterion for double V-beam mechanisms

    International Nuclear Information System (INIS)

    Wu, Cho-Chun; Chen, Rongshun; Lin, Meng-Ju

    2013-01-01

    This study presents the theoretical derivation of the discriminant D as a structural and material criterion for determining whether bistability can occur in micromechanically bistable mechanisms. When D < 0, the mechanism displays bistable behavior if an appropriate force is applied to push the bistable mechanism, whereas when D > 0, bistable behavior cannot occur. The proposed V-beam bistable mechanism was successfully fabricated with various beam lengths and tilted angles. The experiments conducted in this study validated the theoretical study of bistability. A comparison of the theoretical solutions and experimental results shows good agreement. Results further show that to design a bistable V-beam mechanism, the tilted angle should be larger for the same beam length, whereas the beam length should be longer for the same tilted angle. The developed discriminant D can be used to predict if a bistable mechanism can achieve bistable behavior based on structural sizes and material properties. Consequently, researchers can reduce trial-and-error experiments when designing a bistable mechanism. A V-beam with a larger tilted angle of up to 5° was successfully fabricated to act as a bistable mechanism, compared to a 3.5° tilted angle in existing studies. Consequently, the proposed method has the advantages of shorter beam lengths and smaller device areas. (paper)

  13. Setting planned leadtimes in customer-order-driven assembly systems

    NARCIS (Netherlands)

    Atan, Z.; Kok, de A.G.; Dellaert, N.P.; Janssen, F.B.S.L.P.; Boxel, van R.

    2016-01-01

    We study an assembly system with a number of parallel multistage processes feeding a multistage final assembly process. Each stage has a stochastic throughput time. We assume that the system is controlled by planned leadtimes at each stage. From these planned leadtimes the start and due times of all

  14. Bistability and hysteresis of the 'Secteur' differentiation are controlled by a two-gene locus in Nectria haematococca

    Directory of Open Access Journals (Sweden)

    Daboussi Marie-Josée

    2004-08-01

    Full Text Available Abstract Background Bistability and hysteresis are increasingly recognized as major properties of regulatory networks governing numerous biological phenomena, such as differentiation and cell cycle progression. The full scope of the underlying molecular mechanisms leading to bistability and hysteresis remains elusive. Nectria haemaotcocca, a saprophytic or pathogenic fungus with sexual reproduction, exhibits a bistable morphological modification characterized by a reduced growth rate and an intense pigmentation. Bistability is triggered by the presence or absence of σ, a cytoplasmic determinant. This determinant spreads in an infectious manner in the hyphae of the growing margin, insuring hysteresis of the differentiation. Results Seven mutants specifically affected in the generation of σ were selected through two different screening strategies. The s1 and s2 mutations completely abolish the generation of σ and of its morphological expression, the Secteur. The remaining five mutations promote its constitutive generation, which determines an intense pigmentation but not growth alteration. The seven mutations map at the same locus, Ses (for 'Secteur-specific'. The s2 mutant was obtained by an insertional mutagenesis strategy, which permitted the cloning of the Ses locus. Sequence and transcription analysis reveals that Ses is composed of two closely linked genes, SesA, mutated in the s1 and s2 mutant strains, and SesB, mutated in the s* mutant strains. SesB shares sequence similarity with animal and fungal putative proteins, with potential esterase/lipase/thioesterase activity, whereas SesA is similar to proteins of unknown function present only in the filamentous fungi Fusarium graminearum and Podospora anserina. Conclusions The cloning of Ses provides evidence that a system encoded by two linked genes directs a bistable and hysteretic switch in a eukaryote. Atypical regulatory relations between the two proteins may account for the hysteresis

  15. Bistability and hysteresis of the 'Secteur' differentiation are controlled by a two-gene locus in Nectria haematococca

    Science.gov (United States)

    Graziani, Stéphane; Silar, Philippe; Daboussi, Marie-Josée

    2004-01-01

    Background Bistability and hysteresis are increasingly recognized as major properties of regulatory networks governing numerous biological phenomena, such as differentiation and cell cycle progression. The full scope of the underlying molecular mechanisms leading to bistability and hysteresis remains elusive. Nectria haemaotcocca, a saprophytic or pathogenic fungus with sexual reproduction, exhibits a bistable morphological modification characterized by a reduced growth rate and an intense pigmentation. Bistability is triggered by the presence or absence of σ, a cytoplasmic determinant. This determinant spreads in an infectious manner in the hyphae of the growing margin, insuring hysteresis of the differentiation. Results Seven mutants specifically affected in the generation of σ were selected through two different screening strategies. The s1 and s2 mutations completely abolish the generation of σ and of its morphological expression, the Secteur. The remaining five mutations promote its constitutive generation, which determines an intense pigmentation but not growth alteration. The seven mutations map at the same locus, Ses (for 'Secteur-specific'). The s2 mutant was obtained by an insertional mutagenesis strategy, which permitted the cloning of the Ses locus. Sequence and transcription analysis reveals that Ses is composed of two closely linked genes, SesA, mutated in the s1 and s2 mutant strains, and SesB, mutated in the s* mutant strains. SesB shares sequence similarity with animal and fungal putative proteins, with potential esterase/lipase/thioesterase activity, whereas SesA is similar to proteins of unknown function present only in the filamentous fungi Fusarium graminearum and Podospora anserina. Conclusions The cloning of Ses provides evidence that a system encoded by two linked genes directs a bistable and hysteretic switch in a eukaryote. Atypical regulatory relations between the two proteins may account for the hysteresis of Secteur differentiation

  16. Observation-Driven Configuration of Complex Software Systems

    Science.gov (United States)

    Sage, Aled

    2010-06-01

    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.

  17. System and safety studies of accelerator driven systems for transmutation. Annual report 2007

    International Nuclear Information System (INIS)

    Arzhanov, Vasily; Fokau, Andrei; Persson, Calle; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang

    2008-05-01

    Within the project 'System and safety studies of accelerator driven systems for transmutation', research on design and safety of sub-critical reactors for recycling of minor actinides is performed. During 2007, the reactor physics division at KTH has calculated safety parameters for EFIT-400 with cermet fuel, permitting to start the transient safety analysis. The accuracy of different reactivity meters applied to the YALINA facility was assessed and neutron detection studies were performed. A model to address deviations from point kinetic behaviour was developed. Studies of basic radiation damage physics included calculations of vacancy formation and activation enthalpies in bcc niobium. In order to predict the oxygen potential of inert matrix fuels, a thermo-chemical model for mixed actinide oxides was implemented in a phase equilibrium code

  18. System and safety studies of accelerator driven systems for transmutation. Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasily; Fokau, Andrei; Persson, Calle; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang (Div. of Reactor Physics, Royal Institute of Technology, Stockholm (Sweden))

    2008-05-15

    Within the project 'System and safety studies of accelerator driven systems for transmutation', research on design and safety of sub-critical reactors for recycling of minor actinides is performed. During 2007, the reactor physics division at KTH has calculated safety parameters for EFIT-400 with cermet fuel, permitting to start the transient safety analysis. The accuracy of different reactivity meters applied to the YALINA facility was assessed and neutron detection studies were performed. A model to address deviations from point kinetic behaviour was developed. Studies of basic radiation damage physics included calculations of vacancy formation and activation enthalpies in bcc niobium. In order to predict the oxygen potential of inert matrix fuels, a thermo-chemical model for mixed actinide oxides was implemented in a phase equilibrium code

  19. Data analysis using a data base driven graphics animation system

    International Nuclear Information System (INIS)

    Schwieder, D.H.; Stewart, H.D.; Curtis, J.N.

    1985-01-01

    A graphics animation system has been developed at the Idaho National Engineering Laboratory (INEL) to assist engineers in the analysis of large amounts of time series data. Most prior attempts at computer animation of data involve the development of large and expensive problem-specific systems. This paper discusses a generalized interactive computer animation system designed to be used in a wide variety of data analysis applications. By using relational data base storage of graphics and control information, considerable flexibility in design and development of animated displays is achieved

  20. Optical response in a laser-driven quantum pseudodot system

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, D. Gul [Physics Department, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, 35390 Izmir (Turkey); Sakiroglu, S., E-mail: serpil.sakiroglu@deu.edu.tr [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey); Ungan, F.; Yesilgul, U. [Department of Optical Engineering, Faculty of Technology, Cumhuriyet University, 58140 Sivas (Turkey); Kasapoglu, E. [Physics Department, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Sari, H. [Department of Primary Education, Faculty of Education, Cumhuriyet University, 58140 Sivas (Turkey); Sokmen, I. [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey)

    2017-03-15

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  1. Optical response in a laser-driven quantum pseudodot system

    International Nuclear Information System (INIS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-01-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  2. Design of a Hydraulic Motor System Driven by Compressed Air

    Directory of Open Access Journals (Sweden)

    Jyun-Jhe Yu

    2013-06-01

    Full Text Available This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power. To evaluate the theoretical efficiency, the principle of balance of energy is applied. The theoretical efficiency of converting air into hydraulic energy is found to be a function of pressure; thus, the maximum converting efficiency can be determined. To confirm the theoretical evaluation, a prototype of the pneumatic hydraulic system is built. The experiment verifies that the theoretical evaluation of the system efficiency is reasonable, and that the layout of the system is determined by the results of theoretical evaluation.

  3. Eccentric Mounting and Adjustment System for Belt Driven Devices

    National Research Council Canada - National Science Library

    Hansen, David N

    2008-01-01

    .... The system includes a housing fixed to the engine, a socket rotatable in pawl-and-ratchet fashion within the housing, and a socket aperture eccentrically disposed relative to the socket's axis...

  4. Analysis of Fuel Cell Driven Ground Source Heat Pump Systems in Community Buildings

    Directory of Open Access Journals (Sweden)

    Jong-Keun Shin

    2013-05-01

    Full Text Available In the present study, a fuel cell driven ground source heat pump (GSHP system is applied in a community building and heat pump system performance is analyzed by computational methods. Conduction heat transfer between the brine pipe and ground is analyzed by TEACH code in order to predict the performance of the heat pump system. The predicted coefficient of performance (COP of the heat pump system and the energy cost were compared with the variation of the location of the objective building, the water saturation rate of the soil, and the driven powers of the heat pump system. Compared to the late-night electricity driven system, a significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system. This is due to the low cost of electricity production of the fuel cell system and to the application of the recovered waste heat generated during the electricity production process to the heating of the community building.

  5. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-05-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  6. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-01-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  7. State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.

    Science.gov (United States)

    1978-12-01

    The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared

  8. Towards Ontology-Driven Information Systems: Guidelines to the Creation of New Methodologies to Build Ontologies

    Science.gov (United States)

    Soares, Andrey

    2009-01-01

    This research targeted the area of Ontology-Driven Information Systems, where ontology plays a central role both at development time and at run time of Information Systems (IS). In particular, the research focused on the process of building domain ontologies for IS modeling. The motivation behind the research was the fact that researchers have…

  9. Microcontroller-driven fluid-injection system for atomic force microscopy.

    Science.gov (United States)

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  10. Future cooperative communication systems driven by social mobile networks

    DEFF Research Database (Denmark)

    Blázovics, L.; Varga, C.; Bamford, W.

    2011-01-01

    In this work we are underlining the importance of social mobile networks for upcoming cooperative communication systems. The assumption of this work is that future mobile communication systems will incorporate user cooperation, i.e. a combination of cellular access in parallel with ongoing short...... cases. By the example of the Gedda-Headz gaming community, possible links between cooperative mobile communication and social mobile networks are shown....

  11. A clinician-driven home care delivery system.

    Science.gov (United States)

    August, D A; Faubion, W C; Ryan, M L; Haggerty, R H; Wesley, J R

    1993-12-01

    The financial, entrepreneurial, administrative, and legal forces acting within the home care arena make it difficult for clinicians to develop and operate home care initiatives within an academic setting. HomeMed is a clinician-initiated and -directed home care delivery system wholly owned by the University of Michigan. The advantages of a clinician-directed system include: Assurance that clinical and patient-based factors are the primary determinants of strategic and procedural decisions; Responsiveness of the system to clinician needs; Maintenance of an important role for the referring physician in home care; Economical clinical research by facilitation of protocol therapy in ambulatory and home settings; Reduction of lengths of hospital stays through clinician initiatives; Incorporation of outcome analysis and other research programs into the mission of the system; Clinician commitment to success of the system; and Clinician input on revenue use. Potential disadvantages of a clinician-based system include: Entrepreneurial, financial, and legal naivete; Disconnection from institutional administrative and data management resources; and Inadequate clinician interest and commitment. The University of Michigan HomeMed experience demonstrates a model of clinician-initiated and -directed home care delivery that has been innovative, profitable, and clinically excellent, has engendered broad physician, nurse, pharmacist, and social worker enthusiasm, and has supported individual investigator clinical protocols as well as broad outcomes research initiatives. It is concluded that a clinician-initiated and -directed home care program is feasible and effective, and in some settings may be optimal.

  12. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  13. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    Science.gov (United States)

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-08-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  14. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    International Nuclear Information System (INIS)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K.

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project 'Impact of the accelerator based technologies on nuclear fission safety' - IABAT and in bilateral cooperation with different foreign research groups

  15. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project `Impact of the accelerator based technologies on nuclear fission safety` - IABAT and in bilateral cooperation with different foreign research groups 31 refs, 23 figs

  16. Technical and economic assessment of photovoltaic-driven desalination systems

    International Nuclear Information System (INIS)

    Al-Karaghouli, Ali; Renne, David; Kazmerski, Lawrence L.

    2010-01-01

    Solar desalination systems are approaching technical and cost viability for producing fresh-water, a commodity of equal importance to energy in many arid and coastal regions worldwide. Solar photovoltaics (PV) represent an ideal, clean alternative to fossil fuels, especially for remote communities such as grid-limited villages or isolated islands. These applications for water production in remote areas are the first to be nearing cost-competitiveness due to decreasing PV prices and increasing fossil fuel prices over the last five years. The electricity produced from PV systems for desalination applications can be used for electro-mechanical devices such as pumps or in direct-current (DC) devices. Reverse osmosis (RO) and electrodialysis (ED) desalination units are the most favorable alternatives to be coupled with PV systems. RO usually operates on alternating current (AC) for the pumps, thus requiring a DC/AC inverter. In contrast, electrodialysis uses DC for the electrodes at the cell stack, and hence, it can use the energy supplied from the PV panels with some minor power conditioning. Energy storage is critical and batteries are required for sustained operation. In this paper, we discuss the operational features and system designs of typical PV-RO and PV-ED systems in terms of their suitability and optimization for PV operation. For PV-RO and PV-ED systems, we evaluate their electricity need, capital and operational costs, and fresh-water production costs. We cover ongoing and projected research and development activities, with estimates of their potential economics. We discuss the feasibility of future solar desalination based on expected (or predicted) improvements in technology of the desalination and PV systems. Examples are provided for Middle East and other parts of the World. (author)

  17. PC driven integrated system for vacuum making and control

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Brandea, Iulian

    2000-01-01

    The vacuum systems, are utilised in many technological plants. Some of these plants cover a big area, with high distances between workstations. For this reason the remote control is necessary, but is this not excepts the local control system, which may be performed for local supervision, control or shut down. The utilised software was the package LabView, which is a dedicate software for industrial automation. LabView is a conventional graphic program which has characteristic modules necessary for commands and data measurements from industrial processes. With this software we can simulate the instruments used in automation. The program which was realized has been defined as virtual instrument ( VI ), and it is realized of the 'front panel' computer utility interface and the 'block diagram' source code of the program, in which can be find also the subprograms (subVI) with the icons and the afferent connections. This connections are necessary to connect the electronic drive system to computer. The versatility of the software realised the communication between computer and the afferent modules of electric drive system through the serial port (COM1 or COM2). The main parts of this system are: -electronic drive unit; -interface relay unit; -central processing unit. The entire behaviour of system is progressing under the computer supervision, which accomplishes the following operations: - start and stop command for pump; - the NOMINAL or STAND BY operation command; -taking over of the signal to rotational frequency transducer and displays the results; -command the degassing of pump heater. The command of electric drive system with the virtual instrumentation represents the most modern trend in the field of electronic devices. The virtual device which was achieved offers an complex 'on-line' automation with many possibilities to be extended. (authors)

  18. Bistable near field and bistable transmittance in 2D composite slab consisting of nonlocal core-Kerr shell inclusions.

    Science.gov (United States)

    Huang, Yang; Wu, Ya Min; Gao, Lei

    2017-01-23

    We carry out a theoretical study on optical bistability of near field intensity and transmittance in two-dimensional nonlinear composite slab. This kind of 2D composite is composed of nonlocal metal/Kerr-type dielectric core-shell inclusions randomly embedded in the host medium, and we derivate the nonlinear relation between the field intensity in the shell of inclusions and the incident field intensity with self-consistent mean field approximation. Numerical demonstration has been performed to show the viable parameter space for the bistable near field. We show that nonlocality can provide broader region in geometric parameter space for bistable near field as well as bistable transmittance of the nonlocal composite slab compared to local case. Furthermore, we investigate the bistable transmittance in wavelength spectrum, and find that besides the input intensity, the wavelength operation could as well make the transmittance jump from a high value to a low one. This kind of self-tunable nano-composite slab might have potential application in optical switching devices.

  19. Optical Bistability in Graded Core-Shell Granular Composites

    International Nuclear Information System (INIS)

    Wu Ya-Min; Chen Guo-Qing; Xue Si-Zhong; Zhu Zhuo-Wei; Ma Chao-Qun

    2012-01-01

    The intrinsic optical bistability (OB) of graded core-shell granular composites is investigated. The coated particles are made of cores with gradient dielectric function in c (r) = A(r/a) k and nonlinear shells. In view of the exponential distribution of the core dielectric constant, the potential functions of each region are obtained by solving the Maxwell equations, and the mathematical expressions of electric field in the shells and cores are determined. Numerical study reveals that the optical bistable threshold and the threshold width of the composite medium are dependent on the shell thickness, core dielectric exponent, and power function coefficient. The optical bistable width increases with the decreasing shell thickness and the power exponent and with the increasing power function coefficient

  20. Bistable cholesteric liquid crystal light shutter with multielectrode driving.

    Science.gov (United States)

    Li, Cheng-Chang; Tseng, Heng-Yi; Pai, Tsung-Wei; Wu, Yu-Ching; Hsu, Wen-Hao; Jau, Hung-Chang; Chen, Chun-Wei; Lin, Tsung-Hsien

    2014-08-01

    An electrically activated bistable light shutter that exploits polymer-stabilized cholesteric liquid crystal film was developed. Under double-sided three-terminal electrode driving, the device can be bistable and switched between focal conic and homeotropic textures with a uniform in-plane and vertical electrical field. The transparent state with a transmittance of 80% and the opaque/scattering state with a transmittance of 13% can be realized without any optical compensation film, and each can be simply switched to the other by applying a pulse voltage. Also, gray-scale selection can be performed by varying the applied voltage. The designed energy-saving bistable light shutter can be utilized to preserve privacy and control illumination and the flow of energy.

  1. An intention driven hand functions task training robotic system.

    Science.gov (United States)

    Tong, K Y; Ho, S K; Pang, P K; Hu, X L; Tam, W K; Fung, K L; Wei, X J; Chen, P N; Chen, M

    2010-01-01

    A novel design of a hand functions task training robotic system was developed for the stroke rehabilitation. It detects the intention of hand opening or hand closing from the stroke person using the electromyography (EMG) signals measured from the hemiplegic side. This training system consists of an embedded controller and a robotic hand module. Each hand robot has 5 individual finger assemblies capable to drive 2 degrees of freedom (DOFs) of each finger at the same time. Powered by the linear actuator, the finger assembly achieves 55 degree range of motion (ROM) at the metacarpophalangeal (MCP) joint and 65 degree range of motion (ROM) at the proximal interphalangeal (PIP) joint. Each finger assembly can also be adjusted to fit for different finger length. With this task training system, stroke subject can open and close their impaired hand using their own intention to carry out some of the daily living tasks.

  2. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central....... This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known...

  3. Patterning in systems driven by nonlocal external forces.

    Science.gov (United States)

    Luneville, L; Mallick, K; Pontikis, V; Simeone, D

    2016-11-01

    This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.

  4. OASIS: a COBOL-11 menu-driven information system

    International Nuclear Information System (INIS)

    Lee, W.F. Jr.

    1982-01-01

    Oak Ridge National Laboratory's Automated Safeguards Information System (OASIS) is a near real-time nuclear materials/precious metals safeguard and accountability control system. Using COBOL and RSTS/E on a dedicated 11/34, the system performs on-line inventory update, inquiry and report functions. Processed transactions consisting of intra-laboratory movements, on-site receipts and off-site shipments are maintained for inquiry and report preparation. A secure, controlled but friendly user environment is maintained by chaining between menu and data manipulation tasks. The use of menus, security and access control, screen manipulation, file access and contention, word processing activities, task size problems and other aspects of this application will be discussed

  5. Quantum dynamics of a strongly driven Josephson Junction

    Energy Technology Data Exchange (ETDEWEB)

    Gosner, Jennifer; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems, University of Ulm (Germany)

    2015-07-01

    A Josephson Junction embedded in a dissipative circuit can be driven to exhibit non-linear oscillations. Classically the non-linear oscillator shows under sufficient strong driving and weak damping dynamical bifurcations and a bistable region similar to the conventional Duffing-oscillator. These features depend sensitively on initial conditions and parameters. The sensitivity of this circuit, called Josephson Bifurcation Amplifier, can be used to amplify an incoming signal, to form a sensing device or even for measuring a quantum system. The quantum dynamics can be described by a dissipative Lindblad master equation. Signatures of the classical bifurcation phenomena appear in the Wigner representation, used to characterize and visualize the resulting behaviour. In order to compare this quantum dynamics to that of the conventional Duffing-oscillator, the complete cosine-nonlinearity of the Josephson Junction is kept for the quantum description while going into a rotating frame.

  6. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    International Nuclear Information System (INIS)

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-01-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  7. A protable Database driven control system for SPEAR

    International Nuclear Information System (INIS)

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-01-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system

  8. Stability of impulsive systems driven by renewal processes

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.

    2009-01-01

    Necessary and sufficient conditions are provided for stochastic stability and mean exponential stability of impulsive systems with jumps triggered by a renewal process, that is, the intervals between jumps are independent and identically distributed. The conditions for stochastic stability can be

  9. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  10. Implementation of 252Cf-source-driven power spectrum density measurement system

    International Nuclear Information System (INIS)

    Ren Yong; Wei Biao; Feng Peng; Li Jiansheng; Ye Cenming

    2012-01-01

    The principle of 252 Cf-source-driven power spectrum density measurement method is introduced. A measurement system and platform is realized accordingly, which is a combination of hardware and software, for measuring nuclear parameters. The detection method of neutron pulses based on an ultra-high-speed data acquisition card (three channels, 1 GHz sampling rate, 1 ns synchronization) is described, and the data processing process and the power spectrum density algorithm on PC are designed. This 252 Cf-source-driven power spectrum density measurement system can effectively obtain the nuclear tag parameters of nuclear random processes, such as correlation function and power spectrum density. (authors)

  11. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  12. RBAC Driven Least Privilege Architecture For Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Julie [Honeywell International Inc., Golden Valley, MN (United States); Markham, Mark [Honeywell International Inc., Golden Valley, MN (United States)

    2014-01-25

    The concept of role based access control (RBAC) within the IT environment has been studied by researchers and was supported by NIST (circa 1992). This earlier work highlighted the benefits of RBAC which include reduced administrative workload and policies which are easier to analyze and apply. The goals of this research were to expand the application of RBAC in the following ways. Apply RBAC to the control systems environment: The typical RBAC model within the IT environment is used to control a user’s access to files. Within the control system environment files are replaced with measurement (e.g., temperature) and control (e.g. valve) points organized as a hierarchy of control assets (e.g. a boiler, compressor, refinery unit). Control points have parameters (e.g., high alarm limit, set point, etc.) associated with them. The RBAC model is extended to support access to points and their parameters based upon roles while at the same time allowing permissions for the points to be defined at the asset level or point level directly. In addition, centralized policy administration with distributed access enforcement mechanisms was developed to support the distributed architecture of distributed control systems and SCADA; Extend the RBAC model to include access control for software and devices: The established RBAC approach is to assign users to roles. This work extends that notion by first breaking the control system down into three layers 1) users, 2) software and 3) devices. An RBAC model is then created for each of these three layers. The result is that RBAC can be used to define machine-to-machine policy enforced via the IP security (IPsec) protocol. This highlights the potential to use RBAC for machine-to-machine connectivity within the internet of things; and Enable dynamic policy based upon the operating mode of the system: The IT environment is generally static with respect to policy. However, large cyber physical systems such as industrial controls have various

  13. Measurable Control System Security through Ideal Driven Technical Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor

    2008-01-01

    The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based

  14. Process-driven selection of information systems for healthcare

    Science.gov (United States)

    Mills, Stephen F.; Yeh, Raymond T.; Giroir, Brett P.; Tanik, Murat M.

    1995-05-01

    Integration of networking and data management technologies such as PACS, RIS and HIS into a healthcare enterprise in a clinically acceptable manner is a difficult problem. Data within such a facility are generally managed via a combination of manual hardcopy systems and proprietary, special-purpose data processing systems. Process modeling techniques have been successfully applied to engineering and manufacturing enterprises, but have not generally been applied to service-based enterprises such as healthcare facilities. The use of process modeling techniques can provide guidance for the placement, configuration and usage of PACS and other informatics technologies within the healthcare enterprise, and thus improve the quality of healthcare. Initial process modeling activities conducted within the Pediatric ICU at Children's Medical Center in Dallas, Texas are described. The ongoing development of a full enterprise- level model for the Pediatric ICU is also described.

  15. Solvable Family of Driven-Dissipative Many-Body Systems

    Science.gov (United States)

    Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.

    2017-11-01

    Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.

  16. Design of a Hydraulic Motor System Driven by Compressed Air

    OpenAIRE

    Shaw, Dein; Yu, Jyun-Jhe; Chieh, Cheng

    2013-01-01

    This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power....

  17. Stochastic systems driven by alpha-stable noises

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Ditlevsen, P.

    1998-01-01

    with observed data. In particular the tailsof the observed response distributions may even for linear systems be more fat than the tails obtained for Gaussianwhite noise input. Also the excitation may show jumps that cannot be modeled by Gaussian white noise. The paper supports the possibility of using...... the larger class of so-calledalpha-stable white noises to provide a better fit. A geophysical application concerning ice age climate variations is described....

  18. Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1999-01-01

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication...... delays proposing four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments....

  19. Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2004-01-01

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication...... delays with four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments....

  20. Accelerator driven systems (ADS): A principal neutronics and transmutation potential

    International Nuclear Information System (INIS)

    Slessarev, I.

    1997-01-01

    An accelerator-based system using a beam of high energy protons to produce supplementary neutrons as a result of spallation processes in a target is investigated. The spallation neutrons are successively used to feed a subcritical blanket where they create a neutron surplus available for incineration of those long-lived toxic nuclei which require neutrons (long-lived fission products and minor actinides), and enhance the deterministic safety features for reactivity-type of accidents

  1. Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication...... delays proposing four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments...

  2. Design Tools for Dynamic, Data-Driven, Stream Mining Systems

    Science.gov (United States)

    2015-01-01

    growth in technologies for sensing and computation has contributed to large increases in the volume of data that must be managed and analyzed in many...recognition, speaker identification, pattern recognition) and wireless communication (e.g., GSM, digital radio, NFC , Bluetooth), as well as control...systems for performance and energy consumption. In Proceedings of the IEEE Real-Time Technology and Applications Symposium, pages 124–132, 2003. [49

  3. Large-Scale Analysis of Network Bistability for Human Cancers

    Science.gov (United States)

    Shiraishi, Tetsuya; Matsuyama, Shinako; Kitano, Hiroaki

    2010-01-01

    Protein–protein interaction and gene regulatory networks are likely to be locked in a state corresponding to a disease by the behavior of one or more bistable circuits exhibiting switch-like behavior. Sets of genes could be over-expressed or repressed when anomalies due to disease appear, and the circuits responsible for this over- or under-expression might persist for as long as the disease state continues. This paper shows how a large-scale analysis of network bistability for various human cancers can identify genes that can potentially serve as drug targets or diagnosis biomarkers. PMID:20628618

  4. The Necker-Zeno model for bistable perception.

    Science.gov (United States)

    Atmanspacher, Harald; Filk, Thomas

    2013-10-01

    A novel conceptual framework for theoretical psychology is presented and illustrated for the example of bistable perception. A basic formal feature of this framework is the non-commutativity of operations acting on mental states. A corresponding model for the bistable perception of ambiguous stimuli, the Necker-Zeno model, is sketched and some empirical evidence for it so far is described. It is discussed how a temporal non-locality of mental states, predicted by the model, can be understood and tested. © 2013 Cognitive Science Society, Inc.

  5. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    International Nuclear Information System (INIS)

    Wang Jiao; Gong Jiangbin

    2010-01-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter's butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  6. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    Science.gov (United States)

    Wang, Jiao; Gong, Jiangbin

    2010-02-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter’s butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  7. Electrical bistabilities and memory stabilities of nonvolatile bistable devices fabricated utilizing C60 molecules embedded in a polymethyl methacrylate layer

    International Nuclear Information System (INIS)

    Cho, Sung Hwan; Lee, Dong Ik; Jung, Jae Hun; Kim, Tae Whan

    2009-01-01

    Current-voltage (I-V) measurements on Al/fullerene (C 60 ) molecules embedded in polymethyl methacrylate/Al devices at 300 K showed a current bistability due to the existence of the C 60 molecules. The on/off ratio of the current bistability for the memory devices was as large as 10 3 . The retention time of the devices was above 2.5 x 10 4 s at room temperature, and cycling endurance tests on these devices indicated that the ON and OFF currents showed no degradation until 50 000 cycles. Carrier transport mechanisms for the nonvolatile bistable devices are described on the basis of the I-V experimental and fitting results.

  8. A cable-driven locomotor training system for restoration of gait in human SCI.

    Science.gov (United States)

    Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D

    2011-02-01

    A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. A European roadmap for developing accelerator driven systems (ADS) for nuclear waste incineration. Executive summary

    International Nuclear Information System (INIS)

    The European Technical Working Group on ADS

    2001-01-01

    In 1998 the Research Ministers of France, Italy and Spain, set up a Ministers' Advisors Group on the use of accelerator driven systems (ADS) for nuclear waste transmutation. This led to the establishing of a technical working group under the chairmanship of Prof. Carlo Rubbia to identify the critical technical issues and to prepare a 'Roadmap' for a demonstration programme to be performed within 12 years. In the following Roadmap, the technical working group (consisting of representatives from Austria, Belgium, Finland, France, Germany, Italy, Portugal, Spain, Sweden and the JRC) has identified the steps necessary to start the construction of an experimental accelerator driven system towards the end of the decade. This is considered as an essential prerequisite to assess the safe and efficient behaviour of such systems for a large-scale deployment for transmutation purposes in the first half of this century. The development and deployment of accelerator driven systems requires three steps: a comprehensive mid- and long-term R and D program, to develop the single elements and components of the system. This includes development of new fuels and fuel cycle systems; planning, design, construction and operation of an Experimental Accelerator Driven System for the demonstration of the concept; planning, design, construction and operation of a large size prototype accelerator driven systems with subsequent large-scale deployment. Following a first phase of R and D focused on the understanding of the basic principles of ADS (already partly underway), the programmes should be streamlined and focused on a practical demonstration of the key issues. These demonstrations should cover high intensity proton accelerators (beam currents in the range 1-20 mA), spallation targets of high power (of power in excess of 1 megawatt), and their effective coupling with a sub-critical core. Cost estimates are taken into account as well as the ADS activities in Japan and USA

  10. Two-level systems driven by large-amplitude fields

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, Franco

    2007-01-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems

  11. Antimatter Driven P-B11 Fusion Propulsion System

    Science.gov (United States)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2002-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  12. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    International Nuclear Information System (INIS)

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-01-01

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  13. Challenge-driven attention: interacting frontal and brainstem systems

    Directory of Open Access Journals (Sweden)

    Rajeev D S Raizada

    2008-03-01

    Full Text Available The world is an unpredictable place, presenting challenges that fl uctuate from moment to moment. However, the neural systems for responding to such challenges are far from fully understood. Using fMRI, we studied an audiovisual task in which the trials' diffi culty and onset times varied unpredictably. Two regions were found to increase their activation for challenging trials, with their activities strongly correlated: right frontal cortex and the brainstem. The frontal area matched regions found in previous human studies of cognitive control, and activated in a graded manner with increasing task diffi culty. The brainstem responded only to the most diffi cult trials, showing a phasic activity pattern paralleling locus coeruleus recordings in monkeys. These results reveal a bridge between animal and human studies, and suggest interacting roles for the brainstem and right frontal cortex: the brainstem may signal that an attentional challenge is occurring, while right frontal cortex allocates cognitive resources in response.

  14. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  15. Comparative Study on Photovoltaic Pumping Systems Driven by Different Motors Optimized with Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Abdelhak Bouchakour

    2017-06-01

    Full Text Available This study investigates the performance of three different photovoltaic (PV water pumping systems driven by three types of motors, namely a separately excited DC motor (DCM, an asynchronous motor (ASM, and a permanent magnet synchronous motor (PMSM, via a DC/DC buck-boost converter coupled to a centrifugal pump. The purpose of this study is to implement a fast and robust control for this type of a nonlinear system, controlled by sliding mode (SM. This paper presents an SM control technique for controlling a DC/DC buck-boost converter to transfer the maximum power delivered by the PV generator. Each component is studied and analyzed to simulate the global system in MATLAB/SIMULINK. The three systems are then compared to determine the overall effectiveness of the proposed command. The study concludes that the ASM-driven PV system yields highly favorable results and requires less maintenance compared with other systems.

  16. Data-driven modeling and real-time distributed control for energy efficient manufacturing systems

    International Nuclear Information System (INIS)

    Zou, Jing; Chang, Qing; Arinez, Jorge; Xiao, Guoxian

    2017-01-01

    As manufacturers face the challenges of increasing global competition and energy saving requirements, it is imperative to seek out opportunities to reduce energy waste and overall cost. In this paper, a novel data-driven stochastic manufacturing system modeling method is proposed to identify and predict energy saving opportunities and their impact on production. A real-time distributed feedback production control policy, which integrates the current and predicted system performance, is established to improve the overall profit and energy efficiency. A case study is presented to demonstrate the effectiveness of the proposed control policy. - Highlights: • A data-driven stochastic manufacturing system model is proposed. • Real-time system performance and energy saving opportunity identification method is developed. • Prediction method for future potential system performance and energy saving opportunity is developed. • A real-time distributed feedback control policy is established to improve energy efficiency and overall system profit.

  17. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester.

    Science.gov (United States)

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-09-28

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1 st and 2 nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures.

  18. Bistable flow spectral analysis. Repercussions on jet pumps

    International Nuclear Information System (INIS)

    Gavilan Moreno, C.J.

    2011-01-01

    Highlights: → The most important thing in this paper, is the spectral characterization of the bistable flow in a Nuclear Power Plant. → This paper goes deeper in the effect of the bistable flow over the jet pump and the induced vibrations. → The jet pump frequencies are very close to natural jet pump frequencies, in the 3rd and 6th mode. - Abstract: There have been many attempts at characterizing and predicting bistable flow in boiling water reactors (BWRs). Nevertheless, in most cases the results have only managed to develop models that analytically reproduce the phenomenon (). Modeling has been forensic in all cases, while the capacity of the model focus on determining the exclusion areas on the recirculation flow map. The bistability process is known by its effects given there is no clear definition of its causal process. In the 1980s, Hitachi technicians () managed to reproduce bistable flow in the laboratory by means of pipe geometry, similar to that which is found in recirculation loops. The result was that the low flow pattern is formed by the appearance of a quasi stationary, helicoidal vortex in the recirculation collector's branches. This vortex creates greater frictional losses than regions without vortices, at the same discharge pressure. Neither the behavior nor the dynamics of these vortices were characterized in this paper. The aim of this paper is to characterize these vortices in such a way as to enable them to provide their own frequencies and their later effect on the jet pumps. The methodology used in this study is similar to the one used previously when analyzing the bistable flow in tube arrays with cross flow (). The method employed makes use of the power spectral density function. What differs is the field of application. We will analyze a Loop B with a bistable flow and compare the high and low flow situations. The same analysis will also be carried out on the loop that has not developed the bistable flow (Loop A) at the same moments

  19. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    Energy Technology Data Exchange (ETDEWEB)

    Shewamare, Sisay, E-mail: sisayshewa20@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Mal' nev, V.N., E-mail: vadimnmalnev@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2012-12-15

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  20. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    International Nuclear Information System (INIS)

    Shewamare, Sisay; Mal'nev, V.N.

    2012-01-01

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.