Petrov, Blagovest; Vink, Jorick S.; Gräfener, Götz
2016-05-01
Luminous blue variables (LBVs) have been suggested to be the direct progenitors of supernova Types IIb and IIn, with enhanced mass loss prior to explosion. However, the mechanism of this mass loss is not yet known. Here, we investigate the qualitative behaviour of theoretical stellar wind mass loss as a function of Teff across two bi-stability jumps in blue supergiant regime and also in proximity to the Eddington limit, relevant for LBVs. To investigate the physical ingredients that play a role in the radiative acceleration we calculate blue supergiant wind models with the CMFGEN non-local thermodynamic equilibrium model atmosphere code over an effective temperature range between 30 000 and 8800 K. Although our aim is not to provide new mass-loss rates for BA supergiants, we study and confirm the existence of two bi-stability jumps in mass-loss rates predicted by Vink et al. However, they are found to occur at somewhat lower Teff (20 000 and 9000 K, respectively) than found previously, which would imply that stars may evolve towards lower Teff before strong mass loss is induced by the bi-stability jumps. When the combined effects of the second bi-stability jump and the proximity to Eddington limit are accounted for, we find a dramatic increase in the mass-loss rate by up to a factor of 30. Further investigation of both bi-stability jumps is expected to lead to a better understanding of discrepancies between empirical modelling and theoretical mass-loss rates reported in the literature, and to provide key inputs for the evolution of both normal AB supergiants and LBVs, as well as their subsequent supernova Type II explosions.
Petrov, Blagovest; Gräfener, Götz
2016-01-01
Luminous Blue Variables have been suggested to be the direct progenitors of supernova types IIb and IIn, with enhanced mass loss prior to explosion. However, the mechanism of this mass loss is not yet known. Here, we investigate the qualitative behaviour of theoretical stellar wind mass-loss as a function of Teff across two bi-stability jumps in blue supergiant regime and also in proximity to the Eddington limit, relevant for LBVs. To investigate the physical ingredients that play a role in the radiative acceleration we calculate blue supergiant wind models with the CMFGEN non-LTE model atmosphere code over an effective temperature range between 30000 and 8800 K. Although our aim is not to provide new mass-loss rates for BA supergiants, we study and confirm the existence of two bi-stability jumps in mass-loss rates predicted by Vink, de Koter, & Lamers (1999). However, they are found to occur at somewhat lower Teff (20000 and 9000 K, respectively) than found previously, which would imply that stars may ev...
Keszthelyi, Z.; Puls, J.; Wade, G. A.
2017-01-01
Context. Stellar evolution models of massive stars are very sensitive to the adopted mass-loss scheme. The magnitude and evolution of mass-loss rates significantly affect the main sequence evolution, and the properties of post-main sequence objects, including their rotational velocities. Aims: Driven by potential discrepancies between theoretically predicted and observationally derived mass-loss rates in the OB star range, we aim in particular to investigate the response to mass-loss rates that are lower than currently adopted, in parallel with the mass-loss behavior at the "first" bi-stability jump. Methods: We performed 1D hydrodynamical model calculations of single 20-60 M⊙ Galactic (Z = 0.014) stars where the effects of stellar winds are already significant in the main sequence phase. We have developed an experimental wind routine to examine the behavior and response of the models under the influence of different mass-loss rates. This observationally guided, simple and flexible wind routine is not a new mass-loss description but a useful tool based on the wind-momentum luminosity relation and other scaling relations, and provides a meaningful base for various tests and comparisons. Results: The main result of this study indicates a dichotomy between solutions of currently debated problems regarding mass-loss rates of hot massive stars. In a fully diffusive approach, and for commonly adopted initial rotational velocities, lower mass-loss rates than theoretically predicted require to invoke an additional source of angular momentum loss (either due to bi-stability braking, or yet unidentified) to brake down surface rotational velocities. On the other hand, a large jump in the mass-loss rates due to the bi-stability mechanism (a factor of 5-7 predicted by Vink et al. (2000, A&A, 362, 295), but a factor of 10-20 in modern models of massive stars) is challenged by observational results, and might be avoided if the early mass-loss rates agreed with the theoretically
The Missing Luminous Blue Variables and the Bistability Jump
N. Smith; J.S. Vink; A. de Koter
2004-01-01
We discuss an interesting feature of the distribution of luminous blue variables (LBVs) on the H-R diagram, and we propose a connection with the bistability jump seen in the winds of early-type supergiants. There appears to be a deficiency of quiescent LBVs on the S Doradus instability strip at lumi
Jump and pull-in dynamics of an electrically actuated bistable MEMS device
Ruzziconi, Laura
2014-09-01
This study analyzes a theoretical bistable MEMS device, which exhibits a considerable versatility of behavior. After exploring the coexistence of attractors, we focus on each rest position, and investigate the final outcome, when the electrodynamic voltage is suddenly applied. Our aim is to describe the parameter range where each attractor may practically be observed under realistic conditions, when an electric load is suddenly applied. Since disturbances are inevitably encountered in experiments and practice, a dynamical integrity analysis is performed in order to take them into account. We build the integrity charts, which examine the practical vulnerability of each attractor. A small integrity enhances the sensitivity of the system to disturbances, leading in practice either to jump or to dynamic pull-in. Accordingly, the parameter range where the device, subjected to a suddenly applied load, can operate in safe conditions with a certain attractor is smaller, and sometimes considerably smaller, than in the theoretical predictions. While we refer to a particular case-study, the approach is very general.
Model for polygonal hydraulic jumps
DEFF Research Database (Denmark)
Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas
2012-01-01
) near the free surface in the jump region. The model consists of mass conservation and radial force balance between hydrostatic pressure and viscous stresses on the roller surface. In addition, we consider the azimuthal force balance, primarily between pressure and viscosity, but also including...
Vellela, Melissa; Qian, Hong
2009-10-06
Schlögl's model is the canonical example of a chemical reaction system that exhibits bistability. Because the biological examples of bistability and switching behaviour are increasingly numerous, this paper presents an integrated deterministic, stochastic and thermodynamic analysis of the model. After a brief review of the deterministic and stochastic modelling frameworks, the concepts of chemical and mathematical detailed balances are discussed and non-equilibrium conditions are shown to be necessary for bistability. Thermodynamic quantities such as the flux, chemical potential and entropy production rate are defined and compared across the two models. In the bistable region, the stochastic model exhibits an exchange of the global stability between the two stable states under changes in the pump parameters and volume size. The stochastic entropy production rate shows a sharp transition that mirrors this exchange. A new hybrid model that includes continuous diffusion and discrete jumps is suggested to deal with the multiscale dynamics of the bistable system. Accurate approximations of the exponentially small eigenvalue associated with the time scale of this switching and the full time-dependent solution are calculated using Matlab. A breakdown of previously known asymptotic approximations on small volume scales is observed through comparison with these and Monte Carlo results. Finally, in the appendix section is an illustration of how the diffusion approximation of the chemical master equation can fail to represent correctly the mesoscopically interesting steady-state behaviour of the system.
Jumps and bi-stability in the phase-gain characteristics of a nonlinear parametric amplifier
DEFF Research Database (Denmark)
Neumeyer, Stefan; van de Looij, Ruud; Thomsen, Jon Juel
2014-01-01
This work experimentally investigates the impact of nonlinearity on macromechanical parametric amplification. For a strong cubic stiffness nonlinearity we observe jumps in gain (ratio of steady-state vibration amplitude of the externally and parametrically excited system, to vibration amplitude...
Stochastic sensitivity of a bistable energy model for visual perception
Pisarchik, Alexander N.; Bashkirtseva, Irina; Ryashko, Lev
2017-01-01
Modern trends in physiology, psychology and cognitive neuroscience suggest that noise is an essential component of brain functionality and self-organization. With adequate noise the brain as a complex dynamical system can easily access different ordered states and improve signal detection for decision-making by preventing deadlocks. Using a stochastic sensitivity function approach, we analyze how sensitive equilibrium points are to Gaussian noise in a bistable energy model often used for qualitative description of visual perception. The probability distribution of noise-induced transitions between two coexisting percepts is calculated at different noise intensity and system stability. Stochastic squeezing of the hysteresis range and its transition from positive (bistable regime) to negative (intermittency regime) are demonstrated as the noise intensity increases. The hysteresis is more sensitive to noise in the system with higher stability.
Bistable perception modeled as competing stochastic integrations at two levels.
Directory of Open Access Journals (Sweden)
Guido Gigante
2009-07-01
Full Text Available We propose a novel explanation for bistable perception, namely, the collective dynamics of multiple neural populations that are individually meta-stable. Distributed representations of sensory input and of perceptual state build gradually through noise-driven transitions in these populations, until the competition between alternative representations is resolved by a threshold mechanism. The perpetual repetition of this collective race to threshold renders perception bistable. This collective dynamics - which is largely uncoupled from the time-scales that govern individual populations or neurons - explains many hitherto puzzling observations about bistable perception: the wide range of mean alternation rates exhibited by bistable phenomena, the consistent variability of successive dominance periods, and the stabilizing effect of past perceptual states. It also predicts a number of previously unsuspected relationships between observable quantities characterizing bistable perception. We conclude that bistable perception reflects the collective nature of neural decision making rather than properties of individual populations or neurons.
Bistable dynamics of an insect–pathogen model
Indian Academy of Sciences (India)
Nayana Mukherjee; Swarup Poria
2015-07-01
We consider a model for insect–pathogen interaction where the insect population is divided into two groups, one group susceptible to disease and other resistant to disease. An individual born susceptible to or resistant to disease depends on the local population levels at the start of each generation. Here we consider density-dependent models of transmission because we characterize diseases that spread through environmental propagules or through random contact among individuals. We consider the case where the fraction of resistant individuals increases as the total population increases. White and Wilson (Theor. Popul. Biol. 56, 163 (1999)) have reported the results of density-dependent monotonic increase of resistance class by choosing a particular type of function. In this paper, we have chosen a class of monotonic density-dependent resistance functions and studied their effects on insect–pathogen dynamics. In particular, we have investigated the effects of different types of monotonic density-dependent resistance on the bistable nature of the model. Numerical simulation results are presented and interpreted.
The Voter Model and Jump Diffusion
Majmudar, Jimit; Baumgaertner, Bert O; Tyson, Rebecca C
2015-01-01
Opinions, and subsequently opinion dynamics, depend not just on interactions among individuals, but also on external influences such as the mass media. The dependence on local interactions, however, has received considerably more attention. In this paper, we use the classical voter model as a basis, and extend it to include external influences. We show that this new model can be understood using the theory of jump diffusion processes. We derive results pertaining to fixation probability and expected consensus time of the process, and find that the contribution of an external influence significantly dwarfs the contribution of the node-to-node interactions in terms of driving the social network to eventual consensus. This result suggests the potential importance of ``macro-level'' phenomena such as the media influence as compared to the ``micro-level'' local interactions, in modelling opinion dynamics.
Bistable dynamics underlying excitability of ion homeostasis in neuron models.
Directory of Open Access Journals (Sweden)
Niklas Hübel
2014-05-01
Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.
A Jump-Diffusion Model with Stochastic Volatility and Durations
DEFF Research Database (Denmark)
Wei, Wei; Pelletier, Denis
Market microstructure theories suggest that the durations between transactions carry information about volatility. This paper puts forward a model featuring stochastic volatility, stochastic conditional duration, and jumps to analyze high frequency returns and durations. Durations affect price...... jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We adopt a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional duration. We develop a MCMC algorithm for the inference on irregularly spaced multivariate processes with jumps....... The algorithm provides smoothed estimates of the latent variables such as spot volatility, conditional duration, jump times, and jump sizes. We apply this model to IBM data and find that volatility and conditional duration are interdependent. We also find that jumps play an important role in return variation...
Pattern formation in the bistable Gray-Scott model
DEFF Research Database (Denmark)
Mazin, W.; Rasmussen, K.E.; Mosekilde, Erik
1996-01-01
The paper presents a computer simulation study of a variety of far-from-equilibrium phenomena that can arise in a bistable chemical reaction-diffusion system which also displays Turing and Hopf instabilities. The Turing bifurcation curve and the wave number for the patterns of maximum linear grow...
Modeling financial contagion using mutually exciting jump processes
Aït-Sahalia, Y.; Cacho-Diaz, J.; Laeven, R.J.A.
2013-01-01
We propose a model designed to capture the dynamics of asset returns, with periods of crises that are characterized by contagion. In the model, a jump in one region of the world increases the intensity of jumps both in the same region (self-excitation) as well as in other regions (mutual
Modeling financial contagion using mutually exciting jump processes
Aït-Sahalia, Y.; Cacho-Diaz, J.; Laeven, R.J.A.
2015-01-01
We propose a model to capture the dynamics of asset returns, with periods of crises that are characterized by contagion. In the model, a jump in one region of the world increases the intensity of jumps both in the same region (self-excitation) as well as in other regions (cross-excitation),
Feller Property for a Special Hybrid Jump-Diffusion Model
Directory of Open Access Journals (Sweden)
Jinying Tong
2014-01-01
Full Text Available We consider the stochastic stability for a hybrid jump-diffusion model, where the switching here is a phase semi-Markovian process. We first transform the process into a corresponding jump-diffusion with Markovian switching by the supplementary variable technique. Then we prove the Feller and strong Feller properties of the model under some assumptions.
Optically levitated nanoparticle as a model system for stochastic bistable dynamics
Ricci, F.; Rica, R. A.; Spasenović, M.; Gieseler, J.; Rondin, L.; Novotny, L.; Quidant, R.
2017-05-01
Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.
Intrinsic Optical Bistability in a Strongly-Driven Rydberg Ensemble
de Melo, Natalia R; Sibalic, Nikola; Kondo, Jorge M; Adams, Charles S; Weatherill, Kevin J
2016-01-01
We observe and characterize intrinsic optical bistability in a dilute Rydberg vapor. The bistability is characterized by sharp jumps between states of low and high Rydberg occupancy with jump up and down positions displaying hysteresis depending on the direction in which the control parameter is changed. We find that the shift in frequency of the jump point scales with the fourth power of the principal quantum number. Also, the width of the hysteresis window increases with increasing principal quantum number, before reaching a peak and then closing again. The experimental results are consistent with predictions from a simple theoretical model based on semiclassical Maxwell-Bloch equations including the effect of broadening and frequency shifts. These results provide insight to the dynamics of driven dissipative systems.
Jump diffusion models and the evolution of financial prices
Figueiredo, Annibal; de Castro, Marcio T.; da Silva, Sergio; Gleria, Iram
2011-08-01
We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior.
Jump diffusion models and the evolution of financial prices
Energy Technology Data Exchange (ETDEWEB)
Figueiredo, Annibal; Castro, Marcio T. de [Institute of Physics, University of Brasilia (Brazil); Silva, Sergio da [Department of Economics, Federal University of Santa Catarina (Brazil); Gleria, Iram, E-mail: iram@pq.cnpq.br [Institute of Physics, Federal University of Alagoas (Brazil)
2011-08-08
We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior. -- Highlights: → We analyze a stochastic model to describe the evolution of financial prices. → The stochastic term is considered as a sum of the Wiener noise and a jump process. → The process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. → We extend the De Finetti functions to a generalized nonlinear model.
Stochastic mutualism model with Lévy jumps
Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed
2017-02-01
In this paper, we consider a stochastic mutualism model with Lévy jumps. First of all, we show that the positive solution of the system is stochastically ultimate bounded. Then under a simple assumption, we establish sufficient and necessary conditions for the stochastic permanence and extinction of the system. The results show an important property of the Lévy jumps: they are unfavorable for the permanence of the species. Moreover, when there are no Lévy jumps, we show that there is a unique ergodic stationary distribution of the corresponding system under certain conditions. Some numerical simulations are introduced to validate the theoretical results.
Pricing Participating Products under a Generalized Jump-Diffusion Model
Directory of Open Access Journals (Sweden)
Tak Kuen Siu
2008-01-01
Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.
Biological Jumping Mechanism Analysis and Modeling for Frog Robot
Institute of Scientific and Technical Information of China (English)
Meng Wang; Xi-zhe Zang; Ji-zhuang Fan; Jie Zhao
2008-01-01
This paper presents a mechanical model of jumping robot based on the biological mechanism analysis of frog. By biological observation and kinematic analysis the frog jump is divided into take-off phase, aerial phase and landing phase. We find the similar trajectories of hindlimb joints during jump, the important effect of foot during take-off and the role of forelimb in supporting the body. Based on the observation, the frog jump is simplified and a mechanical model is put forward. The robot leg is represented by a 4-bar spring/linkage mechanism model, which has three Degrees of Freedom (DOF) at hip joint and one DOF (passive) at tarsometatarsal joint on the foot. The shoulder and elbow joints each has one DOF for the balancing function of arm.The ground reaction force of the model is analyzed and compared with that of frog during take-off. The results show that the model has the same advantages of low likelihood of premature lift-off and high efficiency as the frog. Analysis results and the model can be employed to develop and control a robot capable of mimicking the jumping behavior of flog.
Dynamics and bistability in a reduced model of the lac operon
Yildirim, Necmettin; Santillán, Moisés; Horike, Daisuke; Mackey, Michael C.
2004-06-01
It is known that the lac operon regulatory pathway is capable of showing bistable behavior. This is an important complex feature, arising from the nonlinearity of the involved mechanisms, which is essential to understand the dynamic behavior of this molecular regulatory system. To find which of the mechanisms involved in the regulation of the lac operon is the origin of bistability, we take a previously published model which accounts for the dynamics of mRNA, lactose, allolactose, permease and β-galactosidase involvement and simplify it by ignoring permease dynamics (assuming a constant permease concentration). To test the behavior of the reduced model, three existing sets of data on β-galactosidase levels as a function of time are simulated and we obtain a reasonable agreement between the data and the model predictions. The steady states of the reduced model were numerically and analytically analyzed and it was shown that it may indeed display bistability, depending on the extracellular lactose concentration and growth rate.
Modelling and Feedback Control of Bistability in a Turbulent Bluff Body Wake
Brackston, Rowan; Wynn, Andrew; Garcia de La Cruz, Juan Marcos; Rigas, Georgios; Morrison, Jonathan
2016-11-01
The turbulent wake behind many three-dimensional bluff bodies exhibits a bistable behaviour, the properties of which has been the subject of significant recent interest. This feature of the wake is known to contribute to the pressure drag on the body and is relevant for geometries representative of many road vehicles. Furthermore, due to its high visibility from surface mounted pressure measurements, it is a feature that may be observed and controlled in real-time. In Brackston et al. we have recently demonstrated such a feedback control strategy that aims to suppress the bistable feature of the wake. Starting from a stochastic modelling approach, we identify a linearised model for this mode of the flow, obtaining parameters via a system identification. The identified model is then used to design the feedback controller, with the aim of restoring the flow to the unstable, symmetric state. The controller is implemented experimentally at Re 2 . 3 ×105 and is found to both suppress the bistability of the flow and reduce the drag on the body. Furthermore, the control system is found to have a positive energy balance, providing a key demonstration of efficient feedback control applied to a 3D bluff body wake at turbulent Reynolds numbers.
Eversion of bistable shells under magnetic actuation: a model of nonlinear shapes
Seffen, Keith A.; Vidoli, Stefano
2016-06-01
We model in closed form a proven bistable shell made from a magnetic rubber composite material. In particular, we incorporate a non-axisymmetrical displacement field, and we capture the nonlinear coupling between the actuated shape and the magnetic flux distribution around the shell. We are able to verify the bistable nature of the shell and we explore its eversion during magnetic actuation. We show that axisymmetrical eversion is natural for a perfect shell but that non-axisymmetrical eversion rapidly emerges under very small initial imperfections, as observed in experiments and in a computational analysis. We confirm the non-uniform shapes of shell and we study the stability of eversion by considering how the landscape of total potential and magnetic energies of the system changes during actuation.
Towards an optimal model for a bistable nematic liquid crystal display device
Cummings, L. J.
2013-03-13
Bistable liquid crystal displays offer the potential for considerable power savings compared with conventional (monostable) LCDs. The existence of two stable field-free states that are optically distinct means that contrast can be maintained in a display without an externally applied electric field. An applied field is required only to switch the device from one state to the other, as needed. In this paper we examine a theoretical model of a possible bistable device, originally proposed by Cummings and Richardson (Euro J Appl Math 17:435-463 2006), and explore means by which it may be optimized, in terms of optical contrast, manufacturing considerations, switching field strength, and switching times. The compromises inherent in these conflicting design criteria are discussed. © 2013 Springer Science+Business Media Dordrecht.
DEFF Research Database (Denmark)
Sönmez, Ümit; Tutum, Cem Celal
2008-01-01
In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams......, and a slider. The kinematic analysis of this new mechanism is studied, using nonlinear Elastica buckling beam theory, the PRBM of a large deflecting cantilever beam, the vector loop closure equations, and numerically solving nonlinear algebraic equations. A design method of the bistable mechanism...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....
Mishra, L.
2015-05-01
Bistability switching between two optical signals has been studied theoretically utilizing the concept of cross absorption modulation in a vertical cavity semiconductor saturable absorber (VCSSA). The probe beam is fixed at a wavelength other than the low power cavity resonance wavelength, which exhibits bistable characteristic by controlling the power of a pump beam (λpump≠λprobe). The cavity nonlinear effects that arises simultaneously from the excitonic absorption bleaching, and the carrier induced nonlinear index change has been considered in the model. The high power absorption in the active region introduces thermal effects within the nonlinear cavity due to which the effective cavity length changes. This leads to a red-shift of the cavity resonance wavelength, which results a change in phase of the optical fields within the cavity. In the simulation, the phase-change due to this resonance shifting is considered to be constant over time, and it assumes the value corresponding to the maximum input power. Further, an initial phase detuning of the probe beam has been considered to investigate its effect on switching. It is observed from the simulated results that, the output of the probe beam exhibits either clockwise or counter-clockwise bistability, depending on its initial phase detuning.
Tree cover bistability in the MPI Earth system model due to fire-vegetation feedback
Lasslop, Gitta; Brovkin, Victor; Kloster, Silvia; Reick, Christian
2015-04-01
The global distribution of tree cover is mainly limited by precipitation and temperature. Within tropical ecosystems different tree cover values have been observed in regions with similar climate. Satellite data even revealed a lack of ecosystems with tree coverage around 60% and dominant tree covers of 20% and 80%. Conceptual models have been used to explain this tree cover distribution and base it on a bistability in tree cover caused by fire-vegetation interactions or competition between trees and grasses. Some ecological models also show this property of multiple stable tree covers, but it remains unclear which mechanism is the cause for this behaviour. Vegetation models used in climate simulations usually use simple approaches and were criticised to neglect such ecological theories and misrepresent tropical tree cover distribution and dynamics. Here we show that including the process based fire model SPITFIRE generated a bistability in tree cover in the land surface model JSBACH. Previous model versions showed only one stable tree cover state. Using a conceptual model we can show that a bistability can occur due to a feedback between grasses and fire. Grasses and trees are represented in the model based on plant functional types. With respect to fire the main difference between grasses and trees is the fuel characteristics. Grass fuels are smaller in size, and have a higher surface area to volume ratio. These grass fuels dry faster increasing their flammability which leads to a higher fire rate of spread. Trees are characterized by coarse fuels, which are less likely to ignite and rather suppress fire. Therefore a higher fraction of grasses promotes fire, fire kills trees and following a fire, grasses establish faster. This feedback can stabilize ecosystems with low tree cover in a low tree cover state and systems with high tree cover in a high tree cover state. In previous model versions this feedback was absent. Based on the new JSBACH model driven with
Directory of Open Access Journals (Sweden)
Paul Smolen
2015-01-01
Full Text Available Memories are stored, at least partly, as patterns of strong synapses. Given molecular turnover, how can synapses maintain strong for the years that memories can persist? Some models postulate that biochemical bistability maintains strong synapses. However, bistability should give a bimodal distribution of synaptic strength or weight, whereas current data show unimodal distributions for weights and for a correlated variable, dendritic spine volume. Thus it is important for models to simulate both unimodal distributions and long-term memory persistence. Here a model is developed that connects ongoing, competing processes of synaptic growth and weakening to stochastic processes of receptor insertion and removal in dendritic spines. The model simulates long-term (>1 yr persistence of groups of strong synapses. A unimodal weight distribution results. For stability of this distribution it proved essential to incorporate resource competition between synapses organized into small clusters. With competition, these clusters are stable for years. These simulations concur with recent data to support the “clustered plasticity hypothesis” which suggests clusters, rather than single synaptic contacts, may be a fundamental unit for storage of long-term memory. The model makes empirical predictions and may provide a framework to investigate mechanisms maintaining the balance between synaptic plasticity and stability of memory.
Wave-splitting in the bistable Gray-Scott model
DEFF Research Database (Denmark)
Rasmussen, K.E.; Mazin, W.; Mosekilde, Erik
1996-01-01
The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator concentra......The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator...
Energy Technology Data Exchange (ETDEWEB)
De Paula, A.V.; Moeller, S.V., E-mail: vagtinski@mecanica.ufrgs.br, E-mail: svmoller@ufrgs.br [UFRGS - Univ. Federal do Rio Grande do Sul, PROMEC - Programa de Pos Graduacao em Engenharia Mecanica, Porto Alegre, RS (Brazil)
2011-07-01
This paper presents a study of the bistable phenomenon which occurs in the turbulent flow impinging on circular cylinders placed side-by-side. Time series of axial and transversal velocity obtained with the constant temperature hot wire anemometry technique in an aerodynamic channel are used as input data in a finite mixture model, to classify the observed data according to a family of probability density functions. Wavelet transforms are applied to analyze the unsteady turbulent signals. Results of flow visualization show a predominantly two-dimensional behavior. A double-well energy model is suggested to describe the behavior of the bistable phenomenon in this case. (author)
A characterization of oil price behavior. Evidence from jump models
Energy Technology Data Exchange (ETDEWEB)
Gronwald, Marc [Munich Univ. (Germany). Ifo Institute - Leibniz Institute for Economic Research
2011-11-15
This paper is concerned with the statistical behavior of oil prices in two ways. It, firstly, applies a combined jump GARCH in order to characterize the behavior of daily, weekly as well as monthly oil prices. Secondly, it relates its empirical results to implications of Hotelling-type resource extraction models. The empirical analysis shows that oil prices are characterized by GARCH as well as conditional jump behavior and that a considerable portion of the total variance is triggered by sudden extreme price movements. This finding implies that, first, oil price signals are not reliable and, as a consequence, both finding optimal extraction paths and decisions regarding the transmission to alternative technologies are likely to be compromised. Second, this behavior is in stark contrast to the notion of deterministic trends in the price of oil. (orig.)
Directory of Open Access Journals (Sweden)
Vernon Suzanne D
2007-02-01
Full Text Available Abstract Background The body's primary stress management system is the hypothalamic pituitary adrenal (HPA axis. The HPA axis responds to physical and mental challenge to maintain homeostasis in part by controlling the body's cortisol level. Dysregulation of the HPA axis is implicated in numerous stress-related diseases. Results We developed a structured model of the HPA axis that includes the glucocorticoid receptor (GR. This model incorporates nonlinear kinetics of pituitary GR synthesis. The nonlinear effect arises from the fact that GR homodimerizes after cortisol activation and induces its own synthesis in the pituitary. This homodimerization makes possible two stable steady states (low and high and one unstable state of cortisol production resulting in bistability of the HPA axis. In this model, low GR concentration represents the normal steady state, and high GR concentration represents a dysregulated steady state. A short stress in the normal steady state produces a small perturbation in the GR concentration that quickly returns to normal levels. Long, repeated stress produces persistent and high GR concentration that does not return to baseline forcing the HPA axis to an alternate steady state. One consequence of increased steady state GR is reduced steady state cortisol, which has been observed in some stress related disorders such as Chronic Fatigue Syndrome (CFS. Conclusion Inclusion of pituitary GR expression resulted in a biologically plausible model of HPA axis bistability and hypocortisolism. High GR concentration enhanced cortisol negative feedback on the hypothalamus and forced the HPA axis into an alternative, low cortisol state. This model can be used to explore mechanisms underlying disorders of the HPA axis.
Optical bistability controlling light with light
Gibbs, Hyatt
1985-01-01
Optical Bistability: Controlling Light with Light focuses on optical bistability in nonlinear optical systems. Emphasis is on passive (non-laser) systems that exhibit reversible bistability with input intensity as the hysteresis variable, along with the physics and the potential applications of such systems for nonlinear optical signal processing. This book consists of seven chapters and begins with a historical overview of optical bistability in lasers and passive systems. The next chapter describes steady-state theories of optical bistability, including the Bonifacio-Lugiato model, as we
Bistability properties of magnetic micro-nanowires
Baranov, S. A.; Yaltychenko, O. V.; Kanarovskii, E. Yu.
2016-12-01
A mathematical model that describes the process of the reversal magnetization of an amorphous microwire with the help of a large Barkhausen jump is proposed. The model has been estimated with regard to the optimization of the signal-tonoise ratio. Using nonlinear model, we studied the physical factors that cause the fluctuations of the start field. Based on the results of numerical experiments, the new data on the behavior of the start field under different conditions of a switching in a bistable ferromagnetic, including the conditions of high-frequency swapping, have been obtained and compared to the existing data. The results obtained do not contradict the existing physical concepts concerning a domain wall motion and are more general and realistic in a comparison with the previous model.
Theoretical Modeling of Internal Hydraulic Jump in Density Currents
Firoozabadi, Bahar; Aryanfar, Asghar; Afshin, Hossein
2013-01-01
In this paper, we propose an analytical framework for internal hydraulic jumps. Density jumps or internal hydraulic jumps occur when a supper critical flow of water discharges into a stagnant layer of water with slightly different density. The approach used here is control volume method which is also used to analyze ordinary hydraulic jumps. The important difference here is that entrainment is taken into account. Using conservation equations with the aid of some simplifying assumptions we come to an equation that gives jump downstream height as function of jump upstream characteristics and the entrainment. To determine the magnitude of downstream height we use an experimental equation for calculating the entrainment. Finally we verify our framework by comparing the height that we gain from the derived equation with some experimental data.
The naked toy model of a jumping ring
Donoso, Guillermo; Ladera, Celso L.
2014-01-01
We present a comprehensive analytical model of the well-known jumping ring—in fact an improved version of that system--as well as the experimental results that validate the model. Particular attention is paid to the magnetic driving force, whose explicit dependences upon the phase, amplitude and frequency of the exciting current we manage to separate experimentally and plot, so that it becomes evident how the magnetic force on the ring actually arises and evolves in time. We are able to measure not only the large Foucault currents that arise in the ring, but also the magnetic field generated by the ring itself in spite of the presence of the comparable magnetic field in which the ring moves.
Indicators of Arctic Sea Ice Bistability in Climate Model Simulations and Observations
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Indicators of Arctic Sea Ice Bistability in Climate...possibility that the climate system supports multiple Arctic sea ice states that are relevant for the evolution of sea ice during the next several...the most relevant scalar quantities related to the hemisphere-scale Arctic sea ice cover that indicate the presence of bistability, as well as the
Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion
Directory of Open Access Journals (Sweden)
Dan Li
2014-01-01
Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.
Energy Technology Data Exchange (ETDEWEB)
Paula, A.V. de, E-mail: vagtinski@mecanica.ufrgs.br [PROMEC – Programa de Pós Graduação em Engenharia Mecânica, UFRGS – Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Möller, S.V., E-mail: svmoller@ufrgs.br [PROMEC – Programa de Pós Graduação em Engenharia Mecânica, UFRGS – Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)
2013-11-15
This paper presents a study of the bistable phenomenon which occurs in the turbulent flow impinging on circular cylinders placed side-by-side. Time series of axial and transversal velocity obtained with the constant temperature hot wire anemometry technique in an aerodynamic channel are used as input data in a finite mixture model, to classify the observed data according to a family of probability density functions. Wavelet transforms are applied to analyze the unsteady turbulent signals. Results of flow visualization show that the flow is predominantly two-dimensional. A double-well energy model is suggested to describe the behavior of the bistable phenomenon in this case. -- Highlights: ► Bistable flow on two parallel cylinders is studied with hot wire anemometry as a first step for the application on the analysis to tube bank flow. ► The method of maximum likelihood estimation is applied to hot wire experimental series to classify the data according to PDF functions in a mixture model approach. ► Results show no evident correlation between the changes of flow modes with time. ► An energy model suggests the presence of more than two flow modes.
Bistability, mushrooms, and isolas
Ganapathisubramanian, N.; Showalter, Kenneth
1984-05-01
The iodate oxidation of arsenous acid exhibits single-hysteresis bistability in a continuous flow stirred tank reactor. Other patterns of multiple stationary states including mushrooms and isolas are exhibited by this system when a constant flow of solvent is introduced to the CSTR in addition to the usual flow of reactants. A simple empirical rate law model provides a near quantitative description of the behavior. This model is analyzed and compared to other model systems.
Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps
Yu, Jingyi; Liu, Meng
2017-09-01
In this paper, a three-species stochastic food-chain model with Lévy jumps is proposed and analyzed. Sharp sufficient criteria for the existence and uniqueness of an ergodic stationary distribution are established. The effects of Lévy jumps on the existence of the stationary distribution are revealed: in some cases, the Lévy jumps could make the stationary distribution appear, while in some cases, the Lévy jumps could make the stationary distribution disappear. Some numerical simulations are introduced to illustrate the theoretical results.
Stability and bistability in a one-dimensional model of coastal foredune height
Goldstein, Evan B.; Moore, Laura J.
2016-05-01
On sandy coastlines, foredunes provide protection from coastal storms, potentially sheltering low areas—including human habitat—from elevated water level and wave erosion. In this contribution we develop and explore a one-dimensional model for coastal dune height based on an impulsive differential equation. In the model, coastal foredunes continuously grow in a logistic manner as the result of a biophysical feedback and they are destroyed by recurrent storm events that are discrete in time. Modeled dunes can be in one of two states: a high "resistant-dune" state or a low "overwash-flat" state. The number of stable states (equilibrium dune heights) depends on the value of two parameters, the nondimensional storm frequency (the ratio of storm frequency to the intrinsic growth rate of dunes) and nondimensional storm magnitude (the ratio of total water level during storms to the maximum theoretical dune height). Three regions of phase space exist (1) when nondimensional storm frequency is small, a single high resistant-dune attracting state exists; (2) when both the nondimensional storm frequency and magnitude are large, there is a single overwash-flat attracting state; (3) within a defined region of phase space model dunes exhibit bistable behavior—both the resistant-dune and the low overwash-flat states are stable. Comparisons to observational studies suggest that there is evidence for each state to exist independently, the coexistence of both states (i.e., segments of barrier islands consisting of overwash-flats and segments of islands having large dunes that resist erosion by storms), as well as transitions between states.
DEFF Research Database (Denmark)
Bollerslev, Tim; Andersen, Torben G.; Diebold, Francis X.
A rapidly growing literature has documented important improvements in financial return volatility measurement and forecasting via use of realized variation measures constructed from high-frequency returns coupled with simple modeling procedures. Building on recent theoretical results in Barndorff...... bond yield, we find that jumps are both highly prevalent and distinctly less persistent than the continuous sample path variation process. Moreover, many jumps appear directly associated with specific macroeconomic news announcements. Separating jump from non-jump movements in a simple...... but sophisticated volatility forecasting model, we find that almost all of the predictability in daily, weekly, and monthly return volatilities comes from the non-jump component. Our results thus set the stage for a number of interesting future econometric developments and important financial applications...
Asymptotic behavior of stochastic Gilpin-Ayala mutualism model with jumps
Directory of Open Access Journals (Sweden)
Xinhong Zhang
2013-07-01
Full Text Available This article concerns the study of stochastic Gilpin-Ayala mutualism models with white noise and Poisson jumps. Firstly, an explicit solution for one-dimensional Gilpin-Ayala mutualism model with jumps is obtained and the asymptotic pathwise behavior is analyzed. Then, sufficient conditions for the existence of global positive solutions, stochastically ultimate boundedness and stochastic permanence are established for the n-dimensional model. Asymptotic pathwise behavior of n-dimensional Gilpin-Ayala mutualism model with jumps is also discussed. Finally numerical examples are introduced to illustrate the results developed.
Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie
2016-01-01
The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.
Switching between bistable states in a discrete nonlinear model with long-range dispersion
DEFF Research Database (Denmark)
Johansson, Magnus; Gaididei, Yuri B.; Christiansen, Peter Leth
1998-01-01
In the framework of a discrete nonlinear Schrodinger equation with long-range dispersion, we propose a general mechanism for obtaining a controlled switching between bistable localized excitations. We show that the application of a spatially symmetric kick leads to the excitation of an internal...
Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling
Wang, Hongyan; Tang, Lihua
2017-03-01
The operating bandwidth of energy harvesters is one main concern in vibration energy harvesting due to the random and time-varying nature of most vibration sources. Recent research efforts have been made to address this issue including exploiting multimodal structures and nonlinear dynamics. These ideas have yielded some exciting results to leverage the broadband performance. Hybrid configurations combining these ideas are expected to provide an even better operating bandwidth and yet to be studied. In this paper, a bistable two-degree-of-freedom (2-DOF) piezoelectric energy harvester (PEH) with magnetic coupling is proposed, in which a linear parasitic oscillator attached to the main energy harvesting beam is used to generate two resonant peaks and the magnetic coupling is used to generate nonlinear dynamics, thus to achieve broadband electrical outputs. A nonlinear electromechanical model of the proposed harvester is established and the parametric study is conducted for various parasitic oscillator configurations. Experiment is subsequently performed to validate the theoretical analysis. The results indicate that nonlinear responses can appear at any of the two peaks or at both. One strong nonlinear peak in addition to a quasi-linear peak can be achieved by adequate adjustment of the parasitic oscillator. This is advantageous over the optimal linear 2-DOF PEH in terms of wider bandwidth thanks to the involved nonlinear dynamics. In addition, the load resistance has significant influence around the peak with strong nonlinear responses, resulting in evident peak shift. The best power output is accompanied with a shrunk bandwidth due to the peak shift.
A Directed Continuous Time Random Walk Model with Jump Length Depending on Waiting Time
Directory of Open Access Journals (Sweden)
Long Shi
2014-01-01
Full Text Available In continuum one-dimensional space, a coupled directed continuous time random walk model is proposed, where the random walker jumps toward one direction and the waiting time between jumps affects the subsequent jump. In the proposed model, the Laplace-Laplace transform of the probability density function P(x,t of finding the walker at position x at time t is completely determined by the Laplace transform of the probability density function φ(t of the waiting time. In terms of the probability density function of the waiting time in the Laplace domain, the limit distribution of the random process and the corresponding evolving equations are derived.
Modeling and forecasting electricity price jumps in the Nord Pool power market
DEFF Research Database (Denmark)
Knapik, Oskar
extreme prices and forecasting of the price jumps is crucial for risk management and market design. In this paper, we consider the problem of the impact of fundamental price drivers on forecasting of price jumps in NordPool intraday market. We develop categorical time series models which take into account...... i) price drivers, ii) persistence, iii) seasonality of electricity prices. The models are shown to outperform commonly-used benchmark. The paper shows how crucial for price jumps forecasting is to incorporate additional knowledge on price drivers like loads, temperature and water reservoir level...
What moves the European carbon market? Insights from conditional jump models
Energy Technology Data Exchange (ETDEWEB)
Gronwald, Marc; Ketterer, Janina [Munich Univ. (Germany). Ifo Institute - Leibniz Institute for Economic Research
2012-04-15
This paper is concerned with carbon price volatility and the underlying causes of large price movements in the European emissions trading market. Based on the application of a combined jump-GARCH model the behavior of EUA prices is characterized. The jump- GARCH model explains the unsteady carbon price movement well and, moreover, shows that between 40 and 60 percent of the carbon price variance are triggered by jumps. Information regarding EUA supply and news from international carbon markets are identified as important drivers of these price spikes. These results can lead regulators the way if smoother carbon prices are desired.
DEFF Research Database (Denmark)
Sannino, Francesco
2013-01-01
We propose an alternative paradigm to the conjectured Miransky scaling potentially underlying the physics describing the transition from the conformally broken to the conformally restored phase when tuning certain parameters such as the number of flavors in gauge theories. According to the new...... paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....
Energy Technology Data Exchange (ETDEWEB)
Eskandari-asl, Amir, E-mail: amir.eskandari.asl@gmail.com
2016-09-15
We consider a single impurity Anderson model (SIAM) in which the quantum dot(QD) is strongly coupled to a phonon bath in polaron regime. This coupling results in an effective e-e attraction. By computing the self energies using a current conserving approximation which is up to second order in this effective attraction, we show that if the interaction is strong enough, in non particle-hole (PH) symmetric case, the system would be bi-stable and we have hysteresis loop in the I–V characteristic. Moreover, the system shows negative differential conductance in some bias voltage intervals.
Eskandari-asl, Amir
2016-09-01
We consider a single impurity Anderson model (SIAM) in which the quantum dot(QD) is strongly coupled to a phonon bath in polaron regime. This coupling results in an effective e-e attraction. By computing the self energies using a current conserving approximation which is up to second order in this effective attraction, we show that if the interaction is strong enough, in non particle-hole (PH) symmetric case, the system would be bi-stable and we have hysteresis loop in the I-V characteristic. Moreover, the system shows negative differential conductance in some bias voltage intervals.
Explaining the level of credit spreads: Option-implied jump risk premia in a firm value model
Cremers, K.J.M.; Driessen, J.; Maenhout, P.
2008-01-01
We study whether option-implied jump risk premia can explain the high observed level of credit spreads. We use a structural jump-diffusion firm value model to assess the level of credit spreads generated by option-implied jump risk premia. Prices and returns of equity index and individual options
Long-Term Behaviors of Stochastic Interest Rate Models with Jumps and Memory
Bao, Jianhai
2011-01-01
In this paper we show the convergence of the long-term return $t^{-\\mu}\\int_0^tX(s)\\d s$ for some $\\mu\\geq1$, where $X$ is the short-term interest rate which follows an extension of Cox-Ingersoll-Ross type model with jumps and memory, and, as an application, we also investigate the corresponding behavior of two-factor Cox-Ingersoll-Ross model with jumps and memory
The hydraulic jump in radially spreading flow: A new model and new experimental data
Blackford, B. L.
1996-02-01
A new model for the hydraulic jump in radially spreading flow is presented. The equation of motion for a liquid annulus spreading out under the influence of hydrostatic pressure gradient and Frictional drag is developed. The resulting nonlinear differential equation for the liquid depth, h(r), is solved by computer simulation. The jump is assumed to begin when the laminar flow is engulfed by the underlying boundary layer liquid, as suggested recently in the literature. This complicated mixing process is crudely modeled by a drag term which slows the flow and initiates a positive feedback mechanism culminating at a new critical depth, beyond which the depth increases asymptotically to a final value. The model predicts a new relationship between the laminar flow depth just before the jump and the final depth. An experimental apparatus was built to make detailed measurements of the depth h(r), both in the region before the jump and beyond the jump. The theoretical predictions were compared to the experimental data, and gave surprisingly good agreement by suitable adjustment of the two parameters k and C of the model. The parameter k determines the growth rate of the boundary layer thickness, and C determines the drag force. The results suggest that the usual textbook assumption of zero momentum loss across the jump is not appropriate for this type of hydraulic jump. The case of a hydraulic jump in the absence of gravity is considered also and a much different behavior is predicted, which could be tested by experiment in a microgravity environment.
Research on the Price Features of Oil Stochastic Model Based on the Continuous Jump Model
Directory of Open Access Journals (Sweden)
Hou Mengmeng
2017-01-01
Full Text Available Aiming at calculating the price changes under the price features of oil stochastic model, the continuous jump model is proposed in this paper for data processing. The procedure is flexible, may be used with market prices of any oil contingent claim with closed form pricing solution, and easily deals with missing data problems. The results show that the accuracy can thus be improved overall the proposed system substantially.
Hard-sphere interactions in velocity-jump models
Franz, Benjamin; Taylor-King, Jake P.; Yates, Christian; Erban, Radek
2016-07-01
Group-level behavior of particles undergoing a velocity-jump process with hard-sphere interactions is investigated. We derive N -particle transport equations that include the possibility of collisions between particles and apply different approximation techniques to get expressions for the dependence of the collective diffusion coefficient on the number of particles and their diameter. The derived approximations are compared with numerical results obtained from individual-based simulations. The theoretical results compare well with Monte Carlo simulations providing the excluded-volume fraction is small.
Hard-sphere interactions in velocity jump models
Franz, Benjamin; Yates, Christian; Erban, Radek
2014-01-01
Group-level behaviour of particles undergoing a velocity jump process with hard-sphere interactions is investigated. We derive $N$-particle transport equations that include the possibility of collisions between particles and apply different approximation techniques to get expressions for the dependence of the collective diffusion coefficient on the number of particles and their diameter. The derived approximations are compared with numerical results obtained from individual-based simulations. The theoretical results compare well with Monte Carlo simulations providing the excluded volume fraction is small.
Transcriptional delay stabilizes bistable gene networks
Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R.
2014-01-01
Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner. PMID:23952450
Modelling of liquid flow after a hydraulic jump on a rotating disk prior to centrifugal atomization
Zhao, Y. Y.; Dowson, A. L.; Jacobs, M. H.
2000-01-01
This paper describes a simplified numerical model which is used to calculate the height distribution, and the radial and tangential velocities of a liquid on a rotating disk after a hydraulic jump and prior to centrifugal atomization. The results obtained from this numerical model are compared with predictions made using previously derived `hydraulic jump' and `analytical' models. Calculations, in conjunction with experimental measurements relating to the trajectory of liquid flow on the atomizing disk, have shown that the numerical model can not only give a reasonable prediction of the hydraulic jump location, but also yields more accurate information regarding the variations in liquid height, and radial and tangential velocities. The model is ideally suited for engineering applications.
THE MODEL CHARACTERISTICS OF JUMP ACTIONS STRUCTURE OF HIGH PERFORMANCE FEMALE VOLLEYBALL PLAYERS
Directory of Open Access Journals (Sweden)
Stech M.
2012-12-01
Full Text Available The purpose of this study was to develop generalized and individual models of the jump actions of skilled female volleyball players. The main prerequisite for the development of the jump actions models were the results of our earlier studies of factor structure of jump actions of 10 sportswomen of the Polish volleyball team "Gedania" (Premier League in the preparatory and competitive periods of the annual cycle of preparation. The athletes age was 22.0 +- 2.9 years, the sports experience - 8.1 +- 3.1 years, body height - 181.9 +- 8.4 years and body weight - 72.8 +- 10.8 kg. Mathematical and statistical processing of the data (the definition of M ± SD and significant differences between the samples was performed using a standard computer program "STATISTICA 7,0". Based on the analysis of the factor structure of 20 jump actions of skilled women volleyball players determined to within 5 of the most informative indexes and their tentative values recommended for the formation of a generalized model of this structure. Comparison of individual models of jump actions of skilled women volleyball players with their generalized models in different periods of preparation can be used for the rational choice of means and methods for the increasing of the training process efficiency.
Bistability and resonance in the periodically stimulated Hodgkin-Huxley model with noise
Borkowski, L S
2010-01-01
We describe general characteristics of the Hodgkin-Huxley neuron's response to a periodic train of short current pulses with Gaussian noise. The deterministic neuron is bistable for antiresonant frequencies. When the stimuli arrive at the resonant frequency the firing rate is a continuous function of the current amplitude $I_0$ and scales as $(I_0-I_{th})^{1/2}$, where $I_{th}$ is an approximate threshold. Intervals of continuous irregular response alternate with integer mode-locked regions with bistable excitation edge. There is an even-all multimodal transition between the 2:1 and 3:1 states in the vicinity of the main resonance, which is analogous to the odd-all transition discovered earlier in the high-frequency regime. For $I_0
Directory of Open Access Journals (Sweden)
Rehez Ahlip
2015-01-01
model for the exchange rate with log-normal jump amplitudes and the volatility model with log-uniformly distributed jump amplitudes. We assume that the domestic and foreign stochastic interest rates are governed by the CIR dynamics. The instantaneous volatility is correlated with the dynamics of the exchange rate return, whereas the domestic and foreign short-term rates are assumed to be independent of the dynamics of the exchange rate and its volatility. The main result furnishes a semianalytical formula for the price of the foreign exchange European call option.
Fitting the CDO correlation skew: a tractable structural jump-diffusion model
DEFF Research Database (Denmark)
Willemann, Søren
2007-01-01
We extend a well-known structural jump-diffusion model for credit risk to handle both correlations through diffusion of asset values and common jumps in asset value. Through a simplifying assumption on the default timing and efficient numerical techniques, we develop a semi-analytic framework...... allowing for instantaneous calibration to heterogeneous CDS curves and fast computation of CDO tranche spreads. We calibrate the model to CDX and iTraxx data from February 2007 and achieve a satisfactory fit. To price the senior tranches for both indices, we require a risk-neutral probability of a market...
Parameters estimation using the first passage times method in a jump-diffusion model
Khaldi, K.; Meddahi, S.
2016-06-01
The main purposes of this paper are two contributions: (1) it presents a new method, which is the first passage time (FPT method) generalized for all passage times (GPT method), in order to estimate the parameters of stochastic Jump-Diffusion process. (2) it compares in a time series model, share price of gold, the empirical results of the estimation and forecasts obtained with the GPT method and those obtained by the moments method and the FPT method applied to the Merton Jump-Diffusion (MJD) model.
Jump Markov models and transition state theory: the quasi-stationary distribution approach.
Di Gesù, Giacomo; Lelièvre, Tony; Le Peutrec, Dorian; Nectoux, Boris
2016-12-22
We are interested in the connection between a metastable continuous state space Markov process (satisfying e.g. the Langevin or overdamped Langevin equation) and a jump Markov process in a discrete state space. More precisely, we use the notion of quasi-stationary distribution within a metastable state for the continuous state space Markov process to parametrize the exit event from the state. This approach is useful to analyze and justify methods which use the jump Markov process underlying a metastable dynamics as a support to efficiently sample the state-to-state dynamics (accelerated dynamics techniques). Moreover, it is possible by this approach to quantify the error on the exit event when the parametrization of the jump Markov model is based on the Eyring-Kramers formula. This therefore provides a mathematical framework to justify the use of transition state theory and the Eyring-Kramers formula to build kinetic Monte Carlo or Markov state models.
Jump Markov models and transition state theory: the Quasi-Stationary Distribution approach
Di Gesù, Giacomo; Peutrec, Dorian Le; Nectoux, Boris
2016-01-01
We are interested in the connection between a metastable continuous state space Markov process (satisfying e.g. the Langevin or overdamped Langevin equation) and a jump Markov process in a discrete state space. More precisely, we use the notion of quasi-stationary distribution within a metastable state for the continuous state space Markov process to parametrize the exit event from the state. This approach is useful to analyze and justify methods which use the jump Markov process underlying a metastable dynamics as a support to efficiently sample the state-to-state dynamics (accelerated dynamics techniques). Moreover, it is possible by this approach to quantify the error on the exit event when the parametrization of the jump Markov model is based on the Eyring-Kramers formula. This therefore provides a mathematical framework to justify the use of transition state theory and the Eyring-Kramers formula to build kinetic Monte Carlo or Markov state models.
Travelling wave analysis and jump relations for a fluid model of quasineutral plasma
Energy Technology Data Exchange (ETDEWEB)
Cordier, S. (Ecole Polytechnique, 91 - Palaiseau (France)); Degond, P. (Toulouse-3 Univ., 31 (France)); Markowich, P. (Technische Univ. Berlin (Germany)); Schmeiser, C. (Technische Univ., Vienna (Austria))
1994-05-01
A 1-D fluid model for a plasma is presented. In the quasineutral limit, this model leads to a non conservative hyperbolic system for which the jump relations are a-priority not well defined. The problem can be solved for sufficiently strong shocks via a travelling wave analysis. (authors). 5 refs.
Joint Pricing of VIX and SPX Options with Stochastic Volatility and Jump models
DEFF Research Database (Denmark)
Kokholm, Thomas; Stisen, Martin
2015-01-01
and variance (SVJJ) are jointly calibrated to market quotes on SPX and VIX options together with VIX futures. The full flexibility of having jumps in both returns and volatility added to a stochastic volatility model is essential. Moreover, we find that the SVJJ model with the Feller condition imposed...
Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric
Dharmawan, Komang
2017-03-01
It has been claimed in many literatures that the prices of some agriculture commodities tend to follow mean reversion. However, when dealing with the prices of agriculture commodities, is mean-reversion realistic enough without incorporating seasonality and jump diffusion? This research tries to answer the question. The combination between mean-reversion feature, jump and seasonal components are applied to model the behavior of agriculture commodity prices. A jump and seasonal components are added to the standard mean-reverting process in order to reproduce the spiky or jump behaviors. This model has been well applied on simulating the electricity prices but it has not been applied to investigate the behavior of agriculture commodity prices yet. This paper discusses the performance of the model when it is used to price European call options. First, the deterministic seasonality part is calibrated using the least square method. The second stage is to calibrate the stochastic part based on historical prices. The parameters are calibrated by discretizing the model. Hence, the discretized model allows us to perform Monte Carlo simulation on the commodity price under real-word probability. The analysis is conducted using 2 future price of Crude Palm Oil and Coffee Bean on standard payoff functions, a Basket, a Spread, Best of Call, and Worst of Call Options.
Kim, S.W.; Park, S.U.; Pino, D.; Vilà-Guerau de Arellano, J.
2006-01-01
Basic entrainment equations applicable to the sheared convective boundary layer (CBL) are derived by assuming an inversion layer with a finite depth, i.e., the first-order jump model. Large-eddy simulation data are used to determine the constants involved in the parameterizations of the entrainment
Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad
2015-07-21
Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms
Pricing equity warrants with a promised lowest price in Merton's jump-diffusion model
Xiao, Weilin; Zhang, Xili
2016-09-01
Motivated by the empirical evidence of jumps in the dynamics of firm behavior, this paper considers the problem of pricing equity warrants in the presence of a promised lowest price when the price of the underlying asset follows the Merton's jump-diffusion process. Using the Martingale approach, we propose a valuation model of equity warrants based on the firm value, its volatility, and parameters of the jump component, which are not directly observable. To implement our pricing model empirically, this paper also provides a promising estimation method for obtaining these desired variables based on observable data, such as stock prices and the book value of total liability. We conduct an empirical study to ascertain the performance of our proposed model using the data of Changdian warrant collected from 25 May 2006 (the listing date) to 29 January 2007 (the expiration date). Furthermore, the comparison of traditional models (such as the Black-Scholes model, the Noreen-Wolfson model, the Lauterbach-Schultz model, and the Ukhov model) with our model is presented. From the empirical study, we can see that the mean absolute error of our pricing model is 16.75%. By contrast, the Black-Scholes model, the Noreen-Wolfson model, the Lauterbach-Schultz model, and the Ukhov model applied to the same warrant produce mean absolute errors of 92.24%, 45.38%, 87.34%, 76.12%, respectively. Thus both the dilution effect and the jump feature cannot be ignored in determining the valuation of equity warrants.
Realized Jump Risk and Equity Return in China
Guojin Chen; Xiaoqun Liu; Peilin Hsieh; Xiangqin Zhao
2014-01-01
We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump) risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity retu...
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.
Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C
2014-04-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.
Directory of Open Access Journals (Sweden)
Jatin Narula
2010-05-01
Full Text Available Combinatorial regulation of gene expression is ubiquitous in eukaryotes with multiple inputs converging on regulatory control elements. The dynamic properties of these elements determine the functionality of genetic networks regulating differentiation and development. Here we propose a method to quantitatively characterize the regulatory output of distant enhancers with a biophysical approach that recursively determines free energies of protein-protein and protein-DNA interactions from experimental analysis of transcriptional reporter libraries. We apply this method to model the Scl-Gata2-Fli1 triad-a network module important for cell fate specification of hematopoietic stem cells. We show that this triad module is inherently bistable with irreversible transitions in response to physiologically relevant signals such as Notch, Bmp4 and Gata1 and we use the model to predict the sensitivity of the network to mutations. We also show that the triad acts as a low-pass filter by switching between steady states only in response to signals that persist for longer than a minimum duration threshold. We have found that the auto-regulation loops connecting the slow-degrading Scl to Gata2 and Fli1 are crucial for this low-pass filtering property. Taken together our analysis not only reveals new insights into hematopoietic stem cell regulatory network functionality but also provides a novel and widely applicable strategy to incorporate experimental measurements into dynamical network models.
Option pricing for stochastic volatility model with infinite activity Lévy jumps
Gong, Xiaoli; Zhuang, Xintian
2016-08-01
The purpose of this paper is to apply the stochastic volatility model driven by infinite activity Lévy processes to option pricing which displays infinite activity jumps behaviors and time varying volatility that is consistent with the phenomenon observed in underlying asset dynamics. We specially pay attention to three typical Lévy processes that replace the compound Poisson jumps in Bates model, aiming to capture the leptokurtic feature in asset returns and volatility clustering effect in returns variance. By utilizing the analytical characteristic function and fast Fourier transform technique, the closed form formula of option pricing can be derived. The intelligent global optimization search algorithm called Differential Evolution is introduced into the above highly dimensional models for parameters calibration so as to improve the calibration quality of fitted option models. Finally, we perform empirical researches using both time series data and options data on financial markets to illustrate the effectiveness and superiority of the proposed method.
Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps
Ge, Qing; Ji, Guilin; Xu, Jiabo; Fan, Xiaolin
2016-11-01
In this paper, Brownian motion and L e ´ vy jumps are introduced to a SIS type epidemic model with nonlinear incidence rate. The dynamical behavior of the considered model is investigated. In order to reveal the extinction and permanence of the disease, two threshold values R˜0 ,R¯0 are showed. We find that if R˜0 1, the disease may be persistent. Finally, the numerical simulations are presented to illustrate our mathematical results.
Modeling, analysis, and design of Networked Control Systems using jump linear systems
Energy Technology Data Exchange (ETDEWEB)
Blind, R.; Muenz, U.; Allgoewer, F. [Stuttgart Univ. (Germany). Inst. fuer Systemtheorie und Regelungstechnik
2008-07-01
Based on recent results from the literature, we give an introduction on modeling, analysis, and design of networked control systems (NCS) using a jump linear system (JLS) formulation. In particular, we consider linear, discrete-time models with a packet-switched communication channel between the sensors and the controller. We assume that the packet-delay and drop-out in the channel can be modeled with independent, identically distributed random processes or Markov chains. With this assumption, we reformulate the problem as a jump system and present both stability conditions and three different controller design algorithms. These results are taken from the literature except for one controller design procedure which is new and has the advantage of giving a fast solution at the expense of higher conservatism. Finally, all design algorithms are illustrated and compared, based on a common simulation example. (orig.)
ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models
DEFF Research Database (Denmark)
Creel, Michael; Kristensen, Dennis
We develop novel methods for estimation and filtering of continuous-time models with stochastic volatility and jumps using so-called Approximate Bayesian Computation which build likelihoods based on limited information. The proposed estimators and filters are computationally attractive relative...... to standard likelihood-based versions since they rely on low-dimensional auxiliary statistics and so avoid computation of high-dimensional integrals. Despite their computational simplicity, we find that estimators and filters perform well in practice and lead to precise estimates of model parameters...... stochastic volatility model for the dynamics of the S&P 500 equity index. We find evidence of the presence of a dynamic jump rate and in favor of a structural break in parameters at the time of the recent financial crisis. We find evidence that possible measurement error in log price is small and has little...
Horizontal circulation and jumps in Hamiltonian wave models
Gagarina, E.; Vegt, van der J.; Bokhove, O.
2013-01-01
We are interested in the numerical modeling of wave-current interactions around surf zones at beaches. Any model that aims to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have therefore formulated the Hamiltonian dyn
Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Li, Hai-Tao; Qin, Wei-Yang
2016-11-01
In order to improve the transform efficiency of bi-stable energy harvester (BEH), this paper proposes an advanced bi-stable energy harvester (ABEH), which is composed of two bi-stable beams coupling through their magnets. Theoretical analyzes and simulations for the ABEH are carried out. First, the mathematical model is established and its dynamical equations are derived. The formulas of magnetic force in two directions are given. The potential energy barrier of ABEH is reduced and the snap-through is liable to occur between potential wells. To demonstrate the ABEH’s advantage in harvesting energy, comparisons between the ABEH and the BEH are carried out for both harmonic and stochastic excitations. Our results reveal that the ABEH’s inter-well response can be elicited by a low-frequency excitation and the harvester can attain frequent jumping between potential wells at fairly weak random excitations. Thus, it can generate a higher output power. The present findings prove that the ABEH is preferable in harvesting energy and can be optimally designed such that it attains the best harvesting performance. Project supported by the National Natural Science Foundation of China (Grant No. 11172234) and the Scholarship from China Scholarship Council (Grant No. 201506290092).
Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity
DEFF Research Database (Denmark)
Gammelmark, S.; Molmer, K.; Alt, W.
2014-01-01
We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...
DEFF Research Database (Denmark)
Bollerslev, Tim; Andersen, Torben G.; Diebold, Francis X.
-Nielsen and Shephard (2004a, 2005) for related bi-power variation measures, the present paper provides a practical and robust framework for non-parametrically measuring the jump component in asset return volatility. In an application to the DM/$ exchange rate, the S&P500 market index, and the 30-year U.S. Treasury......A rapidly growing literature has documented important improvements in financial return volatility measurement and forecasting via use of realized variation measures constructed from high-frequency returns coupled with simple modeling procedures. Building on recent theoretical results in Barndorff...... but sophisticated volatility forecasting model, we find that almost all of the predictability in daily, weekly, and monthly return volatilities comes from the non-jump component. Our results thus set the stage for a number of interesting future econometric developments and important financial applications...
Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity
DEFF Research Database (Denmark)
Gammelmark, S.; Molmer, K.; Alt, W.
2014-01-01
manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory......We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...
Modelling bungy jumping: why is it so dificult?
Canavarro, Ana Paula
2007-01-01
Mathematics curriculum orientations of many countries recognize the importance of developing students’ capacity to use mathematical knowledge to better understand reality (Niss, 1996). But mathematical modeling is not a simple activity for students — neither for teachers. To model situations of reality we all need to develop competencies that were not present in mathematics classroom for many years. It involves new conceptions of mathematics classroom as a powerful knowledge that really appli...
Catalytic constants enable the emergence of bistability in dual phosphorylation.
Conradi, Carsten; Mincheva, Maya
2014-06-06
Dual phosphorylation of proteins is a principal component of intracellular signalling. Bistability is considered an important property of such systems and its origin is not yet completely understood. Theoretical studies have established parameter values for multistationarity and bistability for many types of proteins. However, up to now no formal criterion linking multistationarity and bistability to the parameter values characterizing dual phosphorylation has been established. Deciding whether an unclassified protein has the capacity for bistability, therefore requires careful numerical studies. Here, we present two general algebraic conditions in the form of inequalities. The first employs the catalytic constants, and if satisfied guarantees multistationarity (and hence the potential for bistability). The second involves the catalytic and Michaelis constants, and if satisfied guarantees uniqueness of steady states (and hence absence of bistability). Our method also allows for the direct computation of the total concentration values such that multistationarity occurs. Applying our results yields insights into the emergence of bistability in the ERK-MEK-MKP system that previously required a delicate numerical effort. Our algebraic conditions present a practical way to determine the capacity for bistability and hence will be a useful tool for examining the origin of bistability in many models containing dual phosphorylation.
Equilibrium Asset and Option Pricing under Jump-Diffusion Model with Stochastic Volatility
Directory of Open Access Journals (Sweden)
Xinfeng Ruan
2013-01-01
Full Text Available We study the equity premium and option pricing under jump-diffusion model with stochastic volatility based on the model in Zhang et al. 2012. We obtain the pricing kernel which acts like the physical and risk-neutral densities and the moments in the economy. Moreover, the exact expression of option valuation is derived by the Fourier transformation method. We also discuss the relationship of central moments between the physical measure and the risk-neutral measure. Our numerical results show that our model is more realistic than the previous model.
A Lagrangian model of Copepod dynamics: clustering by escape jumps in turbulence
Ardeshiri, Hamidreza; Schmitt, François G; Souissi, Sami; Toschi, Federico; Calzavarini, Enrico
2016-01-01
Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow per- turbations, produced by a large predator (i.e. fish larvae), or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and numerical study, we investigate the impact of jumping behaviour on the small-scale patchiness of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps in still water are here used to define and tune a Lagrangian Copepod (LC) model. The model is further employed to simulate the behaviour of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in qualitative agreement with available experimental observations of copepods in tur- bulence. Second, we quantify the clustering of LC...
Directory of Open Access Journals (Sweden)
Ahmad A Mannan
Full Text Available An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-'omics' steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population.
Bistability: requirements on cell-volume, protein diffusion, and thermodynamics.
Directory of Open Access Journals (Sweden)
Robert G Endres
Full Text Available Bistability is considered wide-spread among bacteria and eukaryotic cells, useful, e.g., for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schlögl model, using analytical calculations and stochastic spatiotemporal simulations. In addition to network architecture and strong thermodynamic driving away from equilibrium, we show that bistability requires fine-tuning towards small cell volumes (or compartments and fast protein diffusion (well mixing. Bistability is thus fragile and hence may be restricted to small bacteria and eukaryotic nuclei, with switching triggered by volume changes during the cell cycle. For large volumes, single cells generally loose their ability for bistable switching and instead undergo a first-order phase transition.
Optimal harvesting of a stochastic delay logistic model with Lévy jumps
Qiu, Hong; Deng, Wenmin
2016-10-01
The optimal harvesting problem of a stochastic time delay logistic model with Lévy jumps is considered in this article. We first show that the model has a unique global positive solution and discuss the uniform boundedness of its pth moment with harvesting. Then we prove that the system is globally attractive and asymptotically stable in distribution under our assumptions. Furthermore, we obtain the existence of the optimal harvesting effort by the ergodic method, and then we give the explicit expression of the optimal harvesting policy and maximum yield.
Modelling heterotachy in phylogenetic inference by reversible-jump Markov chain Monte Carlo.
Pagel, Mark; Meade, Andrew
2008-12-27
The rate at which a given site in a gene sequence alignment evolves over time may vary. This phenomenon--known as heterotachy--can bias or distort phylogenetic trees inferred from models of sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at each site over more than one set of branch lengths on the same tree topology. A branch-length set that is best for one site may differ from the branch-length set that is best for some other site, thereby allowing different sites to have different rates of change throughout the tree. Because rate variation may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to identify those branches in which reliable amounts of heterotachy occur. We implement the method in combination with our 'pattern-heterogeneity' mixture model, applying it to simulated data and five published datasets. We find that complex evolutionary signals of heterotachy are routinely present over and above variation in the rate or pattern of evolution across sites, that the reversible-jump method requires far fewer parameters than conventional mixture models to describe it, and serves to identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump procedure also removes the need for a posteriori tests of 'significance' such as the Akaike or Bayesian information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length information. These include molecular clocks, analyses of tempo and mode of evolution, comparative studies and ancestral state reconstruction. The model is available from the authors' website, and can be used for the analysis of both nucleotide and morphological data.
Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo.
Huelsenbeck, John P; Larget, Bret; Alfaro, Michael E
2004-06-01
A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Bayes factors. Current implementations of any of these criteria suffer from the limitation that only a small set of models are examined, or that the test does not allow easy comparison of non-nested models. In this article, we expand the pool of candidate substitution models to include all possible time-reversible models. This set includes seven models that have already been described. We show how Bayes factors can be calculated for these models using reversible jump Markov chain Monte Carlo, and apply the method to 16 DNA sequence alignments. For each data set, we compare the model with the best Bayes factor to the best models chosen using AIC and BIC. We find that the best model under any of these criteria is not necessarily the most complicated one; models with an intermediate number of substitution types typically do best. Moreover, almost all of the models that are chosen as best do not constrain a transition rate to be the same as a transversion rate, suggesting that it is the transition/transversion rate bias that plays the largest role in determining which models are selected. Importantly, the reversible jump Markov chain Monte Carlo algorithm described here allows estimation of phylogeny (and other phylogenetic model parameters) to be performed while accounting for uncertainty in the model of DNA substitution.
Steady state statistical correlations predict bistability in reaction motifs.
Chakravarty, Suchana; Barik, Debashis
2017-03-01
Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.
Institute of Scientific and Technical Information of China (English)
Deng Guohe
2007-01-01
Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure risks that there exist CIR stochastic volatility of stock return and Vasicek or CIR stochastic interest rate in the market. In the end, the result of the model in the paper is compared with those in other models, including BS model with numerical experiment. These results show that the double exponential jump-diffusion model with CIR-market structure risks is suitable for modelling the real-market changes and very useful.
Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion
Dan Li,; Jing’an Cui; Guohua Song
2014-01-01
This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a) to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b) we show that the delay stochastic differential equation with jumps associate...
Bistable dielectric elastomer minimum energy structures
Zhao, Jianwen; Wang, Shu; McCoul, David; Xing, Zhiguang; Huang, Bo; Liu, Liwu; Leng, Jinsong
2016-07-01
Dielectric elastomer minimum energy structures (DEMES) can realize large angular deformations by small voltage-induced strains, which make them an attractive candidate for use as soft actuators. If the task only needs binary action, the bistable structure will be an efficient solution and can save energy because it requires only a very short duration of voltage to switch its state. To obtain bistable DEMES, a method to realize the two stable states of traditional DEMES is provided in this paper. Based on this, a type of symmetrical bistable DEMES is proposed, and the required actuation pulse duration is shorter than 0.1 s. When a suitable mass is attached to end of the DEMES, or two layers of dielectric elastomer are affixed to both sides of the primary frame, the DEMES can realize two stable states and can be switched by a suitable pulse duration. To calculate the required minimum pulse duration, a mathematical model is provided and validated by experiment.
Directory of Open Access Journals (Sweden)
D. P. Siu
2011-01-01
Full Text Available In this work, a class of multidimensional stochastic hybrid dynamic models is studied. The system under investigation is a first-order linear nonhomogeneous system of Itô-Doob type stochastic differential equations with switching coefficients. The switching of the system is governed by a discrete dynamic which is monitored by a non-homogeneous Poisson process. Closed-form solutions of the systems are obtained. Furthermore, the major part of the work is devoted to finding closed-form probability density functions of the solution processes of linear homogeneous and Ornstein-Uhlenbeck type systems with jumps.
Markov Jump-Linear Performance Models for Recoverable Flight Control Computers
Zhang, Hong; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
Single event upsets in digital flight control hardware induced by atmospheric neutrons can reduce system performance and possibly introduce a safety hazard. One method currently under investigation to help mitigate the effects of these upsets is NASA Langley s Recoverable Computer System. In this paper, a Markov jump-linear model is developed for a recoverable flight control system, which will be validated using data from future experiments with simulated and real neutron environments. The method of tracking error analysis and the plan for the experiments are also described.
Mixed H2/H∞ Pitch Control of Wind Turbine with a Markovian Jump Model
DEFF Research Database (Denmark)
Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei
2016-01-01
to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.......This paper proposes a Markovian jump model and the corresponding H2 /H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side...
Institute of Scientific and Technical Information of China (English)
谢崇伟; 梅冬成
2003-01-01
We study the transient properties of a bistable kinetic system driven by correlated noises for the cases of multiplicative coloured noise and additive white noise. The mean first-passage time (MFPT) of the system is calculated.From numerical computations we find that: (i) The MFPT of the bistable system are affected by the correlation time of multiplicative coloured noise τ and the cross-correlation strength between noises λ and, τ and λ play the same roles in the MFPT. (ii) The MFPT corresponding to weakly correlated noises and strongly correlated noises exhibits the very different behaviour and there is a one-peak structure in the MFPT for strongly correlated noises. The peak grows highly as τ increases, which means that the noisy colour causes the suppression effect of the escape rate to become more pronounced.
Field-induced magnetization jumps and quantum criticality in the 2D J-Q model
Iaizzi, Adam; Sandvik, Anders
The J-Q model is a `designer hamiltonian' formed by adding a four spin `Q' term to the standard antiferromagnetic S = 1 / 2 Heisenberg model. The Q term drives a quantum phase transition to a valence-bond solid (VBS) state: a non-magnetic state with a pattern of local singlets which breaks lattice symmetries. The elementary excitations of the VBS are triplons, i.e. gapped S=1 quasiparticles. There is considerable interest in the quantum phase transition between the Néel and VBS states as an example of deconfined quantum criticality. Near the phase boundary, triplons deconfine into pairs of bosonic spin-1/2 excitations known as spinons. Using exact diagonalization and the stochastic series expansion quantum monte carlo method, we study the 2D J-Q model in the presence of an external magnetic field. We use the field to force a nonzero density of magnetic excitations at T=0 and look for signatures of Bose-Einstein condensation of spinons. At higher magnetic fields, there is a jump in the induced magnetization caused by the onset of an effective attractive interaction between magnons on a ferromagnetic background. We characterize the first order quantum phase transition and determine the minimum value of the coupling ratio q ≡ Q / J required to produce this jump. Funded by NSF DMR-1410126.
Brown, L E; King, J R; Loose, M
2014-07-21
Understanding the Gene Regulatory Networks (GRNs) that underlie development is a major question for systems biology. The establishment of the germ layers is amongst the earliest events of development and has been characterised in numerous model systems. The establishment of the mesoderm is best characterised in the frog Xenopus laevis and has been well studied both experimentally and mathematically. However, the Xenopus network has significant differences from that in mouse and humans, including the presence of multiple copies of two key genes in the network, Mix and Nodal. The axolotl, a urodele amphibian, provides a model with all the benefits of amphibian embryology but crucially only a single Mix and Nodal gene required for the specification of the mesoderm. Remarkably, the number of genes within the network is not the only difference. The interaction between Mix and Brachyury, two transcription factors involved in the establishment of the endoderm and mesoderm respectively, is not conserved. While Mix represses Brachyury in Xenopus, it activates Brachyury in axolotl. Thus, whilst the topology of the networks in the two species differs, both are able to form mesoderm and endoderm in vivo. Based on current knowledge of the structure of the mesendoderm GRN we develop deterministic models that describe the time evolution of transcription factors in a single axolotl cell and compare numerical simulations with previous results from Xenopus. The models are shown to have stable steady states corresponding to mesoderm and anterior mesendoderm, with the in vitro model showing how the concentration of Activin can determine cell fate, while the in vivo model shows that β-catenin concentration can determine cell fate. Moreover, our analysis suggests that additional components must be important in the axolotl network in the specification of the full range of tissues.
Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu
2017-01-01
Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.
Chaudhury, Srabanti
2015-06-01
Gene regulatory networks in cells allow transitions between gene expression states under the influence of both intrinsic and extrinsic noise. Here we introduce a new theoretical method to study the dynamics of switching in a two-state gene expression model with positive feedback by explicitly accounting for the transcriptional noise. Within this theoretical framework, we employ a semi-classical path integral technique to calculate the mean switching time starting from either an active or inactive promoter state. Our analytical predictions are in good agreement with Monte Carlo simulations and experimental observations.
The evolution of asteroids in the jumping-Jupiter migration model
Roig, Fernando
2015-01-01
In this work, we investigate the evolution of a primordial belt of asteroids, represented by a large number of massless test particles, under the gravitational effect of migrating Jovian planets in the framework of the jumping-Jupiter model. We perform several simulations considering test particles distributed in the Main Belt, as well as in the Hilda and Trojan groups. The simulations start with Jupiter and Saturn locked in the mutual 3:2 mean motion resonance plus 3 Neptune-mass planets in a compact orbital configuration. Mutual planetary interactions during migration led one of the Neptunes to be ejected in less than 10 Myr of evolution, causing Jupiter to jump by about 0.3 au in semi-major axis. This introduces a large scale instability in the studied populations of small bodies. After the migration phase, the simulations are extended over 4 Gyr, and we compare the final orbital structure of the simulated test particles to the current Main Belt of asteroids with absolute magnitude $H<9.7$. The results ...
Aging into perceptual control: A Dynamic Causal Modeling for fMRI study of bistable perception
Directory of Open Access Journals (Sweden)
Ehsan eDowlati
2016-03-01
Full Text Available Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16 resisted experimenter-induced visual bias compared to a younger cohort (n = 14 and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to lingual gyrus by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology.
Adaptive Continuous time Markov Chain Approximation Model to\\ud General Jump-Diffusions
Cerrato, Mario; Lo, Chia Chun; Skindilias, Konstantinos
2011-01-01
We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kologorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expan...
THE EVOLUTION OF ASTEROIDS IN THE JUMPING-JUPITER MIGRATION MODEL
Energy Technology Data Exchange (ETDEWEB)
Roig, Fernando [Observatòrio Nacional, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Nesvorný, David, E-mail: froig@on.br, E-mail: davidn@boulder.swri.edu [Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States)
2015-12-15
In this work, we investigate the evolution of a primordial belt of asteroids, represented by a large number of massless test particles, under the gravitational effect of migrating Jovian planets in the framework of the jumping-Jupiter model. We perform several simulations considering test particles distributed in the Main Belt, as well as in the Hilda and Trojan groups. The simulations start with Jupiter and Saturn locked in the mutual 3:2 mean motion resonance plus three Neptune-mass planets in a compact orbital configuration. Mutual planetary interactions during migration led one of the Neptunes to be ejected in less than 10 Myr of evolution, causing Jupiter to jump by about 0.3 AU in semimajor axis. This introduces a large-scale instability in the studied populations of small bodies. After the migration phase, the simulations are extended over 4 Gyr, and we compare the final orbital structure of the simulated test particles to the current Main Belt of asteroids with absolute magnitude H < 9.7. The results indicate that, in order to reproduce the present Main Belt, the primordial belt should have had a distribution peaked at ∼10° in inclination and at ∼0.1 in eccentricity. We discuss the implications of this for the Grand Tack model. The results also indicate that neither primordial Hildas, nor Trojans, survive the instability, confirming the idea that such populations must have been implanted from other sources. In particular, we address the possibility of implantation of Hildas and Trojans from the Main Belt population, but find that this contribution should be minor.
Distributed processing in bistable perception
Knapen, T.H.J.
2007-01-01
A very incisive way of studying visual awareness and the mechanisms that underlie it, it to use bistable perception. In bistable perception, an observer's perceptual state alternates between one interpretation and its mutually exclusive counterpart while the stimulus remains the same. This gives us
Bifurcation of transition paths induced by coupled bistable systems
Tian, Chengzhe; Mitarai, Namiko
2016-06-01
We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier.
Modeling Air Bubble Transport in Hydraulic Jump Flows using Population Balance Approach
Directory of Open Access Journals (Sweden)
Min Xiang
2016-01-01
Full Text Available This paper proposed a numerical model aiming at coupling the MUltiple-SIze-Group (MUSIG with the semiempirical air entrainment model based on the Euler-Euler two-fluid framework to handle the bubble transport in hydraulic jump flows. The internal flow structure including the recirculation region, the shear layer region and the jet region was accurately predicted. The flow parameters such as the water velocity and void fraction distributions were examined and compared with the experimental data, validating the effectiveness of the numerical model. Prediction of the Sauter mean bubble diameter distributions by the population balance approach at different axial locations confirmed the dominance of breakage due to the high turbulent intensity in the shear layer region which led to the generation of small gas bubbles at high void fraction. Comparison between different cases indicates that high Froude number not only give rise to longer recirculation region and higher void fraction due to larger air entrainment rate, but also generate larger bubble number density and smaller bubble size because of the stronger turbulence intensity in the same axial position.
Teakles, Andrew; Mo, Ruping; Dierking, Carl F.; Emond, Chris; Smith, Trevor; McLennan, Neil; Joe, Paul I.
2014-01-01
As was the case for most other Olympic competitions, providing weather guidance for the ski jump and Nordic combined events involved its own set of unique challenges. The extent of these challenges was brought to light before the Vancouver 2010 Winter Olympics during a series of outflow wind events in the 2008/2009 winter season. The interactions with the race officials during the difficult race conditions brought on by the outflows provided a new perspective on the service delivery requirements for the upcoming Olympic Games. In particular, the turbulent nature of the winds and its impact on the ski jump practice events that season highlighted the need of race officials for nowcasting advice at very short time scales (from 2 min to 1 h) and forecast products tailored to their decision-making process. These realizations resulted in last minute modifications to the monitoring strategy leading up to the Olympic Games and required forecasters' conceptual models for flow within the Callaghan Valley to be downscaled further to reflect the evolution of turbulence at the ski jump site. The SNOW-V10 (Science of Nowcasting Olympic Weather for Vancouver 2010) team provided support for these efforts by supplying diagnostic case analyses of important events using numerical weather data and by enhancing the real-time monitoring capabilities at the ski jump venue.
Reversibly Bistable Flexible Electronics
Alfaraj, Nasir
2015-05-01
Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.
Zhu, Yanzheng; Zhang, Lixian; Sreeram, Victor; Shammakh, Wafa; Ahmad, Bashir
2016-10-01
In this paper, the resilient model approximation problem for a class of discrete-time Markov jump time-delay systems with input sector-bounded nonlinearities is investigated. A linearised reduced-order model is determined with mode changes subject to domination by a hierarchical Markov chain containing two different nonhomogeneous Markov chains. Hence, the reduced-order model obtained not only reflects the dependence of the original systems but also model external influence that is related to the mode changes of the original system. Sufficient conditions formulated in terms of bilinear matrix inequalities for the existence of such models are established, such that the resulting error system is stochastically stable and has a guaranteed l2-l∞ error performance. A linear matrix inequalities optimisation coupled with line search is exploited to solve for the corresponding reduced-order systems. The potential and effectiveness of the developed theoretical results are demonstrated via a numerical example.
Dorobantu, V
2012-01-01
When the laws of Physics are taken seriously, the sports can benefit in getting better results, as was the case of the high jump in Flop style, so that the athlete sprints diagonally towards the bar,then curve and leap backwards over it. The jumper, in this case, has the center of mass under the bar, fact which allows improvement of the performance.
Persistent search in single and multiple confined domains: a velocity-jump process model
Poll, Daniel B.; Kilpatrick, Zachary P.
2016-05-01
We analyze velocity-jump process models of persistent search for a single target on a bounded domain. The searcher proceeds along ballistic trajectories and is absorbed upon collision with the target boundary. When reaching the domain boundary, the searcher chooses a random direction for its new trajectory. For circular domains and targets, we can approximate the mean first passage time (MFPT) using a Markov chain approximation of the search process. Our analysis and numerical simulations reveal that the time to find the target decreases for targets closer to the domain boundary. When there is a small probability of direction-switching within the domain, we find the time to find the target decreases slightly with the turning probability. We also extend our exit time analysis to the case of partitioned domains, where there is a single target within one of multiple disjoint subdomains. Given an average time of transition between domains , we find that the optimal rate of transition that minimizes the time to find the target obeys {β\\text{min}}\\propto 1/\\sqrt .
Energy Technology Data Exchange (ETDEWEB)
Chevriaux, D
2007-06-15
We study wave scattering in different nonlinear media possessing a natural forbidden band gap. In particular, we show the existence of a bistable behavior in media governed by the sine-Gordon equation (short pendular chain, Josephson junction array, quantum Hall bilayer), or the nonlinear Schroedinger equation (Kerr and Bragg media), in discrete and continuous models. These different media are submitted to periodic boundary conditions with a frequency in the forbidden band gap and an amplitude that determines their stability states. Indeed, for a sufficient amplitude (supra-transmission), the medium switches from reflector to transmitter, hence allowing the output signal to jump from evanescent to large values. We give a complete analytical description of the bistability that allows to understand the different stationary states observed and to predict the switch of one state to the other. (author)
Directory of Open Access Journals (Sweden)
Yoshinobu Tamura
2015-06-01
Full Text Available At present, many cloud services are managed by using open source software, such as OpenStack and Eucalyptus, because of the unification management of data, cost reduction, quick delivery and work savings. The operation phase of cloud computing has a unique feature, such as the provisioning processes, the network-based operation and the diversity of data, because the operation phase of cloud computing changes depending on many external factors. We propose a jump diffusion model with two-dimensional Wiener processes in order to consider the interesting aspects of the network traffic and big data on cloud computing. In particular, we assess the stability of cloud software by using the sample paths obtained from the jump diffusion model with two-dimensional Wiener processes. Moreover, we discuss the optimal maintenance problem based on the proposed jump diffusion model. Furthermore, we analyze actual data to show numerical examples of dependability optimization based on the software maintenance cost considering big data on cloud computing.
A jump forwards with mathematics and physics
A. Heck; P. Uylings
2011-01-01
We jump on human body motions such as bouncing on a jumping stick, hopping, and making kangaroo jumps. Students can record the movements with a digital camera and use their video clips to investigate the motions with suitable video analysis and modelling software. We discuss some mathematical models
Valuing Credit Default Swap under a double exp onential jump diff usion model
Institute of Scientific and Technical Information of China (English)
YANG Rui-cheng; PANG Mao-xiu; JIN Zhuang
2014-01-01
This paper discusses the valuation of the Credit Default Swap based on a jump market, in which the asset price of a firm follows a double exponential jump diff usion process, the value of the debt is driven by a geometric Brownian motion, and the default barrier follows a continuous stochastic process. Using the Gaver-Stehfest algorithm and the non-arbitrage asset pricing theory, we give the default probability of the first passage time, and more, derive the price of the Credit Default Swap.
The Finite-time Ruin Probability for the Jump-Diffusion Model with Constant Interest Force
Institute of Scientific and Technical Information of China (English)
Tao Jiang; Hai-feng Yan
2006-01-01
In this paper, we consider the finite-time ruin probability for the jump-diffusion Poisson process.Under the assumptions that the claimsizes are subexponentially distributed and that the interest force is constant, we obtain an asymptotic formula for the finite-time ruin probability. The results we obtain extends the
Reversing invasion in bistable systems.
Alzahrani, Ebraheem O; Davidson, Fordyce A; Dodds, Niall
2012-12-01
In this paper, we discuss a class of bistable reaction-diffusion systems used to model the competitive interaction of two species. The interactions are assumed to be of classic "Lotka-Volterra" type and we will consider a particular problem with relevance to applications in population dynamics: essentially, we study under what conditions the interplay of relative motility (diffusion) and competitive strength can cause waves of invasion to be halted and reversed. By establishing rigorous results concerning related degenerate and near-degenerate systems, we build a picture of the dependence of the wave speed on system parameters. Our results lead us to conjecture that this class of competition model has three "zones of response". In the central zone, varying the motility can slow, halt and reverse invasion. However, in the two outer zones, the direction of invasion is independent of the relative motility and is entirely determined by the relative competitive strengths. Furthermore, we conjecture that for a large class of competition models of the type studied here, the wave speed is an increasing function of the relative motility.
Oscillations in the bistable regime of neuronal networks.
Roxin, Alex; Compte, Albert
2016-07-01
Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent activity observed in several cortical areas during working memory tasks. In network models this kind of bistability arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN) bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks) robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both bistability and oscillatory activity have been intensively studied in network models, there has not been much focus on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime, their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the bistable regime can, in principle, have arbitrarily low frequency.
Stirring effects and bistability in the iodate-arsenous acid reaction: Premixed vs segregated flows
Hannon, L.; Horsthemke, W.
1987-01-01
Using a coalescence-dispersion model of the continuous flow-stirred tank reactor (CSTR), we study the effect of premixed vs nonpremixed reactant flows on chemical bistability. The region of bistability is smaller for segregated feed streams than for a fully premixed feed stream. The transition from flow branch to thermodynamic branch is particularly sensitive to the feed stream configuration.
Perceptual incongruence influences bistability and cortical activation
Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.
2009-01-01
We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability
Optical bistability without the rotating wave approximation
Energy Technology Data Exchange (ETDEWEB)
Sharaby, Yasser A., E-mail: Yasser_Sharaby@hotmail.co [Physics Department, Faculty of Applied Sciences, Suez Canal University, Suez (Egypt); Joshi, Amitabh, E-mail: ajoshi@eiu.ed [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States); Hassan, Shoukry S., E-mail: Shoukryhassan@hotmail.co [Mathematics Department, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)
2010-04-26
Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.
Jump Diffusion Modelling for the Brazilian Short-Term Interest Rate
Directory of Open Access Journals (Sweden)
José Carlos Nogueira Cavalcante Filho
2015-01-01
Full Text Available In order to capture the informational effect of the Brazilian short-term interest rate (SELIC rate by Poisson jumps, we build on the tests condu cted by Das (2002 and Johannes (2004, which show the significance of such structures for U.S. Federal Open Market Committee (FOMC announcements. As in the above researches, w e have found evidence that a relevant amount of the short-term volatility in the fixed in come market is captured by introducing jumps on the stochastic process of the short-term r ate. This structure also allows the verification of the information content of specific events, such as Brazilian monetary policy authority (COPOM meetings and public bond auctions.
Bistability and Bifurcation in Minimal Self-Replication and Nonenzymatic Catalytic Networks.
Wagner, Nathaniel; Mukherjee, Rakesh; Maity, Indrajit; Peacock-Lopez, Enrique; Ashkenasy, Gonen
2017-01-23
Bistability and bifurcation, found in a wide range of biochemical networks, are central to the proper function of living systems. We investigate herein recent model systems that show bistable behavior based on nonenzymatic self-replication reactions. Such models were used before to investigate catalytic growth, chemical logic operations, and additional processes of self-organization leading to complexification. By solving for their steady-state solutions by using various analytical and numerical methods, we analyze how and when these systems yield bistability and bifurcation and discover specific cases and conditions producing bistability. We demonstrate that the onset of bistability requires at least second-order catalysis and results from a mismatch between the various forward and reverse processes. Our findings may have far-reaching implications in understanding early evolutionary processes of complexification, emergence, and potentially the origin of life.
Bistability of mangrove forests and competition with freshwater plants
Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.
2015-01-01
Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.
Mehmannavaz, Mohammad Reza; Sattari, Hamed
2015-02-01
We propose a model for a quintuple coupled quantum dot system based on a GaAs/AlGaAs heterostructure. Then, we analyze the optical bistability (OB) and optical multistability (OM) behaviours and transition between the regimes at a wavelength of λ =1.550 μ \\text{m}. We take the benefit of consecutive and parallel interdot tunnelling and an incoherent pumping field for electrical and even optical control of the processes. It is shown that OB, OM and transition between them can be accomplished and controlled by adjusting the rate of the inter-dot tunnellings (electrical bias), probe wavelength detuning and rate of the optical incoherent pumping field. By proper choice of the controlling parameters, the bistable hysteresis loop becomes narrower, which makes it easier for the cavity field to reach saturation. We interpret the OB and OM behaviours by discussing the absorption of the active medium. We also investigate switching time between the two stable states when the output field jumps from a lower branch to an upper branch. Such a controllable OB/OM and transition between them in multiple QD molecules at a wavelength of 1.550 μm, may provide some new possibilities for technological applications in optoelectronics, solid-state quantum information science and systems dealing with signal processing.
He, Qingbo; Xu, Yanyan; Lu, Siliang; Shao, Yong
2017-03-01
This paper reports a frequency-shift vibro-acoustic modulation (VAM) effect in a bistable microcracked cantilever oscillator. Low-frequency broadband excitations induced a VAM effect with a shifted modulation frequency through involving a microcracked metal beam in a bistable oscillator model. We used nonlinear dynamics equations and principles to describe the mechanism of a bistable oscillator whose natural frequency varied as the oscillation amplitude increased. We demonstrated this frequency-shift VAM effect using a prototype bistable oscillator model designed to efficiently detect microcracks in solid materials via the VAM effect using ambient vibration excitations.
On the Origin of Traveling Pulses in Bistable Systems
Elphick, C; Malomed, B A; Meron, E
1997-01-01
The interaction between a pair of Bloch fronts forming a traveling domain in a bistable medium is studied. A parameter range beyond the nonequilibrium Ising-Bloch bifurcation is found where traveling domains collapse. Only beyond a second threshold the repulsive front interactions become strong enough to balance attractive interactions and asymmetries in front speeds, and form stable traveling pulses. The analysis is carried out for the forced complex Ginzburg-Landau equation. Similar qualitative behavior is found in the bistable FitzHugh-Nagumo model.
Design of a bistable switch to control cellular uptake.
Oyarzún, Diego A; Chaves, Madalena
2015-12-06
Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).
Realized Jump Risk and Equity Return in China
Directory of Open Access Journals (Sweden)
Guojin Chen
2014-01-01
Full Text Available We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity return. For the large capital-size stocks, large cap stock portfolios, and index, one-month lagged jump risk factor significantly explains the asset return variation. Our results remain the same even when we add the size and value factors in the robustness tests.
Tamborrino, Massimiliano; Sacerdote, Laura; Jacobsen, Martin
2014-11-01
We consider the multivariate point process determined by the crossing times of the components of a multivariate jump process through a multivariate boundary, assuming to reset each component to an initial value after its boundary crossing. We prove that this point process converges weakly to the point process determined by the crossing times of the limit process. This holds for both diffusion and deterministic limit processes. The almost sure convergence of the first passage times under the almost sure convergence of the processes is also proved. The particular case of a multivariate Stein process converging to a multivariate Ornstein-Uhlenbeck process is discussed as a guideline for applying diffusion limits for jump processes. We apply our theoretical findings to neural network modeling. The proposed model gives a mathematical foundation to the generalization of the class of Leaky Integrate-and-Fire models for single neural dynamics to the case of a firing network of neurons. This will help future study of dependent spike trains.
Flexible Bistable Cholesteric Reflective Displays
Yang, Deng-Ke
2006-03-01
Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.
Functionally rigid bistable [2]rotaxanes
DEFF Research Database (Denmark)
Nygaard, Sune; Leung, Ken C-F; Aprahamian, Ivan;
2007-01-01
was investigated as a means to simplify both molecular structure and switching function previously observed in related bistable [2]rotaxanes with flexible spacers between their stations and incorporating a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring. The nondegenerate MPTTF-NP switch was isolated as near isomer...
Studies of Bistable Optical Devices.
1982-05-15
Alternate Switching, and Subharmonic Generation in Bistable Optical Devices" (J. A. Goldstone, P.-T. Ho, E. Garmire) Appl. Phys. Lett. 37, 126 (1980). 7...demonstrated with modulators which are inherently slow, but have useful features. This includes driving a thin Fabry-Perot with a piezo -electric (McCall, Appl
Holdener, Fred R.; Boyd, Robert D.
2000-01-01
The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.
Performance analysis of jump-gliding locomotion for miniature robotics.
Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M
2015-03-26
Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.
Directory of Open Access Journals (Sweden)
Oscar Castro-Orgaz
2015-04-01
Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed
Institute of Scientific and Technical Information of China (English)
孙舒; 曹树谦
2012-01-01
针对双稳态压电悬臂梁发电系统进行了动力学建模与分析．首先建立了能引发系统双稳态现象的磁力模型，给出了两磁铁之间磁力的数学表达式；其次建立了压电悬臂梁发电系统的集中参数模型，得到了系统发生双稳态现象时磁铁之间的距离范围；通过数值计算分析了系统的响应特性，发现双稳态运动大大提高了系统的频率响应范围．并且系统在低激励频率和低激励幅值下能发生大幅运动，而激励幅值越大，系统具有越高的能量逃离势阱产生大幅运动；最后通过实验对数值计算结果进行了验证．研究结果为双稳态压电悬臂梁发电系统的设计与应用提供了理论依据．%Dynamic modeling and analysis of a bistable piezoelectric cantilever power generation system are presented. Firstly, a magnetic force model is established which could induce bistability, and the force mathematical expression between the two magnets is given. Secondly, a lumped parameter model of piezoelectric cantilever power generation system is built, and the range of distance between the two magnets is analyzed while the bistable phenomenon occurs. Thirdly, the response characteristics of the system are studied numerically. The results show that the beam undergoes large-amplitude motion at low frequency and low amplitude, and that the voltage response has a broadband. The system has high energy escaped from potential well when excitation amplitude imereases. Finally, the result is verified experimentally. This study provides a theoretical basis for the design and application of bistable piezoelectric cantilever power generation system.
Dynamic jump intensities and risk premiums
DEFF Research Database (Denmark)
Christoffersen, Peter; Ornthanalai, Chayawat; Jacobs, Kris
2012-01-01
We build a new class of discrete-time models that are relatively easy to estimate using returns and/or options. The distribution of returns is driven by two factors: dynamic volatility and dynamic jump intensity. Each factor has its own risk premium. The models significantly outperform standard...... models without jumps when estimated on S&P500 returns. We find very strong support for time-varying jump intensities. Compared to the risk premium on dynamic volatility, the risk premium on the dynamic jump intensity has a much larger impact on option prices. We confirm these findings using joint...... estimation on returns and large option samples....
Bistability in radiative heat exchange
Rudakov, V. I.; Ovcharov, V. V.; Prigara, V. P.
2008-08-01
The possibility of a bistable regime in systems with radiative heat exchange is theoretically demonstrated for the first time. The transfer characteristics of a radiation-closed stationary system have been calculated, in which the radiator is a blackbody and the absorber is made of a material with the absorptivity sharply increasing in a certain temperature interval. The radiator and absorber are separated by a vacuum gap. The heat exchange between the system and the environment is controlled by varying the flow rate of a heat-transfer agent cooling the absorber. The output parameter of a bistable system is the absorber temperature, while the input parameter can be either the radiator temperature or the heat-transfer agent flow rate. Depending on the choice of the input parameter, the transfer characteristic of the system is either represented by a usual S-like curve or has an inverted shape.
Optical Bistable Arrays: Prospects for Ultimate Performances,
OPTICAL SWITCHING, *OPTICAL INTERFEROMETERS, CAVITIES, IMPEDANCE, IMPEDANCE MATCHING , INTENSITY, LAYERS, MATERIALS, MIRRORS, OPTIMIZATION, PARAMETERS, REDUCTION, FRANCE, BISTABLE DEVICES, GALLIUM ARSENIDES, ALUMINUM GALLIUM ARSENIDES, HETEROJUNCTIONS.
Brain networks underlying bistable perception.
Baker, Daniel H; Karapanagiotidis, Theodoros; Coggan, David D; Wailes-Newson, Kirstie; Smallwood, Jonathan
2015-10-01
Bistable stimuli, such as the Necker Cube, demonstrate that experience can change in the absence of changes in the environment. Such phenomena can be used to assess stimulus-independent aspects of conscious experience. The current study used resting state functional magnetic resonance imaging (rs-fMRI) to index stimulus-independent changes in neural activity to understand the neural architecture that determines dominance durations during bistable perception (using binocular rivalry and Necker cube stimuli). Anterior regions of the Superior Parietal Lobule (SPL) exhibited robust connectivity with regions of primary sensorimotor cortex. The strength of this region's connectivity with the striatum predicted shorter dominance durations during binocular rivalry, whereas its connectivity to pre-motor cortex predicted longer dominance durations for the Necker Cube. Posterior regions of the SPL, on the other hand, were coupled to associative cortex in the temporal and frontal lobes. The posterior SPL's connectivity to the temporal lobe predicted longer dominance during binocular rivalry. In conjunction with prior work, these data suggest that the anterior SPL contributes to perceptual rivalry through the inhibition of incongruent bottom up information, whereas the posterior SPL influences rivalry by supporting the current interpretation of a bistable stimulus. Our data suggests that the functional connectivity of the SPL with regions of sensory, motor, and associative cortex allows it to regulate the interpretation of the environment that forms the focus of conscious attention at a specific moment in time. Copyright © 2015. Published by Elsevier Inc.
Liu, Qun
2015-09-01
In this paper, a stochastic n-species Gilpin-Ayala competitive model with Lévy jumps and Markovian switching is proposed and studied. Some asymptotic properties are investigated and sufficient conditions for extinction, non-persistence in the mean and weak persistence are established. The threshold between extinction and weak persistence is obtained. The results illustrate that the asymptotic properties of the considered system have close relationships with Lévy jumps and the stationary distribution of the Markovian chain. Moreover, some simulation figures are presented to confirm our main results.
Peckmezian, Tina; Taylor, Phillip W
2015-04-01
Electric shock is used widely as an aversive stimulus in conditioning experiments, yet little attention has been given to its physiological effects and their consequences for bioassays. In the present study, we provide a detailed characterization of how electric shock affects the mobility and behaviour of Servaea incana, a jumping spider. We begin with four mobility assays and then narrow our focus to a single effective assay with which we assess performance and behaviour. Based on our findings, we suggest a voltage range that may be employed as an aversive stimulus while minimizing decrements in physical performance and other aspects of behaviour. Additionally, we outline a novel method for constructing electric shock platforms that overcome some of the constraints of traditional methods while being highly effective and easily modifiable to suit the study animal and experimental context. Finally, as a demonstration of the viability of our aversive stimulus in a passive avoidance conditioning task, we successfully train spiders to associate a dark compartment with electric shock. Future research using electric shock as an aversive stimulus with terrestrial invertebrates such as spiders and insects may benefit from the flexible and reliable methods outlined in the present study.
Price jumps on European stock markets
Directory of Open Access Journals (Sweden)
Jan Hanousek
2014-03-01
Full Text Available We analyze the dynamics of price jumps and the impact of the European debt crisis using the high-frequency data reported by selected stock exchanges on the European continent during the period January 2008 to June 2012. We employ two methods to identify price jumps: Method 1 minimizes the probability of false jump detection (the Type-II Error-Optimal price jump indicator and Method 2 maximizes the probability of successful jump detection (the Type-I Error-Optimal price jump indicator. We show that individual stock markets exhibited differences in price jump intensity before and during the crisis. We also show that in general the variance of price jump intensity could not be distinguished as different in the pre-crisis period from that during the crisis. Our results indicate that, contrary to common belief, the intensity of price jumps does not uniformly increase during a period of financial distress. However, there do exist differences in price jump dynamics across stock markets and investors have to model emerging and mature markets differently to properly reflect their individual dynamics.
Leconte, Jérémy; Charnay, Benjamin; Wordsworth, Robin; Selsis, Franck; Millour, Ehouarn
2013-01-01
The inner edge of the classical habitable zone is often defined by the critical flux needed to trigger the runaway greenhouse instability. This 1D notion of a critical flux, however, may not be so relevant for inhomogeneously irradiated planets, or when the water content is limited (land planets). Here, based on results from our 3D global climate model, we find that the circulation pattern can shift from super-rotation to stellar/anti stellar circulation when the equatorial Rossby deformation radius significantly exceeds the planetary radius. Using analytical and numerical arguments, we also demonstrate the presence of systematic biases between mean surface temperatures or temperature profiles predicted from either 1D or 3D simulations. Including a complete modeling of the water cycle, we further demonstrate that for land planets closer than the inner edge of the classical habitable zone, two stable climate regimes can exist. One is the classical runaway state, and the other is a collapsed state where water i...
Gravity current jump conditions, revisited
Ungarish, Marius; Hogg, Andrew J.
2016-11-01
Consider the flow of a high-Reynolds-number gravity current of density ρc in an ambient fluid of density ρa in a horizontal channel z ∈ [ 0 , H ] , with gravity in - z direction. The motion is often modeled by a two-layer formulation which displays jumps (shocks) in the height of the interface, in particular at the leading front of the dense layer. Various theoretical models have been advanced to predict the dimensionless speed of the jump, Fr = U /√{g' h } ; g' , h are reduced gravity and jump height. We revisit this problem and using the Navier-Stokes equations, integrated over a control volume embedding the jump, derive balances of mass and momentum fluxes. We focus on understanding the closures needed to complete this model and we show the vital need to understand the pressure head losses over the jump, which we show can be related to the vorticity fluxes at the boundaries of the control volume. Our formulation leads to two governing equations for three dimensionless quantities. Closure requires one further assumption, depending on which we demonstrate that previous models for gravity current fronts and internal bores can be recovered. This analysis yield new insights into existing results, and also provides constraints for potential new formulae.
Lattice stretching bistability and dynamic heterogeneity
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.
2012-01-01
A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...... stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail....
Interaction of multiarmed spirals in bistable media.
He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng
2013-05-01
We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.
A novel bistable energy harvesting concept
Scarselli, G.; Nicassio, F.; Pinto, F.; Ciampa, F.; Iervolino, O.; Meo, M.
2016-05-01
Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a ‘lever effect’ aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures’ constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%-6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments.
Risk, Jumps, and Diversification
DEFF Research Database (Denmark)
Bollerslev, Tim; Law, Tzuo Hann; Tauchen, George
We test for price discontinuities, or jumps, in a panel of high-frequency intraday returns for forty large-cap stocks and an equiweighted index from these same stocks. Jumps are naturally classified into two types: common and idiosyncratic. Common jumps affect all stocks, albeit to varying degree...
Visser, Albert
2014-01-01
In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is inter
Vysotskyi, Bogdan; Parrain, Fabien; Aubry, Denis; Gaucher, Philippe; Lefeuvre, Elie
2016-11-01
The purpose of the presented work is to introduce the novel design of electrostatic energy harvester using bistable mechanism with compensational springs in gravity field capable of providing the output of several μW under the excitation of extremely small amplitude (up to 0.2g) and low frequency (10-100Hz). Presented energy harvester uses the bistable hysteresis modification to achieve low-frequency low-amplitude sensibility. It was demonstrated with finite element modelling (FEM) that hysteresis width produced by bistability is changing with a constant linear coefficient as a function of a compensational spring stiffness and thus a device sensitivity could be adjusted to the minimum point for the amplitude of external excitation. Further, highly non-linear bistable double curved beam mechanism assures the high sensitivity in frequencial domain due to the non-defined bandwidth. The equivalent circuit technique is used for simulating the device performance.
Optimization of Bistable Viscoelastic Systems
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin
2014-01-01
We consider the flow of a viscoelastic fluid in a symmetric cross geometry. For small driving pressures the flow is symmetric, but beyond a certain critical pressure the symmetric flow becomes unstable; two stable asymmetric solutions appear, and forcing of the unstable symmetric flow beyond...... find a design that significantly reduces the driving pressure required for bistability, and furthermore is in agreement with the approach followed by experimental researchers. Furthermore, by comparing the two asymmetric solutions, we succesfully apply the same approach to a problem with two fluids...
Bistable behavior of the lac operon in E. coli when induced with a mixture of lactose and TMG
Directory of Open Access Journals (Sweden)
Orlando Díaz-Hernández
2010-07-01
Full Text Available In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG. In accordance with previously published experimental results and computer simulations, our simulations predict that: (1 when the system is induced by TMG, the system shows a discernible bistable behavior while, (2 when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions.
Bistability in autoimmune diseases
DEFF Research Database (Denmark)
Rapin, Nicolas; Mosekilde, Erik; Lund, Ole
2011-01-01
Autoimmune diseases damage host tissue, which, in turn, may trigger a stronger immune response. Systems characterized by such positive feedback loops can display co-existing stable steady states. In a mathematical model of autoimmune disease, one steady state may correspond to the healthy state...
Jump Detection in the Danish Stock Market
DEFF Research Database (Denmark)
Høg, Esben
2002-01-01
It is well known in financial economics that stock market return data are often modelled by a diffusion process with some regular drift function. Occasionally, however, sudden changes or jumps occur in the return data. Wavelet scaling methods are used to detect jumps and cusps in stock market...
Rope Jumping: A Preliminary Developmental Study.
Wickstrom, Ralph L.
The basic movement pattern used in skilled individual rope jumping performance was determined and used as a model against which to evaluate the rope jumping form used by children at various levels of skills development. The techniques of adults and nursery school children were filmed and analyzed. The specific causes of unsuccessful attempts were…
Directory of Open Access Journals (Sweden)
Gal Ribak
Full Text Available To return to their feet, inverted click-beetles (Elateridae jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant "takeoff" angle (79.9°±1.56°, n = 9 beetles that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing.
Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series
Cizek, Pavel; Koo, Chao
2017-01-01
An important and widely used class of semiparametric models is formed by the varyingcoefficient models. Although the varying coefficients are traditionally assumed to be smooth functions, the varying-coefficient model is considered here with the coefficient functions containing a finite set of disco
基于混合光学双稳模型的二值图像置乱算法%Binary Digital Image Scramble Algorithm Based on Hybrid Optical Bi-stable Model
Institute of Scientific and Technical Information of China (English)
燕莎; 田鹏辉; 刘强辉
2012-01-01
针对传统Arnold变换对图像加密时密钥空间较小,置乱矩阵具有周期性的弱点,提出了混合光学双稳模型的二值图像置乱算法,该方法首先利用二维Arnold变换使有意义的数字图像变成白噪声一样的无意义图像,再使用混合光学双稳模型产生混沌序列并将其归一化,最后使用归一化的混沌序列与二值图像进行“异或”运算来修改图像的像素值.实验证明:该方法可行、效果好,增强了图像置乱算法的安全性,同时该方法具有良好的鲁棒性.%Traditional Arnold transformation needs to calculate the cycle of transformation, and it has small encryption key space. In this paper, a scramble method of hidden binary images based on hybrid optical bi-stable model was proposed. Firstly, two-dimension Arnold transformation was used to disrupt the logical links pixels; then, intercepting method was used to get a normalization intermediate sequence from hybrid optical bi-stable model; finally,the normalization intermediate sequence and the binary images were processed by XOR operation to change every pixel value in binary images. Experimental results showed that the proposed method had high robustness, more encryption key space, and improveed the security of scrambled images than the traditional Arnold transformation.
Small System dynamics models for big issues : triple jump towards real-world complexity
Pruyt, E.
2013-01-01
System Dynamics (SD) is a method to describe, model, simulate and analyze dynamically complex issues and/or systems in terms of the processes, information, organizational boundaries and strategies. Quantitative SD modeling, simulation and analysis facilitates the (re)design of systems and design of
Small System dynamics models for big issues : triple jump towards real-world complexity
Pruyt, E.
2013-01-01
System Dynamics (SD) is a method to describe, model, simulate and analyze dynamically complex issues and/or systems in terms of the processes, information, organizational boundaries and strategies. Quantitative SD modeling, simulation and analysis facilitates the (re)design of systems and design of
Genomics Analogy Model for Educators (GAME): From Jumping Genes to Alternative Splicing
Corn, Joanie; Pittendrigh, Barry R.; Orvis, Kathryn S.
2004-01-01
Studies have shown that there is usually a lack of understanding concerning the fields of genetics and genomics among high school students (Lewis and Wood-Robinson, 2000). A recent article (Kirkpatrick et al, 2002) introduced the GAME (Genomics Analogy Model for Educators) model and two of its components: (1) explaining sequencing technology with…
Stochastic modeling of Lake Van water level time series with jumps and multiple trends
Directory of Open Access Journals (Sweden)
H. Aksoy
2013-06-01
Full Text Available In the 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey, has risen up about 2 m. Analysis of the hydrometeorological data shows that change in the water level is related to the water budget of the lake. In this study, stochastic models are proposed for simulating monthly water level data. Two models considering mono- and multiple-trend time series are developed. The models are derived after removal of trend and periodicity in the dataset. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. In the so-called mono-trend model, the time series is treated as a whole under the hypothesis that the lake water level has an increasing trend. In the second model (so-called multiple-trend, the time series is divided into a number of segments to each a linear trend can be fitted separately. Application on the lake water level data shows that four segments, each fitted with a trend line, are meaningful. Both the mono- and multiple-trend models are used for simulation of synthetic lake water level time series under the hypothesis that the observed mono- and multiple-trend structure of the lake water level persist during the simulation period. The multiple-trend model is found better for planning the future infrastructural projects in surrounding areas of the lake as it generates higher maxima for the simulated lake water level.
Snaking and isolas of localised states in bistable discrete lattices
Taylor, Chris; 10.1016/j.physleta.2010.10.010
2010-01-01
We consider localised states in a discrete bistable Allen-Cahn equation. This model equation combines bistability and local cell-to-cell coupling in the simplest possible way. The existence of stable localised states is made possible by pinning to the underlying lattice; they do not exist in the equivalent continuum equation. In particular we address the existence of 'isolas': closed curves of solutions in the bifurcation diagram. Isolas appear for some non-periodic boundary conditions in one spatial dimension but seem to appear generically in two dimensions. We point out how features of the bifurcation diagram in 1D help to explain some (unintuitive) features of the bifurcation diagram in 2D.
Phase-bistable Kerr cavity solitons and patterns
de Valcárcel, Germán J.; Staliunas, Kestutis
2013-04-01
We study pattern formation in a passive nonlinear optical cavity on the basis of the classic Lugiato-Lefever model with a periodically modulated injection. When the injection amplitude sign alternates, e.g., following a sinusoidal modulation in time or in space, a phase-bistable response emerges, which is at the root of the spatial pattern formation in the system. An asymptotic description is given in terms of a damped nonlinear Schrödinger equation with parametric amplification, which allows gaining insight into the basic spatiotemporal dynamics of the system. One- and two-dimensional phase-bistable spatial patterns, such as bright and dark-ring cavity solitons and labyrinths, are demonstrated.
Random-order fractional bistable system and its stochastic resonance
Gao, Shilong; Zhang, Li; Liu, Hui; Kan, Bixia
2017-01-01
In this paper, the diffusion motion of Brownian particles in a viscous liquid suffering from stochastic fluctuations of the external environment is modeled as a random-order fractional bistable equation, and as a typical nonlinear dynamic behavior, the stochastic resonance phenomena in this system are investigated. At first, the derivation process of the random-order fractional bistable system is given. In particular, the random-power-law memory is deeply discussed to obtain the physical interpretation of the random-order fractional derivative. Secondly, the stochastic resonance evoked by random-order and external periodic force is mainly studied by numerical simulation. In particular, the frequency shifting phenomena of the periodical output are observed in SR induced by the excitation of the random order. Finally, the stochastic resonance of the system under the double stochastic excitations of the random order and the internal color noise is also investigated.
The dividend function in the jump-diffusion dual model with barrier dividend strategy
Institute of Scientific and Technical Information of China (English)
LI Bo; WU Rong
2008-01-01
A dual model of the perturbed classical compound Poisson risk model is considered under a constant dividend barrier.A new method is used in deriving the boundary condition of the equation for the expectation function by studying the local time of a related process.We obtain the expression for the expected discount dividend function in terms of those in the corresponding perturbed compound Poisson risk model without barriers.A special case in which the gain size is phase-type distributed is illustrated.We also consider the existence of the optimal dividend level.
Stochastic modeling of Lake Van water level time series with jumps and multiple trends
Directory of Open Access Journals (Sweden)
H. Aksoy
2013-02-01
Full Text Available In 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey has risen up about 2 m. Analysis of the hydrometeorological shows that change in the water level is related to the water budget of the lake. In this study, a stochastic model is generated using the measured monthly water level data of the lake. The model is derived after removal of trend and periodicity in the data set. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. For the multiple-trend, the time series is first divided into homogeneous segments by means of SEGMENTER, segmentation software. Four segments are found meaningful practically each fitted with a trend line. Two models considering mono- and multiple-trend time series are developed. The multiple-trend model is found better for planning future development in surrounding areas of the lake.
Option Valuation with Observable Volatility and Jump Dynamics
DEFF Research Database (Denmark)
Christoffersen, Peter; Feunou, Bruno; Jeon, Yoontae
Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity dy...
Steerable Miniature Jumping Robot
Kovac, Mirko; Schlegel, Manuel; Zufferey, Jean-Christophe; Floreano, Dario
2010-01-01
Jumping is used in nature by many small animals to locomote in cluttered environments or in rough terrain. It offers small systems the benefit of overcoming relatively large obstacles at a low energetic cost. In order to be able to perform repetitive jumps in a given direction, it is important to be able to upright after landing, steer and jump again. In this article, we review and evaluate the uprighting and steering principles of existing jumping robots and present a novel spherical robot w...
A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence
Klein, Johannes; Bücker, René; Herbst, Katharina; Heroven, Ann Kathrin; Pisano, Fabio; Wittmann, Christoph; Münch, Richard; Müller, Johannes; Jahn, Dieter
2016-01-01
Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis) as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer’s patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host’s intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies. PMID:28006011
Generalized Bistability in Origami Cylinders
Reid, Austin; Adda-Bedia, Mokhtar; Lechenault, Frederic
Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight, medicine, and even experimental nuclear physics. In spite of this interest, a general understanding of the dynamics of an origami folded cylinder has been elusive. By solving the fully constrained behavior of a periodic fundamental origami cell defined by unit vectors, we have found an analytic solution for all possible rigid-face states accessible from a cylindrical Miura-ori pattern. Although an idealized bellows has two rigid-face configurations over a well-defined region, a physical device, limited by nonzero material thickness and forced to balance hinge with plate-bending energy, often cannot stably maintain a stowed configuration. We have identified and measured the parameters which control this emergent bistability, and have demonstrated the ability to fabricate bellows with tunable deployability.
Bistability of silence and seizure-like bursting.
Barnett, William; O'Brien, Gabrielle; Cymbalyuk, Gennady
2013-11-15
Neuronal circuits exhibiting seizure episodes have been shown to be prone to multistability. The coexistence of normal and pathological regimes could explain why seizures suddenly start and stop. Methods developed in dynamical systems theory are powerful tools for determining the cellular mechanisms that underlie multistable seizure dynamics. Here, we present two different approaches to assess multistability in a model neuron. In this model, we identified a bursting regime and a silent regime. First, we investigated properties of a square pulse of injected current which produced a switch from seizure-like bursting into silence. By systematically varying the phase and amplitude of the pulse, we found contiguous pulse parameter sets, so-called windows, that satisfied this criterion, and we determined the dependence of these windows on the parameter gleak. As gleak increased, the size of each window scaled according to the same law as the amplitude of the saddle orbit. Second, we examined the role of each current in supporting bistability of bursting and silence. We defined the index of propensity for multistability as the range of gleak for which bursting and silence coexisted. We computed this quantity while iteratively varying the maximal conductance of each voltage-gated current one at a time. Increasing the maximal conductance of the slow potassium current or the hyperpolarization-activated current increased the range of bistability. In contrast, decreasing the maximal conductance of the persistent sodium current increased the range of bistability. Copyright © 2013 Elsevier B.V. All rights reserved.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In this paper a stochastic volatility model is considered. That is, a log price process Y whichis given in terms of a volatility process V is studied. The latter is defined such that the logprice possesses some of the properties empirically observed by Barndorff-Nielsen & Jiang[6]. Inthe model there are two sets of unknown parameters, one set corresponding to the marginaldistribution of V and one to autocorrelation of V. Based on discrete time observations ofthe log price the authors discuss how to estimate the parameters appearing in the marginaldistribution and find the asymptotic properties.
Stochastic stability properties of jump linear systems
Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.
1992-01-01
Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.
Internal hydraulic jumps with large upstream shear
Ogden, Kelly; Helfrich, Karl
2015-11-01
Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.
Assessing Credit with Equity : A CEV Model with Jump to Default
Campi, L.; Polbennikov, S.Y.; Sbuelz, A.
2005-01-01
Unlike in structural and reduced-form models, we use equity as a liquid and observable primitive to analytically value corporate bonds and credit default swaps.Restrictive assumptions on the .rm.s capital structure are avoided.Default is parsimoniously represented by equity value hitting the zero
Assessing Credit with Equity : A CEV Model with Jump to Default
Campi, L.; Polbennikov, S.Y.; Sbuelz, A.
2005-01-01
Unlike in structural and reduced-form models, we use equity as a liquid and observable primitive to analytically value corporate bonds and credit default swaps.Restrictive assumptions on the .rm.s capital structure are avoided.Default is parsimoniously represented by equity value hitting the zero ba
Multivariate analysis of bistable flow; Analisis multivariable de flujo biestable
Energy Technology Data Exchange (ETDEWEB)
Castillo D, R.; Ortiz V, J.; Ruiz E, J.A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Calleros M, G. [CFE, Alto LUcero, Veracruz (Mexico)]. e-mail: rcd@nuclear.inin.mx
2007-07-01
In this work a bistable flow analysis with an autoregressive multivariate analysis is presented. The bistable flow happens in the boiling water nuclear reactors with external recirculation pumps, and it is presented in the bolster of discharge of the recirculation knot toward the central jet pumps. The phenomenon has two flow patterns, one with greater hydraulic lost that the other one. To irregular time intervals, the flow changes pattern in a random way. The program NOISE that it is in development in the ININ was used and that it uses a autoregressive multivariate model to determine the autoregression coefficients that contain the dynamic information of the signals and that later on they are used to obtain the relative contribution of power, which allows to settle down the influence that exists among the different analyzed variables. It was analyzed an event of bistable flow happened in a BWR5 to operation conditions of 80% power and 69% of total flow through the core. The signal flow noise in each one of the 20 jet pumps, of the power of a monitor of power average, of the motive flows of recirculation, of the controllers and of the position of the control valves in the knots, of the signals of the instrumentation of the recirculation pumps (power, current, pressure drop and suction temperature), and of the buses of where they take the feeding voltage the motors of the pumps. Among the main results it was found that the phenomenon of bistable flow affects to the pressure drop in the recirculation pump of the knot in that occur, what affects to the motor flow in the knot by what the opening system of the flow control valve of recirculation of the knot responds. (Author)
A bistable microelectronic circuit for sensing extremely low electric field
In, Visarath; Longhini, Patrick; Liu, Norman; Kho, Andy; Neff, Joseph D.; Palacios, Antonio; Bulsara, Adi R.
2010-01-01
Bistable systems are prevalently found in many sensor systems. Recently, we have explored (unidirectionally) coupled overdamped bistable systems that admit self-sustained oscillations when the coupling parameter is swept through the critical points of bifurcations [V. In et al., Phys. Rev. E 68, 045102-R (2003); A. R. Bulsara et al., Phys. Rev. E 70, 036103 (2004); V. In et al., Phys. Rev. E 72, 045104-R (2005); Phys Rev. Lett. 91, 244101 (2003); A. Palacios et al., Phys. Rev. E 72, 026211 (2005); V. In et al., Phys. Rev. E 73, 066121 (2006)]. Complex behaviors emerge, in addition, from these (relatively simple) coupled systems when an external signal (ac or dc) is applied uniformly to all the elements in the array. In particular, we have demonstrated this emergent behavior for a coupled system comprised of mean-field hysteretic elements describing a "single-domain" ferromagnetic sample. The results are being used to develop extremely sensitive magnetic sensors capable of resolving field changes as low as 150 pT by observing the changes in the oscillation characteristics of the coupled sensors. In this paper, we explore the underlying dynamics of a coupled bistable system realized by coupling microelectronic circuits, which belong to the same class of dynamics as the aforementioned (ferromagnetic) system, with the nonlinear features and coupling terms modeled by hyperbolic tangent nonlinearities; these nonlinearities stem from the operational transconductance amplifiers used in constructing the microcircuits. The emergent behavior is being applied to develop an extremely sensitive electric-field sensor.
Bistable liquid crystal device fabricated via microscale liquid crystal alignment
Honma, Michinori; Toyoshima, Wataru; Nose, Toshiaki
2016-10-01
Bistable liquid crystal (LC) molecular orientation properties in micropatterned LC cells were investigated experimentally and theoretically. When an LC cell was heated to the phase-transition temperature and then cooled, an LC orientation with ±π/2-twist domains (±π/2-twist mode) was obtained. Furthermore, a different LC orientation with ±π-twist domains (±π-twist mode) was observed when a 10-V potential was applied across a sample LC cell. Both orientation states were stably retained over a long period. Herein, cross-sectional LC orientation models in the ±π/2- and ±π-twist modes are proposed to explain the generation and behavior of two different disclination lines. The total energies within one period in the ±π/2- and ±π-twist modes (F±π/2 and F±π, respectively) were estimated theoretically. These energies were found to depend on the LC layer thickness and to cross over at a certain thickness; this indicates that F±π is equal to F±π/2 at this equilibrium thickness. The best temporal stability is likely attained at this equilibrium thickness. We demonstrated a bistable color-switching device by combining a full-wave plate and crossed polarizers. When these optical components were configured properly, stable bistable switching between two colors was achieved.
Asymmetry bistability for a coupled dielectric elastomer minimum energy structure
Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang
2016-11-01
In this paper, a novel design of asymmetry bistability for a coupled dielectric elastomer minimum energy structure (DEMES) is presented. The structure can be stable both in the stretched and curved configurations, which are induced by the geometry coupling effect of two DEMESs with perpendicular bending axes. The unique asymmetry bistability and fully flexible compact design of the coupled DEMES can enrich the active morphing modes of the dielectric elastomer actuators. A theoretical model of the system’s strain energy is established to explain the bistability. Furthermore, a prototype is fabricated to verify the conceptual design. The experimental results show that when the applied voltage is below a critical transition one, the structure behaves as a conventional DEMES, once the applied voltage exceeds the critical voltage, the structure could change from the stretched (curved) configuration to the curved (stretched) configuration abruptly and maintain in a new stable configuration when the voltage is removed. A multi-segment structure with the coupled DEMES is also presented and fabricated, and it displays various voltage-actuated morphings. It indicates that the coupled DEMES and the multi-segment structures can be useful for the soft and shape-shifting robots.
Bistable flapping of flexible flyers in oscillatory flow
Huang, Yangyang; Kanso, Eva
2016-11-01
Biological and bio-inspired flyers move by shape actuation. The direct control of shape variables for locomotory purposes is well studied. Less is known about indirect shape actuation via the fluid medium. Here, we consider a flexible Λ-flyer in oscillatory flow that is free to flap and rotate around its fixed apex. We study its motion in the context of the inviscid vortex sheet model. We first analyze symmetric flapping about the vertical axis of gravity. We find that there is a finite value of the flexibility that maximizes both the flapping amplitude and elastic energy storage. Our results show that rather than resonance, the flyer relies on fluidic effects to optimize these two quantities. We then perturb the flyer away from the vertical and analyze its stability. Four distinct types of rolling behavior are identified: mono-stable, bistable, bistable oscillatory rotations and chaotic dynamics. We categorize these types of behavior in terms of the flyer's and flow parameters. In particular, the transition from mono-stable to bistable behavior occurs at a constant value of the product of the flow amplitude and acceleration. This product can be interpreted as the ratio of fluidic drag to gravity, confirming the fluid role in this transition.
Rebilas, Krzysztof
2013-01-01
Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…
Nye, Susan B.
2010-01-01
Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…
Nye, Susan B.
2010-01-01
Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…
DEFF Research Database (Denmark)
Bollerslev, Tim; Todorov, Victor
We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes ...
Bubble visualization in a simulated hydraulic jump
Witt, Adam; Shen, Lian
2013-01-01
This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.
Epigenetic chromatin silencing: bistability and front propagation
Sedighi, Mohammad; Sengupta, Anirvan M.
2007-12-01
The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.
Directory of Open Access Journals (Sweden)
Elisa Alòs
2008-01-01
Full Text Available We obtain a Hull and White type formula for a general jump-diffusion stochastic volatility model, where the involved stochastic volatility process is correlated not only with the Brownian motion driving the asset price but also with the asset price jumps. Towards this end, we establish an anticipative Itô's formula, using Malliavin calculus techniques for Lévy processes on the canonical space. As an application, we show that the dependence of the volatility process on the asset price jumps has no effect on the short-time behavior of the at-the-money implied volatility skew.
Portfolio Selection with Jumps under Regime Switching
Directory of Open Access Journals (Sweden)
Lin Zhao
2010-01-01
Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.
A bistable system with an electromagnetically induced grating
Institute of Scientific and Technical Information of China (English)
苏雪梅; 卓仲畅; 王立军; 高锦岳
2002-01-01
We propose a scheme of a bistable system with an electromagnetically induced grating and analyse the opticalbistabilities in the system. The stationary equations describing the system have been derived. This bistable systemshows typical hysteresis behaviour.
Lift-off dynamics in a simple jumping robot
Aguilar, Jeffrey; Wiesenfeld, Kurt; Goldman, Daniel I
2012-01-01
We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency $f_0$. Two distinct jumping modes emerge: a simple jump which is optimal above $f_0$ is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below $f_0$ is generated with a counter-movement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics.
Experimental chaotic quantification in bistable vortex induced vibration systems
Huynh, B. H.; Tjahjowidodo, T.
2017-02-01
The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear
Effect of signal modulating noise in bistable stochastic dynamical systems
Institute of Scientific and Technical Information of China (English)
肖方红; 闫桂荣; 张新武
2003-01-01
The effect of signal modulating noise in bistable stochastic dynamical systems is studied.The concept of instan taneous steady state is proposed for bistable dynamical systems.By making a dynamical analysis of bistable stochastic systems,we find that global and local effect of signal modulating noise as well as stochastic resonance can occur in bistable dynamical systems on which both a weak sinusoidal signal and noise are forced.The effect is demonstrated by numerical simulation.
Hybrid optoelectronic device with multiple bistable outputs
Costazo-Caso, Pablo A.; Jin, Yiye; Gelh, Michael; Granieri, Sergio; Siahmakoun, Azad
2011-01-01
Optoelectronic circuits which exhibit optical and electrical bistability with hysteresis behavior are proposed and experimentally demonstrated. The systems are based on semiconductor optical amplifiers (SOA), bipolar junction transistors (BJT), PIN photodiodes (PD) and laser diodes externally modulated with integrated electro-absorption modulators (LD-EAM). The device operates based on two independent phenomena leading to both electrical bistability and optical bistability. The electrical bistability is due to the series connection of two p-i-n structures (SOA, BJT, PD or LD) in reverse bias. The optical bistability is consequence of the quantum confined Stark effect (QCSE) in the multi-quantum well (MQW) structure in the intrinsic region of the device. This effect produces the optical modulation of the transmitted light through the SOA (or reflected from the PD). Finally, because the optical transmission of the SOA (in reverse bias) and the reflected light from the PD are so small, a LD-EAM modulated by the voltage across these devices are employed to obtain a higher output optical power. Experiments show that the maximum switching frequency is in MHz range and the rise/fall times lower than 1 us. The temporal response is mainly limited by the electrical capacitance of the devices and the parasitic inductances of the connecting wires. The effects of these components can be reduced in current integration technologies.
Dynamic Jump Intensities and Risk Premiums in Crude Oil Futures and Options Markets
DEFF Research Database (Denmark)
Christoffersen, Peter; Jacobs, Kris; Li, Bingxin
2016-01-01
and dynamic jump intensities in these markets. Allowing for jumps is crucial for modeling crude oil futures and futures options, and we find evidence in favor of time-varying jump intensities. During crisis periods, jumps occur more frequently. The properties of the jump processes implied by the option data......Options on crude oil futures are the most actively traded commodity options. We develop a class of computationally efficient discrete-time jump models that allow for closed-form option valuation, and we use crude oil futures and options data to investigate the economic importance of jumps...
Optical bistability with film-coupled metasurfaces.
Huang, Zhiqin; Baron, Alexandre; Larouche, Stéphane; Argyropoulos, Christos; Smith, David R
2015-12-01
Metasurfaces comprising arrays of film-coupled, nanopatch antennas are a promising platform for low-energy, all-optical switches. The large field enhancements that can be achieved in the dielectric spacer region between the nanopatch and the metallic substrate can substantially enhance optical nonlinear processes. Here we consider a dielectric material that exhibits an optical Kerr effect as the spacer layer and numerically calculate the optical bistability of a metasurface using the finite element method (FEM). We expect the proposed method to be highly accurate compared with other numerical approaches, such as those based on graphical post-processing techniques, because it self-consistently solves for both the spatial field distribution and the intensity-dependent refractive index distribution of the spacer layer. This method offers an alternative approach to finite-difference time-domain (FDTD) modeling. We use this numerical tool to design a metasurface optical switch and our optimized design exhibits exceptionally low switching intensity of 33 kW/cm2, corresponding to switching energy on the order of tens of attojoules per resonator, a value much smaller than those found for most devices reported in the literature. We propose our method as a tool for designing all-optical switches and modulators.
Institute of Scientific and Technical Information of China (English)
LI Li; ZHANG Xin-Lu; CHEN Li-Xue
2009-01-01
We present theoretically a novel intrinsic optical bistability (IOB) in the Tm3+/Yb3+ codoped system with a photon avalanche mechanism.Numerical simulations based on the rate equation model demonstrate distinct IOB hysteresis and critical slowing dynamics around the avalanche thresholds.Such an IOB characteristic in Tm3+/Yb3+ codoped crystal has potential applications in solid-state bistable optical displays and luminescence switchers in visible-infrared spectra.
The defects influence on domain wall propagation in bistable glass-coated microwires
Energy Technology Data Exchange (ETDEWEB)
Rodionova, V. [Magnetism Division, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); Zhukova, V., E-mail: valentina.zhukova@ehu.es [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); Ilyn, M.; Ipatov, M. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); Perov, N. [Magnetism Division, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Zhukov, A. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao 48011 (Spain)
2012-05-01
We studied the domain wall (DW) dynamics of magnetically bistable amorphous glass-coated Fe{sub 74}B{sub 13}Si{sub 11}C{sub 2} microwires. In according to our experimental results magnetic field dependences of DW velocity of studied microwires can be divided into two groups: with uniform or uniformly accelerated DW propagation along the microwire. Strong correlation between the type of the magnetic field dependence of domain wall velocity, v(H), and the distribution of the local nucleation fields has been observed. Moreover, we observed abrupt increasing of DW velocity (jump) on the magnetic field dependences of the domain wall velocity, v(H), for the both types of the v(H) dependences. At the same time usual linear increasing of the domain wall velocity with magnetic field persists below these jumps. It was found that the jump height correlates with the location of nucleation place of the new domain wall. We have measured local nucleation field distribution in all the microwires. From local nucleation field distribution we have obtained the DW nucleation locations and estimated the jump height.
Perceptual incongruence influences bistability and cortical activation.
Directory of Open Access Journals (Sweden)
Gijs Joost Brouwer
Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.
Lavička, H; Kiss, T; Lutz, E; Jex, I
2011-01-01
We analyze a special class of 1-D quantum walks (QWs) realized using optical multi-ports. We assume non-perfect multi-ports showing errors in the connectivity, i.e. with a small probability the multi- ports can connect not to their nearest neighbor but to another multi-port at a fixed distance - we call this a jump. We study two cases of QW with jumps where multiple displacements can emerge at one timestep. The first case assumes time-correlated jumps (static disorder). In the second case, we choose the positions of jumps randomly in time (dynamic disorder). The probability distributions of position of the QW walker in both instances differ significantly: dynamic disorder leads to a Gaussian-like distribution, while for static disorder we find two distinct behaviors depending on the parity of jump size. In the case of even-sized jumps, the distribution exhibits a three-peak profile around the position of the initial excitation, whereas the probability distribution in the odd case follows a Laplace-like discre...
Kim, Ho-Young
2016-11-01
Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.
Volatility jumps and their economic determinants
DEFF Research Database (Denmark)
Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo
that there is a positive probability of jumps in volatility. A common factor in the volatility jumps is shown to be related to a set of financial covariates (such as variance risk premium, S&P500 volume, credit-default swap, and federal fund rates). The credit-default swap on US banks and variance risk premium have...... predictive power on expected jump moves, thus confirming the common interpretation that sudden and large increases in equity volatility can be anticipated by credit deterioration of the US bank sector as well as changes in the market expectations of future risks. Finally, the model is extended to incorporate...... the credit-default swap and the variance risk premium in the dynamics of the jump size and intensity....
Bistability induces episodic spike communication by inhibitory neurons in neuronal networks
Kazantsev, V. B.; Asatryan, S. Yu.
2011-09-01
Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.
Liu, Weiqun; Badel, Adrien; Formosa, Fabien; Wu, Yipeng; Agbossou, Amen
2013-12-01
Bistable generators have been proposed as potential solutions to the challenge of variable vibration frequencies. In the authors' previous works, a specific BSM (Buckled-Spring-Mass) harvester architecture has been suggested. It presents some properties of interests: simplicity, compactness and wide bandwidth. Using a normalized model of the BSM generator for design and optimization at different scales, this paper presents a new integrated BSM bistable generator design with the OSECE (Optimized Synchronous Electric Charge Extraction) technique which is used for broadband energy harvesting. The experimental results obtained from an initial prototype device show that the BSM generator with the OSECE circuit exhibits better performance for low coupling cases or reverse sweep excitations. This is also confirmed by simulations for the proposed integrated generator. Good applications prospective is expected for the bistable generator with the nonlinear OSECE circuit.
On the control of bistability in non-contact mode AFM using modulated time delay
Directory of Open Access Journals (Sweden)
Kirrou I.
2014-01-01
Full Text Available We study the control of bistability in non-contact mode AFM using time delay with modulated feedback gain. We consider that the tip-sample interaction force is described by Lennard-Jones potential and the equation of motion is modeled by single degree of freedom system. Perturbation analysis is performed to obtain the modulation equations of the slow dynamic. The influence of the modulated time delay on the nonlinear characteristic of the frequency response is analyzed and the evolution of the bistability region in the modulated time delay parameter plan is examined. Results show that modulation of the feedback gain can be used to reduce the amplitude of the microcanteliver response and to suppress the bistability regime in large region of the modulated delay parameter space. The analytical predictions are compared to numerical simulations for validation.
模型不确定非线性Markov跳变系统的滤波算法%Filter algorithm for nonlinear Markov jump systems with uncertain models
Institute of Scientific and Technical Information of China (English)
赵顺毅; 刘飞
2012-01-01
Considering the state estimation problem for the nonlinear Markov jump system with uncertain model, a novel filtering algorithm is proposed. Compared with the traditional interacting multiple particle filter method, in this method, a term of filtering error at previous time instant is introduced to increase the effect of the particles which are true but with small weights due to the inaccuracy model to improve the estimation performance in the filtering process. Simulation results show the effectiveness of this method in handling with the state estimation problem for the nonlinear Markov jump systems with uncertain model parameter.%针对模型不确定非线性Markov跳变系统,提出一种新的滤波算法.相比于传统交互多模型粒子滤波,该方法通过引入前一时刻的滤波误差来增强原先由于不精确模型而造成权值较小的真实粒子在滤波过程中的作用,以此来改善算法的估计性能.仿真结果表明,该方法在处理含不确定模型参数的非线性Markov跳变系统状态估计问题时具有较好的性能.
Preschool-aged children's jumps: imitation performances.
Labiadh, Lazhar; Ramanantsoa, Marie-Martine; Golomer, Eveline
2010-04-01
Imitative behavior underlaid by perception and action links during children's development in complex locomotor skills has been the object of relatively few studies. In order to explore children's motor coordination modes, 130 children divided into five age groups from 3.5 to 7.5 years were instructed to imitate jumping tasks in spontaneous motor situation and in various imitative contexts by an adult providing verbal orders and gestural demonstrations. Their conformity to the model, stability and variability scores were coded from a video analysis when they performed jumps with obstacles. To evaluate their postural-motor control level, the durations of the preparatory phase and jumping flights were also timed. Results showed that all age groups generated the demonstrator's goal but not necessarily the same coordination modes of jumping. In imitation with temporal proximity, the model helped the youngest age groups to adopt his coordination modes and stabilized only the oldest age groups' performances starting from 5.5 years old, without effect on learning imitation. Differences between the youngest and oldest children in the jump duration suggested that the reproduction of a complex motor activity such as jumping with a one foot take-off would require resolution and adjustment of main postural stability.
Atom-loss-induced quantum optical bi-stability switch
Institute of Scientific and Technical Information of China (English)
Wu Bao-Jun; Cui Fu-Cheng
2012-01-01
We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose-Einstein condensate and an optical cavity with the two sides coupled dispersively.By adopting discrete-mode approximation for the condensate,taking atom loss as a necessary part of the model to analyze the evolution of the system,while using trial and errormethod to find out steady states of the system as a reference,numerical simulation demonstrates that with a constant pump,atom loss will trigger a quantum optical bi-stability switch,which predicts a new interesting phenomenon for experiments to verify.
Ve Koon, K Tse; Leon, J; Marquié, P; Tchofo-Dinda, P
2007-06-01
A discrete nonlinear system driven at one end by a periodic excitation of frequency above the upper band edge (the discreteness induced cutoff) is shown to be a means to (1) generate propagating breather excitations in a long chain and (2) reveal the bistable property of a short chain. After detailed numerical verifications, the bistability prediction is demonstrated experimentally on an electrical transmission line made of 18 inductance-capacitance (LC) cells. The numerical simulations of the LC -line model allow us also to verify the breather generation prediction with a striking accuracy.
Optical bistability effect in plasmonic racetrack resonator with high extinction ratio.
Wang, Xiaolei; Jiang, Houqiang; Chen, Junxue; Wang, Pei; Lu, Yonghua; Ming, Hai
2011-09-26
In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55 µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38 ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.
Optical bistability in a high-Q racetrack resonator based on small SU-8 ridge waveguides.
Jin, Li; Fu, Xin; Yang, Bo; Shi, Yaocheng; Dai, Daoxin
2013-06-15
A racetrack resonator with a high Q value (~34,000) is demonstrated experimentally based on small SU-8 optical ridge waveguides, which were fabricated with an improved etchless process. Optical bistability is observed in the present racetrack resonator even with a low input optical power (5.6-7.3 mW), which is attributed to the significant thermal nonlinear optical effect due to the high Q value and the large negative thermo-optical coefficient of SU-8. Theoretical modeling for the optical bistability is also given, and it agrees well with the experimental result.
Times and Sizes of Jumps in the Mexican Interest Rate
José Antonio Núñez Mora; Arturo Lorenzo Valdés
2008-01-01
This paper examines the role of jumps in a continuous-time short-term interest rate model for Mexico. A filtering algorithm provides estimates of jumps times and sizes in the time series of Mexican cetes for the 1998-2006 period. The empirical results indicate that the inclusion of jumps in the diffusion model represents a better alternative than not to include them.
Asymptotic iteration approach to supersymmetric bistable potentials
Institute of Scientific and Technical Information of China (English)
H. Ciftci; O. ozer; P. Roy
2012-01-01
We examine quasi exactly solvable bistable potentials and their supersymmetric partners within the framework of the asymptotic iteration method (AIM).It is shown that the AIM produces excellent approximate spectra and that sometimes it is found to be more useful to use the partner potential for computation. We also discuss the direct application of the AIM to the Fokker-Planck equation.
Organic bistable light-emitting devices
Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang
2002-01-01
An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.
A CW Gunn diode bistable switching element.
Hurtado, M.; Rosenbaum, F. J.
1972-01-01
Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.
Bistability in a stochastic RNA-mediated gene network
Lloyd-Price, Jason; Ribeiro, Andre S.
2013-09-01
Small regulatory RNAs (srRNAs) are important regulators of gene expression in eukaryotes and prokaryotes. A common motif containing srRNA is a bistable two-gene motif where one gene codes for a transcription factor (TF) which represses the transcription of the second gene, whose transcript is a srRNA which targets the first gene's transcript. Here, we investigate the properties of this motif in a stochastic model which takes the low copy numbers of the RNA components into account. First, we examine the conditions for stability of the two “noisy attractors.” We find that for realistic low copy numbers, extreme, but within realistic intervals, mutual repression strengths are required to compensate for the variability of the RNA numbers and thus, achieve long-term bistability. Second, the promoter initiation kinetics is found to strongly influence the bistability of the switch. Super-Poissonian RNA production disrupts the ability of the srRNA to silence its target, though sub-Poissonian RNA production does not rule out the need for strong mutual repression. Finally, we show that asymmetry between the two interactions forming the switch allows an external input to induce the transition from “high srRNA” to “‘high TF” more easily (i.e., with a shorter input) than in the opposite direction. We hypothesize that this asymmetric switching property allows these circuits to be more sensitive to one external input, without sacrificing the stability of one of the noisy attractors.
Abderrahmane, Hamid; Kasimov, Aslan
2013-11-01
We report an experimental observation of a new symmetry breaking of circular hydraulic jump into a self-organized structure that consists of a spinning polygonal jump and logarithmic-spiral waves of fluid elevation downstream. The waves are strikingly similar to spiral density waves in galaxies. The fluid flow exhibits counterparts of salient morphological features of galactic flows, in particular the outflow from the center, jets, circum-nuclear rings, gas inflows toward the galactic center, and vortices. The hydrodynamic instability revealed here may have a counterpart that plays a role in the formation and sustainability of spiral arms in galaxies.
Competitive Lotka-Volterra Population Dynamics with Jumps
Bao, Jianhai; Yin, Geroge; Yuan, Chenggui
2011-01-01
This paper considers competitive Lotka-Volterra population dynamics with jumps. The contributions of this paper are as follows. (a) We show stochastic differential equation (SDE) with jumps associated with the model has a unique global positive solution; (b) We discuss the uniform boundedness of $p$th moment with $p>0$ and reveal the sample Lyapunov exponents; (c) Using a variation-of-constants formula for a class of SDEs with jumps, we provide explicit solution for 1-dimensional competitive Lotka-Volterra population dynamics with jumps, and investigate the sample Lyapunov exponent for each component and the extinction of our $n$-dimensional model.
Magnetic actuation and transition shapes of a bistable spherical cap
Directory of Open Access Journals (Sweden)
E.G. Loukaides
2014-10-01
Full Text Available Multistable shells have been proposed for a variety of applications; however, their actuation is almost exclusively addressed through embedded piezoelectric patches. Additional actuation techniques are needed for applications requiring high strains or where remote actuation is desirable. Part of the reason for the lack of research in this area is the absence of appropriate models describing the detailed deformation and energetics of such shells. This work presents a bistable spherical cap made of iron carbonyl-infused polydimethylsiloxane. The magnetizable structure can be actuated remotely through permanent magnets while the transition is recorded with a high-speed camera. Moreover, the experiment is reproduced in a finite element (FE dynamic model for comparison with the physical observations. High-speed footage of the physical cap inversion together with the FE modeling gives valuable insight on preferable intermediate geometries. Both methods return similar values for the magnetic field strength required for the snap-through. High-strain multistable spherical cap transformation is demonstrated, based on informed material selection. We discover that non-axisymmetric transition shapes are preferred in intermediate geometries by bistable spherical caps. We develop the methods for design and analysis of such actuators, including the feasibility of remote actuation methods for multistable shells.
THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS
Energy Technology Data Exchange (ETDEWEB)
Gazol, Adriana [Centro de Radioastronomia y Astrofisica, UNAM, A. P. 3-72, c.p. 58089 Morelia, Michoacan (Mexico); Kim, Jongsoo, E-mail: a.gazol@crya.unam.mx, E-mail: jskim@kasi.re.kr [Korea Astronomy and Space Science Institute, 61-1, Hwaam-Dong, Yuseong-Ku, Daejeon 305-348 (Korea, Republic of)
2013-03-01
We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function ({Sigma}-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n {approx}< 0.6 cm{sup -3}), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from {approx}0.2 to {approx}5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n {approx}> 7.1 cm{sup -3}) goes from {approx}1.1 to {approx}16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the {Sigma}-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.
Robust Stabilization for Uncertain Linear Delay Markow Jump System
Institute of Scientific and Technical Information of China (English)
钟麦英; 汤兵勇; 黄小原
2001-01-01
Markov jump linear systems are defined as a family of linear systems with randomly Markov jumping parameters and are used to model systems subject to failures or changes in structure. The robust stabilization problem of jump linear delay system with umcerratnty was studied. By using of linear matrix inequalities, the existence conditions of robust stabilizing and the state feedback controller designing methods are also presented and proved. Finally, an illustrated example shows the effectiveness of this approach.
Control and characterization of a bistable laminate generated with piezoelectricity
Lee, Andrew J.; Moosavian, Amin; Inman, Daniel J.
2017-08-01
Extensive research has been conducted on utilizing smart materials such as piezoelectric and shape memory alloy actuators to induce snap through of bistable structures for morphing applications. However, there has only been limited success in initiating snap through from both stable states due to the lack of actuation authority. A novel solution in the form of a piezoelectrically generated bistable laminate consisting of only macro fiber composites (MFC), allowing complete configuration control without any external assistance, is explored in detail here. Specifically, this paper presents the full analytical, computational, and experimental results of the laminate’s design, geometry, bifurcation behavior, and snap through capability. By bonding two actuated MFCs in a [0MFC/90MFC]T layup and releasing the voltage post cure, piezoelectric strain anisotropy and the resulting in-plane residual stresses yield two statically stable states that are cylindrically shaped. The analytical model uses the Rayleigh-Ritz minimization of total potential energy and finite element analysis is implemented in MSC Nastran. The [0MFC/90MFC]T laminate is then manufactured and experimentally characterized for model validation. This paper demonstrates the adaptive laminate’s unassisted forward and reverse snap through capability enabled by the efficiencies gained from simultaneously being the actuator and the primary structure.
Directory of Open Access Journals (Sweden)
Cheng Gong
2014-01-01
Full Text Available This paper investigates the H∞ filtering problem of discrete singular Markov jump systems (SMJSs with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on H∞-disturbance attenuation is presented, in which both stability and prescribed H∞ performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependent H∞ filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI. Finally, an example is given to illustrate the effectiveness of the result.
Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint
2015-02-15
The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions.
Empirical likelihood inference for diffusion processes with jumps
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we consider the empirical likelihood inference for the jump-diffusion model. We construct the confidence intervals based on the empirical likelihood for the infinitesimal moments in the jump-diffusion models. They are better than the confidence intervals which are based on the asymptotic normality of point estimates.
Identification of optimal parameter combinations for the emergence of bistability.
Májer, Imre; Hajihosseini, Amirhossein; Becskei, Attila
2015-11-24
Bistability underlies cellular memory and maintains alternative differentiation states. Bistability can emerge only if its parameter range is either physically realizable or can be enlarged to become realizable. We derived a general rule and showed that the bistable range of a reaction parameter is maximized by a pair of other parameters in any gene regulatory network provided they satisfy a general condition. The resulting analytical expressions revealed whether or not such reaction pairs are present in prototypical positive feedback loops. They are absent from the feedback loop enclosed by protein dimers but present in both the toggle-switch and the feedback circuit inhibited by sequestration. Sequestration can generate bistability even at narrow feedback expression range at which cooperative binding fails to do so, provided inhibition is set to an optimal value. These results help to design bistable circuits and cellular reprogramming and reveal whether bistability is possible in gene networks in the range of realistic parameter values.
Identification of optimal parameter combinations for the emergence of bistability
Májer, Imre; Hajihosseini, Amirhossein; Becskei, Attila
2015-12-01
Bistability underlies cellular memory and maintains alternative differentiation states. Bistability can emerge only if its parameter range is either physically realizable or can be enlarged to become realizable. We derived a general rule and showed that the bistable range of a reaction parameter is maximized by a pair of other parameters in any gene regulatory network provided they satisfy a general condition. The resulting analytical expressions revealed whether or not such reaction pairs are present in prototypical positive feedback loops. They are absent from the feedback loop enclosed by protein dimers but present in both the toggle-switch and the feedback circuit inhibited by sequestration. Sequestration can generate bistability even at narrow feedback expression range at which cooperative binding fails to do so, provided inhibition is set to an optimal value. These results help to design bistable circuits and cellular reprogramming and reveal whether bistability is possible in gene networks in the range of realistic parameter values.
Optical bistability in a nonlinear-shell-coated metallic nanoparticle
Chen, Hongli; Zhang, Youming; Zhang, Baile; Gao, Lei
2016-01-01
We provide a self-consistent mean field approximation in the framework of Mie scattering theory to study the optical bistability of a metallic nanoparticle coated with a nonlinear shell. We demonstrate that the nanoparticle coated with a weakly nonlinear shell exhibits optical bistability in a broad range of incident optical intensity. This optical bistability critically relies on the geometry of the shell-coated nanoparticle, especially the fractional volume of the metallic core. The incident wavelength can also affect the optical bistability. Through an optimization-like process, we find a design with broader bistable region and lower threshold field by adjusting the size of the nonlinear shell, the fractional volume of the metallic core, and the incident wavelength. These results may find potential applications in optical bistable devices such as all-optical switches, optical transistors and optical memories. PMID:26907967
Memory devices based on organic electric bistable materials
Institute of Scientific and Technical Information of China (English)
CHEN Qi; BAI Hua; SHI GaoQuan
2007-01-01
Organic/metallic composites have demonstrated electrical bistability, as well as memory effects. These advanced materials have shown potential applications in digital information storage because of their good stability, flexibility and fast response speed. The electric bistability phenomenon can be explained by electric field-induced electron transfer/storage. This article reviews the recent progress of memory devices based on organic/metallic and polymeric composites with electric bistability.
Bistability vs. Metastability in Driven Dissipative Rydberg Gases
Letscher, Fabian; Niederprüm, Thomas; Fleischhauer, Michael; Ott, Herwig
2016-01-01
We investigate the possibility of a bistable phase in an open many-body system. To this end we discuss the microscopic dynamics of a continuously off-resonantly driven Rydberg lattice gas in the regime of strong decoherence. Our experimental results reveal a prolongation of the temporal correlations with respect to the lifetime of a single Rydberg excitation and show strong evidence for the formation of finite-sized Rydberg excitation clusters in the steady state. We simulate our data using a simplified and a full many-body rate-equation model. The results are compatible with the formation of metastable states associated with a bimodal counting distribution as well as dynamic hysteresis. A scaling analysis reveals however, that the correlation times remain finite for all relevant system parameters. This suggest that the Rydberg aggregate is composed of many small clusters and all correlation lengths remain finite. This is a strong indication for the absence of a global bistable phase, previously suggested to ...
Designing a stochastic genetic switch by coupling chaos and bistability
Energy Technology Data Exchange (ETDEWEB)
Zhao, Xiang [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Ouyang, Qi [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China); The Peking-Tsinghua Center for Life Sciences, Beijing 100871 (China); Wang, Hongli, E-mail: hlwang@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China)
2015-11-15
In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.
Dynamo efficiency controlled by hydrodynamic bistability.
Miralles, Sophie; Herault, Johann; Herault, Johann; Fauve, Stephan; Gissinger, Christophe; Pétrélis, François; Daviaud, François; Dubrulle, Bérengère; Boisson, Jean; Bourgoin, Mickaël; Verhille, Gautier; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas
2014-06-01
Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow-where one disk has been replaced by a propeller-are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated.
Bistable heat transfer in a nanofluid.
Donzelli, Gea; Cerbino, Roberto; Vailati, Alberto
2009-03-13
Heat convection in water can be suppressed by adding a small amount of highly thermophilic nanoparticles. We show that such suppression is not effective when a suspension with uniform concentration of nanoparticles is suddenly heated from below. At Rayleigh numbers smaller than a sample dependent threshold Ra;{*} we observe transient oscillatory convection. Unexpectedly, the duration of convection diverges at Ra;{*}. Above Ra;{*} oscillatory convection becomes permanent and the heat transferred exhibits bistability. Our results are explained only partially and qualitatively by existing theories.
Bistable (latching) solenoid actuated propellant isolation valve
Wichmann, H.; Deboi, H. H.
1979-01-01
The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.
A locust-inspired miniature jumping robot.
Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor
2015-11-25
Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.
Double large Barkhausen jump in soft/soft composite microwires
Energy Technology Data Exchange (ETDEWEB)
Infante, G; Badini-Confalonieri, G A; Real, R P del; Vazquez, M, E-mail: mvazquez@icmm.csic.e [Materials Science Institute of Madrid, CSIC, 28049 Madrid (Spain)
2010-09-01
The magnetic properties of double layer microwires consisting of a soft FeSiBP amorphous core, an intermediate non-magnetic glass spacer and a softer FeNi outer shell have been investigated. As in the case of other magnetostatically coupled two-phase systems, the hysteresis loops are characterized by two well-defined Barkhausen jumps corresponding each to the magnetization reversal of the individual phases, separated by a plateau. The strong dipolar interaction that leads to the appearance of the plateau is investigated in terms of the microwire geometry. It is shown that this source of coupling is capable of increasing up to one order of magnitude the switching field of the Fe-rich core. Thus, magnetic bistability can be effectively controlled in these kinds of composite wires.
Lan, Chunbo; Qin, Weiyang
2017-02-01
When a bistable energy harvester (BEH) is driven by weak random excitation, its harvesting efficiency will decrease due to the seldom occurrence of interwell motion. To overcome this defect, we developed an improved bistable energy harvester (IBEH) from BEH by adding a small magnet at the middle of two fixed magnets. It is proved that the attractive force originated from the additional magnet can pull down the potential barrier and shallow the potential well, but still keep the middle position of beam unstable. This can make jumping between potential wells easier. Thus IBEH can realize snap-through even at fairly weak excitation. The magnetic potential energy is given and the electromechanical equations are derived. Then the harvesting performance of IBEH under random excitation is studied. Validation experiments are designed and carried out. Comparisons prove that IBEH is preferable to BEH in harvesting random energy and can give out a high output voltage even at weak excitation. The size of additional magnet can be optimized to reach the best performance of IBEH.
Farr, Will M
2011-01-01
Selection among alternative theoretical models given an observed data set is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty: it requires jumps between model parameter spaces, but cannot retain a memory of the favored locations in more than one parameter space at a time. Thus, a naive jump between parameter spaces is unlikely to be accepted in the MCMC algorithm and convergence is correspondingly slow. Here we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose inter-model jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in arbitrary dimensions. We show that our technique leads to dramatically improved convergence over naive jumps in an RJMCMC, and compare it ...
Farr, W M; Mandel, I; Stevens, D
2015-06-01
Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient 'global' proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently.
Bubbling and bistability in two parameter discrete systems
Indian Academy of Sciences (India)
G Ambika; N V Sujatha
2000-05-01
We present a graphical analysis of the mechanisms underlying the occurrences of bubbling sequences and bistability regions in the bifurcation scenario of a special class of one dimensional two parameter maps. The main result of the analysis is that whether it is bubbling or bistability is decided by the sign of the third derivative at the inﬂection point of the map function.
跳一扩散模型下的广义交换期权定价%Pricing General Exchange Options under Jump-Diffusion Model
Institute of Scientific and Technical Information of China (English)
李美蓉
2011-01-01
Options and the pricing theory of options are the frontiers problem in today＇s financial manage- ment and financial engineering research. Under the risk-neutral hypothesis , we construct the model of stock price which jump process is a kind of special renewal process and obtain European general exchange option pricing formula under this model by means of martingale method. At last, this paper list some special cases of this model and generalize the pricing model and hedging strategy and the applying on perfoumance incentive fee of investment funds.%期权及其定价理论是目前金融管理，金融工程研究的前沿问题之一。本文在风险中性的假设下，建立了跳过程为一类特殊的更新过程时的股票价格模型，利用鞅方法得到了此模型下的欧式广义交换期权的定价，最后列出了此模型一些特例和推广，以及套期保值策略和交换期权在投资基金业绩报酬价值中的应用。
Zhang, Yunxin; Qian, Hong
2010-01-01
Multistability of mesoscopic, driven biochemical reaction systems has implications to a wide range of cellular processes. Using several simple models, we show that one class of bistable chemical systems has a deterministic counterpart in the nonlinear dynamics based on the Law of Mass Action, while another class, widely known as noise-induced stochastic bistability, does not. Observing the system's volume ($V$) playing a similar role as the inverse temperature ($\\beta$) in classical rate theory, an van't Hoff-Arrhenius like analysis is introduced. In one-dimensional systems, a transition rate between two states, represented in terms of a barrier in the landscape for the dynamics $\\Phi(x,V)$, $k\\propto\\exp\\{-V\\Delta\\Phi^{\\ddag}(V)\\}$, can be understood from a decomposition $\\Delta\\Phi^{\\ddag}(V) \\approx\\Delta\\phi_0^{\\ddag} \\Delta\\phi_1^{\\ddag}/V$. Nonlinear bistability means $\\Delta\\phi_0^{\\ddag}>0$ while stochastic bistability has $\\Delta\\phi_0^{\\ddag}0$. Stochastic bistabilities can be viewed as remants (or ...
Garcia, Sebastian
2010-01-01
Eastward ridge jumps bring the volcanic zones of Iceland back to the centre of the hotspot in response to the absolute westward drift of the Mid-Atlantic Ridge. Mantellic pulses triggers these ridge jumps. One of them is occurring in Southern Iceland, whereas the exact conditions of the last ridge jump in Northern Iceland remain controversial. The diachronous evolution of these two parts of Iceland may be related to the asymmetric plume-ridge interaction when comparing Northern and Southern I...
Directory of Open Access Journals (Sweden)
Struzik Artur
2016-04-01
Full Text Available Study aim: The elastic potential energy accumulated in the musculotendinous units during the countermovement phase of a jump adds up to the energy supplied by the contracting muscles used in the take-off phase. Consequently, the total mechanical energy used during the jump may reach higher values. Stiffness represents a quantitative measure of a body’s elastic properties. Therefore, the aim of this study was to establish the relationship between leg stiffness and the countermovement jump height.
Effects of isometric scaling on vertical jumping performance.
Directory of Open Access Journals (Sweden)
Maarten F Bobbert
Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.
Effects of isometric scaling on vertical jumping performance.
Bobbert, Maarten F
2013-01-01
Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.
Study of spatial signal transduction in bistable switches
Zhao, Qi; Yao, Cheng-Gui; Tang, Jun; Liu, Li-Wei
2016-10-01
Bistable switch modules are among the most important fundamental motifs in signal-transduction pathways. To better understand their spatial signal transduction, we model the diffusion process in the one-dimensional (1-D) domain. We find that when none of the elements diffuse, the response of the system exhibits a spatial switch-like property. However, when one of the elements is highly diffusible, the response of the system does not show any spatial switching behavior. Furthermore, we observe that the spatial responses of the system are more sensitive to the time constant of the switch when none of the elements are diffusible. Further, a slow loop keeps the system in the high steady state more positions than that in the fast loop. Finally, we consolidate our numerical results analytically by performing a mathematical method.
Bistability in the Chemical Master Equation for Dual Phosphorylation Cycles
Bazzani, A; Giampieri, E; Remondini, D; Cooper, L N
2011-01-01
Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates, are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed to elucidate the effect of noise in such systems, some aspects remain unclear. Here we study the stationary distribution provided by the two-dimensional Chemical Master Equation for a well known model of a two step phospho/dephosphorylation cycle using the quasi steady state approximation of the enzymatic kinetics. Our aim is to analyze the role of fluctuations and the molecules distribution properties in the transition to a bistable regime. When detailed balance conditions are satisfied it is possible to compute equilibrium distributions in a closed and explicit form. When detailed balance is not satisfied, the stationary non-equilibrium state is strongly influenced by the ...
The hydraulic jump and ripples in liquid helium
Energy Technology Data Exchange (ETDEWEB)
Rolley, E. [Laboratoire de Physique Statistique de l' ENS, associe au CNRS et aux Universites Paris 6 et Paris 7, 24 rue Lhomond, 75005 Paris (France)]. E-mail: rolley@lps.ens.fr; Guthmann, C. [Laboratoire de Physique Statistique de l' ENS, associe au CNRS et aux Universites Paris 6 et Paris 7, 24 rue Lhomond, 75005 Paris (France); Pettersen, M.S. [Washington and Jefferson College, 60 S. Lincoln St., Washington, PA 15301 (United States)
2007-05-01
We have studied the characteristics of the circular hydraulic jump using liquid helium. Surprisingly, the radius of the jump does not change at the superfluid transition. We think that the flow is still dissipative below the lambda point because the velocity exceeds the critical one. The jump radius R{sub j} is compared with various models. In our parameter range, we find that the jump can be treated as a shock, and that capillary effects are important. Below the superfluid transition, we observed a standing capillary wave between the impact of the jet and the jump. Assuming that the superfluid flow can be described with an effective viscosity, we calculate the wave vector and thus obtain the value of the liquid thickness, which is in reasonable agreement with predictions. However, the spatial variation of the wave amplitude depends much more strongly on temperature than we calculate.
Tuning Superhydrophobic Nanostructures to Enhance Jumping-Droplet Condensation
Mulroe, Megan; Srijanto, Bernadeta; Collier, Patrick; Boreyko, Jonathan
2016-11-01
It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface when two or more droplets coalesce together. The minimum droplet size for jumping to occur is of order 10 microns, but it is unclear whether this is the true lower limit of jumping droplets or simply a limitation of current superhydrophobic surfaces. Here, we analyze the dynamics of jumping droplets on six different superhydrophobic surfaces where the topography of the nanopillars was systematically varied. The critical diameter for jumping to occur was observed to be highly dependent upon the height and diameter of the nanopillars; surfaces with very tall and slender nanopillars enabled jumping droplets at a smaller critical size of order 1 micron. An energetic model of the incipient growth of condensate shows that the nanostructure topology affects the rate of increase of a growing droplet's apparent contact angle, with jumping being enabled at very large angles. These findings indicate that the true upper limit to the performance of jumping-droplet condensers has not yet been reached and can be further improved using advanced nanofabrication techniques.
Exploring Lightning Jump Characteristics
Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.
2014-01-01
This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.
Attari, Babak; Weislogel, Mark; Wollman, Andrew; Chen, Yongkang; Snyder, Trevor
2016-11-01
Large droplets and puddles jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 10,000 times larger than their normal terrestrial counterparts. We provide or confirm quick and qualitative design guides for such 'drop shooters' as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, drop volume, and fluid properties including contact angle. The latter are determined via profile image comparisons with numerical equilibrium interface computations. Water drop volumes of 0.04 to 400 mL at ejection speeds of -0.007 to 0.12 m/s are demonstrated. An example application of the puddle jump method is made to the classic problem of regime mapping for low-gravity phase change heat transfer for large impinging drops. Many other candidate problems might be identified.
Ge, Hao
2009-01-01
We show that the thermodynamic limit of a bistable phosphorylation-dephosphorylation cycle has a selection rule for the "more stable" macroscopic steady state. The analysis is akin to the Maxwell construction. Based on the chemical master equation approach, it is shown that, except at a critical point, bistability disappears in the stochastic model when fluctuation is sufficiently low but unneglectable. Onsager's Gaussian fluctuation theory applies to the unique macroscopic steady state. With initial state in the basin of attraction of the "less stable" steady state, the deterministic dynamics obtained by the Law of Mass Action is a metastable phenomenon. Stability and robustness in cell biology are stochastic concepts.
Annealing study of a bistable cluster defect
Energy Technology Data Exchange (ETDEWEB)
Junkes, Alexandra, E-mail: alexandra.junkes@desy.d [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Eckstein, Doris [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Pintilie, Ioana [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); NIMP Bucharest-Margurele (Romania); Makarenko, Leonid F. [Belarusian State University, Minsk (Belarus); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany)
2010-01-11
This work deals with the influence of neutron and proton induced cluster related defects on the properties of n-type silicon detectors. Defect concentrations were obtained by means of Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) technique, while the full depletion voltage and the reverse current were extracted from capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The annealing behaviour of the reverse current can be correlated with the annealing of the cluster related defect levels labeled E4a and E4b by making use of their bistability. This bistability was characterised by isochronal and isothermal annealing studies and it was found that the development with increasing annealing temperature is similar to that of divacancies. This supports the assumption that E4a and E4b are vacancy related defects. In addition we observe an influence of the disordered regions on the shape and height of the DLTS or TSC signals corresponding to point defects like the vacancy-oxygen complex.
Domain wall dynamics of magnetically bistable microwires
Directory of Open Access Journals (Sweden)
Ipatov M.
2012-06-01
Full Text Available We studied domain wall propagation of magnetically-bistable Fe- Co-rich microwires paying attention on effect of applied and internal stresses. We measured hysteresis loops and domain wall propagation in various magnetic Fe- Co-rich amorphous microwires with metallic nucleus diameters (from 12 □m till 22 □m using Sixtus Tonks-like experiments. Application of tensile stresses results in decreasing of domain wall velocity. We discussed magnetoelastic contribution in dynamics of domain wall propagation. We observed, that microwires with different geometries exhibit v(H dependences with different slopes. Application of stresses resulted in decrease of DW velocity, v, and DW mobility S. Quite fast DW propagation (v till 2500 m/s at H about 30 A/m has been observed in low magnetostrictive magnetically bistable Co56Fe8Ni10Si110B16 microwires. Consequently, we can assume that generally magnetoelastic energy affects DW dynamics: decreasing magnetoelastic energy, Kme, DW velocity increases.
DEFF Research Database (Denmark)
Bonn, D.; Andersen, Anders Peter; Bohr, Tomas
2009-01-01
We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected...
Asymptotic Distribution of the Jump Change-Point Estimator
Institute of Scientific and Technical Information of China (English)
Changchun TAN; Huifang NIU; Baiqi MIAO
2012-01-01
The asymptotic distribution of the change-point estimator in a jump changepoint model is considered.For the jump change-point model Xi =a + θI{[nTo] ＜ i ≤n} + εi,where εi (i =1,…,n) are independent identically distributed random variables with Eεi=0 and Var(εi) ＜ oo,with the help of the slip window method,the asymptotic distribution of the jump change-point estimator (T) is studied under the condition of the local alternative hypothesis.
Institute of Scientific and Technical Information of China (English)
王志焕; 林建伟
2011-01-01
The author investigates the installment call options pricing of real estate in jump-diffusion model. Under the background of "consignment to rent" of xi'ao center office in Beijing, this paper establishes the real estate option pricing of partial differential equation model under the framework of Black-Scholes, and deduces the corresponding binary tree format, discrete model numerical simulation and parameter analysis. The results show that the jump-diffusion model is closer to the real market than the diffusion model.%假设房产价格服从跳-扩散模型,研究分期付款看涨房产期权的定价问题.以北京西奥中心写字楼“以租代售”的实例为背景,在Black-Scholes框架下建立了实物期权定价的偏微分方程模型,推导出相应的二叉树格式离散模型,并进行数值模拟和参数分析,结果表明该模型较扩散模型更接近实际市场.
Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion.
Zemskov, Evgeny P; Tsyganov, Mikhail A; Horsthemke, Werner
2017-01-01
We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.
Electrostatic charging of jumping droplets
Miljkovic, Nenad; Preston, Daniel J.; Enright, Ryan; Wang, Evelyn N.
2013-09-01
With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet-surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.
Jump conditions in transonic equilibria
Energy Technology Data Exchange (ETDEWEB)
Guazzotto, L.; Betti, R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)
2013-04-15
In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.
Membrane Bistability in Thalamic Reticular Neurons During Spindle Oscillations
Fuentealba, Pablo; Timofeev, Igor; Bazhenov, Maxim; Sejnowski, Terrence J.; Steriade, Mircea
2010-01-01
The thalamic reticular (RE) nucleus is a major source of inhibition in the thalamus. It plays a crucial role in regulating the excitability of thalamocortical networks and in generating some sleep rhythms. Current-clamp intracellular recordings of RE neurons in cats under barbiturate anesthesia revealed the presence of membrane bistability in ~20% of neurons. Bistability consisted of two alternate membrane potentials, separated by ~17–20 mV. While non-bistable (common) RE neurons fired rhythmic spike-bursts during spindles, bistable RE neurons fired tonically, with burst modulation, throughout spindle sequences. Bistability was strongly voltage dependent and only expressed under resting conditions (i.e. no current injection). The transition from the silent to the active state was a regenerative event that could be activated by brief depolarization, whereas brief hyperpolarizations could switch the membrane potential from the active to the silent state. These effects outlasted the current pulses. Corticothalamic stimulation could also switch the membrane potential from silent to active states. Addition of QX-314 in the recording micropipette either abolished or disrupted membrane bistability, suggesting INa(p) to be responsible for its generation. Thalamocortical cells presented various patterns of spindling that reflected the membrane bistability in RE neurons. Finally, experimental data and computer simulations predicted a role for RE neurons’ membrane bistability in inducing various patterns of spindling in target thalamocortical cells. We conclude that membrane bistability of RE neurons is an intrinsic property, likely generated by INa(p) and modulated by cortical influences, as well as a factor that determines different patterns of spindle rhythms in thalamocortical neurons. PMID:15331618
Dynamics and stability of directional jumps in the desert locust
Gvirsman, Omer
2016-01-01
Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications. PMID:27703846
Dynamics and stability of directional jumps in the desert locust
Directory of Open Access Journals (Sweden)
Omer Gvirsman
2016-09-01
Full Text Available Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.
Bistable flows in precessing spheroids
Cébron, D
2015-01-01
Precession driven flows are found in any rotating container filled with liquid, when the rotation axis itself rotates about a secondary axis that is fixed in an inertial frame of reference. Because of its relevance for planetary fluid layers, many works consider spheroidal containers, where the uniform vorticity component of the bulk flow is reliably given by the well-known equations obtained by Busse in 1968. So far however, no analytical result on the solutions is available. Moreover, the cases where multiple flows can coexist have not been investigated in details since their discovery by Noir et al. (2003). In this work, we aim at deriving analytical results on the solutions, aiming in particular at, first estimating the ranges of parameters where multiple solutions exist, and second studying quantitatively their stability. Using the models recently proposed by Noir \\& C{\\'e}bron (2013), which are more generic in the inviscid limit than the equations of Busse, we analytically describe these solutions, ...
Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda.
Directory of Open Access Journals (Sweden)
Michael Bednarz
Full Text Available The lysis/lysogeny switch of bacteriophage lambda serves as a paradigm for binary cell fate decision, long-term maintenance of cellular state and stimulus-triggered switching between states. In the literature, the system is often referred to as "bistable." However, it remains unclear whether this term provides an accurate description or is instead a misnomer. Here we address this question directly. We first quantify transcriptional regulation governing lysogenic maintenance using a single-cell fluorescence reporter. We then use the single-cell data to derive a stochastic theoretical model for the underlying regulatory network. We use the model to predict the steady states of the system and then validate these predictions experimentally. Specifically, a regime of bistability, and the resulting hysteretic behavior, are observed. Beyond the steady states, the theoretical model successfully predicts the kinetics of switching from lysogeny to lysis. Our results show how the physics-inspired concept of bistability can be reliably used to describe cellular phenotype, and how an experimentally-calibrated theoretical model can have accurate predictive power for cell-state switching.
Optimizing the Distribution of Leg Muscles for Vertical Jumping.
Wong, Jeremy D; Bobbert, Maarten F; van Soest, Arthur J; Gribble, Paul L; Kistemaker, Dinant A
2016-01-01
A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal
Optimizing the Distribution of Leg Muscles for Vertical Jumping.
Directory of Open Access Journals (Sweden)
Jeremy D Wong
Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of
DEFF Research Database (Denmark)
Ravn, Susanne; Voigt, M; Simonsen, Erik Bruun
1999-01-01
Six male subjects, three professional ballet dancers and three elite volleyball players, performed maximal vertical jumps from 1) a static preparatory position (squat jump), 2) starting with a countermovement (countermovement jump) and 3) a specific jump for ballet and for volleyball, respectively....... The jumps were recorded on highspeed film (500 Hz) combined with registration of ground reaction forces, and net joint moments were calculated by inverse dynamics. The purpose was to investigate the choice of strategy in two standard jumps, squat jump and countermovement jump. The volleyball jump...... was performed with a sequential strategy and the ballet jump was performed with a simultaneous strategy. In the two standard jumps, the choice of strategy was individual and not related to training background. This was additionally confirmed in a test of seven ballet dancers and seven volleyball players....
Capture of Trojans by Jumping Jupiter
Nesvorny, David; Morbidelli, Alessandro
2013-01-01
Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ~5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the ...
Modulating resonance behaviors by noise recycling in bistable systems with time delay
Energy Technology Data Exchange (ETDEWEB)
Sun, Zhongkui, E-mail: sunzk2008@gmail.com; Xu, Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Yang, Xiaoli [College of Mathematics and Information Science, Shaan' xi Normal University, Xi' an 710062 (China); Xiao, Yuzhu [Department of Mathematics and Information Science, Chang' an University, Xi' an 710086 (China)
2014-06-01
In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been found analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.
Signal modulating noise effect in bistable stochastic resonance systems and its analog simulation
Institute of Scientific and Technical Information of China (English)
XIAO Fang-hong; YAN Gui-rong; XIE Shi-cheng
2006-01-01
The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.
Analysis of noise-induced bistability in Michaelis Menten single-step enzymatic cycle
Remondini, Daniel; Bazzani, Armando; Castellani, Gastone; Maritan, Amos
2011-01-01
In this paper we study noise-induced bistability in a specific circuit with many biological implications, namely a single-step enzymatic cycle described by Michaelis Menten equations with quasi-steady state assumption. We study the system both with a Master Equation formalism, and with the Fokker-Planck continuous approximation, characterizing the conditions in which the continuous approach is a good approximation of the exact discrete model. An analysis of the stationary distribution in both cases shows that bimodality can not occur in such a system. We discuss which additional requirements can generate stochastic bimodality, by coupling the system with a chemical reaction involving enzyme production and turnover. This extended system shows a bistable behaviour only in specific parameter windows depending on the number of molecules involved, providing hints about which should be a feasible system size in order that such a phenomenon could be exploited in real biological systems.
The bistability phenomenon in single and coupled oscillators based on VO2 switches
Belyaev, M. A.; Putrolaynen, V. V.; Velichko, A. A.
2017-01-01
New operation regimes of single and coupled oscillators in circuits based on planar VO2 switches have been studied. The phenomenon of bistability is discovered, which consists in controlled switching of self-sustained oscillations by external pulses, which is a promising basis for the creation of oscillatory memory cells and implementation of pulse coupling regimes in artificial neural networks (ANNs). The duration of switch-on and switch-off pulses is no less that 20 μs and 30 ms, respectively. It is established that the region of threshold voltages for bistable switching in coupled oscillators is much wider than in a single oscillator and the hysteresis width in the former case can reach 2 V. A regime of initiation of switching packets has been observed that models the ANN packet activity.
Zhang, Chi; Wang, Long-Fei; Yue, Yuan; Yu, Lian-Chun
2015-01-01
Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this paper, we calculated the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculated the mutual information, energy cost, and energy efficiency of an array of these bistable units. We found that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
Nonstandard analysis and jump conditions for converging shock waves
Baty, Roy S.; Farassat, F.; Tucker, Don H.
2008-06-01
Nonstandard analysis is an area of modern mathematics that studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.
Bistability, Epigenetics, and Bet-Hedging in Bacteria
Veening, Jan-Willem; Smits, Wiep Klaas; Kuipers, Oscar P.
2008-01-01
Clonal populations of microbial cells often show a high degree of phenotypic variability under homogeneous conditions. Stochastic fluctuations in the cellular components that determine cellular states can cause two distinct subpopulations, a property called bistability Phenotypic heterogeneity can b
On the Selection of Bistability in Genetic Regulatory Circuits
Ghim, Cheol-Min; Almaas, Eivind
2008-03-01
Bistability is a defining character of switching and memory devices. Many regulatory circuits observed in cellular reaction networks contain ``bistability motifs'' that endow a cell with efficient and reliable switching between different physiological modes of operation. One of the best characterized system, the lac operon in E. coli, has been shown to display a saddle-node bifurcation when induced by nonmetabolizable lactose analogue inducers, such as isopropylthio-β-D-galactoside (IPTG) and thio-methyl-galactoside (TMG). Motivated by the absence of bifurcation in the same system with its natural inducer, lactose, we studied the conditions for bistability and rationalized its fitness effects in the light of evolution. Stochastic simulations as well as mean-field approach confirm that history-dependent behavior as well as nongenetic inheritance, being realized by bistability motifs, may be beneficial in fluctuating environments.
Phenotypic bistability in Escherichia coli's central carbon metabolism
Kotte, Oliver; Volkmer, Benjamin; Radzikowski, Jakub L.; Heinemann, Matthias
2014-01-01
Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is
Generic Bistability in Creased Conical Surfaces
Lechenault, F.; Adda-Bedia, M.
2015-12-01
The emerging field of mechanical metamaterials has sought inspiration in the ancient art of origami as archetypal deployable structures that carry geometric rigidity, exhibit exotic material properties, and are potentially scalable. A promising venue to introduce functionality consists in coupling the elasticity of the sheet and the kinematics of the folds. In this spirit, we introduce a scale-free, analytical description of a very general class of snap-through, bistable patterns of creases naturally occurring at the vertices of real origami that can be used as building blocks to program and actuate the overall shape of the decorated sheet. These switches appear at the simplest possible level of creasing and admit straightforward experimental realizations.
Bistability in one equation or fewer.
Anderson, Graham A; Liu, Xuedong; Ferrell, James E
2012-01-01
When several genes or proteins modulate one another's activity as part of a network, they sometimes produce behaviors that no protein could accomplish on its own. Intuition for these emergent behaviors often cannot be obtained simply by tracing causality through the network in discreet steps. Specifically, when a network contains a feedback loop, biologists need specialized tools to understand the network's behaviors and their necessary conditions. This analysis is grounded in the mathematics of ordinary differential equations. We, however, will demonstrate the use of purely graphical methods to determine, for experimental data, the plausibility of two network behaviors, bistability and irreversibility. We use the Xenopus laevis oocyte maturation network as our example, and we make special use of iterative stability analysis, a graphical tool for determining stability in two dimensions.
Electronic bistability in linear beryllium chains.
Helal, Wissam; Monari, Antonio; Evangelisti, Stefano; Leininger, Thierry
2009-04-30
A theoretical investigation on the mixed-valence behavior (bistability) of a series of cationic linear chains composed of beryllium atoms, Be(N)(+) (with N = 6,..., 12), is presented. The calculations were performed at CAS-SCF and MR-CI levels by using an ANO basis set containing 6s4p3d2f orbitals for each atom. Our results show a consistent gradual shift between different classes of mixed-valence compounds as the number of beryllium atoms increases, from class III strong coupling toward class II valence trapped. Indeed, in the largest cases (N > 10), the cationic chains were found to be closer to class I, where the coupling vanishes. The intramolecular electron transfer parameters V(ab), E(a), and E(opt) were calculated for each atomic chain. It is shown that the decrease of V(ab) with increasing N follows an exponential pattern.
Engineering optical soliton bistability in colloidal media
Matuszewski, Michal
2010-01-01
We consider a mixture consisting of two species of spherical nanoparticles dispersed in a liquid medium. We show that with an appropriate choice of refractive indices and particle diameters, it is possible to observe the phenomenon of optical soliton bistability in two spatial dimensions in a broad beam power range. Previously, this possibility was ruled out in the case of a single-species colloid. As a particular example, we consider the system of hydrophilic silica particles and gas bubbles generated in the process of electrolysis in water. The interaction of two soliton beams can lead to switching of the lower branch solitons to the upper branch, and the interaction of solitons from different branches is phase independent and always repulsive.
Bistability in a Driven-Dissipative Superfluid
Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig
2016-06-01
We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ , the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.
Frequency Jump Detection and Analysis
2008-12-01
CUMULATIVE SUM JUMP DETECTION The Cumulative Sum ( CUSUM ) is a classic change-point analysis technique that uses the cumulative sum of the...sum and y is the average of the data. The CUSUM slope indicates the value of the data with respect to the overall average. A flat cumulative sum...sudden change in the CUSUM slope indicates a jump in the data. The CUSUM plot for a data set having a single jump will have a V or inverted V shape
Condensed droplet jumping: Capillary to inertial energy transfer
Enright, Ryan; Miljkovic, Nenad; Morris, Michael; Wang, Evelyn
2013-03-01
When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. This behavior has been shown to follow a simple inertial-capillary scaling. However, questions remain regarding the nature of the energy conversion process linking the excess surface energy of the system before coalescence and the kinetic energy of the jumping droplet. Furthermore, the primary energy dissipation mechanisms limiting this jumping behavior remain relatively unexplored. In this work, we present new experimental data from a two-camera setup capturing the trajectory of jumping droplets on nanostructured surfaces with a characteristic surface roughness length scale on the order of 10 nm. Coupled with a model developed to capture the main details of the bridging flow during coalescence, our findings suggest that: 1. the excess surface energy available for jumping is a fraction of that suggested by simple scaling due to incomplete energy transfer, 2. internal viscous dissipation is not a limiting factor on the jumping process at droplet sizes on the order of 10 μm and 3. jumping performance is strongly affected by forces associated with the external flow and fields around the droplet. This work suggests bounds on the heat transfer performance of superhydrophobic condensation surfaces.
Vivot, Alexandre; Power, Melinda C; Glymour, M Maria; Mayeda, Elizabeth R; Benitez, Andreana; Spiro, Avron; Manly, Jennifer J; Proust-Lima, Cécile; Dufouil, Carole; Gross, Alden L
2016-02-15
Improvements in cognitive test scores upon repeated assessment due to practice effects (PEs) are well documented, but there is no empirical evidence on whether alternative specifications of PEs result in different estimated associations between exposure and rate of cognitive change. If alternative PE specifications produce different estimates of association between an exposure and rate of cognitive change, this would be a challenge for nearly all longitudinal research on determinants of cognitive aging. Using data from 3 cohort studies-the Three-City Study-Dijon (Dijon, France, 1999-2010), the Normative Aging Study (Greater Boston, Massachusetts, 1993-2007), and the Washington Heights-Inwood Community Aging Project (New York, New York, 1999-2012)-for 2 exposures (diabetes and depression) and 3 cognitive outcomes, we compared results from longitudinal models using alternative PE specifications: no PEs; use of an indicator for the first cognitive visit; number of prior testing occasions; and square root of the number of prior testing occasions. Alternative specifications led to large differences in the estimated rates of cognitive change but minimal differences in estimated associations of exposure with cognitive level or change. Based on model fit, using an indicator for the first visit was often (but not always) the preferred model. PE specification can lead to substantial differences in estimated rates of cognitive change, but in these diverse examples and study samples it did not substantively affect estimated associations of risk factors with change.
Does visual attention drive the dynamics of bistable perception?
Dieter, Kevin C; Brascamp, Jan; Tadin, Duje; Blake, Randolph
2016-10-01
How does attention interact with incoming sensory information to determine what we perceive? One domain in which this question has received serious consideration is that of bistable perception: a captivating class of phenomena that involves fluctuating visual experience in the face of physically unchanging sensory input. Here, some investigations have yielded support for the idea that attention alone determines what is seen, while others have implicated entirely attention-independent processes in driving alternations during bistable perception. We review the body of literature addressing this divide and conclude that in fact both sides are correct-depending on the form of bistable perception being considered. Converging evidence suggests that visual attention is required for alternations in the type of bistable perception called binocular rivalry, while alternations during other types of bistable perception appear to continue without requiring attention. We discuss some implications of this differential effect of attention for our understanding of the mechanisms underlying bistable perception, and examine how these mechanisms operate during our everyday visual experiences.
Emergent equilibrium in many-body optical bistability
Foss-Feig, M.; Niroula, P.; Young, J. T.; Hafezi, M.; Gorshkov, A. V.; Wilson, R. M.; Maghrebi, M. F.
2017-04-01
Many-body systems constructed of quantum-optical building blocks can now be realized in experimental platforms ranging from exciton-polariton fluids to ultracold Rydberg gases, establishing a fascinating interface between traditional many-body physics and the driven-dissipative, nonequilibrium setting of cavity QED. At this interface, the standard techniques and intuitions of both fields are called into question, obscuring issues as fundamental as the role of fluctuations, dimensionality, and symmetry on the nature of collective behavior and phase transitions. Here, we study the driven-dissipative Bose-Hubbard model, a minimal description of numerous atomic, optical, and solid-state systems in which particle loss is countered by coherent driving. Despite being a lattice version of optical bistability, a foundational and patently nonequilibrium model of cavity QED, the steady state possesses an emergent equilibrium description in terms of a classical Ising model. We establish this picture by making new connections between traditional techniques from many-body physics (functional integrals) and quantum optics (the system-size expansion). To lowest order in a controlled expansion—organized around the experimentally relevant limit of weak interactions—the full quantum dynamics reduces to nonequilibrium Langevin equations, which support a phase transition described by model A of the Hohenberg-Halperin classification. Numerical simulations of the Langevin equations corroborate this picture, revealing that canonical behavior associated with the Ising model manifests readily in simple experimental observables.
Jump Testing and the Speed of Market Adjustment
DEFF Research Database (Denmark)
Rasmussen, Torben B.
Asymptotic properties of jump tests rely on the property that any jump occurs within a single time interval no matter what the observation frequency is. Market microstructure effects in relation to news-induced revaluation of the underlying variable is likely to make this an unrealistic assumption...... for high-frequency transaction data. To capture these microstructure effects, this paper suggests a model in which market prices adjust gradually to jumps in the underlying effcient price. A case study illustrates the empirical relevance of the model, and the performance of different jump tests...... is investigated here and in a simulation study. Evidence indicates that tests based on the largest of scaled price increments perform better than tests comparing measures of variability. Resolving the matter by testing at lower frequencies turns out to be less straightforward....
Palmer, Emily; Deshler, Nicolas; Gorman, David; Neves, Catarina; Mittal, Rajat
2015-11-01
Flapping, gliding, running, crawling and swimming have all been studied extensively in the past and have served as a source of inspiration for engineering designs. In the current project, we explore a mode of locomotion that straddles ground and air: jumping. The subject of our study is among the most proficient of long-jumpers in Nature: the spider cricket of the family Rhaphidophoridae, which can jump more than 60 times its body length. Despite jumping this immense distance, these crickets usually land on their feet, indicating an ability to control their posture during ``flight.'' We employ high-speed videogrammetry, to examine the jumps and to track the crickets' posture and appendage orientation throughout their jumps. Simple aerodynamic models are developed to predict the aerodynamic forces and moment on the crickets during `flight`. The analysis shows that these wingless insects employ carefully controlled and coordinated positioning of the limbs during flight so as to increase jump distance and to stabilize body posture during flight. The principles distilled from this study could serve as an inspiration for small jumping robots that can traverse complex terrains.
Rook Jumping Maze Design Considerations
Neller, Todd W.; Fisher, Adrian; Choga, Munyaradzi T.; Lalvani, Samir M.; McCarty, Kyle D.
We define the Rook Jumping Maze, provide historical perspective, and describe a generation method for such mazes. When applying stochastic local search algorithms to maze design, most creative effort concerns the definition of an objective function that rates maze quality. We define and discuss several maze features to consider in such a function definition. Finally, we share our preferred design choices, make design process observations, and note the applicability of these techniques to variations of the Rook Jumping Maze.
On square-wave-driven stochastic resonance for energy harvesting in a bistable system
Directory of Open Access Journals (Sweden)
Dongxu Su
2014-11-01
Full Text Available Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.
Transcriptional infidelity promotes heritable phenotypic change in a bistable gene network.
Directory of Open Access Journals (Sweden)
Alasdair J E Gordon
2009-02-01
Full Text Available Bistable epigenetic switches are fundamental for cell fate determination in unicellular and multicellular organisms. Regulatory proteins associated with bistable switches are often present in low numbers and subject to molecular noise. It is becoming clear that noise in gene expression can influence cell fate. Although the origins and consequences of noise have been studied, the stochastic and transient nature of RNA errors during transcription has not been considered in the origin or modeling of noise nor has the capacity for such transient errors in information transfer to generate heritable phenotypic change been discussed. We used a classic bistable memory module to monitor and capture transient RNA errors: the lac operon of Escherichia coli comprises an autocatalytic positive feedback loop producing a heritable all-or-none epigenetic switch that is sensitive to molecular noise. Using single-cell analysis, we show that the frequency of epigenetic switching from one expression state to the other is increased when the fidelity of RNA transcription is decreased due to error-prone RNA polymerases or to the absence of auxiliary RNA fidelity factors GreA and GreB (functional analogues of eukaryotic TFIIS. Therefore, transcription infidelity contributes to molecular noise and can effect heritable phenotypic change in genetically identical cells in the same environment. Whereas DNA errors allow genetic space to be explored, RNA errors may allow epigenetic or expression space to be sampled. Thus, RNA infidelity should also be considered in the heritable origin of altered or aberrant cell behaviour.
A simple photometric factor in perceived depth order of bistable transparency patterns.
Fukiage, Taiki; Oishi, Takeshi; Ikeuchi, Katsushi
2014-05-05
Previous studies on perceptual transparency defined the photometric condition in which perceived depth ordering between two surfaces becomes ambiguous. Even under this bistable transparency condition, it is known that depth-order perceptions are often biased toward one specific interpretation (Beck, Prazdny, & Ivry, 1984; Delogu, Fedorov, Belardinelli, & van Leeuwen, 2010; Kitaoka, 2005; Oyama & Nakahara, 1960). In this study, we examined what determines the perceived depth ordering for bistable transparency patterns using stimuli that simulated two partially overlapping disks resulting in four regions: a (background), b (portion of right disk), p (portion of left disk), and q (shared region). In contrast to the previous theory that proposed contributions of contrast against the background region (i.e., contrast at contour b/a and contrast at contour p/a) to perceived depth order in bistable transparency patterns, the present study demonstrated that contrast against the background region has little influence on perceived depth order compared with contrast against the shared region (i.e., contrast at contour b/q and contrast at contour p/q). In addition, we found that the perceived depth ordering is well predicted by a simpler model that takes into consideration only relative size of lightness difference against the shared region. Specifically, the probability that the left disk is perceived as being in front is proportional to (|b - q| - |p - q|) / (|b - q| + |p - q|) calculated based on lightness.
On square-wave-driven stochastic resonance for energy harvesting in a bistable system
Energy Technology Data Exchange (ETDEWEB)
Su, Dongxu, E-mail: sudx@iis.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 1538505 (Japan); Zheng, Rencheng; Nakano, Kimihiko [Institute of Industrial Science, The University of Tokyo, Tokyo 1538505 (Japan); Cartmell, Matthew P [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)
2014-11-15
Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.
Directory of Open Access Journals (Sweden)
Kangkang Guo
2015-01-01
Full Text Available A piezo-magneto-elastically coupled distributed-parameter model of a bistable piezoelectric cantilever generator is developed by using the generalized Hamilton principle. The influence of the spacing between two adjacent magnets on the static bifurcation characteristics of the system is studied and the range of magnet spacing corresponding to the bistable states is obtained. Numerical and experimental studies are carried out to analyze the bifurcation, response characteristics, and their impact on the electrical output performance under varying external excitations. Results indicate that interwell limit cycle motion of the beam around the two centers corresponds to optimum power output; interwell chaotic motion and multiperiodic motion including intrawell oscillations are less effective. At a given frequency, the phenomena of symmetric-breaking and amplitude-phase modulation are observed with increase of base excitation. Both period-doubling bifurcation and intermittency routes to chaotic motion in the bistable system are found. It can be observed that the power output is not proportional to the excitation level because of the bifurcation behaviours.
ANALYSIS OF INCOMPLETE STOCK MARKET WITH JUMP-DIFFUSION UNCERTAINTY
Institute of Scientific and Technical Information of China (English)
Xiuli Chao; Indrajit Bardhan
2002-01-01
This paper studies incomplete stock market that includes discontinuous priceprocesses. The discontinuity is modeled by very general point processes admitting onlystochastic intensities. Prices are driven by jump-diffusion uncertainty and have randombut predictable jumps. The space of risk-neutral measures that are associated with themarket is identified and related to fictitious completions. The construction of replicatingportfolios is discussed, and convex duality methods are used to prove existence of optimalconsumption and investment policies for a problem of utility maximization.
A drop jumps to weightlessness: a lecture demo
Mayer, V. V.; Varaksina, E. I.; Saranin, V. A.
2017-04-01
The paper discusses the lecture demonstration of the phenomenon in which a drop lying on a solid unwettable substrate jumps when making the transition to weightlessness. An elementary theory of the phenomenon is given. A jump speed estimate is obtained for small and large drops. The natural vibrational frequency of a flying drop is determined. A full-scale model of Einstein’s elevator is described. Experimental and theoretical results are found to agree satisfactorily.
The Effect of Depth Jumps and Weight Training on Leg Strength and Vertical Jump.
Clutch, David; And Others
1983-01-01
Two experiments examined the results of depth jumping programs to determine: (1) whether certain depth jumping routines, when combined with weight training, are better than others; and (2) the effect of depth jumping on athletes already in training. Results indicated that depth jumping is effective, but no more so than regular jumping routines.…
Institute of Scientific and Technical Information of China (English)
张征; 吴和龙; 吴化平; 鲍雨梅
2012-01-01
探讨可变形机翼中使用双稳态复合材料层合壳结构驱动其变形的潜力.基于最小势能原理,采用有限元法对不同铺层形式、不同材料组分的反对称双稳态复合材料层合壳的力学模型进行了数值模拟和详细讨论,计算确定结构几何尺寸和材料参数对结构卷曲半径的定量影响程度.进而,运用研究得到的层合壳的结构性能,对三种机翼变形方式包括机翼的弯曲变形、平面变化和弦长改变采用双稳态结构驱动进行了分析和讨论,初步探讨其应用于可变形机翼的适用性,并给出一些有益的结果.%The deformative potential of using bistable laminated composite structures for morphing airfoil section was investigated in the paper. Based on the principle of minimum potential energy, the different kinds of lay-ups and material components were simulated successfully by finite element method and then discussed in detail about the anti symmetric lay-up bistable composite shell structures. The quantitative influence of the curvature radii by the geometry dimensions and material parameters through finite element simulation were discussed. Using the obtained structure properties of the anti-symmetric lay-up shell, three kinds of shape morphing wings including the span-wise bending, chord length change and span change were analyzed and discussed. The primary inquiry shows that the bistable composite structure can be used to drive the morphing airfoil with some beneficial results.
Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface
Boreyko, Jonathan; Chen, Chuan-Hua
2009-11-01
When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.
Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface
Boreyko, Jonathan
2009-01-01
When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.
The fluid dynamics of swimming by jumping in copepods
DEFF Research Database (Denmark)
Jiang, Houshuo; Kiørboe, Thomas
2011-01-01
Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...
The fluid dynamics of swimming by jumping in copepods
DEFF Research Database (Denmark)
Jiang, Houshuo; Kiørboe, Thomas
2011-01-01
Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...
Phase jump method for efficiency enhancement in free-electron lasers
Directory of Open Access Journals (Sweden)
Alan Mak
2017-06-01
Full Text Available The efficiency of a free-electron laser can be enhanced by the phase jump method. The method utilizes the phase-shifting chicanes in the drift sections between the undulator segments. By applying appropriate phase jumps, the microbunched electron beam can decelerate and radiate coherently beyond the initial saturation, enabling further energy transfer to the optical beam. This article presents a new physics model for the phase jump method, and supports it with numerical simulations. Based on the electron dynamics in the longitudinal phase space, the model describes the energy extraction mechanism, and addresses the selection criteria for the phase jump magnitude. While the ponderomotive bucket is stationary, energy can be extracted from electrons outside the bucket. With the aid of the new model, a comparison is made between the phase jump method and undulator tapering. The model also explores the potential of the phase jump method to suppress the growth of synchrotron sidebands in the optical spectrum.
Phase jump method for efficiency enhancement in free-electron lasers
Mak, Alan; Curbis, Francesca; Werin, Sverker
2017-06-01
The efficiency of a free-electron laser can be enhanced by the phase jump method. The method utilizes the phase-shifting chicanes in the drift sections between the undulator segments. By applying appropriate phase jumps, the microbunched electron beam can decelerate and radiate coherently beyond the initial saturation, enabling further energy transfer to the optical beam. This article presents a new physics model for the phase jump method, and supports it with numerical simulations. Based on the electron dynamics in the longitudinal phase space, the model describes the energy extraction mechanism, and addresses the selection criteria for the phase jump magnitude. While the ponderomotive bucket is stationary, energy can be extracted from electrons outside the bucket. With the aid of the new model, a comparison is made between the phase jump method and undulator tapering. The model also explores the potential of the phase jump method to suppress the growth of synchrotron sidebands in the optical spectrum.
Byrne, Kate M.; Monsefi, Naser; Dawson, John C.; Degasperi, Andrea; Bukowski-Wills, Jimi-Carlo; Volinsky, Natalia; Dobrzyński, Maciej; Birtwistle, Marc R.; Tsyganov, Mikhail A.; Kiyatkin, Anatoly; Kida, Katarzyna; Finch, Andrew J.; Carragher, Neil O.; Kolch, Walter; Nguyen, Lan K.; von Kriegsheim, Alex; Kholodenko, Boris N.
2016-01-01
Summary Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. PMID:27136688
Mechanography during the vertical jump test allows for evaluation of force-time variables reflecting jump execution, which may enhance screening for functional deficits that reduce physical performance and determining mechanistic causes underlying performance changes. However, utility of jump mechan...
Directory of Open Access Journals (Sweden)
Jun Zhang
2015-06-01
Full Text Available Jumping-height-and-distance (JHD active adjustment capability is important for jumping robots to overcome different sizes of obstacle. This paper proposes a new structural parameter-based JHD active adjustment approach for our previous jumping robot. First, the JHD adjustments, modifying the lengths of different legs of the robot, are modelled and simulated. Then, three mechanisms for leg-length adjustment are proposed and compared, and the screw-and-nut mechanism is selected. And for adjusting of different structural parameters using this mechanism, the one with the best JHD adjusting performance and the lowest mechanical complexity is adopted. Thirdly, an obstacle-distance-and-height (ODH detection method using only one infrared sensor is designed. Finally, the performances of the proposed methods are tested. Experimental results show that the jumping-height-and distance adjustable ranges are 0.11 m and 0.96 m, respectively, which validates the effectiveness of the proposed JHD adjustment method.
Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation.
Chatterjee, Anushree; Johnson, Christopher M; Shu, Che-Chi; Kaznessis, Yiannis N; Ramkrishna, Doraiswami; Dunny, Gary M; Hu, Wei-Shou
2011-06-07
Convergent gene pairs with head-to-head configurations are widespread in both eukaryotic and prokaryotic genomes and are speculated to be involved in gene regulation. Here we present a unique mechanism of gene regulation due to convergent transcription from the antagonistic prgX/prgQ operon in Enterococcus faecalis controlling conjugative transfer of the antibiotic resistance plasmid pCF10 from donor cells to recipient cells. Using mathematical modeling and experimentation, we demonstrate that convergent transcription in the prgX/prgQ operon endows the system with the properties of a robust genetic switch through premature termination of elongating transcripts due to collisions between RNA polymerases (RNAPs) transcribing from opposite directions and antisense regulation between complementary counter-transcripts. Evidence is provided for the presence of truncated RNAs resulting from convergent transcription from both the promoters that are capable of sense-antisense interactions. A mathematical model predicts that both RNAP collision and antisense regulation are essential for a robust bistable switch behavior in the control of conjugation initiation by prgX/prgQ operons. Moreover, given that convergent transcription is conserved across species, the mechanism of coupling RNAP collision and antisense interaction is likely to have a significant regulatory role in gene expression.
Coalescence-induced nanodroplet jumping
Cha, Hyeongyun; Xu, Chenyu; Sotelo, Jesus; Chun, Jae Min; Yokoyama, Yukihiro; Enright, Ryan; Miljkovic, Nenad
2016-10-01
Water vapor condensation on superhydrophobic surfaces has received much attention in recent years due to the ability of such surfaces to shed microscale water droplets via coalescence-induced droplet jumping, resulting in heat transfer, anti-icing, and self-cleaning performance enhancement. Here we report the coalescence-induced removal of water nanodroplets (R ≈500 nm ) from superhydrophobic carbon nanotube (CNT) surfaces. The two-droplet coalescence time is measured for varying droplet Ohnesorge numbers, confirming that coalescence prior to jumping is governed by capillary-inertial dynamics. By varying the conformal hydrophobic coating thickness on the CNT surface, the minimum jumping droplet radius is shown to increase with increasing solid fraction and decreasing apparent advancing contact angle, allowing us to explore both hydrodynamic limitations stemming from viscous dissipation and surface adhesion limitations. We find that, even for the smallest nanostructure length scale (≤100 nm) and lowest surface adhesions, nonideal surface interactions and the evolved droplet morphology play defining roles in limiting the minimum size for jumping on real surfaces. The outcomes of this work demonstrate the ability to passively shed nanometric water droplets, which has the potential to further increase the efficiency of systems that can harness jumping droplets for a wide range of energy and water applications.
An analytical study on bistability of Fabry-Perot semiconductor optical amplifiers
Wang, Gang; Chen, Shuqiang; Yang, Huajun
2016-09-01
Optical bistabilities have been considered to be useful for sensor applications. As a typical nonlinear device, Fabry-Perot semiconductor optical amplifiers (FPSOAs) exhibit bistability under certain conditions. In this paper, the bistable characteristics in FPSOAs are investigated theoretically. Based on Adams's relationship between the incident optical intensity I in and the z-independent average intracavity intensity I av, an analytical expression of the bistable loop width in SOAs is derived. Numerical simulations confirm the accuracy of the analytical result.
Controllable optical bistability of Bose-Einstein condensate in an optical cavity with a Kerr medium
Institute of Scientific and Technical Information of China (English)
Zheng Qiang; Li Sheng-Chang; Zhang Xiao-Ping; You Tai-Jie; Fu Li-Bin
2012-01-01
We study the optical bistability for a Bose-Einstein condensate of atoms in a driven optical cavity with a Kerr medium.We find that both the threshold point of optical bistability transition and the width of optical bistability hysteresis can be controlled by appropriately adjusting the Kerr interaction between the photons.In particular,we show that the optical bistability will disappear when the Kerr interaction exceeds a critical value.
Research on one Bio-inspired Jumping Locomotion Robot for Search and Rescue
Directory of Open Access Journals (Sweden)
Dunwen Wei
2014-10-01
Full Text Available Jumping locomotion is much more effective than other locomotion means in order to tackle the unstructured and complex environment in research and rescue. Here, a bio-inspired jumping robot with a closed-chain mechanism is proposed to achieve the power amplification during taking-off. Through actuating one variable transmission mechanism to change the transmission ratio, the jumping robot reveals biological characteristics in the phase of posture adjustment when adjusting the height and distance of one jump. The kinematics and dynamics of the simplified jumping mechanism model in one jumping cycle sequence are analysed. A compliant contact model considering nonlinear damping is investigated for jumping performance under different terrain characteristics. The numerical simulation algorithm with regard to solving the dynamical equation is described and simulation results are discussed. Finally, one primary prototype and experiment are described. The experimental results show the distance of jumping in the horizontal direction increases with the increasing gear ratio, while the height of jumping decreases in reverse. The jumping robot can enhance the capability to adapt to unknown cluttered environments, such as those encountered in research and rescue, using this strategy.
Bistability in doped organic thin film transistors.
Stricker, Jeffery T; Gudmundsdóttir, Anna D; Smith, Adam P; Taylor, Barney E; Durstock, Michael F
2007-09-06
Organic thin film transitors (TFTs) with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid), PEDOT:PSS, as the active layer and cross-linked, layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) multilayers as the gate dielectric layer were investigated. A combination of spectroscopic data and device performance characteristics was used to study the behavior of these TFT devices under a variety of controlled environmental test conditions. It was shown that depletion and recovery of the device can be induced to occur by a means that is consistent with the electrochemical oxidation and reduction of water contained in the film. In addition to acting as a reactant, moisture also acts as a plasticizer to control the mobility of other species contained in the film and thereby permits bistable operation of these devices. Raman spectroscopy was used to show that the observed device switching behavior is due to a change in the PEDOT doping level.
Shima, Hiroyuki
2012-11-01
The tree-based rope swing is a popular recreational facility, often installed in outdoor areas. Hanging from a rope, users drop from a high platform and then swing at great speed like ‘Tarzan’, finally jumping ahead to land on the ground. The question naturally arises, how far can Tarzan jump using the swing? In this paper, I present an introductory analysis of the mechanics of the Tarzan swing, a large pendulum-like swing with Tarzan himself attached as weight. This enables determination of how much further forward Tarzan can jump using a given swing apparatus. The discussion is based on elementary mechanics and is, therefore, expected to provide rich opportunities for investigations using analytic and numerical methods.
Shima, Hiroyuki
2012-01-01
The tree-based rope swing is a popular recreation facility, often installed in outdoor areas, giving pleasure to thrill-seekers. In the setting, one drops down from a high platform, hanging from a rope, then swings at a great speed like "Tarzan", and finally jumps ahead to land on the ground. The question now arises: How far can Tarzan jump by the swing? In this article, I present an introductory analysis of the Tarzan swing mechanics, a big pendulum-like swing with Tarzan himself attached as weight. The analysis enables determination of how farther forward Tarzan can jump using a given swing apparatus. The discussion is based on elementary mechanics and, therefore, expected to provide rich opportunities for investigations using analytic and numerical methods.
Discrete Element Method simulations of standing jumps in granular flows down inclines
Directory of Open Access Journals (Sweden)
Méjean Ségolène
2017-01-01
Full Text Available This paper describes a numerical set-up which uses Discrete Element Method to produce standing jumps in flows of dry granular materials down a slope in two dimensions. The grain-scale force interactions are modeled by a visco-elastic normal force and an elastic tangential force with a Coulomb threshold. We will show how it is possible to reproduce all the shapes of the jumps observed in a previous laboratory study: diffuse versus steep jumps and compressible versus incompressible jumps. Moreover, we will discuss the additional measurements that can be done thanks to discrete element modelling.
Chabanenko, V. V.; Rusakov, V. F.; D'yachenko, A. I.; Piechota, S.; Nabialek, A.; Szymczak, H.
2000-11-01
Magnetic properties of superconductors with peak effect were investigated both experimentally and theoretically in frames of the critical state model which incorporates the flux jump instability criterion. Theoretical analyses show some “forbidden” band for flux jumps on the magnetic field axis. Features of H-T diagrams of instability of superconductors with peak effect are discussed.
Working cycles of devices based on bistable carbon nanotubes
Shklyaev, Oleg; Mockensturm, Eric; Crespi, Vincent; Carbon Nanotubes Collaboration
2013-03-01
Shape-changing nanotubes are an example of variable-shape sp2 carbon-based systems where the competition between strain and surface energies can be moderated by an externally controllable stimuli such as applied voltage, temperature, or pressure of gas encapsulated inside the tube. Using any of these stimuli one can transition a bistable carbon nanotube between the collapsed and inflated states and thus perform mechanical work. During the working cycle of such a device, energy from an electric or heat source is transferred to mechanical energy. Combinations of these stimuli allow the system to convert energy between different sources using the bistable shape-changing tube as a mediator. For example, coupling a bistable carbon nanotube to the heat and charge reservoirs can enable energy transfer between heat and electric forms. The developed theory can be extended to other nano-systems which change configurations in response to external stimuli.
Charge-induced optical bistability in thermal Rydberg vapor
Weller, Daniel; Rico, Andy; Löw, Robert; Kübler, Harald
2016-01-01
We investigate the phenomenon of optical bistability in a driven ensemble of Rydberg atoms. By performing two experiments with thermal vapors of rubidium and cesium, we are able to shed light onto the underlying interaction mechanisms causing such a non-linear behavior. Due to the different properties of these two atomic species, we conclude that the large polarizability of Rydberg states in combination with electric fields of spontaneously ionized Rydberg atoms is the relevant interaction mechanism. In the case of rubidium, we directly measure the electric field in a bistable situation via two-species spectroscopy. In cesium, we make use of the different sign of the polarizability for different l-states and the possibility of applying electric fields. Both these experiments allow us to rule out dipole-dipole interactions, and support our hypothesis of a charge-induced bistability.
Bistable fiber-optic Michelson interferometer that uses wavelength control.
Fürstenau, N
1991-12-01
Feedback of the interference signal of an unbalanced Michelson interferometer to the current supply of the semiconductor-laser source yields bistability under input intensity variation owing to wavelength-induced phase modulation. A linear stability analysis of the system's differential equation gives the ratio of the system time constant tau to the feedback delay time T to determine the critical input intensity for the onset of self-oscillations. Input-output characteristics that exhibit bistability and self-oscillations are obtained experimentally through modulation of the input power by using an integrated-optics intensity modulator.
Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles
Pinchuk, A
2003-01-01
Nonlinear composite structures show great promise for use in optical switching, signal processing, etc. We derive an effective nonlinear dielectric permittivity of composite structures where coated ellipsoidal nonlinear particles are imbedded in a linear host medium. The derived expression for the effective dielectric permittivity tensor follows the Clasius-Mossotti approximation. We observe conditions for the existence of the optical bistability effect in a coated ellipsoidal particle with a nonlinear core and a metallic shell. Our numerical results show stronger bistability effects in more dense suspensions of nonlinear heterogeneous ellipsoids.
Alzheimer's Deaths Jump 55 Percent: CDC
... page: https://medlineplus.gov/news/fullstory_165941.html Alzheimer's Deaths Jump 55 Percent: CDC More patients also ... News) -- As more baby boomers age, deaths from Alzheimer's disease have jumped 55 percent, and in a ...
Inherent enumerability of strong jump-traceability
Diamondstone, David; Turetsky, Daniel
2011-01-01
We show that every strongly jump-traceable set obeys every benign cost function. Moreover, we show that every strongly jump-traceable set is computable from a computably enumerable strongly jump-traceable set. This allows us to generalise properties of c.e.\\ strongly jump-traceable sets to all such sets. For example, the strongly jump-traceable sets induce an ideal in the Turing degrees; the strongly jump-traceable sets are precisely those that are computable from all superlow Martin-L\\"{o}f random sets; the strongly jump-traceable sets are precisely those that are a base for $\\text{Demuth}_{\\text{BLR}}$-randomness; and strong jump-traceability is equivalent to strong superlowness.
No apparent ecological trend to the flight-initiating jump performance of five bat species.
Gardiner, James D; Nudds, Robert L
2011-07-01
The jump performance of five insectivorous bat species (Miniopterus schreibersii, Myotis blythii, Myotis capaccinii, Myotis myotis and Rhinolophus blasii) was filmed using a high-speed camera. All study bats jumped using a similar technique, with the wing musculature providing the force. The bats jumped off the wrist joint of their wings, typically with their feet already off the ground. Contrary to expectations, jump performance did not correlate with ecology and was instead strongly determined by body size. In general, the larger bats produced more jump force, left the ground at higher speeds and jumped higher than the smaller bats. The differences in force production disappeared when the data were corrected for body size, with the exception of Myotis capaccinii, which produced significantly less force. Scaling of jump performance with body size measured here was compared against two existing muscle performance scaling models. The model suggesting that muscle contraction velocity is proportional to muscle length was better supported than that based on muscle cross-sectional area. Both models, however, failed to accurately predict the scaling of jump forces, with the slope of the relationship being significantly steeper than predicted, highlighting the need for further investigations of vertebrate muscle performance scaling. The results of this study indicate that a bat's jumping ability is a secondary locomotor ability that uses the strongly selected-for flight apparatus with no apparent ecological trend present, i.e. flight so dominates bat locomotor morphology that other locomotor abilities tend to be derivative.
Jumping property of Lyapunov values
Institute of Scientific and Technical Information of China (English)
毛锐; 王铎
1996-01-01
A sufficient condition for fcth Lyapunov value to be zero for planar polynomial vector fields is given, which extends the result of "jumping property’ of Lyapunov values obtained by Wang Duo to more general cases. A concrete example that the origin cannot be weak focus of order 1, 2, 4, 5, 8 is presented.
Strawberry Shortcake and Other Jumping Rope Ideas.
Adams, Polly K.; Taylor, Michaell K.
Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…
Strawberry Shortcake and Other Jumping Rope Ideas.
Adams, Polly K.; Taylor, Michaell K.
Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…
Mesopause jumps at Antarctic latitudes
Lübken, Franz-Josef; Höffner, Josef; Becker, Erich; Latteck, Ralph; Murphy, Damian
2016-04-01
Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by ˜5 km and an associated mesopause temperature decrease by ˜10 K. We present further observations which are closely related to this 'mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase Speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex. Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30 m/s), and that the onset is not closely related to the Transition of the stratospheric circulation.
Institute of Scientific and Technical Information of China (English)
李金洪; 杨安强; 粟凌云
2012-01-01
跨介质无人驾驶飞行器(UAV)飞行处于近水面,无法采用常规UAV的气动舵面提供转向力,导致转向困难,机动性较差.基于空气动力学、经典势流理论和二元平面滑行理论,提出了UAV水面滑跳转向方法,建立了跨介质UAV滑跳转向飞行动力学模型,并进行了仿真计算,重点研究了跨介质UAV滑跳转向特性及其影响因素,给出了抑制UAV横滚的解决措施.仿真结果表明,跨介质UAV入水角和固定舵角在滑跳转向过程中对自身姿态及其弹道形态均有较大影响.该结果可以为跨介质UAV提供方案总体设计、弹道规划、可靠性设计和控制系统设计理论依据和计算方法.%A trans-media unmanned aerial vehicle (UAV), flying near water surface, cannot obtain steering force by conventional air rudder, which results in difficult steering and poor maneuverability of the UAV. A slide jump steering method of the UAV on water surface and a dynamic model of slide jump steering flying of the UAV are hence proposed in this paper on the basis of the aerodynamics, the classic potential flow theory, and the two-element plane sliding theory. The slide jump steering characteristics of the UAV and the influencing factors are simulated with the model and analyzed in detail. Moreover, some approaches for inhibiting UAV roll are given. Simulation results show that the water-entry angle and the fixed rudder angle of the UAV impose significant effects on its posture and trajectory pattern in the process of slide jump steering. This study may provide theoretical and calculation foundation for the UAV's conceptual overall design, trajectory planning, flight reliability design and flight control system design.
Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core
Energy Technology Data Exchange (ETDEWEB)
Shewamare, Sisay, E-mail: sisayshewa20@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Mal' nev, V.N., E-mail: vadimnmalnev@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)
2012-12-15
It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.
Tsai, Je-Chiang; Sneyd, James
2007-04-01
Traveling waves of calcium are widely observed under the condition that the free cytosolic calcium is buffered. Thus it is of physiological interest to determine how buffers affect the properties of calcium waves. Here we summarise and extend previous results on the existence, uniqueness and stability of traveling wave solutions of the buffered bistable equation, which is the simplest possible model of the upstroke of a calcium wave. Taken together, the results show that immobile buffers do not change the existence, uniqueness or stability of the traveling wave, while mobile buffers can eliminate a traveling wave. However, if a wave exists in the latter case, it remains unique and stable.
Option Pricing of a Dividends-Payment Model with a Jump-Diffusion%随机支付红利的跳—扩散模型的期权定价
Institute of Scientific and Technical Information of China (English)
陈超; 刘东艳
2011-01-01
Assuming that the stock company pays dividend randomly and the dividend is related with the price of the stock in the time that the stock company pays dividend , and the pricing process is jump-diffusion process(the jump process is Poisson process), the article establishes the stock pricing model. And it gives the European call option and the European put option pricing model using insurance actuary pricing. The result of Merton on European option pricing is generalized.%假设股票随机支付红利,且红利的大小与支付红利时刻及股票价格有关,并假设股票价格过程服从跳—扩散模型(其中跳跃过程为Poisson过程)的条件下,建立了股票价格行为模型,应用保险精算法给出了欧式看涨和看跌期权的定价公式,推广了Merton关于期权定价的结果.
Two independent positive feedbacks and bistability in the Bcl-2 apoptotic switch.
Directory of Open Access Journals (Sweden)
Jun Cui
Full Text Available BACKGROUND: The complex interplay between B-cell lymphoma 2 (Bcl-2 family proteins constitutes a crucial checkpoint in apoptosis. Its detailed molecular mechanism remains controversial. Our former modeling studies have selected the 'Direct Activation Model' as a better explanation for experimental observations. In this paper, we continue to extend this model by adding interactions according to updating experimental findings. METHODOLOGY/PRINCIPAL FINDINGS: Through mathematical simulation we found bistability, a kind of switch, can arise from a positive (double negative feedback in the Bcl-2 interaction network established by anti-apoptotic group of Bcl-2 family proteins. Moreover, Bax/Bak auto-activation as an independent positive feedback can enforce the bistability, and make it more robust to parameter variations. By ensemble stochastic modeling, we also elucidated how intrinsic noise can change ultrasensitive switches into gradual responses. Our modeling result agrees well with recent experimental data where bimodal Bax activation distributions in cell population were found. CONCLUSIONS/SIGNIFICANCE: Along with the growing experimental evidences, our studies successfully elucidate the switch mechanism embedded in the Bcl-2 interaction network and provide insights into pharmacological manipulation of Bcl-2 apoptotic switch as further cancer therapies.
Scaling and jumping: gravity loses grip on small jumpers.
Scholz, Melanie N; Bobbert, Maarten F; Knoek van Soest, A J
2006-06-21
There are several ways to quantify jumping performance, a common definition being the height gained by the body's centre of mass (CM) in the airborne phase. Under this definition, jump height is determined by take-off velocity. According to the existing literature on jumping and scaling, take-off velocity, and hence jumping performance is independent of size because the energy that differently sized geometrically scaled jumpers can generate with their muscles is proportional to their mass. In this article it is shown, based on a simple energy balance, that it is incorrect to presume that jump height does not depend on size. Contrary to common belief, size as such has does have an effect on take-off velocity, putting small jumpers at a mechanical advantage, as is shown analytically. To quantify the effect of size on take-off velocity, a generic jumper model was scaled geometrically and evaluated numerically. While a 70-kg jumper took off at 2.65 m/s and raised its CM by 0.36 m after take-off, a perfectly geometrically similar jumper of 0.7 g reached a take-off velocity of 3.46 m/s and raised its CM by 0.61 m. The reason for the better performance of small jumpers is their higher efficacy in transforming the energy generated by the actuators into energy due to vertical velocity of the CM. Considering the ecological and evolutionary relevance of different definitions of jump height, size-dependent efficacy might explain why habitual jumping is especially prominent among small animals such as insects.
Isokinetic knee extension and vertical jumping: are they related?
Iossifidou, Anna; Baltzopoulos, Vasilios; Giakas, Giannis
2005-10-01
The aim of this study was to examine joint power generation during a concentric knee extension isokinetic test and a squat vertical jump. The isokinetic test joint power was calculated using four different methods. Five participants performed concentric knee extensions at 0.52, 1.57, 3.14 and 5.23 rad x s(-1) on a Lido isokinetic dynamometer. The squat vertical jump was performed on a Kistler force plate. Kinematic data from both tests were collected and analysed using an ELITE optoelectronic system. An inverse dynamics model was applied to measure knee joint moment in the vertical jump. Knee angular position data from the kinematic analysis in the isokinetic test were used to derive the actual knee angular velocity and acceleration, which, in turn, was used to correct the dynamometer moment for inertial effects. Power was measured as the product of angular velocity and moment at the knee joint in both tests. Significant differences (P knee joint power in the two tests (squat vertical jump: 2255 +/- 434 W; isokinetic knee extension: 771 +/- 81 W). Correlation analysis revealed that there is no relationship between the peak knee joint power during the vertical jump and the slow velocity isokinetic tests. Higher isokinetic velocity tests show better relationships with the vertical jump but only if the correct method for joint power calculation is used in the isokinetic test. These findings suggest that there are important differences in muscle activation and knee joint power development that must be taken into consideration when isokinetic tests are used to predict jumping performance.
Laser beam-induced bistability of concentration in nanofluids
Livashvili, A. I.; Krishtop, V. V.; Karpets, Y. M.; Bryuhanova, T. N.; Kireeva, N. M.
2016-08-01
We conduct a theoretical study ofthe dynamics of the concentration of nanoparticles in liquid-phase media under the influence of a laser light field. An exact solution of the nonlinear diffusion equation in the form of switching wavesis found. It is shown that, in the conditions of a fixed temperature and a nonlinear medium thermal conductivity, nanofluid becomes bistable.
The formation process of a bistable state in nanofluids
Livashvili, A. I.; Krishtop, V. V.; Karpets, Y. M.; Kireyeva, N. M.
2017-01-01
We study the theory of the dynamics of the concentration of nanoparticles in a liquid-phase environment under the influence of a light field. An exact solution for the nonlinear diffusion equation was found in the form of switching waves. It is shown that under the conditions of a stationary and nonlinear temperature coefficient of thermal conductivity of the medium, nanofluids become bistable.
Bistability in a simple fluid network due to viscosity contrast
Geddes, John B; Gardner, David; Carr, Russell T
2009-01-01
We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity--sucrose solution and water. Possible applications include bloodflow, microfluidics, and other network flows governed by similar principles.
Band gap transmission in periodic bistable mechanical systems
Frazier, Michael J.; Kochmann, Dennis M.
2017-02-01
We theoretically and numerically investigate the supratransmission phenomenon in discrete, nonlinear systems containing bistable elements. While linear waves cannot propagate within the band gaps of periodic structures, supratransmission allows large-amplitude waves to transmit energy through the band gap. For systems lacking bistability, the threshold amplitude for such energy transmission at a given frequency in the linear band gap is fixed. We show that the topological transitions due to bistability provide an avenue for switching the threshold amplitude between two well-separated values. Moreover, this versatility is achieved while leaving the linear dispersion properties of the system essentially unchanged. Interestingly, the behavior changes when an elastic chain is coupled to bistable resonators (in an extension of the well-studied linear locally resonant metamaterials). Here, we show that a fraction of the injected energy is confined near the boundary due to the resonators, providing a means of regulating the otherwise unrestrained energy flow due to supratransmission. Together, the results illustrate new means of controlling nonlinear wave propagation and energy transport in systems having multi-stable elements.
Dynamics of a bistable Miura-origami structure
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.
2017-05-01
Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.
An empirical study of the model for volatility jump of the stock market of China%中国股票市场波动率跳跃模型实证研究
Institute of Scientific and Technical Information of China (English)
金荣载; 贺晗
2012-01-01
Volatility is one of the basic characteristics of returns in the stock market. Many studies have shown that the model containing the jump process can capture the changes in volatility effectively. Chinese scholars have already had in-depth research on the volatility of stock market, but research on volatility model containing the jump process is rarely seen. Based on the GARJI-ND model presented by Chart and Maheu (2002), this article first establishes the EGARJI-ND model, then establishes the GARJI-GED model and the EGARJI-GED model abiding by the generalized error distribution function, and finally evaluates the four models about their parameters with the daily closing data of the Shanghai Stock Exchange Composite Index and compares the fitting effects of the four models.%波动率是衡量股票指数收益变化的基本特征之一,诸多研究表明包含跳跃过程的模型能够较好的捕捉波动率的异常变动。在中国,学者们对股票市场的波动已有较深入的研究,但对包含跳跃过程的波动率模型的研究却很鲜见。本文在Chan and Maheu（2002）提出的GARJI-ND模型基础上建立了EGARJI-ND模型,并根据广义误差分布函数建立了GARJI-GED和EGARJI-GED模型,然后使用上海证券综合指数每日收盘数据对四个模型进行参数估计,最后比较四个模型的拟合效果。
A logarithmic interpretation of Edixhoven's jumps for Jacobians
DEFF Research Database (Denmark)
Eriksson, Dennis; Halle, Lars Halvard; Nicaise, Johannes
2015-01-01
Let A be an abelian variety over a discretely valued field. Edixhoven has defined a filtration on the special fiber of the N\\'eron model of A that measures the behaviour of the N\\'eron model under tame base change. We interpret the jumps in this filtration in terms of lattices of logarithmic...
Slowly rotating bars-Morphologies introduced by bistability in barred-spiral galactic potentials
Tsigaridi, L
2015-01-01
We investigate the orbital dynamics of a \\textit{barred-spiral} model when the system is rotating slowly and corotation is located beyond the end of the spiral arms. In the characteristic of the central family of periodic orbits we find a "bistable region". In the response model we observe a ring surrounding the bar and spiral arms starting tangential to the ring. This is a morphology resembling barred-spiral systems with inner rings. However, the dynamics associated with this structure in the case we study is different from that of a typical bar ending close to corotation. The ring of our model is round, or rather elongated perpendicular to the bar. It is associated with a folding (an "S" shaped feature) of the characteristic of the central family, which is typical in bistable bifurcations. Along the "S" part of the characteristic we have a change in the orientation of the periodic orbits from a x1-type to a x2-type morphology. The orbits populated in the response model change rather abruptly their orientati...
Volatility Forecasting: Downside Risk, Jumps and Leverage Effect
Directory of Open Access Journals (Sweden)
Francesco Audrino
2016-02-01
Full Text Available We provide empirical evidence of volatility forecasting in relation to asymmetries present in the dynamics of both return and volatility processes. Using recently-developed methodologies to detect jumps from high frequency price data, we estimate the size of positive and negative jumps and propose a methodology to estimate the size of jumps in the quadratic variation. The leverage effect is separated into continuous and discontinuous effects, and past volatility is separated into “good” and “bad”, as well as into continuous and discontinuous risks. Using a long history of the S & P500 price index, we find that the continuous leverage effect lasts about one week, while the discontinuous leverage effect disappears after one day. “Good” and “bad” continuous risks both characterize the volatility persistence, while “bad” jump risk is much more informative than “good” jump risk in forecasting future volatility. The volatility forecasting model proposed is able to capture many empirical stylized facts while still remaining parsimonious in terms of the number of parameters to be estimated.
Physically based sound synthesis and control of jumping sounds on an elastic trampoline
DEFF Research Database (Denmark)
Turchet, Luca; Pugliese, Roberto; Takala, Tapio
2013-01-01
This paper describes a system to interactively sonify the foot-floor contacts resulting from jumping on an elastic trampoline. The sonification was achieved by means of a synthesis engine based on physical models reproducing the sounds of jumping on several surface materials. The engine was contr...... on multi-sensory perception involving the auditory and the foot- haptic modalities....
Feedback Control of Bistability in the Turbulent Wake of an Ahmed Body
Brackston, Rowan; Wynn, Andrew; Garcia de La Cruz, Juan Marcos; Rigas, Georgios; Morrison, Jonathan
2015-11-01
Three-dimensional bluff body wakes have seen considerable interest in recent years, not least because of their relevance to road vehicles. A key feature of these wakes is spatial symmetry breaking, reminiscent of the large scale structures observed during the laminar and transitional regimes. For the flat backed Ahmed body, this feature manifests itself as a bistability of the wake in which the flow switches randomly between two asymmetric states. This feature is associated with instantaneous lateral forces on the body as well as increased pressure drag. Starting from the modelling approach of Rigas et al. (J. Fluid Mech. 778, R2, 2015)we identify a linearised model for this mode of the flow, obtaining parameters via a system identification. The identified model is then used to design a linear feedback controller with the aim of restoring the flow to the unstable, symmetric state. The controller is implemented experimentally at Re ~ 3 ×105 and is found to both suppress the bistability of the flow and reduce the drag on the body. Furthermore, the control system is found to have a positive energy balance, providing a key demonstration of efficient feedback control applied to a 3D bluff body at Reynolds numbers representative of road vehicle wakes.
Institute of Scientific and Technical Information of China (English)
刘井建; 焦怀东; 付杰
2015-01-01
如何合理地评估高管股票期权的价值仍然是业界和学界的难题之一。在传统的基于BS期权定价模型的基础上，考虑我国股票市场的涨跌停限制的制度设计，运用三点概率分布将这一制度特征刻画在股价跳跃过程之中，提出了引入跳跃限制的股权价值定价模型。以实施股权激励计划公司为训练样本并对未来期权价值进行模拟，模拟结果表明，中国证券市场的涨跌停制度对于高管股票期权价值是有影响的，增加股价跳跃限制的定价模型降低了传统BS模型对股权价值的高估程度，这将有利于进一步优化高管股票期权激励的定价模型。%There still remains one of the difficult problems of how to make a reasonable estimation of the value of stock option incentive for top executives in listed companies in current industry and academia .Based on the stock option pricing model of traditional Black‐Scholes ,this paper takes the price limit mechanism in Chinese stock market into consideration through introducing three points probability distribution to stock price jumping process ,and presents a new option pricing model limited by diffusion‐jumping .This paper selects the listed companies that implement stock option incentive as the training sample and simulates further value of option . Results of the simulation indicate that the mechanism of price limit in Chinese stock market will affect stock op‐tion value for top executives ,and the pricing model w hich increases the limit of stock price jumping reduces the overestimation of traditional Black‐Scholes model of stock value ,which will be conducive to optimizing the pri‐cing model for top executives’ stock option incentive .
Farber, M S; Farber, Michael S.; Levine, Jerome P.
1994-01-01
We study the eta-invariant, defined by Atiyah-Patodi-Singer a real valued invariant of an oriented odd-dimensional Riemannian manifold equipped with a unitary representation of its fundamental group. When the representation varies analytically, the corresponding eta-invariant may have an integral jump, known also as the spectral flow. The main result of the paper establishes a formula for this spectral jump in terms of the signatures of some homological forms, defined naturally by the path of representations. These signatures may also be computed by means of a spectral sequence of Hermitian forms,defined by the deformation data. Our theorem on the spectral jump has a generalization to arbitrary analytic families of self-adjoint elliptic operators. As an application we consider the problem of homotopy invariance of the rho-invariant. We give an intrinsic homotopy theoretic definition of the rho-invariant, up to indeterminacy in the form of a locally constant function on the space of unitary representations. In...
Directory of Open Access Journals (Sweden)
Alex T Nielsen
Full Text Available A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP and cholera toxin (CT were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a
Polarization bistability in strained ridge-waveguide InGaAsP/InP lasers: Experiment and theory
Berger, G.; Müller, R.; Klehr, A.; Voss, M.
1995-06-01
New experimental and theoretical results on TE/TM bistability in 1.3 μm ridge-waveguide InGaAsP/InP bulk lasers at room temperature are presented. Measured polarization resolved light power-current (P-I) characteristics as well as lateral near- and far-field patterns are compared with results from a theoretical model based on the paraxial wave equations for TE- and TM-polarized modes and the diffusion equation for the carrier distribution. The model was numerically evaluated by use of the beam propagation method. The observed TE/TM bistability is explained by the interplay of three different effects: (i) Tensile stress of about 109 dyn/cm2 promotes the TM gain strongly enough to compete with the TE mode. (ii) Improved TM waveguiding due to an enhancement of the effective refractive index near the beam axis caused by carrier depletion with increasing current leads to the onset of TM lasing and TE/TM switching. (iii) The TE/TM transition is accompanied by an abrupt increase of spatial hole burning in the lateral carrier distribution. Because of this nonlinear effect, a lower current is needed to switch the laser back to TE, giving rise to a hysteresis loop in the P-I characteristics and to TE/TM polarization bistability.
Analysis of bistable inductive micro-switch based on surface micro size effect
Tian, Wenchao; Chen, Zhiqiang
2015-04-01
The inductive micro-switch can not only induce an external acceleration, but also be controlled by the external acceleration to realize a trigger action. It is an integrative device of a sensor and an actuator. However, little work has been done to develop a comprehensive model to accurately analyze the micro size effect during micro-switch contact process. So its malfunctions related to "fail-to-closure" and "transient-closure" result in low reliability and weak anti-jamming capability. A bistable inductive micro-switch is presented based on nano electro-mechanical system (NEMS) technology and micro size effect. And the sine-model is used to describe the rough contact surface of the micro-switch. Micro size forces such as the Casimir force and van der Waals (vdW) force are analyzed in detail using the principles of vacuum energy and the Wigner-Seitz micro-continuum media. The vdW force includes the repulsive force. The simulation results of the Casimir force varied with the gap are obtained, which is compared with the relative experimental result. The dynamic equation of the bistable inductive micro-switch is established. Dynamic simulation results are shown to be in agreement with experimental results. The threshold acceleration is 6.8 g, and the response time is 17.5 μs.
Understanding the physics of bungee jumping
Heck, André; Uylings, Peter; Kędzierska, Ewa
2010-01-01
Changing mass phenomena like the motion of a falling chain, the behaviour of a falling elastic bar or spring, and the motion of a bungee jumper surprise many a physicist. In this article we discuss the first phase of bungee jumping, when the bungee jumper falls, but the bungee rope is still slack. In instructional material this phase is often considered a free fall, but when the mass of the bungee rope is taken into account, the bungee jumper reaches acceleration greater than g. This result is contrary to the usual experience with free falling objects and therefore hard to believe for many a person, even an experienced physicist. It is often a starting point for heated discussions about the quality of the experiments and the physics knowledge of the experimentalist, or it may even prompt complaints about the quality of current physics education. But experiments do reveal the truth and students can do them supported by information and communication technology (ICT) tools. We report on a research project done by secondary school students and use their work to discuss how measurements with sensors, video analysis of self-recorded high-speed video clips and computer modelling allow study of the physics of bungee jumping.
Structural estimation of jump-diffusion processes in macroeconomics
DEFF Research Database (Denmark)
Posch, Olaf
2009-01-01
This paper shows how to solve and estimate a continuous-time dynamic stochastic general equilibrium (DSGE) model with jumps. It also shows that a continuous-time formulation can make it simpler (relative to its discrete-time version) to compute and estimate the deep parameters using the likelihoo...
Jump Conditions for Maxwell Equations and Their Consequences
2013-01-28
critical issues in computational modeling of electromagnetic systems containing sliding contacts, such as railguns , is the relationship between...an armature is propelled by electromagnetic force. Two stationary conductors (rails) are connected to a capacitor bank. An armature, typically a solid...experimental results. 15. SUBJECT TERMS Maxwell equation, computational electromagnetics , jump condition 16. SECURITY CLASSIFICATION OF: 17
European Option Pricing with Transaction Costs in Lévy Jump Environment
Directory of Open Access Journals (Sweden)
Jiayin Li
2014-01-01
Full Text Available The European option pricing problem with transaction costs is investigated for a risky asset price model with Lévy jump. By the aid of arbitrage pricing theory and the generalized Itô formula (which includes Poisson jump, the explicit solution to the risk asset price model is given. According to arbitrage-free principle, we first discretize the continuous-time model. Then, in each small time interval, the transaction costs are introduced. By using the Δ-hedging strategy, the explicit solutions of the European options pricing formula with transaction costs are given for the risky asset price model with Lévy jump.
Immediate effects of different types of stretching exercises on badminton jump smash.
Jang, Hwi S; Kim, Daeho; Park, Jihong
2017-04-13
Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop points of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F2,75= 1.19, p=0.31; static stretching: 22.1%, pstretching: 30.1%, pstretching: 17.7%, p=0.03, ES: 0.98) and velocities of jump-smashed shuttlecocks (type main effect: F2,75= 2.18, p=0.12; static stretching: 5.7%, p=0.61, ES: 0.39; dynamic stretching: 3.4%, p=0.94, ES: 0.28; resistance dynamic stretching: 6%, p=0.50, ES: 0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F2,75= 0.88, p=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.
Márquez, Gonzalo; Aguado, Xavier; Alegre, Luis M; Lago, Angel; Acero, Rafael M; Fernández-del-Olmo, Miguel
2010-08-01
After repeated jumps over an elastic surface (e.g. a trampoline), subjects usually report a strange sensation when they jump again overground (e.g. they feel unable to jump because their body feels heavy). However, the motor and sensory effects of exposure to an elastic surface are unknown. In the present study, we examined the motor and perceptual effects of repeated jumps over two different surfaces (stiff and elastic), measuring how this affected maximal countermovement vertical jump (CMJ). Fourteen subjects participated in two counterbalanced sessions, 1 week apart. Each experimental session consisted of a series of maximal CMJs over a force plate before and after 1 min of light jumping on an elastic or stiff surface. We measured actual motor performance (height jump and leg stiffness during CMJ) and how that related to perceptual experience (jump height estimation and subjective sensation). After repeated jumps on an elastic surface, the first CMJ showed a significant increase in leg stiffness (P < or = 0.01), decrease in jump height (P < or = 0.01) increase in perceptual misestimation (P < or = 0.05) and abnormal subjective sensation (P < or = 0.001). These changes were not observed after repeated jumps on a rigid surface. In a complementary experiment, continuous surface transitions show that the effects persist across cycles, and the effects over the leg stiffness and subjective experience are minimized (P < or = 0.05). We propose that these aftereffects could be the consequence of an erroneous internal model resulting from the high vertical forces produced by the elastic surface.
Directory of Open Access Journals (Sweden)
Santosh N. Kabadi
2005-01-01
Full Text Available The concept of Δ-matroid is a nontrivial, proper generalization of the concept of matroid and has been further generalized to the concept of jump system. In this paper, we show that jump systems are, in some sense, equivalent to Δ-matroids. Using this equivalence and the Δ-matroid theory, we give simple proofs and extensions of many of the results on jump systems.
Time change, jumping measure and Feller measure
He, Ping
2007-01-01
In this paper, we shall investigate some potential theory for time change of Markov processes. Under weak duality, it is proved that the jumping measure and Feller measure are actually independent of time change, and the jumping measure of a time changed process induced by a PCAF supported on $V$ coincides with the sum of the Feller measure on $V$ and the trace of the original jumping measure on $V$.
Topical Meeting on Optical Bistability Held at Rochester, New York on 15-17 June 1983.
1983-01-01
Duffing oscillator that leads to a of Science and Technology, Seoul, Korea. bistable...8217 - • . " -" -’ . " " " " " . . . . . . " ’ . -’ . " - • .. . •! . - " .7- WHb1- 2 example is the driven Duffing oscillator ’ + . :x- xl A cos,,’ tit.. which can be experimentally...bistability in the susceptibility tensor. Bistability in the susceptibility tensor may be seen classically by studying the Duffing oscillator ,
Jumping Jupiter can explain Mercury's orbit
Roig, Fernando; DeSouza, Sandro Ricardo
2016-01-01
The orbit of Mercury has large values of eccentricity and inclination that cannot be easily explained if this planet formed on a circular and coplanar orbit. Here, we study the evolution of Mercury's orbit during the instability related to the migration of the giant planets in the framework of the jumping Jupiter model. We found that some instability models are able to produce the correct values of Mercury's eccentricity and inclination, provided that relativistic effects are included in the precession of Mercury's perihelion. The orbital excitation is driven by the fast change of the normal oscillation modes of the system corresponding to the perihelion precession of Jupiter (for the eccentricity), and the nodal regression of Uranus (for the inclination).
Nonlinear dynamics of tapping mode atomic force microscopy in the bistable phase
Bahrami, Arash; Nayfeh, Ali H.
2013-03-01
Nonlinear dynamics of amplitude modulation atomic force microscopy (AFM) is studied employing a reduced-order model based on a differential quadrature method (DQM). The AFM microcantilever is assumed to be operating in the dynamic contact or tapping mode while the microcantilever tip being initially located in the bistable region. We have found that the DQM is capable of precise prediction of the static bifurcation diagram and natural frequencies of the microcantilever. We have used the DQM to discretize the partial-differential equation governing the microcantilever motion and a finite difference method (FDM) to calculate limit-cycle responses of the AFM tip. It is shown that a combination of the DQM and FDM applied, respectively, to discretize the spatial and temporal derivatives provides an efficient, accurate procedure to address the complicated dynamic behavior exhibited by the AFM probe. The procedure was, therefore, utilized to study the response of the microcantilever to a base harmonic excitation through several numerical examples. We found that the dynamics of the AFM probe in the bistable region is totally different from those in the monostable region.
Bistable Switch in let-7 miRNA Biogenesis Pathway Involving Lin28
Directory of Open Access Journals (Sweden)
Fei Shi
2014-10-01
Full Text Available miRNAs are small noncoding RNAs capable of regulating gene expression at the post-transcriptional level. A growing body of evidence demonstrated that let-7 family of miRNAs, as one of the highly conserved miRNAs, plays an important role in cell differentiation and development, as well as tumor suppressor function depending on their levels of expression. To explore the physiological significance of let-7 in regulating cell fate decisions, we present a coarse grained model of let-7 biogenesis network, in which let-7 and its regulator Lin28 inhibit mutually. The dynamics of this minimal network architecture indicates that, as the concentration of Lin28 increases, the system undergoes a transition from monostability to a bistability and then to a one-way switch with increasing strength of positive feedback of let-7, while in the absence of Lin28 inhibition, the system loses bistability. Moreover, the ratio of degradation rates of let-7 and Lin28 is critical for the switching sensitivity and resistance to stimulus fluctuations. These findings may highlight why let-7 is required for normal gene expression in the context of embryonic development and oncogenesis, which will facilitate the development of approaches to exploit this regulatory pathway by manipulating Lin28/let-7 axis for novel treatments of human diseases.
Bistable switch in let-7 miRNA biogenesis pathway involving Lin28.
Shi, Fei; Yu, Wenbao; Wang, Xia
2014-10-21
miRNAs are small noncoding RNAs capable of regulating gene expression at the post-transcriptional level. A growing body of evidence demonstrated that let-7 family of miRNAs, as one of the highly conserved miRNAs, plays an important role in cell differentiation and development, as well as tumor suppressor function depending on their levels of expression. To explore the physiological significance of let-7 in regulating cell fate decisions, we present a coarse grained model of let-7 biogenesis network, in which let-7 and its regulator Lin28 inhibit mutually. The dynamics of this minimal network architecture indicates that, as the concentration of Lin28 increases, the system undergoes a transition from monostability to a bistability and then to a one-way switch with increasing strength of positive feedback of let-7, while in the absence of Lin28 inhibition, the system loses bistability. Moreover, the ratio of degradation rates of let-7 and Lin28 is critical for the switching sensitivity and resistance to stimulus fluctuations. These findings may highlight why let-7 is required for normal gene expression in the context of embryonic development and oncogenesis, which will facilitate the development of approaches to exploit this regulatory pathway by manipulating Lin28/let-7 axis for novel treatments of human diseases.
Gao, Y.; Leng, Y.; Javey, A.; Tan, D.; Liu, J.; Fan, S.; Lai, Z.
2016-11-01
Pink noise, which is similar to realistic ambient noise, is normally used to simulate ambience where a piezoelectric energy harvesting system (PEHS) is set up. However, pink noise with standard spectral representation can only be used to simulate excitations assumed to possess constant intensity, whereas realistic ambient noise normally appears with a random spectrum and varying intensity in terms of different locations and time. The output performance of conventional bistable magnetic repulsive energy harvesters is significantly affected by the ambience intensity. Considering this fact, a model bistable dual-piezoelectric-cantilever energy harvester (DPEH) is developed in this study to achieve optimal broadband energy harvesting under a varying-intensity realistic circumstance. We utilized various realistic ambient conditions as excitations to obtain the DPEH energy harvesting performance for theoretical and applied study. The elastically supported PEHS has been proven to be more adaptive to realistic ambience with significant or medium intensity variation, but is less qualified for realistic ambience with constant intensity compared with the rigidly supported PEHS (RPEHS). Fortunately, the dual-piezoelectric-cantilever energy harvesting system is superior to the RPEHS under all circumstances because the dual-piezoelectric cantilevers are efficiently utilized for electromechanical energy conversion to realize optimal energy harvesting.
Qiao, Zijian; Lei, Yaguo; Lin, Jing; Jia, Feng
2017-02-01
In mechanical fault diagnosis, most traditional methods for signal processing attempt to suppress or cancel noise imbedded in vibration signals for extracting weak fault characteristics, whereas stochastic resonance (SR), as a potential tool for signal processing, is able to utilize the noise to enhance fault characteristics. The classical bistable SR (CBSR), as one of the most widely used SR methods, however, has the disadvantage of inherent output saturation. The output saturation not only reduces the output signal-to-noise ratio (SNR) but also limits the enhancement capability for fault characteristics. To overcome this shortcoming, a novel method is proposed to extract the fault characteristics, where a piecewise bistable potential model is established. Simulated signals are used to illustrate the effectiveness of the proposed method, and the results show that the method is able to extract weak fault characteristics and has good enhancement performance and anti-noise capability. Finally, the method is applied to fault diagnosis of bearings and planetary gearboxes, respectively. The diagnosis results demonstrate that the proposed method can obtain larger output SNR, higher spectrum peaks at fault characteristic frequencies and therefore larger recognizable degree than the CBSR method.
Kim, Seyoung; Park, Sukyung; Choi, Sangkyu
2014-09-22
In this study, we developed a curve-fit model of countermovement dynamics and examined whether the characteristics of a countermovement jump can be quantified using the model parameter and its scaling; we expected that the model-based analysis would facilitate an understanding of the basic mechanisms of force reduction and propulsion with a simplified framework of the center of mass (CoM) mechanics. Ten healthy young subjects jumped straight up to five different levels ranging from approximately 10% to 35% of their body heights. The kinematic and kinetic data on the CoM were measured using a force plate system synchronized with motion capture cameras. All subjects generated larger vertical forces compared with their body weights from the countermovement and sufficiently lowered their CoM position to support the work performed by push-off as the vertical elevations became more challenging. The model simulation reasonably reproduced the trajectories of vertical force during the countermovement, and the model parameters were replaced by linear and polynomial regression functions in terms of the vertical jump height. Gradual scaling trends of the individual model parameters were observed as a function of the vertical jump height with different degrees of scaling, depending on the subject. The results imply that the subjects may be aware of the jumping dynamics when subjected to various vertical jump heights and may select their countermovement strategies to effectively accommodate biomechanical constraints, i.e., limited force generation for the standing vertical jump. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bistability between equatorial and axial dipoles during magnetic field reversals
Gissinger, Christophe; Schrinner, Martin; Dormy, Emmanuel
2012-01-01
Numerical simulations of the geodynamo in presence of an heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m = 0 axial dipolar field is replaced by an hemispherical magnetic field, dominated by an oscillating m = 1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of the Earth's dynamo.
Bistability between equatorial and axial dipoles during magnetic field reversals.
Gissinger, Christophe; Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel
2012-06-08
Numerical simulations of the geodynamo in the presence of heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m=0 axial dipolar field is replaced by a hemispherical magnetic field, dominated by an oscillating m=1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of Earth's dynamo.
In-Plane Bistable Nanowire For Memory Devices
Charlot, B; Yamashita, K; Fujita, H; Toshiyoshi, H
2008-01-01
We present a nanomechanical device design to be used in a non-volatile mechanical memory point. The structure is composed of a suspended slender nanowire (width : 100nm, thickness 430nm length : 8 to 30$\\mu$m) clamped at its both ends. Electrodes are placed on each sides of the nanowire and are used to actuate the structure (writing, erasing) and to measure the position through a capactive bridge (reading). The structure is patterned by electron beam lithography on a pre-stressed thermally grown silicon dioxide layer. When later released, the stressed material relaxes and the beam buckles in a position of lower energy. Such symmetric beams, called Euler beams, show two stable deformed positions thus form a bistable structure. This paper will present the fabrication, simulation and mechanical and electrical actuation of an in plane bistable nanowire. Final paper will include a section on FEM simulations.
The aerodynamics of jumping rope
Aristoff, Jeffrey; Stone, Howard
2011-03-01
We present the results of a combined theoretical and experimental investigation of the motion of a rotating string that is held at both ends (i.e. a jump rope). In particular, we determine how the surrounding fluid affects the shape of the string at high Reynolds numbers: the string bends toward the axis of rotation, thereby reducing its total drag. We derive a pair of coupled non-linear differential equations that describe the shape, the numerical solution of which compares well with asymptotic approximations and experiments. Implications for successful skipping will be discussed.
Laminar circular hydraulic jumps without separation
Dasgupta, Ratul; Tomar, Gaurav; Govindarajan, Rama
2009-11-01
The traditional inviscid criterion for the occurrence of a planar, standing hydraulic jump is to have the Froude number decrease downstream and go through a value of 1 at some location. Here, upstream propagating, small-amplitude, long, non-dispersive gravity waves are trapped, and non-linear steepening is said to result in a near-discontinuous height profile, but it is not clear how. Such a condition on the Froude number is shown in the present axisymmetric Navier-Stokes computations to hold for a circular jump as well. The relevance of non-linear steepening to a circular jump is therefore a question we wish to answer. In circular jumps, moreover, a region of recirculation is usually observed underneath the jump, underlining the importance of viscosity in this process. This led Tani (J. Phys. Soc. Japan, 1949) to hypothesise that boundary-layer separation was the cause of the circular jump. This hypothesis has been debated extensively and the possibility of circular jumps without separation hinted at. In our simulations, we are able to obtain circular hydraulic jumps without any flow separation. This, and the necessity or otherwise of viscosity in jump formation will be discussed.
A Molecular Jump Mechanism of Water Reorientation
National Research Council Canada - National Science Library
Damien Laage; James T. Hynes
2006-01-01
.... This water reorientation mechanism involves large-amplitude angular jumps, rather than the commonly accepted sequence of small diffusive steps, and therefore calls for reinterpretation of many...
Pricing life insurance on no-arbitrage model with Poisson jump-diffusion%带Poisson跳的无套利模型下的寿险定价分析
Institute of Scientific and Technical Information of China (English)
柳向东; 寇璐
2012-01-01
主要讨论带Poisson跳的无套利模型下的寿险定价问题.资产价格变动既有“正常”的变动,也有“不正常”的变动.“不正常”的变动通常是重要的信息到达所造成的.由于信息的到达往往在一些离散的时间点,因而用Poisson过程来描述这一变动,从而得出了带Poisson跳的无套利模型下的寿险定价的偏微分方程；此外,将其与资产份额定价方法结合,并通过严格的证明,得到了相应的投资策略.%This article focuses on pricing problem of life insurance on no-arbitrage model with Poisson jump-diffusion. In view of asset price movements, the "normal" vibrations and the "abnormal" vibrations. This is always because the vibrations resulted in for arriving important information. Because the arrival of information usually clicks on time in some discretes, so this is described by Poisson process. This article obtained the partial differential equations for pricing life insurance under the Poisson jump-diffusion with a life insurance pricing model; Besides, they combined with the asset share pricing methods and strictly prove to obtain the corresponding investment strategy.
Intrinsic optical bistability between left-handed material and nonlinear optical materials
Institute of Scientific and Technical Information of China (English)
Shi Hong-Yan; Jiang Yong-Yuan; Sun Xiu-Dong; Guo Ru-Hai; Zhao Yi-Ping
2005-01-01
The electromagnetic properties of the interface between a left-handed material and a conventional nonlinear material were investigated theoretically and numerically. We found a new phenomenon-optical bistability of the interface.It was shown that the incident intensity, incident angle and permeability ratio between the left-handed and the nonlinear materials could dramatically affect the optical bistable behaviour. We also compared the bistable behaviours of different electromagnetic modes. The results indicated that the TE mode was prior to the TM mode to obtain optical bistability for the same parameter.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)
2015-02-15
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.
Statistical Mechanics of finite arrays of coupled bistable elements
Gómez-Ordóñez, José; Casado, José M.; Morillo, Manuel; Honisch, Christoph; Friedrich, Rudolf
2009-01-01
We discuss the equilibrium of a single collective variable characterizing a finite set of coupled, noisy, bistable systems as the noise strength, the size and the coupling parameter are varied. We identify distinct regions in parameter space. The results obtained in prior works in the asymptotic infinite size limit are significantly different from the finite size results. A procedure to construct approximate 1-dimensional Langevin equation is adopted. This equation provides a useful tool to u...
Stochastic resonance enhanced by dichotomic noise in a bistable system
Energy Technology Data Exchange (ETDEWEB)
Rozenfeld, Robert [Institute for Physics, Humboldt University at Berlin, D-10115, Berlin, (Germany); Neiman, Alexander [Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121 (United States); Schimansky-Geier, Lutz [Institute for Physics, Humboldt University at Berlin, D-10115, Berlin, (Germany)
2000-09-01
We study linear responses of a stochastic bistable system driven by dichotomic noise to a weak periodic signal. We show that the effect of stochastic resonance can be greatly enhanced in comparison with the conventional case when dichotomic forcing is absent, that is, both the signal-to-noise ratio and the spectral power amplification reach much greater values than in the standard stochastic resonance setup. (c) 2000 The American Physical Society.
The pressure distribution in thermally bistable turbulent flows
2005-01-01
We present a systematic numerical study of the effect of turbulent velocity fluctuations on the thermal pressure distribution in thermally bistable flows. The simulations employ a random turbulent driving generated in Fourier space rather than star-like heating. The turbulent fluctuations are characterized by their rms Mach number M and the energy injection wavenumber, k_for. Our results are consistent with the picture that as either of these parameters is increased, the local ratio of turbul...
Bistable large-strain actuation of interpenetrating polymer networks.
Niu, Xiaofan; Yang, Xinguo; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sungryul; Yu, Zhibin; Pei, Qibing
2012-12-18
The bistable electroactive polymer is a new smart material capable of large strain, rigid-to-rigid actuation. At the rubbery state of the polymer heated to above its glass transition, stable electrically-induced actuation is obtained at strains as large as 150%. Electromechanical instability can be effectively overcome by the formation of interpenetrating polymer networks. An application as a refreshable braille display is demonstrated. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Software development for bistable module of SMART plant protection system
Energy Technology Data Exchange (ETDEWEB)
Kim, J. H.; Park, H. S.; Jeo, C. W. [Samchang Enterprise Co., Ltd., Taejon (Korea, Republic of); Lee, J. G.; Park, H. Y.; Koo, I. S. [KAERI, Taejon (Korea, Republic of)
2003-10-01
Digitalized PPS(Plant Protection System) is going on development for SMART. The PPS consists of two different types of CPUs and DSP boards for the each functional processor modules of PPS. Software for the system has been progressed with teamwork of CASE TOOL to develop the reliable software. In this paper, we propose the software development method and show the examples for Bistable module through the functional analysis and the development of Structure Chart and M-Spec.
Bistable non-volatile elastic membrane memcapacitor exhibiting chaotic behavior
Martinez-Rincon, J.; Pershin, Y. V.
2011-01-01
We suggest a realization of a bistable non-volatile memory capacitor (memcapacitor). Its design utilizes a strained elastic membrane as a plate of a parallel-plate capacitor. The applied stress generates low and high capacitance configurations of the system. We demonstrate that a voltage pulse of an appropriate amplitude can be used to reliably switch the memcapacitor into the desired capacitance state. Moreover, charged-voltage and capacitance-voltage curves of such a system demonstrate hyst...
Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions
Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.
2016-09-01
Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving
Effects of fatigue of plantarflexors on control and performance in vertical jumping.
Bobbert, Maarten F; van der Krogt, Marjolein M; van Doorn, Hemke; de Ruiter, Cornelis J
2011-04-01
We investigated the effects of a mismatch between control and musculoskeletal properties on performance in vertical jumping. Six subjects performed maximum-effort vertical squat jumps before (REF) and after the plantarflexors of the right leg had been fatigued (FAT) while kinematic data, ground reaction forces, and EMG of leg muscles were collected. Inverse dynamics was used to calculate the net work at joints, and EMG was rectified and smoothed to obtain the smoothed rectified EMG (SREMG). The jumps of the subjects were also simulated with a musculoskeletal model comprising seven body segments and 12 Hill-type muscles, and having as only input muscle stimulation. Jump height was approximately 6 cm less in FAT jumps than in REF jumps. In FAT jumps, peak SREMG level was reduced by more than 35% in the right plantarflexors and by approximately 20% in the right hamstrings but not in any other muscles. In FAT jumps, the net joint work was reduced not only at the right ankle (by 70%) but also at the right hip (by 40%). Because the right hip was not spanned by fatigued muscles and the reduction in SREMG of the right hamstrings was relatively small, this indicated that the reduction in performance was partly due to a mismatch between control and musculoskeletal properties. The differences between REF and FAT jumps of the subjects were confirmed and explained by the simulation model. Reoptimization of control for the FAT model caused performance to be partly restored by approximately 2.5 cm. The reduction in performance in FAT jumps was partly due to a mismatch between control and musculoskeletal properties.
Analysis on optical bistability parameters in photonic switching devices
Sarafraz, Hossein; Sayeh, Mohammad R.
2016-06-01
An investigation has been done on the parameters of a hysteretic bistable optical Schmitt trigger device. From a design point of view, it is important to know the regions where this bistability occurs and is fully functional with respect to its subsystem parameters. Otherwise experimentally reaching such behavior will be very time-consuming and frustrating, especially with multiple devices employed in a single photonic circuit. A photonic Schmitt trigger consisting of two feedbacked inverting amplifiers, each characterized by -m (slope), A (y-intercept), and B (constant base) parameters is considered. This system is investigated dynamically with a varying input to find its stable and unstable states both mathematically and with simulation. In addition to a complete mathematical analysis of the system, we also describe how m, A, and B can be properly chosen in order to satisfy certain system conditions that result in bistability. More restrictions are also imposed to these absolute conditions by the system conditions as will be discussed. Finally, all results are verified in a more realistic photonic simulation.
Brain mechanisms for simple perception and bistable perception.
Wang, Megan; Arteaga, Daniel; He, Biyu J
2013-08-27
When faced with ambiguous sensory inputs, subjective perception alternates between the different interpretations in a stochastic manner. Such multistable perception phenomena have intrigued scientists and laymen alike for over a century. Despite rigorous investigations, the underlying mechanisms of multistable perception remain elusive. Recent studies using multivariate pattern analysis revealed that activity patterns in posterior visual areas correlate with fluctuating percepts. However, increasing evidence suggests that vision--and perception at large--is an active inferential process involving hierarchical brain systems. We applied searchlight multivariate pattern analysis to functional magnetic resonance imaging signals across the human brain to decode perceptual content during bistable perception and simple unambiguous perception. Although perceptually reflective activity patterns during simple perception localized predominantly to posterior visual regions, bistable perception involved additionally many higher-order frontoparietal and temporal regions. Moreover, compared with simple perception, both top-down and bottom-up influences were dramatically enhanced during bistable perception. We further studied the intermittent presentation of ambiguous images--a condition that is known to elicit perceptual memory. Compared with continuous presentation, intermittent presentation recruited even more higher-order regions and was accompanied by further strengthened top-down influences but relatively weakened bottom-up influences. Taken together, these results strongly support an active top-down inferential process in perception.
Bistability and chaos at low levels of quanta.
Gevorgyan, T V; Shahinyan, A R; Chew, Lock Yue; Kryuchkyan, G Yu
2013-08-01
We study nonlinear phenomena of bistability and chaos at a level of few quanta. For this purpose, we consider a single-mode dissipative oscillator with strong Kerr nonlinearity with respect to the dissipation rate driven by a monochromatic force as well as by a train of Gaussian pulses. The quantum effects and decoherence in the oscillatory mode are investigated in the framework of the purity of states and the Wigner functions calculated from the master equation. We demonstrate the quantum chaotic regime by means of a comparison between the contour plots of the Wigner functions and the strange attractors on the classical Poincaré section. Considering bistability at a low limit of quanta, we analyze the minimal level of excitation numbers at which the bistable regime of the system is displayed. We also discuss the formation of an oscillatory chaotic regime by varying oscillatory excitation numbers at ranges of a few quanta. We demonstrate quantum-interference phenomena that are assisted hysteresis-cycle behavior and quantum chaos for the oscillator driven by a train of Gaussian pulses. We establish the border of quantum-classical correspondence for chaotic regimes in the case of strong nonlinearities.
Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.
Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio
2016-03-01
Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.
Inter-segmental moment analysis characterises the partial correspondence of jumping and jerking
Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ
2014-01-01
The aim of this study was to quantify internal joint moments of the lower limb during vertical jumping and the weightlifting jerk in order to improve awareness of the control strategies and correspondence between these activities, and to facilitate understanding of the likely transfer of training effects. Athletic males completed maximal unloaded vertical jumps (n=12) and explosive push jerks at 40 kg (n=9). Kinematic data were collected using optical motion tracking and kinetic data via a force plate, both at 200 Hz. Joint moments were calculated using a previously described biomechanical model of the right lower limb. Peak moment results highlighted that sagittal plane control strategies differed between jumping and jerking (p0.05) possibly indicating a limit to the direct transferability of jerk performance to jumping. Ankle joint moments were poorly related to jump performance (p>0.05). Peak knee and hip moment generating capacity are important to vertical jump performance. The jerk appears to offer an effective strategy to overload joint moment generation in the knee relative to jumping. However, an absence of hip involvement would appear to make it a general, rather than specific, training modality in relation to jumping. PMID:22362089
CAPTURE OF TROJANS BY JUMPING JUPITER
Energy Technology Data Exchange (ETDEWEB)
Nesvorny, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States); Vokrouhlicky, David [Institute of Astronomy, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Morbidelli, Alessandro [Departement Cassiopee, University of Nice, CNRS, Observatoire de la Cote d' Azur, Nice, F-06304 (France)
2013-05-01
Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.
Manuel, Marin; Zytnicki, Daniel; Meunier, Claude
2014-01-01
Spinal motoneurons may display a variety of firing patterns including bistability between repetitive firing and quiescence and, more rarely, bistability between two firing states of different frequencies. It was suggested in the past that firing bistability required that the persistent L-type calcium current be segregated in distal dendrites, far away from the spike generating currents. However, this is not supported by more recent data. Using a two compartment model of motoneuron, we show that the different firing patterns may also result from the competition between the more proximal dendritic component of the dendritic L-type conductance and the calcium sensitive potassium conductance responsible for afterhypolarization (AHP). Further emphasizing this point, firing bistability may be also achieved when the L-type current is put in the somatic compartment. However, this requires that the calcium-sensitive potassium conductance be triggered solely by the high threshold calcium currents activated during spikes and not by calcium influx through the L-type current. This prediction was validated by dynamic clamp experiments in vivo in lumbar motoneurons of deeply anesthetized cats in which an artificial L-type current was added at the soma. Altogether, our results suggest that the dynamical interaction between the L-type and afterhyperpolarization currents is as fundamental as the segregation of the calcium L-type current in dendrites for controlling the discharge of motoneurons.
Directory of Open Access Journals (Sweden)
Komura Taku
2007-06-01
Full Text Available Abstract Background The purpose of this study was to investigate the coordination strategy of maximal-effort horizontal jumping in comparison with vertical jumping, using the methodology of computer simulation. Methods A skeletal model that has nine rigid body segments and twenty degrees of freedom was developed. Thirty-two Hill-type lower limb muscles were attached to the model. The excitation-contraction dynamics of the contractile element, the tissues around the joints to limit the joint range of motion, as well as the foot-ground interaction were implemented. Simulations were initiated from an identical standing posture for both motions. Optimal pattern of the activation input signal was searched through numerical optimization. For the horizontal jumping, the goal was to maximize the horizontal distance traveled by the body's center of mass. For the vertical jumping, the goal was to maximize the height reached by the body's center of mass. Results As a result, it was found that the hip joint was utilized more vigorously in the horizontal jumping than in the vertical jumping. The muscles that have a function of joint flexion such as the m. iliopsoas, m. rectus femoris and m. tibialis anterior were activated to a greater level during the countermovement in the horizontal jumping with an effect of moving the body's center of mass in the forward direction. Muscular work was transferred to the mechanical energy of the body's center of mass more effectively in the horizontal jump, which resulted in a greater energy gain of the body's center of mass throughout the motion. Conclusion These differences in the optimal coordination strategy seem to be caused from the requirement that the body's center of mass needs to be located above the feet in a vertical jumping, whereas this requirement is not so strict in a horizontal jumping.
How to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch.
Directory of Open Access Journals (Sweden)
Lucia Marucci
Full Text Available Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical behaviours. Here we use the tools of non-linear analysis to understand how to change the dynamics of the genes composing a novel synthetic network recently constructed in the yeast Saccharomyces cerevisiae for In-vivo Reverse-engineering and Modelling Assessment (IRMA. Guided by previous theoretical results that make the dynamics of a biological network depend on its topological properties, through the use of simulation and continuation techniques, we found that the network can be easily turned into a robust and tunable synthetic oscillator or a bistable switch. Our results provide guidelines to properly re-engineering in vivo the network in order to tune its dynamics.
Bistability of mixed states in a neural network storing hierarchical patterns
Toya, Kaname; Fukushima, Kunihiko; Kabashima, Yoshiyuki; Okada, Masato
2000-04-01
We discuss the properties of equilibrium states in an autoassociative memory model storing hierarchically correlated patterns (hereafter, hierarchical patterns). We will show that symmetric mixed states (hereafter, mixed states) are bistable on the associative memory model storing the hierarchical patterns in a region of the ferromagnetic phase. This means that the first-order transition occurs in this ferromagnetic phase. We treat these contents with a statistical mechanical method (SCSNA) and by computer simulation. Finally, we discuss a physiological implication of this model. Sugase et al (1999 Nature 400 869) analysed the time-course of the information carried by the firing of face-responsive neurons in the inferior temporal cortex. We also discuss the relation between the theoretical results and the physiological experiments of Sugase et al .
Electroencephalographic recordings during parachute jump sessions.
Gauthier, P; Jouffray, L; Rodi, M; Gottesmann, C
1980-04-01
Electroencephalographic (EEG) recordings of experienced parachutists were done by means of telemetry before, during, and after jumps of up to 3500m. During free-fall and after stabilization, alpha rhythm was recorded from several alpha reactive subjects when they closed their eyes. No pathological EEG recordings were obtained during the different phases of the jump.
Separation and pattern formation in hydraulic jumps
DEFF Research Database (Denmark)
Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe;
1998-01-01
We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...
Strong jump traceability and Demuth randomness
Greenberg, Noam
2011-01-01
We solve the covering problem for Demuth randomness, showing that a computably enumerable set is computable from a Demuth random set if and only if it is strongly jump-traceable. We show that on the other hand, the class of sets which form a base for Demuth randomness is a proper subclass of the class of strongly jump-traceable sets.
Power and bipower variation with stochastic volatility and jumps (with discussion)
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2004-01-01
This article shows that realized power variation and its extension, realized bipower variation, which we introduce here, are somewhat robust to rare jumps. We demonstrate that in special cases, realized bipower variation estimates integrated variance in stochastic volatility models, thus providing...... a model-free and consistent alternative to realized variance. Its robustness property means that if we have a stochastic volatility plus infrequent jumps process, then the difference between realized variance and realized bipower variation estimates the quadratic variation of the jump component...
Optimisation of phase ratio in the triple jump using computer simulation.
Allen, Sam J; King, Mark A; Yeadon, M R Fred
2016-04-01
The triple jump is an athletic event comprising three phases in which the optimal proportion of each phase to the total distance jumped, termed the phase ratio, is unknown. This study used a whole-body torque-driven computer simulation model of all three phases of the triple jump to investigate optimal technique. The technique of the simulation model was optimised by varying torque generator activation parameters using a Genetic Algorithm in order to maximise total jump distance, resulting in a hop-dominated technique (35.7%:30.8%:33.6%) and a distance of 14.05m. Optimisations were then run with penalties forcing the model to adopt hop and jump phases of 33%, 34%, 35%, 36%, and 37% of the optimised distance, resulting in total distances of: 13.79m, 13.87m, 13.95m, 14.05m, and 14.02m; and 14.01m, 14.02m, 13.97m, 13.84m, and 13.67m respectively. These results indicate that in this subject-specific case there is a plateau in optimum technique encompassing balanced and hop-dominated techniques, but that a jump-dominated technique is associated with a decrease in performance. Hop-dominated techniques are associated with higher forces than jump-dominated techniques; therefore optimal phase ratio may be related to a combination of strength and approach velocity.
A review on the basketball jump shot.
Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N
2015-06-01
The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and
Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces
Energy Technology Data Exchange (ETDEWEB)
Boreyko, Jonathan B [ORNL; Collier, Pat [ORNL
2013-01-01
Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.
Delayed frost growth on jumping-drop superhydrophobic surfaces.
Boreyko, Jonathan B; Collier, C Patrick
2013-02-26
Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.
Usefulness of the jump-and-reach test in assessment of vertical jump performance.
Menzel, Hans-Joachim; Chagas, Mauro H; Szmuchrowski, Leszek A; Araujo, Silvia R; Campos, Carlos E; Giannetti, Marcus R
2010-02-01
The objective was to estimate the reliability and criterion-related validity of the Jump-and-Reach Test for the assessment of squat, countermovement, and drop jump performance of 32 male Brazilian professional volleyball players. Performance of squat, countermovement, and drop jumps with different dropping heights was assessed on the Jump-and-Reach Test and the measurement of flight time, then compared across different jump trials. The very high reliability coefficients of both assessment methods and the lower correlation coefficients between scores on the assessments indicate a very high consistency of each method but only moderate covariation, which means that they measure partly different items. As a consequence, the Jump-and-Reach Test has good ecological validity in situations when reaching height during the flight phase is critical for performance (e.g., basketball and volleyball) but only limited accuracy for the assessment of vertical impulse production with different jump techniques and conditions.
VaR: Exchange Rate Risk and Jump Risk
Directory of Open Access Journals (Sweden)
Fen-Ying Chen
2010-01-01
Full Text Available Incorporating the Poisson jumps and exchange rate risk, this paper provides an analytical VaR to manage market risk of international portfolios over the subprime mortgage crisis. There are some properties in the model. First, different from past studies in portfolios valued only in one currency, this model considers portfolios not only with jumps but also with exchange rate risk, that is vital for investors in highly integrated global financial markets. Second, in general, the analytical VaR solution is more accurate than historical simulations in terms of backtesting and Christoffersen's independence test (1998 for small portfolios and large portfolios. In other words, the proposed model is reliable not only for a portfolio on specific stocks but also for a large portfolio. Third, the model can be regarded as the extension of that of Kupiec (1999 and Chen and Liao (2009.
Option Pricing with Stochastic Volatility and Jump Diffusion Processes
Directory of Open Access Journals (Sweden)
Radu Lupu
2006-05-01
Full Text Available Option pricing by the use of Black Scholes Merton (BSM model is based on the assumption that asset prices have a lognormal distribution. In spite of the use of these models on a large scale, both by practioners and academics, the assumption of lognormality is rejected by the history of returns. The objective of this article is to present the methods that developed after the Black Scholes Merton environment and deals with the option pricing model adjustment to the empirical properties of asset returns. The main models that appeared after BSM allowed for special changes of the returns that materialized in jump-diffusion and stochastic volatility processes. The article presents the foundations of risk neutral options evaluation and the empirical evidence that fed the amendment of the lognormal assumption in the first part and shows the evaluation procedure under the assumption of stock prices following the jump-diffusion process and the stochastic volatility process.
Option Pricing with Stochastic Volatility and Jump Diffusion Processes
Directory of Open Access Journals (Sweden)
Radu Lupu
2006-03-01
Full Text Available Option pricing by the use of Black Scholes Merton (BSM model is based on the assumption that asset prices have a lognormal distribution. In spite of the use of these models on a large scale, both by practioners and academics, the assumption of lognormality is rejected by the history of returns. The objective of this article is to present the methods that developed after the Black Scholes Merton environment and deals with the option pricing model adjustment to the empirical properties of asset returns. The main models that appeared after BSM allowed for special changes of the returns that materialized in jump-diffusion and stochastic volatility processes. The article presents the foundations of risk neutral options evaluation and the empirical evidence that fed the amendment of the lognormal assumption in the first part and shows the evaluation procedure under the assumption of stock prices following the jump-diffusion process and the stochastic volatility process.
Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.
2016-07-01
In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.
Structured populations: immigration, (bi)stability and the net growth rate
Farkas, Jozsef Z
2009-01-01
We consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearized system is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearized operator equals zero, i.e. when linearization does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearized system exhibits bistability, for a certain range of values of the external inflow, induced potentially by Allee-effect.
Jumping from the Brooklyn Bridge.
Kurtz, R J; Pizzi, W F; Richman, H; Tiefenbrun, J
1987-07-01
In an attempt to identify factors contributing to survival of free fall and impact, we evaluated the records of four patients who survived a jump from the Brooklyn Bridge into the East River in New York Harbor between 1977 and 1985. All four patients were male and ranged in age from 22 to 67 years. They had free falls of between 41.0 and 48.8 meters. All of the patients were brought to the hospital within 24 minutes of entering the water. Three of the four had emergency surgical treatment and the fourth patient had only minor injuries. All four patients survived the suicide attempts. The length of the hospital stay ranged from two to 26 days.
Asymptotic Expansions of Transition Densities for Hybrid Jump-Diffusions
Institute of Scientific and Technical Information of China (English)
Yuan-jin Liu; G.Yin
2004-01-01
A class of hybrid jump diffusions modulated by a Markov chain is considered in this work.The motivation stems from insurance risk models,and emerging applications in production planning and wireless communications.The models are hybrid in that they involve both continuous dynamics and discrete events.Under suitable conditions,asymptotic expansions of the transition densities for the underlying processes are developed.The formal expansions are validated and the error bounds obtained.
The Economics of Bitcoins - Market Characteristics and Price Jumps
Gronwald, Marc
2014-01-01
This paper deals with the economics of Bitcoins in two ways. First, it broadens the discussion on how to capture Bitcoins using economic terms. Center stage in this analysis take the discussion of some unique characteristics of this market as well as the comparison of Bitcoins and gold. Second, the paper empirically analyses Bitcoin prices using an autoregressive jump-intensity GARCH model; a model tested and proven by the empirical finance community. Results suggest that Bitcoin price are pa...
Diversified Portfolios with Jumps in a Benchmark Framework
Eckhard Platen
2004-01-01
This paper considers diversifed portfolios in a sequence of jump diffusion market models. Conditions for the approximation of the growth optimal portfolio (GOP) by diversified portfolios are provided. Under realistic assumptions, it is shown that diversified portfolios approximate the GOP without requiring any major model specifications. This provides a basis for systematic use of diversified stock indices as proxies for the GOP in derivative pricing, risk management and portfolio optimization.
Pan, Diankun; Ma, Benbiao; Dai, Fuhong
2017-03-01
In this work, a bi-stable vibration energy harvester is presented to scavenge energy from ambient vibrations over a wide frequency range. This bi-stable harvester consists of a bi-stable hybrid composite plate as host structure and several pieces of piezoelectric ceramics. Three linear harvesters with the same geometry were employed as the control samples to illustrate the advantages of this bi-stable harvester. The voltage–frequency responses were measured with different g-level excitations, and the output powers across various resistances were measured at different frequencies and accelerations. Unlike the linear harvesters which are effective only near their natural frequencies, the obvious nonlinearities of this bi-stable harvester broaden its working bandwidth. Additionally, the characteristics of this bi-stable host structure contribute to the output power. Under the same condition, when this bi-stable harvester is under cross-well oscillation pattern the maximum output powers are several times higher than those of the linear harvesters. The measured highest output power of this bi-stable harvester is 36.2 mW with 38 Hz frequency and 5g acceleration (g = 9.8 m s‑2).
Optical bistability in Er-Yb codoped phosphate glass microspheres at room temperature
Warda, Jonathan M.; O'Shea, Danny G.; Shortt, Brian J.; Chormaic, Sile Nic
2007-01-01
We experimentally demonstrate optical bistability in Er(3+)-Yb(3+) phosphate glass microspheres at 295 K. Bistability is associated with both Er(3+) fluorescence and lasing behavior, and chromatic switching. The chromatic switching results from an intrinsic mechanism exploiting the thermal coupling
Bistable hot electron transport in InP/GaInAs composite collector heterojunction bipolar transistors
Ritter, D.; Hamm, R. A.; Feygenson, A.; Temkin, H.; Panish, M. B.; Chandrasekhar, S.
1992-07-01
The transport mechanism of electrons across an energy barrier in the collector of a heterojunction bipolar transistor is studied and identified as hot electron thermionic emission. Bistability between tunneling and thermionic emission was observed at 77 K and room temperature. The bistability can be suppressed by n-type doping of the heterointerface vicinity.
Bionic Mechanism and Kinematics Analysis of Hopping Robot Inspired by Locust Jumping
Institute of Scientific and Technical Information of China (English)
Diansheng Chen; Junmao Yin; Kai Zhao; Wanjun Zheng; Tianmiao Wang
2011-01-01
A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed,and its kinematic characteristics were analyzed.A series of experiments were conducted to observe locust morphology and jumping process.According to classic mechanics,the jumping process analysis was conducted to build the relationship of the locust jumping parameters.The take-off phase was divided into four stages in detail.Based on the biological observation and kinematics analysis,a mechanical model was proposed to simulate locust jumping.The forces of the flexible-rigid hopping mechanism at each stage were analyzed.The kinematic analysis using pseudo-rigid-body model was described by D-H method.It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping.Moreover,the jumping angle which decides the jumping process was discussed,and its relation with other parameters was established.A calculation case analysis corroborated the method.The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance,which can provide a foundation for design and motion planning of the hopping robot.
Prediction and Control of the Bi-stable Functionally Graded Composites by Temperature Gradient Field
Directory of Open Access Journals (Sweden)
Zheng ZHANG
2015-11-01
Full Text Available The bi-stable cylindrical composites, which are composed of the fiber-through-thickness variation functionally graded material (FGM subjected to a temperature gradient field, studied in the paper. The advantages of both of the FGMs’ adaptability for the temperature field variation and the bi-stability of the un-symmetric and anti-symmetric orthogonal lay-ups are combined, the presented bi-stable structure has a potential application in many fields. The thermal-induced bi-stable FGM un-symmetric and anti-symmetric orthogonal shell is studied by the finite element analysis. The different FGM lay-ups are simulated successfully by the commercial finite element software ABAQUS and its subroutines. The curved shapes, the temperature-load history and stress distributions are also given to understand this bi-stable phenomenon.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9566
Linear population allocation by bistable switches in response to transient stimulation.
Directory of Open Access Journals (Sweden)
Jaydeep K Srimani
Full Text Available Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON. While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness.
Numerical simulation of optical bi-stability in antiferromagnetic sandwich structure
Energy Technology Data Exchange (ETDEWEB)
Sun Dongmei [Provincial Key Laboratory of Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China); Fu Shufang, E-mail: shufangfu@yahoo.com [Provincial Key Laboratory of Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China); Zhou Sheng; Wang Xuanzhang [Provincial Key Laboratory of Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China)
2012-01-15
The magnetically optical bi-stability, a third-order nonlinear response, is investigated on an antiferromagnetic (AF) sandwich structure, where an AF film is sandwiched between two dielectric films. The configuration with the AF anisotropy axis and external static magnetic field both in the interfaces and normal to the incident plane is used. The incident wave is taken as a TE wave with its electric component transverse to the incident plane. We find that bistable switches can appear only in a finite frequency range and an incident angle range for a given regime of incident power, which means that there are the critical incident angle and frequency. The power threshold value for the bi-stability increases with the incident angle. In addition, the bi-stability also easily is modulated by the external magnetic field. - Highlights: > Antiferromagnetic sandwich NM/AF/NM. > Optical bi-stability near the resonant frequency. > Effect of magnetic field and incident angle.
Negative and positive hysteresis in double-cavity optical bistability in three-level atom
Babu, H Aswath
2010-01-01
We present novel hysteretic behaviour of a three-level ladder atomic system exhibiting double-cavity optical bistability in the mean-field limit. The two fields coupling the atomic system experience feedback via two independent, unidirectional, single mode ring cavities and exhibit cooperative phenomena, simultaneously. The system displays a range of rich dynamical features varying from normal switching to self pulsing and a period-doubling route to chaos for both the fields. We focus our attention to a new hump like feature in the bistable curve arising purely due to cavity induced inversion, which eventually leads to negative hysteresis in the bistable response. This is probably the only all-optical bistable system that exhibits positive as well as negative bistable hysteresis in different input field intensity regimes. For both the fields, the switching times, the associated critical slowing down, the self-pulsing characteristics, and the chaotic behaviour can be controlled to a fair degree, moreover, all ...
Bustamante, Alejandro; Giralt, Dolors; Garcia-Bonilla, Lidia; Campos, Mireia; Rosell, Anna; Montaner, Joan
2012-10-01
The neuroprotective actions of citicoline have been documented for experimental stroke therapy. We used a systematic review and meta-analysis to assess this evidence. From 64 identified studies using citicoline in stroke animal models, only those describing ischemic occlusive stroke and reporting data on infarct volume and/or neurological outcome were included (14 studies, 522 animals). Overall, the quality of the studies was modest (5, 4-6), while the absence of studies involving animals with co-morbidities, females, old animals or strain differences indicated that studies did not fulfill the STAIR recommendations. Weighted mean difference meta-analysis showed citicoline to reduce infarct volume by 27.8% [(19.9%, 35.6%); p citicoline effect on reducing infarct volume was higher in proximal occlusive models of middle cerebral artery (MCA) compared with distal occlusion. Moreover, the efficacy was superior using multiple doses than single dose and when a co-treatment was administered compared with citicoline monotherapy, the only independent factor identified in the meta-regression. Citicoline improved neurological deficit by 20.2% [(6.8%, 33.7%); p = 0.015], but only four studies including 176 animals reported these data. In conclusion, this meta-analysis provides evidence of citicoline efficacy in stroke animal models and shows the optimal neuroprotective profile and the missing experimental requirements before jumping into clinical trials.
Dynamics of the quantum Duffing oscillator in the driving induced bistable regime
Energy Technology Data Exchange (ETDEWEB)
Peano, V. [Institut fuer Theoretische Physik IV, Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf (Germany); Thorwart, M. [Institut fuer Theoretische Physik IV, Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf (Germany)], E-mail: thorwart@thphy.uni-duesseldorf.de
2006-03-06
We investigate the non-linear response of an anharmonic monostable quantum mechanical resonator to strong external periodic driving. The driving thereby induces an effective bistability in which resonant tunneling can be identified. Within the framework of a Floquet analysis, an effective Floquet-Born-Markovian master equation with time-independent coefficients can be established which can be solved straightforwardly. Various effects including resonant tunneling and multi-photon transitions will be described. Our model finds applications in nano-electromechanical devices such as vibrating suspended nano-wires as well as in non-destructive read-out procedures for superconducting quantum bits involving the non-linear response of the read-out SQUID.
Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device
Raisch, A.
2014-07-01
We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.
Stochastic resonance in parabolic-bistable potential system with an additive colour noise
Institute of Scientific and Technical Information of China (English)
梁贵云
2003-01-01
We propose a new model (parabolic bistable system) with a colour noise source. In the presence of periodic input signal, we investigate the output signal to-noise ratio and the power spectral density of output signal, in which the self-correlation time may be an arbitrary value with no restriction. We find that the curves of signal-to-noise ratio versus the noise intensity D exhibits a bell-shape behaviour. The peak height increases with the increasing value of amplitude A0 of the input signal. However, the position of peak does not shift. Moreover, the signal-to-noise ratio is insensitive to the modulation frequency Ω, which completely differs from result of Ref.[6]. The power spectral density also has similar behaviour.
Stochastic resonance in parabolic—bistable potential system with an additive colour noise
Institute of Scientific and Technical Information of China (English)
LiangGui-Yun
2003-01-01
We propose a new model (parabolic bistable system) with a colour noise source. In the presence of periodic input signal, we investigate the output signal to noise ratio and the power spectral density of output signal, in which the self-correlation time may be an arbitrary value with no restriction. We find that the curves of signal-to-noise ratio versus the noise intensity D exhibits a bell-shape behaviour. The peak height increases with the increasing value of amplitude A0 of the input signal. However, the position of peak does not shift. Moreover, the signal-to-noise ratio is insensitive to the modulation frequency Ω，which completely differs from result of Ref [6]. The power spectral density also has similar behaviour.
Pattern formation in a complex Swift-Hohenberg equation with phase bistability
de Valcárcel, Manuel Martínez-Quesada Germán J
2016-01-01
We study pattern formation in a complex Swift Hohenberg equation with phase-sensitive (parametric) gain. Such an equation serves as a universal order parameter equation describing the onset of spontaneous oscillations in extended systems submitted to a kind of forcing dubbed rocking when the instability is towards long wavelengths. Applications include two-level lasers and photorefractive oscillators. Under rocking, the original continuous phase symmetry of the system is replaced by a discrete one, so that phase bistability emerges. This leads to the spontaneous formation of phase-locked spatial structures like phase domains and dark-ring (phase-) cavity solitons. Stability of the homogeneous solutions is studied and numerical simulations are made covering all the dynamical regimes of the model, which turn out to be very rich. Formal derivations of the rocked complex Swift-Hohenberg equation, using multiple scale techniques, are given for the two-level laser and the photorefractive oscillator.
DEFF Research Database (Denmark)
Nielsen, Alex Toftgaard; Dolganov, N. A.; Rasmussen, Thomas
2010-01-01
A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene...... expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co...... into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could generate a subpopulation of V. cholerae that continues to produce TCP and CT in the rice water stools of cholera patients....
Self-Organized Stationary Patterns in Networks of Bistable Chemical Reactions.
Kouvaris, Nikos E; Sebek, Michael; Mikhailov, Alexander S; Kiss, István Z
2016-10-10
Experiments with networks of discrete reactive bistable electrochemical elements organized in regular and nonregular tree networks are presented to confirm an alternative to the Turing mechanism for the formation of self-organized stationary patterns. The results show that the pattern formation can be described by the identification of domains that can be activated individually or in combinations. The method also enabled the localization of chemical reactions to network substructures and the identification of critical sites whose activation results in complete activation of the system. Although the experiments were performed with a specific nickel electrodissolution system, they reproduced all the salient dynamic behavior of a general network model with a single nonlinearity parameter. Thus, the considered pattern-formation mechanism is very robust, and similar behavior can be expected in other natural or engineered networked systems that exhibit, at least locally, a treelike structure.
A wind-powered one-way bistable medium with parity effects
Rosenberger, Tessa; Schattgen, Graham; King-Smith, Matthew; Shrestha, Prakrit; Maxted, Katsuo J.; Lindner, John F.
2017-02-01
We describe the design, construction, and dynamics of low-cost mechanical arrays of 3D-printed bistable elements whose shapes interact with wind to couple them one-way. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Solitary waves or solitons propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in arrays with an even number of elements. Solitons propagate indefinitely in odd arrays that frustrate pairing. Large noise spontaneously creates soliton-antisoliton pairs. Soliton annihilation times increase quadratically with initial separations, as expected for random-walk models of soliton collisions.
Effects of cross-correlated noises on the relaxation time of the bistable system
Institute of Scientific and Technical Information of China (English)
谢崇伟; 梅冬成
2003-01-01
The stationary correlation function and the associated relaxation time for a general system driven by crosscorrelated white noises are derived, by virtue of a Stratonovich-like ansatz. The effects of correlated noises on the relaxation time of a bistable kinetic model coupled to an additive and a multiplicative white noises are studied. It is proved that for small fluctuations the relaxation time Tc as a function of λ (the correlated intensity between noises)exhibits very different behaviours for α＜ D and for α＞ D (α and D, respectively, stand for the intensities of additive and multiplicative noises). When α＞ D, Tc increases with increasing λ. But when α＜ D, Tc increases with λ for the case of weak correlated noises and sharply decreases with λ for the case of strong correlated noises, and thus Tc-λ curve behaves with one extremum.
Spatial and temporal distributions of magnetisation in arrays of interacting bistable microwires
Velazquez, J
2002-01-01
The unbalanced distribution of magnetic poles at the ends of the bistable Fe-based magnetostrictive glass-coated amorphous microwires generates a magnetic stray field that interacts with magnetisation in neighbouring microwires. A theoretical model is developed to analyse the magnetisation process of a two-dimensional array of quasi-identical microwires, taking into account the symmetry of the distribution (hexagonal, cubic, random), the number of microwires, and the distance between them. The conditions are analysed for arrays which behave as a complex system, specifically a system with self-organised criticality where both distributions of microwires with parallel and antiparallel magnetisation follow a fractal patron, and also conditions when individual magnetisation reversals in the array extend to the neighbours, as well as the possibility of application of this effect in magnetic recording devices.
GENERAL: Bistability in Coupled Oscillators Exhibiting Synchronized Dynamics
Olusola, O. I.; Vincent, U. E.; Njah, A. N.; Olowofela, J. A.
2010-05-01
We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues — a signature of mode locking phenomenon are found.
Controllable Optical Bistability in a Crystal of Molecular Magnets System
Institute of Scientific and Technical Information of China (English)
LIU Ji-Bing; LU Xin-You; HAO Xiang-Ying; SI Liu-Gang; YANG Xiao-Xue
2008-01-01
We investigate the formation of opticai bistability (OB) in a crystal of molecular magnets contained in a unidirectional ring cavity. The crystal is subjected to one de magnetic field and two (probe and coupling) ac resonant magnetic field. The results show that OB can be controlled efficiently by adjusting the intensity of the control field, the detuning of probe magnetic field and the cooperation parameter. Furthermore, within certain parameter range, the optical multistablity (OM) can also be observed in the crystal medium. This investigation can be used for designing new types of nonelectronic devices for realizing switching process.
Application of the Asymptotic Taylor Expansion Method to Bistable Potentials
Directory of Open Access Journals (Sweden)
Okan Ozer
2013-01-01
Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.
Bistability and chaos in the Taylor-Green dynamo.
Yadav, Rakesh K; Verma, Mahendra K; Wahi, Pankaj
2012-03-01
Using direct numerical simulations, we study dynamo action under Taylor-Green forcing for a magnetic Prandtl number of 0.5. We observe bistability with weak- and strong-magnetic-field branches. Both the dynamo branches undergo subcritical dynamo transition. We also observe a host of dynamo states including constant, periodic, quasiperiodic, and chaotic magnetic fields. One of the chaotic states originates through a quasiperiodic route with phase locking, while the other chaotic attractor appears to follow the Newhouse-Ruelle-Takens route to chaos. We also observe intermittent transitions between quasiperiodic and chaotic states for a given Taylor-Green forcing.
A faster switching regime for zenithal bistable nematic displays
Energy Technology Data Exchange (ETDEWEB)
Rudin, J
1997-12-01
A simpler and faster switching regime for Zenithal Bistable Nematic displays is reported. A cell, based on homeotropic alignment of nematic liquid crystal over a continuous blazed monograting on one surface, can be switched using bipolar pulses an order of magnitude faster than monopolar pulses of the same voltage. We propose that this regime relies on simple dielectric coupling to drive the cell into a higher energy state with a long pulse time, and the relaxation into a lower energy state after the creation of surface defects from a shorter applied pulse. Although flexoelectric effects are observed, they do not form the basis of state selection as was proposed for the monopolar pulses
Subharmonic transitions in a bistable oscillator with bimodal periodic excitation.
Kovaleva, Agnessa
2007-03-01
We analyze the phenomenon of low-frequency signal enhancement in a bistable system excited by a sum of low-frequency and high-frequency harmonic signals. A mechanism alternate to chaotic resonance is discussed. It is shown that a high-frequency signal may generate interwell transitions of subharmonic frequency. If the frequency of the slow signal is equal or close to a subharmonic frequency of the fast signal, then the improvement of the low-frequency constituent in the output spectrum is due to sustained subharmonic resonance.
Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects
Energy Technology Data Exchange (ETDEWEB)
Hassan, S.S., E-mail: Shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain); Manchester Metropolitan University, Dept. of Computing, Maths. and Digital Technology, Manchester M1 5GD (United Kingdom); Sharaby, Y.A., E-mail: Yasser_Sharaby@hotmail.com [Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt); Ali, M.F.M., E-mail: dr.mona.fathy@hotmail.com [Department of Mathematics: Faculty of Science, Ain Shams University, Cairo (Egypt); Joshi, A., E-mail: ajoshi@eiu.edu [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States)
2012-10-15
The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.
Bistability of Slow and Fast Traveling Waves in Fluid Mixtures
Hollinger, S; Lücke, M; Hollinger, St.
1997-01-01
The appearence of a new type of fast nonlinear traveling wave states in binary fluid convection with increasing Soret effect is elucidated and the parameter range of their bistability with the common slower ones is evaluated numerically. The bifurcation behavior and the significantly different spatiotemporal properties of the different wave states - e.g. frequency, flow structure, and concentration distribution - are determined and related to each other and to a convenient measure of their nonlinearity. This allows to derive a limit for the applicability of small amplitude expansions. Additionally an universal scaling behavior of frequencies and mixing properties is found. PACS: 47.20.-k, 47.10.+g, 47.20.Ky
Bistable Nonvolatile Elastic-Membrane Memcapacitor Exhibiting a Chaotic Behavior
Martinez-Rincon, Julian; Pershin, Yuriy V.
2011-06-01
We suggest a realization of a bistable non-volatile memory capacitor (memcapacitor). Its design utilizes a strained elastic membrane as a plate of a parallel-plate capacitor. The applied stress generates low and high capacitance configurations of the system. We demonstrate that a voltage pulse of an appropriate amplitude can be used to reliably switch the memcapacitor into the desired capacitance state. Moreover, charged-voltage and capacitance-voltage curves of such a system demonstrate hysteresis and transition into a chaotic regime in a certain range of ac voltage amplitudes and frequencies. Membrane memcapacitor connected to a voltage source comprises a single element nonautonomous chaotic circuit.
Toggling bistable atoms via mechanical switching of bond angle.
Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A; Kantorovich, Lev; Moriarty, Philip
2011-04-01
We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom-an important consideration for future atomic scale fabrication strategies.
Institute of Scientific and Technical Information of China (English)
Chang Zeng-Guang; Niu Yue-Ping; Zhang Jing-Tao; Gong Shang-Qing
2012-01-01
We theoretically investigate the Doppler effect on optical bistability in an N type active Raman gain atomic system inside an optical ring cavity.It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region,which has been known as the positive Doppler effect on optical bistability.In addition,we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.
基于跳跃-扩散期权实物定价模型的房地产泡沫测定%Test of real estate bubble based on Jump-diffusion Option Pricing Model
Institute of Scientific and Technical Information of China (English)
徐华锋; 李玲玲; 胡素敏
2012-01-01
利用跳跃-扩散过程的实物定价模型测定房地产的基础价格,并在此基础上厘定房地产泡沫的临界值,建立房地产泡沫的测定模型,以北京市住房价格为例,判断北京市房地产的泡沫状况,为房地产宏观调控提供参考.%In this paper,the reasonable price of estate is determined by a jump-diffusion materials pricing model,then the critical value of the real estate bubble is determined and.thus the real estate bubble measurement model is established.Taking the housing price in Beijing as an example,we judge status of the real estate bubble and provide reference for real estate economy in macro-economic control.
Institute of Scientific and Technical Information of China (English)
杨朝强
2013-01-01
利用混合分数布朗运动的Itó公式和复合泊松过程驱动的随机微分方程,建立了一类混合跳-扩散分数布朗运动环境下的价格模型,在Merton假设条件下对其随机微分方程的Cauchy初值问题采用迭代法作了估计,得到了混合跳-扩散模型下的欧式看跌期权定价的Merton公式,从而给出了混合跳-扩散分数布朗运动欧式浮动履约价的看涨回望期权和看跌回望期权定价公式.%The mixed jump-diffusion fractional Brownian motion model under the Itó formula and fractional diffusion process with non-homogeneous Poisson process was proposed.By using the iterative method,the Cauchy initial problem of stochastic differential equations were estimated under the conditions of Merton assumptions.Then the pricing Merton-formula of European option that meets the pricing model for the European floating strike price of the lookback option was obtained.Finally the pricing formulas of floating strike lookback call option and lookback put option were proofed.
Sharma, Rati; Roberts, Elijah
2016-06-01
Many vital eukaryotic cellular functions require the cell to respond to a directional gradient of a signaling molecule. The first two steps in any eukaryotic chemotactic/chemotropic pathway are gradient detection and cell polarization. Like many processes, such chemotactic and chemotropic decisions are made using a relatively small number of molecules and are thus susceptible to internal and external fluctuations during signal transduction. Large cell-to-cell variations in the magnitude and direction of a response are therefore possible and do, in fact, occur in natural systems. In this work we use three-dimensional probabilistic modeling of a simple gradient sensing pathway to study the capacity for individual cells to accurately determine the direction of a gradient, despite fluctuations. We include a stochastic external gradient in our simulations using a novel gradient boundary condition modeling a point emitter a short distance away. We compare and contrast three different variants of the pathway, one monostable and two bistable. The simulation data show that an architecture combining bistability with spatial positive feedback permits the cell to both accurately detect and internally amplify an external gradient. We observe strong polarization in all individual cells, but in a distribution of directions centered on the gradient. Polarization accuracy in our study was strongly dependent upon a spatial positive feedback term that allows the pathway to trade accuracy for polarization strength. Finally, we show that additional feedback links providing information about the gradient to multiple levels in the pathway can help the cell to refine initial inaccuracy in the polarization direction.
Incomplete Financial Markets and Jumps in Asset Prices
DEFF Research Database (Denmark)
Crès, Hervé; Markeprand, Tobias Ejnar; Tvede, Mich
A dynamic pure-exchange general equilibrium model with uncertainty is studied. Fundamentals are supposed to depend continuously on states of nature. It is shown that: 1. if financial markets are complete, then asset prices vary continuously with states of nature, and; 2. if financial markets...... are incomplete, jumps in asset prices may be unavoidable. Consequently incomplete financial markets may increase volatility in asset prices significantly....
The Crown Bite Jumping Herbst.
Owen, Reuel
2003-01-01
The Crown Bite Jumping Herbst Appliance is evaluated and combined with Straight Wire Arch Fixed Orthodontics in treatment of Class II, Division I malocclusions. This article will evaluate a combined orthodontic approach of "straightening teeth" and an orthognathic approach of "moving jaws or making skeletal changes." Orthodontic treatment cannot be accomplished well without establishing a healthy temporomandibular joint. This is defined by Keller as a joint that is "noiseless, painless and has a normal range of motion without deviation and deflection." It is not prudent to separate orthodontic treatment as its own entity without being aware of the changes in the temporomandibular joint before, during and after treatment. In other words, "If you're doing orthodontics you're doing TMJ treatment." One should treat toward a healthy, beautiful face asking, "Will proposed treatment achieve this goal?" Treatment should be able to be carried out in an efficient manner, minimizing treatment time, be comfortable and affordable for the patient, and profitable for the dentist. The finished treatment should meet Andrews' Six Keys of Occlusion, or Loudon's Twelve Commandments. Above all, do no harm to the patient. We think that a specific treatment plan can embrace these tenets. The focus will be to show Class II treatment using a modified Herbst Appliance and fixed straight wire orthodontics.
Ruse, Karen; Davison, Aidan; Bridle, Kerry
2015-10-22
Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.
Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014
Directory of Open Access Journals (Sweden)
Karen Ruse
2015-10-01
Full Text Available Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%. There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075% and steeplechases, 14 fatalities per 1000 starts (1.4%. Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.
Institute of Scientific and Technical Information of China (English)
张素梅
2012-01-01
To describe the real volatility of stock returns, this paper provides a rational model through allowing for stochastic interest rate and stochastic volatility rate in the double exponential jump-diffusion model. Subsequently, a closed-form solution for European call option is derived under the proposed model. Furthermore, the effects of main parameters on option prices are analyzed using numerical simulation. Simulations show that the model is suitable for modeling real-market changes. Stock returns are negatively correlated with volatility and stochastic interest rate has a significant impact on long term option values.%为合理刻画股价实际变化趋势,在双指数跳扩散模型中通过允许利率随机和波动率随机建立了合理的市场模型;然后利用鞅方法推导了随机利率、随机波动率下双指数跳扩散模型的欧式期权定价的闭式解;最后通过数值模拟分析了模型的主要参数对期权定价的影响.数值结果显示:所提模型能够较好地刻画股价实际变化趋势,股票收益和波动率负相关,随机利率对短期到期期权影响几乎可以忽略,而对长期到期期权价格影响显著.
Switching between optical bistability and multistability in plasmonic multilayer nanoparticles
Daneshfar, Nader; Naseri, Tayebeh
2017-01-01
We study the nonlinear optical response of multilayer metallic nanoparticles driven by an electromagnetic wave, which can show large field enhancement, hence significantly enhancing optical processes. In addition to optical bistability (OB), we find that optical multistability (OM), which plays a more important role in some applications than OB, is achievable and can be obtained in a multilayer plasmonic nanoparticle. Our results demonstrate that owing to strong localized fields created in the core and each layer of multilayer nanoshells, which occurs in the particles at frequencies close to the surface plasmon resonance, multilayer nanoparticles are promising systems with unique optical characteristics to control the light by light at the nanometer scale. It is demonstrated that OB can be converted to OM via adjusting the wavelength of the applied field and the size of the nanoshell, and the system can manifest optical hysteresis. It is found that the optical bistable or multistable threshold and the shape of hysteresis loops are strongly dependent on the thickness of shells, the incident wavelength, the permittivity of the surrounding medium, and the composition of the core and the inner/outer layers. We also give a discussion on the impact of the exciton-plasmon interaction and the intrinsic size effect on the nonlinear optical response of multilayer spherical nanoparticles.
Aerodynamics of ski jumping flight and its control: II. Simulations
Lee, Jungil; Lee, Hansol; Kim, Woojin; Choi, Haecheon
2015-11-01
In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we conduct a large eddy simulation (LES) of turbulent flow past a model ski jumper which is obtained by 3D scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). The angle of attack of the jump ski is 30° and the Reynolds number based on the length of the jump ski is 540,000. The flow statistics including the drag and lift coefficients in flight are in good agreements with our own experimental data. We investigate the flow characteristics such as the flow separation and three-dimensional vortical structures and their effects on the drag and lift. In addition to LES, we construct a simple geometric model of a ski jumper where each part of the ski jumper is modeled as a canonical bluff body such as the sphere, cylinder and flat plate, to find its optimal posture. The results from this approach will be compared with those by LES and discussed. Supported by NRF program (2014M3C1B1033848, 2014R1A1A1002671).
Impact of Androstenone on Leash Pulling and Jumping Up in Dogs
Directory of Open Access Journals (Sweden)
Glenna Pirner
2016-05-01
Full Text Available Dogs are relinquished to shelters due to behavioral problems, such as leash pulling and jumping up. Interomones are chemical cues produced by one species that elicit a response in a different species. We reported earlier that androstenone, a swine sex pheromone, acts as an interomone to reduce barking in dogs. Here we report two models using 10 dogs/study: a dog jumping and a dog walking model. For the leash-pulling model, each time the dog pulled on the leash the walker either did nothing (NOT, or sprayed the dog with water (H2O, androstenone + water (ANH, androstenone 0.1 µg/mL (AND1, or androstenone 1.0 µg/mL (AND2. The number of pulls during each walk was counted. For the jumping up model, each time the dog jumped the researcher did nothing (NOT, or sprayed the dog with H2O, ANH, AND1, or AND2. The number of jumps and the time between jumps were recorded. In Study 1, ANH, AND1, and AND2 each reduced leash pulling more than NOT and H2O (p< 0.01. In Study 2, all treatments were effective in reducing jumping up behavior. Androstenone reduced jumping up, but not beyond that elicited by a spray of water alone. We conclude that androstenone in multiple delivery vehicles reduced leash pulling. The burst of air intended as a disruptive stimulus in the correction sprays may be too harsh for more sensitive dogs, and as such use of these sprays is cautioned in these animals. For other dogs, this interomone can be used to stop some behavior immediately or as a part of a training program to reduce undesirable behavior.
On the second-order temperature jump coefficient of a dilute gas
Radtke, Gregg A; Takata, Shigeru; Aoki, Kazuo
2012-01-01
We use LVDSMC simulations to calculate the second-order temperature jump coefficient for a dilute gas whose temperature is governed by the Poisson equation with a constant forcing term. Both the hard sphere gas and the BGK model of the Boltzmann equation are considered. Our results show that the temperature jump coefficient is different from the well known linear and steady case where the temperature is governed by the homogeneous heat conduction (Laplace) equation.
Is energy expenditure taken into account in human sub-maximal jumping?--A simulation study.
Vanrenterghem, Jos; Bobbert, Maarten F; Casius, L J Richard; De Clercq, Dirk
2008-02-01
This paper presents a simulation study that was conducted to investigate whether the stereotyped motion pattern observed in human sub-maximal jumping can be interpreted from the perspective of energy expenditure. Human sub-maximal vertical countermovement jumps were compared to jumps simulated with a forward dynamic musculo-skeletal model. This model consisted of four interconnected rigid segments, actuated by six Hill-type muscle actuators. The only independent input of the model was the stimulation of muscles as a function of time. This input was optimized using an objective function, in which targeting a specific sub-maximal height value was combined with minimizing the amount of muscle work produced. The characteristic changes in motion pattern observed in humans jumping to different target heights were reproduced by the model. As the target height was lowered, two major changes occurred in the motion pattern. First, the countermovement amplitude was reduced; this helped to save energy because of reduced dissipation and regeneration of energy in the contractile elements. Second, the contribution of rotation of the heavy proximal segments of the lower limbs to the vertical velocity of the centre of gravity at take-off was less; this helped to save energy because of reduced ineffective rotational energies at take-off. The simulations also revealed that, with the observed movement adaptations, muscle work was reduced through improved relative use of the muscle's elastic properties in sub-maximal jumping. According to the results of the simulations, the stereotyped motion pattern observed in sub-maximal jumping is consistent with the idea that in sub-maximal jumping, subjects are trying to achieve the targeted jump height with minimal energy expenditure.
Towards a neuronal network controller for vertical jumping from different initial squat depths.
Bobbert, Maarten F
2010-01-01
In this study, a forward dynamic simulation model of the human musculoskeletal system was used to explore various strategies of generating muscle stimulation patterns for vertical squat jumping. It was shown that a simple mapping from joint angles to muscle stimulation onsets yielded successful control, albeit not optimal control, for jumps from different initial squat depths. Furthermore, it was shown that this mapping could be implemented in a straightforward way in a simple network of Hodgkin-Huxley type neurons.
S6-4: Visual Awareness Modulated by Conditioned Fear during Bistable Perception
Directory of Open Access Journals (Sweden)
Chai-Youn Kim
2012-10-01
Full Text Available Bistable perception has been considered as a useful means to study visual awareness since it induces spontaneous fluctuation in awareness despite constant physical stimulation. Whether visual awareness during bistable perception is modulated by emotional valence associated with one of the two visual interpretations has been of great interest. This talk will present results from a couple of recent studies in my lab to investigate this issue. By comparing bistable perception prior to and followed by Pavlovian fear conditioning using disambiguated versions of the ambiguous figure, I and my colleagues found that negative emotional valence associated with one of two interpretations significantly influences conscious visual awareness during bistable perception. Specifically after fear conditioning, participants tended to be consciously aware of the interpretation associated with the aversive stimulation (CS+ longer at a time compared to the other (CS-. This influence of fear conditioning on bistable perception occurs only when the fear conditioning was effective indicated by the participant's differential physiological response (heart rate to CS+ and CS-. Changes in bistable perception after fear conditioning were also found to be correlated positively with the State-Anxiety score. I will also discuss results from the follow-up study showing that visual awareness during bistable perception is also modulated “unconsciously” conditioned fear.
Confirmation of bistable stellar differential rotation profiles
Käpylä, P J; Brandenburg, A
2014-01-01
(abridged) Context: Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow. Aims: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive ($\\Lambda$-effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We perform three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential r...
Control and filtering for semi-Markovian jump systems
Li, Fanbiao; Wu, Ligang
2017-01-01
This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
Characteristics of a hydraulic jump in Bingham fluid
Shu, Jian-Jun
2014-01-01
In this paper, we seek an adequate macroscopic model for a hydraulic jump in Bingham fluid. The formulas for conjugate depths, sequent bottom shear stress and critical depth are established. Since no exact analytical solution in closed form is available for conjugate depths, an approximate formula is developed. This formula can provide good results with an error less than 4%. The analytical results have revealed that the critical depth and the ratio of conjugate depths increase until bottom shear stress exceeds a certain value and then decrease afterwards. The bottom shear stress downstream of the jump is smaller than that upstream. The results are verified by experimental data and observations available in the literature.
Dynamical approach to displacement jumps in nanoindentation experiments
K, Srikanth; Ananthakrishna, G.
2017-01-01
The load-controlled mode is routinely used in nanoindentation experiments. Yet there are no simulations or models that predict the generic features of force-displacement F -z curves, in particular, the existence of several displacement jumps of decreasing magnitude. Here, we show that the recently developed dislocation dynamical model predicts all the generic features when the model is appropriately coupled to an equation defining the load rate. Since jumps in the indentation depth result from the plastic deformation occurring inside the sample, we devise a method for calculating this contribution by setting up a system of coupled nonlinear time evolution equations for the mobile and forest dislocation densities. The equations are then coupled to the force rate equation. We include nucleation, multiplication, and propagation threshold mechanisms for the mobile dislocations apart from other well known dislocation transformation mechanisms between the mobile and forest dislocations. The commonly used Berkovitch indenter is considered. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rate, the geometrical quantities defining the Berkovitch indenter including the nominal tip radius, and other parameters. We identify specific dislocation mechanisms contributing to different regions of the F -z curve as a first step for obtaining a good fit to a given experimental F -z curve. This is done by studying the influence of the parameters on the model F -z curves. In addition, the study demonstrates that the model predicts all the generic features of nanoindentation such as the existence of an initial elastic branch followed by several displacement jumps of decreasing magnitude, and residual plasticity after unloading for a range of model parameter values. Further, an optimized set of parameter values can be easily determined that gives a good fit to the experimental force-displacement curve for Al single crystals of (110
Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process
DEFF Research Database (Denmark)
Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn
2011-01-01
Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially...... models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing...
Intertime jump statistics of state-dependent Poisson processes.
Daly, Edoardo; Porporato, Amilcare
2007-01-01
A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.
Intertime jump statistics of state-dependent Poisson processes
Daly, Edoardo; Porporato, Amilcare
2007-01-01
A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.
Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014
Ruse, Karen; Davison, Aidan; Bridle, Kerry
2015-01-01
Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396
Jumping to conclusions in schizophrenia
Directory of Open Access Journals (Sweden)
Evans SL
2015-07-01
Full Text Available Simon L Evans,1 Bruno B Averbeck,2 Nicholas Furl31School of Psychology, University of Sussex, Brighton, East Sussex, UK; 2Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 3Department of Psychology, Royal Holloway, University of London, Egham, Surrey, UKAbstract: Schizophrenia is a mental disorder associated with a variety of symptoms, including hallucinations, delusions, social withdrawal, and cognitive dysfunction. Impairments on decision-making tasks are routinely reported: evidence points to a particular deficit in learning from and revising behavior following feedback. In addition, patients tend to make hasty decisions when probabilistic judgments are required. This is known as “jumping to conclusions” (JTC and has typically been demonstrated by presenting participants with colored beads drawn from one of two “urns” until they claim to be sure which urn the beads are being drawn from (the proportions of colors vary in each urn. Patients tend to make early decisions on this task, and there is evidence to suggest that a hasty decision-making style might be linked to delusion formation and thus be of clinical relevance. Various accounts have been proposed regarding what underlies this behavior. In this review, we briefly introduce the disorder and the decision-making deficits associated with it. We then explore the evidence for each account of JTC in the context of a wider decision-making deficit and then go on to summarize work exploring JTC in healthy controls using pharmacological manipulations and functional imaging. Finally, we assess whether JTC might have a role in therapy.Keywords: ketamine, decision making, delusions, fMRI, urn task
NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING
Directory of Open Access Journals (Sweden)
Djordje Kosanic
2009-12-01
Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping
Bistability Analysis of Excitatory-Inhibitory Neural Networks in Limited-Sustained-Activity Regime
Institute of Scientific and Technical Information of China (English)
倪赟; 吴亮; 吴丹; 朱士群
2011-01-01
Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons. The standard stability analysis is performed on the two metastable states separately. Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically, leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors. These results may suggest one possible neuronal information processing by only tuning time scales.
Application of bistable optical logic gate arrays to all-optical digital parallel processing
Walker, A. C.
1986-05-01
Arrays of bistable optical gates can form the basis of an all-optical digital parallel processor. Two classes of signal input geometry exist - on- and off-axis - and lead to distinctly different device characteristics. The optical implementation of multisignal fan-in to an array of intrinsically bistable optical gates using the more efficient off-axis option is discussed together with the construction of programmable read/write memories from optically bistable devices. Finally the design of a demonstration all-optical parallel processor incorporating these concepts is presented.
Comparison of Bistable Systems and Matched Filters in Non-Gaussian Noise
Zhang, Xinming; Yan, Jianfeng; Duan, Fabing
2016-10-01
In this paper, we report that for a weak signal buried in the heavy-tailed noise, the bistable system can outperform the matched filter, yielding a higher output signal-to-noise ratio (SNR) or a lower probability of error. Moreover, by adding mutually independent internal noise components to an array of bistable systems, the output SNR or the probability of error can be further improved via the mechanism of stochastic resonance (SR). These comparison results demonstrate the potential capability of bistable systems for detecting weak signals in non-Gaussian noise environments.
Reduced threshold all-optical bistability in etched quantum well microresonators
Rivera, T.; Ladan, F. R.; Izrael, A.; Azoulay, R.; Kuszelewicz, R.; Oudar, J. L.
1994-02-01
Etched vertical microresonators made of GaAs/AlGaAs multiple quantum wells produced by reactive ion etching was investigated to study the optical bistability phenomena. Reactive ion etching was preferred because of smooth vertical and minimization of density of surface recombination centers. A high cavity finesse was observed in the microresonators producing an optical bistability with wide hysteresis loops. A low threshold power of 70 microwatts was measured due to carrier confinement and vertical walls. The low bistability threshold power was attributed to self passivation happening during etching process, which produced a small surface recombination rate.
Changes in long jump take-off technique with increasing run-up speed.
Bridgett, Lisa A; Linthorne, Nicholas P
2006-08-01
The aim of this study was to determine the influence of run-up speed on take-off technique in the long jump. Seventy-one jumps by an elite male long jumper were recorded in the sagittal plane by a high-speed video camera. A wide range of run-up speeds was obtained using direct intervention to set the length of the athlete's run-up. As the athlete's run-up speed increased, the jump distance and take-off speed increased, the leg angle at touchdown remained almost unchanged, and the take-off angle and take-off duration steadily decreased. The predictions of two previously published mathematical models of the long jump take-off are in reasonable agreement with the experimental data.
A biomechanical comparison of the vertical jump, power clean, and jump squat.
MacKenzie, Sasho James; Lavers, Robert J; Wallace, Brendan B
2014-01-01
The purpose of this study was to compare the kinetics, kinematics, and muscle activation patterns of the countermovement jump, the power clean, and the jump squat with the expectation of gaining a better understanding of the mechanism of transfer from the power clean to the vertical jump. Ground reaction forces, electromyography, and joint angle data were collected from 20 trained participants while they performed the three movements. Relative to the power clean, the kinematics of the jump squat were more similar to those of the countermovement jump. The order in which the ankle, knee, and hip began extending, as well as the subsequent pattern of extension, was different between the power clean and countermovement jump. The electromyography data demonstrated significant differences in the relative timing of peak activations in all muscles, the maximum activation of the rectus femoris and biceps femoris, and in the activation/deactivation patterns of the vastus medialis and rectus femoris. The greatest rate of force development during the upward phase of these exercises was generated during the power clean (17,254 [Formula: see text]), which was significantly greater than both the countermovement jump (3836 [Formula: see text]) and jump squat (3517 [Formula: see text]) conditions (P < .001, [Formula: see text]).
Newhouse, Randal Leslie
Atomic jump frequencies were determined in a variety of intermetallic compounds through analysis of nuclear relaxation of spectra measured using the nuclear hyperfine technique, perturbed angular correlation (PAC) of gamma rays. Observed at higher temperatures, this relaxation is attributed to fluctuations in the orientation or magnitude of electric field gradients (EFG) at nuclei of 111In/Cd probe atoms as the atoms make diffusive jumps. Jump frequencies were obtained by fitting dynamically relaxed PAC spectra using either an empirical relaxation function or using ab initio relaxation models created using the program PolyPacFit. Jump frequency activation enthalpies were determined from measurements over a range of temperatures. Diffusion was studied in the following systems: 1) Pseudo-binary alloys having the L12 crystal structure such as In3(La1-xPrx). The goal was to see how jump frequencies were affected by random disorder. 2) The family of layered phases, LanCoIn3n+2 ( n=0,1,2,3…∞). The goal was to see how jump frequencies varied with the spacing of Co layers, which were found to block diffusion. 3) Phases having the FeGa3 structure. The goal was to analyze dynamical relaxation for probe atoms having multiple inequivalent jump vectors. 4) Phases having the tetragonal Al4Ba structure. The goal was to search for effects in the PAC spectra caused by fluctuations in magnitudes of EFGs without fluctuations in orientations. Ab initio relaxation models were developed to simulate and fit dynamical relaxation for PAC spectra of FeGa3, and several phases with the Al4Ba structure in order to determine underlying microscopic jump frequencies. In the course of this work, site preferences also were observed for 111In/Cd probe atoms in several FeGa 3 and Al4Ba phases.
Heinrich, D; van den Bogert, A J; Nachbauer, W
2014-06-01
Recent data highlight that competitive skiers face a high risk of injuries especially during off-balance jump landing maneuvers in downhill skiing. The purpose of the present study was to develop a musculo-skeletal modeling and simulation approach to investigate the cause-and-effect relationship between a perturbed landing position, i.e., joint angles and trunk orientation, and the peak force in the anterior cruciate ligament (ACL) during jump landing. A two-dimensional musculo-skeletal model was developed and a baseline simulation was obtained reproducing measurement data of a reference landing movement. Based on the baseline simulation, a series of perturbed landing simulations (n = 1000) was generated. Multiple linear regression was performed to determine a relationship between peak ACL force and the perturbed landing posture. Increased backward lean, hip flexion, knee extension, and ankle dorsiflexion as well as an asymmetric position were related to higher peak ACL forces during jump landing. The orientation of the trunk of the skier was identified as the most important predictor accounting for 60% of the variance of the peak ACL force in the simulations. Teaching of tactical decisions and the inclusion of exercise regimens in ACL injury prevention programs to improve trunk control during landing motions in downhill skiing was concluded. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vortex jump behavior in coupled nanomagnetic heterostructures
Energy Technology Data Exchange (ETDEWEB)
Zhang, S.; Phatak, C., E-mail: cd@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Petford-Long, A. K. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208 (United States); Heinonen, O. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208-3112 (United States)
2014-11-24
The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.
Ashley-Ross, Miriam A; Perlman, Benjamin M; Gibb, Alice C; Long, John H
2014-02-01
Despite having no obvious anatomical modifications to facilitate movement over land, numerous small fishes from divergent teleost lineages make brief, voluntary terrestrial forays to escape poor aquatic conditions or to pursue terrestrial prey. Once stranded, these fishes produce a coordinated and effective "tail-flip" jumping behavior, wherein lateral flexion of the axial body into a C-shape, followed by contralateral flexion of the body axis, propels the fish into a ballistic flight-path that covers a distance of multiple body lengths. We ask: how do anatomical structures that evolved in one habitat generate effective movement in a novel habitat? Within this context, we hypothesized that the mechanical properties of the axial skeleton play a critical role in producing effective overland movement, and that tail-flip jumping species demonstrate enhanced elastic energy storage through increased body flexural stiffness or increased body curvature, relative to non-jumping species. To test this hypothesis, we derived a model to predict elastic recoil work from the morphology of the vertebral (neural and hemal) spines. From ground reaction force (GRF) measurements and high-speed video, we calculated elastic recoil work, flexural stiffness, and apparent material stiffness of the body for Micropterus salmoides (a non-jumper) and Kryptolebias marmoratus (adept tail-flip jumper). The model predicted no difference between the two species in work stored by the vertebral spines, and GRF data showed that they produce the same magnitude of mass-specific elastic recoil work. Surprisingly, non-jumper M. salmoides has a stiffer body than tail-flip jumper K. marmoratus. Many tail-flip jumping species possess enlarged, fused hypural bones that support the caudal peduncle, which suggests that the localized structures, rather than the entire axial skeleton, may explain differences in terrestrial performance.
The effect of wind on jumping distance in ski jumping--fairness assessed.
Virmavirta, Mikko; Kivekäs, Juha
2012-09-01
The special wind compensation system recently adopted by Fédération Internationale de Ski (FIS; International Ski Federation) to consider the effects of changing wind conditions has caused some controversy. Here, the effect of wind on jumping distance in ski jumping was studied by means of computer simulation and compared with the wind compensation factors used by FIS during the World Cup season 2009/2010. The results showed clearly that the effect of increasing head/tail wind on jumping distance is not linear: +17.4 m/-29.1 m, respectively, for a wind speed of 3 m/s. The linear formula used in the trial period of the wind compensation system was found to be appropriate only for a limited range of jumping distances as the gradient of the landing slope slows down the rate of distance change in long jumps.
Tailored jump operators for purely dissipative quantum magnetism
Weimer, Hendrik
2017-01-01
I propose an architecture for the realization of dissipative quantum many-body spin models. The dissipative processes are mediated by interactions with auxiliary particles and lead to a widely tunable class of correlated quantum jump operators. These findings enable the investigation of purely dissipative spin models, where coherent dynamics is entirely absent. I provide a detailed review of a recently introduced variational method to analyze such dissipative quantum many-body systems, and I discuss a specific example in terms of a purely dissipative Heisenberg model, for which I find an additional disordered phase that is not present in the corresponding ground state phase diagram.
Tailored jump operators for purely dissipative quantum magnetism
Weimer, Hendrik
2016-01-01
I propose an archtitecture for the realization of dissipative quantum many-body spin models. The dissipative processes are mediated by interactions with auxiliary particles and lead to a widely tunable class of correlated quantum jump operators. These findings enable the investigation of purely dissipative spin models, where coherent dynamics is entirely absent. I provide a detailed review of a recently introduced variational method to analyze such dissipative quantum many-body systems, and I discuss a specific example in terms of a purely dissipative Heisenberg model, for which I find an additional disordered phase that is not present in the corresponding ground state phase diagram.