WorldWideScience

Sample records for bispecific antibodies targeting

  1. Cell Penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    Science.gov (United States)

    2016-12-01

    Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer Michael Lilly, MD Richard Weisbart, MD Medical...0534, entitled Cell- penetrating bispecific antibodies for targeting oncogenic transcription factors in advanced prostate cancer . The research is a... Prostate cancer , antibody, bispecific, androgen receptor, castration-resistant 3

  2. Comparative analysis of bispecific antibody and streptavidin-targeted radioimmunotherapy for B cell cancers

    Science.gov (United States)

    Green, Damian J.; Frayo, Shani L.; Lin, Yukang; Hamlin, Donald K.; Fisher, Darrell R.; Frost, Sofia H.L.; Kenoyer, Aimee L.; Hylarides, Mark D.; Gopal, Ajay K.; Gooley, Theodore A.; Orozco, Johnnie J.; Till, Brian G.; O’Steen, Shyril; Orcutt, Kelly D.; Wilbur, D. Scott; Wittrup, K. Dane; Press, Oliver W.

    2016-01-01

    Streptavidin (SA)-biotin pretargeted radioimmunotherapy (PRIT) that targets CD20 in non-Hodgkin lymphoma (NHL) exhibits remarkable efficacy in model systems, but SA immunogenicity and interference by endogenous biotin may complicate clinical translation of this approach. In this study, we engineered a bispecific fusion protein (FP) that evades the limitations imposed by this system. Briefly, one arm of the FP was an anti-human CD20 antibody (2H7) with the other arm of the FP an anti-chelated radiometal trap for a radiolabeled ligand (yttrium[Y]-DOTA) captured by a very high-affinity anti-Y-DOTA scFv antibody (C825). Head-to-head biodistribution experiments comparing SA-biotin and bispecific FP (2H7-Fc-C825) PRIT in murine subjects bearing human lymphoma xenografts demonstrated nearly identical tumor targeting by each modality at 24 hrs. However, residual radioactivity in the blood and normal organs was consistently higher following administration of 1F5-SA compared to 2H7-Fc-C825. Consequently, tumor-to-normal tissue ratios of distribution were superior for 2H7-Fc-C825 (p<0.0001). Therapy studies in subjects bearing either Ramos or Granta subcutaneous lymphomas demonstrated that 2H7-Fc-C825 PRIT is highly effective and significantly less myelosuppressive than 1F5-SA (p<0.0001). All animals receiving optimal doses of 2H7-Fc-C825 followed by 90Y-DOTA were cured by 150 days, whereas the growth of tumors in control animals progressed rapidly with complete morbidity by 25 days. In addition to demonstrating reduced risk of immunogenicity and an absence of endogenous biotin interference, our findings offer a preclinical proof of concept for the preferred use of bispecific PRIT in future clinical trials, due to a slightly superior biodistribution profile, less myelosuppression and superior efficacy. PMID:27590740

  3. The new face of bispecific antibodies: targeting cancer and much more.

    Science.gov (United States)

    Lum, Lawrence G; Davol, Pamela A; Lee, Randall J

    2006-01-01

    The term magic bullet was first coined by bacteriologist Paul Ehrlich in the late 1800s to describe a chemical with the ability to specifically target microorganisms while sparing normal host cells. His concept was later expanded to include treatments for cancer, but it is only in recent decades, with development and improvements in monoclonal antibody (mAb) technology, that the full therapeutic implications of "magic bullet" strategies have been realized. Expanding on the success of mAb-targeting, linking the specificity of two mAbs into a single agent, called a bispecific antibody (BiAb), allows for targeting of a therapeutic biological agent or cell to specific tissue antigens. Classically, BiAbs have been used for several decades to redirect cytotoxic T cells or other effector cells to kill tumor cells. Here, we review preclinical models and ongoing phase I clinical trials in which arming polyclonally activated T cells with BiAbs may provide anti-tumor activity without dose-limiting toxicities. Additionally, we review findings from this novel strategy that merges magic bullet technology with hematopoietic stem cells to repair injured myocardium. Arming stem cells with BiAbs directed at injury-associated antigens enhances specific homing and engraftment to myocardial infarctions and may significantly improve cardiac function, strongly suggesting new paradigms for BiAb-targeting applications in tissue repair.

  4. Novel strategy for a bispecific antibody: induction of dual target internalization and degradation.

    Science.gov (United States)

    Lee, J M; Lee, S H; Hwang, J-W; Oh, S J; Kim, B; Jung, S; Shim, S-H; Lin, P W; Lee, S B; Cho, M-Y; Koh, Y J; Kim, S Y; Ahn, S; Lee, J; Kim, K-M; Cheong, K H; Choi, J; Kim, K-A

    2016-08-25

    Activation of the extensive cross-talk among the receptor tyrosine kinases (RTKs), particularly ErbB family-Met cross-talk, has emerged as a likely source of drug resistance. Notwithstanding brilliant successes were attained while using small-molecule inhibitors or antibody therapeutics against specific RTKs in multiple cancers over recent decades, a high recurrence rate remains unsolved in patients treated with these targeted inhibitors. It is well aligned with multifaceted properties of cancer and cross-talk and convergence of signaling pathways of RTKs. Thereby many therapeutic interventions have been actively developed to overcome inherent or acquired resistance. To date, no bispecific antibody (BsAb) showed complete depletion of dual RTKs from the plasma membrane and efficient dual degradation. In this manuscript, we report the first findings of a target-specific dual internalization and degradation of membrane RTKs induced by designed BsAbs based on the internalizing monoclonal antibodies and the therapeutic values of these BsAbs. Leveraging the anti-Met mAb able to internalize and degrade by a unique mechanism, we generated the BsAbs for Met/epidermal growth factor receptor (EGFR) and Met/HER2 to induce an efficient EGFR or HER2 internalization and degradation in the presence of Met that is frequently overexpressed in the invasive tumors and involved in the resistance against EGFR- or HER2-targeted therapies. We found that Met/EGFR BsAb ME22S induces dissociation of the Met-EGFR complex from Hsp90, followed by significant degradation of Met and EGFR. By employing patient-derived tumor models we demonstrate therapeutic potential of the BsAb-mediated dual degradation in various cancers.

  5. Opposites attract in bispecific antibody engineering

    NARCIS (Netherlands)

    van Gils, Marit J.; Sanders, Rogier W.

    2017-01-01

    Bispecific antibodies show great promise as intrinsic combination therapies, but often suffer from poor physiochemical properties, many times related to poor heterodimerization. De Nardis et al. identify specific electrostatic interactions that facilitate efficient heterodimerization, resulting in

  6. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    OpenAIRE

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; Lardinois, Didier

    2015-01-01

    T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting fola...

  7. Engineering bispecific antibodies with defined chain pairing.

    Science.gov (United States)

    Krah, Simon; Sellmann, Carolin; Rhiel, Laura; Schröter, Christian; Dickgiesser, Stephan; Beck, Jan; Zielonka, Stefan; Toleikis, Lars; Hock, Björn; Kolmar, Harald; Becker, Stefan

    2017-10-25

    Bispecific IgG-like antibodies can simultaneously interact with two epitopes on the same or on different antigens. Therefore, these molecules facilitate novel modes of action, which cannot be addressed by conventional monospecific IgGs. However, the generation of such antibodies still appears to be demanding due to their specific architecture comprising four different polypeptide chains that need to assemble correctly. This review focusses on different strategies to circumvent this issue or to enforce a correct chain association with a focus on common-chain bispecific antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle.

    Directory of Open Access Journals (Sweden)

    Katrin Spiesberger

    Full Text Available 30 years ago, the potential of bispecific antibodies to engage cytotoxic T cells for the lysis of cancer cells was discovered. Today a variety of bispecific antibodies against diverse cell surface structures have been developed, the majority of them produced in mammalian cell culture systems. Beside the r28M, described here, no such bispecific antibody is known to be expressed by transgenic livestock, although various biologicals for medical needs are already harvested-mostly from the milk-of these transgenics. In this study we investigated the large-scale purification and biological activity of the bispecific antibody r28M, expressed in the blood of transgenic cattle. This tandem single-chain variable fragment antibody is designed to target human CD28 and the melanoma/glioblastoma-associated cell surface chondroitin sulfate proteoglycan 4 (CSPG4.With the described optimized purification protocol an average yield of 30 mg enriched r28M fraction out of 2 liters bovine plasma could be obtained. Separation of this enriched fraction by size exclusion chromatography into monomers, dimers and aggregates and further testing regarding the biological activity revealed the monomer fraction as being the most appropriate one to continue working with. The detailed characterization of the antibody's activity confirmed its high specificity to induce the killing of CSPG4 positive cells. In addition, first insights into tumor cell death pathways mediated by r28M-activated peripheral blood mononuclear cells were gained. In consideration of possible applications in vivo we also tested the effect of the addition of different excipients to r28M.Summing up, we managed to purify monomeric r28M from bovine plasma in a large-scale preparation and could prove that its biological activity is unaffected and still highly specific and thus, might be applicable for the treatment of melanoma.

  9. Bispecific antibodies and their use in applied research

    Directory of Open Access Journals (Sweden)

    Harshit Verma

    Full Text Available Bispecific antibodies (BsAb can, by virtue of combining two binding specificities, improve the selectivity and efficacy of antibody-based treatment of human disease. Antibodies with two distinct binding specificities have great potential for a wide range of clinical applications as targeting agents for in vitro and in vivo immunodiagnosis, therapy and for improving immunoassays. They have shown great promise for targeting cytotoxic effector cells, delivering radionuclides, toxins or cytotoxic drugs to specific targets, particularly tumour cells. The development of BsAb research goes through three main stages: chemical cross linking of murine-derived monoclonal antibody, hybrid hybridomas and engineered BsAb. This article is providing the potential applications of bispecific antibodies. [Vet World 2012; 5(12.000: 775-780

  10. TriFabs—Trivalent IgG-Shaped Bispecific Antibody Derivatives: Design, Generation, Characterization and Application for Targeted Payload Delivery

    Directory of Open Access Journals (Sweden)

    Klaus Mayer

    2015-11-01

    Full Text Available TriFabs are IgG-shaped bispecific antibodies (bsAbs composed of two regular Fab arms fused via flexible linker peptides to one asymmetric third Fab-sized binding module. This third module replaces the IgG Fc region and is composed of the variable region of the heavy chain (VH fused to CH3 with “knob”-mutations, and the variable region of the light chain (VL fused to CH3 with matching “holes”. The hinge region does not contain disulfides to facilitate antigen access to the third binding site. To compensate for the loss of hinge-disulfides between heavy chains, CH3 knob-hole heterodimers are linked by S354C-Y349C disulphides, and VH and VL of the stem region may be linked via VH44C-VL100C disulphides. TriFabs which bind one antigen bivalent in the same manner as IgGs and the second antigen monovalent “in between” these Fabs can be applied to simultaneously engage two antigens, or for targeted delivery of small and large (fluorescent or cytotoxic payloads.

  11. Cell-Penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    Science.gov (United States)

    2015-10-01

    either antibody occurred rapidly, and was maximum between 1 and 3hrs after antibody addition. When antibody was removed from the culture medium a...substantial quantity of the cell associated antibody was lost, appearing into the fresh medium rapidly. However between 25-50% of the initial cell...plasmid pTCON2 encodes the Saccharomyces aga2 gene, with Myc tag. When transfected into yeast, the aga2 protein is secreted and then binds to aga1

  12. Cell-penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    Science.gov (United States)

    2014-10-01

    person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c. THIS PAGE U UU 9 19b...blocking buffer has not helped increase specific signal. This suggests that the problem is not promiscuous binding of mouse antibody by the capture

  13. Tethered-variable CL bispecific IgG: an antibody platform for rapid bispecific antibody screening.

    Science.gov (United States)

    Kim, Hok Seon; Dunshee, Diana Ronai; Yee, Angie; Tong, Raymond K; Kim, Ingrid; Farahi, Farzam; Hongo, Jo-Anne; Ernst, James A; Sonoda, Junichiro; Spiess, Christoph

    2017-09-01

    Bispecific antibodies offer a clinically validated platform for drug discovery. In generating functionally active bispecific antibodies, it is necessary to identify a unique parental antibody pair to merge into a single molecule. However, technologies that allow high-throughput production of bispecific immunoglobulin Gs (BsIgGs) for screening purposes are limited. Here, we describe a novel bispecific antibody format termed tethered-variable CLBsIgG (tcBsIgG) that allows robust production of intact BsIgG in a single cell line, concurrently ensuring cognate light chain pairing and preserving key antibody structural and functional properties. This technology is broadly applicable in the generation of BsIgG from a variety of antibody isotypes, including human BsIgG1, BsIgG2 and BsIgG4. The practicality of the tcBsIgG platform is demonstrated by screening BsIgGs generated from FGF21-mimetic anti-Klotho-β agonistic antibodies in a combinatorial manner. This screen identified multiple biepitopic combinations with enhanced agonistic activity relative to the parental monoclonal antibodies, thereby demonstrating that biepitopic antibodies can acquire enhanced functionality compared to monospecific parental antibodies. By design, the tcBsIgG format is amenable to high-throughput production of large panels of bispecific antibodies and thus can facilitate the identification of rare BsIgG combinations to enable the discovery of molecules with improved biological function. © The Author 2017. Published by Oxford University Press.

  14. Two-step targeting and dosimetry for small cell lung cancer xenograft with anti-NCAM/antihistamine bispecific antibody and radioiodinated bivalent hapten.

    Science.gov (United States)

    Hosono, M; Hosono, M N; Kraeber-Bodéré, F; Devys, A; Thédrez, P; Faivre-Chauvet, A; Gautherot, E; Barbet, J; Chatal, J F

    1999-07-01

    The "affinity enhancement system," a two-step targeting technique using bispecific antibody and radiolabeled bivalent hapten, has been reported to be useful for carcinoembryonic antigen-expressing tumors. The purpose of this study was to evaluate the efficacy of this method for targeting human small cell lung cancer using an antineural cell adhesion molecule antibody. Antineural cell adhesion molecule/antihistamine bispecific antibody NK1NBL1-679 was prepared by coupling an equimolecular quantity of a Fab' fragment of NK1NBL1 to a Fab fragment of antihistamine 679. Athymic mice inoculated with NCI-H69 small cell lung cancer cells expressing neural cell adhesion molecule were administered bispecific antibody and then 48 h later 125I-labeled bivalent histamine hapten. 125I-labeled intact NK1NBL1 was injected into other groups of mice. Biodistributions were examined as a function of time. In mice of the two-step targeting, tumor uptake was 2.5 +/- 0.2, 3.2 +/- 0.4, 6.4 +/- 2.0, 7.2 +/- 2.7, 6.1 +/- 2.1 and 2.2 +/- 0.4 %ID/g at 5, 30 min, 5, 24, 48 and 96 h, and tumor-to-blood, tumor-to-liver and tumor-to-kidney ratios were 1.4 +/- 1.1, 10.8 +/- 13.2 and 4.6 +/- 4.7, respectively, at 5 h, whereas 125I-labeled NK1NBL1 showed a tumor uptake of 5.7 +/- 0.4 %ID/g and tumor-to-blood, tumor-to-liver and tumor-to-kidney ratios of 0.3 +/- 0.1, 1.1 +/- 0.2 and 0.9 +/- 0.1, respectively, at 5 h. These results were confirmed by autoradiographic studies, which demonstrated clear tumor-to-normal tissue contrast. Dosimetry showed that the affinity enhancement system could enhance the therapeutic potential of the antineural cell adhesion molecule antibody NK1NBL1. This two-step targeting method seems promising for the diagnosis and therapy of small cell lung cancer.

  15. Comparative targeting of human colon-carcinoma multicell spheroids using one- and two-step (bispecific antibody) techniques.

    Science.gov (United States)

    Devys, A; Thedrez, P; Gautherot, E; Faivre-Chauvet, A; Saï-Maurel, C; Rouvier, E; Auget, J L; Barbet, J; Chatal, J F

    1996-09-17

    In the perspective of radioimmunotherapy (RIT) of micrometastases, we compared, in multicell spheroids (MS), the uptake and retention kinetics of 125I-F(ab)'2 F6 anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb), and the affinity enhancement system (AES) using an anti-CEA/anti-DTPA-indium bispecific antibody (BsMAb) and a 125I-labeled di-DTPA-In-tyrosine-lysine bivalent hapten. We used MS of colorectal tumor cell lines expressing CEA strongly (LS 174T), weakly (HT-29) or not at all (HRT-18). Uptake and retention kinetics of 125I-F(ab)'2 F6 and 125I-BsMAb used alone gave similar results. The highest uptake values, obtained with LS 174T MS, were slightly lower with AES than with 125I-F(ab)'2 F6. However, effective retention half-lives were longer for AES than for 125I-F(ab)'2 F6 or for 111In-labeled monovalent hapten after pre-incubation of spheroids with BsMAb. Autoradiography showed the same slow and heterogeneous distribution of 125I-F(ab)'2 F6 and 125I-BsMAb. These results indicate that the 2-step technique is more favorable for RIT: uptake values were approximately the same but uptake kinetics were more rapid, and retention half-life was longer than with the one-step technique.

  16. Bispecific Antibody Pretargeting for Improving Cancer Imaging and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Robert M.

    2005-02-04

    The main objective of this project was to evaluate pretargeting systems that use a bispecific antibody (bsMAb) to improve the detection and treatment of cancer. A bsMAb has specificity to a tumor antigen, which is used to bind the tumor, while the other specificity is to a peptide that can be radiolabeled. Pretargeting is the process by which the unlabeled bsMAb is given first, and after a sufficient time (1-2 days) is given for it to localize in the tumor and clear from the blood, a small molecular weight radiolabeled peptide is given. According to a dynamic imaging study using a 99mTc-labeled peptide, the radiolabeled peptide localizes in the tumor in less than 1 hour, with > 80% of it clearing from the blood and body within this same time. Tumor/nontumor targeting ratios that are nearly 50 times better than that with a directly radiolabeled Fab fragment have been observed (Sharkey et al., ''Signal amplification in molecular imaging by a multivalent bispecific nanobody'' submitted). The bsMAbs used in this project have been composed of 3 antibodies that will target antigens found in colorectal and pancreatic cancers (CEA, CSAp, and MUC1). For the ''peptide binding moiety'' of the bsMAb, we initially examined an antibody directed to DOTA, but subsequently focused on another antibody directed against a novel compound, HSG (histamine-succinyl-glycine).

  17. A "Trojan horse" bispecific-antibody strategy for broad protection against ebolaviruses.

    Science.gov (United States)

    Wec, Anna Z; Nyakatura, Elisabeth K; Herbert, Andrew S; Howell, Katie A; Holtsberg, Frederick W; Bakken, Russell R; Mittler, Eva; Christin, John R; Shulenin, Sergey; Jangra, Rohit K; Bharrhan, Sushma; Kuehne, Ana I; Bornholdt, Zachary A; Flyak, Andrew I; Saphire, Erica Ollmann; Crowe, James E; Aman, M Javad; Dye, John M; Lai, Jonathan R; Chandran, Kartik

    2016-10-21

    There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such "Trojan horse" bispecific antibodies have potential as broad antifilovirus immunotherapeutics. Copyright © 2016, American Association for the Advancement of Science.

  18. Development of Tetravalent, Bispecific CCR5 Antibodies with Antiviral Activity against CCR5 Monoclonal Antibody-Resistant HIV-1 Strains▿

    Science.gov (United States)

    Schanzer, Jürgen; Jekle, Andreas; Nezu, Junichi; Lochner, Adriane; Croasdale, Rebecca; Dioszegi, Marianna; Zhang, Jun; Hoffmann, Eike; Dormeyer, Wilma; Stracke, Jan; Schäfer, Wolfgang; Ji, Changhua; Heilek, Gabrielle; Cammack, Nick; Brandt, Michael; Umana, Pablo; Brinkmann, Ulrich

    2011-01-01

    In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linkers, stable molecules could be obtained in amounts that were within the same range as or no less than 4-fold lower than those observed with monoclonal antibodies in transient expression assays. In contrast to monospecific CCR5 antibodies, bispecific antibody derivatives block two alternative docking sites of CCR5-tropic HIV strains on the CCR5 coreceptor. Consequently, these molecules showed 18- to 57-fold increased antiviral activities compared to the parent antibodies. Most importantly, one prototypic tetravalent CCR5 antibody had antiviral activity against virus strains resistant to the single parental antibodies. In summary, physical linkage of two CCR5 antibodies targeting different epitopes on the HIV coreceptor CCR5 resulted in tetravalent, bispecific antibodies with enhanced antiviral potency against wild-type and CCR5 antibody-resistant HIV-1 strains. PMID:21300827

  19. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts. Targeted polymer drug conjugates for cancer diagnosis and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, Ban-An; Gada, Keyur S.; Patil, Vishwesh; Panwar, Rajiv; Mandapati, Savitri [Northeastern University, Department of Pharmaceutical Sciences, Bouve College of Health Sciences, School of Pharmacy, Boston, MA (United States); Hatefi, Arash [Rutgers University, Department of Pharmaceutics, New Brunswick, NJ (United States); Majewski, Stan [West Virginia University, Department of Radiology, Morgantown, WV (United States); Weisenberger, Andrew [Thomas Jefferson National Accelerator Facility, Jefferson Lab, Newport News, VA (United States)

    2014-08-15

    Doxorubicin, a frontline chemotherapeutic agent, limited by its cardiotoxicity and other tissue toxicities, was conjugated to N-terminal DTPA-modified polyglutamic acid (D-Dox-PGA) to produce polymer pro-drug conjugates. D-Dox-PGA or Tc-99 m labeled DTPA-succinyl-polylysine polymers (DSPL) were targeted to HER2-positive human mammary carcinoma (BT-474) in a double xenografted SCID mouse model also hosting HER2-negative human mammary carcinoma (BT-20). After pretargeting with bispecific anti-HER2-affibody-anti-DTPA-Fab complexes (BAAC), anti-DTPA-Fab or only phosphate buffered saline, D-Dox-PGA or Tc-99 m DSPL were administered. Positive therapeutic control mice were injected with Dox alone at maximum tolerated dose (MTD). Only BT-474 lesions were visualized by gamma imaging with Tc-99 m-DSPL; BT-20 lesions were not. Therapeutic efficacy was equivalent in mice pretargeted with BAAC/targeted with D-Dox-PGA to mice treated only with doxorubicin. There was no total body weight (TBW) loss at three times the doxorubicin equivalent MTD with D-Dox-PGA, whereas mice treated with doxorubicin lost 10 % of TBW at 2 weeks and 16 % after the second MTD injection leading to death of all mice. Our cancer imaging and pretargeted therapeutic approaches are highly target specific, delivering very high specific activity reagents that may result in the development of a novel theranostic application. HER/2 neu specific affibody-anti-DTPA-Fab bispecific antibody pretargeting of HER2 positive human mammary xenografts enabled exquisite targeting of polymers loaded with radioisotopes for molecular imaging and doxorubicin for effective therapy without the associating non-tumor normal tissue toxicities. (orig.)

  20. Recent advances of bispecific antibodies in solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-09-01

    Full Text Available Abstract Cancer immunotherapy is the most exciting advancement in cancer therapy. Similar to immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T, bispecific antibody (BsAb is attracting more and more attention as a novel strategy of antitumor immunotherapy. BsAb not only offers an effective linkage between therapeutics (e.g., immune effector cells, radionuclides and targets (e.g., tumor cells but also simultaneously blocks two different oncogenic mediators. In recent decades, a variety of BsAb formats have been generated. According to the structure of Fc domain, BsAb can be classified into two types: IgG-like format and Fc-free format. Among these formats, bispecific T cell engagers (BiTEs and triomabs are commonly investigated. BsAb has achieved an exciting breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. In this review, we focus on the preclinical experiments and clinical studies of epithelial cell adhesion molecule (EpCAM, human epidermal growth factor receptor (HER family, carcinoembryonic antigen (CEA, and prostate-specific membrane antigen (PSMA related BsAbs in solid tumors, as well as discuss the challenges and corresponding approaches in clinical application.

  1. Molecular advances in pretargeting radioimunotherapy with bispecific antibodies.

    Science.gov (United States)

    Chang, Chien-Hsing; Sharkey, Robert M; Rossi, Edmund A; Karacay, Habibe; McBride, William; Hansen, Hans J; Chatal, Jean-François; Barbet, Jacques; Goldenberg, David M

    2002-05-01

    The use of antibodies against tumor-associated cell surface antigens for the targeted delivery of radionuclides was introduced >20 years ago. Although encouraging results have been achieved with radiolabeled antibodies in the management of hematopoietic malignancies, there remains a need for successfully treating solid tumors with this modality. One promising approach involving pretargeted delivery of radionuclides has been shown to be capable of significantly increasing the radioactive uptake in tumor relative to normal organs, thereby potentially improving the efficacy of both detection and therapy of cancer. Uncoupling of the radionuclide from the tumor-targeting antibody allows the relatively slow process of antibody localization and clearance to occur before a very rapid and highly specific delivery of the radioactive payload carried on a small molecule, such as a peptide. This minireview discusses the various strategies and advancements made since the concept of pretargeting was proposed in the mid-1980s, with emphasis on those comprising bispecific antibodies for cancer therapy. Critical aspects of these pretargeting systems for achieving higher tumor:nontumor ratios are considered. In addition, both preclinical and clinical results obtained from a pretargeting method known as the Affinity Enhancement System are presented. Future directions of pretargeting technology are also suggested.

  2. Bispecific Antibodies as a Development Platform for New Concepts and Treatment Strategies

    Directory of Open Access Journals (Sweden)

    Fa Yang

    2016-12-01

    Full Text Available With the development of molecular cloning technology and the deep understanding of antibody engineering, there are diverse bispecific antibody formats from which to choose to pursue the optimal biological activity and clinical purpose. The single-chain-based bispecific antibodies usually bridge tumor cells with immune cells and form an immunological synapse because of their relatively small size. Bispecific antibodies in the IgG format include asymmetric bispecific antibodies and homodimerized bispecific antibodies, all of which have an extended blood half-life and their own crystalline fragment (Fc-mediated functions. Besides retargeting effector cells to the site of cancer, new applications were established for bispecific antibodies. Bispecific antibodies that can simultaneously bind to cell surface antigens and payloads are a very ideal delivery system for therapeutic use. Bispecific antibodies that can inhibit two correlated signaling molecules at the same time can be developed to overcome inherent or acquired resistance and to be more efficient angiogenesis inhibitors. Bispecific antibodies can also be used to treat hemophilia A by mimicking the function of factor VIII. Bispecific antibodies also have broad application prospects in bone disorders and infections and diseases of the central nervous system. The latest developments of the formats and application of bispecific antibodies will be reviewed. Furthermore, the challenges and perspectives are summarized in this review.

  3. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    Science.gov (United States)

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; von Bergwelt-Baildon, M.; Lardinois, Didier; Müller, Philipp; Karanikas, Vaios; Zippelius, Alfred

    2016-01-01

    ABSTRACT T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting folate receptor 1 and CD3 (FolR1-TCB). We observed a considerable heterogeneity in T-cell activation, cytokine production and tumor cell killing upon exposure to FolR1-TCB among different FolR1-expressing tumors. Of note, tumors presenting with a high frequency of PD-1hi TILs displayed significantly impaired tumor cell killing and T-cell function. Further characterization of additional T-cell inhibitory receptors revealed that PD-1hi TILs defined a T-cell subset with particularly high levels of multiple inhibitory receptors compared with PD-1int and PD-1neg T-cells. PD-1 blockade could restore cytokine secretion but not cytotoxicity of TILs in a subset of patients with scarce PD-1hi expressing cells; in contrast, patients with abundance of PD-1hi expressing T-cells did not benefit from PD-1 blockade. Our data highlight that FolR1-TCB is a promising novel immunotherapeutic treatment option which is capable of activating intratumoral T-cells in different carcinomas. However, its therapeutic efficacy may be substantially hampered by a pre-existing dysfunctional state of T-cells, reflected by abundance of intratumoral PD-1hi T-cells. These findings present a rationale for combinatorial approaches of TCBs with other therapeutic strategies targeting T-cell dysfunction. PMID:27057429

  4. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial.

    Science.gov (United States)

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Ferrer, Ludovic; Faivre-Chauvet, Alain; Campion, Loïc; Vuillez, Jean-Philippe; Devillers, Anne; Chang, Chien-Hsing; Goldenberg, David M; Chatal, Jean-François; Barbet, Jacques

    2006-02-01

    Safety, targeting, and antitumor efficacy of pretargeted radioimmunotherapy using anti-carcinoembryonic antigen (CEA) hMN-14 x m734 bispecific antibody (BsmAb) and 131I-di-diethylenetriamine pentaacetic acid (DTPA)-indium hapten were evaluated in a phase I study performed on patients with CEA-expressing tumors. Twenty-two patients with nonmedullary thyroid carcinoma (non-MTC) (group I, 13 patients) or medullary thyroid carcinoma (MTC) (group II, 9 patients) were enrolled. These patients received a 75 mg/m2 (11 patients) or 40 mg/m2 (11 patients) dose of BsmAb and escalating activities of (131)I-di-DTPA-indium 5 d later. Toxicity and tumor response were assessed in 20 patients who received a therapeutic (>2.2 GBq) hapten dose of radioactivity. The percentage of lesions detected by immunoscintigraphy after injection of the therapeutic dose of hapten was 70% on an anatomic-site basis. High bone uptake was relatively frequent. A transient grade I or II hepatic toxicity was observed in 5 patients (45%) injected with 75 mg/m2 of BsmAb and in 1 patient (11%) injected with 40 mg/m2. No other nonhematologic toxicity was observed. With 75 mg/m2 of BsmAb, hematologic toxicity was high: 5 cases of grade III or IV leukopenia (45%) and 5 cases of grade III or IV thrombopenia (45%). With a 40 mg/m2 dose of BsmAb, hematologic toxicity was reduced significantly: 3 cases of grade III or IV leukopenia (33%) and 1 case of grade III or IV thrombopenia (11%) (P = 0.02). Toxicity was significantly higher in MTC patients than in non-MTC patients (P = 0.019). Nine cases of tumor stabilization of 3 mo to more than 12 mo were observed (45%), 6 in the MTC group and 3 in the non-MTC group. The rate of disease stabilization was significantly higher with 75 mg/m2 of BsmAb (64%) than with 40 mg/m2 (22%) (P = 0.04). Human antimouse antibody elevation was observed in 1 patient (8%) and human antihuman antibody in 4 (33%). A BsmAb dose of 40 mg/m2 and a 5-d interval appeared to be a better dose

  5. Generation of chimeric bispecific G250/anti-CD3 monoclonal antibody, a tool to combat renal cell carcinoma

    NARCIS (Netherlands)

    Luiten, R. M.; Coney, L. R.; Fleuren, G. J.; Warnaar, S. O.; Litvinov, S. V.

    1996-01-01

    The monoclonal antibody (MAb) G250 binds to a tumour-associated antigen, expressed in renal cell carcinoma (RCC), which has been demonstrated to be a suitable target for antibody-mediated immunotherapy. A bispecific antibody having both G250 and anti-CD3 specificity can cross-link G250

  6. Development of purification processes for fully human bispecific antibodies based upon modification of protein A binding avidity.

    Science.gov (United States)

    Tustian, Andrew D; Endicott, Christine; Adams, Benjamin; Mattila, John; Bak, Hanne

    2016-01-01

    There is strong interest in the design of bispecific monoclonal antibodies (bsAbs) that can simultaneously bind 2 distinct targets or epitopes to achieve novel mechanisms of action and efficacy. Multiple bispecific formats have been proposed and are currently under development. Regeneron's bispecific technology is based upon a standard fully human IgG antibody in order to minimize immunogenicity and improve the pharmacokinetic profile. A single common light chain and 2 distinct heavy chains combine to form the bispecific molecule. One of the heavy chains contains a chimeric Fc sequence form (called Fc*) that ablates binding to Protein A via the constant region. As a result of co-expression of the 2 heavy chains and the common light chain, 3 products are created, 2 of which are homodimeric for the heavy chains and one that is the desired heterodimeric bispecific product. The Fc* sequence allows selective purification of the FcFc* bispecific product on commercially available affinity columns, due to intermediate binding affinity for Protein A compared to the high avidity FcFc heavy chain homodimer, or the weakly binding Fc*Fc* homodimer. This platform requires the use of Protein A chromatography in both a capture and polishing modality. Several challenges, including variable region Protein A binding, resin selection, selective elution optimization, and impacts upon subsequent non-affinity downstream unit operations, were addressed to create a robust and selective manufacturing process.

  7. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies

    Science.gov (United States)

    Van Blarcom, Thomas; Melton, Zea; Cheung, Wai Ling; Wagstrom, Chris; McDonough, Dan; Valle Oseguera, Cendy; Ding, Sheng; Rossi, Andrea; Potluri, Shobha; Sundar, Purnima; Sirota, Marina; Yan, Yu; Jones, Jeffrey; Roe-Zurz, Zygy; Srivatsa Srinivasan, Surabhi; Zhai, Wenwu; Pons, Jaume; Rajpal, Arvind; Chaparro-Riggers, Javier

    2018-01-01

    ABSTRACT The commercial success of bispecific antibodies generally has been hindered by the complexities associated with generating appropriate molecules for both research scale and large scale manufacturing purposes. Bispecific IgG (BsIgG) based on two antibodies that use an identical common light chain can be combined with a minimal set of Fc mutations to drive heavy chain heterodimerization in order to address these challenges. However, the facile generation of common light chain antibodies with properties similar to traditional monoclonal antibodies has not been demonstrated and they have only been used sparingly. Here, we describe the design of a synthetic human antibody library based on common light chains to generate antibodies with biochemical and biophysical properties that are indistinguishable to traditional therapeutic monoclonal antibodies. We used this library to generate diverse panels of well-behaved, high affinity antibodies toward a variety of epitopes across multiple antigens, including mouse 4-1BB, a therapeutically important T cell costimulatory receptor. Over 200 BsIgG toward 4-1BB were generated using an automated purification method we developed that enables milligram-scale production of BsIgG. This approach allowed us to identify antibodies with a wide range of agonistic activity that are being used to further investigate the therapeutic potential of antibodies targeting one or more epitopes of 4-1BB. PMID:29227213

  8. Bispecific antibodies, nanoparticles and cells: bringing the right cells to get the job done.

    Science.gov (United States)

    Tang, Junnan; Shen, Deliang; Zhang, Jinying; Ligler, Frances S; Cheng, Ke

    2015-01-01

    Pre-arming therapeutic cells with bispecific antibodies (BiAbs) before infusion can home the cells to specific tissue antigens in the body. With the development of nanotechnology, we developed a novel strategy, namely magnetic bispecific cell engager (MagBICE), that combines BiAbs with biodegradable iron nanoparticles. Compared to conventional BiAbs, the latter enables magnetic targeting and imaging. This editorial discusses current knowledge of BiAbs and their applications in targeting activated T cells to cancerous tissues or targeting bone marrow-derived stem cells to myocardial infarction. We will also discuss the fabrication of MagBICE and its application in treating rodents with myocardial infarction.

  9. A “Trojan horse” bispecific-antibody strategy for broad protection against ebolaviruses

    OpenAIRE

    Wec, Anna Z.; Nyakatura, Elisabeth K.; Herbert, Andrew S.; Howell, Katie A.; Holtsberg, Frederick W.; Bakken, Russell R.; Mittler, Eva; Christin, John R.; Shulenin, Sergey; Jangra, Rohit K.; Bharrhan, Sushma; Kuehne, Ana I.; Bornholdt, Zachary A.; Flyak, Andrew I.; Saphire, Erica Ollmann

    2016-01-01

    There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 o...

  10. Cancer Imaging and Therapy with Bispecific Antibody Pretargeting.

    Science.gov (United States)

    Goldenberg, David M; Chatal, Jean-Francois; Barbet, Jacques; Boerman, Otto; Sharkey, Robert M

    2007-03-01

    This article reviews recent preclinical and clinical advances in the use of pretargeting methods for the radioimmunodetection and radioimmunotherapy of cancer. Whereas directly-labeled antibodies, fragments, and subfragments (minibodies and other constructs) have shown promise in both imaging and therapy applications over the past 25 years, their clinical adoption has not fulfilled the original expectations due to either poor image resolution and contrast in scanning or insufficient radiation doses delivered selectively to tumors for therapy. Pretargeting involves the separation of the localization of tumor with an anticancer antibody from the subsequent delivery of the imaging or therapeutic radionuclide. This has shown improvements in both imaging and therapy by overcoming the limitations of conventional, or 1-step, radioimmunodetection or radioimmunotherapy. We focus herein on the use of bispecific antibodies followed by radiolabeled peptide haptens as a new modality of selective delivery of radionuclides for the imaging and therapy of cancer. Our particular emphasis in pretargeting is the use of bispecific trimeric (3 Fab's) recombinant constructs made by a modular method of antibody and protein engineering of fusion molecules called Dock and Lock (DNL).

  11. Development of a novel affinity chromatography resin for platform purification of bispecific antibodies with modified protein a binding avidity.

    Science.gov (United States)

    Tustian, Andrew D; Laurin, Linus; Ihre, Henrik; Tran, Travis; Stairs, Robert; Bak, Hanne

    2018-02-21

    There is strong interest in the production of bispecific monoclonal antibodies that can simultaneously bind two distinct targets or epitopes to achieve novel mechanisms of action and efficacy. Regeneron's bispecific technology, based upon a standard IgG, consists of a heterodimer of two different heavy chains, and a common light chain. Co-expression of two heavy chains leads to the formation of two parental IgG impurities, the removal of which is facilitated by a dipeptide substitution in the Fc portion of one of the heavy chains that ablates Fc Protein A binding. Therefore the affinity capture (Protein A) step of the purification process must perform both bulk capture and high resolution of these mAb impurities, a task current commercially available resins are not designed for. Resolution can be further impaired by the ability of Protein A to bind some antibodies in the variable region of the heavy chain (V H ). This paper details development of a novel Protein A resin. This resin combines an alkali stable ligand with a base matrix exhibiting excellent mass transfer properties to allow high capacity single step capture and resolution of bispecific antibodies with high yields. The developed resin, named MabSelect SuRe™ pcc, is implemented in GMP production processes for several bispecific antibodies. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  12. Therapeutic bispecific antibody formats: a patent applications review (1994-2017).

    Science.gov (United States)

    Godar, Marie; de Haard, Hans; Blanchetot, Christophe; Rasser, Jacobus

    2018-03-01

    Bispecific antibodies have become increasingly of interest by enabling new therapeutic applications such as retargeting cellular immunity towards tumor cells. About 23 bispecific antibody platforms have therefore been developed, generating about 62 molecules which are currently being evaluated for potential treatment of a variety of indications, such as cancer and inflammatory diseases, among which three molecules were approved. This class of drugs will represent a multi-million-dollar market over the coming years. Many companies have consequently invested in the development of bispecific antibody platforms, creating an important patent activity in this field. Areas covered: The present review gives an overview of the patent literature over the period 1994-2017 of different immunoglobulin gamma-based bispecific antibody platforms and the molecules approved or in clinical trials. Expert opinion: Bispecific antibodies are progressively accepted as potentially superior therapeutic molecules in a broad range of diseases. This frantic activity creates a maze of hundreds of patents that pose considerable legal risks for both newcomers and established companies. It can consecutively be anticipated that the number of patent conflicts will increase. Nevertheless, it can be expected that patents related to the use of a bispecific antibody will have tremendous commercial value.

  13. Generation of human bispecific common light chain antibodies by combining animal immunization and yeast display.

    Science.gov (United States)

    Krah, Simon; Schröter, Christian; Eller, Carla; Rhiel, Laura; Rasche, Nicolas; Beck, Jan; Sellmann, Carolin; Günther, Ralf; Toleikis, Lars; Hock, Björn; Kolmar, Harald; Becker, Stefan

    2017-04-01

    Bispecific antibodies (bsAbs) pave the way for novel therapeutic modes of action along with potential benefits in several clinical applications. However, their generation remains challenging due to the necessity of correct pairings of two different heavy and light chains and related manufacturability issues. We describe a generic approach for the generation of fully human IgG-like bsAbs. For this, heavy chain repertoires from immunized transgenic rats were combined with either a randomly chosen common light chain or a light chain of an existing therapeutic antibody and screened for binders against tumor-related targets CEACAM5 and CEACAM6 by yeast surface display. bsAbs with subnanomolar affinities were identified, wherein each separate binding arm mediated specific binding to the respective antigen. Altogether, the described strategy represents a combination of in vivo immunization with an in vitro selection method, which allows for the integration of existing therapeutic antibodies into a bispecific format. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. In Situ Liver Expression of HBsAg/CD3-Bispecific Antibodies for HBV Immunotherapy

    Directory of Open Access Journals (Sweden)

    Robert L. Kruse

    2017-12-01

    Full Text Available Current therapies against hepatitis B virus (HBV do not reliably cure chronic infection, necessitating new therapeutic approaches. The T cell response can clear HBV during acute infection, and the adoptive transfer of antiviral T cells during bone marrow transplantation can cure patients of chronic HBV infection. To redirect T cells to HBV-infected hepatocytes, we delivered plasmids encoding bispecific antibodies directed against the viral surface antigen (HBsAg and CD3, expressed on almost all T cells, directly into the liver using hydrodynamic tail vein injection. We found a significant reduction in HBV-driven reporter gene expression (184-fold in a mouse model of acute infection, which was 30-fold lower than an antibody only recognizing HBsAg. While bispecific antibodies triggered, in part, antigen-independent T cell activation, antibody production within hepatocytes was non-cytotoxic. We next tested the bispecific antibodies in a different HBV mouse model, which closely mimics the transcriptional template for HBV, covalently closed circular DNA (cccDNA. We found that the antiviral effect was noncytopathic, mediating a 495-fold reduction in HBsAg levels at day 4. At day 33, bispecific antibody-treated mice exhibited 35-fold higher host HBsAg immunoglobulin G (IgG antibody production versus untreated groups. Thus, gene therapy with HBsAg/CD3-bispecific antibodies represents a promising therapeutic strategy for patients with HBV.

  15. Improved pretargeted delivery of radiolabelled hapten to human tumour xenograft in mice by avidin chase of circulating bispecific antibody.

    Science.gov (United States)

    Mirallié, Eric; Saï-Maurel, Catherine; Faivre-Chauvet, Alain; Regenet, Nicolas; Chang, Chien-Hsing; Goldenberg, David M; Chatal, Jean-François; Barbet, Jacques; Thedrez, Philippe

    2005-08-01

    Pretargeted therapy with radiolabelled bivalent haptens and bispecific antibodies has shown promising results, but blood clearance of the activity-carrying haptens under conditions designed for radioimmunotherapy is relatively slow. Thus, the chase of excess circulating bispecific antibody by biotinylation of the bispecific antibody and injection of avidin before hapten administration was tested with a view to increasing tumour-to-blood activity ratios. The anti-carcinoembryonic antigen (CEA) x anti-diethylene triamine penta-acetic acid-indium (di-DTPA-indium) bispecific antibody (hMN-14x734) was derivatised with NHS-LC-biotin and injected into LS-174T tumour-bearing nude mice at a dose of 3.5 nmol, followed by avidin and finally by the 125I-labelled di-DTPA-indium hapten (1 nmol). Blood samples were collected, animals sacrificed and tumours and normal tissues counted. Avidin chased up to 72% of the circulating antibody in the liver and the spleen within 30 min. When the labelled hapten was injected 3 h after avidin, tumour to blood ratios measured 3 and 24 h after hapten injection were significantly improved by the chase (3.5-fold), whereas tumour uptake was not significantly reduced. Uptake in normal tissues was unchanged (liver, kidney) or decreased (muscle), with the exception of spleen, in which uptake of both antibody and hapten was increased by the avidin chase. The chase strategy reduces hapten concentration in blood and thus should reduce bone marrow exposure. The use of two different recognition systems limits possible interference between the chase and targeting steps.

  16. Development of Tetravalent, Bispecific CCR5 Antibodies with Antiviral Activity against CCR5 Monoclonal Antibody-Resistant HIV-1 Strains▿

    OpenAIRE

    Schanzer, Jürgen; Jekle, Andreas; Nezu, Junichi; Lochner, Adriane; Croasdale, Rebecca; Dioszegi, Marianna; Zhang, Jun; Hoffmann, Eike; Dormeyer, Wilma; Stracke, Jan; Schäfer, Wolfgang; Ji, Changhua; Heilek, Gabrielle; Cammack, Nick; Brandt, Michael

    2011-01-01

    In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linker...

  17. CD3 directed bispecific antibodies induce increased lymphocyte-endothelial cell interactions in vitro

    NARCIS (Netherlands)

    Molema, G; Tervaert, JWC; Kroesen, BJ; Helfrich, W; Meijer, DKF; de Leij, LFMH

    Bispecific antibody (BsMAb) BIS-1 has been developed to redirect the cytolytic activity of cytotoxic T lymphocytes (CTL) to epithelial glycoprotein-2 (EGP-2) expressing tumour cells; intravenous administration of BIS-1 F(ab')(2) to carcinoma patients in a phase I/II clinical trial, caused

  18. Therapeutic assessment of SEED: a new engineered antibody platform designed to generate mono- and bispecific antibodies.

    Science.gov (United States)

    Muda, Marco; Gross, Alec W; Dawson, Jessica P; He, Chaomei; Kurosawa, Emmi; Schweickhardt, Rene; Dugas, Melanie; Soloviev, Maria; Bernhardt, Anna; Fischer, David; Wesolowski, John S; Kelton, Christie; Neuteboom, Berend; Hock, Bjoern

    2011-05-01

    The strand-exchange engineered domain (SEED) platform was designed to generate asymmetric and bispecific antibody-like molecules, a capability that expands therapeutic applications of natural antibodies. This new protein engineered platform is based on exchanging structurally related sequences of immunoglobulin within the conserved CH3 domains. Alternating sequences from human IgA and IgG in the SEED CH3 domains generate two asymmetric but complementary domains, designated AG and GA. The SEED design allows efficient generation of AG/GA heterodimers, while disfavoring homodimerization of AG and GA SEED CH3 domains. Using a clinically validated antibody (C225), we tested whether Fab derivatives constructed on the SEED platform retain desirable therapeutic antibody features such as in vitro and in vivo stability, favorable pharmacokinetics, ligand binding and effector functions including antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. In addition, we tested SEED with combinations of binder domains (scFv, VHH, Fab). Mono- and bivalent Fab-SEED fusions retain full binding affinity, have excellent biochemical and biophysical stability, and retain desirable antibody-like characteristics conferred by Fc domains. Furthermore, SEED is compatible with different combinations of Fab, scFv and VHH domains. Our assessment shows that the new SEED platform expands therapeutic applications of natural antibodies by generating heterodimeric Fc-analog proteins.

  19. Disaggregation of amyloid plaque in brain of Alzheimer's disease transgenic mice with daily subcutaneous administration of a tetravalent bispecific antibody that targets the transferrin receptor and the Abeta amyloid peptide.

    Science.gov (United States)

    Sumbria, Rachita K; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Boado, Ruben J; Pardridge, William M

    2013-09-03

    Anti-amyloid antibodies (AAA) are under development as new therapeutics that disaggregate the amyloid plaque in brain in Alzheimer's disease (AD). However, the AAAs are large molecule drugs that do not cross the blood-brain barrier (BBB), in the absence of BBB disruption. In the present study, an AAA was re-engineered for receptor-mediated transport across the BBB via the endogenous BBB transferrin receptor (TfR). A single chain Fv (ScFv) antibody form of an AAA was fused to the carboxyl terminus of each heavy chain of a chimeric monoclonal antibody (mAb) against the mouse TfR, and this produced a tetravalent bispecific antibody designated the cTfRMAb-ScFv fusion protein. Unlike a conventional AAA, which has a plasma half-time of weeks, the cTfRMAb-ScFv fusion protein is cleared from plasma in mice with a mean residence time of about 3 h. Therefore, a novel protocol was developed for the treatment of one year old presenilin (PS)-1/amyloid precursor protein (APP) AD double transgenic PSAPP mice, which were administered daily subcutaneous (sc) injections of 5 mg/kg of the cTfRMAb-ScFv fusion protein for 12 consecutive weeks. At the end of the treatment, brain amyloid plaques were quantified with confocal microscopy using both Thioflavin-S staining and immunostaining with the 6E10 antibody against Abeta amyloid fibrils. Fusion protein treatment caused a 57% and 61% reduction in amyloid plaque in the cortex and hippocampus, respectively. No increase in plasma immunoreactive Abeta amyloid peptide, and no cerebral microhemorrhage, was observed. Chronic daily sc treatment of the mice with the fusion protein caused no immune reactions and only a low titer antidrug antibody response. In conclusion, re-engineering AAAs for receptor-mediated BBB transport allows for reduction in brain amyloid plaque without cerebral microhemorrhage following daily sc treatment for 12 weeks.

  20. Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chia-Yen; Chen, Gregory J.; Tai, Pei-Han; Yang, Yu-Chen [Institute of Biologics, Development Center for Biotechnology, New Taipei City, Taiwan (China); Hsu, Yu-Shen, E-mail: yshsu@advagene.com.tw [Laboratory of Biopharmaceutical Research, Advagene Biopharma, Taipei, Taiwan (China); Chang, Mingi, E-mail: mingi.chang@advagene.com.tw [Laboratory of Biopharmaceutical Research, Advagene Biopharma, Taipei, Taiwan (China); Hsu, Chuan-Lung, E-mail: fabio@dcb.org.tw [Institute of Biologics, Development Center for Biotechnology, New Taipei City, Taiwan (China)

    2016-05-13

    Bispecific antibodies (bsAbs) are second generation antibodies for therapeutic application in immunotherapy. One of the major strategies of the bsAb platform is the recruitment of immune effector T cells by incorporating an anti-CD3 domain. A bispecific T-cell engager (BiTE), with one end having an affinity for CD3 and the other end with affinity for CD19, has been approved in the US and Europe for the treatment of acute lymphoblastic leukemia. However, due to their small size and lack of Fc region, these single-chain variable fragment (scFv) bsAbs have short half-lives in vivo. Additionally, poor solubility, structural instability, and low production yields have also become major challenges in the bulk production process. To overcome these challenges, we have engineered a tetravalent bsAb with bivalent binding specificity for the CD20 and CD3 antigen in an immunoglobulin G (IgG) format. The fusion of the anti-CD3 scFvs to the CD20 antibody via a linker-hinge domain (LHD) results in improved antibody stabilization and properties. Here we demonstrate this antibody's highly efficient cancer cell elimination in a dose-dependent manner in a CD20-expressing B lymphoblastoid cell line in vitro. Our data suggest the potential clinical application of this bsAb for the treatment of CD20-expressing B cell malignancies. - Highlights: • A bispecific antibody (bsAb) can increase immunotherapeutic efficacy. • A tetravalent bsAb with binding specificity for the CD20 and CD3 antigens is proposed. • A linker-hinge domain (LHD) within the bsAb results in improved antibody properties.

  1. Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells

    Science.gov (United States)

    Kim, Hye-In; Hwang, Dobeen; Jeon, Su-Ji; Lee, Sangyeop; Park, Jung Hyun; Yim, Dabin; Yang, Jin-Kyoung; Kang, Homan; Choo, Jaebum; Lee, Yoon-Sik; Chung, Junho; Kim, Jong-Ho

    2015-03-01

    Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2 × cotinine tandem antibody. This new approach provides an effective control over antibody orientation and density on the surface of carbon nanotubes through site-specific binding between the anti-cotinine domain of the bispecific tandem antibody and the cotinine group of the functionalized carbon nanotubes. The developed synthetic carbon nanotube/bispecific tandem antibody conjugates (denoted as SNAs) show an effective binding affinity against HER2 that is three orders of magnitude higher than that of the carbon nanotubes bearing a randomly conjugated tandem antibody prepared by carbodiimide chemistry. As the density of a tandem antibody on SNAs increases, their effective binding affinity to HER2 increases as well. SNAs exhibit strong resonance Raman signals for signal transduction, and are successfully applied to the selective detection of HER2-overexpressing cancer cells.Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2

  2. Approaches to lung cancer treatment using the CD3E x GP-2-directed bispecific monoclonal antibody BIS-1

    NARCIS (Netherlands)

    Kroesen, BJ; Nieken, J; Sleijfer, DT; Molema, G; deVries, EGE; Groen, HJM; Helfrich, W; The, TH; Mulder, NH; deLeij, L

    1997-01-01

    The bispecific monoclonal antibody (bsAb) BIS-1 combines a monoclonal-antibody(mAb)-defined specificity for the CD3 complex, as present on all T lymphocytes, with a mAb-defined specificity for the pancarcinoma/epithelium associated glycoprotein EGP-2. In vitro studies indicate that BIS-1 can direct

  3. Improved pretargeted delivery of radiolabelled hapten to human tumour xenograft in mice by avidin chase of circulating bispecific antibody

    Energy Technology Data Exchange (ETDEWEB)

    Mirallie, Eric; Sai-Maurel, Catherine; Faivre-Chauvet, Alain; Chatal, Jean-Francois; Barbet, Jacques; Thedrez, Philippe [Universite de Nantes, Cancer Research Department, Nantes (France); Regenet, Nicolas [Service de Chirurgie, CHU Nantes, Nantes (France); Chang, Chien-Hsing; Goldenberg, David M. [IBC Pharmaceuticals Inc., Morris Plains, NJ (United States)

    2005-08-01

    Pretargeted therapy with radiolabelled bivalent haptens and bispecific antibodies has shown promising results, but blood clearance of the activity-carrying haptens under conditions designed for radioimmunotherapy is relatively slow. Thus, the chase of excess circulating bispecific antibody by biotinylation of the bispecific antibody and injection of avidin before hapten administration was tested with a view to increasing tumour-to-blood activity ratios. The anti-carcinoembryonic antigen (CEA) x anti-diethylene triamine penta-acetic acid-indium (di-DTPA-indium) bispecific antibody (hMN-14 x 734) was derivatised with NHS-LC-biotin and injected into LS-174T tumour-bearing nude mice at a dose of 3.5 nmol, followed by avidin and finally by the{sup 125}I-labelled di-DTPA-indium hapten (1 nmol). Blood samples were collected, animals sacrificed and tumours and normal tissues counted. Avidin chased up to 72% of the circulating antibody in the liver and the spleen within 30 min. When the labelled hapten was injected 3 h after avidin, tumour to blood ratios measured 3 and 24 h after hapten injection were significantly improved by the chase (3.5-fold), whereas tumour uptake was not significantly reduced. Uptake in normal tissues was unchanged (liver, kidney) or decreased (muscle), with the exception of spleen, in which uptake of both antibody and hapten was increased by the avidin chase. (orig.)

  4. Cancer Imaging and Therapy with Bispecific Antibody Pretargeting

    OpenAIRE

    Goldenberg, David M.; Chatal, Jean-Francois; Barbet, Jacques; Boerman, Otto; Sharkey, Robert M.

    2007-01-01

    This article reviews recent preclinical and clinical advances in the use of pretargeting methods for the radioimmunodetection and radioimmunotherapy of cancer. Whereas directly-labeled antibodies, fragments, and subfragments (minibodies and other constructs) have shown promise in both imaging and therapy applications over the past 25 years, their clinical adoption has not fulfilled the original expectations due to either poor image resolution and contrast in scanning or insufficient radiation...

  5. Bispecific antibody and iodine-131-labeled bivalent hapten dosimetry in patients with medullary thyroid or small-cell lung cancer.

    Science.gov (United States)

    Bardiès, M; Bardet, S; Faivre-Chauvet, A; Peltier, P; Douillard, J Y; Mahé, M; Fiche, M; Lisbona, A; Giacalone, F; Meyer, P; Gautherot, E; Rouvier, E; Barbet, J; Chatal, J F

    1996-11-01

    The purpose of this study was to estimate the dose delivered to tumor targets and normal tissues after two-step injection of an anti-CEA/anti-DTPA-In (F6-734) bispecific antibody and a 131I-labeled di-DTPA in-TL bivalent hapten in patients with medullary thyroid carcinoma (MTC) and small-cell lung cancer (SCLC). Five patients with persistent disease or recurrences of MTC and five patients with primary SCLC or relapse were studied. In a first step, 0.1 to 0.3 mg/kg of F6-734 bispecific antibody was injected intravenously. Four days later, 6 nmole (5.8 to 9.8 mCi) of 131I-labeled di-DTPA in-TL bivalent hapten were injected. Quantitative imaging was performed during one week after the second injection. All 5 patients with MTC showed positive immunoscintigraphy (IS). In the smallest visualized and resected tumor (0.8 g), the fraction of injected activity per gram (% ID/g) was 0.1% at Day 3. IS was positive in 4 of the 5 patients with SCLC. The volume of the smallest visualized SCLC tumor was estimated at 11 +/- 2 ml, and tumor uptake was about 0.009% ID/g. Tumor dose estimates ranged from 4.2 to 174 cGy/mCi in patients with MTC and from 1.7 to 8 cGy/mCi in patients with SCLC. High absorbed dose values were calculated for small MTC recurrences. For SCLC recurrences the values were smaller but in the same range as those obtained by other investigators with the one-step technique in lymphoma.

  6. REDUCTION OF EGP-2-POSITIVE PULMONARY METASTASES BY BISPECIFIC-ANTIBODY-REDIRECTED T-CELLS IN AN IMMUNOCOMPETENT RAT MODEL

    NARCIS (Netherlands)

    KROESEN, BJ; HELFRICH, W; BAKKER, A; WUBBENA, AS; BAKKER, H; KAL, HB; THE, TH; DELEIJ, L

    1995-01-01

    Effectiveness of bispecific-monoclonal-antibody (B5MAb)-mediated cellular anti-tumour activity was evaluated in vitro and in vivo in relation to the additional need for T-cell activation in a new immunocompetent rat tumour model. L37 tumour cells, derived from a squamous-cell carcinoma of the lung

  7. BiHC, a T-Cell–Engaging Bispecific Recombinant Antibody, Has Potent Cytotoxic Activity Against Her2 Tumor Cells

    Directory of Open Access Journals (Sweden)

    Jieyu Xing

    2017-10-01

    Full Text Available Among different cancer immunotherapy approaches, bispecific antibodies (BsAbs are of great interest due to their ability to recruit immune cells to kill tumor cells directly. Various BsAbs against Her2 tumor cells have been proposed with potent cytotoxic activities. However, most of these formats require extensive processing to obtain heterodimeric bispecific antibodies. In this study, we describe a bispecific antibody, BiHC (bispecific Her2-CD3 antibody, constructed with a single-domain anti-Her2 and a single-chain Fv (variable fragment of anti-CD3 in an IgG-like format. In contrast to most IgG-like BsAbs, the two arms in BiHC have different molecular weights, making it easier to separate hetero- or homodimers. BiHC can be expressed in Escherichia coli and purified via Protein A affinity chromatography. The purified BiHC can recruit T cells and induce specific cytotoxicity of Her2-expressing tumor cells in vitro. The BiHC can also efficiently inhibit the tumor growth in vivo. Thus, BiHC is a promising candidate for the treatment of Her2-positive cancers.

  8. An anti-glypican 3/CD3 bispecific T cell-redirecting antibody for treatment of solid tumors.

    Science.gov (United States)

    Ishiguro, Takahiro; Sano, Yuji; Komatsu, Shun-Ichiro; Kamata-Sakurai, Mika; Kaneko, Akihisa; Kinoshita, Yasuko; Shiraiwa, Hirotake; Azuma, Yumiko; Tsunenari, Toshiaki; Kayukawa, Yoko; Sonobe, Yukiko; Ono, Natsuki; Sakata, Kiyoaki; Fujii, Toshihiko; Miyazaki, Yoko; Noguchi, Mizuho; Endo, Mika; Harada, Asako; Frings, Werner; Fujii, Etsuko; Nanba, Eitaro; Narita, Atsushi; Sakamoto, Akihisa; Wakabayashi, Tetsuya; Konishi, Hiroko; Segawa, Hiroaki; Igawa, Tomoyuki; Tsushima, Takashi; Mutoh, Hironori; Nishito, Yukari; Takahashi, Mina; Stewart, Lorraine; ElGabry, Ehab; Kawabe, Yoshiki; Ishigai, Masaki; Chiba, Shuichi; Aoki, Masahiro; Hattori, Kunihiro; Nezu, Junichi

    2017-10-04

    Cancer care is being revolutionized by immunotherapies such as immune checkpoint inhibitors, engineered T cell transfer, and cell vaccines. The bispecific T cell-redirecting antibody (TRAB) is one such promising immunotherapy, which can redirect T cells to tumor cells by engaging CD3 on a T cell and an antigen on a tumor cell. Because T cells can be redirected to tumor cells regardless of the specificity of T cell receptors, TRAB is considered efficacious for less immunogenic tumors lacking enough neoantigens. Its clinical efficacy has been exemplified by blinatumomab, a bispecific T cell engager targeting CD19 and CD3, which has shown marked clinical responses against hematological malignancies. However, the success of TRAB in solid tumors has been hampered by the lack of a target molecule with sufficient tumor selectivity to avoid "on-target off-tumor" toxicity. Glypican 3 (GPC3) is a highly tumor-specific antigen that is expressed during fetal development but is strictly suppressed in normal adult tissues. We developed ERY974, a whole humanized immunoglobulin G-structured TRAB harboring a common light chain, which bispecifically binds to GPC3 and CD3. Using a mouse model with reconstituted human immune cells, we revealed that ERY974 is highly effective in killing various types of tumors that have GPC3 expression comparable to that in clinical tumors. ERY974 also induced a robust antitumor efficacy even against tumors with nonimmunogenic features, which are difficult to treat by inhibiting immune checkpoints such as PD-1 (programmed cell death protein-1) and CTLA-4 (cytotoxic T lymphocyte-associated protein-4). Immune monitoring revealed that ERY974 converted the poorly inflamed tumor microenvironment to a highly inflamed microenvironment. Toxicology studies in cynomolgus monkeys showed transient cytokine elevation, but this was manageable and reversible. No organ toxicity was evident. These data provide a rationale for clinical testing of ERY974 for the

  9. A photosensitizer delivered by bispecific antibody redirected T lymphocytes enhances cytotoxicity against EpCAM-expressing carcinoma cells upon light irradiation.

    Science.gov (United States)

    Blaudszun, André-René; Moldenhauer, Gerhard; Schneider, Marc; Philippi, Anja

    2015-01-10

    Recently conducted clinical trials have provided impressive evidence that chemotherapy resistant metastatic melanoma and several hematological malignancies can be cured using adoptive T cell therapy or T cell-recruiting bispecific antibodies. However, a significant fraction of patients did not benefit from these treatments. Here we have evaluated the feasibility of a novel combination therapy which aims to further enhance the killing potential of bispecific antibody-redirected T lymphocytes by using these cells as targeted delivery system for photosensitizing agents. For a first in vitro proof-of-concept study, ex vivo activated human donor T cells were loaded with a poly(styrene sulfonate) (PSS)-complex of the model photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP). In the absence of light and when loading with the water-soluble PSS/mTHPP-complex occurred at a tolerable concentration, viability and cytotoxic function of loaded T lymphocytes were not impaired. When "drug-enhanced" T cells were co-cultivated with EpCAM-expressing human carcinoma cells, mTHPP was transferred to target cells. Notably, in the presence of a bispecific antibody, which cross-links effector and target cells thereby inducing the cytolytic activity of cytotoxic T lymphocytes, significantly more photosensitizer was transferred. Consequently, upon irradiation of co-cultures, redirected drug-loaded T cells were more effective in killing A549 lung and SKOV-3 ovarian carcinoma cells than retargeted unloaded T lymphocytes. Particularly, the additive approach using redirected unloaded T cells in combination with appropriate amounts of separately applied PSS/mTHPP was less efficient as well. Thus, by loading T lymphocytes with a stimulus-sensitive anti-cancer drug, we were able to enhance the cytotoxic capacity of carrier cells. Photosensitizer boosted T cells could open new perspectives for adoptive T cell therapy as well as targeted photodynamic therapy. Copyright © 2014

  10. Tandem bispecific broadly neutralizing antibody - a novel approach to HIV-1 treatment.

    Science.gov (United States)

    Ferrari, Guido

    2018-04-23

    The last decade has led to a significant advance in our knowledge of HIV-1 latency and immunity. However, we are still not close to finding a cure for HIV-1. Although combination antiretroviral therapy (cART) has led to increased survival, almost close to that of the general population, it is still not curative. In the current issue of the JCI, Wu et al. studied the prophylactic and therapeutic potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb), BiIA-SG. This bnAb's breadth and potency were highly effective in protection and treatment settings, as measured by complete viremia control following direct infusion, as well as elimination of infected cells and delay in viral rebound when delivered with a recombinant vector. These observations underscore the need for the clinical development of BiIA-SG for the prevention of HIV-1.

  11. Fab-dsFv: A bispecific antibody format with extended serum half-life through albumin binding

    Science.gov (United States)

    Davé, Emma; Adams, Ralph; Zaccheo, Oliver; Carrington, Bruce; Compson, Joanne E.; Dugdale, Sarah; Airey, Michael; Malcolm, Sarah; Hailu, Hanna; Wild, Gavin; Turner, Alison; Heads, James; Sarkar, Kaushik; Ventom, Andrew; Marshall, Diane; Jairaj, Mark; Kopotsha, Tim; Christodoulou, Louis; Zamacona, Miren; Lawson, Alastair D.; Heywood, Sam; Humphreys, David P.

    2016-01-01

    ABSTRACT An antibody format, termed Fab-dsFv, has been designed for clinical indications that require monovalent target binding in the absence of direct Fc receptor (FcR) binding while retaining substantial serum presence. The variable fragment (Fv) domain of a humanized albumin-binding antibody was fused to the C-termini of Fab constant domains, such that the VL and VH domains were individually connected to the Cκ and CH1 domains by peptide linkers, respectively. The anti-albumin Fv was selected for properties thought to be desirable to ensure a durable serum half-life mediated via FcRn. The Fv domain was further stabilized by an inter-domain disulfide bond. The bispecific format was shown to be thermodynamically and biophysically stable, and retained good affinity and efficacy to both antigens simultaneously. In in vivo studies, the serum half-life of Fab-dsFv, 2.6 d in mice and 7.9 d in cynomolgus monkeys, was equivalent to Fab'-PEG. PMID:27532598

  12. Enhanced lysis by bispecific oncolytic measles viruses simultaneously using HER2/neu or EpCAM as target receptors

    Directory of Open Access Journals (Sweden)

    Jan RH Hanauer

    2016-01-01

    Full Text Available To target oncolytic measles viruses (MV to tumors, we exploit the binding specificity of designed ankyrin repeat proteins (DARPins. These DARPin-MVs have high tumor selectivity while maintaining excellent oncolytic potency. Stability, small size, and efficacy of DARPins allowed the generation of MVs simultaneously targeted to tumor marker HER2/neu and cancer stem cell (CSC marker EpCAM. For optimization, the linker connecting both DARPins was varied in flexibility and length. Flexibility had no impact on fusion helper activity whereas length had. MVs with bispecific MV-H are genetically stable and revealed the desired double-target specificity. In vitro, the cytolytic activity of bispecific MVs was superior or comparable to mono-targeted viruses depending on the target cells. In vivo, therapeutic efficacy of the bispecific viruses was validated in an orthotopic ovarian carcinoma model revealing an effective reduction of tumor mass. Finally, the power of bispecific targeting was demonstrated on cocultures of different tumor cells thereby mimicking tumor heterogeneity in vitro, more closely reflecting real tumors. Here, bispecific excelled monospecific viruses in efficacy. DARPin-based targeting domains thus allow the generation of efficacious oncolytic viruses with double specificity, with the potential to handle intratumoral variation of antigen expression and to simultaneously target CSCs and the bulk tumor mass.

  13. The Development of Bispecific Hexavalent Antibodies as a Novel Class of DOCK-AND-LOCKTM (DNLTM Complexes

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chang

    2013-05-01

    Full Text Available The DOCK-AND-LOCKTM (DNLTM method provides a modular approach to develop multivalent, multifunctional complexes of defined structures, of which bispecific hexavalent antibodies (bsHexAbs are prominent examples with potential applications in targeted therapy for malignant, autoimmune, and infectious diseases. Currently, bsHexAbs are constructed by derivatizing a divalent IgG, at the carboxyl termini of either the heavy chain (the CH3-format or the light chain (the Ck-format, to contain two stabilized dimers of Fab having a different specificity from the IgG. In this review, we briefly outline the features of the DNLTM method and describe key aspects of bsHexAbs examined with diverse preclinical studies, which include binding affinity to target cells, induction of signaling pathways, effector functions, serum stability, pharmacokinetics, and antitumor activity in human tumor xenograft models. Our findings favor the selection of the CK- over the CH3-format for further exploration of bsHexAbs in clinical trials.

  14. Biodistribution and dosimetric study in medullary thyroid cancer xenograft using bispecific antibody and iodine-125-labeled bivalent hapten.

    Science.gov (United States)

    Hosono, M; Hosono, M N; Kraeber-Bodéré, F; Devys, A; Thédrez, P; Fiche, M; Gautherot, E; Barbet, J; Chatal, J F

    1998-09-01

    The purpose of this study was to evaluate biodistributions and absorbed doses of anti-carcinoembryonic antigen (CEA)/anti-diethylenetriamine pentaacetic acid (DTPA)-indium (anti-DTPA-In) bispecific monoclonal antibody (BsMAb) F6-734 and 125I-labeled DTPA-indium dimer hapten (125I-di-DTPA-In hapten) in athymic mice xenografted with human medullary thyroid cancer. Bispecific monoclonal antibodies F6-679 (anti-CEA/antihistamine) and G7A5-734 (antimelanoma/anti-di-DTPA-In) were used as irrelevant BsMAbs. Athymic mice inoculated with TT medullary thyroid cancer cells expressing CEA were administered BsMAbs F6-734, F6-679 or G7A5-734 and then, 48 hr later, 125I-di-DTPA-In hapten. Iodine-125-labeled F6 F(ab')2 fragment was injected into other groups of mice. Biodistributions were examined at 30 min and 5, 24, 48 and 96 hr after injection of 125I-di-DTPA-In hapten or 125I-labeled F6 F(ab')2. In mice injected with BsMAb F6-734 and 125I-di-DTPA-In hapten, tumor uptake was 9.1%+/-2.1%, 8.7%+/-3.5%, 8.0%+/-2.3%, 5.1%+/-0.9% and 3.5%+/-1.5% of the injected dose/g at 30 min and 5, 24, 48 and 96 hr, and tumor-to-blood, tumor-to-liver and tumor-to-kidney ratios were 37.0+/-12.5, 32.3+/-10.9 and 10.4+/-2.7 at 24 hr. Iodine-125-F6 F(ab')2 fragment showed a tumor uptake of 7.39% injected dose/g and tumor-to-blood, tumor-to-liver and tumor-to-kidney ratios of 1.8+/-0.6, 7.3+/-2.9 and 3.6+/-1.6 at 24 hr. In mice injected with F6-679 or G7A5-734, tumor uptake and tumor-to-normal tissue ratios were much lower than in the mice injected with F6-734. These results were confirmed by autoradiographic studies that demonstrated clear tumor-to-normal tissue contrast. This two-step targeting method seems very potent for the diagnosis and therapy of human medullary thyroid cancer and other CEA-producing tumors because it combines high tumor uptake and low normal tissue background.

  15. Bispecific antibody to ErbB2 overcomes trastuzumab resistance through comprehensive blockade of ErbB2 heterodimerization.

    Science.gov (United States)

    Li, Bohua; Meng, Yanchun; Zheng, Lei; Zhang, Xunmin; Tong, Qing; Tan, Wenlong; Hu, Shi; Li, Hui; Chen, Yang; Song, Jinjing; Zhang, Ge; Zhao, Lei; Zhang, Dapeng; Hou, Sheng; Qian, Weizhu; Guo, Yajun

    2013-11-01

    The anti-ErbB2 antibody trastuzumab has shown significant clinical benefits in metastatic breast cancer. However, resistance to trastuzumab is common. Heterodimerization between ErbB2 and other ErbBs may redundantly trigger cell proliferation signals and confer trastuzumab resistance. Here, we developed a bispecific anti-ErbB2 antibody using trastuzumab and pertuzumab, another ErbB2-specific humanized antibody that binds to a distinct epitope from trastuzumab. This bispecific antibody, denoted as TPL, retained the full binding activities of both parental antibodies and exhibited pharmacokinetic properties similar to those of a conventional immunoglobulin G molecule. Unexpectedly, TPL showed superior ErbB2 heterodimerization-blocking activity over the combination of both parental monoclonal antibodies, possibly through steric hindrance and/or inducing ErbB2 conformational change. Further data indicated that TPL potently abrogated ErbB2 signaling in trastuzumab-resistant breast cancer cell lines. In addition, we showed that TPL was far more effective than trastuzumab plus pertuzumab in inhibiting the growth of trastuzumab-resistant breast cancer cell lines, both in vitro and in vivo. Importantly, TPL treatment eradicated established trastuzumab-resistant tumors in tumor-bearing nude mice. Our results suggest that trastuzumab-resistant breast tumors remain dependent on ErbB2 signaling and that comprehensive blockade of ErbB2 heterodimerization may be an effective therapeutic avenue. The unique potential of TPL to overcome trastuzumab resistance warrants its consideration as a promising treatment in the clinic.

  16. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice.

    Science.gov (United States)

    Wu, Xilin; Guo, Jia; Niu, Mengyue; An, Minghui; Liu, Li; Wang, Hui; Jin, Xia; Zhang, Qi; Lam, Ka Shing; Wu, Tongjin; Wang, Hua; Wang, Qian; Du, Yanhua; Li, Jingjing; Cheng, Lin; Tang, Hang Ying; Shang, Hong; Zhang, Linqi; Zhou, Paul; Chen, Zhiwei

    2018-04-23

    The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral therapy (cART). Here, we investigate the potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving 2 single-chain variable fragment (scFv) binding domains of each parental bnAb, a single gene-encoded tandem bs-bnAb, BiIA-SG, displayed substantially improved breadth and potency. BiIA-SG neutralized all 124 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, variants not susceptible to parental bnAbs and to many other bnAbs with an average IC50 value of 0.073 μg/ml (range HIV-1 stains. Moreover, whereas BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of adeno-associated virus-transferred (AAV-transferred) BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for the prevention and treatment of HIV-1 infection.

  17. Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210.

    Science.gov (United States)

    Watanabe, M; Wallace, P K; Keler, T; Deo, Y M; Akewanlop, C; Hayes, D F

    1999-02-01

    MDX-210 is a bispecific antibody (BsAb) with specificity for both the proto-oncogene product of HER-2/neu (c-erbB-2) and FcgammaRI (CD64). HER-2/neu is overexpressed in malignant tissue of approximately 30% of patients with breast cancer, and FcgammaRI is expressed on human monocytes, macrophages, and IFN-gamma activated granulocytes. We investigated phagocytosis and cytolysis of cultured human breast cancer cells by human monocyte-derived macrophages (MDM) mediated by BsAb MDX-210, its partially humanized derivative (MDX-H210), and its parent MoAb 520C9 (anti-HER-2/neu) under various conditions. Purified monocytes were cultured with GM-CSF, M-CSF, or no cytokine for five or six days. Antibody dependent cellular phagocytosis (ADCP) and cytolysis (ADCC) assays were performed with the MDM and HER-2/neu positive target cells (SK-BR-3). ADCP was measured by two-color fluorescence flow cytometry using PKH2 (green fluorescent dye) and phycoerythrin-conjugated (red) monoclonal antibodies (MoAb) against human CD14 and CD11b. ADCC was measured with a non-radioactive LDH detection kit. Both BsAb MDX-210 (via FcgammaRI) and MoAb 520C9 (mouse IgG1, via FcgammaRII) mediated similar levels of ADCP and ADCC. ADCP mediated by BsAb MDX-H210 was identical to that mediated by BsAb MDX-210. Confocal microscopy demonstrated that dual-labeled cells represented true phagocytosis. Both ADCP and ADCC were higher when MDM were pre-incubated with GM-CSF than when incubated with M-CSF. BsAb MDX-210 is as active in vitro as the parent MoAb 520C9 in inducing both phagocytosis and cytolysis of MDM. MDX-210 and its partially humanized derivative, MDX-H210, mediated similar levels of ADCP. GM-CSF appears to superior to M-CSF in inducing MDM-mediated ADCC and ADCP. These studies support the ongoing clinical investigations of BsAb MDX-210 and its partially humanized derivative.

  18. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110

    Science.gov (United States)

    Deisting, Wibke; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A.; Münz, Markus

    2015-01-01

    Background Bispecific T cell engager (BiTE®) are single-chain bispecific antibody constructs with dual specificity for CD3 on T cells and a surface antigen on target cells. They can elicit a polyclonal cytotoxic T cell response that is not restricted by T cell receptor (TCR) specificity, and surface expression of MHC class I/peptide antigen complexes. Using human EpCAM/CD3-bispecific BiTE® antibody construct AMG 110, we here assessed to what extent surface expression of PD-L1, cytoplasmic expression of indoleamine-2,3-deoxygenase type 1, Bcl-2 and serpin PI-9, and the presence of transforming growth factor beta (TGF-β), interleukin-10 (IL-10) and adenosine in culture medium can impact redirected lysis by AMG 110-engaged T cells. Methods The seven factors, which are all involved in inhibiting T cell functions by cancer cells, were tested with human EpCAM-expressing Chinese hamster ovary (CHO) target cells at levels that in most cases exceeded those observed in a number of human cancer cell lines. Co-culture experiments were used to determine the impact of the evasion mechanisms on EC50 values and amplitude of redirected lysis by AMG 110, and on BiTE®-induced proliferation of previously resting human peripheral T cells. Findings An inhibitory effect on redirected lysis by AMG 110-engaged T cells was seen upon overexpression of serpin PI-9, Bcl-2, TGF-βand PD-L1. An inhibitory effect on induction of T cell proliferation was only seen with CHO cells overexpressing IDO. In no case, a single evasion mechanism rendered target cells completely resistant to BiTE®-induced lysis, and even various combinations could not. Conclusions Our data suggest that diverse mechanisms employed by cancer cells to fend off T cells cannot inactivate AMG 110-engaged T cells, and that inhibitory effects observed in vitro may be overcome by increased concentrations of the BiTE® antibody construct. PMID:26510188

  19. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110.

    Directory of Open Access Journals (Sweden)

    Wibke Deisting

    Full Text Available Bispecific T cell engager (BiTE® are single-chain bispecific antibody constructs with dual specificity for CD3 on T cells and a surface antigen on target cells. They can elicit a polyclonal cytotoxic T cell response that is not restricted by T cell receptor (TCR specificity, and surface expression of MHC class I/peptide antigen complexes. Using human EpCAM/CD3-bispecific BiTE® antibody construct AMG 110, we here assessed to what extent surface expression of PD-L1, cytoplasmic expression of indoleamine-2,3-deoxygenase type 1, Bcl-2 and serpin PI-9, and the presence of transforming growth factor beta (TGF-β, interleukin-10 (IL-10 and adenosine in culture medium can impact redirected lysis by AMG 110-engaged T cells.The seven factors, which are all involved in inhibiting T cell functions by cancer cells, were tested with human EpCAM-expressing Chinese hamster ovary (CHO target cells at levels that in most cases exceeded those observed in a number of human cancer cell lines. Co-culture experiments were used to determine the impact of the evasion mechanisms on EC50 values and amplitude of redirected lysis by AMG 110, and on BiTE®-induced proliferation of previously resting human peripheral T cells.An inhibitory effect on redirected lysis by AMG 110-engaged T cells was seen upon overexpression of serpin PI-9, Bcl-2, TGF-β and PD-L1. An inhibitory effect on induction of T cell proliferation was only seen with CHO cells overexpressing IDO. In no case, a single evasion mechanism rendered target cells completely resistant to BiTE®-induced lysis, and even various combinations could not.Our data suggest that diverse mechanisms employed by cancer cells to fend off T cells cannot inactivate AMG 110-engaged T cells, and that inhibitory effects observed in vitro may be overcome by increased concentrations of the BiTE® antibody construct.

  20. Engineering bispecificity into a single albumin-binding domain.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available Bispecific antibodies as well as non-immunoglobulin based bispecific affinity proteins are considered to have a very high potential in future biotherapeutic applications. In this study, we report on a novel approach for generation of extremely small bispecific proteins comprised of only a single structural domain. Binding to tumor necrosis factor-α (TNF-α was engineered into an albumin-binding domain while still retaining the original affinity for albumin, resulting in a bispecific protein composed of merely 46 amino acids. By diversification of the non albumin-binding side of the three-helix bundle domain, followed by display of the resulting library on phage particles, bispecific single-domain proteins were isolated using selections with TNF-α as target. Moreover, based on the obtained sequences from the phage selection, a second-generation library was designed in order to further increase the affinity of the bispecific candidates. Staphylococcal surface display was employed for the affinity maturation, enabling efficient isolation of improved binders as well as multiparameter-based sortings with both TNF-α and albumin as targets in the same selection cycle. Isolated variants were sequenced and the binding to albumin and TNF-α was analyzed. This analysis revealed an affinity for TNF-α below 5 nM for the strongest binders. From the multiparameter sorting that simultaneously targeted TNF-α and albumin, several bispecific candidates were isolated with high affinity to both antigens, suggesting that cell display in combination with fluorescence activated cell sorting is a suitable technology for engineering of bispecificity. To our knowledge, the new binders represent the smallest engineered bispecific proteins reported so far. Possibilities and challenges as well as potential future applications of this novel strategy are discussed.

  1. Modulation of protein A binding allows single-step purification of mouse bispecific antibodies that retain FcRn binding

    Science.gov (United States)

    Armstrong, Anthony A.; Pardinas, Jose R.; Zheng, Songmao; Brosnan, Kerry; Emmell, Eva; Luo, Jeffrey; Chiu, Mark L.

    2017-01-01

    ABSTRACT The increased number of bispecific antibodies (BsAb) under therapeutic development has resulted in a need for mouse surrogate BsAbs. Here, we describe a one-step method for generating highly pure mouse BsAbs suitable for in vitro and in vivo studies. We identify two mutations in the mouse IgG2a and IgG2b Fc region: one that eliminates protein A binding and one that enhances protein A binding by 8-fold. We show that BsAbs harboring these mutations can be purified from the residual parental monoclonal antibodies in one step using protein A affinity chromatography. The structural basis for the effects of these mutations was analyzed by X-ray crystallography. While the mutation that disrupted protein A binding also inhibited FcRn interaction, a bispecific mutant in which one subunit retained the ability to bind protein A could still interact with FcRn. Pharmacokinetic analysis of the serum half-lives of the mutants showed that the mutant BsAb had a serum half-life comparable to a wild-type Ab. The results describe a rapid method for generating panels of mouse BsAbs that could be used in mouse studies. PMID:28898162

  2. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature

    NARCIS (Netherlands)

    Huang, XM; Molema, G; King, S; Watkins, L; Edgington, TS; Thorpe, PE

    1997-01-01

    Selective occlusion of tumor vasculature was tested as a therapy for solid tumors in a mouse model. The formation of blood clots (thrombosis) within the tumor Vessels was initiated by targeting the cell surface domain of human tissue factor, by means of a bispecific antibody, to an experimentally

  3. Chimeric bispecific OC/TR monoclonal antibody mediates lysis of tumor cells expressing the folate-binding protein (MOv18) and displays decreased immunogenicity in patients

    NARCIS (Netherlands)

    Luiten, R. M.; Warnaar, S. O.; Sanborn, D.; Lamers, C. H.; Bolhuis, R. L.; Litvinov, S. V.; Zurawski, V. R.; Coney, L. R.

    1997-01-01

    The bispecific OC/TR monoclonal antibody (mAb) cross-links the CD3 molecule on T cells with the human folate-binding protein (FBP), which is highly expressed on nonmucinous ovarian carcinomas. Clinical trials of patients with ovarian carcinoma with the OC/TR mAb have shown some complete and partial

  4. Comparison of IgG and F(ab')2 fragments of bispecific anti-RCCxanti-DTIn-1 antibody for pretargeting purposes.

    NARCIS (Netherlands)

    Schaijk, F.G. van; Boerman, O.C.; Soede, A.C.; McBride, W.J.; Goldenberg, D.M.; Corstens, F.H.M.; Oosterwijk, E.

    2005-01-01

    PURPOSE: An effective pretargeting strategy was developed for renal cell carcinoma (RCC) based on a biologically produced bispecific monoclonal antibody: anti-RCCxanti-DTPA(In) (bsMAb: G250xDTIn-1). Tumour uptake of a (111)In-labelled bivalent peptide after pretargeting with bsMAb G250xDTIn-1 was

  5. Generation of murine triomas secreting bi-specific monoclonal antibodies that recognize HBsAG ad and ay subtypes.

    Science.gov (United States)

    Falero, G; Rodríguez, I; Sarracent, J; Otero, A J; Rodríguez, B L; Rojas, A; Ochoa, E

    1992-12-01

    We report the generation of murine triomas by fusing splenocytes from mice previously immunized with HBsAg ay-subtype and a hybridoma, secreting anti-HBsAg ad-subtype monoclonal antibody, which was rendered HGPRT- by induced mutagenesis with N-methyl-N'nitro-N-nitrosoguanidine. The fusion yielded a 83.8% of hybrids showing the antigen specificity of the parental hybridoma and a 16.1% of bi-specific monoclonal antibodies. One of them, coded as 1C8A5, showing a heavy chain isotype (IgG1/IgG2b) was used as capture reagent in an ultramicro-ELISA. As little as 0.78 I.U. of both HBsAg ad- and ay-subtypes could be realiably detected.

  6. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  7. AZ17: a new bispecific drug targeting IL-6 and IL-23 with potential clinical use-improves psoriasis in a human xenograft transplantation model

    DEFF Research Database (Denmark)

    Stenderup, Karin; Kjeldsen, Cecilia Rosada; Shanebeck, K

    2015-01-01

    variables that were synthesized separately in Escherichia coli. To improve stability and extend pharmacokinetics, a flexible poly-ethylene glycol molecule was used as linker. In preclinical psoriasis models, AZ17 reduced IL-23-induced ear inflammation and improved psoriasis in a xenograft transplantation......Targeting more than one molecule in multifactorial diseases involving several disease mediators may provide improved therapeutic efficacy. Psoriasis is a multifactorial disease in which interleukin (IL)-6 and IL-23 are important disease mediators because they facilitate development of Th17 cells......; widely accepted to be associated with psoriasis. To meet the need for new therapeutics, we aimed to create a clinically relevant bispecific drug, by combining the inhibitory properties of anti-IL-6 and anti-IL-23 antibodies, exhibiting high affinity, high stability and the ability to be produced in high...

  8. Characterization of a novel single-chain bispecific antibody for retargeting of T cells to tumor cells via the TCR co-receptor CD8.

    Directory of Open Access Journals (Sweden)

    Irene Michalk

    Full Text Available There is currently growing interest in retargeting of effector T cells to tumor cells via bispecific antibodies (bsAbs. Usually, bsAbs are directed on the one hand to the CD3 complex of T cells and on the other hand to a molecule expressed on the surface of the target cell. A bsAb-mediated cross-linkage via CD3 leads to an activation of CD8+ T cells and consequently to killing of the target cells. In parallel, CD4+ T cells including TH1, TH2, TH17 cells and even regulatory T cells (Tregs will be activated as well. Cytokines produced by CD4+ T cells can contribute to severe side effects e. g. life-threatening cytokine storms and, thinking of the immunosupressive function of Tregs, can even be counterproductive. Therefore, we asked whether or not it is feasible to limit retargeting to CD8+ T cells e. g. via targeting of the co-receptor CD8 instead of CD3. In order to test for proof of concept, a novel bsAb with specificity for CD8 and a tumor-associated surface antigen was constructed. Interestingly, we found that pre-activated (but not freshly isolated CD8+ T cells can be retargeted via CD8-engaging bsAbs leading to an efficient lysis of target cells.

  9. Antibodies Targeting EMT

    Science.gov (United States)

    2017-10-01

    determine their targets on the cell. The newly discovered antibodies will then be engineered for utility as new highly specific drugs and diagnostics in...are from the aldo-keto reductase family (AKRs). Remarkably, 3 of the top 10 genes with induction in the mesenchymal TES2b cells Figure 1. Amino

  10. Retargeting T cells for HER2-positive tumor killing by a bispecific Fv-Fc antibody.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available To exploit the biological and pharmacological properties of immunoglobulin constant domain Fc fragment and increase the killing efficacy of T cells, a single chain variable fragment specific to CD3 was fused with Fcab (Fc antigen binding, a mutant Fc fragment with specificity against Human epidermal growth factor receptor 2 (HER2 developed by F-star. The bispecific fusion named as FcabCD3 was expressed by transient transfection in HEK-293T cells and purified by affinity chromatography. Specific cytolytic activity of retargeted T cells to kill HER2 positive SKBR3 cell line was evaluated in vitro. FcabCD3 was able to retarget T cells to kill both Herceptin insensitive Colo205-luc cell line and HER2 low expression MDA-MB-231-luc cell line. Furthermore, FcabCD3 was effective in eliminating the Colo205 tumor established on BALB/c nu/nu mice.

  11. Bispecific antibodies: an innovative arsenal to hunt, grab and destroy cancer cells.

    Science.gov (United States)

    Grandjenette, Cindy; Dicato, Mario; Diederich, Marc

    2015-01-01

    Targeted cellular immunotherapy with bifunctional antibodies (bsAbs) has emerged as a promising therapeutic approach for cancer over the last two decades. Progress in antibody engineering has led to the generation of many different types of antibody-derived entities that display at least two binding specificities. Most bsAbs consist of large IgG-like proteins with multiple antigen-binding regions containing Fc parts or smaller entities without Fc. BsAbs have the potential to engage effector cells of the immune system, thereby overcoming some of the immune response escape mechanisms of tumor cells. Preclinical and clinical trials of various bsAb constructs have demonstrated impressive results in terms of immune effector cell retargeting and induction of efficient anti-tumor responses. This review provides an overview of the established bsAbs focusing on improvements in format and design as well as the mechanisms of action of the most promising candidates and describes the results of the most recent clinical studies.

  12. Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells.

    Science.gov (United States)

    d'Argouges, Sandrine; Wissing, Sandra; Brandl, Christian; Prang, Nadja; Lutterbuese, Ralf; Kozhich, Alex; Suzich, Joann; Locher, Mathias; Kiener, Peter; Kufer, Peter; Hofmeister, Robert; Baeuerle, Patrick A; Bargou, Ralf C

    2009-03-01

    We have compared the cytotoxic activity of rituximab with that of blinatumomab (MT103/MEDI-538), a single-chain CD19-/CD3-bispecific antibody engaging human T cells. Blinatumomab consistently led to a higher degree of lysis of human lymphoma lines than rituximab, and was active at much lower concentration. The cytotoxicity mediated by blinatumomab and rituximab both caused a potent activation of pro-caspases 3 and 7 in target cells, a key event in induction of granzyme-mediated apoptotic cell death. Combination of rituximab with blinatumomab was found to greatly enhance the activity of rituximab, in particular at low effector-to-target cell ratios and at low antibody concentration.

  13. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets.

    Science.gov (United States)

    Gleason, Michelle K; Ross, Julie A; Warlick, Erica D; Lund, Troy C; Verneris, Michael R; Wiernik, Andres; Spellman, Stephen; Haagenson, Michael D; Lenvik, Alexander J; Litzow, Mark R; Epling-Burnette, Pearlie K; Blazar, Bruce R; Weiner, Louis M; Weisdorf, Daniel J; Vallera, Daniel A; Miller, Jeffrey S

    2014-05-08

    Myelodysplastic syndromes (MDS) are stem cell disorders that can progress to acute myeloid leukemia. Although hematopoietic cell transplantation can be curative, additional therapies are needed for a disease that disproportionally afflicts the elderly. We tested the ability of a CD16xCD33 BiKE to induce natural killer (NK) cell function in 67 MDS patients. Compared with age-matched normal controls, CD7(+) lymphocytes, NK cells, and CD16 expression were markedly decreased in MDS patients. Despite this, reverse antibody-dependent cell-mediated cytotoxicity assays showed potent degranulation and cytokine production when resting MDS-NK cells were triggered with an agonistic CD16 monoclonal antibody. Blood and marrow MDS-NK cells treated with bispecific killer cell engager (BiKE) significantly enhanced degranulation and tumor necrosis factor-α and interferon-γ production against HL-60 and endogenous CD33(+) MDS targets. MDS patients had a significantly increased proportion of immunosuppressive CD33(+) myeloid-derived suppressor cells (MDSCs) that negatively correlated with MDS lymphocyte populations and CD16 loss on NK cells. Treatment with the CD16xCD33 BiKE successfully reversed MDSC immunosuppression of NK cells and induced MDSC target cell lysis. Lastly, the BiKE induced optimal MDS-NK cell function irrespective of disease stage. Our data suggest that the CD16xCD33 BiKE functions against both CD33(+) MDS and MDSC targets and may be therapeutically beneficial for MDS patients.

  14. Targeted cancer therapy through antibody fragments-decorated nanomedicines.

    Science.gov (United States)

    Alibakhshi, Abbas; Abarghooi Kahaki, Fatemeh; Ahangarzadeh, Shahrzad; Yaghoobi, Hajar; Yarian, Fatemeh; Arezumand, Roghaye; Ranjbari, Javad; Mokhtarzadeh, Ahad; de la Guardia, Miguel

    2017-12-28

    Active targeting in cancer nanomedicine, for improved delivery of agents and diagnose, has been reviewed as a successful way for facilitating active uptake of theranostic agents by the tumor cells. The application of a targeting moiety in the targeted carrier complexes can play an important role in differentiating between tumor and healthy tissues. The pharmaceutical carriers, as main part of complexes, can be polymeric nanoparticles, micelles, liposomes, nanogels and carbon nanotubes. The antibodies are among the natural ligands with highest affinity and specificity to target pharmaceutical nanoparticle conjugates. However, the limitations, such as size and long circulating half-lives, hinder reproducible manufacture in clinical studies. Therefore, novel approaches have moved towards minimizing and engineering conventional antibodies as fragments like scFv, Fab, nanobody, bispecific antibody, bifunctional antibody, diabody and minibody preserving their functional potential. Different formats of antibody fragments have been reviewed in this literature update, in terms of structure and function, as smart ligands in cancer diagnosis and therapy of tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A Novel Carcinoembryonic Antigen T-Cell Bispecific Antibody (CEA TCB) for the Treatment of Solid Tumors.

    Science.gov (United States)

    Bacac, Marina; Fauti, Tanja; Sam, Johannes; Colombetti, Sara; Weinzierl, Tina; Ouaret, Djamila; Bodmer, Walter; Lehmann, Steffi; Hofer, Thomas; Hosse, Ralf J; Moessner, Ekkehard; Ast, Oliver; Bruenker, Peter; Grau-Richards, Sandra; Schaller, Teilo; Seidl, Annette; Gerdes, Christian; Perro, Mario; Nicolini, Valeria; Steinhoff, Nathalie; Dudal, Sherri; Neumann, Sebastian; von Hirschheydt, Thomas; Jaeger, Christiane; Saro, Jose; Karanikas, Vaios; Klein, Christian; Umaña, Pablo

    2016-07-01

    CEA TCB is a novel IgG-based T-cell bispecific (TCB) antibody for the treatment of CEA-expressing solid tumors currently in phase I clinical trials (NCT02324257). Its format incorporates bivalent binding to CEA, a head-to-tail fusion of CEA- and CD3e-binding Fab domains and an engineered Fc region with completely abolished binding to FcγRs and C1q. The study provides novel mechanistic insights into the activity and mode of action of CEA TCB. CEA TCB activity was characterized on 110 cell lines in vitro and in xenograft tumor models in vivo using NOG mice engrafted with human peripheral blood mononuclear cells. Simultaneous binding of CEA TCB to tumor and T cells leads to formation of immunologic synapses, T-cell activation, secretion of cytotoxic granules, and tumor cell lysis. CEA TCB activity strongly correlates with CEA expression, with higher potency observed in highly CEA-expressing tumor cells and a threshold of approximately 10,000 CEA-binding sites/cell, which allows distinguishing between high- and low-CEA-expressing tumor and primary epithelial cells, respectively. Genetic factors do not affect CEA TCB activity confirming that CEA expression level is the strongest predictor of CEA TCB activity. In vivo, CEA TCB induces regression of CEA-expressing xenograft tumors with variable amounts of immune cell infiltrate, leads to increased frequency of activated T cells, and converts PD-L1 negative into PD-L1-positive tumors. CEA TCB is a novel generation TCB displaying potent antitumor activity; it is efficacious in poorly infiltrated tumors where it increases T-cell infiltration and generates a highly inflamed tumor microenvironment. Clin Cancer Res; 22(13); 3286-97. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Phase 1 Dose Escalation Study of MEDI-565, a Bispecific T-Cell Engager that Targets Human Carcinoembryonic Antigen, in Patients With Advanced Gastrointestinal Adenocarcinomas.

    Science.gov (United States)

    Pishvaian, Michael; Morse, Michael A; McDevitt, Jennifer; Norton, Jonathan D; Ren, Song; Robbie, Gabriel J; Ryan, Patricia C; Soukharev, Serguei; Bao, Haifeng; Denlinger, Crystal S

    2016-12-01

    MEDI-565, a bispecific, single-chain antibody targeting human carcinoembryonic antigen on tumor cells and the CD3 epsilon subunit of the human T-cell receptor complex, showed antitumor activity in carcinoembryonic antigen-expressing tumors in murine models. This phase I, multicenter, open-label dose escalation study enrolled adults with gastrointestinal adenocarcinomas. MEDI-565 was given intravenously over 3 hours on days 1 through 5 in 28-day cycles, with 4 single-patient (0.75-20 μg) and 5 standard 3 + 3 escalation (60 μg-3 mg; 1.5-7.5 mg with dexamethasone) cohorts. Primary objective was determining maximum tolerated dose; secondary objectives were evaluating pharmacokinetics, antidrug antibodies, and antitumor activity. Thirty-nine patients were enrolled (mean age, 59 years; 56% male; 72% colorectal cancer). Four patients experienced dose-limiting toxicities (2 at 3 mg; 2 at 7.5 mg + dexamethasone): hypoxia (n = 2), diarrhea, and cytokine release syndrome (CRS). Five patients reported grade 3 treatment-related adverse events: diarrhea, CRS, increased alanine aminotransferase, hypertension (all, n = 1), and hypoxia (n = 2); 6 experienced treatment-related serious adverse events: diarrhea, vomiting, pyrexia, CRS (all, n = 1), and hypoxia (n = 2). MEDI-565 pharmacokinetics was linear and dose-proportional, with fast clearance and short half-life. Nineteen patients (48.7%) had antidrug antibodies; 5 (12.8%) had high titers, 2 with decreased MEDI-565 concentrations. No objective responses occurred; 11 (28%) had stable disease as best response. The maximum tolerated dose of MEDI-565 in this patient population was 5 mg administered over 3 hours on days 1 through 5 every 28 days, with dexamethasone. Pharmacokinetics were linear. No objective responses were observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Construction and characterization of a bispecific diabody for retargeting T cells to human carcinomas

    NARCIS (Netherlands)

    Helfrich, Wijnand; Kroesen, Bart-Jan; Roovers, R.C; Westers, L; Molema, Ingrid; Hoogenboom, H.R; de Leij, Lou

    1998-01-01

    We describe the construction of a recombinant bispecific antibody fragment in the diabody format with specificity for both the well-established human pancarcinoma associated target antigen EGP2 (epithelial glycoprotein 2, also known as the CO 17-1A antigen or KSA) and the CD3 epsilon chain of human

  18. Targeted immunotherapy in Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Hutchings, Martin

    2015-01-01

    In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13.......In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13....

  19. The CEA/CD3-bispecific antibody MEDI-565 (MT111) binds a nonlinear epitope in the full-length but not a short splice variant of CEA.

    Science.gov (United States)

    Peng, Li; Oberst, Michael D; Huang, Jiaqi; Brohawn, Philip; Morehouse, Chris; Lekstrom, Kristen; Baeuerle, Patrick A; Wu, Herren; Yao, Yihong; Coats, Steven R; Dall'Acqua, William; Damschroder, Melissa; Hammond, Scott A

    2012-01-01

    MEDI-565 (also known as MT111) is a bispecific T-cell engager (BiTE®) antibody in development for the treatment of patients with cancers expressing carcinoembryonic antigen (CEA). MEDI-565 binds CEA on cancer cells and CD3 on T cells to induce T-cell mediated killing of cancer cells. To understand the molecular basis of human CEA recognition by MEDI-565 and how polymorphisms and spliced forms of CEA may affect MEDI-565 activity, we mapped the epitope of MEDI-565 on CEA using mutagenesis and homology modeling approaches. We found that MEDI-565 recognized a conformational epitope in the A2 domain comprised of amino acids 326-349 and 388-410, with critical residues F(326), T(328), N(333), V(388), G(389), P(390), E(392), I(408), and N(410). Two non-synonymous single-nucleotide polymorphisms (SNPs) (rs10407503, rs7249230) were identified in the epitope region, but they are found at low homozygosity rates. Searching the National Center for Biotechnology Information GenBank® database, we further identified a single, previously uncharacterized mRNA splice variant of CEA that lacks a portion of the N-terminal domain, the A1 and B1 domains, and a large portion of the A2 domain. Real-time quantitative polymerase chain reaction analysis of multiple cancers showed widespread expression of full-length CEA in these tumors, with less frequent but concordant expression of the CEA splice variant. Because the epitope was largely absent from the CEA splice variant, MEDI-565 did not bind or mediate T-cell killing of cells solely expressing this form of CEA. In addition, the splice variant did not interfere with MEDI-565 binding or activity when co-expressed with full-length CEA. Thus MEDI-565 may broadly target CEA-positive tumors without regard for expression of the short splice variant of CEA. Together our data suggest that MEDI-565 activity will neither be impacted by SNPs nor by a splice variant of CEA.

  20. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA x anti-DTPA-indium bispecific antibody.

    Science.gov (United States)

    Barbet, J; Peltier, P; Bardet, S; Vuillez, J P; Bachelot, I; Denet, S; Olivier, P; Leccia, F; Corcuff, B; Huglo, D; Proye, C; Rouvier, E; Meyer, P; Chatal, J F

    1998-07-01

    Pretargeting labeled bivalent hapten with bispecific antibodies has proven feasible in the clinic, and our earlier results have suggested the technique may be very sensitive for detecting small recurrences and metastases. Medullary thyroid carcinoma (MTC) is an example where this technique may be the most useful since local recurrences and isolated metastases are removed surgically when detected, and thyrocalcitonin provides a specific and sensitive tumor marker. In our current study, we evaluated pretargeted immunoscintigraphy in a larger number of MTC patients. Anti-carcinoembryonic antigen (CEA) x anti-diethylenetriaminepentaacetic acid (DTPA) indium bispecific antibody and 111In-labeled bivalent DTPA hapten were administered sequentially (4-5 days apart) to 44 patients with elevated circulating calcitonin after resection of primary MTC. Immunoscintigraphy was performed 2, 5 and 24 hr after hapten injection and, when necessary, at longer time intervals. When available, a handheld gamma probe was used during surgery. Fifteen patients had known tumor sites before immunoscintigraphy. Tumors were imaged in 12 (80%) of these patients, including 3 with liver metastases. Five unknown tumor sites were detected. For the 29 patients with occult disease, immunoscintigraphy detected high-activity uptake sites in 21 patients (72%), including 5 in the liver. Twelve were confirmed by surgery, 1 by guided morphologic imaging and 1 by venous catheterization. There were 2 false-positive patients. The other 5 patients have not yet been confirmed. All detected liver metastases were high-activity uptake areas. Radioimmunoguided surgery was used in 14 patients. It was considered helpful by the surgeon in 12 patients, including 4 patients where it determined the resection of small, not palpable nor visible, tumor-involved lymph nodes. Surgical resection resulted in a significant decrease (8 patients) or normalization (1 patient) of circulating calcitonin and CEA. This technique

  1. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

    Directory of Open Access Journals (Sweden)

    Ganesh Kolumam

    2015-07-01

    Full Text Available Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.

  2. Tumor Antigen-Dependent and Tumor Antigen-Independent Activation of Antitumor Activity in T Cells by a Bispecific Antibody-Modified Tumor Vaccine

    Directory of Open Access Journals (Sweden)

    Philippe Fournier

    2010-01-01

    Full Text Available New approaches of therapeutic cancer vaccination are needed to improve the antitumor activity of T cells from cancer patients. We studied over the last years the activation of human T cells for tumor attack. To this end, we combined the personalized therapeutic tumor vaccine ATV-NDV—which is obtained by isolation, short in vitro culture, irradiation, and infection of patient's tumor cells by Newcastle Disease Virus (NDV—with bispecific antibodies (bsAbs binding to this vaccine and introducing anti-CD3 (signal 1 and anti-CD28 (signal 2 antibody activities. This vaccine called ATV-NDV/bsAb showed the unique ability to reactivate a preexisting potentially anergized antitumor memory T cell repertoire. But it also activated naive T cells to have antitumor properties in vitro and in vivo. This innovative concept of direct activation of cancer patients' T cells via cognate and noncognate interactions provides potential for inducing strong antitumor activities aiming at overriding T cell anergy and tumor immune escape mechanisms.

  3. Anti-factor IXa/X bispecific antibody ACE910 prevents joint bleeds in a long-term primate model of acquired hemophilia A

    Science.gov (United States)

    Yoshihashi, Kazutaka; Takeda, Minako; Kitazawa, Takehisa; Soeda, Tetsuhiro; Igawa, Tomoyuki; Sampei, Zenjiro; Kuramochi, Taichi; Sakamoto, Akihisa; Haraya, Kenta; Adachi, Kenji; Kawabe, Yoshiki; Nogami, Keiji; Shima, Midori; Hattori, Kunihiro

    2014-01-01

    ACE910 is a humanized anti-factor IXa/X bispecific antibody mimicking the function of factor VIII (FVIII). We previously demonstrated in nonhuman primates that a single IV dose of ACE910 exerted hemostatic activity against hemophilic bleeds artificially induced in muscles and subcutis, and that a subcutaneous (SC) dose of ACE910 showed a 3-week half-life and nearly 100% bioavailability, offering support for effective prophylaxis for hemophilia A by user-friendly SC dosing. However, there was no direct evidence that such SC dosing of ACE910 would prevent spontaneous bleeds occurring in daily life. In this study, we newly established a long-term primate model of acquired hemophilia A by multiple IV injections of an anti-primate FVIII neutralizing antibody engineered in mouse-monkey chimeric form to reduce its antigenicity. The monkeys in the control group exhibited various spontaneous bleeding symptoms as well as continuous prolongation of activated partial thromboplastin time; notably, all exhibited joint bleeds, which are a hallmark of hemophilia. Weekly SC doses of ACE910 (initial 3.97 mg/kg followed by 1 mg/kg) significantly prevented these bleeding symptoms; notably, no joint bleeding symptoms were observed. ACE910 is expected to prevent spontaneous bleeds and joint damage in hemophilia A patients even with weekly SC dosing, although appropriate clinical investigation is required. PMID:25274508

  4. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas.

    Science.gov (United States)

    Oberst, Michael D; Fuhrmann, Stacy; Mulgrew, Kathy; Amann, Maria; Cheng, Lily; Lutterbuese, Petra; Richman, Laura; Coats, Steve; Baeuerle, Patrick A; Hammond, Scott A

    2014-01-01

    Individual or combinations of somatic mutations found in genes from colorectal cancers can redirect the effects of chemotherapy and targeted agents on cancer cell survival and, consequently, on clinical outcome. Novel therapeutics with mechanisms of action that are independent of mutational status would therefore fulfill a current unmet clinical need. Here the CEA and CD3 bispecific single-chain antibody MEDI-565 (also known as MT111 and AMG 211) was evaluated for its ability to activate T cells both in vitro and in vivo and to kill human tumor cell lines harboring various somatic mutations commonly found in colorectal cancers. MEDI-565 specifically bound to normal and malignant tissues in a CEA-specific manner, and only killed CEA positive cells. The BiTE® antibody construct mediated T cell-directed killing of CEA positive tumor cells within 6 hours, at low effector-to-target ratios which were independent of high concentrations of soluble CEA. The potency of in vitro lysis was dependent on CEA antigen density but independent of the mutational status in cancer cell lines. Importantly, individual or combinations of mutated KRAS and BRAF oncogenes, activating PI3KCA mutations, loss of PTEN expression, and loss-of-function mutations in TP53 did not reduce the activity in vitro. MEDI-565 also prevented growth of human xenograft tumors which harbored various mutations. These findings suggest that MEDI-565 represents a potential treatment option for patients with CEA positive tumors of diverse origin, including those with individual or combinations of somatic mutations that may be less responsive to chemotherapy and other targeted agents.

  5. Highly Specific and Effective Targeting of EGFRvIII-Positive Tumors with TandAb Antibodies.

    Science.gov (United States)

    Ellwanger, Kristina; Reusch, Uwe; Fucek, Ivica; Knackmuss, Stefan; Weichel, Michael; Gantke, Thorsten; Molkenthin, Vera; Zhukovsky, Eugene A; Tesar, Michael; Treder, Martin

    2017-01-01

    To harness the cytotoxic capacity of immune cells for the treatment of solid tumors, we developed tetravalent, bispecific tandem diabody (TandAb) antibodies that recognize EGFRvIII, the deletion variant III of the epidermal growth factor receptor (EGFR), and CD3 on T-cells, thereby directing immune cells to eliminate EGFRvIII-positive tumor cells. Using phage display, we identified scFv antibodies selectively binding to EGFRvIII. These highly EGFRvIII-specific, fully human scFv were substantially improved by affinity maturation, achieving K D s in the picomolar range, and were used to construct a set of bispecific EGFRvIII-targeting TandAbs with a broad range of binding and cytotoxic properties. These antibodies exhibited an exquisite specificity for a distinguished epitope in the N-terminal portion of EGFRvIII, as shown on recombinant antigen in Western Blot, SPR, and ELISA, as well as on antigen-expressing cells in FACS assays, and did not bind to the wild-type EGFR. High-affinity EGFRvIII/CD3 TandAbs were most potent in killing assays, displaying cytotoxicity toward EGFRvIII-expressing CHO, F98 glioma, or human DK-MG cells with EC 50 values in the range of 1-10 pM in vitro . They also demonstrated dose-dependent growth control in vivo in an EGFRvIII-positive subcutaneous xenograft tumor model. Together with the tumor-exclusive expression of EGFRvIII, the EGFRvIII/CD3 TandAbs' high specificity and strictly target-dependent activation with no off-target activity provide an opportunity to target tumor cells and spare normal tissues, thereby reducing the side effects associated with other anti-EGFR therapies. In summary, EGFRvIII/CD3 TandAbs are highly attractive therapeutic antibody candidates for selective immunotherapy of EGFRvIII-positive tumors.

  6. Highly Specific and Effective Targeting of EGFRvIII-Positive Tumors with TandAb Antibodies

    Directory of Open Access Journals (Sweden)

    Kristina Ellwanger

    2017-05-01

    Full Text Available To harness the cytotoxic capacity of immune cells for the treatment of solid tumors, we developed tetravalent, bispecific tandem diabody (TandAb antibodies that recognize EGFRvIII, the deletion variant III of the epidermal growth factor receptor (EGFR, and CD3 on T-cells, thereby directing immune cells to eliminate EGFRvIII-positive tumor cells. Using phage display, we identified scFv antibodies selectively binding to EGFRvIII. These highly EGFRvIII-specific, fully human scFv were substantially improved by affinity maturation, achieving KDs in the picomolar range, and were used to construct a set of bispecific EGFRvIII-targeting TandAbs with a broad range of binding and cytotoxic properties. These antibodies exhibited an exquisite specificity for a distinguished epitope in the N-terminal portion of EGFRvIII, as shown on recombinant antigen in Western Blot, SPR, and ELISA, as well as on antigen-expressing cells in FACS assays, and did not bind to the wild-type EGFR. High-affinity EGFRvIII/CD3 TandAbs were most potent in killing assays, displaying cytotoxicity toward EGFRvIII-expressing CHO, F98 glioma, or human DK-MG cells with EC50 values in the range of 1–10 pM in vitro. They also demonstrated dose-dependent growth control in vivo in an EGFRvIII-positive subcutaneous xenograft tumor model. Together with the tumor-exclusive expression of EGFRvIII, the EGFRvIII/CD3 TandAbs’ high specificity and strictly target-dependent activation with no off-target activity provide an opportunity to target tumor cells and spare normal tissues, thereby reducing the side effects associated with other anti-EGFR therapies. In summary, EGFRvIII/CD3 TandAbs are highly attractive therapeutic antibody candidates for selective immunotherapy of EGFRvIII-positive tumors.

  7. Highly efficient elimination of colorectal tumor-initiating cells by an EpCAM/CD3-bispecific antibody engaging human T cells.

    Directory of Open Access Journals (Sweden)

    Ines Herrmann

    2010-10-01

    Full Text Available With their resistance to genotoxic and anti-proliferative drugs and potential to grow tumors and metastases from very few cells, cancer stem or tumor-initiating cells (TICs are a severe limitation for the treatment of cancer by conventional therapies. Here, we explored whether human T cells that are redirected via an EpCAM/CD3-bispecific antibody called MT110 can lyse colorectal TICs and prevent tumor growth from TICs. MT110 recognizes EpCAM, a cell adhesion molecule expressed on TICs from diverse human carcinoma, which was recently shown to promote tumor growth through engagement of elements of the wnt pathway. MT110 was highly potent in mediating complete redirected lysis of KRAS-, PI3 kinase- and BRAF-mutated colorectal TICs, as demonstrated in a soft agar assay. In immunodeficient mice, MT110 prevented growth of tumors from a 5,000-fold excess of a minimally tumorigenic TIC dose. T cells engaged by MT110 may provide a potent therapeutic means to eradicate TICs and bulk tumor cells derived thereof.

  8. Functional analysis of bispecific antibody (EpCAMxCD3)-mediated T-lymphocyte and cancer cell interaction by single-cell force spectroscopy.

    Science.gov (United States)

    Hoffmann, Sabrina C; Wabnitz, Guido H; Samstag, Yvonne; Moldenhauer, Gerhard; Ludwig, Thomas

    2011-05-01

    The atomic force microscopy (AFM) is a powerful tool to analyze forces generated on cellular interactions on the single-cell level. This highly sensitive device can record changes in force in the pico-Newton range, which equals single molecule bonds. Here, we have used single-cell force spectroscopy by AFM to investigate the interaction between T cells and tumor cells that is induced by the bispecific antibody HEA125xOKT3 (specificity anti-EpCAMxCD3). We show that HEA125xOKT3 induces a specific increase in adhesion force between T cells and cancer cells. The adhesive force that is generated on cell-cell contact is dependent on the applied force on initial contact and the duration of this initial contact. In summary, HEA125xOKT3 has been found to mediate contact formation by distinct processes. It induces direct cell-cell interaction, which results in the activation of T-cell signaling, facilitates the formation of supramolecular activation clusters and ultimately of an immune synapse. Copyright © 2010 UICC.

  9. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells.

    Science.gov (United States)

    Gantke, Thorsten; Weichel, Michael; Herbrecht, Carmen; Reusch, Uwe; Ellwanger, Kristina; Fucek, Ivica; Eser, Markus; Müller, Thomas; Griep, Remko; Molkenthin, Vera; Zhukovsky, Eugene A; Treder, Martin

    2017-09-01

    Bispecific antibodies that redirect the lytic activity of cytotoxic immune effector cells, such as T- and NK cells, onto tumor cells have emerged as a highly attractive and clinically validated treatment modality for hematological malignancies. Advancement of this therapeutic concept into solid tumor indications, however, is hampered by the scarcity of targetable antigens that are surface-expressed on tumor cells but demonstrate only limited expression on healthy tissues. To overcome this limitation, the concept of dual-targeting, i.e. the simultaneous targeting of two tumor-expressed surface antigens with limited co-expression on non-malignant cells, with multispecific antibodies has been proposed to increase tumor selectivity of antibody-induced effector cell cytotoxicity. Here, a novel CD16A (FcγRIIIa)-directed trispecific, tetravalent antibody format, termed aTriFlex, is described, that is capable of redirecting NK cell cytotoxicity to two surface-expressed antigens. Using a BCMA/CD200-based in vitro model system, the potential use of aTriFlex antibodies for dual-targeting and selective induction of NK cell-mediated target cell lysis was investigated. Bivalent bispecific target cell binding was found to result in significant avidity gains and up to 17-fold increased in vitro potency. These data suggest trispecific aTriFlex antibodies may support dual-targeting strategies to redirect NK cell cytotoxicity with increased selectivity to enable targeting of solid tumor antigens. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131-labeled bivalent hapten: preliminary results of a phase I/II clinical trial.

    Science.gov (United States)

    Kraeber-Bodéré, F; Bardet, S; Hoefnagel, C A; Vieira, M R; Vuillez, J P; Murat, A; Ferreira, T C; Bardiès, M; Ferrer, L; Resche, I; Gautherot, E; Rouvier, E; Barbet, J; Chatal, J F

    1999-10-01

    The toxicity and therapeutic efficacy of escalating doses of anti-carcinoembryonic antigen x anti-N alpha-(diethylenetriamine-N,N,N',N''-tetraacetic acid)-In bispecific monoclonal antibody (F6-734) and iodine 131-labeled bivalent hapten were determined in a Phase I/II trial. A total of 26 patients with recurrences of medullary thyroid cancer documented by imaging and a rise in serum thyrocalcitonin were enrolled. Twenty to 50 mg of F6-734 and 40-100 mCi of 131I-hapten were injected 4 days apart. Quantitative scintigraphy was performed after the second injection for dosimetry estimations in eight cases. Clinical, biological, and morphological follow-up was carried out for 1 year after treatment. The mean percentage of injected activity per gram of tumor at the time of maximum uptake was 0.08% (range, 0.003-0.26%). The tumor biological half-life ranged from 3 to 95 days, and tumor doses ranged from 2.91 to 184 cGy/mCi. The estimated tumor-to-nontumor dose ratios were 43.8 x 53.4, 29.6 x 35.3, 10.9 x 13.6, and 8.4 x 10.0 for total body, red marrow, liver, and kidney, respectively. Grade III/IV hematological toxicity was observed in seven patients, most of them with bone metastases. Among the 17 evaluable patients, 4 pain reliefs, 5 minor tumor responses, and 4 biological responses with decrease of thyrocalcitonin were observed. Nine patients developed human anti-mouse antibody. Dose-limiting toxicity was hematological, and maximum tolerated activity was 48 mCi/m2 in this group of patients, most of whom had suspected bone marrow involvement. The therapeutic responses observed in patients mainly with a small tumor burden are encouraging for the performance of a Phase II trial with minimal residual disease.

  11. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG

    Science.gov (United States)

    Fischer, Nicolas; Elson, Greg; Magistrelli, Giovanni; Dheilly, Elie; Fouque, Nicolas; Laurendon, Amélie; Gueneau, Franck; Ravn, Ulla; Depoisier, Jean-François; Moine, Valery; Raimondi, Sylvain; Malinge, Pauline; Di Grazia, Laura; Rousseau, François; Poitevin, Yves; Calloud, Sébastien; Cayatte, Pierre-Alexis; Alcoz, Mathias; Pontini, Guillemette; Fagète, Séverine; Broyer, Lucile; Corbier, Marie; Schrag, Delphine; Didelot, Gérard; Bosson, Nicolas; Costes, Nessie; Cons, Laura; Buatois, Vanessa; Johnson, Zoe; Ferlin, Walter; Masternak, Krzysztof; Kosco-Vilbois, Marie

    2015-01-01

    Bispecific antibodies enable unique therapeutic approaches but it remains a challenge to produce them at the industrial scale, and the modifications introduced to achieve bispecificity often have an impact on stability and risk of immunogenicity. Here we describe a fully human bispecific IgG devoid of any modification, which can be produced at the industrial scale, using a platform process. This format, referred to as a κλ-body, is assembled by co-expressing one heavy chain and two different light chains, one κ and one λ. Using ten different targets, we demonstrate that light chains can play a dominant role in mediating specificity and high affinity. The κλ-bodies support multiple modes of action, and their stability and pharmacokinetic properties are indistinguishable from therapeutic antibodies. Thus, the κλ-body represents a unique, fully human format that exploits light-chain variable domains for antigen binding and light-chain constant domains for robust downstream processing, to realize the potential of bispecific antibodies. PMID:25672245

  12. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments.

    Science.gov (United States)

    Fagète, Séverine; Botas-Perez, Ledicia; Rossito-Borlat, Irène; Adea, Kenneth; Gueneau, Franck; Ravn, Ulla; Rousseau, François; Kosco-Vilbois, Marie; Fischer, Nicolas; Hartley, Oliver

    2017-09-01

    Antibody phage display technology has supported the emergence of numerous therapeutic antibodies. The development of bispecific antibodies, a promising new frontier in antibody therapy, could be facilitated by new phage display approaches that enable pairs of antibodies to be co-selected based on co-engagement of their respective targets. We describe such an approach, making use of two complementary leucine zipper domains that heterodimerize with high affinity. Phagemids encoding a first antibody fragment (scFv) fused to phage coat protein via the first leucine zipper are rescued in bacteria expressing a second scFv fused to the second leucine zipper as a soluble periplasmic protein, so that it is acquired by phage during assembly. Using a soluble scFv specific for a human CD3-derived peptide, we show that its acquisition by phage displaying an irrelevant antibody is sufficiently robust to drive selection of rare phage (1 in 105) over three rounds of panning. We then set up a model selection experiment using a cell line expressing the chemokine receptor CCR5 fused to the CD3 peptide together with a panel of phage clones capable displaying either an anti-CCR5 scFv or an irrelevant antibody, with or without the capacity to acquire the soluble anti-CD3 scFv. In this experiment we showed that rare phage (1 in 105) capable of displaying the two different scFvs can be specifically enriched over four rounds of panning. This approach has the potential to be applied to the identification of pairs of ligands capable of co-engaging two different user-defined targets, which would facilitate the discovery of novel bispecific antibodies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Targeting of adenoviral vectors through a bispecific single-chain antibody

    NARCIS (Netherlands)

    Haisma, HJ; Grill, J; Curiel, DT; Hoogeland, S; van Beusechem, VW; Pinedo, HM; Gerritsen, WR

    Recombinant adenoviral vectors are attractive in the context of cancer gene therapy because they are capable of delivering genes to a wide variety of tissues. The utility of adenoviruses is limited by their lack of specificity and by the absence of the receptor(s) for these viruses on many tumor

  14. Bispecific engineered antibody domains (nanoantibodies that interact noncompetitively with an HIV-1 neutralizing epitope and FcRn.

    Directory of Open Access Journals (Sweden)

    Rui Gong

    Full Text Available Libraries based on an isolated human immunoglobulin G1 (IgG1 constant domain 2 (CH2 have been previously diversified by random mutagenesis. However, native isolated CH2 is not very stable and the generation of many mutations could lead to an increase in immunogenicity. Recently, we demonstrated that engineering an additional disulfide bond and removing seven N-terminal residues results in an engineered antibody domain (eAd (m01s with highly increased stability and enhanced binding to human neonatal Fc receptor (FcRn (Gong et al, JBC, 2009 and 2011. We and others have also previously shown that grafting of the heavy chain complementarity region 3 (CDR-H3 (H3 onto cognate positions of the variable domain leads to highly diversified libraries from which a number of binders to various antigens have been selected. However, grafting of H3s to non-cognate positions in constant domains results in additional residues at the junctions of H3s and the CH2 framework. Here we describe a new method based on multi-step PCR that allows the precise replacement of loop FG (no changes in its flanking sequences by human H3s from another library. Using this method and limited mutagenesis of loops BC and DE we generated an eAd phage-displayed library. Panning of this library against an HIV-1 gp41 MPER peptide resulted in selection of a binder, m2a1, which neutralized HIV-1 isolates from different clades with modest activity and retained the m01s capability of binding to FcRn. This result provides a proof of concept that CH2-based antigen binders that also mimic to certain extent other functions of full-size antibodies (binding to FcRn can be generated; we have previously hypothesized that such binders can be made and coined the term nanoantibodies (nAbs. Further studies in animal models and in humans will show how useful nAbs could be as therapeutics and diagnostics.

  15. Design and evaluation of bi- and trispecific antibodies targeting multiple filovirus glycoproteins.

    Science.gov (United States)

    Nyakatura, Elisabeth K; Zak, Samantha E; Wec, Anna Z; Hofmann, Daniel; Shulenin, Sergey; Bakken, Russell R; Aman, M Javad; Chandran, Kartik; Dye, John M; Lai, Jonathan R

    2018-03-02

    Filoviruses (family Filoviridae ) include five ebolaviruses and Marburg virus. These pathogens cause a rapidly progressing and severe viral disease with high mortality rates (generally 30%-90%). Outbreaks of filovirus disease are sporadic and, until recently, were limited to less than 500 cases. However, the 2013-2016 epidemic in western Africa, caused by Ebola virus (EBOV), illustrated the potential of filovirus outbreaks to escalate to a much larger scale (over 28,000 suspected cases). Monoclonal antibodies (mAbs) against the envelope glycoprotein represent a promising therapeutic platform for managing filovirus infections. However, mAbs that exhibit neutralization or protective properties against multiple filoviruses are rare. Here, we examined a panel of engineered bi- and trispecific antibodies, whereby variable fragments of mAbs that target epitopes from multiple filoviruses were combined, for their capacity to neutralize viral infection across filovirus species. We found that bispecific combinations targeting EBOV and Sudan virus (SUDV, another ebolavirus), provide potent cross-neutralization and protection in mice. Furthermore, trispecific combinations, targeting EBOV, SUDV, and MARV, exhibited strong neutralization potential against all three viruses. These results provide important insight into multispecific antibody engineering against filoviruses and will inform future immunotherapeutic discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Bispecific T-Cell Engager (BiTE) Antibody Construct Blinatumomab for the Treatment of Patients With Relapsed/Refractory Non-Hodgkin Lymphoma: Final Results From a Phase I Study.

    Science.gov (United States)

    Goebeler, Maria-Elisabeth; Knop, Stefan; Viardot, Andreas; Kufer, Peter; Topp, Max S; Einsele, Hermann; Noppeney, Richard; Hess, Georg; Kallert, Stefan; Mackensen, Andreas; Rupertus, Kathrin; Kanz, Lothar; Libicher, Martin; Nagorsen, Dirk; Zugmaier, Gerhard; Klinger, Matthias; Wolf, Andreas; Dorsch, Brigitte; Quednau, Beate D; Schmidt, Margit; Scheele, Jürgen; Baeuerle, Patrick A; Leo, Eugen; Bargou, Ralf C

    2016-04-01

    Blinatumomab is a CD19/CD3 BiTE (bispecific T-cell engager) antibody construct for the treatment of Philadelphia chromosome-negative acute B-lymphoblastic leukemia. We evaluated blinatumomab in relapsed/refractory B-cell non-Hodgkin lymphoma (NHL). This 3 + 3 design, phase I dose-escalation study determined adverse events and the maximum tolerated dose (MTD) of continuous intravenous infusion blinatumomab in patients with relapsed/refractory NHL. Blinatumomab was administered over 4 or 8 weeks at seven different dose levels (0.5 to 90 μg/m(2)/day). End points were incidence of adverse events, pharmacokinetics, pharmacodynamics, and overall response rate. Between 2004 and 2011, 76 heavily pretreated patients with relapsed/refractory NHL, who included 14 with diffuse large B-cell lymphoma, were enrolled; 42 received treatment in the formal dose-escalation phase. Neurologic events were dose limiting, and 60 μg/m(2)/day was established as the MTD. Thirty-four additional patients were recruited to evaluate antilymphoma activity and strategies for mitigating neurologic events at a prespecified MTD. Stepwise dosing (5 to 60 μg/m(2)/day) plus pentosan polysulfate SP54 (n = 3) resulted in no treatment discontinuations; single-step (n = 5) and double-step (n = 24) dosing entailed two and seven treatment discontinuations due to neurologic events, respectively. Grade 3 neurologic events occurred in 22% of patients (no grade 4/5). Among patients treated at 60 μg/m(2)/day (target dose; n = 35), the overall response rate was 69% across NHL subtypes and 55% for diffuse large B-cell lymphoma (n = 11); median response duration was 404 days (95% CI, 207 to 1,129 days). In this phase I study of relapsed/refractory NHL, continuous infusion with CD19-targeted immunotherapy blinatumomab at various doses and schedules was feasible, with an MTD of 60 μg/m(2)/day. Single-agent blinatumomab showed antilymphoma activity. © 2016 by American Society of Clinical Oncology.

  17. A novel bispecific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells to target blood vessels and vasculogenic mimicry of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2015-06-01

    Full Text Available Yonghong Zhang,1,2 Xinlin Sun,1 Min Huang,1 Yiquan Ke,1 Jihui Wang,1 Xiao Liu1 1National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 2Department of Neurosurgery, First Hospital of Lanzhou University, Lanzhou, People’s Republic of China Background: In previous years, immunotoxins have been shown to be a greatly promising therapeutic tool for brain malignancies, such as gliomas. Human mesenchymal stem cells (hMSCs exhibit tropism to tumor tissue. However, the effect of bispecific immunotoxins in malignant gliomas is still unknown. The aim of this study was to investigate the function of bispecific immunotoxins in human malignant gliomas.Materials and methods: In the present study, the bispecific immunotoxin VEGF165-ephrin A1-PE38KDEL was established using deoxyribonucleic acid shuffling and cloning techniques. The VEGF165-ephrin A1-PE38KDEL was delivered by hMSCs to mouse malignant gliomas. The effects of the bispecific immunotoxins on glioma-derived blood vessels and vasculogenic mimicry to elucidate the molecular mechanisms underlying the antitumorigenic effects of immunotoxins were examined in vivo.Results: In vitro, transfected hMSCs significantly inhibited the cell viability of gliomas cell lines U87 and U251 in a dose-dependent manner compared with untransfected hMSCs (P<0.01. In vivo, the intratumoral injection of engineered hMSCs was effective at inhibiting tumor growth in a malignant glioma tumor model.Conclusion: The bispecific immunotoxin secreted from hMSCs acts as a novel strategy for improving treatment options for malignant gliomas in the clinic. Keywords: bispecific immunotoxin, human mesenchymal stem cells, ephrin A1, VEGF165, malignant glioma

  18. CODV-Ig, a universal bispecific tetravalent and multifunctional immunoglobulin format for medical applications.

    Science.gov (United States)

    Steinmetz, Anke; Vallée, François; Beil, Christian; Lange, Christian; Baurin, Nicolas; Beninga, Jochen; Capdevila, Cécile; Corvey, Carsten; Dupuy, Alain; Ferrari, Paul; Rak, Alexey; Wonerow, Peter; Kruip, Jochen; Mikol, Vincent; Rao, Ercole

    2016-07-01

    Bispecific immunoglobulins (Igs) typically contain at least two distinct variable domains (Fv) that bind to two different target proteins. They are conceived to facilitate clinical development of biotherapeutic agents for diseases where improved clinical outcome is obtained or expected by combination therapy compared to treatment by single agents. Almost all existing formats are linear in their concept and differ widely in drug-like and manufacture-related properties. To overcome their major limitations, we designed cross-over dual variable Ig-like proteins (CODV-Ig). Their design is akin to the design of circularly closed repeat architectures. Indeed, initial results showed that the traditional approach of utilizing (G4S)x linkers for biotherapeutics design does not identify functional CODV-Igs. Therefore, we applied an unprecedented molecular modeling strategy for linker design that consistently results in CODV-Igs with excellent biochemical and biophysical properties. CODV architecture results in a circular self-contained structure functioning as a self-supporting truss that maintains the parental antibody affinities for both antigens without positional effects. The format is universally suitable for therapeutic applications targeting both circulating and membrane-localized proteins. Due to the full functionality of the Fc domains, serum half-life extension as well as antibody- or complement-dependent cytotoxicity may support biological efficiency of CODV-Igs. We show that judicious choice in combination of epitopes and paratope orientations of bispecific biotherapeutics is anticipated to be critical for clinical outcome. Uniting the major advantages of alternative bispecific biotherapeutics, CODV-Igs are applicable in a wide range of disease areas for fast-track multi-parametric drug optimization.

  19. Radioimmunotherapy of small cell lung carcinoma with the two-step method using a bispecific anti-carcinoembryonic antigen/anti-diethylenetriaminepentaacetic acid (DTPA) antibody and iodine-131 Di-DTPA hapten: results of a phase I/II trial.

    Science.gov (United States)

    Vuillez, J P; Kraeber-Bodéré, F; Moro, D; Bardiès, M; Douillard, J Y; Gautherot, E; Rouvier, E; Barbet, J; Garban, F; Moreau, P; Chatal, J F

    1999-10-01

    As small cell lung carcinoma (SCLC) is frequently a widespread disease at diagnosis, highly radiosensitive and often only partially responsive to chemotherapy, radioimmunotherapy (RIT) would appear to be a promising technique for treatment. We report the preliminary results of a Phase I/II trial of RIT in SCLC using a two-step method and a myeloablative protocol with circulating stem cells transplantation. Fourteen patients with proved SCLC relapse after chemotherapy were treated with RIT. They were first injected i.v. with a bispecific (anti-carcinoembryonic antigen/anti-diethylenetriaminepentaacetic acid) monoclonal antibody (20-80 mg in 100 ml of saline solution) and then 4 days later with di-(In-diethylenetriaminepentaacetic acid)-tyrosyl-lysine hapten labeled with 1.48-6.66 GBq (40-180 mCi) of I-131 and diluted in 100 ml of saline solution. In patients receiving 150 mCi or more, circulating stem cells were harvested before treatment and reinfused 10-15 days later. Treatment response was evaluated by CT and biochemical data during the month before and 1, 3, 6, and 12 months after treatment. All patients received the scheduled dose without immediate adverse reactions to bispecific antibody or 1-131 hapten. Toxicity was mainly hematological, with two cases of grade 2 leukopenia and three cases of grade 3 or 4 thrombopenia. Body scanning 8 days after injection of the radiolabeled hapten generally showed good uptake at the tumor sites. Estimated tumor dose was 2.6-32.2 cGy/mCi. Among the 12 patients evaluated to date, we have observed 9 progressions, 2 partial responses (one almost complete for 3 months), and 1 stabilization of more than 24 months. Efficiency and toxicity were dose-related. The maximal tolerable dose without hematological rescue was 150 mCi. These preliminary results are encouraging, and dose escalation is currently continuing to reach 300 mCi. RIT should prove to be an interesting therapeutic method for SCLC, although repeated injections and

  20. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy.

    Science.gov (United States)

    Goldenberg, David M; Sharkey, Robert M; Paganelli, Giovanni; Barbet, Jacques; Chatal, Jean-François

    2006-02-10

    This article reviews the methods of pretargeting, which involve separating the targeting antibody from the subsequent delivery of an imaging or therapeutic agent that binds to the tumor-localized antibody. This provides enhanced tumor:background ratios and the delivery of a higher therapeutic dose than when antibodies are directly conjugated with radionuclides, as currently practiced in cancer radioimmunotherapy. We describe initial promising clinical results using streptavidin-antibody constructs with biotin-radionuclide conjugates in the treatment of patients with malignant gliomas, and of bispecific antibodies with hapten-radionuclides in the therapy of tumors expressing carcinoembryonic antigen, such as medullary thyroid and small-cell lung cancers.

  1. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1.

    Science.gov (United States)

    Osada, Takuya; Patel, Sandip P; Hammond, Scott A; Osada, Koya; Morse, Michael A; Lyerly, H Kim

    2015-06-01

    Bispecific T cell-engaging (BiTE) antibodies recruit polyclonal cytotoxic T cells (CTL) to tumors. One such antibody is carcinoembryonic antigen (CEA) BiTE that mediates T cell/tumor interaction by simultaneously binding CD3 expressed by T cells and CEA expressed by tumor cells. A widely operative mechanism for mitigating cytotoxic T cell-mediated killing is the interaction of tumor-expressed PD-L1 with T cell-expressed PD-1, which may be partly reversed by PD-1/PD-L1 blockade. We hypothesized that PD-1/PD-L1 blockade during BiTE-mediated T cell killing would enhance CTL function. Here, we determined the effects of PD-1 and PD-L1 blockade during initial T cell-mediated killing of CEA-expressing human tumor cell lines in vitro, as well as subsequent T cell-mediated killing by T lymphocytes that had participated in tumor cell killing. We observed a rapid upregulation of PD-1 expression and diminished cytolytic function of T cells after they had engaged in CEA BiTE-mediated killing of tumors. T cell cytolytic activity in vitro could be maximized by administration of anti-PD-1 or anti-PD-L1 antibodies alone or in combination if applied prior to a round of T cell killing, but T cell inhibition could not be fully reversed by this blockade once the T cells had killed tumor. In conclusion, our findings demonstrate that dual blockade of PD-1 and PD-L1 maximizes T cell killing of tumor directed by CEA BiTE in vitro, is more effective if applied early, and provides a rationale for clinical use.

  2. A bispecific enediyne-energized fusion protein targeting both epidermal growth factor receptor and insulin-like growth factor 1 receptor showing enhanced antitumor efficacy against non-small cell lung cancer.

    Science.gov (United States)

    Guo, Xiao-Fang; Zhu, Xiao-Fei; Cao, Hai-Ying; Zhong, Gen-Shen; Li, Liang; Deng, Bao-Guo; Chen, Ping; Wang, Pei-Zhen; Miao, Qing-Fang; Zhen, Yong-Su

    2017-04-18

    Epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF-1R) both overexpressed on non-small cell lung cancer (NSCLC) and are known cooperatively to promote tumor progression and drug resistance. This study was to construct a novel bispecific fusion protein EGF-IGF-LDP-AE consisting of EGFR and IGF-IR specific ligands (EGF and IGF-1) and lidamycin, an enediyne antibiotic with potent antitumor activity, and investigate its antitumor efficacy against NSCLC. Binding and internalization assays showed that EGF-IGF-LDP protein could bind to NSCLC cells with high affinity and then internalized into cells with higher efficiency than that of monospecific proteins. In vitro, the enediyne-energized analogue of bispecific fusion protein (EGF-IGF-LDP-AE) displayed extremely potent cytotoxicity to NSCLC cell lines with IC50protein EGF-IGF-LDP-AE was more cytotoxic than monospecific proteins (EGF-LDP-AE and LDP-IGF-AE) and lidamycin. In vivo, EGF-IGF-LDP-AE markedly inhibited the growth of A549 xenografts, and the efficacy was more potent than that of lidamycin and monospecific counterparts. EGF-IGF-LDP-AE caused significant cell cycle arrest and it also induced cell apoptosis in a dosage-dependent manner. Pretreatment with EGF-IGF-LDP-AE inhibited EGF-, IGF-stimulated EGFR and IGF-1R phosphorylation, and blocked two main downstream signaling molecules AKT and ERK activation. These data suggested that EGF-LDP-IGF-AE protein would be a promising targeted agent for NSCLC patients with EGFR and/or IGF-1R overexpression.

  3. Bifunctional antibodies for radioimmunotherapy.

    Science.gov (United States)

    Chatal, J F; Faivre-Chauvet, A; Bardies, M; Peltier, P; Gautherot, E; Barbet, J

    1995-04-01

    In two-step targeting technique using bifunctional antibodies, a nonradiolabeled immunoconjugate with slow uptake kinetics (several days) is initially injected, followed by a small radiolabeled hapten with fast kinetics (several hours) that binds to the bispecific immunoconjugate already taken up by the tumor target. In patients with colorectal or medullary thyroid cancer, clinical studies performed with an anti-CEA/anti-DTPA-indium bifunctional antibody and an indium-111-labeled di-DTPA-TL bivalent hapten showed that tumor uptake was not modified compared to results for F(ab')2 fragments of the same anti-CEA antibody directly labeled with indium-111, whereas the radioactivity of normal tissues was significantly reduced (3- to 6-fold). The fast tumor uptake kinetics (several hours) and high or very high tumor-to-normal tissue ratios obtained with the bifunctional antibody technique are favorable parameters for efficient radioimmunotherapy.

  4. Glypican-3 antibodies: a new therapeutic target for liver cancer

    OpenAIRE

    Ho, Mingqian Feng, Mitchell

    2013-01-01

    Glypican-3 (GPC3) is an emerging therapeutic target in hepatocellular carcinoma (HCC), even though the biological function of GPC3 remains elusive. Currently human (MDX-1414 and HN3) and humanized mouse (GC33 and YP7) antibodies that target GPC3 for HCC treatment are under different stages of preclinical or clinical development. Humanized mouse antibody GC33 is being evaluated in a phase II clinical trial. Human antibodies MDX-1414 and HN3 are under different stages of preclinical evaluation....

  5. The future of antibodies as cancer drugs.

    Science.gov (United States)

    Reichert, Janice M; Dhimolea, Eugen

    2012-09-01

    Targeted therapeutics such as monoclonal antibodies (mAbs) have proven successful as cancer drugs. To profile products that could be marketed in the future, we examined the current commercial clinical pipeline of mAb candidates for cancer. Our analysis revealed trends toward development of a variety of noncanonical mAbs, including antibody-drug conjugates (ADCs), bispecific antibodies, engineered antibodies and antibody fragments and/or domains. We found substantial diversity in the antibody sequence source, isotype, carbohydrate residues, targets and mechanisms of action (MOA). Although well-validated targets, such as epidermal growth factor receptor (EGFR) and CD20, continue to provide opportunities for companies, we found notable trends toward targeting less-well-validated antigens and exploration of innovative MOA such as the generation of anticancer immune responses or recruitment of cytotoxic T cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  7. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Katerina T. Xenaki

    2017-10-01

    Full Text Available The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.

  8. Pharmacokinetics and dosimetry studies for optimization of anti-carcinoembryonic antigen x anti-hapten bispecific antibody-mediated pretargeting of Iodine-131-labeled hapten in a phase I radioimmunotherapy trial.

    Science.gov (United States)

    Kraeber-Bodéré, Françoise; Faivre-Chauvet, Alain; Ferrer, Ludovic; Vuillez, Jean-Philippe; Brard, Pierre-Yves; Rousseau, Caroline; Resche, Isabelle; Devillers, Anne; Laffont, Sophie; Bardiès, Manuel; Chang, Ken; Sharkey, Robert M; Goldenberg, David M; Chatal, Jean-François; Barbet, Jacques

    2003-09-01

    Pharmacokinetics and dosimetry of hMN-14 x m734 bispecific monoclonal antibody (BsMAb) and (131)I-labeled di-diethylenetriaminepentaacetic acid-indium ((131)I-hapten) were studied to optimize pretargeted radioimmunotherapy. Thirty-five patients with carcinoembryonic antigen-expressing tumors were included. In a first group of 12 patients, (131)I-trace-labeled BsMAb doses were escalated from 10 to 100 mg/m(2), and 3.7 GBq of (131)I-hapten were administered 7 days later. In a second group, 12 patients received 75 mg/m(2) BsMAb and 2.6-4.2 GBq of (131)I-hapten 5 days later. The BsMAb dose was then reduced to 40 mg/m(2), and 10 patients received 1.9-5.5 GBq of (131)I-hapten. Blood samples were collected. Biodistribution was monitored by quantitative scintigraphy. Directly labeled BsMAb pharmacokinetics was described by two exponentials: half-lives were 8.1 h (2.0-18.1 h) and 48.2 h (22.8-79.4 h); blood clearance was 123 ml/h (64-195 ml/h). With a 7-day interval, 10 or 30 mg/m(2) BsMAb resulted in fast elimination and very low tumor uptake of hapten, whereas 50 or 100 mg/m(2) resulted in favorable tumor accretion. With 75 mg/m(2) BsMAb and a 5-day interval, hapten clearance was 152 ml/h (81-298 ml/h). Calculated radiation dose to tumor was 3.9 Gy/GBq (0.4-22.4 Gy/GBq) for the hapten, compared with 2.0 Gy/GBq (0.3-3.8 Gy/GBq) for the BsMAb, but hematological toxicity prevented dose escalation. Reduction of the BsMAb dose to 40 mg/m(2) accelerated hapten clearance to 492 ml/h (113-2544 ml/h) and reduced hematological toxicity without compromising tumor uptake [5.2 Gy/GBq (0.5-12.6 Gy/GBq)]. Optimized BsMAb doses and time interval will allow for the administration of higher, tumoricidal, activity doses.

  9. Boosting antibody responses by targeting antigens to dendritic cells.

    Science.gov (United States)

    Caminschi, Irina; Shortman, Ken

    2012-02-01

    Delivering antigens directly to dendritic cells (DCs) in situ, by injecting antigens coupled to antibodies specific for DC surface molecules, is a promising strategy for enhancing vaccine efficacy. Enhanced cytotoxic T cell responses are obtained if an adjuvant is co-administered to activate the DC. Such DC targeting is also effective at enhancing humoral immunity, via the generation of T follicular helper cells. Depending on the DC surface molecule targeted, antibody production can be enhanced even in the absence of adjuvants. In the case of Clec9A as the DC surface target, enhanced antibody production is a consequence of the DC-restricted expression of the target molecule. Few other cells absorb the antigen-antibody construct, therefore, it persists in the bloodstream, allowing sustained antigen presentation, even by non-activated DCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A bispecific peptide based near-infrared probe for in vivo tumor diagnosis

    Science.gov (United States)

    Ding, Li; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    The epidermal growth factor receptor EGFR and HER2 are members of recepeter tyrosine kinase family. Overexpression of EGFR and HER2 has been observed in a variety of human tumors, making these receptors promising targets for tumor diagnosis. An affibody targeting HER2 and a nanobody targeting EGFR were reported before. In this Manuscript, we described an bispecific peptide combined with an affibody and a nanonbody through a linker―(G4S)3 . And the bispecific peptide was labeled with near-infrared (NIR) fluorochrome ICG-Der-02 for in vivo tumor EGFR and HER2 targeting. Afterwards, the EGFR and HER2 specificity of the fluorescent probe was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous MDA-MB-231 tumor targeting. The results indicated that the bispecific peptide had a high affinity to EGFR and HER2. Besides, in vitro and in vivo tumor targeting experiment indicated that the ICG-Der-02-( bispecific peptide) showed excellent tumor activity accumulation. Noninvasive NIR fluorescence imaging is able to detect tumor EGFR and HER2 expression based upon the highly potent bispecific peptide probe.

  11. Targeting FcRn for the modulation of antibody dynamics.

    Science.gov (United States)

    Ward, E Sally; Devanaboyina, Siva Charan; Ober, Raimund J

    2015-10-01

    The MHC class I-related receptor, FcRn, is a multitasking protein that transports its IgG ligand within and across cells of diverse origins. The role of this receptor as a global regulator of IgG homeostasis and transport, combined with knowledge of the molecular details of FcRn-IgG interactions, has led to opportunities to modulate the in vivo dynamics of antibodies and their antigens through protein engineering. Consequently, the generation of half-life extended antibodies has shown a rapid expansion over the past decade. Further, FcRn itself can be targeted by inhibitors to induce decreased levels of circulating IgGs, which could have applications in multiple clinical settings. The engineering of antibody-antigen interactions to reduce antibody-mediated buffering of soluble ligand has also developed into an active area of investigation, leading to novel antibody platforms designed to result in more effective antigen clearance. Similarly, the target-mediated elimination of antibodies by internalizing, membrane bound antigens (receptors) can be decreased using novel engineering approaches. These strategies, combined with subcellular trafficking analyses of antibody/antigen/FcRn behavior in cells to predict in vivo behavior, have considerable promise for the production of next generation therapeutics and diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The road to toxin-targeted therapeutic antibodies.

    Science.gov (United States)

    Kozel, Thomas R

    2014-07-08

    Once an infection by a toxin-producing bacterium is well established, therapies such as antibiotics that target bacterial growth may have little impact on the ultimate patient outcome. In such cases, toxin-neutralizing antibodies offer an opportunity to block key virulence factors. New work by A. K. Varshney, X. Wang, J. L. Aguilar, M. D. Scharff, and B. C. Fries [mBio 5(3):e01007-14, 2014, doi:10.1128/mBio.01007-14] highlights the role of the antibody isotype in determining the efficacy of toxin-neutralizing antibodies in vivo. Varshney et al. examined the role of antibody isotype for protection in murine models of staphylococcal enterotoxin B (SEB)-induced lethal shock and sepsis produced by SEB-producing Staphylococcus aureus. Murine antibodies of the IgG2a isotype were more protective than antibodies of the IgG1 and IgG2b isotypes that have identical variable regions and binding activity. These results add to the complexity inherent in the selection and optimization of antibodies for anti-infective passive immunization and emphasize the need to use relevant in vivo models to evaluate potential therapeutic monoclonal antibodies. Copyright © 2014 Kozel.

  13. Specific targeting of tumor cells by lyophilisomes functionalized with antibodies

    NARCIS (Netherlands)

    van Bracht, Etienne; Stolle, Sarah; Hafmans, Theo G.; Boerman, Otto C.; Oosterwijk, Egbert; van Kuppevelt, Toin H.; Daamen, Willeke F.

    Lyophilisomes are a novel class of proteinaceous biodegradable nano/micro drug delivery capsules prepared by freezing, annealing and Iyophilization. In the present study, lyophilisomes were functionalized for active targeting by antibody conjugation in order to obtain a selective drug-carrier

  14. GABARAPL1 antibodies: target one protein, get one free!

    Science.gov (United States)

    Le Grand, Jaclyn Nicole; Chakrama, Fatima Zahra; Seguin-Py, Stéphanie; Fraichard, Annick; Delage-Mourroux, Régis; Jouvenot, Michèle; Risold, Pierre-Yves; Boyer-Guittaut, Michaël

    2011-11-01

    Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.

  15. Antibody targeting of Cathepsin S induces antibody-dependent cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kwok Hang Fai

    2011-12-01

    Full Text Available Abstract Background Proteolytic enzymes have been implicated in driving tumor progression by means of their cancer cell microenvironment activity where they promote proliferation, differentiation, apoptosis, migration, and invasion. Therapeutic strategies have focused on attenuating their activity using small molecule inhibitors, but the association of proteases with the cell surface during cancer progression opens up the possibility of targeting these using antibody dependent cellular cytotoxicity (ADCC. Cathepsin S is a lysosomal cysteine protease that promotes the growth and invasion of tumour and endothelial cells during cancer progression. Our analysis of colorectal cancer patient biopsies shows that cathepsin S associates with the cell membrane indicating a potential for ADCC targeting. Results Here we report the cell surface characterization of cathepsin S and the development of a humanized antibody (Fsn0503h with immune effector function and a stable in vivo half-life of 274 hours. Cathepsin S is expressed on the surface of tumor cells representative of colorectal and pancreatic cancer (23%-79% positive expression. Furthermore the binding of Fsn0503h to surface associated cathepsin S results in natural killer (NK cell targeted tumor killing. In a colorectal cancer model Fsn0503h elicits a 22% cytotoxic effect. Conclusions This data highlights the potential to target cell surface associated enzymes, such as cathepsin S, as therapeutic targets using antibodies capable of elicitingADCC in tumor cells.

  16. Potential for bispecific T-cell engagers: role of blinatumomab in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Le Jeune C

    2016-02-01

    Full Text Available Caroline Le Jeune, Xavier Thomas Hospices Civils de Lyon, Hematology Department, Lyon-Sud Hospital, Pierre Bénite, France Abstract: Patients with relapsed/refractory (R/R B-precursor acute lymphoblastic leukemia (ALL and patients whose minimal residual disease persists during treatment have a poor leukemia-free survival. Despite improvements in front-line therapy, the outcome in these patients remains poor, especially after relapse. As there are no standard chemotherapeutic regimens for the treatment of patients with R/R B-precursor ALL, T-cell-based therapeutic approaches have recently come to the forefront in ALL therapy. Recently, monoclonal antibodies have been developed to target specific antigens expressed in B-lineage blast cells. In this setting, CD19 is of great interest as this antigen is expressed in B-lineage cells. Therefore, it has been selected as the target antigen for blinatumomab, a new bi-specific T-cell engager antibody. This sophisticated antibody binds sites for both CD19 and CD3, leading to T-cell proliferation and activation and B-cell apoptosis. Owing to its short serum half-life, blinatumomab has been administrated by continuous intravenous infusion with a favorable safety profile. The most significant toxicities were central nervous system events and the cytokine release syndrome. This new therapeutic approach using blinatumomab has been shown to be effective in patients with positive minimal residual disease and in patients with R/R B-precursor ALL leading to a recent approval by the US Food and Drug Administration after an accelerated review process. This review focuses on the profile of blinatumomab and its efficacy and safety. Keywords: B-cell lineage acute lymphoblastic leukemia, relapsed/refractory, minimal residual disease, BiTE monoclonal antibodies, blinatumomab

  17. Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors.

    Science.gov (United States)

    McCormack, Emmet; Adams, Katherine J; Hassan, Namir J; Kotian, Akhil; Lissin, Nikolai M; Sami, Malkit; Mujić, Maja; Osdal, Tereza; Gjertsen, Bjørn Tore; Baker, Deborah; Powlesland, Alex S; Aleksic, Milos; Vuidepot, Annelise; Morteau, Olivier; Sutton, Deborah H; June, Carl H; Kalos, Michael; Ashfield, Rebecca; Jakobsen, Bent K

    2013-04-01

    NY-ESO-1 and LAGE-1 are cancer testis antigens with an ideal profile for tumor immunotherapy, combining up-regulation in many cancer types with highly restricted expression in normal tissues and sharing a common HLA-A*0201 epitope, 157-165. Here, we present data to describe the specificity and anti-tumor activity of a bifunctional ImmTAC, comprising a soluble, high-affinity T-cell receptor (TCR) specific for NY-ESO-1157-165 fused to an anti-CD3 scFv. This reagent, ImmTAC-NYE, is shown to kill HLA-A2, antigen-positive tumor cell lines, and freshly isolated HLA-A2- and LAGE-1-positive NSCLC cells. Employing time-domain optical imaging, we demonstrate in vivo targeting of fluorescently labelled high-affinity NYESO-specific TCRs to HLA-A2-, NY-ESO-1157-165-positive tumors in xenografted mice. In vivo ImmTAC-NYE efficacy was tested in a tumor model in which human lymphocytes were stably co-engrafted into NSG mice harboring tumor xenografts; efficacy was observed in both tumor prevention and established tumor models using a GFP fluorescence readout. Quantitative RT-PCR was used to analyze the expression of both NY-ESO-1 and LAGE-1 antigens in 15 normal tissues, 5 cancer cell lines, 10 NSCLC, and 10 ovarian cancer samples. Overall, LAGE-1 RNA was expressed at a greater frequency and at higher levels than NY-ESO-1 in the tumor samples. These data support the clinical utility of ImmTAC-NYE as an immunotherapeutic agent for a variety of cancers.

  18. C595 antibody: A potential vector for targeted alpha therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Allen, B.J.

    2005-01-01

    Full text: Mucins are high molecular-weight heavily glycosylated glycoproteins with many oligosaccharide side-chains, linked to a protein backbone called apomucin. A total of 19 different mucin genes (MUC1-MUC4, MUC5B, MUC5AC, MUC6-MUC18) have been identified to date. Mucins are present on the surface of most epithelial cells and play a role in their protection and lubrication. In cancer cells the mucin molecule becomes altered, thus representing an important target for diagnosis and therapy. Urinary epithelial mucin1 (MUC1) is found to be frequently up-regulated and abnormally glycosylated in a number of common malignancies, including breast, bladder, colon, ovarian and gastric cancer. The monoclonal antibody C595 is an IgG3 murine MAb raised against the protein core of human MUC1. Epitope mapping has shown that C595 recognizes a tetrapeptide motif (RPAP) within the protein core of MUC1 mucin that contains a large domain of multiples of a highly conserved 20-amino-acid-repeat sequence (PDTRPAPGSTAPPAHGVTSA). This antibody has previously been radiolabelled with 99m Tc and 111 In and used for imaging a range of tumour types including ovary, breast and bladder. The antibody has also been radiolabelled with 67 Cu and 188 Re for the therapy of superficial bladder cancer. More recently we have investigated the pre-clinical use of the C595 antibody for targeted alpha therapy using 213 Bi which emits alpha particles with high linear energy transfer (LET), short range (80 m) radiation and has a short physical half-life of 45.6 minutes. Alpha particles are some 7300 times heavier than beta particles and in theory, following binding of an alpha immunocongugates to the target, a large fraction of the alpha particle energy is delivered to cancer cells, with minimal concomitant radiation of normal tissues. 213 Bi was produced from the 225 Ac/ 213 Bi generator. For antibody conjugation the chelator, cyclic diethylenetriaminepentacetic acid anhydride (DTPA) was used. Initial

  19. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma

    DEFF Research Database (Denmark)

    van de Donk, Niels W C J; Moreau, Philippe; Plesner, Torben

    2016-01-01

    Immunotherapeutic strategies are emerging as promising therapeutic approaches in multiple myeloma (MM), with several monoclonal antibodies in advanced stages of clinical development. Of these agents, CD38-targeting antibodies have marked single agent activity in extensively pretreated MM, and pre...

  20. Males without apparent alloimmunization could have HLA antibodies that recognize target HLA specificities expressed on cells.

    Science.gov (United States)

    Nakamura, J; Nakajima, F; Kamada, H; Tadokoro, K; Nagai, T; Satake, M

    2017-05-01

    Human leukocyte antigen (HLA) antibodies, which are involved in the development of transfusion-related side effects such as transfusion-related lung injury, are sometimes found in males without a history of alloimmunization (eg, transplantation and transfusion). Whether HLA antibodies in male donors can interact with their target HLA specificities expressed on cells have not been completely investigated. The HLA antibodies detected in 7 male donors were characterized. Flow cytometry and immunocomplex capture fluorescence analysis were performed to evaluate the ability of these antibodies to bind with target HLA specificities expressed on cells. The association of these antibodies with complement was examined using anti-C1q antibody. Sustainability of HLA antibodies over time was compared in 26 male vs 57 female donors. The antibodies from all 7 donors recognized intact HLA molecules coated onto microbeads. The antibodies in 2 of 7 donors also recognized their target HLA specificities expressed on cells. Furthermore, the antibodies in one of these 2 donors showed HLA specificities that involved complement binding. Twenty-one of 26 initially positive male donors had turned negative for HLA antibody at least 1 year after their initial positive screening, whereas HLA antibody positivity was maintained for a long time in most female donors. Males without apparent alloimmunization could have HLA antibodies that recognize their target HLA specificities on cells and that could potentially modify molecular events in affected cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies.

    Science.gov (United States)

    Dingjan, Tamir; Spendlove, Ian; Durrant, Lindy G; Scott, Andrew M; Yuriev, Elizabeth; Ramsland, Paul A

    2015-10-01

    Monoclonal antibodies represent the most successful class of biopharmaceuticals for the treatment of cancer. Mechanisms of action of therapeutic antibodies are very diverse and reflect their ability to engage in antibody-dependent effector mechanisms, internalize to deliver cytotoxic payloads, and display direct effects on cells by lysis or by modulating the biological pathways of their target antigens. Importantly, one of the universal changes in cancer is glycosylation and carbohydrate-binding antibodies can be produced to selectively recognize tumor cells over normal tissues. A promising group of cell surface antibody targets consists of carbohydrates presented as glycolipids or glycoproteins. In this review, we outline the basic principles of antibody-based targeting of carbohydrate antigens in cancer. We also present a detailed structural view of antibody recognition and the conformational properties of a series of related tissue-blood group (Lewis) carbohydrates that are being pursued as potential targets of cancer immunotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    Science.gov (United States)

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. IBC's 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics International Conferences and 2010 Annual Meeting of the Antibody Society. December 5-9, 2010, San Diego, CA USA.

    Science.gov (United States)

    Arnett, Samantha O; Teillaud, Jean-Luc; Wurch, Theirry; Reichert, Janice M; Dunlop, Cameron; Huber, Michael

    2011-01-01

    The 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics international conferences, and the 2010 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5-9, 2010 in San Diego, CA. The conferences were organized with a focus on antibody engineering only on the first day and a joint engineering/therapeutics session on the last day. Delegates could select from presentations that occurred in two simultaneous sessions on days 2 and 3. Day 1 included presentations on neutralizing antibodies and the identification of vaccine targets, as well as a historical overview of 20 years of phage display utilization. Topics presented in the Antibody Engineering sessions on day 2 and 3 included antibody biosynthesis, structure and stability; antibodies in a complex environment; antibody half-life; and targeted nanoparticle therapeutics. In the Antibody Therapeutics sessions on days 2 and 3, preclinical and early stage development and clinical updates of antibody therapeutics, including TRX518, SYM004, MM111, PRO140, CVX-241, ASG-5ME, U3-1287 (AMG888), R1507 and trastuzumab emtansine, were discussed, and perspectives were provided on the development of biosimilar and biobetter antibodies, including coverage of regulatory and intellectual property issues. The joint engineering/therapeutics session on the last day focused on bispecific and next-generation antibodies.

  4. Neurofilament light as an immune target for pathogenic antibodies.

    Science.gov (United States)

    Puentes, Fabiola; van der Star, Baukje J; Boomkamp, Stephanie D; Kipp, Markus; Boon, Louis; Bosca, Isabel; Raffel, Joel; Gnanapavan, Sharmilee; van der Valk, Paul; Stephenson, Jodie; Barnett, Susan C; Baker, David; Amor, Sandra

    2017-12-01

    Antibodies to neuronal antigens are associated with many neurological diseases including paraneoplastic neurological disorders, epilepsy, amyotrophic lateral sclerosis and multiple sclerosis. Immunization with neuronal antigens such as neurofilament light (NF-L), a neuronal intermediate filament in axons, has been shown to induce neurological disease and spasticity in mice. Also, although antibodies to NF-L are widely used as surrogate biomarkers of axonal injury in amyotrophic lateral sclerosis and multiple sclerosis, it remains to be elucidated if antibodies to NF-L contribute to neurodegeneration and neurological disease. To address this, we examined the pathogenic role of antibodies directed to NF-L in vitro using spinal cord co-cultures and in vivo in experimental autoimmune encephalomyelitis (EAE) and optic neuritis animal models of multiple sclerosis. Here we show that peripheral injections of antibodies to NF-L augmented clinical signs of neurological disease in acute EAE, increased retinal ganglion cell loss in experimental optic neuritis and induced neurological signs following intracerebral injection into control mice. The pathogenicity of antibodies to NF-L was also observed in spinal cord co-cultures where axonal loss was induced. Taken together, our results reveal that as well as acting as reliable biomarkers of neuronal damage, antibodies to NF-L exacerbate neurological disease, suggesting that antibodies to NF-L generated during disease may also be pathogenic and play a role in the progression of neurodegeneration. © 2017 John Wiley & Sons Ltd.

  5. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond

    DEFF Research Database (Denmark)

    van de Donk, Niels W C J; Janmaat, Maarten L.; Mutis, Tuna

    2016-01-01

    CD38 is a multifunctional cell surface protein that has receptor as well as enzyme functions. The protein is generally expressed at low levels on various hematological and solid tissues, while plasma cells express particularly high levels of CD38. The protein is also expressed in a subset of hema...... strong anti-tumor activity in preclinical models. The antibody engages diverse mechanisms of action, including complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, programmed cell death, modulation of enzymatic activity...... combination therapies with existing as well as emerging therapies, which are currently evaluated in the clinic. Finally, CD38 antibodies may have a role in the treatment of diseases beyond hematological malignancies, including solid tumors and antibody-mediated autoimmune diseases. © 2016 John Wiley & Sons A....../S. Published by John Wiley & Sons Ltd....

  6. Site-specifically radioiodinated antibody for targeting tumors

    International Nuclear Information System (INIS)

    Rea, D.W.; Ultee, M.E.; Belinka, B.A. Jr.; Coughlin, D.J.; Alvarez, V.L.

    1990-01-01

    Labeling of an antibody site specifically through its carbohydrate regions preserves its antigen-binding activity. Previously site-specific labeling studies have conjugated antibodies with metallic radioisotopes or drugs. We now report site-specific labeling with a new radioiodinated compound, 2-hydroxy-5-iodo-3-methylbenzoyl hydrazide, whose synthesis we described earlier. The compound is reacted with aldehyde groups produced by specific oxidation of the carbohydrate portion of the antibody with sodium m-periodate. Optimized conjugation conditions give good recovery of active antibody containing 10 groups per molecule. The conjugate is stable in solution for at least several weeks at both 4 and -70 degrees C. When injected into nude mice bearing LS174T human cancer xenografts, the conjugate of B72.3 antibody localizes well to tumor tissue, with low uptake by other organs. This biodistribution is similar to that of conjugate prepared by using solid-phase chloramine-T (Iodohead). There are only two significant differences. First, the carbohydrate conjugate is much less susceptible to dehalogenation, and thus shows much less thyroid uptake. Secondly, the biological half-life of the carbohydrate conjugate was about half that of the chloramine-T one. This could be due primarily to lysis of the hydrazine bond through which the antibody is attached to the compound, which would then be excreted rapidly by itself. The new reagent will be especially useful for antibodies which either cannot be labeled by chloramine-T methods, or whose activity is impaired by them

  7. Natural Killer (NK- and T-Cell Engaging Antibody-Derived Therapeutics

    Directory of Open Access Journals (Sweden)

    Christoph Stein

    2012-06-01

    Full Text Available Unmodified antibodies (abs have been successful in the treatment of hematologic malignancies, but less so for the treatment of solid tumors. They trigger anti-tumor effects through their Fc-domains, and one way to improve their efficacy is to optimize their interaction with the effectors through Fc-engineering. Another way to empower abs is the design of bispecific abs and related fusion proteins allowing a narrower choice of effector cells. Here we review frequently chosen classes of effector cells, as well as common trigger molecules. Natural Killer (NK- and T-cells are the most investigated populations in therapeutical approaches with bispecific agents until now. Catumaxomab, the first bispecific ab to receive drug approval, targets the tumor antigen Epithelial Cell Adhesion Molecule (EpCAM and recruits T-cells via a binding site for the cell surface protein CD3. The next generation of recombinant ab-derivatives replaces the broadly reactive Fc-domain by a binding domain for a single selected trigger. Blinatumomab is the first clinically successful member of this class, targeting cancer cells via CD19 and engaging T-cells by CD3. Other investigators have developed related recombinant fusion proteins to recruit effectors, such as NK-cells and macrophages. The first such agents currently in preclinical and clinical development will be discussed.

  8. Synergy between vascular targeting agents and antibody-directed therapy

    International Nuclear Information System (INIS)

    Pedley, R. Barbara; El-Emir, Ethaar; Flynn, Aiden A.; Boxer, Geoffrey M.; Dearling, Jason; Raleigh, James A.; Hill, Sally A.; Stuart, Sam; Motha, Reeya; Begent, Richard H.J.

    2002-01-01

    Purpose: Tumor heterogeneity necessitates the use of combined therapies. We have shown that combining antibody-directed therapy with antivascular agents converts a subcurative to a curative treatment. The purpose of this study was to investigate, by radioluminographic and microscopic techniques, the regional effects of the two complementary therapies. Methods and Materials: Nude mice bearing colorectal tumors were injected with 125 I-labeled anti-carcinoembryonic antigen antibody, and images were obtained for antibody distribution and modeling studies using radioluminography. For therapy studies, the mice were given radioimmunotherapy alone ( 131 I-A5B7 anti-carcinoembryonic antigen antibody), the antivascular agent combretastatin A-4 3-0-phosphate (200 mg/kg), or both. Extra mice were used to study the regional tumor effects of these therapies over time: relevant histochemical procedures were performed on tissue sections to obtain composite digital microscopic images of apoptosis, blood vessels, perfusion, hypoxia, and morphology. Results: Antibody distribution, modeling, and immunohistochemistry showed how radioimmunotherapy (7.4 MBq/40 μg antibody) effectively treated the outer, well-oxygenated tumor region only. Combretastatin A-4 3-0-phosphate treated the more hypoxic center, and in doing so altered the relationship between tumor parameters. Conclusion: The combined complementary therapies produced cures by destroying tumor regions with different pathophysiologies. Relating these regional therapeutic effects to the relevant tumor parameters microscopically allows optimization of therapy and improved translation to clinical trials

  9. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells

    Czech Academy of Sciences Publication Activity Database

    Ohradanova-Repic, A.; Nogueira, E.; Hartl, I.; Gomes, A.C.; Preto, A.; Steinhuber, E.; Muehlgrabner, V.; Repic, M.; Kuttke, M.; Zwirzitz, A.; Prouza, M.; Suchánek, M.; Wozniak-Knopp, G.; Hořejší, Václav; Schabbauer, G.; Cavaco-Paulo, A.; Stockinger, H.

    2018-01-01

    Roč. 14, č. 1 (2018), s. 123-130 ISSN 1549-9634 Institutional support: RVO:68378050 Keywords : Active targeting * Liposome functionalization * Immunoliposome * Antibody engineering * Recombinant Fab antibody fragment Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 5.720, year: 2016

  10. VNAR single-domain antibodies specific for BAFF inhibit B cell development by molecular mimicry.

    Science.gov (United States)

    Häsler, Julien; Flajnik, Martin F; Williams, Gareth; Walsh, Frank S; Rutkowski, J Lynn

    2016-07-01

    B cell-activating factor (BAFF) plays a dominant role in the B cell homeostasis. However, excessive BAFF promotes the development of autoreactive B-cells and several antibodies have been developed to block its activity. Bispecific antibodies with added functionality represent the next wave of biologics that may be more effective in the treatment of complex autoimmune disease. The single variable domain from the immunoglobulin new antigen receptor (VNAR) is one of the smallest antibody recognition units that could be combined with monospecific antibodies to develop bispecific agents. We isolated a panel of BAFF-binding VNARs with low nM potency from a semi-synthetic phage display library and examined their functional activity. The anti-BAFF VNARs blocked the binding of BAFF to all three of its receptors (BR3, TACI and BCMA) and the presence of the conserved DXL receptor motif found in the CDR3 regions suggests molecular mimicry as the mechanism of antagonism. One clone was formatted as an Fc fusion for functional testing and it was found to inhibit both mouse and human BAFF with equal potency ex vivo in a splenocyte proliferation assay. In mice, subchronic administration reduced the number of immature and transitional intermediates B cells and mature B cell subsets. These results indicate that VNAR single domain antibodies function as selective B-cell inhibitors and offer an alternative molecular format for targeting B-cell disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Using llama derived single domain antibodies to target botulinum neurotoxins

    Science.gov (United States)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  12. Biting back: BiTE antibodies as a promising therapy for acute myeloid leukemia.

    Science.gov (United States)

    Walter, Roland B

    2014-06-01

    The experience with gemtuzumab ozogamicin has highlighted both the potential value and limitations of antibodies in acute myeloid leukemia (AML). Recently, bispecific T-cell engager (BiTE) antibodies have emerged as a means to harness polyclonal cytotoxic T-cells and cause highly efficient lysis of targeted tumor cells. Promising early results have been obtained with the CD19-directed BiTE antibody, blinatumomab, in patients with acute lymphoblastic leukemia. A first candidate for AML is the CD33/CD3 molecule, AMG 330, for which several recent preclinical studies demonstrated high potency and efficacy in destroying CD33(+) human AML cells. Many questions remain to be addressed, but BiTE antibodies may offer an exciting new tool in a disease for which the outcomes in many patients remain unsatisfactory.

  13. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.

  14. Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Dorte L; Kümler, Iben; Palshof, Jesper Andreas

    2013-01-01

    Therapies targeting the human epidermal growth factor receptor (HER) 2 are effective in metastatic breast cancer (MBC). We review the efficacy of HER2-directed therapies, focussing on monoclonal antibodies and tyrosine kinase inhibitors targeting HER2 that have been tested in phase II-III studies...

  15. Antibodies to autoantigen targets in myasthenia and their value in clinical practice

    Directory of Open Access Journals (Sweden)

    S. I. Dedaev

    2014-01-01

    Full Text Available Myasthenia gravis is a classic autoimmune disease, which clinical manifestations in the form of weakness and abnormal muscle fatigue, due to the damaging effect of polyclonal antibodies to different structures of the neuromuscular synapse and muscles. The study of autoimmune substrate with myasthenia is routine in many clinics dealing with the problems of neuromuscular pathology, and the identification of high concentration of serum antibodies to a number of antigenic structures is the gold standard in diagnosis.Determination of serum antibodies to various autoimmune targets is an important tool in clinical practice. The majority of patients shows the high concentration of antibodies to AchR that gives the opportunity to use it as an important diagnostic criterion. The specificity of changes in the concentration of AchR-antibodies due to pathogenetic treatment allows to objectify the suppression of autoimmune aggression and evaluate the reliability of remission. However, the absence of AchR-antibodies when there are clear clinical and electromyography signs of myasthenia gravis suggests an autoimmune attack against a number of other targets, the most studied of which is the MuSK. On the contrary, patients with myasthenia gravis associated with thymoma, almost always have a higher level of AchR-antibodies. The presence of thymoma is accompanied by the generation of antibodies to titin and RyR, which is also observed in persons with late-onset myasthenia without thymoma. High concentration of antibodies to these structures can be interpreted as a reliable sign of thymoma in patients younger than 60 years.

  16. How immunoglobulin G antibodies kill target cells: revisiting an old paradigm.

    Science.gov (United States)

    Biburger, Markus; Lux, Anja; Nimmerjahn, Falk

    2014-01-01

    The capacity of immunoglobulin G (IgG) antibodies to eliminate virtually any target cell has resulted in the widespread introduction of cytotoxic antibodies into the clinic in settings of cancer therapy, autoimmunity, and transplantation, for example. More recently, it has become apparent that also the protection from viral infection via IgG antibodies may require cytotoxic effector functions, suggesting that antibody-dependent cellular cytotoxicity (ADCC) directed against malignant or virally infected cells is one of the most essential effector mechanisms triggered by IgG antibodies to protect the host. A detailed understanding of the underlying molecular and cellular pathways is critical, therefore, to make full use of this antibody effector function. Several studies over the last years have provided novel insights into the effector pathways and innate immune effector cells responsible for ADCC reactions. One of the most notable outcomes of many of these reports is that cells of the mononuclear phagocytic system rather than natural killer cells are critical for removal of IgG opsonized target cells in vivo. © 2014 Elsevier Inc. All rights reserved.

  17. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    International Nuclear Information System (INIS)

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. The authors have studied the binding of 125 I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind =Ka[Ag total]/1 + Ka[Ag total]. Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10 8 M -1 are not likely to be useful for drug targeting or tumor imaging

  18. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. We have studied the binding of 125I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind (formula; see text). Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10(8) M-1 are not likely to be useful for drug targeting or tumor imaging.

  19. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment

    Directory of Open Access Journals (Sweden)

    María Elena Iezzi

    2018-02-01

    Full Text Available Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs, in particular those engineered from the variable heavy-chain fragment (VHH gene found in Camelidae heavy-chain antibodies (or IgG2 and IgG3, are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.

  20. DNA-templated antibody conjugation for targeted drug delivery to cancer cells

    DEFF Research Database (Denmark)

    Liu, Tianqiang

    2016-01-01

    conjugation strategy. Recently, a site-selective antibody conjugation method called “DNA-templated protein conjugation (DTPC)” was developed by our group. The site-selective covalently attachment of single-stranded DNA (ssDNA) to proteins was achieved by using a metal-affinity DNA probe and DNA-templated...... state to get a good pharmacological performance. Recombinant antibody engineering with non-natural amino acids, or enzyme-mediated conjugation approaches (transglutaminase, Sortase A or endoglycosidase) have been reported for producing homogeneous antibody conjugates. However, these methods require...... organic synthesis due to the wide existence of the 3-histidine cluster in most wild-type proteins. In this thesis, three projects that relate to targeted drug delivery to cancer cells based on the DTPC method is described. The first project was a delivery system which uses transferrin as the targeting...

  1. Human IgG1 antibodies suppress angiogenesis in a target-independent manner

    NARCIS (Netherlands)

    Bogdanovich, Sasha; Kim, Younghee; Mizutani, Takeshi; Yasuma, Reo; Tudisco, Laura; Cicatiello, Valeria; Bastos-Carvalho, Ana; Kerur, Nagaraj; Hirano, Yoshio; Baffi, Judit Z; Tarallo, Valeria; Li, Shengjian; Yasuma, Tetsuhiro; Arpitha, Parthasarathy; Fowler, Benjamin J; Wright, Charles B; Apicella, Ivana; Greco, Adelaide; Brunetti, Arturo; Ruvo, Menotti; Sandomenico, Annamaria; Nozaki, Miho; Ijima, Ryo; Kaneko, Hiroki; Ogura, Yuichiro; Terasaki, Hiroko; Ambati, Balamurali K; Leusen, Jeanette HW; Langdon, Wallace Y; Clark, Michael R; Armour, Kathryn L; Bruhns, Pierre; Verbeek, J Sjef; Gelfand, Bradley D; De Falco, Sandro; Ambati, Jayakrishna

    2016-01-01

    Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world's population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in

  2. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses

    NARCIS (Netherlands)

    Melchers, Mark; Bontjer, Ilja; Tong, Tommy; Chung, Nancy P. Y.; Klasse, Per Johan; Eggink, Dirk; Montefiori, David C.; Gentile, Maurizio; Cerutti, Andrea; Olson, William C.; Berkhout, Ben; Binley, James M.; Moore, John P.; Sanders, Rogier W.

    2012-01-01

    An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these

  3. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer

    OpenAIRE

    Prabhsimranjot Singh; Sudhamshi Toom; Yiwu Huang

    2017-01-01

    Abstract Targeted therapy and immunotherapy have revolutionized treatment of various cancers in the past decade. Despite targeted therapy with trastuzumab in Her2-positive gastric cancer patients, survival has been dismal, mostly due to disease progression and toxicity related to the treatments. One area of active development is looking for ideal monoclonal antibodies (IMAB) specific to the proteins only on the tumor and hence avoiding unnecessary side effects. Claudin proteins with isoform 2...

  4. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    Science.gov (United States)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  5. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies.

    Science.gov (United States)

    Botkjaer, Kenneth A; Fogh, Sarah; Bekes, Erin C; Chen, Zhuo; Blouse, Grant E; Jensen, Janni M; Mortensen, Kim K; Huang, Mingdong; Deryugina, Elena; Quigley, James P; Declerck, Paul J; Andreasen, Peter A

    2011-08-15

    Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types, with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found to harbour the epitopes for three conformation-specific monoclonal antibodies, two with a preference for the zymogen form pro-uPA, and one with a preference for active uPA. All three antibodies were shown to have overlapping epitopes, with three common residues being crucial for all three antibodies, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active uPA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems, the antibodies inhibited tumour cell invasion and dissemination, providing evidence for the feasibility of pharmaceutical intervention with serine protease activity by targeting surface loops that undergo conformational changes during zymogen activation. © The Authors Journal compilation © 2011 Biochemical Society

  6. Hybrid IgG4/IgG4 Fc antibodies form upon 'Fab-arm' exchange as demonstrated by SDS-PAGE or size-exclusion chromatography

    NARCIS (Netherlands)

    Rispens, Theo; den Bleker, Tamara H.; Aalberse, Rob C.

    2010-01-01

    Human IgG4 antibodies are dynamic molecules that in vivo exchange half-molecules to become bispecific antibodies. Here we show that IgG4 antibodies and IgG4 Fc fragments similarly exchange resulting in hybrid antibodies (a single Fab + Fc) with a molecular weight of ca. 100 kDa. These antibodies can

  7. Design and Pharmacokinetic Characterization of Novel Antibody Formats for Ocular Therapeutics.

    Science.gov (United States)

    Gadkar, Kapil; Pastuskovas, Cinthia V; Le Couter, Jennifer E; Elliott, J Michael; Zhang, Jianhuan; Lee, Chingwei V; Sanowar, Sarah; Fuh, Germaine; Kim, Hok Seon; Lombana, T Noelle; Spiess, Christoph; Nakamura, Makia; Hass, Phil; Shatz, Whitney; Meng, Y Gloria; Scheer, Justin M

    2015-08-01

    To design and select the next generation of ocular therapeutics, we performed a comprehensive ocular and systemic pharmacokinetic (PK) analysis of a variety of antibodies and antibody fragments, including a novel-designed bispecific antibody. Molecules were administrated via intravitreal (IVT) or intravenous (IV) injections in rabbits, and antibody concentrations in each tissue were determined by ELISA. A novel mathematical model was developed to quantitate the structure-PK relationship. After IVT injection, differences in vitreal half-life observed across all molecules ranged between 3.2 and 5.2 days. Modification or elimination of the fragment crystallizable (Fc) region reduced serum half-life from 9 days for the IgG to 5 days for the neonatal Fc receptor (FcRn) null mAb, to 3.1 to 3.4 days for the other formats. The F(ab')2 was the optimal format for ocular therapeutics with comparable vitreal half-life to full-length antibodies, but with minimized systemic exposure. Concomitantly, the consistency among mathematical model predictions and observed data validated the model for future PK predictions. In addition, we showed a novel design to develop bispecific antibodies, here with activity targeting multiple angiogenesis pathways. We demonstrated that protein molecular weight and Fc region do not play a critical role in ocular PK, as they do systemically. Moreover, the mathematical model supports the selection of the "ideal therapeutic" by predicting ocular and systemic PK of any antibody format for any dose regimen. These findings have important implications for the design and selection of ocular therapeutics according to treatment needs, such as maximizing ocular half-life and minimizing systemic exposure.

  8. A novel anti-CD146 antibody specifically targets cancer cells by internalizing the molecule.

    Science.gov (United States)

    Nollet, Marie; Stalin, Jimmy; Moyon, Anaïs; Traboulsi, Waël; Essaadi, Amel; Robert, Stéphane; Malissen, Nausicaa; Bachelier, Richard; Daniel, Laurent; Foucault-Bertaud, Alexandrine; Gaudy-Marqueste, Caroline; Lacroix, Romaric; Leroyer, Aurélie S; Guillet, Benjamin; Bardin, Nathalie; Dignat-George, Françoise; Blot-Chabaud, Marcel

    2017-12-22

    CD146 is an adhesion molecule present on many tumors (melanoma, kidney, pancreas, breast, ...). In addition, it has been shown to be expressed on vascular endothelial and smooth muscle cells. Generating an antibody able to specifically recognize CD146 in cancer cells (designated as tumor CD146), but not in normal cells, would thus be of major interest for targeting tumor CD146 without affecting the vascular system. We thus generated antibodies against the extracellular domain of the molecule produced in cancer cells and selected an antibody that specifically recognizes tumor CD146. This antibody (TsCD146 mAb) was able to detect CD146-positive tumors in human biopsies and in vivo , by PET imaging, in a murine xenograft model. In addition, TsCD146 mAb antibody was able to specifically detect CD146-positive cancer microparticles in the plasma of patients. TsCD146 mAb displayed also therapeutic effects since it was able to reduce the growth of human CD146-positive cancer cells xenografted in nude mice. This effect was due to a decrease in the proliferation and an increase in the apoptosis of CD146-positive cancer cells after TsCD146-mediated internalization of the cell surface CD146. Thus, TsCD146 mAb could be of major interest for diagnostic and therapeutic strategies against CD146-positive tumors in a context of personalized medicine.

  9. A novel monoclonal antibody targeting coxsackie virus and adenovirus receptor inhibits tumor growth in vivo.

    Science.gov (United States)

    Kawada, Manabu; Inoue, Hiroyuki; Kajikawa, Masunori; Sugiura, Masahito; Sakamoto, Shuichi; Urano, Sakiko; Karasawa, Chigusa; Usami, Ihomi; Futakuchi, Mitsuru; Masuda, Tohru

    2017-01-11

    To create a new anti-tumor antibody, we conducted signal sequence trap by retrovirus-meditated expression method and identified coxsackie virus and adenovirus receptor (CXADR) as an appropriate target. We developed monoclonal antibodies against human CXADR and found that one antibody (6G10A) significantly inhibited the growth of subcutaneous as well as orthotopic xenografts of human prostate cancer cells in vivo. Furthermore, 6G10A also inhibited other cancer xenografts expressing CXADR, such as pancreatic and colorectal cancer cells. Knockdown and overexpression of CXADR confirmed the dependence of its anti-tumor activity on CXADR expression. Our studies of its action demonstrated that 6G10A exerted its anti-tumor activity primarily through both antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Moreover, 6G10A reacted with human tumor tissues, such as prostate, lung, and brain, each of which express CXADR. Although we need further evaluation of its reactivity and safety in human tissues, our results show that a novel anti-CXADR antibody may be a feasible candidate for cancer immunotherapy.

  10. Self-assembly of carbon nanotubes and antibodies on tumours for targeted, amplified delivery

    Science.gov (United States)

    Mulvey, J. Justin; Villa, Carlos H.; McDevitt, Michael R.; Escorcia, Freddy E.; Casey, Emily; Scheinberg, David A.

    2013-01-01

    Single-walled carbon nanotubes (SWNTs) can deliver imaging agents or drugs to tumours and offer significant advantages over approaches based on antibodies or other nanomaterials. In particular, the nanotubes can carry a substantial amount of cargo (100 times more than a monoclonal antibody), but can still be rapidly eliminated from circulation by renal filtration, like a small molecule, due to their high aspect ratio. Here we show that SWNTs can target tumours in a two-step approach in which nanotubes modified with morpholino oligonucleotide sequences bind to cancer cells that have been pre-targeted with antibodies modified with oligonucleotide strands complementary to those on the nanotubes. The nanotubes can carry fluorophores or radioisotopes, and were shown to selectively bind to cancer cells in vitro and in tumour-bearing xenografted mice. The binding process is also found to lead to antigen capping and internalization of the antibody/nanotube complexes. The nanotube conjugates were labelled with both alpha-particle and gamma-ray emitting isotopes, at high specific activities. Conjugates labelled with alpha-particle generating 225Ac were found to clear rapidly, thus mitigating radioisotope toxicity, and were shown to be therapeutically effective in vivo. PMID:24077028

  11. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer

    Directory of Open Access Journals (Sweden)

    Prabhsimranjot Singh

    2017-05-01

    Full Text Available Abstract Targeted therapy and immunotherapy have revolutionized treatment of various cancers in the past decade. Despite targeted therapy with trastuzumab in Her2-positive gastric cancer patients, survival has been dismal, mostly due to disease progression and toxicity related to the treatments. One area of active development is looking for ideal monoclonal antibodies (IMAB specific to the proteins only on the tumor and hence avoiding unnecessary side effects. Claudin proteins with isoform 2 are one such protein, specific for several cancers, particularly gastric cancer and its metastases, leading to the development of anti-claudin 18.2 specific antibody, claudiximab. This review will highlight the latest development of claudiximab as first in class IMAB for the treatment of gastric cancer.

  12. Development of antibody-based c-Met inhibitors for targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Lee D

    2015-02-01

    Full Text Available Dongheon Lee, Eun-Sil Sung, Jin-Hyung Ahn, Sungwon An, Jiwon Huh, Weon-Kyoo You Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea Abstract: Signaling pathways mediated by receptor tyrosine kinases (RTKs and their ligands play important roles in the development and progression of human cancers, which makes RTK-mediated signaling pathways promising therapeutic targets in the treatment of cancer. Compared with small-molecule compounds, antibody-based therapeutics can more specifically recognize and bind to ligands and RTKs. Several antibody inhibitors of RTK-mediated signaling pathways, such as human epidermal growth factor receptor 2, vascular endothelial growth factor, epidermal growth factor receptor or vascular endothelial growth factor receptor 2, have been developed and are widely used to treat cancer patients. However, since the therapeutic options are still limited in terms of therapeutic efficacy and types of cancers that can be treated, efforts are being made to identify and evaluate novel RTK-mediated signaling pathways as targets for more efficacious cancer treatment. The hepatocyte growth factor/c-Met signaling pathway has come into the spotlight as a promising target for development of potent cancer therapeutic agents. Multiple antibody-based therapeutics targeting hepatocyte growth factor or c-Met are currently in preclinical or clinical development. This review focuses on the development of inhibitors of the hepatocyte growth factor/c-Met signaling pathway for cancer treatment, including critical issues in clinical development and future perspectives for antibody-based therapeutics. Keywords: hepatocyte growth factor, ligands, receptor tyrosine kinase, signaling pathway, therapeutic agent

  13. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness

    Directory of Open Access Journals (Sweden)

    Isabel Corraliza-Gorjón

    2017-12-01

    Full Text Available Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin and bevacizumab (Avastin, respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.

  14. Enhanced neutralization potency of botulinum neurotoxin antibodies using a red blood cell-targeting fusion protein.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    2011-03-01

    Full Text Available Botulinum neurotoxin (BoNT potently inhibits cholinergic signaling at the neuromuscular junction. The ideal countermeasures for BoNT exposure are monoclonal antibodies or BoNT antisera, which form BoNT-containing immune complexes that are rapidly cleared from the general circulation. Clearance of opsonized toxins may involve complement receptor-mediated immunoadherence to red blood cells (RBC in primates or to platelets in rodents. Methods of enhancing immunoadherence of BoNT-specific antibodies may increase their potency in vivo. We designed a novel fusion protein (FP to link biotinylated molecules to glycophorin A (GPA on the RBC surface. The FP consists of an scFv specific for murine GPA fused to streptavidin. FP:mAb:BoNT complexes bound specifically to the RBC surface in vitro. In a mouse model of BoNT neutralization, the FP increased the potency of single and double antibody combinations in BoNT neutralization. A combination of two antibodies with the FP gave complete neutralization of 5,000 LD50 BoNT in mice. Neutralization in vivo was dependent on biotinylation of both antibodies and correlated with a reduction of plasma BoNT levels. In a post-exposure model of intoxication, FP:mAb complexes gave complete protection from a lethal BoNT/A1 dose when administered within 2 hours of toxin exposure. In a pre-exposure prophylaxis model, mice were fully protected for 72 hours following administration of the FP:mAb complex. These results demonstrate that RBC-targeted immunoadherence through the FP is a potent enhancer of BoNT neutralization by antibodies in vivo.

  15. Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders.

    Science.gov (United States)

    Könning, Doreen; Rhiel, Laura; Empting, Martin; Grzeschik, Julius; Sellmann, Carolin; Schröter, Christian; Zielonka, Stefan; Dickgießer, Stephan; Pirzer, Thomas; Yanakieva, Desislava; Becker, Stefan; Kolmar, Harald

    2017-08-29

    Anti-idiotypic binders which specifically recognize the variable region of monoclonal antibodies have proven to be robust tools for pharmacokinetic studies of antibody therapeutics and for the development of cancer vaccines. In the present investigation, we focused on the identification of anti-idiotypic, shark-derived IgNAR antibody variable domains (vNARs) targeting the therapeutic antibodies matuzumab and cetuximab for the purpose of developing specific capturing ligands. Using yeast surface display and semi-synthetic, CDR3-randomized libraries, we identified several highly specific binders targeting both therapeutic antibodies in their corresponding variable region, without applying any counter selections during screening. Importantly, anti-idiotypic vNAR binders were not cross-reactive towards cetuximab or matuzumab, respectively, and comprised good target recognition in the presence of human and mouse serum. When coupled to magnetic beads, anti-idiotypic vNAR variants could be used as efficient capturing tools. Moreover, a two-step procedure involving vNAR-functionalized beads was employed for the enrichment of potentially bispecific cetuximab × matuzumab antibody constructs. In conclusion, semi-synthetic and CDR3-randomized vNAR libraries in combination with yeast display enable the fast and facile identification of anti-idiotypic vNAR domains targeting monoclonal antibodies primarily in an anti-idiotypic manner.

  16. Extracorporeal adsorption therapy: A Method to improve targeted radiation delivered by radiometal-labeled monoclonal antibodies.

    Energy Technology Data Exchange (ETDEWEB)

    Nemecek, Eneida R.; Green, Damian J.; Fisher, Darrell R.; Pagal, John M.; Lin, Yukang; Gopal, A. K.; Durack, Lawrence D.; Rajendran, Joseph G.; Wilbur, D. S.; Nilsson, Rune; Sandberg, Bengt; Press, Oliver W.

    2008-04-01

    Many investigators have demonstrated the ability to treat hematologic malignancies with radiolabeled monoclonal antibodies targeting hematopoietic antigens such as anti-CD20 and anti-CD45. [1-5] Although the remission rates achieved with radioimmunotherapy (RIT) are relatively high, many patients subsequently relapse presumably due to suboptimal delivery of enough radiation to eradicate the malignancy. The dose-response of leukemia and lymphoma to radiation has been proven. Substantial amounts of radiation can be delivered by RIT if followed by hematopoietic cell transplantation to rescue the bone marrow from myeloablation.[ref] However, the maximum dose of RIT that can be used is still limited by toxicity to normal tissues affected by nonspecific delivery of radiation. Efforts to improve RIT focus on improving the therapeutic ratios of radiation in target versus non-target tissues by removing the fraction of radioisotope that fails to bind to target tissues and circulates freely in the bloodstream perfusing non-target tissues. Our group and others have explored several alternatives for removal of unbound circulating antibody. [refs] One such method, extracorporeal adsorption therapy (ECAT) consists of removing unbound antibody by a method similar to plasmapheresis after critical circulation time and distribution of antibody into target tissues have been achieved. Preclinical studies of ECAT in murine xenograft models demonstrated significant improvement in therapeutic ratios of radioactivity. Chen and colleagues demonstrated that a 2-hour ECAT procedure could remove 40 to 70% of the radioactivity from liver, lung and spleen. [ref] Although isotope concentration in the tumor was initially unaffected, a 50% decrease was noted approximately 36 hours after the procedure. This approach was also evaluated in a limited phase I pilot study of patients with refractory B-cell lymphoma. [ref] After radiographic confirmation of tumor localization of a test dose of anti-CD20

  17. Targeted Killing of Virally Infected Cells by Radiolabeled Antibodies to Viral Proteins

    Science.gov (United States)

    Dadachova, Ekaterina; Patel, Mahesh C; Toussi, Sima; Apostolidis, Christos; Morgenstern, Alfred; Brechbiel, Martin W; Gorny, Miroslaw K; Zolla-Pazner, Susan; Casadevall, Arturo; Goldstein, Harris

    2006-01-01

    Background The HIV epidemic is a major threat to health in the developing and western worlds. A modality that targets and kills HIV-1-infected cells could have a major impact on the treatment of acute exposure and the elimination of persistent reservoirs of infected cells. The aim of this proof-of-principle study was to demonstrate the efficacy of a therapeutic strategy of targeting and eliminating HIV-1-infected cells with radiolabeled antibodies specific to viral proteins in vitro and in vivo. Methods and Findings Antibodies to HIV-1 envelope glycoproteins gp120 and gp41 labeled with radioisotopes bismuth 213 (213Bi) and rhenium 188 (188Re) selectively killed chronically HIV-1-infected human T cells and acutely HIV-1-infected human peripheral blood mononuclear cells (hPBMCs) in vitro. Treatment of severe combined immunodeficiency (SCID) mice harboring HIV-1-infected hPBMCs in their spleens with a 213Bi- or 188Re-labeled monoclonal antibody (mAb) to gp41 resulted in a 57% injected dose per gram uptake of radiolabeled mAb in the infected spleens and in a greater than 99% elimination of HIV-1-infected cells in a dose-dependent manner. The number of HIV-1-infected thymocytes decreased 2.5-fold in the human thymic implant grafts of SCID mice treated with the 188Re-labeled antibody to gp41 compared with those treated with the 188Re-control mAb. The treatment did not cause acute hematologic toxicity in the treated mice. Conclusions The current study demonstrates the effectiveness of HIV-targeted radioimmunotherapy and may provide a novel treatment option in combination with highly active antiretroviral therapy for the eradication of HIV. PMID:17090209

  18. Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis.

    Science.gov (United States)

    Ashraf, S Q; Umana, P; Mössner, E; Ntouroupi, T; Brünker, P; Schmidt, C; Wilding, J L; Mortensen, N J; Bodmer, W F

    2009-11-17

    The effect of glycoengineering a membrane specific anti-carcinoembryonic antigen (CEA) (this paper uses the original term CEA for the formally designated CEACAM5) antibody (PR1A3) on its ability to enhance killing of colorectal cancer (CRC) cell lines by human immune effector cells was assessed. In vivo efficacy of the antibody was also tested. The antibody was modified using EBNA cells cotransfected with beta-1,4-N-acetylglucosaminyltransferase III and the humanised hPR1A3 antibody genes. The resulting alteration of the Fc segment glycosylation pattern enhances the antibody's binding affinity to the FcgammaRIIIa receptor on human immune effector cells but does not alter the antibody's binding capacity. Antibody-dependent cellular cytotoxicity (ADCC) is inhibited in the presence of anti-FcgammaRIII blocking antibodies. This glycovariant of hPR1A3 enhances ADCC 10-fold relative to the parent unmodified antibody using either unfractionated peripheral blood mononuclear or natural killer (NK) cells and CEA-positive CRC cells as targets. NK cells are far more potent in eliciting ADCC than either freshly isolated monocytes or granulocytes. Flow cytometry and automated fluorescent microscopy have been used to show that both versions of hPR1A3 can induce antibody-dependent cellular phagocytosis (ADCP) by monocyte-derived macrophages. However, the glycovariant antibody did not mediate enhanced ADCP. This may be explained by the relatively low expression of FcgammaRIIIa on cultured macrophages. In vivo studies show the efficacy of glycoengineered humanised IgG1 PR1A3 in significantly improving survival in a CRC metastatic murine model. The greatly enhanced in vitro ADCC activity of the glycoengineered version of hPR1A3 is likely to be clinically beneficial.

  19. Purification of antibodies to bacterial antigens by an immunoadsorbent and a method to quantify their reaction with insoluble bacterial targets

    International Nuclear Information System (INIS)

    Mathews, H.L.; Minden, P.

    1979-01-01

    A combination of procedures was employed to develop a radioimmunoassay which quantified the binding of antibodies to antigens of either intact Propionibacterium acnes or to antigens of insoluble extracts derived from the bacteria. Reactive antibody populations were purified by use of bacterial immunoadsorbents which were prepared by coupling P. acnes to diethylaminoethyl cellulose. Binding of antibodies was detected with [ 125 I]staphylococcal protein A ([ 125 I]SpA) and optimal conditions for the assay defined by varying the amounts of antibodies, bacterial antigenic targets and [ 125 I]SpA. In antibody excess, 100% of available [ 125 I]SpA was bound by the target-antibody complexes. However, when antibody concentration was limiting, a linear relationship was demonstrated between per cent specific binding of[ 125 I]SpA and antibodies bound to bacterial targets. These results were achieved only with immunoadsorbent-purified antibody populations and not with hyperimmune sera or IgG. The radioimmunoassay detected subtle antigenic differences and similarities between P. acnes, P. acnes extracts and a variety of unrelated microorganisms. (Auth.)

  20. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection

    Science.gov (United States)

    Ferrari, Guido; Haynes, Barton F.; Koenig, Scott; Nordstrom, Jeffrey L.; Margolis, David M.; Tomaras, Georgia D.

    2017-01-01

    HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV‑1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection. PMID:27725635

  1. Fitness landscape of the human immunodeficiency virus envelope protein that is targeted by antibodies

    Science.gov (United States)

    Louie, Raymond H. Y.; Kaczorowski, Kevin J.; Chakraborty, Arup K.; McKay, Matthew R.

    2018-01-01

    HIV is a highly mutable virus, and over 30 years after its discovery, a vaccine or cure is still not available. The isolation of broadly neutralizing antibodies (bnAbs) from HIV-infected patients has led to renewed hope for a prophylactic vaccine capable of combating the scourge of HIV. A major challenge is the design of immunogens and vaccination protocols that can elicit bnAbs that target regions of the virus’s spike proteins where the likelihood of mutational escape is low due to the high fitness cost of mutations. Related challenges include the choice of combinations of bnAbs for therapy. An accurate representation of viral fitness as a function of its protein sequences (a fitness landscape), with explicit accounting of the effects of coupling between mutations, could help address these challenges. We describe a computational approach that has allowed us to infer a fitness landscape for gp160, the HIV polyprotein that comprises the viral spike that is targeted by antibodies. We validate the inferred landscape through comparisons with experimental fitness measurements, and various other metrics. We show that an effective antibody that prevents immune escape must selectively bind to high escape cost residues that are surrounded by those where mutations incur a low fitness cost, motivating future applications of our landscape for immunogen design. PMID:29311326

  2. Biodistribution and endocytosis of ICAM-1-targeting antibodies versus nanocarriers in the gastrointestinal tract in mice

    Directory of Open Access Journals (Sweden)

    Mane V

    2012-08-01

    Full Text Available Viraj Mane,1 Silvia Muro1, 21Institute for Bioscience and Biotechnology Research, 2Fischell Department of Bioengineering, University of Maryland, College Park, MD, USAAbstract: Drug delivery to the gastrointestinal (GI tract is key for improving treatment of GI maladies, developing oral vaccines, and facilitating drug transport into circulation. However, delivery of formulations to the GI tract is hindered by pH changes, degradative enzymes, mucus, and peristalsis, leading to poor GI retention. Targeting may prolong residence of therapeutics in the GI tract and enhance their interaction with this tissue, improving such aspects. We evaluated nanocarrier (NC and ligand-mediated targeting in the GI tract following gastric gavage in mice. We compared GI biodistribution, degradation, and endocytosis between control antibodies and antibodies targeting the cell surface determinant intercellular adhesion molecule 1 (ICAM-1, expressed on GI epithelium and other cell types. These antibodies were administered either as free entities or coated onto polymer NCs. Fluorescence and radioisotope tracing showed proximal accumulation, with preferential retention in the stomach, jejunum, and ileum; and minimal presence in the duodenum, cecum, and colon by 1 hour after administration. Upstream (gastric retention was enhanced in NC formulations, with decreased downstream (jejunal accumulation. Of the total dose delivered to the GI tract, ~60% was susceptible to enzymatic (but not pH-mediated degradation, verified both in vitro and in vivo. Attenuation of peristalsis by sedation increased upstream retention (stomach, duodenum, and jejunum. Conversely, alkaline NaHCO3, which enhances GI transit by decreasing mucosal viscosity, favored downstream (ileal passage. This suggests passive transit through the GI tract, governed by mucoadhesion and peristalsis. In contrast, both free anti-ICAM and anti-ICAM NCs demonstrated significantly enhanced upstream (stomach and duodenum

  3. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types

    Directory of Open Access Journals (Sweden)

    Kristina M. Ilieva

    2018-01-01

    Full Text Available Overexpression of the chondroitin sulfate proteoglycan 4 (CSPG4 has been associated with the pathology of multiple types of such as melanoma, breast cancer, squamous cell carcinoma, mesothelioma, neuroblastoma, adult and pediatric sarcomas, and some hematological cancers. CSPG4 has been reported to exhibit a role in the growth and survival as well as in the spreading and metastasis of tumor cells. CSPG4 is overexpressed in several malignant diseases, while it is thought to have restricted and low expression in normal tissues. Thus, CSPG4 has become the target of numerous anticancer treatment approaches, including monoclonal antibody-based therapies. This study reviews key potential anti-CSPG4 antibody and immune-based therapies and examines their direct antiproliferative/metastatic and immune activating mechanisms of action.

  4. Immunotherapy of melanoma with the immune costimulatory monoclonal antibodies targeting CD137

    Directory of Open Access Journals (Sweden)

    Li SY

    2013-09-01

    Full Text Available Shi-Yan Li, Yizhen Liu Cancer Research Institute, Scott and White Healthcare, Temple, TX, USA Abstract: Knowledge of how the immune system recognizes and attempts to control cancer growth and development has improved dramatically. The advent of immunotherapies for cancer has resulted in robust clinical responses and confirmed that the immune system can significantly inhibit tumor progression. Until recently, metastatic melanoma was a disease with limited treatment options and a poor prognosis. CD137 (also known as 4-1BB a member of the tumor necrosis factor (TNF receptor superfamily, is an activation-induced T cell costimulator molecule. Growing evidence indicates that anti-CD137 monoclonal antibodies possess strong antitumor properties, the result of their powerful capability to activate CD8+ T cells, to produce interferon (IFN-γ, and to induce cytolytic markers. Combination therapy of anti-CD137 with other anticancer agents, such as radiation, has robust tumor-regressing abilities against nonimmunogenic or poorly immunogenic tumors. Of importance, targeting CD137 eliminates established tumors, and the fact that anti-CD137 therapy acts in concert with other anticancer agents and/or radiation therapy to eradicate nonimmunogenic and weakly immunogenic tumors is an additional benefit. Currently, BMS-663513, a humanized anti-CD137 antibody, is in clinical trials in patients with solid tumors, including melanoma, renal carcinoma, ovarian cancer, and B-cell malignancies. In this review, we discuss the basis of the therapeutic potential of targeting CD137 in cancer treatment, focusing in particular, on BMS-663513 as an immune costimulatory monoclonal antibody for melanoma immunotherapy. Keywords: anti-CD137 monoclonal antibodies, immune costimulator molecule, BMS-663513

  5. IBC's 23rd Antibody Engineering and 10th Antibody Therapeutics Conferences and the Annual Meeting of The Antibody Society: December 2-6, 2012, San Diego, CA.

    Science.gov (United States)

    Marquardt, John; Begent, Richard H J; Chester, Kerry; Huston, James S; Bradbury, Andrew; Scott, Jamie K; Thorpe, Philip E; Veldman, Trudi; Reichert, Janice M; Weiner, Louis M

    2012-01-01

    Now in its 23rd and 10th years, respectively, the Antibody Engineering and Antibody Therapeutics conferences are the Annual Meeting of The Antibody Society. The scientific program covers the full spectrum of challenges in antibody research and development from basic science through clinical development. In this preview of the conferences, the chairs provide their thoughts on sessions that will allow participants to track emerging trends in (1) the development of next-generation immunomodulatory antibodies; (2) the complexity of the environment in which antibodies must function; (3) antibody-targeted central nervous system (CNS) therapies that cross the blood brain barrier; (4) the extension of antibody half-life for improved efficacy and pharmacokinetics (PK)/pharmacodynamics (PD); and (5) the application of next generation DNA sequencing to accelerate antibody research. A pre-conference workshop on Sunday, December 2, 2012 will update participants on recent intellectual property (IP) law changes that affect antibody research, including biosimilar legislation, the America Invents Act and recent court cases. Keynote presentations will be given by Andreas Plückthun (University of Zürich), who will speak on engineering receptor ligands with powerful cellular responses; Gregory Friberg (Amgen Inc.), who will provide clinical updates of bispecific antibodies; James D. Marks (University of California, San Francisco), who will discuss a systems approach to generating tumor targeting antibodies; Dario Neri (Swiss Federal Institute of Technology Zürich), who will speak about delivering immune modulators at the sites of disease; William M. Pardridge (University of California, Los Angeles), who will discuss delivery across the blood-brain barrier; and Peter Senter (Seattle Genetics, Inc.), who will present his vision for the future of antibody-drug conjugates. For more information on these meetings or to register to attend, please visit www.IBCLifeSciences.com/Antibody

  6. Impact of Shed/Soluble targets on the PK/PD of approved therapeutic monoclonal antibodies.

    Science.gov (United States)

    Samineni, Divya; Girish, Sandhya; Li, Chunze

    2016-12-01

    Suboptimal treatment for monoclonal antibodies (mAbs) directed against endogenous circulating soluble targets and the shed extracellular domains (ECD) of the membrane-bound targets is an important clinical concern due to the potential impact of mAbs on the in vivo efficacy and safety. Consequently, there are considerable challenges in the determination of an optimal dose and/or dosing regimen. Areas covered: This review outlines the impact of shed antigen targets from membrane-bound proteins and soluble targets on the PK and/or PD of therapeutic mAbs that have been approved in the last decade. We discuss various bioanalytical techniques that have facilitated the interpretation of the PK/PD properties of therapeutic mAbs and also considered the factors that may impact such measurements. Quantitative approaches include target-mediated PK models and bi- or tri-molecular interaction PK/PD models that describe the relationships between the antibody PK and the ensuing effects on PD biomarkers, to facilitate the mAb PK/PD characterization. Expert commentary: The proper interpretation of PK/PD relationships through the integrated PK/PD modeling and bioanalytical strategy facilitates a mechanistic understanding of the disease processes and dosing regimen optimization, thereby offering insights into developing effective therapeutic regimens. This review provides an overview of the impact of soluble targets or shed ECD on mAb PK/PD properties. We provide examples of quantitative approaches that facilitate the characterization of mAb PK/PD characteristics and their corresponding bioanalytical strategies.

  7. The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region

    NARCIS (Netherlands)

    van Schie, K. A.; Hart, M. H.; de Groot, E. R.; Kruithof, S.; Aarden, L. A.; Wolbink, G. J.; Rispens, T.

    2015-01-01

    In a subset of patients, anti tumour necrosis factor (TNF) therapeutic antibodies are immunogenic, resulting in the formation of antidrug antibodies (ADAs). Neutralising ADAs compete with TNF for its binding site and reduces the effective serum concentration, causing clinical non-response. It is

  8. Selective apoptotic killing of malignant hemopoietic cells by antibody-targeted delivery of an amphipathic peptide.

    Science.gov (United States)

    Marks, Alexandra J; Cooper, Margaret S; Anderson, Robert J; Orchard, Kim H; Hale, Geoffrey; North, Janet M; Ganeshaguru, Kanagasabai; Steele, Andrew J; Mehta, Atul B; Lowdell, Mark W; Wickremasinghe, R Gitendra

    2005-03-15

    The alpha-helical amphipathic peptide D-(KLAKLAK)2 is toxic to eukaryotic cells if internalized by a suitable targeting mechanism. We have targeted this peptide to malignant hemopoietic cells via conjugation to monoclonal antibodies, which recognize lineage-specific cell surface molecules. An anti-CD19/peptide conjugate efficiently killed 3/3 B lymphoid lines. However, an anti-CD33/peptide conjugate was cytotoxic to only one of three CD33-positive myeloid leukemia lines. The IC50 towards susceptible lines were in the low nanomolar range. Conjugates were highly selective and did not kill cells that did not express the appropriate cell surface cognate of the antibody moiety. Anti-CD19/peptide conjugates efficiently killed cells from patients with chronic lymphocytic leukemia but anti-CD33/peptide reagents were less effective against fresh acute myeloid leukemia cells. We therefore suggest that amphipathic peptides may be of value as targeted therapeutic agents for the treatment of a subset of hematologic malignancies.

  9. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics

    Directory of Open Access Journals (Sweden)

    Peter Bannas

    2017-11-01

    Full Text Available Monoclonal antibodies have revolutionized cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa of conventional antibodies. The minimal target recognition module of a conventional antibody is composed of two non-covalently associated variable domains (VH and VL. The proper orientation of these domains is mediated by their hydrophobic interface and is stabilized by their linkage to disulfide-linked constant domains (CH1 and CL. VH and VL domains can be fused via a genetic linker into a single-chain variable fragment (scFv. scFv modules in turn can be fused to one another, e.g., to generate a bispecific T-cell engager, or they can be fused in various orientations to antibody hinge and Fc domains to generate bi- and multispecific antibodies. However, the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation and/or mispairing of V-domains. Nanobodies (15 kDa and nanobody-based human heavy chain antibodies (75 kDa can overcome these limitations. Camelids naturally produce antibodies composed only of heavy chains in which the target recognition module is composed of a single variable domain (VHH or Nb. Advantageous features of nanobodies include their small size, high solubility, high stability, and excellent tissue penetration in vivo. Nanobodies can readily be linked genetically to Fc-domains, other nanobodies, peptide tags, or toxins and can be conjugated chemically at a specific site to drugs, radionuclides, photosensitizers, and nanoparticles. These properties make them particularly suited for specific and efficient targeting of tumors in vivo. Chimeric nanobody-heavy chain antibodies combine advantageous features of nanobodies and human Fc domains in about half the size of a conventional antibody. In this review, we discuss recent developments and perspectives for applications of nanobodies and nanobody

  10. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics.

    Science.gov (United States)

    Bannas, Peter; Hambach, Julia; Koch-Nolte, Friedrich

    2017-01-01

    Monoclonal antibodies have revolutionized cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. The minimal target recognition module of a conventional antibody is composed of two non-covalently associated variable domains (VH and VL). The proper orientation of these domains is mediated by their hydrophobic interface and is stabilized by their linkage to disulfide-linked constant domains (CH1 and CL). VH and VL domains can be fused via a genetic linker into a single-chain variable fragment (scFv). scFv modules in turn can be fused to one another, e.g., to generate a bispecific T-cell engager, or they can be fused in various orientations to antibody hinge and Fc domains to generate bi- and multispecific antibodies. However, the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation and/or mispairing of V-domains. Nanobodies (15 kDa) and nanobody-based human heavy chain antibodies (75 kDa) can overcome these limitations. Camelids naturally produce antibodies composed only of heavy chains in which the target recognition module is composed of a single variable domain (VHH or Nb). Advantageous features of nanobodies include their small size, high solubility, high stability, and excellent tissue penetration in vivo . Nanobodies can readily be linked genetically to Fc-domains, other nanobodies, peptide tags, or toxins and can be conjugated chemically at a specific site to drugs, radionuclides, photosensitizers, and nanoparticles. These properties make them particularly suited for specific and efficient targeting of tumors in vivo . Chimeric nanobody-heavy chain antibodies combine advantageous features of nanobodies and human Fc domains in about half the size of a conventional antibody. In this review, we discuss recent developments and perspectives for applications of nanobodies and nanobody-based human heavy

  11. Naturally acquired antibodies target the glutamate-rich protein on intact merozoites and predict protection against febrile malaria

    DEFF Research Database (Denmark)

    Kana, Ikhlaq Hussain; Adu, Bright; Tiendrebeogo, Régis Wendpayangde

    2017-01-01

    Background.: Plasmodium species antigens accessible at the time of merozoite release are likely targets of biologically functional antibodies. Methods.: Immunoglobulin G (IgG) antibodies against intact merozoites were quantified in the plasma of Ghanaian children from a longitudinal cohort using...... support previous studies that found OP of merozoites to be associated with protection against malaria and further shows IgG3 and GLURP antibodies are key in the OP mechanism, thus giving further impetus for the development of malaria vaccines targeting GLURP....

  12. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Bøtkjær, Kenneth Alrø; Fogh, Sarah; Bekes, Erin C

    2011-01-01

    , with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found......, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active u...

  13. Target-mediated drug disposition model and its approximations for antibody-drug conjugates.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2014-02-01

    Antibody-drug conjugate (ADC) is a complex structure composed of an antibody linked to several molecules of a biologically active cytotoxic drug. The number of ADC compounds in clinical development now exceeds 30, with two of them already on the market. However, there is no rigorous mechanistic model that describes pharmacokinetic (PK) properties of these compounds. PK modeling of ADCs is even more complicated than that of other biologics as the model should describe distribution, binding, and elimination of antibodies with different toxin load, and also the deconjugation process and PK of the released toxin. This work extends the target-mediated drug disposition (TMDD) model to describe ADCs, derives the rapid binding (quasi-equilibrium), quasi-steady-state, and Michaelis-Menten approximations of the TMDD model as applied to ADCs, derives the TMDD model and its approximations for ADCs with load-independent properties, and discusses further simplifications of the system under various assumptions. The developed models are shown to describe data simulated from the available clinical population PK models of trastuzumab emtansine (T-DM1), one of the two currently approved ADCs. Identifiability of model parameters is also discussed and illustrated on the simulated T-DM1 examples.

  14. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  15. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    Science.gov (United States)

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-05-01

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease. FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy

  16. Oligoclonal antibody targeting ghrelin increases energy expenditure and reduces food intake in fasted mice.

    Science.gov (United States)

    Zakhari, Joseph S; Zorrilla, Eric P; Zhou, Bin; Mayorov, Alexander V; Janda, Kim D

    2012-02-06

    Ghrelin, an enteric peptide hormone linked to the pathophysiology of obesity has been a therapeutic target of great interest over the past decade. Many research efforts have focused on the antagonism of ghrelin's endogenous receptor GHSR1a, which is found along ascending vagal afferent fibers, as well as in the arcuate nucleus of the hypothalamus. Additionally, peptidic inhibitors of ghrelin O-acyltransferase, the enzyme responsible for the paracrine activation of ghrelin, have recently been studied. Our research has taken an alternative immunological approach, studying both active and passive vaccination as a means to sequester ghrelin in the periphery, with the original discovery in rat of decreased feed efficiency and adiposity, as well as increased metabolic activity. Using our previous hapten designs as a stepping-stone, three monoclonal antibodies (JG2, JG3, and JG4) were procured against ghrelin and tested in vivo. While mAb JG4 had the highest affinity for ghrelin, it failed to attenuate the orexigenic effects of food deprivation on energy metabolism or food intake in mice. However, animals that were administered a combination of JG3:JG4 (termed a doublet) or JG2:JG3:JG4 (termed a triplet) demonstrated higher heat dispersion and rate of respiration (higher CO(2) emission and O(2) consumption) during a 24 h fast refeed. Mice administered the triplet cocktail of JG2:JG3:JG4 also demonstrated decreased food intake upon refeeding as compared to control animals. Recently, Lu and colleagues reported that a passive approach using a single, high affinity N-terminally directed monoclonal antibody did not abrogate the effects of endogenous ghrelin. Our current report corroborates this finding, yet, refutes that a monoclonal antibody approach cannot be efficacious. Rather, we find that a multiple monoclonal antibody (oligoclonal) approach can reproduce the underlying logic to previously reported efficacies using active vaccinations.

  17. Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens.

    Directory of Open Access Journals (Sweden)

    Clarissa Pozzi

    Full Text Available Staphylococcus aureus is a major cause of nosocomial and community-acquired infections for which a vaccine is greatly desired. Antigens found on the S. aureus outer surface include the capsular polysaccharides (CP of serotype 5 (CP5 or 8 (CP8 and/or a second antigen, a β-(1→6-polymer of N-acetyl-D-glucosamine (PNAG. Antibodies specific for either CP or PNAG antigens have excellent in vitro opsonic killing activity (OPKA, but when mixed together have potent interference in OPKA and murine protection. To ascertain if this interference could be abrogated by using a synthetic non-acetylated oligosaccharide fragment of PNAG, 9GlcNH(2, in place of chemically partially deacetylated PNAG, three conjugate vaccines consisting of 9GlcNH(2 conjugated to a non-toxic mutant of alpha-hemolysin (Hla H35L, CP5 conjugated to clumping factor B (ClfB, or CP8 conjugated to iron-surface determinant B (IsdB were used separately to immunize rabbits. Opsonic antibodies mediating killing of multiple S. aureus strains were elicited for all three vaccines and showed carbohydrate antigen-specific reductions in the tissue bacterial burdens in animal models of S. aureus skin abscesses, pneumonia, and nasal colonization. Carrier-protein specific immunity was also shown to be effective in reducing bacterial levels in infected lungs and in nasal colonization. However, use of synthetic 9GlcNH(2 to induce antibody to PNAG did not overcome the interference in OPKA engendered when these were combined with antibody to either CP5 or CP8. Whereas each individual vaccine showed efficacy, combining antisera to CP antigens and PNAG still abrogated individual OPKA activities, indicating difficulty in achieving a multi-valent vaccine targeting both the CP and PNAG antigens.

  18. Exploiting the proteomics revolution in biotechnology: from disease and antibody targets to optimizing bioprocess development.

    Science.gov (United States)

    Heffner, Kelley M; Hizal, Deniz Baycin; Kumar, Amit; Shiloach, Joseph; Zhu, Jie; Bowen, Michael A; Betenbaugh, Michael J

    2014-12-01

    Recent advancements in proteomics have enabled the generation of high-quality data sets useful for applications ranging from target and monoclonal antibody (mAB) discovery to bioprocess optimization. Comparative proteomics approaches have recently been used to identify novel disease targets in oncology and other disease conditions. Proteomics has also been applied as a new avenue for mAb discovery. Finally, CHO and Escherichia coli cells represent the dominant production hosts for biopharmaceutical development, yet the physiology of these cells types has yet to be fully established. Proteomics approaches can provide new insights into these cell types, aiding in recombinant protein production, cell growth regulation, and medium formulation. Optimization of sample preparations and protein database developments are enhancing the quantity and accuracy of proteomic results. In these ways, innovations in proteomics are enriching biotechnology and bioprocessing research across a wide spectrum of applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Fast Targeting and Cancer Cell Uptake of Luminescent Antibody-Nanozeolite Bioconjugates.

    Science.gov (United States)

    Marega, Riccardo; Prasetyanto, Eko Adi; Michiels, Carine; De Cola, Luisa; Bonifazi, Davide

    2016-10-01

    Understanding the targeted cellular uptake of nanomaterials is an essential step to engineer and program functional and effective biomedical devices. In this respect, the targeting and ultrafast uptake of zeolite nanocrystals functionalized with Cetuximab antibodies (Ctxb) by cells overexpressing the epidermal growth factor receptor are described here. Biochemical assays show that the cellular uptake of the bioconjugate in the targeted cancer cells already begins 15 min after incubation, at a rate around tenfold faster than that observed in the negative control cells. These findings further show the role of Ctxb exposed at the surfaces of the zeolite nanocrystals in mediating the targeted and rapid cellular uptake. By using temperature and pharmacological inhibitors as modulators of the internalization pathways, the results univocally suggest a dissipative uptake mechanism of these nanomaterials, which seems to occur using different internalization pathways, according to the targeting properties of these nanocrystals. Owing to the ultrafast uptake process, harmless for the cell viability, these results further pave the way for the design of novel theranostic tools based on nanozeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer

    Directory of Open Access Journals (Sweden)

    Belzile O

    2018-01-01

    Full Text Available Olivier Belzile,1 Xianming Huang,2,3 Jian Gong,2,3 Jay Carlson,2,3 Alan J Schroit,1 Rolf A Brekken,1 Bruce D Freimark2,3 1Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 2Department of Preclinical Research, 3Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA Abstract: Phosphatidylserine (PS is a negatively charged phospholipid in all eukaryotic cells that is actively sequestered to the inner leaflet of the cell membrane. Exposure of PS on apoptotic cells is a normal physiological process that triggers their rapid removal by phagocytic engulfment under noninflammatory conditions via receptors primarily expressed on immune cells. PS is aberrantly exposed in the tumor microenvironment and contributes to the overall immunosuppressive signals that antagonize the development of local and systemic antitumor immune responses. PS-mediated immunosuppression in the tumor microenvironment is further exacerbated by chemotherapy and radiation treatments that result in increased levels of PS on dying cells and necrotic tissue. Antibodies targeting PS localize to tumors and block PS-mediated immunosuppression. Targeting exposed PS in the tumor microenvironment may be a novel approach to enhance immune responses to cancer. Keywords: immunosuppression, tumor microenvironment, immunotherapy, imaging, phosphatidylserine, bavituximab

  1. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets

    Directory of Open Access Journals (Sweden)

    Carlos Cuesta-Mateos

    2018-01-01

    Full Text Available Today, monoclonal antibodies (mAbs are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs have been successfully developed. Non-LSAs (NLSAs are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs—marketed or in development—to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.

  2. Antibody-mediated targeting of the transferrin receptor in cancer cells.

    Science.gov (United States)

    Luria-Pérez, Rosendo; Helguera, Gustavo; Rodríguez, José A

    Iron is essential for cell growth and is imported into cells in part through the action of transferrin (Tf), a protein that binds its receptor (TfR1 or CD71) on the surface of a cell, and then releases iron into endosomes. TfR1 is a single pass type-II transmembrane protein expressed at basal levels in most tissues. High expression of TfR1 is typically associated with rapidly proliferating cells, including various types of cancer. TfR1 is targeted by experimental therapeutics for several reasons: its cell surface accessibility, constitutive endocytosis into cells, essential role in cell growth and proliferation, and its overexpression by cancer cells. Among the therapeutic agents used to target TfR1, antibodies stand out due to their remarkable specificity and affinity. Clinical trials are being conducted to evaluate the safety and efficacy of agents targeting TfR1 in cancer patients with promising results. These observations suggest that therapies targeting TfR1 as direct therapeutics or delivery conduits remain an attractive alternative for the treatment of cancers that overexpress the receptor. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  3. Targeting angiogenesis for radioimmunotherapy with a {sup 177}Lu-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Ehlerding, Emily B.; Hernandez, Reinier [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Lacognata, Saige; Jiang, Dawei [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Ferreira, Carolina A. [University of Wisconsin - Madison, Department of Biomedical Engineering, Madison, WI (United States); Goel, Shreya [University of Wisconsin - Madison, Department of Materials Science and Engineering, Madison, WI (United States); Jeffery, Justin J. [University of Wisconsin - Madison, Small Animal Imaging Facility, Madison, WI (United States); Theuer, Charles P. [TRACON Pharmaceuticals, Inc., San Diego, CA (United States); Cai, Weibo [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Department of Biomedical Engineering, Madison, WI (United States); University of Wisconsin - Madison, Department of Materials Science and Engineering, Madison, WI (United States)

    2018-01-15

    Increased angiogenesis is a marker of aggressiveness in many cancers. Targeted radionuclide therapy of these cancers with angiogenesis-targeting agents may curtail this increased blood vessel formation and slow the growth of tumors, both primary and metastatic. CD105, or endoglin, has a primary role in angiogenesis in a number of cancers, making this a widely applicable target for targeted radioimmunotherapy. The anti-CD105 antibody, TRC105 (TRACON Pharmaceuticals), was conjugated with DTPA for radiolabeling with {sup 177}Lu (t{sub 1/2} 6.65 days). Balb/c mice were implanted with 4T1 mammary carcinoma cells, and five study groups were used: {sup 177}Lu only, TRC105 only, {sup 177}Lu-DTPA-IgG (a nonspecific antibody), {sup 177}Lu-DTPA-TRC105 low-dose, and {sup 177}Lu-DTPA-TRC105 high-dose. Toxicity of the agent was monitored by body weight measurements and analysis of blood markers. Biodistribution studies of {sup 177}Lu-DTPA-TRC105 were also performed at 1 and 7 days after injection. Ex vivo histology studies of various tissues were conducted at 1, 7, and 30 days after injection of high-dose {sup 177}Lu-DTPA-TRC105. Biodistribution studies indicated steady uptake of {sup 177}Lu-DTPA-TRC105 in 4T1 tumors between 1 and 7 days after injection (14.3 ± 2.3%ID/g and 11.6 ± 6.1%ID/g, respectively; n = 3) and gradual clearance from other organs. Significant inhibition of tumor growth was observed in the high-dose group, with a corresponding significant increase in survival (p < 0.001, all groups). In most study groups (all except the nonspecific IgG group), the body weights of the mice did not decrease by more than 10%, indicating the safety of the injected agents. Serum alanine transaminase levels remained nearly constant indicating no damage to the liver (a primary clearance organ of the agent), and this was confirmed by ex vivo histological analyses. {sup 177}Lu-DTPA-TRC105, when administered at a sufficient dose, is able to curtail tumor growth and provide a

  4. Studies on ADCC (antibody-dependent cell-mediated cytotoxicity) using sheep red blood cells as target cells, 2

    International Nuclear Information System (INIS)

    Ichikawa, Yukinobu; Takaya, Masatoshi; Arimori, Shigeru

    1979-01-01

    A non-specific cytotoxic mediator from effector cells (human peripheral blood leukocytes) was investigated in the ADCC (antibody-dependent cell-mediated cytotoxicity) system using antibody-coated sheep red blood cells (SRBC) as target cells. 51 Cr-labelled homologous (sheep) or heterologous (human) red blood cells were used as adjacent cells. Either crude lymphocyte fraction, phagocyte depleted fraction or granulocyte rich fraction separated from human peripheral leukocytes showed moderate cytotoxic effect on homologous adjacent cells, however no cytotoxic activity on heterologous adjacent cells was demonstrated in any leukocyte fraction. This suggests that the cytotoxic effects on homologous adjacent cells were resulted from the translocation of antibody molecules to adjacent cells from antibody-coated target cells. We concluded that the cytotoxic mechanism in this ADCC system was not mediated by non-specific soluble factors released from either human peripheral lymphocytes, monocytes or granulocytes. (author)

  5. Chimeric Monoclonal Antibody Cetuximab Targeting Epidermal Growth Factor-Receptor in Advanced Non-Melanoma Skin Cancer

    OpenAIRE

    Uwe Wollina; Georgi Tchernev; Torello Lotti

    2017-01-01

    BACKGROUND: Non-melanoma skin cancer (NMSC) is the most common malignancy in humans. Targeted therapy with monoclonal antibody cetuximab is an option in case of advanced tumor or metastasis. AIM: We present and update of the use of cetuximab in NMSC searching PUBMED 2011-2017. METHODS: The monoclonal antibody cetuximab against epidermal growth factor receptor (EGFR) has been investigated for its use in NMSC during the years 2011 to 2017 by a PUBMED research using the following items: ...

  6. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens.

    Science.gov (United States)

    Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer; Roux, Damien; Deoliveira, Rosane B; Garrett, Wendy S; Lu, Xi; O'Malley, Jennifer; Kinzel, Kathryn; Zaidi, Tauqeer; Rey, Astrid; Perrin, Christophe; Fichorova, Raina N; Kayatani, Alexander K K; Maira-Litràn, Tomas; Gening, Marina L; Tsvetkov, Yury E; Nifantiev, Nikolay E; Bakaletz, Lauren O; Pelton, Stephen I; Golenbock, Douglas T; Pier, Gerald B

    2013-06-11

    Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.

  7. Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition

    International Nuclear Information System (INIS)

    Koch, Markus; Pancera, Marie; Kwong, Peter D.; Kolchinsky, Peter; Grundner, Christoph; Wang Liping; Hendrickson, Wayne A.; Sodroski, Joseph; Wyatt, Richard

    2003-01-01

    The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization

  8. Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro

    International Nuclear Information System (INIS)

    Satishkumar, R; Vertegel, A A

    2011-01-01

    The objective of this paper was to study the effect of antibody-directed targeting of S. aureus by comparing the activities of lysostaphin conjugated to biodegradable polylactide nanoparticles (NPs) in the presence and in the absence of co-immobilized anti-S. aureus antibody. Lysostaphin–antibody–NP conjugates were synthesized through physical adsorption at different enzyme:antibody:NP ratios. The synthesized enzyme–NP conjugates were characterized by means of dynamic light scattering and zeta potential analysis, and the total protein binding yield on the NPs was characterized using Alexa Fluor 350 and 594 dyes for the S. aureus antibody and lysostaphin respectively. We observed enhanced antimicrobial activity for both enzyme-coated and enzyme–antibody-coated NPs for lysostaphin coatings corresponding to ∼ 40% of the initial monolayer and higher compared to the free enzyme case (p < 0.05). At the highest antibody coating concentration, bacterial lysis rates for antibody-coated samples were significantly higher than for lysostaphin-coated samples lacking the antibody (p < 0.05). Such enzyme–NP conjugates thus have the potential for becoming novel therapeutic agents for treating antibiotic-resistant S. aureus infections.

  9. Characterization and Imaging of Antibody-Coated Gold Nanoparticles for Targeted Treatment of Microbial Keratitis

    Science.gov (United States)

    Mahan, Matthew

    Microbial keratitis (MK) is an infection of the cornea by pathogenic organisms that causes inflammation and irritation. It can lead to full or partial blindness if left untreated. Current clinical treatment methods rely on high frequency application of topical drugs which are subject to the issues of patient compliance and microbial resistance. In this work, gold nanoparticles (AuNP) were proposed as an alternative treatment method in light-based therapies. Particle formulation methods were investigated and assessed using transmission electron microscopy (TEM) and ultraviolet/visible spectroscopy (UV-Vis). AuNP of 20 nm diameter were used as platforms to attach monoclonal antibodies anti-FLAG or anti-F1 to enhance their cell-targeting ability as well as polyethylene glycol to reduce non-specific binding and protein adsorption. These functionalized particles were qualitatively assessed using UV-Vis. The antibody-functionalized AuNP were then assessed for their ability to attach directly to Pseudomonas aeruginosa, expressing FLAG peptide, or Aspergillus fumigatus, expressing the F1 receptor. Attachment was imaged using dark field microscopy, transmission electron microscopy, and fluorescence microscopy.

  10. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  11. Evaluation of tumor targeting with radiolabeled F(ab2 fragment of a humanized monoclonal antibody

    Directory of Open Access Journals (Sweden)

    "Babaei MH

    2002-08-01

    Full Text Available Humanized monoclonal antibody U36 and its F(ab'2 fragment, radio labeled with 125I, were tested for tumor localization in nude mice bearing a squamous cell carcinoma xenograft line derived from a head and neck carcinoma. Monoclonal antibody IgG or F(ab'2 fragment were injected in parallel and at days 1, 2 and 3, mice were dissected for determination of isotope biodistribution. IgG as well as F(ab'2 showed highly specific localization in tumor tissue. The mean tumor uptake (n=3 is expressed as the percentage of the injected dose per gram of tumor tissue (%ID/g. %ID/g of IgG was 11.7% at day 1 and decreased to 10.9% at day 3 whereas %ID/g of F(ab'2 was 2.9% at day 1 and decreased on following days. Tumor to blood ratios (T/B at day 1 were 0.86 for IgG and 1.32 for F(ab'2 and reached a maximum at day 3 with values of 4.41 and 1.84 respectively. These findings suggest that the superior tumor to non-tumor ratios in the day of 1 render the F(ab'2 fragment more qualified for specific targeting radioisotopes to tumor xenografts in this exprimental setting.

  12. Linking Single Domain Antibodies that Recognize Different Epitopes on the Same Target

    Directory of Open Access Journals (Sweden)

    Ellen R. Goldman

    2012-02-01

    Full Text Available Single domain antibodies (sdAb are the recombinantly expressed variable regions from the heavy-chain-only antibodies found in camelids and sharks. SdAb are able to bind antigens with high affinity, and most are capable of refolding after heat or chemical denaturation to bind antigen again. Starting with our previously isolated ricin binding sdAb determined to bind to four non-overlapping epitopes, we constructed a series of sdAb pairs, which were genetically linked through peptides of different length. We designed the series so that the sdAb are linked in both orientations with respect to the joining peptide. We confirmed that each of the sdAb in the constructs was able to bind to the ricin target, and have evidence that they are both binding ricin simultaneously. Through this work we determined that the order of genetically linked sdAb seems more important than the linker length. The genetically linked sdAb allowed for improved ricin detection with better limits of detection than the best anti-ricin monoclonal we evaluated, however they were not able to refold as well as unlinked component sdAb.

  13. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein

    Science.gov (United States)

    Robinson, Luke N.; Ong, Li Ching; Rowley, Kirk J.; Winnett, Alexander; Tan, Hwee Cheng; Hobbie, Sven; Shriver, Zachary; Babcock, Gregory J.; Alonso, Sylvie; Ooi, Eng Eong

    2018-01-01

    Dengue virus (DENV) infection imposes enormous health and economic burden worldwide with no approved treatment. Several small molecules, including lovastatin, celgosivir, balapiravir and chloroquine have been tested for potential anti-dengue activity in clinical trials; none of these have demonstrated a protective effect. Recently, based on identification and characterization of cross-serotype neutralizing antibodies, there is increasing attention on the potential for dengue immunotherapy. Here, we tested the ability of VIS513, an engineered cross-neutralizing humanized antibody targeting the DENV E protein domain III, to overcome antibody-enhanced infection and high but brief viremia, which are commonly encountered in dengue patients, in various in vitro and in vivo models. We observed that VIS513 efficiently neutralizes DENV at clinically relevant viral loads or in the presence of enhancing levels of DENV immune sera. Single therapeutic administration of VIS513 in mouse models of primary infection or lethal secondary antibody-enhanced infection, reduces DENV titers and protects from lethal infection. Finally, VIS513 administration does not readily lead to resistance, either in cell culture systems or in animal models of dengue infection. The findings suggest that rapid viral reduction during acute DENV infection with a monoclonal antibody is feasible. PMID:29425203

  14. A novel mouse monoclonal antibody targeting ErbB2 suppresses breast cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, Seiji [Division of Oncology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639 (Japan); Matsushita, Hirohisa; Ohbayashi, Hirokazu [Department of Research and Development, Nichirei Biosciences Inc., Tokyo 104-8402 (Japan); Semba, Kentaro [Department of Life Science and Medical Bio-Science, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Yamamoto, Tadashi, E-mail: tyamamot@ims.u-tokyo.ac.jp [Division of Oncology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639 (Japan)

    2009-07-03

    Overexpression of ErbB2 in breast cancer is associated with increased recurrence and worse prognosis. Accumulating evidences suggest that molecular targeted therapy is a promising anticancer strategy. In this study, we produced a novel anti-ErbB2 monoclonal antibody, 6G10, that recognized an epitope distinct from the trastuzumab binding site. 6G10 induced aggregation of BT474 breast cancer cells and inhibited proliferation of various breast cancer cell lines including BT474. A growth inhibition assay showed that 6G10 had EC{sub 50} values comparable to trastuzumab, indicating that the drugs have a similar level of potency. Furthermore, intraperitoneal administration of 6G10 completely inhibited the growth of xenografted tumors derived from BT474 and SK-BR-3 cells. These data suggested that 6G10 has great therapeutic potential and could be administered to patients alternatively, or synergistically, with trastuzumab.

  15. Novel approaches to cancer targeting using epitope-binding properties that mimic monoclonal antibodies

    International Nuclear Information System (INIS)

    1998-01-01

    The investigators have extensive experience in all of the techniques required for this project including: animal models of tumors, quantitative autoradiography, radiochemistry, peptide synthesis, organic synthesis, molecular biology, kinetic modeling and radionuclide imaging both with single photon and PET agents. Preliminary results and progress in the following areas are presented: (1) Establishment of an in vivo tumor model and successful targeting of this tumor using monoclonal antibodies raised to p185 erbB2 , (2a) Screening of a synthetic peptide combinatorial library, (2b) Screening of a phage display peptide library, (3) Determination of the epitope recognized by ICR12, (4) Radiolabeling with 99m Tc, 18 F and * I (radioiodines), (5) High resolution positron emission tomography (PET) studies of tumors, and (6) Development of a high resolution (∼mm) PET camera

  16. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    International Nuclear Information System (INIS)

    Kato, Yukinari; Vaidyanathan, Ganesan; Kaneko, Mika Kato; Mishima, Kazuhiko; Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles; Keir, Stephen T.; Kuan, C.-T.; Bigner, Darell D.; Zalutsky, Michael R.

    2010-01-01

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG 2a ), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with 125 I using Iodogen [ 125 I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[ 131 I]iodobenzoate ([ 131 I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of 125 I-NZ-1(Iodogen) and that of [ 131 I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K D ) of NZ-1 was determined to be 1.2x10 -10 M by surface plasmon resonance and 9.8x10 -10 M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [ 131 I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3±0.8% of initially bound radioactivity at 8 h) compared to that from the 125 I-NZ-1(Iodogen) (10.0±0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [ 131 I]SGMIB-NZ-1 (39.9±8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of 125 I-NZ-1(Iodogen) (29.7±6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  17. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukinari, E-mail: yukinari-k@bea.hi-ho.ne.j [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Kaneko, Mika Kato [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Mishima, Kazuhiko [Saitama Medical University International Medical Center 1397-1 Yamane Hidaka-shi, Saitama 350-1298 (Japan); Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Keir, Stephen T. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Kuan, C.-T.; Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-10-15

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG{sub 2a}), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with {sup 125}I using Iodogen [{sup 125}I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[{sup 131}I]iodobenzoate ([{sup 131}I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of {sup 125}I-NZ-1(Iodogen) and that of [{sup 131}I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K{sub D}) of NZ-1 was determined to be 1.2x10{sup -10} M by surface plasmon resonance and 9.8x10{sup -10} M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [{sup 131}I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3{+-}0.8% of initially bound radioactivity at 8 h) compared to that from the {sup 125}I-NZ-1(Iodogen) (10.0{+-}0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [{sup 131}I]SGMIB-NZ-1 (39.9{+-}8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of {sup 125}I-NZ-1(Iodogen) (29.7{+-}6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  18. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles.

    Science.gov (United States)

    Millenbaugh, Nancy J; Baskin, Jonathan B; DeSilva, Mauris N; Elliott, W Rowe; Glickman, Randolph D

    2015-01-01

    The continued emergence of multidrug resistant bacterial infections and the decline in discovery of new antibiotics are major challenges for health care throughout the world. This situation has heightened the need for novel antimicrobial therapies as alternatives to traditional antibiotics. The combination of metallic nanoparticles and laser exposure has been proposed as a strategy to induce physical damage to bacteria, regardless of antibiotic sensitivity. The purpose of this study was to test the antibacterial effect of antibody-targeted gold nanoparticles combined with pulsed laser irradiation. Gold nanoparticles conjugated to antibodies specific to Staphylococcus aureus peptidoglycan were incubated with suspensions of methicillin-resistant and methicillin-sensitive S. aureus (MRSA and MSSA). Bacterial suspensions were then exposed to 8 ns pulsed laser irradiation at a wavelength of 532 nm and fluences ranging from 1 to 5 J/cm(2). Viability of the bacteria following laser exposure was determined using colony forming unit assays. Scanning electron microscopy was used to confirm the binding of nanoparticles to bacteria and the presence of cellular damage. The laser-activated nanoparticle treatment reduced the surviving population to 31% of control in the MSSA population, while the survival in the MRSA population was reduced to 58% of control. Significant decreases in bacterial viability occurred when the laser fluence exceeded 1 J/cm(2), and this effect was linear from 0 to 5 J/cm(2) (r (2)=0.97). Significantly less bactericidal effect was observed for nonfunctionalized nanoparticles or functionalized nanoparticles without laser activation. Laser-activated nanoparticles targeted to S. aureus surface antigens significantly reduced the percentage of viable organisms and represents a promising new treatment modality that could be used either alone or as an adjunct to existing, conventional antibiotic therapy.

  19. Targeted radionuclide therapies for pancreatic cancer.

    Science.gov (United States)

    Shah, M; Da Silva, R; Gravekamp, C; Libutti, S K; Abraham, T; Dadachova, E

    2015-08-01

    Pancreatic malignancies, the fourth leading cause of cancer deaths, have an aggressive behavior with poor prognosis, resulting in a 5-year survival rate of only 4%. It is typically a silent malignancy until patients develop metastatic disease. Targeted radionuclide therapies of cancer such as radiolabeled peptides, which bind to the receptors overexpressed by cancer cells and radiolabeled antibodies to tumor-specific antigens provide a viable alternative to chemotherapy and external beam radiation of metastatic cancers. Multiple clinical trials of targeted radionuclide therapy of pancreatic cancer have been performed in the last decade and demonstrated safety and potential efficacy of radionuclide therapy for treatment of this formidable disease. Although a lot of progress has been made in treatment of pancreatic neuroendocrine tumors with radiolabeled (90)Y and (177)Lu somatostatin peptide analogs, pancreatic adenocarcinomas remain a major challenge. Novel approaches such as peptides and antibodies radiolabeled with alpha emitters, pre-targeting, bispecific antibodies and biological therapy based on the radioactive tumorlytic bacteria might offer a potential breakthrough in treatment of pancreatic adenocarcinomas.

  20. Rebmab200, a Humanized Monoclonal Antibody Targeting the Sodium Phosphate Transporter NaPi2b Displays Strong Immune Mediated Cytotoxicity against Cancer: A Novel Reagent for Targeted Antibody Therapy of Cancer

    Science.gov (United States)

    dos Santos, Mariana Lopes; Yeda, Fernanda Perez; Tsuruta, Lilian Rumi; Horta, Bruno Brasil; Pimenta, Alécio A.; Degaki, Theri Leica; Soares, Ibere C.; Tuma, Maria Carolina; Okamoto, Oswaldo Keith; Alves, Venancio A. F.; Ritter, Gerd; Moro, Ana Maria

    2013-01-01

    NaPi2b, a sodium-dependent phosphate transporter, is highly expressed in ovarian carcinomas and is recognized by the murine monoclonal antibody MX35. The antibody had shown excellent targeting to ovarian cancer in several early phase clinical trials but being murine the antibody's full therapeutic potential could not be explored. To overcome this impediment we developed a humanized antibody version named Rebmab200, expressed in human PER.C6® cells and cloned by limiting dilution. In order to select a clone with high therapeutic potential clones were characterized using a series of physicochemical assays, flow cytometry, real-time surface plasmon resonance, glycosylation analyses, immunohistochemistry, antibody-dependent cell-mediated cytotoxicity, complement-dependent-cytotoxicity assays and quantitative PCR. Comparative analyses of Rebmab200 and MX35 monoclonal antibodies demonstrated that the two antibodies had similar specificity for NaPi2b by flow cytometry with a panel of 30 cell lines and maintained similar kinetic parameters. Robust and high producer cell clones potentially suitable for use in manufacturing were obtained. Rebmab200 antibodies were assessed by immunohistochemistry using a large panel of tissues including human carcinomas of ovarian, lung, kidney and breast origin. An assessment of its binding towards 33 normal human organs was performed as well. Rebmab200 showed selected strong reactivity with the tested tumor types but little or no reactivity with the normal tissues tested confirming its potential for targeted therapeutics strategies. The remarkable cytotoxicity shown by Rebmab200 in OVCAR-3 cells is a significant addition to the traits of stability and productivity displayed by the top clones of Rebmab200. Antibody-dependent cell-mediated toxicity functionality was confirmed in repeated assays using cancer cell lines derived from ovary, kidney and lung as targets. To explore use of this antibody in clinical trials, GMP production of Rebmab

  1. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody

    Science.gov (United States)

    Torkashvand, Fatemeh; Vaziri, Behrouz; Maleknia, Shayan; Heydari, Amir; Vossoughi, Manouchehr; Davami, Fatemeh; Mahboudi, Fereidoun

    2015-01-01

    Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB) multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44) cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM) to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb) titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds. PMID:26480023

  2. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody.

    Directory of Open Access Journals (Sweden)

    Fatemeh Torkashvand

    Full Text Available Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44 cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds.

  3. Liver-targeting of interferon-alpha with tissue-specific domain antibodies.

    Directory of Open Access Journals (Sweden)

    Edward Coulstock

    Full Text Available Interferon alpha (IFNα is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. We genetically fused IFN to a domain antibody (dAb specific to a hepatocyte restricted antigen, asialoglycoprotein receptor (ASGPR. Our results show that the murine IFNα2 homolog (mIFNα2 fused to an ASGPR specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo targeting of the liver by mIFNα2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNα2 or mIFNα2 fused to an isotype control dAb VHD2 (which does not bind ASGPR was demonstrated using microSPECT imaging. We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a treatment for human hepatitis virus infections.

  4. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study.

    NARCIS (Netherlands)

    Tejpar, S.; Piessevaux, H.; Claes, K.; Piront, P.; Hoenderop, J.G.J.; Verslype, C.; Cutsem, E. van

    2007-01-01

    BACKGROUND: Preliminary evidence suggests that magnesium wasting occurs in patients who are treated with epidermal-growth-factor receptor (EGFR)-targeting antibodies for colorectal cancer. The mechanism of this side-effect is unknown, and if all or a subset of patients are affected is also unclear.

  5. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Millenbaugh NJ

    2015-03-01

    Full Text Available Nancy J Millenbaugh,1 Jonathan B Baskin,1 Mauris N DeSilva,1 W Rowe Elliott,1 Randolph D Glickman2 1Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio-Fort Sam Houston, TX, USA; 2Department of Ophthalmology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USAPurpose: The continued emergence of multidrug resistant bacterial infections and the decline in discovery of new antibiotics are major challenges for health care throughout the world. This situation has heightened the need for novel antimicrobial therapies as alternatives to traditional antibiotics. The combination of metallic nanoparticles and laser exposure has been proposed as a strategy to induce physical damage to bacteria, regardless of antibiotic sensitivity. The purpose of this study was to test the antibacterial effect of antibody-targeted gold nanoparticles combined with pulsed laser irradiation.Methods: Gold nanoparticles conjugated to antibodies specific to Staphylococcus aureus peptidoglycan were incubated with suspensions of methicillin-resistant and methicillin-sensitive S. aureus (MRSA and MSSA. Bacterial suspensions were then exposed to 8 ns pulsed laser irradiation at a wavelength of 532 nm and fluences ranging from 1 to 5 J/cm2. Viability of the bacteria following laser exposure was determined using colony forming unit assays. Scanning electron microscopy was used to confirm the binding of nanoparticles to bacteria and the presence of cellular damage.Results: The laser-activated nanoparticle treatment reduced the surviving population to 31% of control in the MSSA population, while the survival in the MRSA population was reduced to 58% of control. Significant decreases in bacterial viability occurred when the laser fluence exceeded 1 J/cm2, and this effect was linear from 0 to 5 J/cm2 (r2=0.97. Significantly less bactericidal effect was observed for nonfunctionalized nanoparticles or

  6. Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo

    OpenAIRE

    Williams, Katherine L.; Wahala, Wahala M.P.B.; Orozco, Susana; de Silva, Aravinda M.; Harris, Eva

    2012-01-01

    The envelope (E) protein of dengue virus (DENV) is composed of three domains (EDI, EDII, EDIII) and is the main target of neutralizing antibodies. Many monoclonal antibodies that bind EDIII strongly neutralize DENV. However in vitro studies indicate that anti-EDIII antibodies contribute little to the neutralizing potency of human DENV-immune serum. In this study, we assess the role of anti-EDIII antibodies in mouse and human DENV-immune serum in neutralizing or enhancing DENV infection in mic...

  7. Direct targeting of cancer cells with antibodies: What can we learn from the successes and failure of unconjugated antibodies for lymphoid neoplasias?

    Science.gov (United States)

    Golay, Josée

    2017-12-01

    Following approval in 1997 of the anti-CD20 antibody rituximab for the treatment of B-NHL and CLL, many other unconjugated IgG1 MAbs have been tested in pre-clinical and clinical trials for the treatment of lymphoid neoplasms. Relatively few have been approved however and these are directed against a limited number of target antigens (CD20, CD52, CCR4, CD38, CD319). We review here the known biological properties of these antibodies and discuss which factors may have led to their success or may, on the contrary, limit their clinical application. Common factors of the approved MAbs are that the target antigen is expressed at relatively high levels on the neoplastic targets and their mechanism of action is mostly immune-mediated. Indeed most of these MAbs induce ADCC and phagocytosis by macrophages, and many also activate complement, leading to target cell lysis. In contrast direct cell death induction is not a common feature but may enhance efficacy in some cases. Interestingly, a key factor for the success of several MAbs appears to be their capacity to skew immunity towards an anti-tumour mode, by inhibiting/depleting suppressor cells and/or activating immune cells within the microenvironment, independently of FcγRs. We also expose here some of the strategies employed by industry to expand the clinical use of these molecules beyond their original indication. Interestingly, due to the central role of lymphocytes in the control of the immune response, several of the antibodies are now successfully used to treat many different autoimmune diseases and have also been formally approved for some of these new indications. There is little doubt that this trend will continue and that the precise mechanisms of therapeutic MAbs will be further dissected and better understood in the context of both tumour immunology and autoimmunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The use of novel monoclonal antibodies in the treatment of acute lymphoblastic leukemia.

    Science.gov (United States)

    DeAngelo, Daniel J

    2015-01-01

    Regardless of age, patients with relapsed or refractory acute lymphoblastic leukemia (ALL) have extremely poor outcomes. The success of reinduction chemotherapy remains dismal, because complete remission rates are low and seldom durable. Clearly, new and novel strategies are needed to improve the outcome of patients with relapsed or refractory ALL. Patients with early relapse, especially those still receiving chemotherapy, tend to have a much poorer outcome and are often chemotherapy resistant. Although high-dose approaches may overcome chemotherapy resistance, long-term disease-free and overall survival remains limited. Several approaches have been used to target antigens, including cluster of differentiation (CD) 19, CD20, CD22, and CD52, on the surface of the malignant lymphoblast with striking efficacy. This review will focus on the clinical application of the major classes of antibodies, including naked antibodies, drug-antibody conjugates, immunotoxins, and T cell-engaging bispecific antibodies. Hopefully, these novel monoclonal antibodies will result in a significant improvement in the outcome of patients with relapsed or refractory ALL. © 2015 by The American Society of Hematology. All rights reserved.

  9. Time-Evolution Contrast of Target MRI Using High-Stability Antibody Functionalized Magnetic Nanoparticles: An Animal Model

    Directory of Open Access Journals (Sweden)

    K. W. Huang

    2014-01-01

    Full Text Available In this work, high-quality antibody functionalized Fe3O4 magnetic nanoparticles are synthesized. Such physical characterizations as particle morphology, particle size, stability, and relaxivity of magnetic particles are investigated. The immunoreactivity of biofunctionalized magnetic nanoparticles is examined by utilizing immunomagnetic reduction. The results show that the mean diameter of antibody functionalized magnetic nanoparticles is around 50 nm, and the relaxivity of the magnetic particles is 145 (mM·s−1. In addition to characterizing the magnetic nanoparticles, the feasibility of using the antibody functionalized magnetic nanoparticles for the contrast medium of target magnetic resonance imaging is investigated. These antibody functionalized magnetic nanoparticles are injected into mice bearing with tumor. The tumor magnetic-resonance image becomes darker after the injection and then recovers 50 hours after the injection. The tumor magnetic-resonance image becomes the darkest at around 20 hours after the injection. Thus, the observing time window for the specific labeling of tumors with antibody functionalized magnetic nanoparticles was found to be 20 hours after injecting biofunctionalized magnetic nanoparticles into mice. The biopsy of tumor is stained after the injection to prove that the long-term darkness of tumor magnetic-resonance image is due to the specific anchoring of antibody functionalized magnetic nanoparticles at tumor.

  10. Radiolabeling and targeting of lipidic nanocapsules for applications in radioimmunotherapy.

    Science.gov (United States)

    Jestin, E; Mougin-Degraef, M; Faivre-Chauvet, A; Remaud-Le Saëc, P; Hindre, F; Benoit, J P; Chatal, J F; Barbet, J; Gestin, J F

    2007-03-01

    Radioimmunotherapy is limited in some cases by the low radioactive doses delivered to tumor cells by antibodies or pretargeted haptens. In order to increase this dose, lipidic nanocapsules (LNC) with a hydrophobic core are proposed as radionuclide vectors that could be targeted to cancer cells by a bispecific anti-tumor x anti-hapten antibody after incorporation of different haptens in the nanocapsule membrane. To bind different radionuclides to the nanocapsules, several bifunctional chelating agents (BCA) were used to form stable complexes with the radionuclides. Some of them are hydrophilic for LNC shell while others are lipophilic to radiolabel the core. Poly(ethylene glycols) (PEG) were used to increase the residence time in blood. Since PEG can modify haptens recognition by the bispecific antibody and radiolabeling efficiency, haptens, BCA or Bolton-Hunter reagent (BH) were attached to the PEG extremity to optimize accessibility. Specific constructs (DSPE-PEG-haptens, DSPE-PEG-BCA, and DSPE-PEG-BH) were synthesized to develop these new radiolabeled vector formulations. Large amounts of PEG have been introduced by a postinsertion method without important change in nanocapsule size and properties. The nanocapsule core was radiolabeled with a lipophilic [(99m)Tc]SSS complex. Serum stability studies showed that this (99m)Tc-labeling method was efficient for at least 20 h. Concerning the nanocapsule surface, several methods have been performed for (111)In-labeling by using DSPE-PEG-DTPA and for (125)I-labeling with DSPE-PEG-BH. The nanocapsules labeling feasibility with a variety of radionuclides and their stability were demonstrated in this paper.

  11. A Mucin1 C-terminal Subunit-directed Monoclonal Antibody Targets Overexpressed Mucin1 in Breast Cancer.

    Science.gov (United States)

    Wu, Guang; Kim, Dongbum; Kim, Jung Nam; Park, Sangkyu; Maharjan, Sony; Koh, Heeju; Moon, Kyungduk; Lee, Younghee; Kwon, Hyung-Joo

    2018-01-01

    Background: Mucin1 (MUC1) is a highly glycosylated transmembrane protein that has gained attention because of its overexpression in various cancers. However, MUC1-targeted therapeutic antibodies have not yet been approved for cancer therapy. MUC1 is cleaved to two subunits, MUC1-N and MCU1-C. MUC1-N is released from the cell surface, making MUC1-C a more reasonable target for cancer therapy. Therefore, we produced a monoclonal antibody (anti-hMUC1) specific to the extracellular region of MUC1-C and evaluated its effects in vitro and in vivo . Methods : We produced a monoclonal antibody (anti-hMUC1) using a purified recombinant human MUC1 polypeptide and our novel immunization protocol. The reactivity of anti-hMUC1 was characterized by ELISA, western blotting and immunoprecipitation analyses. The localization of the antibody in the breast cancer cells after binding was determined by confocal image analysis. The effects of the antibody on the growth of cells were also investigated. We injected anti-hMUC1 and performed in vivo tracing analysis in xenograft mouse models. In addition, expression of MUC1 in tissue sections from patients with breast cancer was assessed by immunohistochemistry with anti-hMUC1. Results : The anti-hMUC1 antibody recognized recombinant MUC1 as well as native MUC1-C protein in breast cancer cells. Anti-hMUC1 binds to the membrane surface of cells that express MUC1 and is internalized in some cancer cell lines. Treatment with anti-hMUC1 significantly reduced proliferation of cells in which anti-hMUC1 antibody is internalized. Furthermore, the anti-hMUC1 antibody was specifically localized in the MUC1-expressing breast cancer cell-derived tumors in xenograft mouse models. Based on immunohistochemistry analysis, we detected significantly higher expression of MUC1 in cancer tissues than in normal control tissues. Conclusion : Our results reveal that the anti-hMUC1 antibody targets the extracellular region of MUC1-C subunit and may have utility in

  12. A novel monoclonal antibody targeting carboxymethyllysine, an advanced glycation end product in atherosclerosis and pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Ulrika Wendel

    Full Text Available Advanced glycation end products are formed by non-enzymatic reactions between proteins and carbohydrates, causing irreversible lysine and arginine alterations that severely affect protein structure and function. The resulting modifications induce inflammation by binding to scavenger receptors. An increase in advanced glycation end products is observed in a number of diseases e.g. atherosclerosis and cancer. Since advanced glycation end products also are present in healthy individuals, their detection and quantification are of great importance for usage as potential biomarkers. Current methods for advanced glycation end product detection are though limited and solely measure total glycation. This study describes a new epitope-mapped single chain variable fragment, D1-B2, against carboxymethyllysine, produced from a phage library that was constructed from mouse immunizations. The phage library was selected against advanced glycation end product targets using a phage display platform. Characterization of its binding pattern was performed using large synthetic glycated peptide and protein libraries displayed on microarray slides. D1-B2 showed a preference for an aspartic acid, three positions N-terminally from a carboxymethyllysine residue and also bound to a broad collection of glycated proteins. Positive immunohistochemical staining of mouse atherosclerotic plaques and of a tissue microarray of human pancreatic tumors confirmed the usability of the new scFv for advanced glycation end product detection in tissues. This study demonstrates a promising methodology for high-throughput generation of epitope-mapped monoclonal antibodies against AGE.

  13. Effective Depletion of Pre-existing Anti-AAV Antibodies Requires Broad Immune Targeting

    Directory of Open Access Journals (Sweden)

    Victoria M. Velazquez

    2017-03-01

    Full Text Available Pre-existing antibodies (Abs to AAV pose a critical challenge for the translation of gene therapies. No effective approach is available to overcome pre-existing Abs. Given the complexity of Ab production, overcoming pre-existing Abs will require broad immune targeting. We generated a mouse model of pre-existing AAV9 Abs to test multiple immunosuppressants, including bortezomib, rapamycin, and prednisolone, individually or in combination. We identified an effective approach combining rapamycin and prednisolone, reducing serum AAV9 Abs by 70%–80% at 4 weeks and 85%–93% at 8 weeks of treatment. The rapamycin plus prednisolone treatment resulted in significant decreases in the frequency of B cells, plasma cells, and IgG-secreting and AAV9-specific Ab-producing plasma cells in bone marrow. The rapamycin plus prednisolone treatment also significantly reduced frequencies of IgD−IgG+ class-switched/FAS+CL7+ germinal center B cells, and of activated CD4+ T cells expressing PD1 and GL7, in spleen. These data suggest that rapamycin plus prednisolone has selective inhibitory effects on both T helper type 2 support of B cell activation in spleen and on bone marrow plasma cell survival, leading to effective AAV9 Abs depletion. This promising immunomodulation approach is highly translatable, and it poses minimal risk in the context of therapeutic benefits promised by gene therapy for severe monogenetic diseases, with a single or possibly a few treatments over a lifetime.

  14. An intracellular targeted antibody detects EGFR as an independent prognostic factor in ovarian carcinomas

    International Nuclear Information System (INIS)

    Noske, Aurelia; Denkert, Carsten; Schwabe, Michael; Weichert, Wilko; Darb-Esfahani, Silvia; Buckendahl, Ann-Christin; Sehouli, Jalid; Braicu, Elena I; Budczies, Jan; Dietel, Manfred

    2011-01-01

    In ovarian cancer, the reported rate of EGFR expression varies between 4-70% depending on assessment method and data on patient outcome are conflicting. Methods: In this study we investigated EGFR expression and its prognostic value in a cohort of 121 invasive ovarian carcinomas, using a novel antibody against the intracellular domain of the receptor. We further evaluated an association between EGFR, the nuclear transporter CRM1 as well as COX-2. Furthermore, we evaluated EGFR expression in ten ovarian cancer cell lines and incubated cancer cells with Leptomycin B, a CRM1 specific inhibitor. We observed a membranous and cytoplasmic EGFR expression in 36.4% and 64% of ovarian carcinomas, respectively. Membranous EGFR was an independent prognostic factor for poor overall survival in ovarian cancer patients (HR 2.7, CI 1.1-6.4, p = 0.02) which was also found in the serous subtype (HR 4.6, CI 1.6-13.4, p = 0.004). We further observed a significant association of EGFR with COX-2 and nuclear CRM1 expression (chi-square test for trends, p = 0.006 and p = 0.013, respectively). In addition, combined membranous EGFR/COX-2 expression was significantly related to unfavorable overall survival (HR 7.2, CI 2.3-22.1, p = 0.001). In cell culture, we observed a suppression of EGFR protein levels after exposure to Leptomycin B in OVCAR-3 and SKOV-3 cells. Our results suggest that the EGFR/COX-2/CRM1 interaction might be involved in progression of ovarian cancer and patient prognosis. Hence, it is an interesting anti-cancer target for a combination therapy. Further studies will also be needed to investigate whether EGFR is also predictive for benefit from EGFR targeted therapies

  15. Murine CR1/2 targeted antigenized single-chain antibody fragments induce transient low affinity antibodies and negatively influence an ongoing immune response.

    Science.gov (United States)

    Prechl, József; Molnár, Eszter; Szekeres, Zsuzsanna; Isaák, Andrea; Papp, Krisztián; Balogh, Péter; Erdei, Anna

    2007-01-01

    We have generated a single-chain antibody which recognizes murine CR1/2 and carries a genetically fused influenza hemagglutinin derived peptide. Theoretically such a construct is able to crosslink the B cell antigen receptor and CR1/2 on peptide specific B cells. The construct was able to reach its CR1/2 positive target cells, yet intraperitoneal delivery of the construct elicited an IgM response only slightly exceeding that induced by the free peptide. Providing T cell help by the injection of peptide specific lymphocytes did not alter the response in essence, that is anti-peptide IgG was not detectable even after booster immunizations. When used as a booster vaccine following injection of the peptide in adjuvant, the construct even inhibited the development of IgG1 and IgG3 anti-peptide antibodies. These data indicate that although targeting of antigen to CR1/2 on B cells can enhance transient proliferation or differentiation of antigen specific B cells it cannot induce strong, longlasting humoral immune responses. Furthermore, CR1/2 targeting constructs may negatively influence an ongoing immune reaction.

  16. Biomeasures and mechanistic modeling highlight PK/PD risks for a monoclonal antibody targeting Fn14 in kidney disease.

    Science.gov (United States)

    Chen, Xiaoying; Farrokhi, Vahid; Singh, Pratap; Ocana, Mireia Fernandez; Patel, Jenil; Lin, Lih-Ling; Neubert, Hendrik; Brodfuehrer, Joanne

    2018-01-01

    Discovery of the upregulation of fibroblast growth factor-inducible-14 (Fn14) receptor following tissue injury has prompted investigation into biotherapeutic targeting of the Fn14 receptor for the treatment of conditions such as chronic kidney diseases. In the development of monoclonal antibody (mAb) therapeutics, there is an increasing trend to use biomeasures combined with mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling to enable decision making in early discovery. With the aim of guiding preclinical efforts on designing an antibody with optimized properties, we developed a mechanistic site-of-action (SoA) PK/PD model for human application. This model incorporates experimental biomeasures, including concentration of soluble Fn14 (sFn14) in human plasma and membrane Fn14 (mFn14) in human kidney tissue, and turnover rate of human sFn14. Pulse-chase studies using stable isotope-labeled amino acids and mass spectrometry indicated the sFn14 half-life to be approximately 5 hours in healthy volunteers. The biomeasures (concentration, turnover) of sFn14 in plasma reveals a significant hurdle in designing an antibody against Fn14 with desired characteristics. The projected dose (>1 mg/kg/wk for 90% target coverage) derived from the human PK/PD model revealed potential high and frequent dosing requirements under certain conditions. The PK/PD model suggested a unique bell-shaped relationship between target coverage and antibody affinity for anti-Fn14 mAb, which could be applied to direct the antibody engineering towards an optimized affinity. This investigation highlighted potential applications, including assessment of PK/PD risks during early target validation, human dose prediction and drug candidate optimization.

  17. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors.

    Science.gov (United States)

    Milowsky, Matthew I; Nanus, David M; Kostakoglu, Lale; Sheehan, Christine E; Vallabhajosula, Shankar; Goldsmith, Stanley J; Ross, Jeffrey S; Bander, Neil H

    2007-02-10

    Based on prostate-specific membrane antigen (PSMA) expression on the vasculature of solid tumors, we performed a phase I trial of antibody J591, targeting the extracellular domain of PSMA, in patients with advanced solid tumor malignancies. This was a proof-of-principle evaluation of PSMA as a potential neovascular target. The primary end points were targeting,toxicity, maximum-tolerated dose, pharmacokinetics (PK), and human antihuman antibody (HAHA) response. Patients had advanced solid tumors previously shown to express PSMA on the neovasculature. They received 111Indium (111ln)-J591 for scintigraphy and PK, followed 2 weeks later by J591 with a reduced amount of 111In for additional PK measurements. J591 dose levels were 5, 10, 20, 40, and 80 mg. The protocol was amended for six weekly administrations of unchelated J591. Patients with a response or stable disease were eligible for re-treatment. Immunohistochemistry assessed PSMA expression in tumor tissues. Twenty-seven patients received monoclonal antibody (mAb) J591. Treatment was well tolerated. Twenty (74%) of 27 patients had at least one area of known metastatic disease targeted by 111In-J591, with positive imaging seen in patients with kidney, bladder, lung, breast, colorectal, and pancreatic cancers, and melanoma. Seven of 10 patient specimens available for immunohistochemical assessment of PSMA expression in tumor-associated vasculature demonstrated PSMA staining. No HAHA response was seen. Three patients of 27 with stable disease received re-treatment. Acceptable toxicity and excellent targeting of known sites of metastases were demonstrated in patients with multiple solid tumor types, highlighting a potential role for the anti-PSMA antibody J591 as a vascular-targeting agent.

  18. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen

    Science.gov (United States)

    Hart, Peter J.; O’Shaughnessy, Colette M.; Siggins, Matthew K.; Bobat, Saeeda; Kingsley, Robert A.; Goulding, David A.; Crump, John A.; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F.; MacLennan, Calman A.

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies. PMID:26741681

  19. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Directory of Open Access Journals (Sweden)

    Peter J Hart

    Full Text Available Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  20. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Science.gov (United States)

    Hart, Peter J; O'Shaughnessy, Colette M; Siggins, Matthew K; Bobat, Saeeda; Kingsley, Robert A; Goulding, David A; Crump, John A; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F; MacLennan, Calman A

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  1. Development and Characterization of a Camelid Single Domain Antibody-Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2.

    Science.gov (United States)

    Tian, Baomin; Wong, Wah Yau; Uger, Marni D; Wisniewski, Pawel; Chao, Heman

    2017-01-01

    Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs). In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21) and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody-urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MS E peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3) pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[( N -maleimidopropionamido)-diethyleneglycol] ester (SM(PEG) 2 ), which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis(maleimido)diethylene glycol

  2. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    Science.gov (United States)

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M; Kaneko, Kan; Hook, Sarah; Janssen, Peter H; Wedlock, D Neil

    2016-01-01

    Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2) formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation). A control group of sheep (n = 6) was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible.

  3. SEARCH FOR TARGET TISSUE IN THE EYE ORBIT FOR AUTOIMMUNE AGGRESSION OF THYROID ANTIBODIES IN ENDOCRINE OPHTHALMOPATHY

    Directory of Open Access Journals (Sweden)

    V. G. Likhvantseva

    2017-01-01

    Full Text Available We searched for a possible target tissue in eye orbit for thyroid autoantibodies in endocrine ophthalmopathy (Graves’ disease, using correlation analysis method. We examined a group of 139 patients (278 eye orbits with thyroid-associated ophthalmopathy associated with diffuse toxic goiter. Serological parameters (antibodies to thyroid-stimulating hormone receptor; thyroglobulin, thyroid peroxidase were compared with instrumental diagnostic data (multi-layer CT, ultrasonography of eye orbit, and exophthalmometer, as well as clinical symptoms. Statistical correlation analysis enabled us to show different degrees of association between thyroid antibodies and clinical manifestations of Graves’ disease and eye orbit involvement. Especially, carriers of antibodies to TSH receptor and thyroglobulin (as compared to seronegative patients exhibited higher exophthalmos scores (19.16±0.26 mm, p < 0.001, and 19.41±0.40 mm, p < 0.05, respectively, and with total muscle index (2.42±0.05, p < 0.01, and 2.42±0.08, respectively. Meanwhile, eyelids in carriers of antibodies to TSH receptor and thyroid peroxidase proved to be more swollen (p < 0.001, p < 0.05, respectively. Carriage of antibodies to thyroglobulin was associated with synchronous involvement of two structures of the eye orbit: extraocular muscles and retrobulbar tissue, which is reflected by increase in the average ntegral exophthalmos index within the group.

  4. Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases.

    Science.gov (United States)

    Brennan, Frank R; Cauvin, Annick; Tibbitts, Jay; Wolfreys, Alison

    2014-05-01

    An increasing number of immunomodulatory monoclonal antibodies (mAbs) and IgG Fc fusion proteins are either approved or in early-to-late stage clinical trials for the treatment of chronic inflammatory conditions, autoimmune diseases and organ transplant rejection. The exquisite specificity of mAbs, in combination with their multi-functional properties, high potency, long half-life (permitting intermittent dosing and prolonged pharamcological effects), and general lack of off-target toxicity makes them ideal therapeutics. Dosing with mAbs for these severe and debilitating but often non life-threatening diseases is usually prolonged, for several months or years, and not only affects adults, including sensitive populations such as woman of child-bearing potential (WoCBP) and the elderly, but also children. Immunosuppression is usually a therapeutic goal of these mAbs and when administered to patients whose treatment program often involves other immunosuppressive therapies, there is an inherent risk for frank immunosuppression and reduced host defence which when prolonged increases the risk of infection and cancer. In addition when mAbs interact with the immune system they can induce other adverse immune-mediated drug reactions such as infusion reactions, cytokine release syndrome, anaphylaxis, immune-complex-mediated pathology and autoimmunity. An overview of the nonclinical safety assessment and risk mitigation strategies utilized to characterize these immunomodulatory mAbs and Fc fusion proteins to support first-in human (FIH) studies and futher clinical development in inflammatory disease indications is provided. Specific emphasis is placed on the design of studies to qualify animal species for toxicology studies, early studies to investigate safety and define PK/PD relationships, FIH-enabling and chronic toxicology studies, immunotoxicity, developmental, reproductive and juvenile toxicity studies and studies to determine the potential for immunosuppression and

  5. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells.

    Science.gov (United States)

    Kim, Jung Seok; Shin, Dae Hwan; Kim, Jin-Seok

    2018-01-10

    Glioblastoma stem cells (GSCs), which are identified as subpopulation of CD133 + /ALDH1 + , are known to show resistance to the most of chemotherapy and radiation therapy, leading to the recurrence of tumor in glioblastoma multiforme (GBM) patients. Also, delivery of temozolomide (TMZ), a mainline treatment of GBM, to the GBM site is hampered by various barriers including the blood-brain barrier (BBB). A dual-targeting immunoliposome encapsulating TMZ (Dual-LP-TMZ) was developed by using angiopep-2 (An2) and anti-CD133 monoclonal antibody (CD133 mAb) for BBB transcytosis and specific delivery to GSCs, respectively. The size, zeta potential and drug encapsulation efficiency of Dual-LP-TMZ were 203.4nm in diameter, -1.6mV and 99.2%, respectively. The in vitro cytotoxicity of Dual-LP-TMZ against U87MG GSCs was increased by 425- and 181-folds when compared with that of free TMZ and non-targeted TMZ liposome (LP-TMZ) (10.3μM vs. 4380μM and 1869μM in IC 50 , respectively). Apoptosis and anti-migration ability of Dual-LP-TMZ in U87MG GSCs were also significantly enhanced comparing with those of free TMZ or LP-TMZ. In vivo study clearly showed a significant reduction in tumor size after intravenous administrations of Dual-LP-TMZ to the orthotopically-implanted brain tumor mice when compared with free TMZ or LP-TMZ. Increased life span (ILS) and median survival time (MST) of tumor-bearing mice were also increased when treated with Dual-LP-TMZ (211.2% in ILS and 49.2days in MST) than with free TMZ (0% in ILS and 23.3day in MST). These data indicate that conjugation of both An2 peptide and CD133 mAb to TMZ-encapsulating liposome is very effective in delivering the TMZ to GSCs via BBB, suggesting a potential use of Dual-LP-TMZ as a therapeutic modality for GBM. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Radioimmunotherapy of fungal diseases: the therapeutic potential of cytocidal radiation delivered by antibody targeting fungal cell surface antigens

    OpenAIRE

    Joshua D Nosanchuk; Ekaterina eDadachova

    2012-01-01

    Radioimmunotherapy is the targeted delivery of cytocidal radiation to cells via specific antibody. Although mature for the treatment of cancer, RIT of infectious diseases is in pre-clinical development. However, as there is an obvious and urgent need for novel approaches to treat infectious diseases, RIT can provide us with a powerful approach to combat serious diseases, including invasive fungal infections. For example, RIT has proven more effective than standard amphotericin B for the treat...

  7. A CD276 Antibody Guided Missile with One Warhead and Two Targets: The Tumor and Its Vasculature.

    Science.gov (United States)

    Khan, Kabir A; Kerbel, Robert S

    2017-04-10

    In this issue of Cancer Cell, Seaman et al. demonstrate that antibody drug conjugates (ADCs) against CD276 expressed by tumor cells and tumor vasculature have promising anti-tumor activity while showing little toxicity. Importantly, these agents have the potential to target both angiogenic vessels and non-angiogenic vessels co-opted by tumor cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The potential of targeted antibody prophylaxis in SARS outbreak control: a mathematic analysis

    NARCIS (Netherlands)

    Bogaards, Johannes Antonie; Putter, Hein; Jan Weverling, Gerrit; ter Meulen, Jan; Goudsmit, Jaap

    2007-01-01

    BACKGROUND: Severe acute respiratory syndrome (SARS) coronavirus-like viruses continue to circulate in animal reservoirs. If new mutants of SARS coronavirus do initiate another epidemic, administration of prophylactic antibodies to risk groups may supplement the stringent isolation procedures that

  9. Adjuvant-Mediated Epitope Specificity and Enhanced Neutralizing Activity of Antibodies Targeting Dengue Virus Envelope Protein

    Directory of Open Access Journals (Sweden)

    Denicar Lina Nascimento Fabris Maeda

    2017-09-01

    Full Text Available The heat-labile toxins (LT produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV envelope glycoprotein domain III (EDIII, which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.

  10. Modulating antibody affinity towards the transferrin receptor to increase brain uptake of anti-transferrin receptor antibody targeted gold nanoparticles

    DEFF Research Database (Denmark)

    Johnsen, Kasper Bendix; Bak, Martin; Melander, Fredrik

    2017-01-01

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier (BBB) that under physiological conditions precludes entrance of most substances contained in the systemic circulation. Thus, this barrier must be overcome to deliver medicines into the brain parenchyma. The transfer......Drug delivery to the brain is hampered by the presence of the blood-brain barrier (BBB) that under physiological conditions precludes entrance of most substances contained in the systemic circulation. Thus, this barrier must be overcome to deliver medicines into the brain parenchyma....... The transferrin receptor is exclusively expressed on capillaries of the brain, which makes it an interesting target for transport of drugs towards the brain. However, the current evidence on the receptor movement in brain capillaries does not suggest transcytosis, and delivering medicines or nanoparticles using...

  11. Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells

    Science.gov (United States)

    Mac, Jenny T.; Nuñez, Vicente; Burns, Joshua M.; Guerrero, Yadir A.; Vullev, Valentine I.; Anvari, Bahman

    2016-01-01

    Constructs derived from mammalian cells are emerging as a new generation of nano-scale platforms for clinical imaging applications. Herein, we report successful engineering of hybrid nano-structures composed of erythrocyte-derived membranes doped with FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG), and surface-functionalized with antibodies to achieve molecular targeting. We demonstrate that these constructs can be used for targeted imaging of cancer cells in vitro. These erythrocyte-derived optical nano-probes may provide a potential platform for clinical translation, and enable molecular imaging of cancer biomarkers. PMID:27446657

  12. Highly Specific PET Imaging of Prostate Tumors in Mice with an Iodine-124-Labeled Antibody Fragment That Targets Phosphatidylserine

    OpenAIRE

    Stafford, Jason H.; Hao, Guiyang; Best, Anne M.; Sun, Xiankai; Thorpe, Philip E.

    2013-01-01

    Phosphatidylserine (PS) is an attractive target for imaging agents that identify tumors and assess their response to therapy. PS is absent from the surface of most cell types, but becomes exposed on tumor cells and tumor vasculature in response to oxidative stresses in the tumor microenvironment and increases in response to therapy. To image exposed PS, we used a fully human PS-targeting antibody fragment, PGN635 F(ab')2, that binds to complexes of PS and β2-glycoprotein I. PGN635 F(ab')2 was...

  13. New Strategies for the Next Generation of Matrix-Metalloproteinase Inhibitors: Selectively Targeting Membrane-Anchored MMPs with Therapeutic Antibodies

    Directory of Open Access Journals (Sweden)

    Laetitia Devy

    2011-01-01

    Full Text Available MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-spectrum MMP-inhibitors (MMPIs caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies against individual membrane-bound MMPs.

  14. Detecting circulating antibodies by controlled surface modification with specific target proteins: Application to malaria.

    Science.gov (United States)

    Cardoso, Ana R; Cabral-Miranda, Gustavo; Reyes-Sandoval, Arturo; Bachmann, Martin F; Sales, M Goreti F

    2017-05-15

    Sensitive detection of specific antibodies by biosensors has become of major importance for monitoring and controlling epidemics. Here we report a development of a biosensor able to specifically measure antibodies in a drop of unmodified blood serum. Within minutes, the detection system measures presence of antibodies against Plasmodium vivax, a causing agent for malaria. The biosensor consists of a layer of carbon nanotubes (CNTs) which were casted on a carbon working electrode area of a three-electrode system and oxidized. An amine layer was produced next by modifying the surface with EDAC/NHS followed by reaction with a diamine compound. Finally, the protein fragments derived from P. vivax containing well-known antigen sequences were casted on this layer and bound through electrostatic interactions, involving hydrogen and ionic bonding. All these chemical changes occurring at the carbon surface along the biosensor assembly were followed and confirmed by Fourier Transformed Infrared s pectrometry (FTIR) and Raman spectroscopy. The presence of antibodies in serum was detected by monitoring the electrical properties of the layer, making use of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV), against a standard iron probe. Overall, the charge-transfer resistance decreased after antibody binding, because there was an additional amount of protein bound to the surface. This hindered the access of the iron redox probe to the conductive support at the electrode surface. Electrical changes could be measured at antibody concentration as low as ~6-50pg/L (concentrations in the range of 10-15M) and as high as ~70μg/L. Specific measurement with low background was even possible in undiluted serum. Hence, this novel biosensor allows assessing serum antibody levels in real time and in un-manipulated serum samples on-site where needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD.

    Science.gov (United States)

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  16. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells.

    Science.gov (United States)

    Kaiser, Philipp D; Maier, Julia; Traenkle, Bjoern; Emele, Felix; Rothbauer, Ulrich

    2014-11-01

    In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Besides their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells. Alternatively, live cell imaging using fluorescent protein-tagged reporters is widely used to study protein localization and dynamics in living cells. However, only artificially introduced chimeric proteins are visualized, whereas the endogenous proteins, their posttranslational modifications as well as non-protein components of the cell remain invisible and cannot be analyzed. To overcome these limitations, traceable intracellular binding molecules provide new opportunities to perform cellular diagnostics in real time. In this review we summarize recent progress in the generation of intracellular and cell penetrating antibodies and their application to target and trace cellular components in living cells. We highlight recent advances in the structural formulation of recombinant antibody formats, reliable screening protocols and sophisticated cellular targeting technologies and propose that such intrabodies will become versatile research tools for real time cell-based diagnostics including target validation and live cell imaging. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pepinsky, R. Blake; Silvian, Laura; Berkowitz, Steven A.; Farrington, Graham; Lugovskoy, Alexey; Walus, Lee; Eldredge, John; Capili, Allan; Mi, Sha; Graff, Christilyn; Garber, Ellen (Biogen)

    2010-11-15

    Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti-LINGO-1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for its propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.

  18. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis

    Directory of Open Access Journals (Sweden)

    Jing Jin

    2015-12-01

    Full Text Available We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV infection. Potently neutralizing antibodies (NAbs blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.

  19. A Novel VHH Antibody Targeting the B Cell-Activating Factor for B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Wen Wu

    2014-05-01

    Full Text Available Objective: To construct an immune alpaca phage display library, in order to obtain a single domain anti-BAFF (B cell-activating factor antibody. Methods: Using phage display technology, we constructed an immune alpaca phage display library, selected anti-BAFF single domain antibodies (sdAbs, cloned three anti-BAFF single-domain antibody genes into expression vector pSJF2, and expressed them efficiently in Escherichia coli. The affinity of different anti-BAFF sdAbs were measured by Bio layer interferometry. The in vitro biological function of three sdAbs was investigated by cell counting kit-8 (CCK-8 assay and a competitive enzyme-linked immunosorbent assay (ELISA. Results: We obtained three anti-BAFF single domain antibodies (anti-BAFF64, anti-BAFF52 and anti-BAFFG3, which were produced in high yield in Escherichia coli and inhibited tumor cell proliferation in vitro. Conclusion: The selected anti-BAFF antibodies could be candidates for B-cell lymphoma therapies.

  20. Theranostic pretargeted radioimmunotherapy of colorectal cancer xenografts in mice using picomolar affinity {sup 86}Y- or {sup 177}Lu-DOTA-Bn binding scFv C825/GPA33 IgG bispecific immunoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Cheal, Sarah M.; Lee, Sang-gyu; Punzalan, Blesida; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY (United States); Xu, Hong; Guo, Hong-fen [Memorial Sloan Kettering Cancer Center, Department of Pediatrics, New York, NY (United States); Chalasani, Sandhya; Carrasquillo, Jorge A. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Fung, Edward K. [Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Jungbluth, Achim [Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, NY (United States); Zanzonico, Pat B.; O' Donoghue, Joseph [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Smith-Jones, Peter M. [Stony Brook University, Department of Psychiatry and Behavioral Science, Stony Brook, NY (United States); Stony Brook University, Department of Radiology, Stony Brook, NY (United States); Wittrup, K.D. [Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA (United States); Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA (United States); Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Cambridge, MA (United States); Cheung, Nai-Kong V. [Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Department of Pediatrics, New York, NY (United States)

    2016-05-15

    GPA33 is a colorectal cancer (CRC) antigen with unique retention properties after huA33-mediated tumor targeting. We tested a pretargeted radioimmunotherapy (PRIT) approach for CRC using a tetravalent bispecific antibody with dual specificity for GPA33 tumor antigen and DOTA-Bn-(radiolanthanide metal) complex. PRIT was optimized in vivo by titrating sequential intravenous doses of huA33-C825, the dextran-based clearing agent, and the C825 haptens {sup 177}Lu-or {sup 86}Y-DOTA-Bn in mice bearing the SW1222 subcutaneous (s.c.) CRC xenograft model. Using optimized PRIT, therapeutic indices (TIs) for tumor radiation-absorbed dose of 73 (tumor/blood) and 12 (tumor/kidney) were achieved. Estimated absorbed doses (cGy/MBq) to tumor, blood, liver, spleen, and kidney for single-cycle PRIT were 65.8, 0.9 (TI 73), 6.3 (TI 10), 6.6 (TI 10), and 5.3 (TI 12), respectively. Two cycles of PRIT (66.6 or 111 MBq {sup 177}Lu-DOTA-Bn) were safe and effective, with a complete response of established s.c. tumors (100 - 700 mm{sup 3}) in nine of nine mice, with two mice alive without recurrence at >140 days. Tumor log kill in this model was estimated to be 2.1 - 3.0 based on time to 500-mm{sup 3} tumor recurrence. In addition, PRIT dosimetry/diagnosis was performed by PET imaging of the positron-emitting DOTA hapten {sup 86}Y-DOTA-Bn. We have developed anti-GPA33 PRIT as a triple-step theranostic strategy for preclinical detection, dosimetry, and safe targeted radiotherapy of established human colorectal mouse xenografts. (orig.)

  1. Target-selective homologous recombination cloning for high-throughput generation of monoclonal antibodies from single plasma cells.

    Science.gov (United States)

    Kurosawa, Nobuyuki; Yoshioka, Megumi; Isobe, Masaharu

    2011-04-13

    Molecular cloning of functional immunoglobulin genes from single plasma cells is one of the most promising technologies for the rapid development of monoclonal antibody drugs. However, the proper insertion of PCR-amplified immunoglobulin genes into expression vectors remains an obstacle to the high-throughput production of recombinant monoclonal antibodies. We developed a single-step cloning method, target-selective homologous recombination (TS-HR), in which PCR-amplified immunoglobulin variable genes were selectively inserted into vectors, even in the presence of nonspecifically amplified DNA. TS-HR utilizes Red/ET-mediated homologous recombination with a target-selective vector (TS-vector) with unique homology arms on its termini. Using TS-HR, immunoglobulin variable genes were cloned directly into expression vectors by co-transforming unpurified PCR products and the TS-vector into E. coli. Furthermore, the high cloning specificity of TS-HR allowed plasmids to be extracted from pools of transformed bacteria without screening single colonies for correct clones. We present a one-week protocol for the production of recombinant mouse monoclonal antibodies from large numbers of single plasma cells. The time requirements and limitations of traditional cloning procedures for the production of recombinant immunoglobulins have been significantly reduced with the development of the TS-HR cloning technique. © 2011 Kurosawa et al; licensee BioMed Central Ltd.

  2. Target-selective homologous recombination cloning for high-throughput generation of monoclonal antibodies from single plasma cells

    Directory of Open Access Journals (Sweden)

    Isobe Masaharu

    2011-04-01

    Full Text Available Abstract Background Molecular cloning of functional immunoglobulin genes from single plasma cells is one of the most promising technologies for the rapid development of monoclonal antibody drugs. However, the proper insertion of PCR-amplified immunoglobulin genes into expression vectors remains an obstacle to the high-throughput production of recombinant monoclonal antibodies. Results We developed a single-step cloning method, target-selective homologous recombination (TS-HR, in which PCR-amplified immunoglobulin variable genes were selectively inserted into vectors, even in the presence of nonspecifically amplified DNA. TS-HR utilizes Red/ET-mediated homologous recombination with a target-selective vector (TS-vector with unique homology arms on its termini. Using TS-HR, immunoglobulin variable genes were cloned directly into expression vectors by co-transforming unpurified PCR products and the TS-vector into E. coli. Furthermore, the high cloning specificity of TS-HR allowed plasmids to be extracted from pools of transformed bacteria without screening single colonies for correct clones. We present a one-week protocol for the production of recombinant mouse monoclonal antibodies from large numbers of single plasma cells. Conclusion The time requirements and limitations of traditional cloning procedures for the production of recombinant immunoglobulins have been significantly reduced with the development of the TS-HR cloning technique.

  3. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    Directory of Open Access Journals (Sweden)

    Edyta Petters

    2015-08-01

    Full Text Available Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.

  4. Tyramide Signal Amplification for Antibody-overlay Lectin Microarray: A Strategy to Improve the Sensitivity of Targeted Glycan Profiling

    Science.gov (United States)

    Meany, Danni L.; Hackler, Laszlo; Zhang, Hui; Chan, Daniel W.

    2011-01-01

    Antibody-overlay lectin microarray (ALM) has been used for targeted glycan profiling to identify disease-related protein glycoforms. In this context, high sensitivity is desired because it allows for the identification of disease-related glycoforms that are often present at low concentration. We describe a new Tyramide Signal Amplification (TSA) for Antibody-overlay Lectin Microarray procedure for sensitive profiling of glycosylation patterns. We demonstrated that TSA increased the sensitivity of the microarray over 100 times for glycan profiling using the model protein Prostate Specific Antigen (PSA). The glycan profile of PSA enriched from LNCAP cells, obtained at a sub-nanogram level with the aid of TSA, was consistent with the previous reports. We also established the glycan profile of Prostate Specific Membrane Antigen (PSMA) using the TSA and ALM. Thus, the Tyramide Signal Amplification for Antibody-overlay Lectin Microarray is a sensitive, rapid, comprehensive, and high-throughput method for targeted glycan profiling and can potentially be used for the identification of disease-related protein glycoforms. PMID:21133419

  5. Investigating Antivenom Function and Cross-Reactivity – a Study of Antibodies and Their Targets

    DEFF Research Database (Denmark)

    Engmark, Mikael; De Masi, Federico; Andersen, Mikael Rørdam

    Venomous snakebites are regarded as one of the World’s most neglected tropical diseases/conditions with up to 2.5 million victims every year. The best-practice treatment is antivenom derived from the blood of large mammals (typically horses or sheep) immunized with venom of one or more snake...... species. The active toxin neutralizing components in antivenom are complex mixtures of antibodies (or fragments here of). The individual antibodies are adapted by the immune system of the production animal to bind specific to parts of each toxin used in the immunization procedure. In many cases antivenom...

  6. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    Directory of Open Access Journals (Sweden)

    Berger Marc A

    2007-01-01

    Full Text Available Abstract Previously, we have successfully targeted the mannose receptor (MR expressed on monocyte-derived dendritic cells (DCs using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ. Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C and DC TLR 7/8 with Resiquimod (R-848, respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs.

  7. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad A

    2013-01-01

    Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking...... expressing tumor cells, the combination of CD3ζ, OX40, CD28 as well as the CH3-CH2-hinge-hinge domains most efficiently triggered T cell activation. Importantly, CAR mediated functions were not blocked by the soluble TAG-72 antigen at a supraphysiological concentration. Our approach may have the potential...... capacity of soluble antigen still remain. Here, we address these issues using a novel CAR binding moiety based on the oligoclonal camelid single domain antibodies. A unique set of 13 single domain antibodies were selected from an immunized camel phage library based on their target specificity and binding...

  8. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, Karel; Etrych, Tomáš; Chytil, Petr; Jelínková, Markéta; Říhová, Blanka

    2004-01-01

    Roč. 12, č. 8 (2004), s. 477-489 ISSN 1061-186X R&D Projects: GA ČR GA305/02/1425 Keywords : HPMA copolymers * doxorubicin * antibody Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.907, year: 2004

  9. Construction of dystrophin fusion proteins to raise targeted antibodies to different epitopes

    NARCIS (Netherlands)

    Ginjaar, H. B.; van Paassen, H. B.; den Dunnen, J. T.; Man, N. T.; Morris, G. E.; Moorman, A. F.; van Ommen, G. J.

    1992-01-01

    For the study of the structure and function relationship of dystrophin, defective in DMD, and for diagnostic purposes it is important to dispose of antibodies against different parts of the protein. We have made five different constructs for the expression of fusion proteins containing parts of the

  10. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  11. Paclitaxel-loaded nanoparticles decorated with anti-CD133 antibody: a targeted therapy for liver cancer stem cells

    Science.gov (United States)

    Jin, Cheng; Yang, Zhaoxu; Yang, Jingyue; Li, Haimin; He, Yong; An, Jiaze; Bai, Ling; Dou, Kefeng

    2014-01-01

    Recent studies have revealed the existence of liver cancer stem cells (CSCs). Therefore, there is an urgent need for new and effective treatment strategies specific to liver CSCs. In this work, the poly( d, l-lactide-coglycolide) nanoparticles containing paclitaxel were prepared by emulsification-solvent evaporation method. The nanoparticles decorated with anti-CD133 antibody, termed targeted nanoparticles, were prepared by carbodiimide chemistry for liver CSCs. The physicochemical characteristics of the nanoparticles (i.e., encapsulation efficiency, particle size distribution, morphology, and in vitro release) were investigated. Cellular uptake and accumulation in tumor tissue of nanoparticles were observed. To assess anti-tumor activity of nanoparticles in vitro and in vivo, cell survival assay and tumor regression study were carried out using liver cancer cell lines (Huh7 and HepG2) and their xenografts. Particle size of targeted nanoparticles was 429.26 ± 41.53 nm with zeta potential of -11.2 mV. Targeted nanoparticles possessed spherical morphology and high encapsulation efficiency (87.53 ± 5.9 %). The accumulation of targeted nanoparticles depends on dual effects of passive and active targeting. Drug-loaded nanoparticles showed cytotoxicity on the tumor cells in vitro and in vivo. Targeted nanoparticles resulted in significant improvement in therapeutic response through selectively eliminating CD133 positive subpopulation. These results suggested that the novel nanoparticles could be a promising candidate with excellent therapeutic efficacy for targeting liver CSCs.

  12. A novel dimeric inhibitor targeting Beta2GPI in Beta2GPI/antibody complexes implicated in antiphospholipid syndrome.

    Directory of Open Access Journals (Sweden)

    Alexey Kolyada

    2010-12-01

    Full Text Available β2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS, an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of β2GPI generated by anti-β2GPI antibodies is pathologically important, in contrast to monomeric β2GPI which is abundant in plasma.We created a dimeric inhibitor, A1-A1, to selectively target β2GPI in β2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1 and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of β2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of β2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of β2GPI present in human serum, β2GPI purified from human plasma and the individual domain V of β2GPI. We demonstrated that when β2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of β2GPI to cardiolipin, regardless of the source of β2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of β2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-β2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric β2GPI to cardiolipin.Our results suggest that the approach of using a dimeric inhibitor to block β2GPI in the pathological multivalent β2GPI/antibody complexes holds significant promise. The novel inhibitor A1-A1 may be a starting point in the development of an effective therapeutic for antiphospholipid syndrome.

  13. A Novel Dimeric Inhibitor Targeting Beta2GPI in Beta2GPI/Antibody Complexes Implicated in Antiphospholipid Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    A Kolyada; C Lee; A De Biasio; N Beglova

    2011-12-31

    {beta}2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of {beta}2GPI generated by anti-{beta}2GPI antibodies is pathologically important, in contrast to monomeric {beta}2GPI which is abundant in plasma. We created a dimeric inhibitor, A1-A1, to selectively target {beta}2GPI in {beta}2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1) and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of {beta}2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of {beta}2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of {beta}2GPI present in human serum, {beta}2GPI purified from human plasma and the individual domain V of {beta}2GPI. We demonstrated that when {beta}2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of {beta}2GPI to cardiolipin, regardless of the source of {beta}2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of {beta}2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-{beta}2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric {beta}2GPI to cardiolipin. Our results suggest that the approach of using a dimeric inhibitor to block {beta}2GPI in the pathological multivalent {beta}2GPI/antibody complexes holds significant promise. The novel inhibitor A1-A1 may be a starting point in the development of an effective therapeutic for antiphospholipid syndrome.

  14. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    Directory of Open Access Journals (Sweden)

    Supatsak Subharat

    Full Text Available Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2 formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation. A control group of sheep (n = 6 was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible.

  15. Internalization of secreted antigen–targeted antibodies by the neonatal Fc receptor for precision imaging of the androgen receptor axis

    Science.gov (United States)

    Thorek, Daniel L. J.; Watson, Philip A.; Lee, Sang-Gyu; Ku, Anson T.; Bournazos, Stylianos; Braun, Katharina; Kim, Kwanghee; Sjöström, Kjell; Doran, Michael G.; Lamminmäki, Urpo; Santos, Elmer; Veach, Darren; Turkekul, Mesruh; Casey, Emily; Lewis, Jason S.; Abou, Diane S.; van Voss, Marise R. H.; Scardino, Peter T.; Strand, Sven-Erik; Alpaugh, Mary L.; Scher, Howard I.; Lilja, Hans; Larson, Steven M.; Ulmert, David

    2017-01-01

    Targeting the androgen receptor (AR) pathway prolongs survival in patients with prostate cancer, but resistance rapidly develops. Understanding this resistance is confounded by a lack of noninvasive means to assess AR activity in vivo. We report intracellular accumulation of a secreted antigen-targeted antibody (SATA) that can be used to characterize disease, guide therapy, and monitor response. AR-regulated human kallikrein-related peptidase 2 (free hK2) is a prostate tissue-specific antigen produced in prostate cancer and androgen-stimulated breast cancer cells. Fluorescent and radio conjugates of 11B6, an antibody targeting free hK2, are internalized and noninvasively report AR pathway activity in metastatic and genetically engineered models of cancer development and treatment. Uptake is mediated by a mechanism involving the neonatal Fc receptor. Humanized 11B6, which has undergone toxicological tests in nonhuman primates, has the potential to improve patient management in these cancers. Furthermore, cell-specific SATA uptake may have a broader use for molecularly guided diagnosis and therapy in other cancers. PMID:27903863

  16. Gene delivery into ischemic myocardium by double-targeted lipoplexes with anti-myosin antibody and TAT peptide.

    Science.gov (United States)

    Ko, Y T; Hartner, W C; Kale, A; Torchilin, V P

    2009-01-01

    The treatment of myocardial ischemia using gene therapy is a rather novel but promising approach. Gene delivery to target cells may be enhanced by using double-targeted delivery systems simultaneously capable of extracellular accumulation and intracellular penetration. With this in mind, we have used low cationic liposomes-plasmid DNA complexes (lipoplexes) modified with cell-penetrating transactivating transcriptional activator (TAT) peptide (TATp) and/or with monoclonal anti-myosin monoclonal antibody 2G4 (mAb 2G4) specific toward cardiac myosin, for targeted gene delivery to ischemic myocardium. In vitro transfection of both normoxic and hypoxic cardiomyocytes was enhanced by the presence of TATp as determined by fluorescence microscopy and ELISA. The in vitro transfection was further enhanced by the additional modification with mAb 2G4 antibody in the case of hypoxic, but not normoxic cardiomyocytes. However, we did not observe a synergism between TATp and mAb 2G4 ligands under our experimental condition. In in vivo experiments, we have clearly demonstrated an increased accumulation of mAb 2G4-modified TATp lipoplexes in the ischemic rat myocardium and significantly enhanced transfection of cardiomyocytes in the ischemic zone. Thus, the genetic transformation of normoxic and hypoxic cardiomyocytes can be enhanced by using lipoplexes modified with TATp and/or mAb 2G4. Such complexes also demonstrate an increased accumulation in the ischemic myocardium and effective transfection of hypoxic cardiomyocytes in vivo.

  17. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity

    DEFF Research Database (Denmark)

    Lavrsen, Kirstine; Madsen, Caroline B; Rasch, Morten G

    2013-01-01

    not covered by immunological tolerance in MUC1 humanized mice and man. The objective of this study was to determine if mouse antibodies to this Tn-MUC1 epitope induce antibody-dependent cellular cytotoxicity (ADCC) pivotal for their potential use in cancer immunotherapy. Binding affinity of mAb 5E5 directed...... to Tn-MUC1 was investigated using BiaCore. The availability of Tn-MUC1 on the surface of breast cancer cells was evaluated by immunohistochemistry, confocal microscopy, and flow cytometry, followed by in vitro assessment of antibody-dependent cellular cytotoxicity by mAb 5E5. Biacore analysis...... is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity suggesting that antibodies targeting glycopeptide epitopes on mucins are strong candidates for cancer-specific immunotherapies....

  18. HER3, serious partner in crime: therapeutic approaches and potential biomarkers for effect of HER3-targeting.

    Science.gov (United States)

    Kol, Arjan; Terwisscha van Scheltinga, Anton G T; Timmer-Bosscha, Hetty; Lamberts, Laetitia E; Bensch, Frederike; de Vries, Elisabeth G E; Schröder, Carolina P

    2014-07-01

    The human epidermal growth factor receptor (HER) family members are targeted by a growing numbers of small molecules and monoclonal antibodies. Resistance against the epidermal growth factor receptor (EGFR) and HER2-targeting agents is a clinically relevant problem forcing research on optimizing targeting of the HER family. In view of its overexpression in tumors, and compensatory role in HER signaling, HER3 has gained much interest as a potential additional target within the HER family. It is the only member of the HER family lacking intrinsic tyrosine kinase activity and therefore its role in cancer has long been underestimated. Drugs that block HER3 or interfere with HER3 dimer signaling, including fully human anti-HER3 antibodies, bispecific antibodies and tyrosine kinase inhibitors (TKIs), are currently becoming available. Several compounds have already entered clinical trial. In the meantime potential biomarkers are tested such as tumor analysis of HER3 expression, functional assays for downstream effector molecules and molecular imaging techniques. This review describes the biology and relevance of HER3 in cancer, agents targeting HER3 and potential biomarkers for effect of HER3-targeting. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Toward anticancer immunotherapeutics: well-defined polymer-antibody conjugates for selective dendritic cell targeting.

    Science.gov (United States)

    Tappertzhofen, Kristof; Bednarczyk, Monika; Koynov, Kaloian; Bros, Matthias; Grabbe, Stephan; Zentel, Rudolf

    2014-10-01

    This paper describes the synthesis of semitelechelic maleimide-modified N-(2-hydroxypropyl)methacrylamid) (HPMA) based polymers of narrow dispersity that can be conjugated e.g. to anti-DEC-205 antibodies affording "star-like" topologies (one antibody decorated with several polymer chains). FCS revealed a hydrodynamic diameter of R(h)  = 7.9 nm and SEC narrow dispersity (1.45). Primary in vitro studies with bone marrow derived dendritic cells (DC) show higher cellular binding and uptake rates compared to control samples. Moreover, incubating these conjugates to primary splenocytes demonstrates a much higher affinity to the primary DCs than to any other immune cell population within the spleen. This differentiation is, thereby, much more pronounced for the star-like conjugates than for conjugates made from polymers statistically modified with anti-DEC-205. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Target antigens for Hs-14 monoclonal antibody and their various expression in normozoospermic and asthenozoospermic men

    Czech Academy of Sciences Publication Activity Database

    Čapková, Jana; Margaryan, Hasmik; Kubátová, Alena; Novák, Petr; Pěknicová, Jana

    2015-01-01

    Roč. 25, č. 11 (2015) ISSN 2051-4190 R&D Projects: GA ČR(CZ) GAP503/12/1834; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 ; RVO:61388971 Keywords : acrosome * human sperm atozoa * monoclonal antibody * asthenozoospermia * transitional endoplasmic reticulum ATPase Subject RIV: CE - Biochemistry http://link.springer.com/article/10.1186/s12610-015-0025-0

  1. Cytoplasmic-anti-neutrophil cytoplasmic antibodies targeting myeloperoxidase in Wegener′s granulomatosis: A rare phenomenon

    Directory of Open Access Journals (Sweden)

    Bhavana M Venkatesh

    2014-01-01

    Full Text Available Wegener′s granulomatosis (WG patients can rarely have antineutrophil cytoplasmic antibodies (ANCAs directed against myeloperoxidase (MPO, producing a cytoplasmic pattern on indirect immunofluorescence (IIF. This has important implications in the diagnosis and pathophysiology of the disease. We present to you a report of three cases of WG, demonstrating a cytoplasmic-ANCA pattern on indirect IIF, but directed against MPO. It is necessary to diagnose a patient taking into account both the autoimmune test results and the clinical features.

  2. Oculocutaneous albinism: developing novel antibodies targeting the proteins associated with OCA2 and OCA4.

    Science.gov (United States)

    Kondo, Taisuke; Namiki, Takeshi; Coelho, Sergio G; Valencia, Julio C; Hearing, Vincent J

    2015-01-01

    Patients with oculocutaneous albinism (OCA) have severely decreased pigmentation of their skin, hair and eyes. OCA2 and OCA4 result from mutations of the OCA2 and SLC45A2 genes, respectively, both of which disrupt the trafficking of the critical melanogenic enzyme tyrosinase to melanosomes. Both proteins encoded by those loci (termed P and MATP, respectively) have 12 putative transmembrane regions and are thought to function as transporters, although their functions and subcellular localizations remain to be characterized. To generate specific antibodies against unique synthetic peptides encoded by P and MATP that could be used to characterize their functions and subcellular localizations. Western blotting and immunohistochemistry were used to assess the specificity of antibodies and to colocalize P and MATP proteins with various subcellular markers. Specific antibodies to the P and MATP proteins were generated that work well for Western blotting and immunohistochemistry. The localizations of P and MATP with various subcellular organelles were characterized using confocal microscopy, which revealed that they colocalize to some extent with LAMP2, but do not significantly colocalize with markers of the ER, Golgi or melanosomes. Interestingly, both P and MATP colocalize significantly with BLOC-1, a sorting component involved in the intracellular trafficking of melanosomal/lysosomal constituents. These results provide a basis to understand how disrupted functions of P or MATP result in the misrouting of tyrosinase and cause the hypopigmentation seen in OCA2 and OCA4. Copyright © 2014. Published by Elsevier Ireland Ltd.

  3. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M

    1991-01-01

    The cancer-related mucin-type carbohydrate neoantigen Tn was found on gp160 and gp120 of human immunodeficiency virus (HIV). Immunoglobulin G (IgG) and IgM monoclonal antibodies (MAbs) against Tn neutralized infection with cell-free virus and blocked fusion between HIV-infected and uninfected cells....... This inhibition was found in infection of both lymphocytic cells and monocytoid cells. Viruses tested included six HIV-1 and five HIV-2 isolates propagated in different cells, as well as infectious plasma from AIDS patients. The antiviral effect of anti-Tn MAbs occurred by specific binding of the MAb to the virus...

  4. Tumour targeting with monovalent fragments of anti-neuroblastoma antibody chCE7

    International Nuclear Information System (INIS)

    Carrel, F.; Novak-Hofer, I.; Ruch, C.; Zimmermann, K.; Amstutz, H.

    1997-01-01

    The in vitro and in vivo behaviour of the monovalent single chain (scFv) and Fab-fragments derived from anti-neuroblastoma antibody chCE7 is reported. When comparing tumour uptake and -retention of radioactivity of 67 Cu-labelled monovalent chCE7 with divalent chCE7 F(ab') 2 the advantage of the radiocopper label over the radioiodine label was more pronounced with the divalent (internalising) F(ab') 2 fragments. (author) 1 fig., 1 ref

  5. In Vitro Methods for Comparing Target Binding and CDC Induction Between Therapeutic Antibodies: Applications in Biosimilarity Analysis.

    Science.gov (United States)

    Salinas-Jazmín, Nohemi; González-González, Edith; Vásquez-Bochm, Luz X; Pérez-Tapia, Sonia M; Velasco-Velázquez, Marco A

    2017-05-04

    Therapeutic monoclonal antibodies (mAbs) are relevant to the treatment of different pathologies, including cancers. The development of biosimilar mAbs by pharmaceutical companies is a market opportunity, but it is also a strategy to increase drug accessibility and reduce therapy-associated costs. The protocols detailed here describe the evaluation of target binding and CDC induction by rituximab in Daudi cells. These two functions require different structural regions of the antibody and are relevant to the clinical effect induced by rituximab. The protocols allow the side-to-side comparison of a reference rituximab and a marketed rituximab biosimilar. The evaluated products showed differences both in target binding and CDC induction, suggesting that there are underlying physicochemical differences and highlighting the need to analyze the impact of those differences in the clinical setting. The methods reported here constitute simple and inexpensive in vitro models for the evaluation of the activity of rituximab biosimilars. Thus, they can be useful during biosimilar development, as well as for quality control in biosimilar production. Furthermore, the presented methods can be extrapolated to other therapeutic mAbs.

  6. Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Anna-Maria Georgoudaki

    2016-05-01

    Full Text Available Tumors are composed of multiple cell types besides the tumor cells themselves, including innate immune cells such as macrophages. Tumor-associated macrophages (TAMs are a heterogeneous population of myeloid cells present in the tumor microenvironment (TME. Here, they contribute to immunosuppression, enabling the establishment and persistence of solid tumors as well as metastatic dissemination. We have found that the pattern recognition scavenger receptor MARCO defines a subtype of suppressive TAMs and is linked to clinical outcome. An anti-MARCO monoclonal antibody was developed, which induces anti-tumor activity in breast and colon carcinoma, as well as in melanoma models through reprogramming TAM populations to a pro-inflammatory phenotype and increasing tumor immunogenicity. This anti-tumor activity is dependent on the inhibitory Fc-receptor, FcγRIIB, and also enhances the efficacy of checkpoint therapy. These results demonstrate that immunotherapies using antibodies designed to modify myeloid cells of the TME represent a promising mode of cancer treatment.

  7. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS in the hemagglutinin protein (HA. Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  8. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Rami Yossef

    Full Text Available Natural killer (NK cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D. Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.

  9. Targeting Fibroblast Growth Factor 23 Signaling with Antibodies and Inhibitors, Is There a Rationale?

    Directory of Open Access Journals (Sweden)

    Seiji Fukumoto

    2018-02-01

    Full Text Available Fibroblast growth factor 23 (FGF23 is a phosphotropic hormone mainly produced by bone. FGF23 reduces serum phosphate by suppressing intestinal phosphate absorption through reducing 1,25-dihydroxyvitamin D and proximal tubular phosphate reabsorption. Excessive actions of FG23 result in several kinds of hypophosphatemic rickets/osteomalacia including X-linked hypophosphatemic rickets (XLH and tumor-induced osteomalacia. While neutral phosphate and active vitamin D are standard therapies for child patients with XLH, these medications have several limitations both in their effects and adverse events. Several approaches that inhibit FGF23 actions including anti-FGF23 antibodies and inhibitors of FGF signaling have been shown to improve phenotypes of model mice for FG23-related hypophosphatemic diseases. In addition, clinical trials indicated that a humanized anti-FGF23 antibody increased serum phosphate and improved quality of life in patients with XLH. Furthermore, circulatory FGF23 is high in patients with chronic kidney disease (CKD. Many epidemiological studies indicated the association between high FGF23 levels and various adverse events especially in patients with CKD. However, it is not known whether the inhibition of FGF23 activities in patients with CKD is beneficial for these patients. In this review, recent findings concerning the modulation of FGF23 activities are discussed.

  10. A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy

    International Nuclear Information System (INIS)

    Daniels-Wells, Tracy R; Nicodemus, Christopher F; Penichet, Manuel L; Helguera, Gustavo; Leuchter, Richard K; Quintero, Rafaela; Kozman, Maggie; Rodríguez, José A; Ortiz-Sánchez, Elizabeth; Martínez-Maza, Otoniel; Schultes, Birgit C

    2013-01-01

    Prostate cancer (PCa) is the second leading cause of cancer deaths in men in the United States. The prostate-specific antigen (PSA), often found at high levels in the serum of PCa patients, has been used as a marker for PCa detection and as a target of immunotherapy. The murine IgG1 monoclonal antibody AR47.47, specific for human PSA, has been shown to enhance antigen presentation by human dendritic cells and induce both CD4 and CD8 T-cell activation when complexed with PSA. In this study, we explored the properties of a novel mouse/human chimeric anti-PSA IgE containing the variable regions of AR47.47 as a potential therapy for PCa. Our goal was to take advantage of the unique properties of IgE in order to trigger immune activation against PCa. Binding characteristics of the antibody were determined by ELISA and flow cytometry. In vitro degranulation was determined by the release of β-hexosaminidase from effector cells. In vivo degranulation was monitored in human FcεRIα transgenic mice using the passive cutaneous anaphylaxis assay. These mice were also used for a vaccination study to determine the in vivo anti-cancer effects of this antibody. Significant differences in survival were determined using the Log Rank test. In vitro T-cell activation was studied using human dendritic cells and autologous T cells. The anti-PSA IgE, expressed in murine myeloma cells, is properly assembled and secreted, and binds the antigen and FcεRI. In addition, this antibody is capable of triggering effector cell degranulation in vitro and in vivo when artificially cross-linked, but not in the presence of the natural soluble antigen, suggesting that such an interaction will not trigger systemic anaphylaxis. Importantly, the anti-PSA IgE combined with PSA also triggers immune activation in vitro and in vivo and significantly prolongs the survival of human FcεRIα transgenic mice challenged with PSA-expressing tumors in a prophylactic vaccination setting. The anti-PSA IgE exhibits

  11. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  12. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin

    International Nuclear Information System (INIS)

    Demartis, S.; Tarli, L.; Neri, D.; Borsi, L.; Zardi, L.

    2001-01-01

    Angiogenesis is a characteristic feature of many aggressive tumours and other disorders. Antibodies capable of binding to new blood vessels, but not to mature vessels, could be used as selective targeting agents for immunoscintigraphic and radioimmunotherapeutic applications. Here we show that scFv(L19), a recombinant human antibody fragment with sub-nanomolar affinity for the ED-B domain of fibronectin, a marker of angiogenesis, can be stably labelled with iodine-125 and astatine-211 with full retention of immunoreactivity, using a trimethyl-stannyl benzoate bifunctional derivative. Biodistribution studies in mice bearing two different types of tumour grafted subcutaneously, followed by ex vivo micro-autoradiographic analysis, revealed that scFv(L19) rapidly localises around tumour blood vessels, but not around normal vessels. Four hours after intravenous injection of the stably radioiodinated scFv(L19), tumour to blood ratios were 6:1 in mice bearing the F9 murine teratocarcinoma and 9:1 in mice bearing an FE8 rat sarcoma. As expected, all other organs (including kidney) contained significantly less radioactivity than the tumour. Since the ED-B domain of fibronectin has an identical sequence in mouse and man, scFv(L19) is a pan-species antibody and the results presented here suggest clinical utility of radiolabelled scFv(L19) for the scintigraphic detection of angiogenesis in vivo. Furthermore, it should now be possible to investigate scFv(L19) for the selective delivery of 211 At to the tumour neovasculature, causing the selective death of tumour endothelial cells and tumour collapse. (orig.)

  13. The pharmacological efficacy of the anti-IL17 scFv and sTNFR1 bispecific fusion protein in inflammation mouse stimulated by LPS.

    Science.gov (United States)

    Yang, Yongbi; Zhang, Teng; Cao, Hongxue; Yu, Dan; Zhang, Tong; Zhao, Shaojuan; Jing, Xiaohui; Song, Liying; Liu, Yunye; Che, Ruixiang; Liu, Xin; Li, Deshan; Ren, Guiping

    2017-08-01

    Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our study found that a bispecific fusion protein treatment can ameliorate the lung injury induced by LPS. However, the molecular mechanisms which bispecific fusion protein ameliorates acute lung injury remain unclear. In this study, we found that the bispecific fusion protein treatment inhibited the nuclear transcription of NF-κB in confocal laser scanning fluorescence microscopy, the bispecific fusion protein exert protective effects in the cell model of ALI induced by lipopolysaccharide (LPS) via inhibiting the nuclear factor κB (NF-κB) signaling pathway and mediate inflammation. Moreover, the treatment of the bispecific fusion protein show its efficacy in animal models stimulated by LPS, the results of real-time PCR and ELISA demonstrate that bispecific fusion protein treatment effectively inhibited the over-expression of inflammatory cytokines(tumor necrosis factor α, interleukin 1β and interleukin 17). In addition, LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology, which was meliorated by bispecific fusion protein treatment. Collectively, these results demonstrate that bispecific fusion protein treatment ameliorates LPS-induced ALI through reducing inflammatory cytokines and lung inflammation, which may be associated with the decreased the nuclear transcription of NF-κB. The bispecific fusion protein may be useful as a novel therapy to treat ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. N-Acetylgalactosamino Dendrons as Clearing Agents to Enhance Liver Targeting of Model Antibody-Fusion Protein

    Science.gov (United States)

    Yoo, Barney; Cheal, Sarah M.; Torchon, Geralda; Dilhas, Anna; Yang, Guangbin; Pu, Jun; Punzalan, Blesida; Larson, Steven M.; Ouerfelli, Ouathek

    2014-01-01

    Dendrimer clearing agents represent a unique class of compounds for use in multistep targeting (MST) in radioimmunotherapy and imaging. These compounds were developed to facilitate the removal of excess tumor-targeting monoclonal antibody (mAb) prior to administration of the radionuclide to minimize exposure of normal tissue to radiation. Clearing agents are designed to capture the circulating mAb, and target it to the liver for metabolism. Glycodendrons are ideally suited for MST applications as these highly branched compounds are chemically well-defined thus advantageous over heterogeneous macromolecules. Previous studies have described glycodendron 3 as a clearing agent for use in three-step MST protocols, and early in vivo assessment of 3 showed promise. However, synthetic challenges have hampered its availability for further development. In this report we describe a new sequence of chemical steps which enables the straightforward synthesis and analytical characterization of this class of dendrons. With accessibility and analytical identification solved, we sought to evaluate both lower and higher generation dendrons for hepatocyte targeting as well as clearance of a model protein. We prepared a series of clearing agents where a single biotin is connected to glycodendrons displaying four, eight, sixteen or thirty-two α-thio-N-acetylgalactosamine (α–SGalNAc) units, resulting in compounds with molecular weights ranging from 2 to 17 kDa, respectively. These compounds were fully characterized by LCMS and NMR. We then evaluated the capacity of these agents to clear a model 131I-labeled single chain variable fragment antibody-streptavidin (131I-scFv-SAv) fusion protein from blood and tissue in mice, and compared their clearing efficiencies to that of a 500 kDa dextran-biotin conjugate. Glycodendrons and dextran-biotin exhibited enhanced blood clearance of the scFv-SAv construct. Biodistribution analysis showed liver targeting/uptake of the scFv-SAv construct to

  15. Structure of an HIV-1-neutralizing antibody target, the lipid-bound gp41 envelope membrane proximal region trimer.

    Science.gov (United States)

    Reardon, Patrick N; Sage, Harvey; Dennison, S Moses; Martin, Jeffrey W; Donald, Bruce R; Alam, S Munir; Haynes, Barton F; Spicer, Leonard D

    2014-01-28

    The membrane proximal external region (MPER) of HIV-1 glycoprotein (gp) 41 is involved in viral-host cell membrane fusion. It contains short amino acid sequences that are binding sites for the HIV-1 broadly neutralizing antibodies 2F5, 4E10, and 10E8, making these binding sites important targets for HIV-1 vaccine development. We report a high-resolution structure of a designed MPER trimer assembled on a detergent micelle. The NMR solution structure of this trimeric domain, designated gp41-M-MAT, shows that the three MPER peptides each adopt symmetric α-helical conformations exposing the amino acid side chains of the antibody binding sites. The helices are closely associated at their N termini, bend between the 2F5 and 4E10 epitopes, and gradually separate toward the C termini, where they associate with the membrane. The mAbs 2F5 and 4E10 bind gp41-M-MAT with nanomolar affinities, consistent with the substantial exposure of their respective epitopes in the trimer structure. The traditional structure determination of gp41-M-MAT using the Xplor-NIH protocol was validated by independently determining the structure using the DISCO sparse-data protocol, which exploits geometric arrangement algorithms that guarantee to compute all structures and assignments that satisfy the data.

  16. Radioimmunotherapy (RIT) of thyroid medullar cancer (TMC) with a bi-specific antibody (BsAb) and a {sup 131}I-labelled bivalent hapten; Radioimmunotherapie (RIT) du cancer medullaire de la thyroide (cmt) avec un anticorps bispecifique (AcBs) et un haptene bivalent marque a l`iode-131

    Energy Technology Data Exchange (ETDEWEB)

    Kraeber, F. [Inserm U463, Nantes (France); Vuillez, J.P. [CHU Grenoble (France); Bardet, S. [CAC Caen (France); Faivre, A. [Inserm U463, Nantes (France); Gautherot, E.; Barbet, J. [Immunotech, Marseille (France); Chatal, J.F.; Thedrez, P. [Inserm U463, Nantes (France)

    1997-12-31

    Nude mice bearing TT xenografts of 200 mm{sup 3} TMC received 1.25 or 3 nmol of BsAb anti-ACE/anti-DTPA F6-734 or 37 and 92.5 MBq of Ab F6F (ab`){sub 2}-{sup 131}I and after 48 hours 37 and 92.5 MBq of di-DTPA-{sup 131}I hapten. The delays necessary to double the tumoral volume were 57, 86, 44, and 65 d, respectively. With 37 and 92.5 MBq of di-DTPA-{sup 131} I, the losses of weight recorded in animals were 5%, the leukocyte nadirs were 1640 {+-} 838 and 1560 {+-} 116/mm{sup 3}, respectively and those of the platelets of 940 {+-} 371 and 590 {+-} 454 10{sup 3}/mm{sup 3}, respectively. With 37 and 92.5 MBq of F6F (ab`){sub 2}-{sup 131}I, the losses in weights were 8 and 16%, respectively, the leukocyte nadirs, 50 {+-} 100 and 175 {+-} 50/mm{sup 3}, respectively and those of platelets of 715 {+-} 184 and 477 {+-} 106 10{sup 3}/mm{sup 3}. The two-time targeting system was also efficient and significantly less toxic than the one-time system. In the framework of a I phase protocol of RIT, 16 patients afflicted with metastatic CMT were treated with 20 to 50 mg of BsAb F6-734 and 4d after with 1.5 and 3.7 GBq of di-DTPA-{sup 131}I. The doses delivered to the tumor were comprised between 6.8 and 139 Gy. Four patients presented a grade-IV hemato-toxicity between the 30 D and 40 D. The efficiency was evaluated in 8 patients: a antalgic effect was detected in 3/6 patients which presented osseous pains, a diminution of the size of adenopathies in 2 cases of which in one was higher than 50%, a calcinotinin diminution in 3 cases of which in two cases it was higher than 50%, a progression of the disease in 4 patients which presented a diffuse metastatic dissemination

  17. Validating Missing Proteins in Human Sperm Cells by Targeted Mass-Spectrometry- and Antibody-based Methods.

    Science.gov (United States)

    Carapito, Christine; Duek, Paula; Macron, Charlotte; Seffals, Marine; Rondel, Karine; Delalande, François; Lindskog, Cecilia; Fréour, Thomas; Vandenbrouck, Yves; Lane, Lydie; Pineau, Charles

    2017-12-01

    The present study is a contribution to the "neXt50 challenge", a coordinated effort across C-HPP teams to identify the 50 most tractable missing proteins (MPs) on each chromosome. We report the targeted search of 38 theoretically detectable MPs from chromosomes 2 and 14 in Triton X-100 soluble and insoluble sperm fractions from a total of 15 healthy donors. A targeted mass-spectrometry-based strategy consisting of the development of LC-PRM assays (with heavy labeled synthetic peptides) targeting 92 proteotypic peptides of the 38 selected MPs was used. Out of the 38 selected MPs, 12 were identified with two or more peptides and 3 with one peptide after extensive SDS-PAGE fractionation of the two samples and with overall low-intensity signals. The PRM data are available via ProteomeXchange in PASSEL (PASS01013). Further validation by immunohistochemistry on human testes sections and cytochemistry on sperm smears was performed for eight MPs with antibodies available from the Human Protein Atlas. Deep analysis of human sperm still allows the validation of MPs and therefore contributes to the C-HPP worldwide effort. We anticipate that our results will be of interest to the reproductive biology community because an in-depth analysis of these MPs may identify potential new candidates in the context of human idiopathic infertilities.

  18. CD9 monoclonal antibody-conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence

    Science.gov (United States)

    Thuy Nguyen, Hanh; Thapa, Raj Kumar; Shin, Beom Soo; Jeong, Jee-Heon; Kim, Jae-Ryong; Yong, Chul Soon; Kim, Jong Oh

    2017-03-01

    Premature cellular senescence refers to the state of irreversible cell cycle arrest due to DNA damage or other stresses. In this study, CD9 monoclonal antibody (CD9mAb) was successfully conjugated to the surface of PEGylated liposomes for targeted delivery of rapamycin (LR-CD9mAb) to overcome senescence of CD9 receptor-overexpressing cells. LR-CD9mAb has a small particle size (143.3 ± 2.4 nm), narrow size distribution (polydispersity index: 0.220 ± 0.036), and negative zeta potential (-14.6 ± 1.2 mV). The uptake of CD9-targeted liposomes by premature senescent human dermal fibroblasts (HDFs) was higher than that by young HDFs, as displayed by confocal microscopic images. The senescence might not be reversed by treatment with rapamycin; however, the drug promoted cell proliferation and reduced the number of cells that expressed the senescence-associated-β-galactosidase (SA-β-gal). These effects were further confirmed by cell viability, cell cycle, and Western blotting analyses. Moreover, CD9-targeted liposomes showed better anti-senescence activity, in comparison with free rapamycin or the conventional liposomal formulation, suggesting the potential application of this system in further in vivo studies.

  19. Antibody-Hapten Recognition at the Surface of Functionalized Liposomes Studied by SPR: Steric Hindrance of Pegylated Phospholipids in Stealth Liposomes Prepared for Targeted Radionuclide Delivery

    Directory of Open Access Journals (Sweden)

    Eliot. P. Botosoa

    2011-01-01

    Full Text Available Targeted PEGylated liposomes could increase the amount of drugs or radionuclides delivered to tumor cells. They show favorable stability and pharmacokinetics, but steric hindrance of the PEG chains can block the binding of the targeting moiety. Here, specific interactions between an antihapten antibody (clone 734, specific for the DTPA-indium complex and DTPA-indium-tagged liposomes were characterized by surface plasmon resonance (SPR. Non-PEGylated liposomes fused on CM5 chips whereas PEGylated liposomes did not. By contrast, both PEGylated and non-PEGylated liposomes attached to L1 chips without fusion. SPR binding kinetics showed that, in the absence of PEG, the antibody binds the hapten at the surface of lipid bilayers with the affinity of the soluble hapten. The incorporation of PEGylated lipids hinders antibody binding to extents depending on PEGylated lipid fraction and PEG molecular weight. SPR on immobilized liposomes thus appears as a useful technique to optimize formulations of liposomes for targeted therapy.

  20. L1 cell adhesion molecule as a potential therapeutic target in murine models of endometriosis using a monoclonal antibody approach.

    Directory of Open Access Journals (Sweden)

    Cássia G T Silveira

    Full Text Available BACKGROUND/AIMS: The neural cell adhesion molecule L1CAM is a transmembrane glycoprotein abnormally expressed in tumors and previously associated with cell proliferation, adhesion and invasion, as well as neurite outgrowth in endometriosis. Being an attractive target molecule for antibody-based therapy, the present study assessed the ability of the monoclonal anti-L1 antibody (anti-L1 mAb to impair the development of endometriotic lesions in vivo and endometriosis-associated nerve fiber growth. METHODS AND RESULTS: Endometriosis was experimentally induced in sexually mature B6C3F1 (n=34 and CD-1 nude (n=21 mice by autologous and heterologous transplantation, respectively, of endometrial fragments into the peritoneal cavity. Transplantation was confirmed four weeks post-surgery by in vivo magnetic resonance imaging and laparotomy, respectively. Mice were then intraperitoneally injected with anti-L1 mAb or an IgG isotype control antibody twice weekly, over a period of four weeks. Upon treatment completion, mice were sacrificed and endometrial implants were excised, measured and fixed. Endometriosis was histologically confirmed and L1CAM was detected by immunohistochemistry. Endometriotic lesion size was significantly reduced in anti-L1-treated B6C3F1 and CD-1 nude mice compared to mice treated with control antibody (P<0.05. Accordingly, a decreased number of PCNA positive epithelial and stromal cells was detected in autologously and heterologously induced endometriotic lesions exposed to anti-L1 mAb treatment. Anti-L1-treated mice also presented a diminished number of intraperitoneal adhesions at implantation sites compared with controls. Furthermore, a double-blind counting of anti-neurofilament L stained nerves revealed significantly reduced nerve density within peritoneal lesions in anti-L1 treated B6C3F1 mice (P=0.0039. CONCLUSIONS: Local anti-L1 mAb treatment suppressed endometriosis growth in B6C3F1 and CD-1 nude mice and exerted a potent

  1. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  2. Multiple antigen target approach using the Accuplex4 BioCD system to detect Borrelia burgdorferi antibodies in experimentally infected and vaccinated dogs.

    Science.gov (United States)

    Moroff, Scott; Woodruff, Colby; Woodring, Todd; Sokolchik, Irene; Lappin, Michael R

    2015-09-01

    The primary objective of our study was to optimize detection of serum antibodies to Borrelia burgdorferi using a new commercial automated fluorescence system (Accuplex4 BioCD system, Antech Diagnostics, Lake Success, New York). The system used multiple natural and artificial peptides-outer surface proteins (OspA, OspC, OspF), an outer membrane protein (P39), and a proprietary synthetic peptide (small Lyme peptide [SLP])-and the results were compared with a commercially available enzyme-linked immunosorbent assay that uses a proprietary peptide (C6). Sera from 4 groups were evaluated: dogs vaccinated with 1 of 3 commercially available vaccines (n = 18); dogs infested with adult Ixodes scapularis (black-legged tick; n = 18); dogs previously vaccinated and then infested with I. scapularis (n = 18); and dogs with B. burgdorferi infection that were then vaccinated (n = 14). All of the vaccines evaluated induced OspA responses. However, antibodies against OspF or C6 were not induced in any of the vaccinated dogs. Additionally, the OspF antibodies had 100% sensitivity and specificity when compared to antibodies against C6 peptide. In B. burgdorferi-infected dogs, antibodies against OspC and SLP were detected in serum sooner than antibodies against the other targets. Low levels of antibodies against OspA developed in 6 of 14 B. burgdorferi-infected, unvaccinated dogs and had the shortest duration compared to the other antibodies. Detection of antibody responses to multiple B. burgdorferi targets with this system can be used to help differentiate vaccinated dogs from exposed dogs as well as acute infection from chronic infection. © 2015 The Author(s).

  3. Comprehensive Analysis of the Therapeutic IgG4 Antibody Pembrolizumab: Hinge Modification Blocks Half Molecule Exchange In Vitro and In Vivo.

    Science.gov (United States)

    Yang, Xiaoyu; Wang, Fengqiang; Zhang, Ying; Wang, Larry; Antonenko, Svetlana; Zhang, Shuli; Zhang, Yi Wei; Tabrizifard, Mohammad; Ermakov, Grigori; Wiswell, Derek; Beaumont, Maribel; Liu, Liming; Richardson, Daisy; Shameem, Mohammed; Ambrogelly, Alexandre

    2015-12-01

    IgG4 antibodies are evolving as an important class of cancer immunotherapies. However, human IgG4 can undergo Fab arm (half molecule) exchange with other IgG4 molecules in vivo. The hinge modification by a point mutation (S228P) prevents half molecule exchange of IgG4. However, the experimental confirmation is still expected by regulatory agencies. Here, we report for the first time the extensive analysis of half molecule exchange for a hinge-modified therapeutic IgG4 molecule, pembrolizumab (Keytruda) targeting programmed death 1 (PD1) receptor that was approved for advanced melanoma. Studies were performed in buffer or human serum using multiple exchange partners including natalizumab (Tysabri) and human IgG4 pool. Formation of bispecific antibodies was monitored by fluorescence resonance energy transfer, exchange with Fc fragments, mixed mode chromatography, immunoassays, and liquid chromatography-mass spectrometry. The half molecule exchange was also examined in vivo in SCID (severe combined immunodeficiency) mice. Both in vitro and in vivo results indicate that the hinge modification in pembrolizumab prevented half molecule exchange, whereas the unmodified counterpart anti-PD1 wt showed active exchange activity with other IgG4 antibodies or self-exchange activity with its own molecules. Our work, as an example expected for meeting regulatory requirements, contributes to establish without ambiguity that hinge-modified IgG4 antibodies are suitable for biotherapeutic applications. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Targeting B-cell non Hodgkin lymphoma: New and old tricks.

    Science.gov (United States)

    Solimando, Antonio Giovanni; Ribatti, Domenico; Vacca, Angelo; Einsele, Hermann

    2016-03-01

    The management of B-cell malignancies continues to pose a clinical challenge. In the past years, rituximab (anti-CD20) emerged as the standard of care in the induction treatment of follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), and mantle cell lymphoma (MCL), as well as in other subsets. Since the benefits of immuno-chemotherapy have been clearly demonstrated in a whole range of lymphomas, several innovative approaches are being explored to achieve significant responses, particularly in refractory B-cell non-Hodgkin lymphoma (NHL) cases. Studies of the comparative effectiveness and structure/function relationship of therapeutic monoclonal antibodies, together with an increased understanding of the molecular features of NHLs, have led to the development of a range of novel therapies, many of which target the tumor in a tailored fashion. Although several molecules can help clinicians to dissect the pathological mechanisms acting in the natural history of the disease, the main purpose of this review emphasize the recent developments in targeting the B-cell NHLs surface. These novel approaches are illustrated, and the new intriguing opportunities offered by bispecific antibodies and antibody-associated immune modulation are addressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor, E-mail: manzoork@aims.amrita.edu, E-mail: ullasmony@aims.amrita.edu [Amrita Centre for Nanoscience and Molecular Medicine, Amrita Institute of Medical Science, Cochin 682 041 (India)

    2011-07-15

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with {approx} 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of {approx} 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in {approx} 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of {approx} 12 nm retained bright fluorescence over an extended duration of {approx} a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of {approx} 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of {approx} 8.2% in human peripheral blood cells (PBMCs) which are CD33{sup low}. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  6. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Science.gov (United States)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-07-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ~ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ~ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ~ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ~ 12 nm retained bright fluorescence over an extended duration of ~ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ~ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ~ 8.2% in human peripheral blood cells (PBMCs) which are CD33low. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  7. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    International Nuclear Information System (INIS)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-01-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ∼ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ∼ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ∼ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ∼ 12 nm retained bright fluorescence over an extended duration of ∼ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ∼ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ∼ 8.2% in human peripheral blood cells (PBMCs) which are CD33 low . The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  8. Quantitative in vitro and in vivo models to assess human IgE B cell receptor crosslinking by IgE and EMPD IgE targeting antibodies.

    Science.gov (United States)

    Vigl, Benjamin; Salhat, Nina; Parth, Michela; Pankevych, Halyna; Mairhofer, Andreas; Bartl, Stefan; Smrzka, Oskar W

    2017-10-01

    Targeting plasma IgE by therapeutic mABs like Omalizumab (Xolair ® ) is current clinical practice for severe allergic conditions or other IgE related diseases like chronic urticaria. As an alternative to soluble IgE targeting, IgE supply can be lowered by targeting the Extracellular Membrane Proximal Domain (EMPD) of the IgE B cell receptor (BCR) present on IgE switched B cells. This ultimately leads to apoptosis of these cells upon IgE BCR crosslinking. Since tools to selectively assess the efficacy of IgE BCR crosslinking by IgE targeting antibodies are limited, a readily quantifiable cell model was developed that allows to specifically address IgE BCR crosslinking activity in vitro. The new cell model allowed for a direct quantitative comparison of anti-EMPD IgE therapeutic prototype antibody 47H4 with anti-IgE(Ce3) directed therapeutic antibody Omalizumab and with a newly selected anti-human EMPD IgE monoclonal antibody, designated mAB 15cl12. Furthermore, a complementing mouse model was developed that allows for in vivo validation of antibodies addressing human EMPD IgE. It carries a targetable humanized EMPD IgE sequence that has been introduced by seamless genomic replacement of the endogenous EMPD encoding sequence. The model allowed to directly compare IgE lowering activity of two anti-human EMPD IgE therapeutic antibodies in vivo. Our tools provide the means for quantitative assessment of IgE BCR crosslinking activity which is increasingly gaining attention with respect to forthcoming second generation anti-IgE clinical candidates such as Ligelizumab or other clinical candidates featuring additional effector functions such as IgE BCR crosslinking activity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Nef decreases HIV-1 sensitivity to neutralizing antibodies that target the membrane-proximal external region of TMgp41.

    Directory of Open Access Journals (Sweden)

    Rachel P J Lai

    2011-12-01

    Full Text Available Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs that target the membrane proximal external region (MPER of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly

  10. Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine.

    Directory of Open Access Journals (Sweden)

    Jason H Stafford

    Full Text Available Phosphatidylserine (PS is an attractive target for imaging agents that identify tumors and assess their response to therapy. PS is absent from the surface of most cell types, but becomes exposed on tumor cells and tumor vasculature in response to oxidative stresses in the tumor microenvironment and increases in response to therapy. To image exposed PS, we used a fully human PS-targeting antibody fragment, PGN635 F(ab'2, that binds to complexes of PS and β2-glycoprotein I. PGN635 F(ab'2 was labeled with the positron-emitting isotope iodine-124 ((124I and the resulting probe was injected into nude mice bearing subcutaneous or orthotopic human PC3 prostate tumors. Biodistribution studies showed that (124I-PGN635 F(ab'2 localized with remarkable specificity to the tumors with little uptake in other organs, including the liver and kidneys. Clear delineation of the tumors was achieved by PET 48 hours after injection. Radiation of the tumors with 15 Gy or systemic treatment of the mice with 10 mg/kg docetaxel increased localization in the tumors. Tumor-to-normal (T/N ratios were inversely correlated with tumor growth measured over 28 days. These data indicate that (124I-PGN635 F(ab'2 is a promising new imaging agent for predicting tumor response to therapy.

  11. The use of bispecific antibodies in tumor cell and tumor vasculature directed immunotherapy

    NARCIS (Netherlands)

    Molema, G; Kroesen, BJ; Helfrich, W; Meijer, DKF; de Leij, LFMH

    2000-01-01

    To overcome dose limiting toxicities and to increase efficacy of immunotherapy of cancer, a number of strategies are under development for selectively redirecting effector cells/molecules towards tumor cells. Many of these strategies exploit the specificity of tumor associated antigen recognition by

  12. A Mouse Monoclonal Antibody against Dengue Virus Type 1 Mochizuki Strain Targeting Envelope Protein Domain II and Displaying Strongly Neutralizing but Not Enhancing Activity

    Science.gov (United States)

    Kotaki, Tomohiro; Konishi, Eiji

    2013-01-01

    Dengue fever and its more severe form, dengue hemorrhagic fever, are major global concerns. Infection-enhancing antibodies are major factors hypothetically contributing to increased disease severity. In this study, we generated 26 monoclonal antibodies (MAbs) against the dengue virus type 1 Mochizuki strain. We selected this strain because a relatively large number of unique and rare amino acids were found on its envelope protein. Although most MAbs showing neutralizing activities exhibited enhancing activities at subneutralizing doses, one MAb (D1-IV-7F4 [7F4]) displayed neutralizing activities without showing enhancing activities at lower concentrations. In contrast, another MAb (D1-V-3H12 [3H12]) exhibited only enhancing activities, which were suppressed by pretreatment of cells with anti-FcγRIIa. Although antibody engineering revealed that antibody subclass significantly affected 7F4 (IgG3) and 3H12 (IgG1) activities, neutralizing/enhancing activities were also dependent on the epitope targeted by the antibody. 7F4 recognized an epitope on the envelope protein containing E118 (domain II) and had a neutralizing activity 10- to 1,000-fold stronger than the neutralizing activity of previously reported human or humanized neutralizing MAbs targeting domain I and/or domain II. An epitope-blocking enzyme-linked immunosorbent assay (ELISA) indicated that a dengue virus-immune population possessed antibodies sharing an epitope with 7F4. Our results demonstrating induction of these antibody species (7F4 and 3H12) in Mochizuki-immunized mice may have implications for dengue vaccine strategies designed to minimize induction of enhancing antibodies in vaccinated humans. PMID:24049185

  13. Targeted proteomics reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-associated vasculitis.

    Science.gov (United States)

    Ishizaki, Jun; Takemori, Ayako; Suemori, Koichiro; Matsumoto, Takuya; Akita, Yoko; Sada, Ken-Ei; Yuzawa, Yukio; Amano, Koichi; Takasaki, Yoshinari; Harigai, Masayoshi; Arimura, Yoshihiro; Makino, Hirofumi; Yasukawa, Masaki; Takemori, Nobuaki; Hasegawa, Hitoshi

    2017-09-29

    Targeted proteomics, which involves quantitative analysis of targeted proteins using selected reaction monitoring (SRM) mass spectrometry, has emerged as a new methodology for discovery of clinical biomarkers. In this study, we used targeted serum proteomics to identify circulating biomarkers for prediction of disease activity and organ involvement in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). A large-scale SRM assay targeting 135 biomarker candidates was established using a triple-quadrupole mass spectrometer coupled with nanoflow liquid chromatography. Target proteins in serum samples from patients in the active and remission (6 months after treatment) stages were quantified using the established assays. Identified marker candidates were further validated by enzyme-linked immunosorbent assay using serum samples (n = 169) collected in a large-cohort Japanese study (the RemIT-JAV-RPGN study). Our proteomic analysis identified the following proteins as biomarkers for discriminating patients with highly active AAV from those in remission or healthy control subjects: tenascin C (TNC), C-reactive protein (CRP), tissue inhibitor of metalloproteinase 1 (TIMP1), leucine-rich alpha-2-glycoprotein 1, S100A8/A9, CD93, matrix metalloproteinase 9, and transketolase (TKT). Of these, TIMP1 was the best-performing marker of disease activity, allowing distinction between mildly active AAV and remission. Moreover, in contrast to CRP, serum levels of TIMP1 in patients with active AAV were significantly higher than those in patients with infectious diseases. The serum levels of TKT and CD93 were higher in patients with renal involvement than in those without, and they predicted kidney outcome. The level of circulating TNC was elevated significantly in patients with lung infiltration. AAV severity was associated with markers reflecting organ involvement (TKT, CD93, and TNC) rather than inflammation. The eight markers and myeloperoxidase (MPO

  14. Natural Mosquito-Pathogen Hybrid IgG4 Antibodies in Vector Borne Diseases: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Berlin L. Londono-Renteria

    2016-09-01

    Full Text Available Chronic exposure to antigens may favor the production of IgG4 antibodies over other antibody types. Recent studies have shown that up to a 30% of normal human IgG4 is bi-specific and is able to recognize two antigens of different nature. A requirement for this specificity is the presence of both eliciting antigens in the same time and at the same place where the immune response is induced. During transmission of most vector-borne diseases, the pathogen is delivered to the vertebrate host along with the arthropod saliva during blood feeding and previous studies have shown the existence of IgG4 antibodies against mosquito salivary allergens. However, there is very little ongoing research or information available regarding IgG4 bi-specificity with regards to infectious disease, particularly during immune responses to vector-borne diseases such as malaria, filariasis or dengue virus infection. Here, we provide background information and present our hypothesis that IgG4 may not only be a useful tool to measure exposure to infected mosquito bites, but that these bi-specific antibodies may also play an important role in modulation of the immune response against malaria and other vector-borne diseases in endemic settings.

  15. CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1+ tumor cells, and extends the survival of tumor-bearing humanized mice

    OpenAIRE

    Horn, Lucas A.; Ciavattone, Nicholas G.; Atkinson, Ryan; Woldergerima, Netsanet; Wolf, Julia; Clements, Virginia K.; Sinha, Pratima; Poudel, Munanchu; Ostrand-Rosenberg, Suzanne

    2017-01-01

    Bi-specific T cell engagers (BiTEs) activate T cells through CD3 and target activated T cells to tumor-expressed antigens. BiTEs have shown therapeutic efficacy in patients with liquid tumors; however, they do not benefit all patients. Anti-tumor immunity is limited by Programmed Death 1 (PD1) pathway-mediated immune suppression, and patients who do not benefit from existing BiTES may be non-responders because their T cells are anergized via the PD1 pathway. We have designed a BiTE that activ...

  16. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases.

    Science.gov (United States)

    Samy, Eileen; Wax, Stephen; Huard, Bertrand; Hess, Henry; Schneider, Pascal

    2017-01-02

    The B cell-stimulating molecules, BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand), are critical factors in the maintenance of the B cell pool and humoral immunity. In addition, BAFF and APRIL are involved in the pathogenesis of a number of human autoimmune diseases, with elevated levels of these cytokines detected in the sera of patients with systemic lupus erythematosus (SLE), IgA nephropathy, Sjögren's syndrome, and rheumatoid arthritis. As such, both molecules are rational targets for new therapies in B cell-driven autoimmune diseases, and several inhibitors of BAFF or BAFF and APRIL together have been investigated in clinical trials. These include the BAFF/APRIL dual inhibitor, atacicept, and the BAFF inhibitor, belimumab, which is approved as an add-on therapy for patients with active SLE. Post hoc analyses of these trials indicate that baseline serum levels of BAFF and BAFF/APRIL correlate with treatment response to belimumab and atacicept, respectively, suggesting a role for the two molecules as predictive biomarkers. It will, however, be important to refine future testing to identify active forms of BAFF and APRIL in the circulation, as well as to distinguish between homotrimer and heteromer configurations. In this review, we discuss the rationale for dual BAFF/APRIL inhibition versus single BAFF inhibition in autoimmune disease, by focusing on the similarities and differences between the physiological and pathogenic roles of the two molecules. A summary of the preclinical and clinical data currently available is also presented.

  17. Therapeutic monoclonal antibodies and the need for targeted pharmacovigilance in India.

    Science.gov (United States)

    Kalaivani, M; Singh, Abhishank; Kalaiselvan, V

    2015-01-01

    A growing number of innovative mAb therapeutics are on the global market, and biosimilar versions have now also been approved, including in India. Although efficacy and safety is demonstrated prior to approval, targeted pharmacovigilance is essential for the identification and assessment of risk for any mAb products. We analyzed the ADR data related to mAbs reported to the NCC-PvPI through the spontaneous reporting system Vigiflow during April 2011 to February 2014 to identify mAbs with the highest number of ADR including fatal/serious ADR. Only 0.72% reports were related to mAbs. Although 15 mAbs are approved in the country, only 6 mAbs were reported through Vigiflow. Rituximab was highly reported, and no fatal/serious ADR related to any mAbs were reported during the study period. Our study shows that PvPI is effective and robust system in the detection and assessment of risks associated with the use of mAbs.

  18. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity

    NARCIS (Netherlands)

    Kreutz, M.; Giquel, B.; Hu, Q.; Abuknesha, R.; Uematsu, S.; Akira, S.; Nestle, F.O.; Diebold, S.S.

    2012-01-01

    Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is

  19. Pharmacokinetics and tumor targeting of 131I-labeled F(ab')2 fragments of the chimeric monoclonal antibody G250: preclinical and clinical pilot studies.

    NARCIS (Netherlands)

    Brouwers, A.H.; Mulders, P.F.A.; Oosterwijk, E.; Buijs, W.C.A.M.; Corstens, F.H.M.; Boerman, O.C.; Oyen, W.J.G.

    2004-01-01

    INTRODUCTION: Clinical and animal studies of chimeric monoclonal antibody G250 (moAb cG250) for the targeting of clear-cell renal cell carcinoma (RCC), to date, have been with the intact IgG form. To determine whether F(ab')2 fragments are more suited for radioimmunotherapy (RIT) than intact IgG,

  20. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N...... carbohydrate structures expressed by the viral envelope glycoprotein gp120, indicating that glycans of the viral envelope are possible targets for immunotherapy or vaccine development or both....

  1. Lipid Target in Very High-Risk Cardiovascular Patients: Lesson from PCSK9 Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Giovanni Ciccarelli

    2018-03-01

    Full Text Available The role of low-density lipoproteins (LDLs as a major risk factor for cardiovascular disease has been demonstrated by several epidemiological studies. The molecular basis for LDLs in atherosclerotic plaque formation and progression is not completely unraveled yet. Pharmacological modulation of plasma LDL-C concentrations and randomized clinical trials addressing the impact of lipid-lowering interventions on cardiovascular outcome have clearly shown that reducing plasma LDL-C concentrations results in a significant decrease in major cardiovascular events. For many years, statins have represented the most powerful pharmacological agents available to lower plasma LDL-C concentrations. In clinical trials, it has been shown that the greater the reduction in plasma LDL-C concentrations, the lower the rate of major cardiovascular events, especially in high-risk patients, because of multiple risk factors and recurrent events. However, in a substantial number of patients, the recommended LDL target is difficult to achieve because of different factors: genetic background (familial hypercholesterolemia, side effects (statin intolerance, or high baseline plasma LDL-C concentrations. In the last decade, our understanding of the molecular mechanisms involved in LDL metabolism has progressed significantly and the key role of proprotein convertase subtilisin/kexin type 9 (PCSK9 has emerged. This protein is an enzyme able to bind the LDL receptors (LDL-R on hepatocytes, favoring their degradation. Blocking PCSK9 represents an intriguing new therapeutic approach to decrease plasma LDL-C concentrations, which in recent studies has been demonstrated to also result in a significant reduction in major cardiovascular events.

  2. Lipid Target in Very High-Risk Cardiovascular Patients: Lesson from PCSK9 Monoclonal Antibodies.

    Science.gov (United States)

    Ciccarelli, Giovanni; D'Elia, Saverio; De Paulis, Michele; Golino, Paolo; Cimmino, Giovanni

    2018-03-17

    The role of low-density lipoproteins (LDLs) as a major risk factor for cardiovascular disease has been demonstrated by several epidemiological studies. The molecular basis for LDLs in atherosclerotic plaque formation and progression is not completely unraveled yet. Pharmacological modulation of plasma LDL-C concentrations and randomized clinical trials addressing the impact of lipid-lowering interventions on cardiovascular outcome have clearly shown that reducing plasma LDL-C concentrations results in a significant decrease in major cardiovascular events. For many years, statins have represented the most powerful pharmacological agents available to lower plasma LDL-C concentrations. In clinical trials, it has been shown that the greater the reduction in plasma LDL-C concentrations, the lower the rate of major cardiovascular events, especially in high-risk patients, because of multiple risk factors and recurrent events. However, in a substantial number of patients, the recommended LDL target is difficult to achieve because of different factors: genetic background (familial hypercholesterolemia), side effects (statin intolerance), or high baseline plasma LDL-C concentrations. In the last decade, our understanding of the molecular mechanisms involved in LDL metabolism has progressed significantly and the key role of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged. This protein is an enzyme able to bind the LDL receptors (LDL-R) on hepatocytes, favoring their degradation. Blocking PCSK9 represents an intriguing new therapeutic approach to decrease plasma LDL-C concentrations, which in recent studies has been demonstrated to also result in a significant reduction in major cardiovascular events.

  3. Activated platelets in carotid artery thrombosis in mice can be selectively targeted with a radiolabeled single-chain antibody.

    Directory of Open Access Journals (Sweden)

    Timo Heidt

    Full Text Available BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111Indium ((111In via bifunctional DTPA ( = (111In-LIBS/(111In-control. Autoradiography after incubation with (111In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2, 4010 ± 630 DLU/mm(2 and 4520 ± 293 DLU/mm(2 produced a significantly higher ligand uptake compared to (111In-control (2101 ± 76 DLU/mm(2, 1181 ± 96 DLU/mm(2 and 1866 ± 246 DLU/mm(2 indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2 vs. 17390 ± 7470 DLU/mm(2; P<0.05. These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01. CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of

  4. Targeting Antibodies to Carbon Nano tube Field Effect Transistors by Pyrene Hydrazide Modification of Heavy Chain Carbohydrates

    International Nuclear Information System (INIS)

    Stefansson, S.; Ahn, S.N.; Kwon, H.H.

    2012-01-01

    Many carbon nano tube field-effect transistor (CNT-FET) studies have used immobilized antibodies as the ligand binding moiety. However, antibodies are not optimal for CNT-FET detection due to their large size and charge. Their size can prevent ligands from reaching within the Debye length of the CNTs and a layer of charged antibodies on the circuits can drown out any ligand signal. In an attempt to minimize the antibody footprint on CNT-FETs, we examined whether pyrene hydrazide modification of antibody carbohydrates could reduce the concentration required to functionalized CNT circuits. The carbohydrates are almost exclusively on the antibody Fc region and this site-specific modification could mediate uniform antibody orientation on the CNTs. We compared the hydrazide modification of anti-E. coli O157:H7 polyclonal antibodies to pyrenebutanoic acid succinimidyl ester-coated CNTs and carbodiimide-mediated antibody CNT attachment. Our results show that the pyrene hydrazide modification was superior to those methods with respect to bacteria detection and less than 1 nM labeled antibody was required to functionalized the circuits.

  5. Characterization and cancer cell targeted imaging properties of human antivascular endothelial growth factor monoclonal antibody conjugated CdTe/ZnS quantum dots.

    Science.gov (United States)

    Pang, Lili; Xu, Jian; Shu, Chang; Guo, Jin; Ma, Xiaona; Liu, Yu; Zhong, Wenying

    2014-12-01

    High luminescence quantum yield water-soluble CdTe/ZnS core/shell quantum dots (QDs) stabilized with thioglycolic acid were synthesized. QDs were chemically coupled to fully humanized antivascular endothelial growth factor165 monoclonal antibodies to produce fluorescent probes. These probes can be used to assay the biological affinity of the antibody. The properties of QDs conjugated to an antibody were characterized by ultraviolet and visible spectrophotometry, fluorescent spectrophotometry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transmission electron microscopy and fluorescence microscopy. Cell-targeted imaging was performed in human breast cancer cell lines. The cytotoxicity of bare QDs and fluorescent probes was evaluated in the MCF-7 cells with an MTT viability assay. The results proved that CdTe/ZnS QD-monoclonal antibody nanoprobes had been successfully prepared with excellent spectral properties in target detections. Surface modification by ZnS shell could mitigate the cytotoxicity of cadmium-based QDs. The therapeutic effects of antivascular endothelial growth factor antibodies towards cultured human cancer cells were confirmed by MTT assay. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Antibody responses to NY-ESO-1 in primary breast cancer identify a subtype target for immunotherapy.

    Science.gov (United States)

    Hamaï, Ahmed; Duperrier-Amouriaux, Karine; Pignon, Pascale; Raimbaud, Isabelle; Memeo, Lorenzo; Colarossi, Cristina; Canzonieri, Vincenzo; Perin, Tiziana; Classe, Jean-Marc; Campone, Mario; Jézéquel, Pascal; Campion, Loïc; Ayyoub, Maha; Valmori, Danila

    2011-01-01

    The highly immunogenic human tumor antigen NY-ESO-1 (ESO) is a target of choice for anti-cancer immune therapy. In this study, we assessed spontaneous antibody (Ab) responses to ESO in a large cohort of patients with primary breast cancer (BC) and addressed the correlation between the presence of anti-ESO Ab, the expression of ESO in the tumors and their characteristics. We found detectable Ab responses to ESO in 1% of the patients. Tumors from patients with circulating Ab to ESO exhibited common characteristics, being mainly hormone receptor (HR)⁻ invasive ductal carcinomas of high grade, including both HER2⁻ and HER2⁺ tumors. In line with these results, we detected ESO expression in 20% of primary HR⁻ BC, including both ESO Ab⁺ and Ab⁻ patients, but not in HR⁺ BC. Interestingly, whereas expression levels in ESO⁺ BC were not significantly different between ESO Ab⁺ and Ab⁻ patients, the former had, in average, significantly higher numbers of tumor-infiltrated lymph nodes, indicating that lymph node invasion may be required for the development of spontaneous anti-tumor immune responses. Thus, the presence of ESO Ab identifies a tumor subtype of HR⁻ (HER2⁻ or HER2⁺) primary BC with frequent ESO expression and, together with the assessment of antigen expression in the tumor, may be instrumental for the selection of patients for whom ESO-based immunotherapy may complement standard therapy.

  7. Sequential Multivariate Cell Culture Modeling at Multiple Scales Supports Systematic Shaping of a Monoclonal Antibody Toward a Quality Target.

    Science.gov (United States)

    Sokolov, Michael; Morbidelli, Massimo; Butté, Alessandro; Souquet, Jonathan; Broly, Hervé

    2017-12-28

    The development of cell culture processes is highly complex and requires a large number of experiments on various scales to define the design space of the final process and fulfil the regulatory requirements. This work follows an almost complete process development cycle for a biosimilar monoclonal antibody, from high throughput screening and optimization to scale-up and process validation. The key goal of this analysis is to apply tailored multivariate tools to support decision-making at every stage of process development. A toolset mainly based on Principal Component Analysis, Decision Trees, and Partial Least Square Regression combined with a Genetic Algorithm is presented. It enables to visualize the sequential improvement of the high-dimensional quality profile towards the target, provides a solid basis for the selection of effective process variables and allows to dynamically predict the complete set of product quality attributes. Additionally, this work shows the deep level of process knowledge which can be deduced from small scale experiments through such multivariate tools. The presented methodologies are generally applicable across various processes and substantially reduce the complexity, experimental effort as well as the costs and time of process development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Peptide Targeted by Human Antibodies Associated with HIV Vaccine-Associated Protection Assumes a Dynamic α-Helical Structure.

    Science.gov (United States)

    Aiyegbo, Mohammed S; Shmelkov, Evgeny; Dominguez, Lorenzo; Goger, Michael; Battacharya, Shibani; deCamp, Allan C; Gilbert, Peter B; Berman, Phillip W; Cardozo, Timothy

    2017-01-01

    The only evidence of vaccine-induced protection from HIV acquisition in humans was obtained in the RV144 HIV vaccine clinical trial. One immune correlate of risk in RV144 was observed to be higher titers of vaccine-induced antibodies (Abs) reacting with a 23-mer non-glycosylated peptide with the same amino acid sequence as a segment in the second variable (V2) loop of the MN strain of HIV. We used NMR to analyze the dynamic 3D structure of this peptide. Distance restraints between spatially proximate inter-residue protons were calculated from NOE cross peak intensities and used to constrain a thorough search of all possible conformations of the peptide. α-helical folding was strongly preferred by part of the peptide. A high-throughput structure prediction of this segment in all circulating HIV strains demonstrated that α-helical conformations are preferred by this segment almost universally across all subtypes. Notably, α-helical conformations of this segment of the V2 loop cluster cross-subtype-conserved amino acids on one face of the helix and the variable amino acid positions on the other in a semblance of an amphipathic α-helix. Accordingly, some Abs that protected against HIV in RV144 may have targeted a specific, conserved α-helical peptide epitope in the V2 loop of HIV's surface envelope glycoprotein.

  9. Breast cancer cell targeted MR molecular imaging probe: Anti-MUC1 antibody-based magnetic nanoparticles

    Science.gov (United States)

    Moradi Khaniabadi, P.; S. A Majid, A. M.; Asif, M.; Moradi Khaniabadi, B.; Shahbazi-Gahrouei, D.; Jaafar, M. S.

    2017-05-01

    Effective and specific diagnostic imaging techniques are important in early-stage breast cancer treatment. The objective of this study was to develop a specific breast cancer contrast agent for magnetic resonance imaging (MRI). In so doing, superparamagnetic iron oxide nanoparticles (SPIONs) were conjugated to C595 monoclonal antibody using EDC chemistry to produce nanoprobe with high relaxivity and narrow size (87.4±0.7 nm). To test the developed nanoprobe in vitro, assessments including Cell toxicity, targeting efficacy, cellular binding, and MR imaging were carried out. The results indicated that after 6 hrs incubation with MCF-7 cells at 200 to 25 µg Fe/ml doses, 76% to 16% T2 reduction was obtained. The presence of iron localised in MCF-7 cells measured by atomic absorption spectroscopy (AAS) was about 9.95±0.09 ppm iron/cell at higher doses of nanoprobe. Moreover, a linear relationship between iron concentration of nontoxic SPION-C595 and T2 relaxation times was observed. This study also revealed that developed nanoprobe might be used as a specific negative contrast agent for detecting breast cancer.

  10. Antibody-mediated Targeting of the Urokinase-type Plasminogen Activator Proteolytic Function Neutralizes Fibrinolysis in Vivo

    DEFF Research Database (Denmark)

    Lund, Ida K.; Jögi, Annika; Rono, Birgitte

    2008-01-01

    models, we have now developed murine monoclonal antibodies (mAbs) directed against murine uPA by immunization of uPA-deficient mice with the recombinant protein. Guided by enzyme-linked immunosorbent assay, Western blotting, surface plasmon resonance, and enzyme kinetic analyses, we have selected two...... highly potent and inhibitory anti-uPA mAbs (mU1 and mU3). Both mAbs recognize epitopes located on the B-chain of uPA that encompasses the catalytic site. In enzyme activity assays in vitro, mU1 blocked uPA-catalyzed plasminogen activation as well as plasmin-mediated pro-uPA activation, whereas mU3 only...... fibrinolysis in tissue-type plasminogen activator (tPA)-deficient mice, resulting in a phenotype mimicking that of uPA;tPA double deficient mice. Importantly, this is the first report demonstrating specific antagonist-directed targeting of mouse uPA at the enzyme activity level in a normal physiological...

  11. The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78.

    Directory of Open Access Journals (Sweden)

    Leo Rasche

    Full Text Available In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM.

  12. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Karim, Salim S. Abdool; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.; Kwong, Peter D.; Morris, Lynn (NHLS-South Africa); (NIH); (Witwatersrand); (KwaZulu-Natal)

    2016-08-31

    ABSTRACT

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage.

    IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of

  13. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    Science.gov (United States)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive

  14. Technical note: Protozoa-specific antibodies raised in sheep plasma bind to their target protozoa in the rumen.

    Science.gov (United States)

    Williams, Y J; Rea, S M; Popovski, S; Skillman, L C; Wright, A-D G

    2014-12-01

    Binding of IgG antibodies to Entodinium spp. in the rumen of sheep (Ovis aries) was investigated by adding IgG, purified from plasma, directly into the rumen. Plasma IgG was sourced from sheep that had or had not been immunized with a vaccine containing whole fixed Entodinium spp. cells. Ruminal fluid was sampled approximately 2 h after each antibody dosing. Binding of protozoa by a specific antibody was detected using an indirect fluorescent antibody test. An antibody titer in the ruminal fluid was determined by ELISA, and the concentration of ruminal fluid ammonia-N and ruminal pH were also determined. Entodinium spp. and total protozoa from IgG-infused sheep were enumerated by microscopic counts. Two-hourly additions of IgG maintained a low antibody titer in the rumen for 12 h and the binding of the antibody to the rumen protozoa was demonstrated. Increased ammonia-N concentrations and altered ruminal fluid pH patterns indicated that additional fermentation of protein was occurring in the rumen after addition of IgG. No reduction in numbers of Entodinium spp. was observed (P>0.05). Although binding of antibodies to protozoa has been demonstrated in the rumen, it is unclear how much cell death occurred. On the balance of probability, it would appear that the antibody was degraded or partially degraded, and the impact of this on protozoal populations and the measurement of a specific titer is also unclear.

  15. Antiprothrombin Antibodies

    Directory of Open Access Journals (Sweden)

    Polona Žigon

    2015-05-01

    Full Text Available In patients with the antiphospholipid syndrome (APS, the presence of a group of pathogenic autoantibodies called antiphospholipid antibodies causes thrombosis and pregnancy complications. The most frequent antigenic target of antiphospholipid antibodies are phospholipid bound β2-glycoprotein 1 (β2GPI and prothrombin. The international classification criteria for APS connect the occurrence of thrombosis and/or obstetric complications together with the persistence of lupus anticoagulant, anti-cardiolipin antibodies (aCL and antibodies against β2GPI (anti-β2GPI into APS. Current trends for the diagnostic evaluation of APS patients propose determination of multiple antiphospholipid antibodies, among them also anti-prothrombin antibodies, to gain a common score which estimates the risk for thrombosis in APS patients. Antiprothrombin antibodies are common in APS patients and are sometimes the only antiphospholipid antibodies being elevated. Methods for their determination differ and have not yet been standardized. Many novel studies confirmed method using phosphatidylserine/prothrombin (aPS/PT ELISA as an antigen on solid phase encompass higher diagnostic accuracy compared to method using prothrombin alone (aPT ELISA. Our research group developed an in-house aPS/PT ELISA with increased analytical sensitivity which enables the determination of all clinically relevant antiprothrombin antibodies. aPS/PT exhibited the highest percentage of lupus anticoagulant activity compared to aCL and anti-β2GPI. aPS/PT antibodies measured with the in-house method associated with venous thrombosis and presented the strongest independent risk factor for the presence of obstetric complications among all tested antiphospholipid antibodies

  16. Antibodies Targeting EMT

    Science.gov (United States)

    2015-10-01

    cdh ) expression by FACS, and inspected visually for maintence of an epithelial phenotype. At 5 days post induction, E- cdh expression between the...an E- cdh high and E- cdh low population. This segregation is not seen in the control cell population. Additionally, 10 days into the twist induction...selecting cells that retained an epithelial phenotype. Selection is accomplished by FACS sorting for the expression epithelial junction protein E- cdh

  17. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  18. [Targeted tumor suppression by a secreted fusion protein consisting of anti- erbB2 antibody and reversed caspase-3 to SKBr3 cells].

    Science.gov (United States)

    Zhang, Li-hong; Jia, Lin-tao; Yu, Cui-juan; Qu, Ping; Dong, Hai-long; Zhao, Jing; Xu, Yan-ming; Wang, Cheng-Ji; Yang, An-gang

    2003-04-10

    To investigate the targeted killing effect to SKBr3 cells due to the expression of a secreted fusion protein consisting of anti-erbB2 antibody and reversed caspase-3. A recombinant plasmid pCMV-e23scFv-PEII-revcasp 3 was constructed by subcloning reversed caspase-3 gene to the downstream of anti-erbB2 antibody and transfected into Jurkat cells. The cell lines which secreted expressing fusion protein stably were selected. The fusion protein in media was detected by ELISA and the media was used to culture human breast cancer SKBr3 cells. The recombinant plasmids with liposomes was administrated to BALB/C nude mouses bearing SKBr3 tumor by intramuscular injection. The targetting effect of the recombinant fusion protein caspase-3 was detected by indirect immunofluorescence staining. Fusion protein can be expressed and secreted by Jurkat cells stably and kill SKBr3 cells. Significant prolonged survival time (prolonged by 72%) and inhibition of tumor growth in vivo (within inhibition ratio of 77%) were seen in the group administered with recombinant plasmids. Indirect immunofluorescence staining showed that the recombinant fusion protein caspase-3 has targetting effect. Secreted expression of the fusion protein consisting of anti-erbB2 antibody and reversed caspase-3 can targetedly induce SKBr3 cells to death.

  19. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  20. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    Science.gov (United States)

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  1. Targeted deposition of antibodies on a multiplex CMOS microarray and optimization of a sensitive immunoassay using electrochemical detection.

    Directory of Open Access Journals (Sweden)

    John Cooper

    2010-03-01

    Full Text Available The CombiMatrix ElectraSense microarray is a highly multiplex, complementary metal oxide semiconductor with 12,544 electrodes that are individually addressable. This platform is commercially available as a custom DNA microarray; and, in this configuration, it has also been used to tether antibodies (Abs specifically on electrodes using complementary DNA sequences conjugated to the Abs.An empirical method is described for developing and optimizing immunoassays on the CombiMatrix ElectraSense microarray based upon targeted deposition of polypyrrole (Ppy and capture Ab. This process was automated using instrumentation that can selectively apply a potential or current to individual electrodes and also measure current generated at the electrodes by an enzyme-enhanced electrochemical (ECD reaction. By designating groups of electrodes on the array for different Ppy deposition conditions, we determined that the sensitivity and specificity of a sandwich immunoassay for staphylococcal enterotoxin B (SEB is influenced by the application of different voltages or currents and the application time. The sandwich immunoassay used a capture Ab adsorbed to the Ppy and a reporter Ab labeled for fluorescence detection or ECD, and results from these methods of detection were different.Using Ppy deposition conditions for optimum results, the lower limit of detection for SEB using the ECD assay was between 0.003 and 0.01 pg/ml, which represents an order of magnitude improvement over a conventional enzyme-linked immunosorbant assay. In the absence of understanding the variables and complexities that affect assay performance, this highly multiplexed electrode array provided a rapid, high throughput, and empirical approach for developing a sensitive immunoassay.

  2. Targeted therapies for the treatment of non-small-cell lung cancer: Monoclonal antibodies and biological inhibitors.

    Science.gov (United States)

    Silva, Ana P S; Coelho, Priscila V; Anazetti, Maristella; Simioni, Patricia U

    2017-04-03

    The usual treatments for patients with non-small-cell lung cancer (NSCLC), such as advanced lung adenocarcinoma, are unspecific and aggressive, and include lung resection, radiotherapy and chemotherapy. Recently, treatment with monoclonal antibodies and biological inhibitors has emerged as an effective alternative, generating effective results with few side effects. In recent years, several clinical trials using monoclonal antibodies presented potential benefits to NSCLC, and 4 of them are already approved for the treatment of NSCLC, such as cetuximab, bevacizumab, nivolumab and pembrolizumab. Also, biological inhibitors are attractive tolls for biological applications. Among the approved inhibitors are crizotinib, erlotinib, afatinib and gefitinib, and side effects are usually mild to intense. Nevertheless, biological molecule treatments are under development, and several new monoclonal antibodies and biological inhibitors are in trial to treat NSCLC. Also under trial study are as follows: anti-epidermal growth factor receptor (EGFR) antibodies (nimotuzumab and ficlatuzumab), anti-IGF 1 receptor (IGF-1R) monoclonal antibody (figitumumab), anti-NR-LU-10 monoclonal antibody (nofetumomab) as well as antibodies directly affecting the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) molecule (ipilimumab and tremelimumab), to receptor activator of nuclear factor-kappa B ligand (RANKL) (denosumab) or to polymerase enzyme (veliparib and olaparib). Among new inhibitors under investigation are poly-ADP ribose polymerase (PARP) inhibitors (veliparib and olaparib) and phosphatidylinositol 3-kinase (PI3K) inhibitor (buparlisib). However, the success of immunotherapies still requires extensive research and additional controlled trials to evaluate the long-term benefits and side effects.

  3. Elimination of Tumor Cells Using Folate Receptor Targeting by Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles in a Murine Breast Cancer Model

    Directory of Open Access Journals (Sweden)

    Evan S. Krystofiak

    2012-01-01

    Full Text Available Background. The chemotherapeutic treatment of cancer suffers from poor specificity for targeting the tumor cells and often results in adverse effects such as systemic toxicity, damage to nontarget tissues, and development of drug-resistant tumors in patients. Increasingly, drug nanocarriers have been explored as a way of lessening or overcoming these problems. In this study, antibody-conjugated Au-coated magnetite nanoparticles, in conjunction with inductive heating produced by exposure to an oscillating magnetic field (OMF, were evaluated for their effects on the viability of tumor cells in a murine model of breast cancer. Treatment effects were evaluated by light microscopy and SEM. Results. 4T1 mammary epithelial carcinoma cells overexpressing the folate receptor were targeted with an anti-folate receptor primary antibody, followed by labeling with secondary antibody-conjugated Au-coated magnetite nanoparticles. In the absence of OMF exposure, nanoparticle labeling had no effect on 4T1 cell viability. However, following OMF treatment, many of the labeled 4T1 cells showed extensive membrane damage by SEM analysis, and dramatically reduced viability as assessed using a live/dead staining assay. Conclusions. These results demonstrate that Au-coated magnetite targeted to tumor cells through binding to an overexpressed surface receptor, in the presence of an OMF, can lead to tumor cell death.

  4. Anti-PDGF receptor β antibody-conjugated squarticles loaded with minoxidil for alopecia treatment by targeting hair follicles and dermal papilla cells.

    Science.gov (United States)

    Aljuffali, Ibrahim A; Pan, Tai-Long; Sung, Calvin T; Chang, Shu-Hao; Fang, Jia-You

    2015-08-01

    This study developed lipid nanocarriers, called squarticles, conjugated with anti-platelet-derived growth factor (PDGF)-receptor β antibody to determine whether targeted Minoxidil (MXD) delivery to the follicles and dermal papilla cells (DPCs) could be achieved. Squalene and hexadecyl palmitate (HP) were used as the matrix of the squarticles. The PDGF-squarticles showed a mean diameter and zeta potential of 195 nm and -46 mV, respectively. Nanoparticle encapsulation enhanced MXD porcine skin deposition from 0.11 to 0.23 μg/mg. The antibody-conjugated nanoparticles ameliorated follicular uptake of MXD by 3-fold compared to that of the control solution in the in vivo mouse model. Both vertical and horizontal skin sections exhibited a wide distribution of nanoparticles in the follicles, epidermis, and deeper skin strata. The encapsulated MXD moderately elicited proliferation of DPCs and vascular endothelial growth factor (VEGF) expression. The active targeting of PDGF-squarticles may be advantageous to improving the limited success of alopecia therapy. Topical use of minoxidil is only one of the very few treatment options for alopecia. Nonetheless, the current delivery method is far from ideal. In this article, the authors developed lipid nanocarriers with anti-platelet-derived growth factor receptor ? antibody to target dermal papilla cells, and showed enhanced uptake of minoxidil. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...

  6. PET-based compartmental modeling of {sup 124}I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat; O' Donoghue, Joseph A.; Humm, John L. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Carrasquillo, Jorge A.; Pandit-Taskar, Neeta; Ruan, Shutian; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Smith-Jones, Peter [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Stony Brook School of Medicine, Departments of Psychiatry and Radiology, Stony Brook, NY (United States); Divgi, Chaitanya [Columbia University Medical Center, New York, NY (United States); Scott, Andrew M. [La Trobe University, Olivia Newton-John Cancer Research Institute, Melbourne (Australia); Kemeny, Nancy E.; Wong, Douglas; Scheinberg, David [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Fong, Yuman [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); City of Hope, Department of Surgery, Duarte, CA (United States); Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J. [Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research, New York, NY (United States)

    2015-10-15

    The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the ''best-fit'' parameters and model-derived quantities for optimizing biodistribution of intravenously injected {sup 124}I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as ''A33'') were performed in 11 colorectal cancer patients. Serial whole-body PET scans of {sup 124}I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, ''off-target'' uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting ''best-fit'' nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived. (orig.)

  7. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform

    Science.gov (United States)

    Klarenbeek, Alex; Mazouari, Khalil El; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  8. An IL12-IL2-antibody fusion protein targeting Hodgkin's lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack.

    Directory of Open Access Journals (Sweden)

    Tobias Jahn

    Full Text Available Successful immunotherapy of Hodgkin's disease is so far hampered by the striking unresponsiveness of lymphoma infiltrating immune cells. To mobilize both adoptive and innate immune cells for an anti-tumor attack we fused the pro-inflammatory cytokines IL2 and IL12 to an anti-CD30 scFv antibody in a dual cytokine fusion protein to accumulate both cytokines at the malignant CD30(+ Hodgkin/Reed-Sternberg cells in the lymphoma lesion. The tumor-targeted IL12-IL2 fusion protein was superior in activating resting T cells to amplify and secrete pro-inflammatory cytokines compared to targeted IL2 or IL12 alone. NK cells were also activated by the dual cytokine protein to secrete IFN-γ and to lyse target cells. The tumor-targeted IL12-IL2, when applied by i.v. injection to immune-competent mice with established antigen-positive tumors, accumulated at the tumor site and induced tumor regression. Data demonstrate that simultaneous targeting of two cytokines in a spatial and temporal simultaneous fashion to pre-defined tissues is feasible by a dual-cytokine antibody fusion protein. In the case of IL12 and IL2, this produced superior anti-tumor efficacy implying the strategy to muster a broader immune cell response in the combat against cancer.

  9. Polymer Cancerostatics Targeted with an Antibody Fragment Bound via a Coiled Coil Motif: In Vivo Therapeutic Efficacy against Murine BCL1 Leukemia.

    Science.gov (United States)

    Pechar, Michal; Pola, Robert; Janoušková, Olga; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Tomalová, Barbora; Kovář, Marek

    2018-01-01

    A BCL1 leukemia-cell-targeted polymer-drug conjugate with a narrow molecular weight distribution consisting of an N-(2-hydroxypropyl)methacrylamide copolymer carrier and the anticancer drug pirarubicin is prepared by controlled radical copolymerization followed by metal-free click chemistry. A targeting recombinant single chain antibody fragment (scFv) derived from a B1 monoclonal antibody is attached noncovalently to the polymer carrier via a coiled coil interaction between two complementary peptides. Two pairs of coiled coil forming peptides (abbreviated KEK/EKE and KSK/ESE) are used as linkers between the polymer-pirarubicin conjugate and the targeting protein. The targeted polymer conjugate with the coiled coil linker KSK/ESE exhibits 4× better cell binding activity and 2× higher cytotoxicity in vitro compared with the other conjugate. Treatment of mice with established BCL1 leukemia using the scFv-targeted polymer conjugate leads to a markedly prolonged survival time of the experimental animals compared with the treatment using the free drug and the nontargeted polymer-pirarubicin conjugate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Advantages of Papio anubis for preclinical testing of immunotoxicity of candidate therapeutic antagonist antibodies targeting CD28

    Science.gov (United States)

    Poirier, Nicolas; Mary, Caroline; Le Bas-Bernardet, Stephanie; Daguin, Veronique; Belarif, Lyssia; Chevalier, Melanie; Hervouet, Jeremy; Minault, David; Ville, Simon; Charpy, Vianney; Blancho, Gilles; Vanhove, Bernard

    2014-01-01

    Antagonist anti-CD28 antibodies prevent T-cell costimulation and are functionally different from CTLA4Ig since they cannot block CTLA-4 and PDL-1 co-inhibitory signals. They demonstrated preclinical efficacy in suppressing effector T cells while enhancing immunoregulatory mechanisms. Because a severe cytokine release syndrome was observed during the Phase 1 study with the superagonist anti-CD28 TGN1412, development of other anti-CD28 antibodies requires careful preclinical evaluation to exclude any potential immunotoxicity side-effects. The failure to identify immunological toxicity of TGN1412 using macaques led us to investigate more relevant preclinical models. We report here that contrary to macaques, and like in man, all baboon CD4-positive T lymphocytes express CD28 in their effector memory cells compartment, a lymphocyte subtype that is the most prone to releasing cytokines after reactivation. Baboon lymphocytes are able to release pro-inflammatory cytokines in vitro in response to agonist or superagonist anti-CD28 antibodies. Furthermore, we compared the reactivity of human and baboon lymphocytes after transfer into non obese diabetic/severe combined immunodeficiency (NOD/SCID) interleukin-2rγ knockout mice and confirmed that both cell types could release inflammatory cytokines in situ after injection of agonistic anti-CD28 antibodies. In contrast, FR104, a monovalent antagonistic anti-CD28 antibody, did not elicit T cell activation in these assays, even in the presence of anti-drug antibodies. Infusion to baboons also resulted in an absence of cytokine release. In conclusion, the baboon represents a suitable species for preclinical immunotoxicity evaluation of anti-CD28 antibodies because their effector memory T cells do express CD28 and because cytokine release can be assessed in vitro and trans vivo. PMID:24598534

  11. Target-specific NMR detection of protein–ligand interactions with antibody-relayed {sup 15}N-group selective STD

    Energy Technology Data Exchange (ETDEWEB)

    Hetényi, Anasztázia [University of Szeged, Department of Medical Chemistry (Hungary); Hegedűs, Zsófia [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary); Fajka-Boja, Roberta; Monostori, Éva [Biological Research Center of the Hungarian Academy of Sciences, Lymphocyte Signal Transduction Laboratory, Institute of Genetics (Hungary); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Martinek, Tamás A., E-mail: martinek@pharm.u-szeged.hu [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary)

    2016-12-15

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein–ligand interactions is a key element. {sup 1}H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed {sup 15}N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A {sup 15}N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  12. Analysis of Individuals from a Dengue-Endemic Region Helps Define the Footprint and Repertoire of Antibodies Targeting Dengue Virus 3 Type-Specific Epitopes

    Directory of Open Access Journals (Sweden)

    Daniela V. Andrade

    2017-09-01

    Full Text Available The four dengue virus serotypes (DENV1 to 4 cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. Here, we use a recombinant DENV4 (rDENV4/3-M14 displaying a major DENV3 type-specific quaternary epitope recognized by human monoclonal antibody 5J7 to measure the proportion, magnitude, and kinetics of DENV3 type-specific neutralizing antibody responses targeting this epitope. Primary DENV3 sera from 30 individuals in a dengue hospital-based study in Nicaragua were studied 3, 6, 12, and 18 months post-infection, alongside samples collected annually 1 to 4 years post-primary DENV3 infection from 10 individuals in a cohort study in Nicaragua. We found substantial individual variation in the proportion of DENV3 type-specific neutralizing antibody titers attributed to the 5J7 epitope (range, 0 to 100%, with the mean significantly increasing from 22.6% to 41.4% from 3 to 18 months. We extended the transplanted DENV3 5J7 epitope on the virion (rDENV4/3-M16, resulting in increased recognition in several individuals, helping define the footprint of the epitope. However, 37% and 13% of the subjects still showed little to no recognition of the 5J7 epitope at 3 and 18 months, respectively, indicating that one or more additional DENV3 type-specific epitopes exist. Overall, this study demonstrates how DENV-immune plasma from populations from areas of endemicity, when coupled with structurally guided recombinant viruses, can help characterize the epitope-specific neutralizing antibody response in natural DENV infections, with direct implications for design and evaluation of dengue vaccines.

  13. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Chen H

    2013-10-01

    Full Text Available Hongwei Chen,1,* Liya Wang,1,2,* Qiqi Yu,1,2 Weiping Qian,3 Diana Tiwari,1 Hong Yi,4 Andrew Y Wang,5 Jing Huang,1,2 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, 4Robert Apkarian Electron Microscopy Core, Emory University, Atlanta, GA, 5Ocean NanoTech LLC, Springdale, AK, USA *These authors contributed equally to this work Abstract: Antifouling magnetic iron oxide nanoparticles (IONPs coated with block copolymer poly(ethylene oxide-block-poly(γ-methacryloxypropyltrimethoxysilane (PEO-b-PγMPS were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv of antibody against epidermal growth factor receptor (ScFvEGFR to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs. The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs

  14. A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma.

    Science.gov (United States)

    Maekawa, Naoya; Konnai, Satoru; Takagi, Satoshi; Kagawa, Yumiko; Okagawa, Tomohiro; Nishimori, Asami; Ikebuchi, Ryoyo; Izumi, Yusuke; Deguchi, Tatsuya; Nakajima, Chie; Kato, Yukinari; Yamamoto, Keiichi; Uemura, Hidetoshi; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2017-08-21

    Immunotherapy targeting immune checkpoint molecules, programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1), using therapeutic antibodies has been widely used for some human malignancies in the last 5 years. A costimulatory receptor, PD-1, is expressed on T cells and suppresses effector functions when it binds to its ligand, PD-L1. Aberrant PD-L1 expression is reported in various human cancers and is considered an immune escape mechanism. Antibodies blocking the PD-1/PD-L1 axis induce antitumour responses in patients with malignant melanoma and other cancers. In dogs, no such clinical studies have been performed to date because of the lack of therapeutic antibodies that can be used in dogs. In this study, the immunomodulatory effects of c4G12, a canine-chimerised anti-PD-L1 monoclonal antibody, were evaluated in vitro, demonstrating significantly enhanced cytokine production and proliferation of dog peripheral blood mononuclear cells. A pilot clinical study was performed on seven dogs with oral malignant melanoma (OMM) and two with undifferentiated sarcoma. Objective antitumour responses were observed in one dog with OMM (14.3%, 1/7) and one with undifferentiated sarcoma (50.0%, 1/2) when c4G12 was given at 2 or 5 mg/kg, every 2 weeks. c4G12 could be a safe and effective treatment option for canine cancers.

  15. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML.

    Science.gov (United States)

    Kung Sutherland, May S; Walter, Roland B; Jeffrey, Scott C; Burke, Patrick J; Yu, Changpu; Kostner, Heather; Stone, Ivan; Ryan, Maureen C; Sussman, Django; Lyon, Robert P; Zeng, Weiping; Harrington, Kimberly H; Klussman, Kerry; Westendorf, Lori; Meyer, David; Bernstein, Irwin D; Senter, Peter D; Benjamin, Dennis R; Drachman, Jonathan G; McEarchern, Julie A

    2013-08-22

    Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML.

  16. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite.

    Science.gov (United States)

    Kisalu, Neville K; Idris, Azza H; Weidle, Connor; Flores-Garcia, Yevel; Flynn, Barbara J; Sack, Brandon K; Murphy, Sean; Scho N, Arne; Freire, Ernesto; Francica, Joseph R; Miller, Alex B; Gregory, Jason; March, Sandra; Liao, Hua-Xin; Haynes, Barton F; Wiehe, Kevin; Trama, Ashley M; Saunders, Kevin O; Gladden, Morgan A; Monroe, Anthony; Bonsignori, Mattia; Kanekiyo, Masaru; Wheatley, Adam K; McDermott, Adrian B; Farney, S Katie; Chuang, Gwo-Yu; Zhang, Baoshan; Kc, Natasha; Chakravarty, Sumana; Kwong, Peter D; Sinnis, Photini; Bhatia, Sangeeta N; Kappe, Stefan H I; Sim, B Kim Lee; Hoffman, Stephen L; Zavala, Fidel; Pancera, Marie; Seder, Robert A

    2018-03-19

    Development of a highly effective vaccine or antibodies for the prevention and ultimately elimination of malaria is urgently needed. Here we report the isolation of a number of human monoclonal antibodies directed against the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) from several subjects immunized with an attenuated Pf whole-sporozoite (SPZ) vaccine (Sanaria PfSPZ Vaccine). Passive transfer of one of these antibodies, monoclonal antibody CIS43, conferred high-level, sterile protection in two different mouse models of malaria infection. The affinity and stoichiometry of CIS43 binding to PfCSP indicate that there are two sequential multivalent binding events encompassing the repeat domain. The first binding event is to a unique 'junctional' epitope positioned between the N terminus and the central repeat domain of PfCSP. Moreover, CIS43 prevented proteolytic cleavage of PfCSP on PfSPZ. Analysis of crystal structures of the CIS43 antigen-binding fragment in complex with the junctional epitope determined the molecular interactions of binding, revealed the epitope's conformational flexibility and defined Asn-Pro-Asn (NPN) as the structural repeat motif. The demonstration that CIS43 is highly effective for passive prevention of malaria has potential application for use in travelers, military personnel and elimination campaigns and identifies a new and conserved site of vulnerability on PfCSP for next-generation rational vaccine design.

  17. Bevacizumab reduces tumor targeting of antiepidermal growth factor and anti-insulin-like growth factor 1 receptor antibodies

    NARCIS (Netherlands)

    Heskamp, Sandra; Boerman, Otto C.; Molkenboer-Kuenen, Janneke D. M.; Oyen, Wim J. G.; van der Graaf, Winette T. A.; van Laarhoven, Hanneke W. M.

    2013-01-01

    Bevacizumab (antivascular endothelial growth factor [anti-VEGF]) and cetuximab (antiepidermal growth factor receptor [anti-EGFR]) are approved antibodies for treatment of cancer. However, in advanced colorectal cancer, the combination fails to improve survival. As the reason for the lack of activity

  18. Allogeneic major histocompatibility complex-mismatched equine bone marrow-derived mesenchymal stem cells are targeted for death by cytotoxic anti-major histocompatibility complex antibodies.

    Science.gov (United States)

    Berglund, A K; Schnabel, L V

    2017-07-01

    Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Controversy exists, however, over whether major histocompatibility complex (MHC)-mismatched MSCs are recognised by the recipient immune system and targeted for death by a cytotoxic antibody response. To determine if cytotoxic anti-MHC antibodies generated in vivo following MHC-mismatched MSC injections are capable of initiating complement-dependent cytotoxicity of MSCs. Experimental controlled study. Antisera previously collected at Days 0, 7, 14 and 21 post-injection from 4 horses injected with donor MHC-mismatched equine leucocyte antigen (ELA)-A2 haplotype MSCs and one control horse injected with donor MHC-matched ELA-A2 MSCs were utilised in this study. Antisera were incubated with ELA-A2 MSCs before adding complement in microcytotoxicity assays and cell death was analysed via eosin dye exclusion. ELA-A2 peripheral blood leucocytes (PBLs) were used in the assays as a positive control. Antisera from all 4 horses injected with MHC-mismatched MSCs contained antibodies that caused the death of ELA-A2 haplotype MSCs in the microcytotoxicity assays. In 2 of the 4 horses, antibodies were present as early as Day 7 post-injection. MSC death was consistently equivalent to that of ELA-A2 haplotype PBL death at all time points and antisera dilutions. Antisera from the control horse that was injected with MHC-matched MSCs did not contain cytotoxic ELA-A2 antibodies at any of the time points examined. This study examined MSC death in vitro only and utilized antisera from a small number of horses. The cytotoxic antibody response induced in recipient horses following injection with donor MHC-mismatched MSCs is capable of killing donor MSCs in vitro. These results suggest that the use of allogeneic MHC-mismatched MSCs must be cautioned against, not only for potential adverse events, but also for reduced therapeutic efficacy due to targeted MSC death. © 2016 The

  19. Recent Progress towards Engineering HIV-1-specific Neutralizing Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Ming Sun

    2016-09-01

    Full Text Available The recent discoveries of broadly potent neutralizing human monoclonal antibodies (bNAbs represent a new generation of antiretrovirals for the treatment and prophylaxis. Antibodies are generally considered more effective and safer, and have been proved to provide passive protection against mucosal challenge in humanized mice and macaques. Several neutralizing Abs could protect animals against HIV-1 but are not effective when used in an established infected model for therapy. In order to overcome the limitation of antiviral activities, multiple antibody engineering technologies have been explored to generate the better neutralizing antibodies against HIV-1 since bNAbs attack viral entry by various mechanisms. Thus, a promising direction of research is to discover and exploit rational antibody combination or engineered antibodies (eAbs as potential candidate therapeutics against HIV-1. It has been reported that inclusion of fusion-neutralizing antibodies in a set of bNAbs could improve their overall activities and neutralizing spectrum. Here we review several routes for engineering bNAbs, such as design and generation of bispecific antibodies, specific glycosylation of antibodies to enhance antiviral activity, and variable region specific modification guided by structure and computer, as well as reviewing antibody-delivery technologies by non-viral vector, viral vector and human HSPCs transduced with a lentiviral construct. We also discuss the optimized antiviral activities and benefits of these strategy and potential mechanisms.

  20. Use of Tc-rCRP as a target for lytic antibody titration after experimental Trypanosoma cruzi infection.

    Science.gov (United States)

    Marques, Tatiane; Silva, Gustavo Caetano; Henrique Paiva, Priscila Moraes; Nascentes, Gabriel Antônio Nogueira; Ramirez, Luis Eduardo; Norris, Karen; Meira, Wendell Sérgio Ferreira

    2018-01-01

    Experimental Chagas disease has been used as a model to identify several host/parasite interaction factors involved in immune responses to Trypanosoma cruzi infection. One of the factors inherent to this parasite is the complement regulatory protein (Tc-CRP), a major epitope that induces production of lytic antibodies during T. cruzi infections. Previous studies have evaluated the function of Tc-CRP as an antigenic marker via ELISAs, which demonstrated high sensitivity and specificity when compared to other methods. Therefore, this study aimed to assess and compare the levels of lytic antibodies induced by this protein following experimental infection using different T. cruzi strains. Our results demonstrated that infections induced by strains isolated from vectors resulted in subpatent parasitaemia and low reactivity, as assessed by Tc-rCRP ELISAs. On the other hand, mice inoculated with T. cruzi strains isolated from patients developed patent parasitaemia, and presented elevated lytic antibodies titres, as measured by Tc-rCRP ELISA. In addition, comparison between different mouse lineages demonstrated that Balb/c mice were more reactive than C57BL/6 mice in almost all types of infections, except those infected by the AQ-4 strain. Parasites from the Hel strain generated the greatest lytic antibody response in all evaluated models. Therefore, application of sensitive techniques for monitoring immune responses would enable us to establish growth curves for lytic antibodies during the course of the infection, and allow us to discriminate between T. cruzi strains that originate from different hosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pan-HER - an antibody mixture targeting EGFR, HER2, and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers

    DEFF Research Database (Denmark)

    Ellebaek, Sofie; Pedersen, Susanne Brix; Grandal, Michael

    2016-01-01

    The human epidermal growth factor receptor (HER)-family is involved in development of many epithelial cancers. Therefore, HER-family members constitute important targets for anti-cancer therapeutics such as monoclonal antibodies (mAbs). A limitation to the success of single HER-targeting m...... with Pan-HER were investigated by in situ proximity ligation assay and co-immunoprecipitation, demonstrating that Pan-HER and the EGFR-targeting mAb mixture efficiently down-regulate basal EGFR homo- and heterodimerization in two tested cell lines, whereas single mAbs had limited effects. Pan...... development of Pan-HER in resistant settings. This article is protected by copyright. All rights reserved....

  2. Tumor-Shed Antigen Affects Antibody Tumor Targeting: Comparison of Two 89Zr-Labeled Antibodies Directed against Shed or Nonshed Antigens

    Directory of Open Access Journals (Sweden)

    Jae-Ho Lee

    2018-01-01

    Full Text Available We investigated the effect of shed antigen mesothelin on the tumor uptake of amatuximab, a therapeutic anti-mesothelin mAb clinically tested in mesothelioma patients. The B3 mAb targeting a nonshed antigen was also analyzed for comparison. The mouse model implanted with A431/H9 tumor, which expresses both shed mesothelin and nonshed Lewis-Y antigen, provided an ideal system to compare the biodistribution and PET imaging profiles of the two mAbs. Our study demonstrated that the tumor and organ uptakes of 89Zr-B3 were dose-independent when 3 doses, 2, 15, and 60 μg B3, were compared at 24 h after injection. In contrast, tumor and organ uptakes of 89Zr-amatuximab were dose-dependent, whereby a high dose (60 μg was needed to achieve tumor targeting comparable to the low dose (2 μg of 89Zr-B3, suggesting that shed mesothelin may affect amatuximab tumor targeting as well as serum half-life. The autoradiography analysis showed that the distribution of 89Zr-B3 was nonuniform with the radioactivity primarily localized at the tumor periphery independent of the B3 dose. However, the autoradiography analysis for 89Zr-amatuximab showed dose-dependent distribution profiles of the radiolabel; at 10 μg dose, the radiolabel penetrated toward the tumor core with its activity comparable to that at the tumor periphery, whereas at 60 μg dose, the distribution profile became similar to those of 89Zr-B3. These results suggest that shed antigen in blood may act as a decoy requiring higher doses of mAb to improve serum half-life as well as tumor targeting. Systemic mAb concentration should be at a severalfold molar excess to the shed Ag in blood to overcome the hepatic processing of mAb-Ag complexes. On the other hand, mAb concentration should remain lower than the shed Ag concentration in the tumor ECS to maximize tumor penetration by passing binding site barriers.

  3. Targeting mesothelin receptors with drug-loaded bacterial nanocells suppresses human mesothelioma tumour growth in mouse xenograft models.

    Directory of Open Access Journals (Sweden)

    Mohamed A Alfaleh

    Full Text Available Human malignant mesothelioma is a chemoresistant tumour that develops from mesothelial cells, commonly associated with asbestos exposure. Malignant mesothelioma incidence rates in European countries are still rising and Australia has one of the highest burdens of malignant mesothelioma on a population basis in the world. Therapy using systemic delivery of free cytotoxic agents is associated with many undesirable side effects due to non-selectivity, and is thus dose-limited which limits its therapeutic potential. Therefore, increasing the selectivity of anti-cancer agents has the potential to dramatically enhance drug efficacy and reduce toxicity. EnGeneIC Dream Vectors (EDV are antibody-targeted nanocells which can be loaded with cytotoxic drugs and delivered to specific cancer cells via bispecific antibodies (BsAbs which target the EDV and a cancer cell-specific receptor, simultaneously. BsAbs were designed to target doxorubicin-loaded EDVs to cancer cells via cell surface mesothelin (MSLN. Flow cytometry was used to investigate cell binding and induction of apoptosis, and confocal microscopy to visualize internalization. Mouse xenograft models were used to assess anti-tumour effects in vivo, followed by immunohistochemistry for ex vivo evaluation of proliferation and necrosis. BsAb-targeted, doxorubicin-loaded EDVs were able to bind to and internalize within mesothelioma cells in vitro via MSLN receptors and induce apoptosis. In mice xenografts, the BsAb-targeted, doxorubicin-loaded EDVs suppressed the tumour growth and also decreased cell proliferation. Thus, the use of MSLN-specific antibodies to deliver encapsulated doxorubicin can provide a novel and alternative modality for treatment of mesothelioma.

  4. Evaluation of glycodendron and synthetically-modified dextran clearing agents for multi-step targeting of radioisotopes for molecular imaging and radioimmunotherapy

    Science.gov (United States)

    Cheal, Sarah M.; Yoo, Barney; Boughdad, Sarah; Punzalan, Blesida; Yang, Guangbin; Dilhas, Anna; Torchon, Geralda; Pu, Jun; Axworthy, Don B.; Zanzonico, Pat; Ouerfelli, Ouathek; Larson, Steven M.

    2014-01-01

    A series of N-acetylgalactosamine-dendrons (NAG-dendrons) and dextrans bearing biotin moieties were compared for their ability to complex with and sequester circulating bispecific anti-tumor antibody (scFv4) streptavidin (SA) fusion protein (scFv4-SA) in vivo, to improve tumor to normal tissue concentration ratios for targeted radioimmunotherapy and diagnosis. Specifically, a total of five NAG-dendrons employing a common synthetic scaffold structure containing 4, 8, 16, or 32 carbohydrate residues and a single biotin moiety were prepared (NAGB), and for comparative purposes, a biotinylated-dextran with average molecular weight (MW) of 500 kD was synthesized from amino-dextran (DEXB). One of the NAGB compounds, CA16, has been investigated in humans; our aim was to determine if other NAGB analogs (e.g. CA8 or CA4) were bioequivalent to CA16 and/or better suited as MST reagents. In vivo studies included dynamic positron-emission tomography (PET) imaging of 124I-labelled-scFv4-SA clearance and dual-label biodistribution studies following multi-step targeting (MST) directed at subcutaneous (s.c.) human colon adenocarcinoma xenografts in mice. The MST protocol consists of three injections: first, a bispecific antibody specific for an anti-tumor associated glycoprotein (TAG-72) single chain genetically-fused with SA (scFv4-SA); second, CA16 or other clearing agent; and third, radiolabeled biotin. We observed using PET imaging of 124I-labelled-scFv4-SA clearance that the spatial arrangement of ligands conjugated to NAG (i.e. biotin) can impact the binding to antibody in circulation and subsequent liver uptake of the NAG-antibody complex. Also, NAGB CA32-LC or CA16-LC can be utilized during MST to achieve comparable tumor- to-blood ratios and absolute tumor uptake seen previously with CA16. Finally, DEXB was equally effective as NAGB CA32-LC at lowering scFv4-SA in circulation, but at the expense of reducing absolute tumor uptake of radiolabeled biotin. PMID:24219178

  5. Nanoparticle Mediated Drug Delivery of Rolipram to Tyrosine Kinase B Positive Cells in the Inner Ear with Targeting Peptides and Agonistic Antibodies

    Directory of Open Access Journals (Sweden)

    Rudolf eGlueckert

    2015-05-01

    Full Text Available AimSystemic pharmacotherapies have limitation due to blood-labyrinth barrier, so local delivery via the round window membrane opens a path for effective treatment. Multifunctional nanoparticle (NP mediated cell specific drug delivery may enhance efficacy and reduce side effects. Different NPs with ligands to target TrkB receptor were tested. Distribution, uptake mechanisms, trafficking, and bioefficacy of drug release of rolipram loaded NPs were evaluated.Methods We tested lipid based nanocapsules (LNCs, Quantum Dot, silica NPs with surface modification by peptides mimicking TrkB or TrkB activating antibodies. Bioefficacy of drug release was tested with rolipram loaded LNCs to prevent cisplatin induced apoptosis. We established different cell culture models with SH-SY-5Y and inner ear derived cell lines and used neonatal and adult mouse explants. Uptake and trafficking was evaluated with FACS and confocal as well as transmission electron microscopy. ResultsPlain NPs show some selectivity in uptake related to the in-vitro system properties, carrier material and NP size. Some peptide ligands provide enhanced targeted uptake to neuronal cells but failed to show this in cell cultures. Agonistic antibodies linked to silica NPs showed TrkB activation and enhanced binding to inner ear derived cells. Rolipram loaded LNCs proved as effective carriers to prevent cisplatin induced apoptosis.DiscussionMost NPs with targeting ligands showed limited effects to enhance uptake. NP aggregation and unspecific binding may change uptake mechanisms and impair endocytosis by an overload of NPs. This may affect survival signaling. NPs with antibodies activate survival signaling and show effective binding to TrkB positive cells but needs further optimization for specific internalization. Bioefficiacy of rolipram release confirms LNCs as encouraging vectors for drug delivery of lipophilic agents to the inner ear with ideal release characteristics independent of

  6. Rhenium-188-labeled anti-neural cell adhesion molecule antibodies with 2-iminothiolane modification for targeting small-cell lung cancer.

    Science.gov (United States)

    Hosono, M N; Hosono, M; Mishra, A K; Faivre-Chauvet, A; Gautherot, E; Barbet, J; Knapp, F F; Chatal, J F

    2000-06-01

    We have evaluated the potential of 188Re-labeled monoclonal antibodies (MAbs) modified with 2-iminothiolane (2IT) for targeting small-cell lung cancer (SCLC). Radiolabeled MAbs NK1NBL1 and C218 recognizing neural cell adhesion molecule were injected i.v. into athymic mice inoculated with human SCLC tumors, and the biodistribution was examined. NK1NBL1 localized in the tumors better than C218. 188Re-labeled MAbs cleared from the blood faster than 125I-labeled counterparts, resulting in higher tumor-to-blood ratios. In conclusion, the 188Re-labeled MAbs are attractive candidates for imaging and therapy of SCLC.

  7. Env-2dCD4 S60C complexes act as super immunogens and elicit potent, broadly neutralizing antibodies against clinically relevant human immunodeficiency virus type 1 (HIV-1).

    Science.gov (United States)

    Killick, Mark A; Grant, Michelle L; Cerutti, Nichole M; Capovilla, Alexio; Papathanasopoulos, Maria A

    2015-11-17

    The ability to induce a broadly neutralizing antibody (bNAb) response following vaccination is regarded as a crucial aspect in developing an effective vaccine against human immunodeficiency virus type 1 (HIV-1). The bNAbs target the HIV-1 envelope glycoprotein (Env) which is exposed on the virus surface, thereby preventing cell entry. To date, conventional vaccine approaches such as the use of Env-based immunogens have been unsuccessful. We expressed, purified, characterized and evaluated the immunogenicity of several unique HIV-1 subtype C Env immunogens in small animals. Here we report that vaccine immunogens based on Env liganded to a two domain CD4 variant, 2dCD4(S60C) are capable of consistently eliciting potent, broadly neutralizing antibody responses in New Zealand white rabbits against a panel of clinically relevant HIV-1 pseudoviruses. This was irrespective of the Env protein subtype and context. Importantly, depletion of the anti-CD4 antibodies appeared to abrogate the neutralization activity in the rabbit sera. Taken together, this data suggests that the Env-2dCD4(S60C) complexes described here are "super" immunogens, and potentially immunofocus antibody responses to a unique epitope spanning the 2dCD4(60C). Recent data from the two available anti-CD4 monoclonal antibodies, Ibalizumab and CD4-Ig (and bispecific variants thereof) have highlighted that the use of these broad and potent entry inhibitors could circumvent the need for a conventional vaccine targeting HIV-1. Overall, the ability of the unique Env-2dCD4(S60C) complexes to elicit potent bNAb responses has not been described previously, reinforcing that further investigation for their utility in preventing and controlling HIV-1/SIV infection is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells.

    Science.gov (United States)

    de Bruin, Renée C G; Veluchamy, John P; Lougheed, Sinéad M; Schneiders, Famke L; Lopez-Lastra, Silvia; Lameris, Roeland; Stam, Anita G; Sebestyen, Zsolt; Kuball, Jürgen; Molthoff, Carla F M; Hooijberg, Erik; Roovers, Rob C; Santo, James P Di; van Bergen En Henegouwen, Paul M P; Verheul, Henk M W; de Gruijl, Tanja D; van der Vliet, Hans J

    2017-01-01

    Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far have been generally well tolerated and were able to induce significant clinical responses. However, overall results were inconsistent, possibly due to the fact that these strategies induced systemic activation of Vγ9Vδ2-T cells without preferential accumulation and targeted activation in the tumor. Here we show that a novel bispecific nanobody-based construct targeting both Vγ9Vδ2-T cells and EGFR induced potent Vγ9Vδ2-T cell activation and subsequent tumor cell lysis both in vitro and in an in vivo mouse xenograft model. Tumor cell lysis was independent of KRAS and BRAF tumor mutation status and common Vγ9Vδ2-T cell receptor sequence variations. In combination with the conserved monomorphic nature of the Vγ9Vδ2-TCR and the facile replacement of the tumor-specific nanobody, this immunotherapeutic approach can be applied to a large group of cancer patients.

  9. SNAP-tag technology mediates site specific conjugation of antibody fragments with a photosensitizer and improves target specific phototoxicity in tumor cells.

    Science.gov (United States)

    Hussain, Ahmad Fawzi; Kampmeier, Florian; von Felbert, Verena; Merk, Hans-F; Tur, Mehmet Kemal; Barth, Stefan

    2011-12-21

    Cancer cells can be killed by photosensitizing agents that induce toxic effects when exposed to nonhazardous light, but this also causes significant damage to surrounding healthy cells. The specificity of photodynamic therapy can be increased by conjugating photosensitizing agents to antibodies and antibody fragments that bind specifically to tumor cell antigens. However, standard conjugation reactions produce heterogeneous products whose targeting specificity and spectroscopic properties can be compromised. In this study, we used an antibody fragment (scFv-425) that binds to the epidermal growth factor receptor (EGFR) as a model to investigate the use of SNAP-tag fusions as an improved conjugation strategy. The scFv-425-SNAP-tag fusion protein allowed the specific conjugation of a chlorin e6 photosensitizer modified with O(6)-benzylguanine, generating a homogeneous product that was delivered specifically to EGFR(+) cancer cells and resulted in significant, tumor cell-specific cytotoxicity. The impact of our results on the development of photodynamic therapy is discussed.

  10. Multiple antibody targets on herpes B glycoproteins B and D identified by screening sera of infected rhesus macaques with peptide microarrays.

    Directory of Open Access Journals (Sweden)

    Sven-Kevin Hotop

    Full Text Available Herpes B virus (or Herpesvirus simiae or Macacine herpesvirus 1 is endemic in many populations of macaques, both in the wild and in captivity. The virus elicits only mild clinical symptoms (if any in monkeys, but can be transmitted by various routes, most commonly via bites, to humans where it causes viral encephalitis with a high mortality rate. Hence, herpes B constitutes a considerable occupational hazard for animal caretakers, veterinarians and laboratory personnel. Efforts are therefore being made to reduce the risk of zoonotic infection and to improve prognosis after accidental exposure. Among the measures envisaged are serological surveillance of monkey colonies and specific diagnosis of herpes B zoonosis against a background of antibodies recognizing the closely related human herpes simplex virus (HSV. 422 pentadecapeptides covering, in an overlapping fashion, the entire amino acid sequences of herpes B proteins gB and gD were synthesized and immobilized on glass slides. Antibodies present in monkey sera that bind to subsets of the peptide collection were detected by microserological techniques. With 42 different rhesus macaque sera, 114 individual responses to 18 different antibody target regions (ATRs were recorded, 17 of which had not been described earlier. This finding may pave the way for a peptide-based, herpes B specific serological diagnostic test.

  11. Intracellular Targeting of CEA Results in Th1-Type Antibody Responses Following Intradermal Genetic Vaccination by a Needle-Free Jet Injection Device

    Directory of Open Access Journals (Sweden)

    Susanne Johansson

    2007-01-01

    Full Text Available The route and method of immunization, as well as the cellular localization of the antigen, can influence the generation of an immune response. In general, intramuscular immunization results in Th1 responses, whereas intradermal delivery of DNA by gene gun immunization often results in more Th2 responses. Here we investigate how altering the cellular localization of the tumor antigen CEA (carcinoembryonic antigen affects the quality and amplitude of DNA vaccine-induced antibody responses in mice following intradermal delivery of DNA by a needle-free jet injection device (Biojector. CEA was expressed either in a membrane-bound form (wild-type CEA or in two truncated forms (CEA6 and CEA66 with cytoplasmic localization, where CEA66 was fused to a promiscuous T-helper epitope from tetanus toxin. Repeated intradermal immunization of BALB/c mice with DNA encoding wild-type CEA produced high antibody titers of a mixed IgG1/IgG2a ratio. In contrast, utilizing the DNA construct that resulted in intracellular targeting of CEA led to a reduced capacity to induce CEA-specific antibodies, but instead induced a Th1-biased immune response.

  12. Dopamine-2 receptor extracellular N-terminus regulates receptor surface availability and is the target of human pathogenic antibodies from children with movement and psychiatric disorders.

    Science.gov (United States)

    Sinmaz, Nese; Tea, Fiona; Pilli, Deepti; Zou, Alicia; Amatoury, Mazen; Nguyen, Tina; Merheb, Vera; Ramanathan, Sudarshini; Cooper, Sandra T; Dale, Russell C; Brilot, Fabienne

    2016-12-01

    Anti-Dopamine-2 receptor (D2R) antibodies have been recently identified in a subgroup of children with autoimmune movement and psychiatric disorders, however the epitope(s) and mechanism of pathogenicity remain unknown. Here we report a major biological role for D2R extracellular N-terminus as a regulator of receptor surface availability, and as a major epitope targeted and impaired in brain autoimmunity. In transfected human cells, purified anti-D2R antibody from patients specifically and significantly reduced human D2R surface levels. Next, human D2R mutants modified in their extracellular domains were subcloned, and we analyzed the region bound by 35 anti-D2R antibody-positive patient sera using quantitative flow cytometry on live transfected cells. We found that N-glycosylation at amino acids N5 and/or N17 was critical for high surface expression in interaction with the last 15 residues of extracellular D2R N-terminus. No anti-D2R antibody-positive patient sera bound to the three extracellular loops, but all patient sera (35/35) targeted the extracellular N-terminus. Overall, patient antibody binding was dependent on two main regions encompassing amino acids 20 to 29, and 23 to 37. Residues 20 to 29 contributed to the majority of binding (77%, 27/35), among which 26% (7/27) sera bound to amino acids R20, P21, and F22, 37% (10/27) patients were dependent on residues at positions 26 and 29, that are different between humans and mice, and 30% (8/27) sera required R20, P21, F22, N23, D26, and A29. Seven patient sera bound to the region 23 to 37 independently of D26 and A29, but most sera exhibited N-glycosylation-independent epitope recognition at N23. Interestingly, no evident segregation of binding pattern according to patient clinical phenotype was observed. D2R N-terminus is a central epitope in autoimmune movement and psychiatric disorders and this knowledge could help the design of novel specific immune therapies tailored to improve patient outcome.

  13. Immunogenicity and in vitro and in vivo protective effects of antibodies targeting a recombinant form of the Streptococcus mutans P1 surface protein.

    Science.gov (United States)

    Batista, Milene Tavares; Souza, Renata D; Ferreira, Ewerton L; Robinette, Rebekah; Crowley, Paula J; Rodrigues, Juliana F; Brady, L Jeannine; Ferreira, Luís C S; Ferreira, Rita C C

    2014-12-01

    Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P1(39-512)), produced in Bacillus subtilis and encompassing a functional domain, induces antibodies that recognize the native protein and interfere with S. mutans adhesion in vitro. In the present study, we further investigated the immunological features of P1(39-512) in combination with the following different adjuvants after parenteral administration to mice: alum, a derivative of the heat-labile toxin (LT), and the phase 1 flagellin of S. Typhimurium LT2 (FliCi). Our results demonstrated that recombinant P1(39-512) preserves relevant conformational epitopes as well as salivary agglutinin (SAG)-binding activity. Coadministration of adjuvants enhanced anti-P1 serum antibody responses and affected both epitope specificity and immunoglobulin subclass switching. Importantly, P1(39-512)-specific antibodies raised in mice immunized with adjuvants showed significantly increased inhibition of S. mutans adhesion to SAG, with less of an effect on SAG-mediated bacterial aggregation, an innate defense mechanism. Oral colonization of mice by S. mutans was impaired in the presence of anti-P1(39-512) antibodies, particularly those raised in combination with adjuvants. In conclusion, our results confirm the utility of P1(39-512) as a potential candidate for the development of anticaries vaccines and as a tool for functional studies of S. mutans P1. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4......), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...

  15. A new double-antibody sandwich ELISA targeting Plasmodium falciparum aldolase to evaluate anti-malarial drug sensitivity

    Directory of Open Access Journals (Sweden)

    Brun Reto

    2009-10-01

    Full Text Available Abstract Background The standard in vitro test to assess anti-malarial activity of chemical compounds is the [3H]hypoxanthine incorporation assay. It is a radioactivity-based method to measure DNA replication of Plasmodium in red blood cells. The method is highly reproducible, however, the handling of radioactive material is costly, hazardous and requires the availability of appropriate technology and trained staff. Several other ways to evaluate in vitro anti-malarial activity do exist, all with their own assets and limitations. Methods The newly developed double-antibody sandwich ELISA described here is based on the properties of a non-overlapping pair of monoclonal antibodies directed against Plasmodium falciparum aldolase. This glycolytic enzyme possesses some unique nucleotide sequences compared to the human isoenzymes and has been highly conserved through evolution. Out of twenty possibilities, the most sensitive antibody pair was selected and used to quantitatively detect parasite aldolase in infected blood lysates. Results A total of 34 compounds with anti-malarial activity were tested side-by-side by ELISA and the [3H]hypoxanthine incorporation assay. The novel ELISA provided IC50s closely paralleling those from the radioactivity-based assay (R = 0.99, p Conclusion The newly developed ELISA presents several advantages over the comparative method, the [3H]hypoxanthine incorporation assay. The assay is highly reproducible, less hazardous (involves no radioactivity and requires little and cheap technical equipment. Relatively unskilled personnel can conduct this user-friendly assay. All this makes it attractive to be employed in resource-poor laboratories.

  16. A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure.

    Science.gov (United States)

    Lee, Jeong Hyun; Andrabi, Raiees; Su, Ching-Yao; Yasmeen, Anila; Julien, Jean-Philippe; Kong, Leopold; Wu, Nicholas C; McBride, Ryan; Sok, Devin; Pauthner, Matthias; Cottrell, Christopher A; Nieusma, Travis; Blattner, Claudia; Paulson, James C; Klasse, Per Johan; Wilson, Ian A; Burton, Dennis R; Ward, Andrew B

    2017-04-18

    Broadly neutralizing antibodies (bnAbs) to HIV delineate vaccine targets and are prophylactic and therapeutic agents. Some of the most potent bnAbs target a quaternary epitope at the apex of the surface HIV envelope (Env) trimer. Using cryo-electron microscopy, we solved the atomic structure of an apex bnAb, PGT145, in complex with Env. We showed that the long anionic HCDR3 of PGT145 penetrated between glycans at the trimer 3-fold axis, to contact peptide residues from all three Env protomers, and thus explains its highly trimer-specific nature. Somatic hypermutation in the other CDRs of PGT145 were crucially involved in stabilizing the structure of the HCDR3, similar to bovine antibodies, to aid in recognition of a cluster of conserved basic residues hypothesized to facilitate trimer disassembly during viral entry. Overall, the findings exemplify the creative solutions that the human immune system can evolve to recognize a conserved motif buried under a canopy of glycans. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Jose Luis Hernández

    Full Text Available S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF, via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.

  18. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody.

    Science.gov (United States)

    Huang, Jie; Ishino, Tetsuya; Chen, Gang; Rolzin, Paul; Osothprarop, Trina F; Retting, Kelsey; Li, Lingna; Jin, Ping; Matin, Marla J; Huyghe, Bernard; Talukdar, Saswata; Bradshaw, Curt W; Palanki, Moorthy; Violand, Bernard N; Woodnutt, Gary; Lappe, Rodney W; Ogilvie, Kathleen; Levin, Nancy

    2013-08-01

    Fibroblast growth factor (FGF)21 improves insulin sensitivity, reduces body weight, and reverses hepatic steatosis in preclinical species. We generated long-acting FGF21 mimetics by site-specific conjugation of the protein to a scaffold antibody. Linking FGF21 through the C terminus decreased bioactivity, whereas bioactivity was maintained by linkage to selected internal positions. In mice, these CovX-Bodies retain efficacy while increasing half-life up to 70-fold compared with wild-type FGF21. A preferred midlinked CovX-Body, CVX-343, demonstrated enhanced in vivo stability in preclinical species, and a single injection improved glucose tolerance for 6 days in ob/ob mice. In diet-induced obese mice, weekly doses of CVX-343 reduced body weight, blood glucose, and lipids levels. In db/db mice, CVX-343 increased glucose tolerance, pancreatic β-cell mass, and proliferation. CVX-343, created by linkage of the CovX scaffold antibody to the engineered residue A129C of FGF21 protein, demonstrated superior preclinical pharmacodynamics by extending serum half-life of FGF21 while preserving full therapeutic functionality.

  19. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); New Drug Development Center, Osong Medical Innovation Foundation, Cheongwon, Chungbuk (Korea, Republic of); Chang, Suhwan [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young-Hwa [BK21-plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Koh, Sang Seok, E-mail: sskoh@dau.ac.kr [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Department of Biological Sciences, Dong-A University, Busan (Korea, Republic of)

    2014-11-07

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31{sup +} vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models.

  20. An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Pang

    Full Text Available The neural ganglioside GD2 has recently been reported to be a novel surface marker that is only expressed on human bone marrow mesenchymal stem cells within normal marrow. In this study, an MRI-visible, targeted, non-viral vector for effective gene delivery to human bone marrow mesenchymal stem cells was first synthesized by attaching a targeting ligand, the GD2 single chain antibody (scAbGD2, to the distal ends of PEG-g-PEI-SPION. The targeted vector was then used to condense plasmid DNA to form nanoparticles showing stable small size, low cytotoxicity, and good biocompatibility. Based on a reporter gene assay, the transfection efficiency of targeting complex reached the highest value at 59.6% ± 4.5% in human bone marrow mesenchymal stem cells, which was higher than those obtained using nontargeting complex and lipofectamine/pDNA (17.7% ± 2.9% and 34.9% ± 3.6%, respectively (P<0.01. Consequently, compared with the nontargeting group, more in vivo gene expression was observed in the fibrotic rat livers of the targeting group. Furthermore, the targeting capacity of scAbGD2-PEG-g-PEI-SPION was successfully verified in vitro by confocal laser scanning microscopy, Prussian blue staining, and magnetic resonance imaging. Our results indicate that scAbGD2-PEG-g-PEI-SPION is a promising MRI-visible non-viral vector for targeted gene delivery to human bone marrow mesenchymal stem cells.

  1. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kashyap, Manoj K; Amaya-Chanaga, Carlos I; Kumar, Deepak; Simmons, Brett; Huser, Nanni; Gu, Yin; Hallin, Max; Lindquist, Kevin; Yafawi, Rolla; Choi, Michael Y; Amine, Ale-Ali; Rassenti, Laura Z; Zhang, Cathy; Liu, Shu-Hui; Smeal, Tod; Fantin, Valeria R; Kipps, Thomas J; Pernasetti, Flavia; Castro, Januario E

    2017-05-19

    The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL)-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD). PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity activity (CDC). PF-06747143 had significant combinatorial effect with standard of care (SOC) agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A), ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy, and in combination with bendamustine. We show

  2. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of Hantavirus Pulmonary Syndrome.

    Directory of Open Access Journals (Sweden)

    Soraya S Pereira

    Full Text Available In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ₈₅ of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ₈₅. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB, surface plasmon resonance (SPR device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ₈₅ in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with

  3. Epitope mapping of inhibitory antibodies targeting the C2 domain of coagulation factor VIII by hydrogen-deuterium exchange mass spectrometry

    Science.gov (United States)

    Sevy, Alexander M.; Healey, John F.; Deng, Wei; Spiegel, P. Clint; Meeks, Shannon L.; Li, Renhao

    2014-01-01

    Summary Background The development of anti-factor VIII (fVIII) antibodies (inhibitors) is a significant complication in the management of patients with hemophilia A, leading to significant increases in morbidity and treatment cost. Using a panel of anti-fVIII monoclonal antibodies (MAbs) to different epitopes on fVIII, we recently have shown that epitope specificity, inhibitor kinetics, and time to maximum inhibition are more important than inhibitor titer in predicting response to fVIII and the combination of fVIII and recombinant factor VIIa. In particular, a subset of high-titer inhibitors responded to high dose fVIII, which would not be predicted based on their inhibitor titer alone. Thus the ability to quickly map the epitope spectrum of patient plasma using a clinically feasible assay may fundamentally change how clinicians approach the treatment of high-titer inhibitor patients. Objectives To map the epitopes of anti-fVIII MAbs, of which 3 are classical inhibitors and one non-classical, using hydrogen-deuterium exchange coupled with liquid chromatography-mass spectrometry (HDX-MS). Methods Binding epitopes of 4 MAbs targeting fVIII C2 domain were mapped using HDX-MS. Results The epitopes determined by HDX-MS are consistent with those obtained earlier through structural characterization and antibody competition assays. In addition classical and non-classical inhibitor epitopes could be distinguished using a limited subset of C2-derived peptic fragments. Conclusion Our results demonstrate the effectiveness and robustness of the HDX-MS method for epitope mapping and suggest a potential role of rapid mapping of fVIII inhibitor epitopes in facilitating individualized treatment of inhibitor patients. PMID:24152306

  4. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Novel antibody-based drugs for PD-L1 and TRAIL-R targeted cancer immunotherapy

    NARCIS (Netherlands)

    Hendriks, Djoke

    2017-01-01

    Immunotherapy aims to destroy cancer cells using cells or molecules of the immune system. This can be achieved by either targeting cancer cells directly or by improving an ongoing anticancer immune response in the patient. It was recently discovered that cancer cells overexpress PD-L1 protein on

  6. Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment

    Directory of Open Access Journals (Sweden)

    Olumide Babajide Gbolahan

    2017-07-01

    Full Text Available Intensive chemotherapeutic protocols and allogeneic stem cell transplantation continue to represent the mainstay of acute myeloid leukemia (AML treatment. Although this approach leads to remissions in the majority of patients, long-term disease control remains unsatisfactory as mirrored by overall survival rates of approximately 30%. The reason for this poor outcome is, in part, due to various toxicities associated with traditional AML therapy and the limited ability of most patients to tolerate such treatment. More effective and less toxic therapies therefore represent an unmet need in the management of AML, a disease for which therapeutic progress has been traditionally slow when compared to other cancers. Several studies have shown that leukemic blasts elicit immune responses that could be exploited for the development of novel treatment concepts. To this end, early phase studies of immune-based therapies in AML have delivered encouraging results and demonstrated safety and feasibility. In this review, we discuss opportunities for immunotherapeutic interventions to enhance the potential to achieve a cure in AML, thereby focusing on the role of monoclonal antibodies, hypomethylating agents and the leukemic microenvironment.

  7. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior*

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki

    2016-01-01

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  8. Rhenium-188-labeled anti-neural cell adhesion molecule antibodies with 2-iminothiolane modification for targeting small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Masako N. [Osaka City Univ. (Japan); Hosono, Makoto; Mishra, A.K.; Faivre-Chauvet, A.; Gautherot, E.; Barbet, J.; Knapp, F.F.R. Jr; Chatal, J.F.

    2000-06-01

    We have evaluated the potential of {sup 188}Re-labeled monoclonal antibodies (MAbs) modified with 2-iminothiolane (2IT) for targeting small-cell lung cancer (SCLC). Radiolabeled MAbs NK1NBL1 and C218 recognizing neural cell adhesion molecule were injected i.v. into athymic mice inoculated with human SCLC tumors, and the biodistribution was examined. NK1NBL1 localized in the tumors better than C218. {sup 188}Re-labeled MAbs cleared from the blood faster than {sup 125}I-labeled counterparts, resulting in higher tumor-to-blood ratios. In conclusion, the {sup 188}Re-labeled MAbs are attractive candidates for imaging and therapy of SCLC. (author)

  9. Control of established colon cancer xenografts using a novel humanized single chain antibody-streptococcal superantigen fusion protein targeting the 5T4 oncofetal antigen.

    Directory of Open Access Journals (Sweden)

    Kelcey G Patterson

    Full Text Available Superantigens (SAgs are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA. To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv antibody to recognize 5T4 (scFv5T4. Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as 'next-generation' TTSs for cancer immunotherapy.

  10. EGFR targeting monoclonal antibody combines with an mTOR inhibitor and potentiates tumor inhibition by acting on complementary signaling hubs

    International Nuclear Information System (INIS)

    James, Roshan; Vishwakarma, Siddharth; Chivukula, Indira V; Basavaraj, Chetana; Melarkode, Ramakrishnan; Montero, Enrique; Nair, Pradip

    2012-01-01

    Nimotuzumab, an anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody, has been used extensively in many solid tumors and confers significant survival advantage. The antibody has limited skin toxicity and is generally well tolerated. Similar to other anti-EGFR therapies, patients may relapse a few months after treatment. In this study we show for the first time, the use of Nimotuzumab along with Sirolimus has synergistic effect on tumor inhibition as compared with the drugs used individually, in Nimotuzumab responsive and nonresponsive cell lines. In vitro studies prove that while Sirolimus (25 nmol/L) affects the signal downstream to mammalian target of rapamycin (mTOR), Nimotuzumab (83 nmol/L) downregulates pTYR, pMAPK and pSTAT3 by 40%, 20% and 30%, respectively. The combination, targeting these two different signaling hubs, may be associated with the synergistic inhibition observed. In vivo, the use of half human therapeutic equivalent doses for both the drugs substantially reduces tumors established in nude as well as severe combined immunodeficiency (SCID) mice by EGFR overexpressing A-431 cells. The drug combination reduces cell proliferation and the expression of signal transduction molecules. Treated tumors are better differentiated as compared with those established in the control mice. Tumor microarray demonstrates that Nimotuzumab and the combination groups segregate independently to the Sirolimus and the control treatment. The combination uniquely downregulated 55% of the altered tumor genes, extending beyond the typical pathways associated with Nimotuzumab and Sirolimus downstream pathways inhibition. These results would suggest that this nontoxic drug combination improves therapeutic benefit even in patients with low-EGFR expression and severely immunocompromised because of their current medication

  11. In vivo photoacoustic imaging of cancer using indocyanine green-labeled monoclonal antibody targeting the epidermal growth factor receptor.

    Science.gov (United States)

    Sano, Kohei; Ohashi, Manami; Kanazaki, Kengo; Ding, Ning; Deguchi, Jun; Kanada, Yuko; Ono, Masahiro; Saji, Hideo

    2015-08-28

    Photoacoustic (PA) imaging is an attractive imaging modality for sensitive and depth imaging of biomolecules with high resolution in vivo. The aim of this study was to evaluate the effectiveness of an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (panitumumab; Pan) labeled with indocyanine green derivative (ICG-EG4-Sulfo-OSu), Pan-EG4-ICG, as a PA imaging probe to target cancer-associated EGFR. In vitro PA imaging studies demonstrated that Pan-EG4-ICG yielded high EGFR-specific PA signals in EGFR-positive cells. To determine the optimal injection dose and scan timing, we investigated the biodistribution of radiolabeled Pan-EG4-ICG (200-400 μg) in A431 tumor (EGFR++)-bearing mice. The highest tumor accumulation (29.4% injected dose/g) and high tumor-to-blood ratio (2.1) was observed 7 days after injection of Pan-EG4-ICG (400 μg). In in vivo PA imaging studies using Pan-EG4-ICG (400 μg), the increase in PA signal (114%) was observed in A431 tumors inoculated in the mammary glands 7 days post-injection. Co-injection of excess Pan resulted in a 35% inhibition of this PA signal, indicating the EGFR-specific accumulation. In conclusion, the ICG-labeled monoclonal antibody (i.e., panitumumab) has the potential to enhance target-specific PA signal, leading to the discrimination of aggressiveness and metastatic potential of tumors and the selection of effective therapeutic strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies

    Directory of Open Access Journals (Sweden)

    Zhiqing Zhang

    2016-11-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection causes acquired immune deficiency syndrome (AIDS, a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.

  13. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    Science.gov (United States)

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b Tf

  14. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  15. Restricted Cell Surface Expression of Receptor Tyrosine Kinase ROR1 in Pediatric B-Lineage Acute Lymphoblastic Leukemia Suggests Targetability with Therapeutic Monoclonal Antibodies

    Science.gov (United States)

    Dave, Hema; Anver, Miriam R.; Butcher, Donna O.; Brown, Patrick; Khan, Javed; Wayne, Alan S.; Baskar, Sivasubramanian; Rader, Christoph

    2012-01-01

    Background Despite high cure rates for pediatric B-lineage acute lymphoblastic leukemia (B-ALL), short-term and long-term toxicities and chemoresistance are shortcomings of standard chemotherapy. Immunotherapy and chemoimmunotherapy based on monoclonal antibodies (mAbs) that target cell surface antigens with restricted expression in pediatric B-ALL may offer the potential to reduce toxicities and prevent or overcome chemoresistance. The receptor tyrosine kinase ROR1 has emerged as a candidate for mAb targeting in select B-cell malignancies. Methodology and Principal Findings Using flow cytometry, Western blotting, immunohistochemistry, and confocal immunofluorescence microscopy, we analyzed the cell surface expression of ROR1 across major pediatric ALL subtypes represented by 14 cell lines and 56 primary blasts at diagnosis or relapse as well as in normal adult and pediatric tissues. Cell surface ROR1 expression was found in 45% of pediatric ALL patients, all of which were B-ALL, and was not limited to any particular genotype. All cell lines and primary blasts with E2A-PBX1 translocation and a portion of patients with other high risk genotypes, such as MLL rearrangement, expressed cell surface ROR1. Importantly, cell surface ROR1 expression was found in many of the pediatric B-ALL patients with multiply relapsed and refractory disease and normal karyotype or low risk cytogenetics, such as hyperdiploidy. Notably, cell surface ROR1 was virtually absent in normal adult and pediatric tissues. Conclusions and Significance Collectively, this study suggests that ROR1 merits preclinical and clinical investigations as a novel target for mAb-based therapies in pediatric B-ALL. We propose cell surface expression of ROR1 detected by flow cytometry as primary inclusion criterion for pediatric B-ALL patients in future clinical trials of ROR1-targeted therapies. PMID:23285131

  16. Restricted cell surface expression of receptor tyrosine kinase ROR1 in pediatric B-lineage acute lymphoblastic leukemia suggests targetability with therapeutic monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Hema Dave

    Full Text Available Despite high cure rates for pediatric B-lineage acute lymphoblastic leukemia (B-ALL, short-term and long-term toxicities and chemoresistance are shortcomings of standard chemotherapy. Immunotherapy and chemoimmunotherapy based on monoclonal antibodies (mAbs that target cell surface antigens with restricted expression in pediatric B-ALL may offer the potential to reduce toxicities and prevent or overcome chemoresistance. The receptor tyrosine kinase ROR1 has emerged as a candidate for mAb targeting in select B-cell malignancies.Using flow cytometry, Western blotting, immunohistochemistry, and confocal immunofluorescence microscopy, we analyzed the cell surface expression of ROR1 across major pediatric ALL subtypes represented by 14 cell lines and 56 primary blasts at diagnosis or relapse as well as in normal adult and pediatric tissues. Cell surface ROR1 expression was found in 45% of pediatric ALL patients, all of which were B-ALL, and was not limited to any particular genotype. All cell lines and primary blasts with E2A-PBX1 translocation and a portion of patients with other high risk genotypes, such as MLL rearrangement, expressed cell surface ROR1. Importantly, cell surface ROR1 expression was found in many of the pediatric B-ALL patients with multiply relapsed and refractory disease and normal karyotype or low risk cytogenetics, such as hyperdiploidy. Notably, cell surface ROR1 was virtually absent in normal adult and pediatric tissues.Collectively, this study suggests that ROR1 merits preclinical and clinical investigations as a novel target for mAb-based therapies in pediatric B-ALL. We propose cell surface expression of ROR1 detected by flow cytometry as primary inclusion criterion for pediatric B-ALL patients in future clinical trials of ROR1-targeted therapies.

  17. S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting.

    Science.gov (United States)

    Ucisik, Mehmet H; Küpcü, Seta; Breitwieser, Andreas; Gelbmann, Nicola; Schuster, Bernhard; Sleytr, Uwe B

    2015-04-01

    Selective targeting of tumor cells by nanoparticle-based drug delivery systems is highly desirable because it maximizes the drug concentration at the desired target while simultaneously protecting the surrounding healthy tissues. Here, we show a design for smart nanocarriers based on a biomimetic approach that utilizes the building principle of virus envelope structures. Emulsomes and CurcuEmulsomes comprising a tripalmitin solid core surrounded by phospholipid layers are modified by S-layer proteins that self-assemble into a two-dimensional array to form a surface layer. One significant advantage of this nanoformulation is that it increases the solubility of the lipophilic anti-cancer agent curcumin in the CurcuEmulsomes by a factor of 2700. In order to make the emulsomes specific for IgG, the S-layer protein is fused with two protein G domains. This S-layer fusion protein preserves its recrystallization characteristics, forming an ordered surface layer (square lattice with 13 nm unit-by-unit distance). The GG domains are presented in a predicted orientation and exhibit a selective binding affinity for IgG. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch.

    Science.gov (United States)

    MacLeod, Daniel T; Choi, Nancy M; Briney, Bryan; Garces, Fernando; Ver, Lorena S; Landais, Elise; Murrell, Ben; Wrin, Terri; Kilembe, William; Liang, Chi-Hui; Ramos, Alejandra; Bian, Chaoran B; Wickramasinghe, Lalinda; Kong, Leopold; Eren, Kemal; Wu, Chung-Yi; Wong, Chi-Huey; Kosakovsky Pond, Sergei L; Wilson, Ian A; Burton, Dennis R; Poignard, Pascal

    2016-05-17

    The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ∼11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. In Vivo HER2-Targeted Magnetic Resonance Tumor Imaging Using Iron Oxide Nanoparticles Conjugated with Anti-HER2 Fragment Antibody.

    Science.gov (United States)

    Ding, Ning; Sano, Kohei; Kanazaki, Kengo; Ohashi, Manami; Deguchi, Jun; Kanada, Yuko; Ono, Masahiro; Saji, Hideo

    2016-12-01

    The feasibility of iron oxide nanoparticles (IONPs) conjugated with anti-epidermal growth factor receptor 2 (HER2) single-chain antibody (scFv-IONPs) as novel HER2-targeted magnetic resonance (MR) contrast agents was investigated. The scFv-IONPs were prepared and identified. For in vitro MRI, NCI-N87 (HER2 high expression) and SUIT2 (low expression) cells were incubated with scFv-IONPs. For in vivo MRI, NCI-N87 and SUIT2 tumor-bearing mice were intravenously injected with scFv-IONPs and imaged before and 24 h post-injection. The scFv-IONPs demonstrated high transverse relaxivity (296.3 s -1  mM -1 ) and affinity toward HER2 (K D  = 11.7 nM). In the in vitro MRI, NCI-N87 cells treated with scFv-IONPs exhibited significant MR signal reduction (44.6 %) than SUIT2 cells (6.8 %). In the in vivo MRI, decrease of MR signals in NCI-N87 tumors (19.3 %) was more notable than that in SUIT2 tumors (6.2 %). The scFv-IONPs enabled HER2-specific tumor MR imaging, suggesting the potential of scFv-IONPs as a robust HER2-targeted MR contrast agent.

  20. [Treatment of liver cancer in vitro and in mice by monoclonal antibody targeting epithelial specific antigen-positive liver cancer stem cells in combination with cisplatin].

    Science.gov (United States)

    He, Y Y; Yu, L; Rong, Y; Sun, L X; Sun, L C; Yang, Z H; Ran, Y L; Li, L

    2016-05-23

    .0%, and that of the cisplatin monotherapy was 56.7%. McAb 15D2 is a functional monoclonal antibody targeting liver cancer stem cells, which could be a potential monoclonal antibody drug for the stem cell-targeted therapy of liver cancer.

  1. Epitope mapping of inhibitory antibodies targeting the C2 domain of coagulation factor VIII by hydrogen-deuterium exchange mass spectrometry.

    Science.gov (United States)

    Sevy, A M; Healey, J F; Deng, W; Spiegel, P C; Meeks, S L; Li, R

    2013-12-01

    The development of anti-factor VIII antibodies (inhibitors) is a significant complication in the management of patients with hemophilia A, leading to significant increases in morbidity and treatment cost. Using a panel of mAbs against different epitopes on FVIII, we have recently shown that epitope specificity, inhibitor kinetics and time to maximum inhibition are more important than inhibitor titer in predicting responses to FVIII and the combination of FVIII and recombinant FVIIa. In particular, a subset of high-titer inhibitors responded to high-dose FVIII, which would not be predicted on the basis of their inhibitor titer alone. Thus, the ability to quickly map the epitope spectrum of patient plasma with a clinically feasible assay may fundamentally change how clinicians approach the treatment of high-titer inhibitor patients. To map the epitopes of anti-FVIII mAbs, three of which are classic inhibitors and one of which is a non-classic inhibitor, by the use of hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS). The binding epitopes of four mAbs targeting the FVIII C2 domain were mapped with HDX-MS. The epitopes determined with HDX-MS are consistent with those obtained earlier through structural characterization and antibody competition assays. In addition, classic and non-classic inhibitor epitopes could be distinguished by the use of a limited subset of C2 domain-derived peptic fragments. Our results demonstrate the effectiveness and robustness of the HDX-MS method for epitope mapping, and suggest a potential role of rapid mapping of FVIII inhibitor epitopes in facilitating individualized treatment of inhibitor patients. © 2013 International Society on Thrombosis and Haemostasis.

  2. The interplay of non-specific binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies.

    Science.gov (United States)

    Datta-Mannan, Amita; Lu, Jirong; Witcher, Derrick R; Leung, Donmienne; Tang, Ying; Wroblewski, Victor J

    2015-01-01

    The application of protein engineering technologies toward successfully improving antibody pharmacokinetics has been challenging due to the multiplicity of biochemical factors that influence monoclonal antibody (mAb) disposition in vivo. Physiological factors including interactions with the neonatal Fc receptor (FcRn) and specific antigen binding properties of mAbs, along with biophysical properties of the mAbs themselves play a critical role. It has become evident that applying an integrated approach to understand the relative contribution of these factors is critical to rationally guide and apply engineering strategies to optimize mAb pharmacokinetics. The study presented here evaluated the influence of unintended non-specific interactions on the disposition of mAbs whose clearance rates are governed predominantly by either non-specific (FcRn) or target-mediated processes. The pharmacokinetics of 8 mAbs representing a diverse range of these properties was evaluated in cynomolgus monkeys. Results revealed complementarity-determining region (CDR) charge patch engineering to decrease charge-related non-specific binding can have a significant impact on improving the clearance. In contrast, the influence of enhanced in vitro FcRn binding was mixed, and related to both the strength of charge interaction and the general mechanism predominant in governing the clearance of the particular mAb. Overall, improved pharmacokinetics through enhanced FcRn interactions were apparent for a CDR charge-patch normalized mAb which was affected by non-specific clearance. The findings in this report are an important demonstration that mAb pharmacokinetics requires optimization on a case-by-case basis to improve the design of molecules with increased therapeutic application.

  3. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    Science.gov (United States)

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents.

  4. Targeted N-glycan deletion at the receptor-binding site retains HIV Env NFL trimer integrity and accelerates the elicited antibody response.

    Science.gov (United States)

    Dubrovskaya, Viktoriya; Guenaga, Javier; de Val, Natalia; Wilson, Richard; Feng, Yu; Movsesyan, Arlette; Karlsson Hedestam, Gunilla B; Ward, Andrew B; Wyatt, Richard T

    2017-09-01

    Extensive shielding by N-glycans on the surface of the HIV envelope glycoproteins (Env) restricts B cell recognition of conserved neutralizing determinants. Elicitation of broadly neutralizing antibodies (bNAbs) in selected HIV-infected individuals reveals that Abs capable of penetrating the glycan shield can be generated by the B cell repertoire. Accordingly, we sought to determine if targeted N-glycan deletion might alter antibody responses to Env. We focused on the conserved CD4 binding site (CD4bs) since this is a known neutralizing determinant that is devoid of glycosylation to allow CD4 receptor engagement, but is ringed by surrounding N-glycans. We selectively deleted potential N-glycan sites (PNGS) proximal to the CD4bs on well-ordered clade C 16055 native flexibly linked (NFL) trimers to potentially increase recognition by naïve B cells in vivo. We generated glycan-deleted trimer variants that maintained native-like conformation and stability. Using a panel of CD4bs-directed bNAbs, we demonstrated improved accessibility of the CD4bs on the N-glycan-deleted trimer variants. We showed that pseudoviruses lacking these Env PNGSs were more sensitive to neutralization by CD4bs-specific bNAbs but remained resistant to non-neutralizing mAbs. We performed rabbit immunogenicity experiments using two approaches comparing glycan-deleted to fully glycosylated NFL trimers. The first was to delete 4 PNGS sites and then boost with fully glycosylated Env; the second was to delete 4 sites and gradually re-introduce these N-glycans in subsequent boosts. We demonstrated that the 16055 PNGS-deleted trimers more rapidly elicited serum antibodies that more potently neutralized the CD4bs-proximal-PNGS-deleted viruses in a statistically significant manner and strongly trended towards increased neutralization of fully glycosylated autologous virus. This approach elicited serum IgG capable of cross-neutralizing selected tier 2 viruses lacking N-glycans at residue N276 (natural or

  5. Increased serum anti-mycobacterial antibody titers in rheumatoid arthritis patients: Is there any specific antigenic target?

    International Nuclear Information System (INIS)

    Cetin, Emel S.; Aksoy, Ali M

    2007-01-01

    Objective was to investigate the presence of immunoreactivity against mycobacterial antigens in the sera of patients with rheumatoid arthritis (Ra) and to detect the target of the immune reaction. This study was carried out on 60 patients with RA, and 25 patients with no joint diseases in the laboratory of Clinical Microbiology Department of Ankara University Medical Faculty, Ankara, Turkey between July 2003 to January 2004. Secreted and cellular antigens of Mycobacterium tuberculosis (M. tuberculosis) H37Rv and Mycobacterium bovis (M. bovis) were isolated and purified by high performance liquid chromatography to antigenic fractions. The immunoreactivity of patient and control sera against these antigens were determined by enzyme-linked immunosorbent assay (ELISA). Immunoreactivity against mycobacterial antigens in RA patients were significantly higher than controls. Significant difference between patients and controls has been determined with M. bovis Bacillus Calmette Guerin (BCG) culture fluid and sonicate antigens, but not with M. tuberculosis H37Rv. This suggests that the antigen triggering immune response in patients with RA may belong to or mainly expressed on M. bovis BCG. The ELISA results showed significant difference between RA patients and controls with all antigenic fractions. Presence of increased immunoreactivity against mycobacterial antigens in the sera of patients with RA was detected. When statistical analysis was considered, we cannot put forward any antigenic fraction alone as the one responsible for the increased reactivity. (author)

  6. A comparison of targeting of neuroblastoma with mIBG and anti L1-CAM antibody mAb chCE7: therapeutic efficacy in a neuroblastoma xenograft model and imaging of neuroblastoma patients

    NARCIS (Netherlands)

    Hoefnagel, C. A.; Rutgers, M.; Buitenhuis, C. K.; Smets, L. A.; de Kraker, J.; Meli, M.; Carrel, F.; Amstutz, H.; Schubiger, P. A.; Novak-Hofer, I.

    2001-01-01

    Iodine-131 labelled anti L1-CAM antibody mAb chCE7 was compared with the effective neuroblastoma-seeking agent 131I-labelled metaiodobenzylguanidine (MIBG) with regard to (a) its therapeutic efficacy in treating nude mice with neuroblastoma xenografts and (b) its tumour targeting ability in

  7. In vivo imaging and specific targeting of P-glycoprotein expression in multidrug resistant nude mice xenografts with [{sup 125}I]MRK-16 monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Andrew M.; Rosa, Eddie; Mehta, Bippin M.; Divgi, Chaitanya R.; Finn, Ronald D.; Biedler, June L.; Tsuruo, Takashi; Kalaigian, Hovannes; Larson, Steven M

    1995-05-01

    Multidrug resistance (MDR) in tumors is associated with P-glycoprotein (Pgp) expression. In vivo quantitation of Pgp may allow MDR to be evaluated noninvasively prior to treatment planning. The purpose of this study was to radiolabel MRK-16, a monoclonal antibody that targets an external epitope of P-glycoprotein, and perform in vivo quantitation of P-glycoprotein in a MDR xenograft nude mouse model. MRK-16 was labeled with {sup 125}I by the iodogen method, with subsequent purification by size exclusion chromatography. Groups of 10 Balb/c mice were each xenografted with colchicine-resistant or -sensitive neuroblastoma cell lines, respectively. Whole body clearance and tumor uptake over time was quantitated by gamma camera imaging, and biodistribution studies were performed with [{sup 125}]MRK-16 and an isotype matched control antibody, A33. Quantitative autoradiography and immunohistochemistry analysis of tumors was also evaluated to confirm specific targeting of [{sup 125}I]MRK-16. Peak tumor uptake was at 2-3 days post-injection, and was significantly greater in resistance compared to sensitive tumors (mean % injected dose/g {+-} SD) (18.76 {+-} 2.94 vs 10.93 {+-} 0.96; p < 0.05). Quantitative autoradiography verified these findings (19.13 {+-} 0.622 vs 12.08 {+-} 0.38, p < 0.05). Specific binding of [{sup 125}I]MRK-16 was confirmed by comparison to [{sup 131}I]A33 in biodistribution studies, and localized to cellular components of tissue stroma by comparison of histologic and autoradiographic sections of sensitive and resistant tumors. Immunoblot analysis demonstrated a 4.5-fold difference in P-glycoprotein expression between sensitive and resistant cell lines without colchicine selective pressure. We conclude that in vivo quantitation of P-glycoprotein in MDR tumors can be performed with [{sup 125}I]MRK-16. These findings suggest a potential clinical application for radiolabeled MRK-16 in the in vivo evaluation of multidrug resistance in tumors.

  8. Natural and Man-made Antibody Repertories for Antibody Discovery

    Directory of Open Access Journals (Sweden)

    Juan C eAlmagro

    2012-11-01

    Full Text Available Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of human, mice and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity and composition of a repertoire impact the antibody discovery process.

  9. Cytokine induction of VCAM-1 but not IL13Rα2 on glioma cells: a tale of two antibodies.

    Directory of Open Access Journals (Sweden)

    Vaidehi Mahadev

    Full Text Available The interleukin-13 receptor alpha2 (IL13Rα2 is a cell surface receptor that is over-expressed by a subset of high-grade gliomas, but not expressed at significant levels by normal brain tissue. For both malignant and non-malignant cells, IL13Rα2 surface expression is reported to be induced by various cytokines such as IL-4 or IL-13 and tumor necrosis factor (TNF. Our group has developed a therapeutic platform to target IL13Rα2-positive brain tumors by engineering human cytotoxic T lymphocytes (CTLs to express the IL13-zetakine chimeric antigen receptor. We therefore sought to investigate the potential of cytokine stimulation to induce IL13Rα2 cell surface expression, and thereby increase susceptibility to IL13Rα2-specific T cell killing. In the course of these experiments, we unexpectedly found that the commercially available putative IL13Rα2-specific monoclonal antibody B-D13 recognizes cytokine-induced VCAM-1 on glioblastoma. We provide evidence that the induced receptor is not IL13Rα2, because its expression does not consistently correlate with IL13Rα2 mRNA levels, it does not bind IL-13, and it is not recognized by IL13-zetakine CTL. Instead we demonstrate by immunoprecipitation experiments and mass spectrometry that the antigen recognized by the B-D13 antibody following cytokine stimulation is VCAM-1, and that VCAM-1, but not IL13Rα2, is induced on glioma cells by TNF alone or in combination with IL-13 or IL-4. Further evaluation of several commercial B-D13 antibodies revealed that B-D13 is bi-specific, recognizing both IL13Rα2 and VCAM-1. This binding is non-overlapping based on soluble receptor competition experiments, and mass spectrometry identifies two distinct heavy and light chain species, providing evidence that the B-D13 reagent is di-clonal. PE-conjugation of the B-D13 antibody appears to disrupt IL13Rα2 recognition, while maintaining VCAM-1 specificity. While this work calls into question previous studies that have used

  10. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Hsieh WJ

    2012-06-01

    Full Text Available Wan-Ju Hsieh,1 Chan-Jung Liang,1 Jen-Jie Chieh,4 Shu-Huei Wang,1 I-Rue Lai,1 Jyh-Horng Chen,2 Fu-Hsiung Chang,3 Wei-Kung Tseng,4–6 Shieh-Yueh Yang,4 Chau-Chung Wu,7 Yuh-Lien Chen11Institute of Anatomy and Cell Biology, College of Medicine, 2Department of Electrical Engineering, 3Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan; 4Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan; 5Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Taipei, Taiwan; 6Department of Medical Imaging and Radiological Sciences, I-Shou University, Taipei, Taiwan; 7Department of Internal Medicine and Primary Care Medicine, National Taiwan University Hospital, Taipei, TaiwanBackground: Active targeting by specific antibodies combined with nanoparticles is a promising technology for cancer imaging and detection by magnetic resonance imaging (MRI. The aim of the present study is to investigate whether the systemic delivery of antivascular endothelial growth factor antibodies conjugating to the surface of functionalized supermagnetic iron oxide nanoparticles (anti-VEGF-NPs led to target-specific accumulation in the tumor.Methods: The VEGF expression in human colon cancer and in Balb/c mice bearing colon cancers was examined by immunohistochemistry. The distribution of these anti-VEGF-NPs particles or NPs particles were evaluated by MRI at days 1, 2, or 9 after the injection into the jugular vein of Balb/c mice bearing colon cancers. Tumor and normal tissues (liver, spleen, lung, and kidney were collected and were examined by Prussian blue staining to determine the presence and distribution of NPs in the tissue sections.Results: VEGF is highly expressed in human and mouse colon cancer tissues. MRI showed significant changes in the T*2 signal and T2 relaxation in the anti-VEGF-NP- injected-mice, but not in mice injected with NP alone. Examination of paraffin

  11. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    Directory of Open Access Journals (Sweden)

    Liang Y

    2018-03-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Cynthia Besch-Williford,2 Salman M Hyder1 1Deparment of Biomedical Sciences and Dalton Cardiovascular Research Center, Columbia, MO, USA; 2IDEXX BioResearch, Columbia, MO, USA Background: Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53 lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods: In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results: APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood

  12. Preparation and Evaluation of 99mTc-labeled anti-CD11b Antibody Targeting Inflammatory Microenvironment for Colon Cancer Imaging.

    Science.gov (United States)

    Cheng, Dengfeng; Zou, Weihong; Li, Xiao; Xiu, Yan; Tan, Hui; Shi, Hongcheng; Yang, Xiangdong

    2015-06-01

    CD11b, an active constituent of innate immune response highly expressed in myeloid-derived suppressor cells (MDSCs), can be used as a marker of inflammatory microenvironment, particularly in tumor tissues. In this research, we aimed to fabricate a (99m)Tc-labeled anti-CD11b antibody as a probe for CD11b(+) myeloid cells in colon cancer imaging with single-photon emission computed tomography (SPECT). In situ murine colon tumor model was established in histidine decarboxylase knockout (Hdc(-/-)) mice by chemicals induction. (99m)Tc-labeled anti-CD11b was obtained with labeling yields of over 30% and radiochemical purity of over 95%. Micro-SPECT/CT scans were performed at 6 h post injection to investigate biodistributions and targeting of the probe. In situ colonic neoplasma as small as 3 mm diameters was clearly identified by imaging; after dissection of the animal, anti-CD11b immunofluorescence staining was performed to identify infiltration of CD11b+ MDSCs in microenvironment of colonic neoplasms. In addition, the images displayed intense signal from bone marrow and spleen, which indicated the origin and migration of CD11b(+) MDSCs in vivo, and these results were further proved by flow cytometry analysis. Therefore, (99m)Tc-labeled anti-CD11b SPECT displayed the potential to facilitate the diagnosis of colon tumor in very early stage via detection of inflammatory microenvironment. © 2014 John Wiley & Sons A/S.

  13. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs.

    Science.gov (United States)

    Vincke, Cécile; Gutiérrez, Carlos; Wernery, Ulrich; Devoogdt, Nick; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge

    2012-01-01

    Immunizing a camelid (camels and llamas) with soluble, properly folded proteins raises an affinity-matured immune response in the unique camelid heavy-chain only antibodies (HCAbs). The peripheral blood lymphocytes of the immunized animal are used to clone the antigen-binding antibody fragment from the HCAbs in a phage display vector. A representative aliquot of the library of these antigen-binding fragments is used to retrieve single domain antigen-specific binders by successive rounds of panning. These single domain antibody fragments are cloned in tandem to generate manifold constructs (bivalent, biparatopic or bispecific constructs) to increase their functional affinity, to increase specificity, or to connect two independent antigen molecules.

  14. The value of gamma camera and computed tomography data set coregistration to assess Lewis Y antigen targeting in small cell lung cancer by 111Indium-labeled humanized monoclonal antibody 3S193

    International Nuclear Information System (INIS)

    Quaia, Emilio; Krug, Lee M.; Pandit-Taskar, Neeta; Nagel, Andrew; Reuter, Victor E.; Humm, John; Divgi, Chaitanya

    2008-01-01

    Aim: To assess the value of data set coregistration of gamma camera and computed tomography (CT) in the assessment of targeting of humanized monoclonal antibody 3S193 labeled with indium-111 ( 111 In-hu3S193) to small cell lung cancer (SCLC). Methods and materials: Ten patients (6 male and 4 female; mean age ± S.D., 60 ± 4 years), from an overall population of 20 patients with SCLCs expressing Lewis Y antigen at immunohistochemical analysis, completed a four weekly injections of 111 In-hu3S193 and underwent gamma camera imaging. All had had, as part of their baseline evaluation, Fluorine18 fluoro-2-deoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Two readers in consensus retrospectively coregistered the gamma camera images with the CT component of the FDG PET/CT by automatic or manual alignment. The resulting image sets were visually examined and SCLC lesions targeting at coregistered gamma camera and CT was correlated side-by-side with the 18 F-FDG uptake. Results: A total number of 31 lesions from SCLC with a thoracic (n = 13) or extrathoracic location (n = 18) were all positive on FDG PET/CT. Coregistration of the gamma camera to the CT demonstrated targeting of antibody to all lesions >2 cm (n = 20) and in a few lesions ≤2 cm (n = 2), with no visualization of most lesions ≤2 cm (n = 9). No 111 In-hu3S193 uptake in normal tissues was observed. Conclusion: Coregistration of antibody gamma camera imaging to FDG PET/CT is feasible and allows valuable assessment of 111 In-hu3S193 antibody targeting to SCLC lesions >2 cm, while lesions ≤2 cm reveal a limited targeting

  15. Superiority in Rhesus Macaques of Targeting HIV-1 Env gp140 to CD40 versus LOX-1 in Combination with Replication-Competent NYVAC-KC for Induction of Env-Specific Antibody and T Cell Responses.

    Science.gov (United States)

    Zurawski, Gerard; Shen, Xiaoying; Zurawski, Sandra; Tomaras, Georgia D; Montefiori, David C; Roederer, Mario; Ferrari, Guido; Lacabaratz, Christine; Klucar, Peter; Wang, Zhiqing; Foulds, Kathryn E; Kao, Shing-Fen; Yu, Xuesong; Sato, Alicia; Yates, Nicole L; LaBranche, Celia; Stanfield-Oakley, Sherry; Kibler, Karen; Jacobs, Bertram; Salazar, Andres; Self, Steve; Fulp, William; Gottardo, Raphael; Galmin, Lindsey; Weiss, Deborah; Cristillo, Anthony; Pantaleo, Giuseppe; Levy, Yves

    2017-05-01

    We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4 + and CD8 + T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1. IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens

  16. Targeting Alpha Toxin and ClfA with a Multimechanistic Monoclonal-Antibody-Based Approach for Prophylaxis of Serious Staphylococcus aureus Disease

    Directory of Open Access Journals (Sweden)

    C. Tkaczyk

    2016-06-01

    Full Text Available Staphylococcus aureus produces numerous virulence factors, each contributing different mechanisms to bacterial pathogenesis in a spectrum of diseases. Alpha toxin (AT, a cytolytic pore-forming toxin, plays a key role in skin and soft tissue infections and pneumonia, and a human anti-AT monoclonal antibody (MAb, MEDI4893*, has been shown to reduce disease severity in dermonecrosis and pneumonia infection models. However, interstrain diversity and the complex pathogenesis of S. aureus bloodstream infections suggests that MEDI4893* alone may not provide adequate protection against S. aureus sepsis. Clumping factor A (ClfA, a fibrinogen binding protein, is an important virulence factor facilitating S. aureus bloodstream infections. Herein, we report on the identification of a high-affinity anti-ClfA MAb, 11H10, that inhibits ClfA binding to fibrinogen, prevents bacterial agglutination in human plasma, and promotes opsonophagocytic bacterial killing (OPK. 11H10 prophylaxis reduced disease severity in a mouse bacteremia model and was dependent on Fc effector function and OPK. Additionally, prophylaxis with 11H10 in combination with MEDI4893* provided enhanced strain coverage in this model and increased survival compared to that obtained with the individual MAbs. The MAb combination also reduced disease severity in murine dermonecrosis and pneumonia models, with activity similar to that of MEDI4893* alone. These results indicate that an MAb combination targeting multiple virulence factors provides benefit over a single MAb neutralizing one virulence mechanism by providing improved efficacy, broader strain coverage, and protection against multiple infection pathologies.

  17. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody.

    Science.gov (United States)

    Zhang, Di; Whitaker, Brian; Derebe, Mehabaw G; Chiu, Mark L

    2018-04-01

    Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.

  18. Novel Patents Targeting Interleukin-17A; Implications in Cancer and Inflammation.

    Science.gov (United States)

    Bjelica, Suncica; Santibanez, Juan Francisco

    2018-02-19

    IL-17A is a founding member of the IL-17 family that has been implicated in the pathogenesis of inflammatory-associated diseases such as cancer and autoimmune disease. In cancer, IL-17A participates in many key events for tumor development, in part by affecting innate and adaptive immune system and also by direct modulation of many pro-tumor events. Moreover, IL-17A dysregulation at the site of inflammation is associated with rheumatoid arthritis, multiple sclerosis, psoriasis, among others. IL-17A has emerged as a topic of interest and is under profound investigation for its involvement in several types of inflammatory-associated diseases. This review aims to present an overview of the state of the art of IL-17A role in cancer and inflammation, as well as to describe recent patents targeting IL-17A with relevant clinical and biological properties for the prevention and treatment of cancer and inflammatory diseases. Relevant information was obtained by searching in PubMed using IL-17A or IL-17, cancer and inflammation as keywords, while relevant patents were obtained mainly from Google Patents. Literature data indicated IL-17A as important biomolecule in the physiopathology of cancer and inflammatory diseases. Whereas, novel patents (2010 to 2017) targeting IL-17A are focused mainly on describing strategies to modulate IL-17A per se, co-modulation by bispecific antibodies to blocking IL-17A and important cytokines for IL-17A functions, upstream mechanisms and compounds to regulate IL-17A expression. The promising effects of patented agents against IL-17A may open new opportunities to therapeutic intervention targeting at different levels of involvement in the pathogenesis of cancer and inflammatory diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Intracytoplasmic stable expression of IgG1 antibody targeting NS3 helicase inhibits replication of highly efficient hepatitis C Virus 2a clone

    Directory of Open Access Journals (Sweden)

    Clementi Massimo

    2010-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV infection is a major public health problem with more than 170 million cases of chronic infections worldwide. There is no protective vaccine currently available for HCV, therefore the development of novel strategy to prevent chronic infection is important. We reported earlier that a recombinant human antibody clone blocks viral NS3 helicase activity and inhibits replication of HCV 1b virus. This study was performed further to explore the mechanism of action of this recombinant antibody and to determine whether or not this antibody inhibits replication and infectivity of a highly efficient JFH1 HCV 2a virus clone. Results The antiviral effect of intracellular expressed antibody against the HCV 2a virus strain was examined using a full-length green fluorescence protein (GFP labeled infectious cell culture system. For this purpose, a Huh-7.5 cell line stably expressing the NS3 helicase gene specific IgG1 antibody was prepared. Replication of full-length HCV-GFP chimera RNA and negative-strand RNA was strongly inhibited in Huh-7.5 cells stably expressing NS3 antibody but not in the cells expressing an unrelated control antibody. Huh-7.5 cells stably expressing NS3 helicase antibody effectively suppressed infectious virus production after natural infection and the level of HCV in the cell free supernatant remained undetectable after first passage. In contrast, Huh-7.5 cells stably expressing an control antibody against influenza virus had no effect on virus production and high-levels of infectious HCV were detected in culture supernatants over four rounds of infectivity assay. A recombinant adenovirus based expression system was used to demonstrate that Huh-7.5 replicon cell line expressing the intracellular antibody strongly inhibited the replication of HCV-GFP RNA. Conclusion Recombinant human anti-HCV NS3 antibody clone inhibits replication of HCV 2a virus and infectious virus production. Intracellular

  20. CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1+tumor cells, and extends the survival of tumor-bearing humanized mice.

    Science.gov (United States)

    Horn, Lucas A; Ciavattone, Nicholas G; Atkinson, Ryan; Woldergerima, Netsanet; Wolf, Julia; Clements, Virginia K; Sinha, Pratima; Poudel, Munanchu; Ostrand-Rosenberg, Suzanne

    2017-08-29

    Bi-specific T cell engagers (BiTEs) activate T cells through CD3 and target activated T cells to tumor-expressed antigens. BiTEs have shown therapeutic efficacy in patients with liquid tumors; however, they do not benefit all patients. Anti-tumor immunity is limited by Programmed Death 1 (PD1) pathway-mediated immune suppression, and patients who do not benefit from existing BiTES may be non-responders because their T cells are anergized via the PD1 pathway. We have designed a BiTE that activates and targets both T cells and NKT cells to PDL1 + cells. In vitro studies demonstrate that the CD3xPDL1 BiTE simultaneously binds to both CD3 and PDL1, and activates healthy donor CD4 + and CD8 + T cells and NKT cells that are specifically cytotoxic for PDL1 + tumor cells. Cancer patients' PBMC are also activated and cytotoxic, despite the presence of myeloid-derived suppressor cells. The CD3xPDL1 BiTE significantly extends the survival time and maintains activated immune cell levels in humanized NSG mice reconstituted with human PBMC and carrying established human melanoma tumors. These studies suggest that the CD3xPDL1 BiTE may be efficacious for patients with PDL1 + solid tumors, in combination with other immunotherapies that do not specifically neutralize PD1 pathway-mediated immune suppression.

  1. Docking of Antibodies into Cavities in DNA Origami

    DEFF Research Database (Denmark)

    Quyang, X; Stefano, Mattia De; Krissanaprasit, Abhichart

    2017-01-01

    microscopy (AFM) and transmission electron microscopy (TEM) validated efficient antibody immobilization in the origami structures. The increased ability to control the orientation of antibodies in nanostructures and at surfaces has potential for directing the interactions of antibodies with targets...

  2. The availability of a functional tumor targeting T-cell repertoire determines the anti-tumor efficiency of combination therapy with anti-CTLA-4 and anti-4-1BB antibodies.

    Directory of Open Access Journals (Sweden)

    Benjamin A H Jensen

    Full Text Available It has previously been found that combination therapy with anti-CTLA-4 and anti-4-1BB antibodies may enhance tumor immunity. However, this treatment is not efficient against all tumors, and it has been suggested that variations in tumor control may reflect differences in the immunogenicity of different tumors. In the present report, we have formally tested this hypothesis. Comparing the efficiency of combination antibody therapy against two antigenically distinct variants of the B16.F10 melanoma cell line, we observed that antibody therapy delayed the growth of a variant expressing an exogenous antigen (P<0.0001, while this treatment failed to protect against the non-transfected parental line (P = 0.1850 consistent with published observations. As both cell lines are poorly immunogenic in wild type mice, these observations suggested that the magnitude of the tumor targeting T-cell repertoire plays a major role in deciding the efficiency of this antibody treatment. To directly test this assumption, we made use of mice expressing the exogenous antigen as a self-antigen and therefore carrying a severely purged T-cell repertoire directed against the major tumor antigen. Notably, combination therapy completely failed to inhibit tumor growth in the latter mice (P = 0.8584. These results underscore the importance of a functionally intact T-cell population as a precondition for the efficiency of treatment with immunomodulatory antibodies. Clinically, the implication is that this type of antibody therapy should be attempted as an early form of tumor-specific immunotherapy before extensive exhaustion of the tumor-specific T-cell repertoire has occurred.

  3. The monoclonal antibody Zt/f2 targeting RON receptor tyrosine kinase as potential therapeutics against tumor growth-mediated by colon cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang Rui-Wen

    2011-07-01

    Full Text Available Abstract Background Overexpression of the RON receptor tyrosine kinase contributes to epithelial cell transformation, malignant progression, and acquired drug resistance. RON also has been considered as a potential target for therapeutic intervention. This study determines biochemical features and inhibitory activity of a mouse monoclonal antibody (mAb Zt/f2 in experimental cancer therapy. Results Zt/f2 is a mouse IgG2a mAb that is highly specific and sensitive to human RON and its oncogenic variants such as RON160 (ED50 = 2.3 nmol/L. Receptor binding studies revealed that Zt/f2 interacts with an epitope(s located in a 49 amino acid sequence coded by exon 11 in the RON β-chain extracellular sequences. This sequence is critical in regulating RON maturation and phosphorylation. Zt/f2 did not compete with ligand macrophage-stimulating protein for binding to RON; however, its engagement effectively induced RON internalization, which diminishes RON expression and impairs downstream signaling activation. These biochemical features provide the cellular basis for the use of Zt/f2 to inhibit tumor growth in animal model. Repeated administration of Zt/f2 as a single agent into Balb/c mice results in partial inhibition of tumor growth caused by transformed NIH-3T3 cells expressing oncogenic RON160. Colon cancer HT-29 cell-mediated tumor growth in athymic nude mice also was attenuated following Zt/f2 treatment. In both cases, ~50% inhibition of tumor growth as measured by tumor volume was achieved. Moreover, Zt/f2 in combination with 5-fluorouracil showed an enhanced inhibition effect of ~80% on HT-29 cell-mediated tumor growth in vivo. Conclusions Zt/f2 is a potential therapeutic mAb capable of inhibiting RON-mediated oncogenesis by colon cancer cells in animal models. The inhibitory effect of Zt/f2 in vivo in combination with chemoagent 5-fluorouracil could represent a novel strategy for future colon cancer therapy.

  4. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans

    Science.gov (United States)

    Masure, Dries; Wang, Tao; Nejsum, Peter; Hokke, Cornelis H.; Geldhof, Peter

    2016-01-01

    Background The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential. Methodology/Principal Findings Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12) that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively) and specificity (95.5% and 90.0%) in pigs and humans, respectively. Conclusions/Significance These findings show the presence of a highly stage specific, glycolipid-like component (As12) that is actively secreted by infectious Ascaris larvae and which acts as a major antibody

  5. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans.

    Science.gov (United States)

    Vlaminck, Johnny; Masure, Dries; Wang, Tao; Nejsum, Peter; Hokke, Cornelis H; Geldhof, Peter

    2016-12-01

    The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential. Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12) that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively) and specificity (95.5% and 90.0%) in pigs and humans, respectively. These findings show the presence of a highly stage specific, glycolipid-like component (As12) that is actively secreted by infectious Ascaris larvae and which acts as a major antibody target in infected humans and pigs.

  6. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans.

    Directory of Open Access Journals (Sweden)

    Johnny Vlaminck

    2016-12-01

    Full Text Available The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential.Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12 that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively and specificity (95.5% and 90.0% in pigs and humans, respectively.These findings show the presence of a highly stage specific, glycolipid-like component (As12 that is actively secreted by infectious Ascaris larvae and which acts as a major antibody target in infected humans and pigs.

  7. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model.

    Science.gov (United States)

    Maisel, Daniela; Birzele, Fabian; Voss, Edgar; Nopora, Adam; Bader, Sabine; Friess, Thomas; Goller, Bernhard; Laifenfeld, Daphna; Weigand, Stefan; Runza, Valeria

    2016-01-01

    CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages) to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP) of the malignant cells by macrophages.

  8. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model.

    Directory of Open Access Journals (Sweden)

    Daniela Maisel

    Full Text Available CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP of the malignant cells by macrophages.

  9. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  10. Prospective Preliminary In Vitro Investigation of a Magnetic Iron Oxide Nanoparticle Conjugated with Ligand CD80 and VEGF Antibody As a Targeted Drug Delivery System for the Induction of Cell Death in Rodent Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Anne Marie Kay Kovach

    2016-10-01

    Full Text Available Target drug deliveries using nanotechnology are a novel consideration in the treatment of cancer. We present herein an in vitro mouse model for the preliminary investigation of the efficacy of an iron oxide nanoparticle complex conjugated to vascular endothelial growth factor (VEGF antibody and ligand cluster of differentiation 80 (CD80 for the purpose of eventual translational applications in the treatment of human osteosarcoma (OSA. The 35 nm diameter iron oxide magnetic nanoparticles are functionalized with an n-hydroxysuccinimide biocompatible coating and are conjugated on the surface to proteins VEGF antibody and ligand CD80. Combined, these proteins have the ability to target OSA cells and induce apoptosis. The proposed system was tested on a cancerous rodent osteoblast cell line (ATCCTMNPO CRL-2836 at four different concentrations (0.1, 1.0, 10.0, and 100.0 μg/mL of ligand CD80 alone, VEGF antibody alone, and a combination thereof (CD80+VEGF. Systems were implemented every 24 h over different sequential treatment timelines: 24, 48, and 72 h, to find the optimal protein concentration required for a reduction in cell proliferation. Results demonstrated that a combination of ligand CD80 and VEGF antibody was consistently most effective at reducing aberrant osteoblastic proliferation for both the 24- and 72-h timelines. At 48 h, however, an increase in cell proliferation was documented for the 0.1 and 1 μg/mL groups. For the 24- and 72-h tests, concentrations of 1.0 μg/mL of CD80+VEGF and 0.1 μg/mL of VEGF antibody were most effective. Concentrations of 10.0 and 100.0 μg/mL of CD80+VEGF reduced cell proliferation, but not as remarkably as the 1.0 μg/mL concentration. In addition, cell proliferation data showed that multiple treatments (72-h test induced cell death in the osteoblasts better than a single treatment. Future targeted drug delivery system research includes trials in OSA cell lines from greater phylum

  11. Complexes of Streptavidin-Fused Antigens with Biotinylated Antibodies Targeting Receptors on Dendritic Cell Surface: A Novel Tool for Induction of Specific T-Cell Immune Responses

    Czech Academy of Sciences Publication Activity Database

    Staněk, Ondřej; Linhartová, Irena; Majlessi, L.; Leclerc, C.; Šebo, Peter

    2012-01-01

    Roč. 51, č. 3 (2012), s. 221-232 ISSN 1073-6085 R&D Projects: GA AV ČR KAN200520702; GA ČR GA310/08/0447; GA MŠk 2B06161 Institutional research plan: CEZ:AV0Z50200510 Keywords : Streptavidin * Antigen delivery * Biotinylated antibody Subject RIV: EE - Microbiology, Virology Impact factor: 2.262, year: 2012

  12. Synthesis, characterization, and in vitro evaluation of targeted gold nanoshelled poly(d,l-lactide-co-glycolide) nanoparticles carrying anti p53 antibody as a theranostic agent for ultrasound contrast imaging and photothermal therapy.

    Science.gov (United States)

    Xu, Li; Wan, Caifeng; Du, Jing; Li, Hongli; Liu, Xuesong; Yang, Hong; Li, Fenghua

    2017-03-01

    Breast cancer is the leading cause of cancer-related deaths in women and earlier detection can substantially reduce deaths from breast cancer. Polymers with targeted ligands are widely used in the field of molecular ultrasound imaging and targeted tumor therapy. In our study, the nanotheranostic agent was fabricated through filling perfluoropropane (C 3 F 8 ) into poly(d,l-lactic-co-glycolic acid) nanoparticles (PLGA NPs), followed by the formation of gold nanoshell on the surface, then conjugated with anti p53 antibody which has high specificity with the p53 protein overexpressing in breast cancer. The average diameter of the gold nanoshelled PLGA NPs carrying anti p53 antibody (p53-PLGA@Au NPs) was 247 ± 108.2 nm. The p53-PLGA@Au NPs had well-defined spherical morphology and hollow interiors observed by electron microscope, and had a good photothermal effect under the irradiation of an 808 nm laser. The results of laser scanning confocal microscope (LSCM) and flow cytometer (FCM) indicated the specific targeting of p53-PLGA@Au NPs conjugating with breast cancer MCF-7 cells overexpressing p53 protein in vitro. Also the ultrasound imaging experiments in vitro showed that p53-PLGA@Au NPs were suitable for ultrasound contrast imaging. In conclusion, the p53-PLGA@Au NPs are demonstrated to be novel targeted UCAs and may have potential applications in the early diagnosis and targeted near-infrared (NIR) photothermal therapy of breast cancer in the future.

  13. Mechanism of human immunodeficiency virus type 1 resistance to monoclonal antibody B12 that effectively targets the site of CD4 attachment.

    Science.gov (United States)

    Wu, Xueling; Zhou, Tongqing; O'Dell, Sijy; Wyatt, Richard T; Kwong, Peter D; Mascola, John R

    2009-11-01

    The region of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 that engages its primary cellular receptor CD4 forms a site of vulnerability to neutralizing antibodies. The monoclonal antibody b12 exploits the conservation and accessibility of the CD4-binding site to neutralize many, though not all, HIV-1 isolates. To understand the basis of viral resistance to b12, we used the atomic-level definition of b12-gp120 contact sites to study a panel of diverse circulating viruses. A combination of sequence analysis, computational modeling, and site-directed mutagenesis was used to determine the influence of amino acid variants on binding and neutralization by b12. We found that several substitutions within the dominant b12 contact surface, called the CD4-binding loop, mediated b12 resistance, and that these substitutions resided just proximal to the known CD4 contact surface. Hence, viruses varied in key b12 contact residues that are proximal to, but not part of, the CD4 contact surface. This explained how viral isolates were able to evade b12 neutralization while maintaining functional binding to CD4. In addition, some viruses were resistant to b12 despite minimal sequence variation at b12 contact sites. Such neutralization resistance usually could be reversed by alterations at residues thought to influence the quaternary configuration of the viral envelope spike. To design immunogens that elicit neutralizing antibodies directed to the CD4-binding site, researchers need to address the antigenic variation within this region of gp120 and the restricted access to the CD4-binding site imposed by the native configuration of the trimeric viral envelope spike.

  14. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    Science.gov (United States)

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Serine-stretch protein (SERP) of Plasmodium falciparum corresponds to the exoantigen Ag2, a target of antibodies associated with protection against malaria

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hundt, E; Hansen, Morten Bagge

    1994-01-01

    A mixture of Plasmodium falciparum exoantigens inducing lymphocyte activation and cytokine production was shown to contain the malaria vaccine candidate, the serine-stretch protein. This protein was shown serologically to correspond to Ag2, an exoantigen recognized by antibodies linked...... with protection against malaria. The glycophorin-binding protein, the histidine-rich protein II, the S-antigen, the heat shock protein 70, the ring-infected erythrocyte surface antigen, and the apical membrane antigen-1 were also shown serologically to be present in the mixture of exoantigens....

  16. Ultrasonic Analysis of Peptide- and Antibody-Targeted Microbubble Contrast Agents for Molecular Imaging of αvβ3-Expressing Cells

    Directory of Open Access Journals (Sweden)

    Paul A. Dayton

    2004-04-01

    Full Text Available The goal of targeted ultrasound contrast agents is to significantly and selectively enhance the detection of a targeted vascular site. In this manuscript, three distinct contrast agents targeted to the αvβ3 integrin are examined. The αvβ3 integrin has been shown to be highly expressed on metastatic tumors and endothelial cells during neovascularization, and its expression has been shown to correlate with tumor grade. Specific adhesion of these contrast agents to αvβ3-expressing cell monolayers is demonstrated in vitro, and compared with that of nontargeted agents. Acoustic studies illustrate a backscatter amplitude increase from monolayers exposed to the targeted contrast agents of up to 13-fold (22 dB relative to enhancement due to control bubbles. A linear dependence between the echo amplitude and bubble concentration was observed for bound agents. The decorrelation of the echo from adherent targeted agents is observed over successive pulses as a function of acoustic pressure and bubble density. Frequency–domain analysis demonstrates that adherent targeted bubbles exhibit high-amplitude narrowband echo components, in contrast to the primarily wideband response from free microbubbles. Results suggest that adherent targeted contrast agents are differentiable from free-floating microbubbles, that targeted contrast agents provide higher sensitivity in the detection of angiogenesis, and that conventional ultrasound imaging techniques such as signal subtraction or decorrelation detection can be used to detect integrin-expressing vasculature with sufficient signal-to-noise.

  17. Antibody-mediated targeting of antigen to C-type lectin-like receptors Clec9A and Clec12A elicits different vaccination outcomes.

    Science.gov (United States)

    Macri, Christophe; Dumont, Claire; Panozza, Scott; Lahoud, Mireille H; Caminschi, Irina; Villadangos, Jose A; Johnston, Angus P R; Mintern, Justine D

    2017-01-01

    Targeting antigen (Ag) to dendritic cell (DC) surface receptors is a potential new mode of vaccination. C-type lectin-like receptors Clec9A and Clec12A are attractive receptor targets however their targeting in vivo elicits significantly different outcomes for unknown reasons. To gain insight into the mechanisms responsible, we have examined the intrinsic capacity of Clec9A and Clec12A to elicit MHC I and MHC II Ag presentation following ex vivo targeting with primary murine DC. Both receptors exhibited high rates of internalization by CD8 + DCs, while Clec12A delivered a significantly higher Ag owing to its higher expression level. Targeting Ag to immature CD8 + DCs via both Clec9A and Clec12A failed to elicit MHC I cross-presentation above that of controls, while Clec12A was the superior receptor to target following CD8 + DC maturation. CD8 - DCs were unable to elicit MHC I cross-presentation regardless of the receptor targeted. For MHC II presentation, targeting Ag to Clec12A enabled significant responses by both immature CD8 + and CD8 - DCs, whereas Clec9A did not elicit significant MHC II Ag presentation by either DC subset, resting or mature. Therefore, Clec9A and Clec12A exhibit different intrinsic capacities to elicit MHC I and MHC II presentation following direct Ag targeting, though they can only elicit MHC I responses if the DC expressing the receptor is equipped with the capacity to cross-present. Our conclusions have consequences for the exploitation of these receptors for vaccination purposes, in addition to providing insight into their roles as Ag targets in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Induction of a protein-targeted catalytic response in autoimmune prone mice: antibody-mediated cleavage of HIV-1 glycoprotein GP120.

    Science.gov (United States)

    Ponomarenko, Natalia A; Vorobiev, Ivan I; Alexandrova, Elena S; Reshetnyak, Andrew V; Telegin, Georgy B; Khaidukov, Sergey V; Avalle, Bérangère; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    We have induced a polyclonal IgG that degrades the HIV-1 surface antigen, glycoprotein gp120, by taking advantage of the susceptibility of SJL mice to a peptide-induced autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). Specific pathogen-free SJL mice were immunized with structural fragments of gp120, fused in-frame with encephalitogenic peptide MBP(85-101). It has resulted in a pronounced disease-associated immune response against antigens. A dramatic increase of gp120 degradation level by purified polyclonal IgG from immunized versus nonimmunized mice has been demonstrated by a newly developed fluorescence-based assay. This activity was inhibited by anti-mouse immunoglobulin antibodies as well as by Ser- and His-reactive covalent inhibitors. A dominant proteolysis site in recombinant gp120 incubated with purified polyclonal IgG from immunized mice was shown by SDS-PAGE. The SELDI-based mass spectrometry revealed that these antibodies exhibited significant specificity toward the Pro484-Leu485 peptide bond. The sequence surrounding this site is present in nearly half of the HIV-I variants. This novel strategy can be generalized for creating a catalytic vaccine against viral pathogens.

  19. New blocking antibodies impede adhesion, migration and survival of ovarian cancer cells, highlighting MFGE8 as a potential therapeutic target of human ovarian carcinoma.

    Directory of Open Access Journals (Sweden)

    Lorenzo Tibaldi

    Full Text Available Milk Fat Globule--EGF--factor VIII (MFGE8, also called lactadherin, is a secreted protein, which binds extracellularly to phosphatidylserine and to αvβ3 and αvβ5 integrins. On human and mouse cells expressing these integrins, such as endothelial cells, phagocytes and some tumors, MFGE8/lactadherin has been shown to promote survival, epithelial to mesenchymal transition and phagocytosis. A protumoral function of MFGE8 has consequently been documented for a few types of human cancers, including melanoma, a subtype of breast cancers, and bladder carcinoma. Inhibiting the functions of MFGE8 could thus represent a new type of therapy for human cancers. Here, we show by immunohistochemistry on a collection of human ovarian cancers that MFGE8 is overexpressed in 45% of these tumors, and we confirm that it is specifically overexpressed in the triple-negative subtype of human breast cancers. We have established new in vitro assays to measure the effect of MFGE8 on survival, adhesion and migration of human ovarian and triple-negative breast cancer cell lines. Using these assays, we could identify new MFGE8-specific monoclonal antibodies, which efficiently blocked these three tumor-promoting effects of MFGE8. Our results suggest future use of MFGE8-blocking antibodies as new anti-cancer therapeutics in subgroups of ovarian carcinoma, and triple-negative breast carcinoma patients.

  20. Development of novel anti-Kv 11.1 antibody-conjugated PEG-TiO2 nanoparticles for targeting pancreatic ductal adenocarcinoma cells

    Science.gov (United States)

    Sette, Angelica; Spadavecchia, Jolanda; Landoulsi, Jessem; Casale, Sandra; Haye, Bernard; Crociani, Olivia; Arcangeli, Annarosa

    2013-12-01

    Titanium dioxide (TiO2) has been widely used in many nanotechnology areas including nanomedicine, where it could be proposed for the photodynamic and sonodynamic cancer therapies. However, TiO2 nanoformulations have been shown to be toxic for living cells. In this article, we report the development of a new delivery system, based on nontoxic TiO2 nanoparticles, further conjugated with a monoclonal antibody against a novel and easily accessible tumor marker, e.g., the Kv 11.1 potassium channel. We synthesized, by simple solvothermal method, dicarboxylic acid-terminated PEG TiO2 nanocrystals (PEG-TiO2 NPs). Anti-Kv 11.1 monoclonal antibodies (Kv 11.1-Mab) were further linked to the terminal carboxylic acid groups. Proper conjugation was confirmed by X-ray photoelectron spectroscopy analysis. Kv 11.1-Mab-PEG-TiO2 NPs efficiently recognized the specific Kv 11.1 antigen, both in vitro and in pancreatic ductal adenocarcinoma (PDAC) cells, which express the Kv 11.1 channel onto the plasma membrane. Both PEG TiO2 and Kv 11.1-Mab-PEG-TiO2 NPs were not cytotoxic, but only Kv 11.1-Mab-PEG-TiO2 NPs were efficiently internalized into PDAC cells. Data gathered from this study may have further applications for the chemical design of nanostructures to be applied for therapeutic purposes in pancreatic cancer.

  1. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-MPA and CdTe-MSA Quantum Dots.

    Science.gov (United States)

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2015-12-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining.

  2. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM.

    Directory of Open Access Journals (Sweden)

    Xiang Xu

    Full Text Available The urokinase plasminogen activator receptor (uPAR plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268-275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM, a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR.

  3. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.

    Science.gov (United States)

    Vaks, Lilach; Benhar, Itai

    2011-01-01

    The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus there is an urgent need to develop new antimicrobial agents. To be effective, these new antimicrobials should possess novel modes of action and/or different cellular targets compared with existing antibiotics. Bacteriophages (phages) have been used for over a century as tools for the treatment of bacterial infections, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. We describe a new application in the area of antibacterial nanomedicines where filamentous phages can be formulated as targeted drug-delivery vehicles of nanometric dimensions (phage nanomedicines) and used for therapeutic purposes. This protocol involves both genetic and chemical engineering of these phages. The genetic engineering of the phage coat, which results in the display of a target-specificity-conferring peptide or protein on the phage coat, can be used to design the drug-release mechanism and is not described herein. However, the methods used to chemically conjugate cytotoxic drugs at high density on the phage coat are described. Further, assays to measure the drug load on the surface of the phage and the potency of the system in the inhibition of growth of target cells as well as assessment of the therapeutic potential of the phages in a mouse disease model are discussed.

  4. Antibody biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... and automated, the hybrid cells can be stored for many years in liquid nitrogen and antibodies production is homogeneous. The hybridoma method .... they may be modified to vehicle active molecules such as radio-isotopes, toxins, cytokines, enzyme etc. In these cases, the therapeutic effect is due to ...

  5. Catalytic Antibodies

    Indian Academy of Sciences (India)

    The ability of the highly evolved machinery of immune system to produce structurally and functionally complex ... to Pauling, if the structure of the antigen binding site of antibodies were to be produced in a random ..... where the immune system of the body is destructive, as in autoimmune disorders or after organ transplant.

  6. Catalytic Antibodies

    Indian Academy of Sciences (India)

    While chemistry provides the framework for understanding the structure and function of biomolecules, the immune sys- tem provides a highly evolved natural process to generate one class of complex biomolecules – the antibodies. A combination of the two could be exploited to generate new classes of molecules with novel ...

  7. A bispecific protein capable of engaging CTLA-4 and MHCII protects non-obese diabetic mice from autoimmune diabetes.

    Directory of Open Access Journals (Sweden)

    Hongmei Zhao

    Full Text Available Crosslinking ligand-engaged cytotoxic T lymphocyte antigen-4 (CTLA-4 to the T cell receptor (TCR with a bispecific fusion protein (BsB comprised of a mutant mouse CD80 and lymphocyte activation antigen-3 (LAG-3 has been shown to attenuate TCR signaling and to direct T-cell differentiation toward Foxp3(+ regulatory T cells (Tregs in an allogenic mixed lymphocyte reaction (MLR. Here, we show that antigen-specific Tregs can also be induced in an antigen-specific setting in vitro. Treatment of non-obese diabetic (NOD female mice between 9-12 weeks of age with a short course of BsB elicited a transient increase of Tregs in the blood and moderately delayed the onset of autoimmune type 1 diabetes (T1D. However, a longer course of treatment (10 weeks of 4-13 weeks-old female NOD animals with BsB significantly delayed the onset of disease or protected animals from developing diabetes, with only 13% of treated animals developing diabetes by 35 weeks of age compared to 80% of the animals in the control group. Histopathological analysis of the pancreata of the BsB-treated mice that remained non-diabetic revealed the preservation of insulin-producing β-cells despite the presence of different degrees of insulitis. Thus, a bifunctional protein capable of engaging CTLA-4 and MHCII and indirectly co-ligating CTLA-4 to the TCR protected NOD mice from developing T1D.

  8. DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms.

    Science.gov (United States)

    Zannikou, Markella; Bellou, Sofia; Eliades, Petros; Hatzioannou, Aikaterini; Mantzaris, Michael D; Carayanniotis, George; Avrameas, Stratis; Lymberi, Peggy

    2016-01-01

    We have generated three monoclonal cell-penetrating antibodies (CPAbs) from a non-immunized lupus-prone (NZB × NZW)F1 mouse that exhibited high anti-DNA serum titres. These CPAbs are polyreactive because they bind to DNA and other cellular components, and localize mainly in the nucleus of HeLa cells, albeit with a distinct nuclear labelling profile. Herein, we have examined whether DNA-histone complexes (DHC) binding to CPAbs, before cell entry, could modify the cell penetration of CPAbs or their nuclear staining properties. By applying confocal microscopy and image analysis, we found that extracellular binding of purified CPAbs to DHC significantly enhanced their subsequent cell-entry, both in terms of percentages of positively labelled cells and fluorescence intensity (internalized CPAb amount), whereas there was a variable effect on their nuclear staining profile. Internalization of CPAbs, either alone or bound to DHC, remained unaltered after the addition of endocytosis-specific inhibitors at 37° or assay performance at 4°, suggesting the involvement of energy-independent mechanisms in the internalization process. These findings assign to CPAbs a more complex pathogenetic role in systemic lupus erythematosus where both CPAbs and nuclear components are abundant. © 2015 John Wiley & Sons Ltd.

  9. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans

    DEFF Research Database (Denmark)

    Vlaminck, Johnny; Masure, Dries; Wang, Tao

    2016-01-01

    Background The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating...... larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential. Methodology/Principal Findings Pigs were immunized...... by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies...

  10. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Fagernæs; van Putten, Sander Maarten; Lund, Ida Katrine

    2017-01-01

    model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types.......A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non......-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly...

  11. Immunogenicity and In Vitro and In Vivo Protective Effects of Antibodies Targeting a Recombinant Form of the Streptococcus mutans P1 Surface Protein

    OpenAIRE

    Batista, Milene Tavares; Souza, Renata D.; Ferreira, Ewerton L.; Robinette, Rebekah; Crowley, Paula J.; Rodrigues, Juliana F.; Brady, L. Jeannine; Ferreira, Luís C. S.; Ferreira, Rita C. C.

    2014-01-01

    Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P139–512), produced in Bacillus subtilis and encompassing a functional dom...

  12. Construction of Rabbit Immune Antibody Libraries.

    Science.gov (United States)

    Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo

    2018-01-01

    Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.

  13. Antibody Modeling and Structure Analysis. Application to biomedical problems.

    OpenAIRE

    Chailyan, Anna

    2013-01-01

    Background The usefulness of antibodies and antibody derived artificial constructs in various medical and biochemical applications has made them a prime target for protein engineering, modelling, and structure analysis. The huge number of known antibody sequences, that far outpaces the number of solved structures, raises the need for reliable automatic methods of antibody structure prediction. Antibodies have a very characteristic molecular structure that is reflected in their modelli...

  14. Detection of a combination of serum IgG and IgA antibodies against selected mycobacterial targets provides promising diagnostic signatures for active TB.

    Science.gov (United States)

    Awoniyi, Dolapo O; Baumann, Ralf; Chegou, Novel N; Kriel, Belinda; Jacobs, Ruschca; Kidd, Martin; Loxton, Andre G; Kaempfer, Susanne; Singh, Mahavir; Walzl, Gerhard

    2017-06-06

    Immunoglobulin G (IgG) based tests for the diagnosis of active tuberculosis (TB) disease often show a lack of specificity in TB endemic regions, which is mainly due to a high background prevalence of LTBI. Here, we investigated the combined performance of the responses of different Ig classes to selected mycobacterial antigens in primary healthcare clinic attendees with signs and symptoms suggestive of TB. The sensitivity and specificity of IgA, IgG and/or IgM to LAM and 7 mycobacterial protein antigens (ESAT-6, Tpx, PstS1, AlaDH, MPT64, 16kDa and 19kDa) and 2 antigen combinations (TUB, TB-LTBI) in the plasma of 63 individuals who underwent diagnostic work-up for TB after presenting with symptoms and signs compatible with possible active TB were evaluated. Active TB was excluded in 42 individuals of whom 21 has LTBI whereas active TB was confirmed in 21 patients of whom 19 had a follow-up blood draw at the end of 6-month anti-TB treatment. The leading single serodiagnostic markers to differentiate between the presence or absence of active TB were anti-16 kDa IgA, anti-MPT64 IgA with sensitivity and specificity of 90%/90% and 95%/90%, respectively. The combined use of 3 or 4 antibodies further improved this performance to accuracies above 95%. After successful completion of anti-TB treatment at month 6, the levels of 16 kDa IgA and 16 kDa IgM dropped significantly whereas LAM IgG and TB-LTBI IgG increased. These results show the potential of extending investigation of anti-tuberculous IgG responses to include IgM and IgA responses against selected protein and non-protein antigens in differentiating active TB from other respiratory diseases in TB endemic settings.

  15. Human CD4+ T cells lyse target cells via granzyme/perforin upon circumvention of MHC class II restriction by an antibody-like immunoreceptor.

    Science.gov (United States)

    Hombach, Andreas; Köhler, Heike; Rappl, Gunter; Abken, Hinrich

    2006-10-15

    Immune elimination of tumor cells requires the close cooperation between CD8+ CTL and CD4+ Th cells. We circumvent MHC class II-restriction of CD4+ T cells by expression of a recombinant immunoreceptor with an Ab-derived binding domain redirecting specificity. Human CD4+ T cells grafted with an immunoreceptor specific for carcinoembryonic Ag (CEA) are activated to proliferate and secrete cytokines upon binding to CEA+ target cells. Notably, redirected CD4+ T cells mediate cytolysis of CEA+ tumor cells with high efficiencies. Lysis by redirected CD4+ T cells is independent of death receptor signaling via TNF-alpha or Fas, but mediated by perforin and granzyme because cytolysis is inhibited by blocking the release of cytotoxic granules, but not by blocking of Fas ligand or TNF-alpha. CD4+ T cells redirected by Ab-derived immunoreceptors in a MHC class II-independent fashion substantially extend the power of an adoptive, Ag-triggered immunotherapy not only by CD4+ T cell help, but also by cytolytic effector functions. Because cytolysis is predominantly mediated via granzyme/perforin, target cells that are resistant to death receptor signaling become sensitive to a cytolytic attack by engineered CD4+ T cells.

  16. Evaluation of glycodendron and synthetically modified dextran clearing agents for multistep targeting of radioisotopes for molecular imaging and radioimmunotherapy.

    Science.gov (United States)

    Cheal, Sarah M; Yoo, Barney; Boughdad, Sarah; Punzalan, Blesida; Yang, Guangbin; Dilhas, Anna; Torchon, Geralda; Pu, Jun; Axworthy, Don B; Zanzonico, Pat; Ouerfelli, Ouathek; Larson, Steven M

    2014-02-03

    A series of N-acetylgalactosamine-dendrons (NAG-dendrons) and dextrans bearing biotin moieties were compared for their ability to complex with and sequester circulating bispecific antitumor antibody streptavidin fusion protein (scFv4-SA) in vivo, to improve tumor-to-normal tissue concentration ratios for multistep targeted (MST) radioimmunotherapy and diagnosis. Specifically, a total of five NAG-dendrons employing a common synthetic scaffold structure containing 4, 8, 16, or 32 carbohydrate residues and a single biotin moiety were prepared (NAGB), and for comparative purposes, a biotinylated-dextran with an average molecular weight of 500 kD was synthesized from amino-dextran (DEXB). One of the NAGB compounds, CA16, has been investigated in humans; our aim was to determine if other NAGB analogues (e.g., CA8 or CA4) were bioequivalent to CA16 and/or better suited as MST reagents. In vivo studies included dynamic positron-emission tomography (PET) imaging of (124)I-labeled-scFv4-SA clearance and dual-label biodistribution studies following MST directed at subcutaneous (s.c.) human colon adenocarcinoma xenografts in mice. The MST protocol consists of three injections: first, a scFv4-SA specific for an antitumor-associated glycoprotein (TAG-72); second, CA16 or other clearing agent; and third, radiolabeled biotin. We observed using PET imaging of the (124)I-labeled-scFv4-SA clearance that the spatial arrangement of ligands conjugated to NAG (i.e., biotin linked with an extended spacer, referred to herein as long-chain (LC)) can impact the binding to the antibody in circulation and subsequent liver uptake of the NAG-antibody complex. Also, NAGB CA32-LC or CA16-LC can be utilized during MST to achieve comparable tumor-to-blood ratios and absolute tumor uptake seen previously with CA16. Finally, DEXB was equally effective as NAGB CA32-LC at lowering scFv4-SA in circulation, but at the expense of reducing absolute tumor uptake of radiolabeled biotin.

  17. Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells

    International Nuclear Information System (INIS)

    Bergman, Ira; Whitaker-Dowling, Patricia; Gao Yanhua; Griffin, Judith A.; Watkins, Simon C.

    2003-01-01

    Vesicular stomatitis virus (VSV) is a candidate for development for cancer therapy. It is an oncolytic virus that is safe in humans. Recombinant virus can be made directly from plasmid components. We attempted to create a virus that targeted specifically to breast cancer cells. Nonreplicating and replicating pseudotype VSV were created whose only surface glycoprotein (gp) was a Sindbis gp, called Sindbis-ZZ, modified to severely reduce its native binding function and to contain the Fc-binding domain of Staphylococcus aureus protein A. When titered on Her2/neu overexpressing SKBR3 human breast cancer cells, pseudotype VSV coated with Sindbis-ZZ had 5 /ml. This work demonstrates the ability to easily create, directly from plasmid components, an oncolytic replicating VSV with a restricted host cell range

  18. Polymer cancerostatics targeted with an antibody fragment bound via a coiled coil motif: in vivo therapeutic efficacy against murine BCL1 leukemia

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Janoušková, Olga; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Tomalová, Barbora; Kovář, Marek

    2018-01-01

    Roč. 18, č. 1 (2018), s. 1-11, č. článku 1700173. ISSN 1616-5187 R&D Projects: GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MZd(CZ) NV16-28594A; GA ČR(CZ) GA16-17207S; GA ČR GA13-12885S Institutional support: RVO:61389013 ; RVO:68378050 ; RVO:61388971 Keywords : cancer therapy * coiled coil * drug targeting Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (UMG-J); EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Polymer science (UMG-J); Microbiology (MBU-M) Impact factor: 3.238, year: 2016

  19. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study.

    Science.gov (United States)

    Doi, Toshihiko; Shitara, Kohei; Naito, Yoichi; Shimomura, Akihiko; Fujiwara, Yasuhiro; Yonemori, Kan; Shimizu, Chikako; Shimoi, Tatsunori; Kuboki, Yasutoshi; Matsubara, Nobuaki; Kitano, Atsuko; Jikoh, Takahiro; Lee, Caleb; Fujisaki, Yoshihiko; Ogitani, Yusuke; Yver, Antoine; Tamura, Kenji

    2017-11-01

    Antibody-drug conjugates have emerged as a powerful strategy in cancer therapy and combine the ability of monoclonal antibodies to specifically target tumour cells with the highly potent killing activity of drugs with payloads too toxic for systemic administration. Trastuzumab deruxtecan (also known as DS-8201) is an antibody-drug conjugate comprised of a humanised antibody against HER2, a novel enzyme-cleavable linker, and a topoisomerase I inhibitor payload. We assessed its safety and tolerability in patients with advanced breast and gastric or gastro-oesophageal tumours. This was an open-label, dose-escalation phase 1 trial done at two study sites in Japan. Eligible patients were at least 20 years old with breast or gastric or gastro-oesophageal carcinomas refractory to standard therapy regardless of HER2 status. Participants received initial intravenous doses of trastuzumab deruxtecan from 0·8 to 8·0 mg/kg and dose-limiting toxicities were assessed over a 21-day cycle; thereafter, dose reductions were implemented as needed and patients were treated once every 3 weeks until they had unacceptable toxic effects or their disease progressed. Primary endpoints included identification of safety and the maximum tolerated dose or recommended phase 2 dosing and were analysed in all participants who received at least one dose of study drug. The dose-escalation study is the first part of a two-part study with the second dose-expansion part ongoing and enrolling patients as of July 8, 2017, in Japan and the USA. This trial is registered at ClinicalTrials.gov, number NCT02564900. Between Aug 28, 2015, and Aug 26, 2016, 24 patients were enrolled and received trastuzumab deruxtecan (n=3 for each of 0·8, 1·6, 3·2, and 8·0 mg/kg doses; n=6 for each of 5·4 and 6·4 mg/kg). Up to the study cutoff date of Feb 1, 2017, no dose-limiting toxic effects, substantial cardiovascular toxic effects, or deaths occurred. One patient was removed from the activity analysis because they

  20. High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Andrew V Oleinikov

    2009-04-01

    Full Text Available Plasmodium falciparum-infected erythrocytes bind endothelial receptors to sequester in vascular beds, and binding to ICAM1 has been implicated in cerebral malaria. Binding to ICAM1 may be mediated by the variant surface antigen family PfEMP1: for example, 6 of 21 DBLbetaC2 domains from the IT4 strain PfEMP1 repertoire were shown to bind ICAM1, and the PfEMP1 containing these 6 domains are all classified as Group B or C type. In this study, we surveyed binding of ICAM1 to 16 DBLbetaC2 domains of the 3D7 strain PfEMP1 repertoire, using a high throughput Bioplex assay format. Only one DBL2betaC2 domain from the Group A PfEMP1 PF11_0521 showed strong specific binding. Among these 16 domains, DBL2betaC2(PF11_0521 best preserved the residues previously identified as conserved in ICAM1-binding versus non-binding domains. Our analyses further highlighted the potential role of conserved residues within predominantly non-conserved flexible loops in adhesion, and, therefore, as targets for intervention. Our studies also suggest that the structural/functional DBLbetaC2 domain involved in ICAM1 binding includes about 80 amino acid residues upstream of the previously suggested DBLbetaC2 domain. DBL2betaC2(PF11_0521 binding to ICAM1 was inhibited by immune sera from east Africa but not by control US sera. Neutralizing antibodies were uncommon in children but common in immune adults from east Africa. Inhibition of binding was much more efficient than reversal of binding, indicating a strong interaction between DBL2betaC2(PF11_0521 and ICAM1. Our high throughput approach will significantly accelerate studies of PfEMP1 binding domains and protective antibody responses.