WorldWideScience

Sample records for bismuth-modified zeolite doped

  1. Growth of Li doped bismuth oxide nanorods and its electrochemical performance for the determination of L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong, E-mail: yongwen1982@163.com [School of Civil Engineering and Architecture, Xinjiang University (China); Pei, Li-zhai; Wei, Tian [chool of Materials Science and Engineering, Anhui University of Technology (China)

    2017-05-15

    Li doped bismuth oxide nanorods have been prepared using sodium bismuthate and Li acetate. X-ray diffraction (XRD) pattern shows that the nanorods are composed of monoclinic Bi{sub 2}O{sub 4} and cubic LiBi{sub 12}O{sub 18.50} phases. Scanning electron microscopy (SEM) observation shows that the nanorods have the length and diameter of 1-5 μm and 50-350 nm, respectively. The formation of the Li doped bismuth oxide nanorods is closely relative to the hydrothermal conditions. The electrochemical performance for the determination of L-cysteine based on a Li doped bismuth oxide nanorods modified glassy carbon electrode (GCE) has been developed. The CV peak current increases obviously and linearly with increasing the scan rate. Under the optimal conditions, Li doped bismuth oxide nanorods modified GCE exhibits good analytical performance with good reproducibility and stability. The linear range of L-cysteine is 0.0001-2 mM and the detection limit is 0.36 μM and 0.17 μM for cvp1 and cvp2, respectively. (author)

  2. Growth of Li doped bismuth oxide nanorods and its electrochemical performance for the determination of L-cysteine

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Li-zhai; Wei, Tian

    2017-01-01

    Li doped bismuth oxide nanorods have been prepared using sodium bismuthate and Li acetate. X-ray diffraction (XRD) pattern shows that the nanorods are composed of monoclinic Bi_2O_4 and cubic LiBi_1_2O_1_8_._5_0 phases. Scanning electron microscopy (SEM) observation shows that the nanorods have the length and diameter of 1-5 μm and 50-350 nm, respectively. The formation of the Li doped bismuth oxide nanorods is closely relative to the hydrothermal conditions. The electrochemical performance for the determination of L-cysteine based on a Li doped bismuth oxide nanorods modified glassy carbon electrode (GCE) has been developed. The CV peak current increases obviously and linearly with increasing the scan rate. Under the optimal conditions, Li doped bismuth oxide nanorods modified GCE exhibits good analytical performance with good reproducibility and stability. The linear range of L-cysteine is 0.0001-2 mM and the detection limit is 0.36 μM and 0.17 μM for cvp1 and cvp2, respectively. (author)

  3. Theoretical study of bismuth-doped cadmium telluride

    Science.gov (United States)

    Menendez-Proupin, E.; Rios-Gonzalez, J. A.; Pena, J. L.

    Cadmium telluride heavily doped with bismuth has been proposed as an absorber with an intermediate band for solar cells. Increase in the photocurrent has been shown recently, although the overall cell efficiency has not improved. In this work, we study the electronic structure and the formation energies of the defects associated to bismuth impurities. We have performed electronic structure calculations within generalized density functional theory, using the exchange-correlation functional HSE(w) , where the range-separation parameter w has been tuned to reproduce the CdTe bandgap. Improving upon previous reports, we have included the spin-orbit interaction, which modifies the structure of the valence band and the energy levels of bismuth. We have found that interstitial Bi (Bii) tends to occupy Cd vacancies, cadmium substitution (BiCd) creates single donor level, while tellurium substitution (BiTe) is a shallow single acceptor. We investigate the interaction between these point defects and how can they be combined to create a partially filled intermediate band. Supported by FONDECYT Grant 1130437, CONACYT-SENER SUSTENTABILIDAD ENERGETICA/project CeMIE-Sol PY-207450/25 and PY-207450/26. JARG acknowledges CONACYT fellowship for research visit. Powered@NLHPC (ECM-02).

  4. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses.......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...

  5. Mercury-free sono-electroanalytical detection of lead in human blood by use of bismuth-film-modified boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kruusma, Jaanus [Institute of Physical Chemistry, University of Tartu, Jakobi 2, 51013, Tartu (Estonia); Banks, Craig E.; Compton, Richard G. [Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QZ, Oxford (United Kingdom)

    2004-06-01

    We report the electroanalytical determination of lead by anodic stripping voltammetry at in-situ-formed, bismuth-film-modified, boron-doped diamond electrodes. Detection limits in 0.1 mol L{sup -1} nitric acid solution of 9.6x10{sup -8} mol L{sup -1} (0.2 ppb) and 1.1x10{sup -8} mol L{sup -1} (2.3 ppb) were obtained after 60 and 300 s deposition times, respectively. An acoustically assisted deposition procedure was also investigated and found to result in improved limits of detection of 2.6 x 10{sup -8} mol L{sup -1} (5.4 ppb) and 8.5 x 10{sup -10} mol L{sup -1} (0.18 ppb) for 60 and 300 s accumulation times, respectively. Furthermore, the sensitivity obtained under quiescent and insonated conditions increased from 5.5 (quiescent) to 76.7 A mol{sup -1} L (insonated) for 60 s accumulation and from 25.8 (quiescent) to 317.6 A mol{sup -1} L (insonated) for 300 s accumulation. Investigation of the use of ultrasound with diluted blood revealed detection limits of the order of 10{sup -8} mol L{sup -1} were achievable with excellent inter- and intra-reproducibility and sensitivity of 411.9 A mol{sup -1} L. For the first time, electroanalytical detection of lead in diluted blood is shown to be possible by use of insonated in-situ-formed bismuth-film-modified boron-doped diamond electrodes. This method is a rapid, sensitive, and non-toxic means of clinical sensing of lead in whole human blood. (orig.)

  6. Metal doped green zeolites for water treatment a sustainable remediation model

    International Nuclear Information System (INIS)

    Tabassum, N.; Rafique, U.

    2016-01-01

    The synthesis of zeolites from refused materials presents a greener model for environmental remediation. The present study offers a novel procedure to synthesize not only the basic framework but also Vanadium modified polymeric zeolites. The spent polythene bags, lunch boxes, and packaging are used as raw material for synthesis of zeolites. Characterization through EDX showed incorporation of vanadium is more than 35%, exhibiting FTIR frequencies in the range 601-995cm-1. Thermogravimetric (TG) analysis revealed a stabilizing effect of zeolites on addition of dopant upto 320 degree C as determined by higher residue percentage (> 98%). Vanadium doped synthesized zeolites (MP1, MP2, MP3) were applied in batch adsorption experiments for in-situ (synthetic metal salt solution) and ex-situ (industrial effluents) removal of metals (Pb, Cr, and Cd). Adsorption results indicated the successful metal removal of more than 90% in the sequence Pb > Cd > Cr. The sequence follows, higher is the ionic radius of the metal cation, more is the adsorption on zeolites. Application of adsorption isotherms demonstrated fitness of Freundlich and Temkin models, whereas pseudo first order kinetics depicts metal removal. The study concludes that synthesized zeolites are suitable candidates with improvised green economy for industrial sector to treat effectively industrial discharges. (author)

  7. Disposable screen-printed bismuth electrode modified with multi-walled carbon nanotubes for electrochemical stripping measurements.

    Science.gov (United States)

    Niu, Xiangheng; Zhao, Hongli; Lan, Minbo

    2011-01-01

    Integrating the advantages of screen printing technology with the encouraging electroanalytical characteristic of metallic bismuth, we developed an ultrasensitive and disposable screen-printed bismuth electrode (SPBE) modified with multi-walled carbon nanotubes (MWCNTs) for electrochemical stripping measurements. Metallic bismuth powders and MWCNTs were homogeneously mixed with graphite-carbon ink to mass-prepare screen-printed bismuth electrode doped with multi-walled carbon nanotubes (SPBE/MWCNT). The electroanalytical performance of the prepared SPBE/MWCNT was intensively evaluated by measuring trace Hg(II) with square-wave anodic stripping voltammetry (SWASV). The results indicated that the SPBE modified with 2 wt% MWCNTs could offer a more sensitive response to trace Hg(II) than the bare SPBE. The stripping current obtained at SPBE/MWCNT was linear with Hg(II) concentration in the range from 0.2 to 40 µg/L (R(2) = 0.9976), with a detection limit of 0.09 µg/L (S/N = 3) under 180 s accumulation. The proposed "mercury-free" electrode, with extremely simple preparation and ultrahigh sensitivity, holds wide application prospects in both environmental and industrial monitoring. 2011 © The Japan Society for Analytical Chemistry

  8. Prognostic Value of Bismuth Typing and Modified T-stage in Hilar Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Shengen Yi

    2015-01-01

    Conclusion: The majority of our patients with HCC were characterized as Subtype IV in Bismuth typing and Stage T3 in modified T-stage. Both Bismuth typing and modified T-stage showed prognostic value in HCC. Compared with Bismuth typing, modified T-stage is a better indicator of the resectability of HCC.

  9. Iodine Gas Trapping using Granular Porous Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    {sup 129}I is a radionuclide with a very long half-life of 1.57 Χ 10{sup 7} years and has negative health effects to the human body. Therefore, the emission of {sup 129}I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous {sup 129}I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing {sup 129}I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping {sup 129}I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling.

  10. Iodine Gas Trapping using Granular Porous Bismuth

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il; Yim, Mansung

    2014-01-01

    129 I is a radionuclide with a very long half-life of 1.57 Χ 10 7 years and has negative health effects to the human body. Therefore, the emission of 129 I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous 129 I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing 129 I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping 129 I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling

  11. Effects of crystallite structure and interface band alignment on the photocatalytic property of bismuth ferrite/ (N-doped) graphene composites

    International Nuclear Information System (INIS)

    Li, Pai; Chen, Qiang; Lin, Yinyin; Chang, Gang; He, Yunbin

    2016-01-01

    Bismuth ferrite/graphene (N-doped graphene) photocatalysts are successfully prepared by a facile and effective two-step hydrothermal method. Bismuth ferrite/graphene shows superior photocatalytic activity compared with bismuth ferrite/N-doped graphene and pure BiFeO 3 . X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy analyses indicate that Bi 25 FeO 40 crystalline phase is obtained with the addition of graphene, while BiFeO 3 is formed under the same hydrothermal conditions in the presence of N-doped graphene. Core-level and valence-band X-ray photoelectron spectroscopy analyses reveal a downward band bending of bismuth ferrite (∼0.5 eV) at the interface of the bismuth ferrite/(N-doped) graphene composites, which facilitates the electron transfer from bismuth ferrite to (N-doped) graphene and suppresses the recombination of photo-generated electron–hole pairs. This downward bending band alignment at the interface supposes to be the main mechanism underlying the enhanced photocatalytic activity of the bismuth ferrite/graphene composites that are currently of great interest in the photocatalysis field. - Highlights: • Bismuth ferrite/(N-doped) graphene composites were prepared by a hydrothermal method. • Bi 25 FeO 40 and BiFeO 3 were obtained with presence of graphene and N-graphene, respectively. • Bi 25 FeO 40 /graphene shows superior photocatalytic activity over BiFeO 3 and BiFeO 3 /N-graphene. • A downward band bending (∼0.5 eV) of bismuth ferrite exists at the composites interface. • The downward band bending supposes to be the mechanism for the enhanced photocatalytic activity.

  12. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    Science.gov (United States)

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  13. Defluorination of drinking water using surfactant modified zeolites ...

    African Journals Online (AJOL)

    This study focused on the removal of fluoridefrom groundwater by employing surfactant modified zeolites (SMZ) synthesized using locallyavailable kaolin material as precursor. The zeolite synthesis involved calcination of kaolin, alkaline fusion and hydrothermal treatment. The final product was modified with 5g/L ...

  14. Removal of pyridine and quinoline by bio-zeolite composed of mixed degrading bacteria and modified zeolite

    International Nuclear Information System (INIS)

    Bai Yaohui; Sun Qinghua; Xing Rui; Wen Donghui; Tang Xiaoyan

    2010-01-01

    In the process of the biodegradation of pyridine and quinoline, ammonium is often generated because of the transformation of N from pyridine and quinoline. Zeolite has been proven to be an effective sorbent for the removal of the ammonium. The natural zeolite can be modified to be the macroporous carrier in the biological wastewater treatment process. In this study, a specific bio-zeolite composed of mixed bacteria (a pyridine-degrading bacterium and a quinoline-degrading bacterium) and modified zeolite was used for biodegradation and adsorption in two types of wastewater: sterile synthetic and coking wastewater. The experimental results indicated that pyridine and quinoline could be degraded simultaneously by the mixed bacteria. Furthermore, NH 4 + -N transformed from pyridine and quinoline could be removed by the modified zeolite. In addition, the bacterial community structures of the coking wastewater and the bio-zeolite were monitored by the amplicon length heterogeneity polymerase-chain reaction (LH-PCR) technique. Both LH-PCR results and scanning electron microscope (SEM) observations indicated that the microorganisms, including BW001 and BW003, could be easily attached on the surface of the modified zeolite and that the bio-zeolite could be used in the treatment of wastewater containing pyridine and/or quinoline.

  15. ADSORPSI POLUTAN ION DIKROMAT MENGGUNAKAN ZEOLIT ALAM TERMODIFIKASI AMINA (Adsorption of Dichromate Ions Pollutant Using Ammine Modified-Natural Zeolites

    Directory of Open Access Journals (Sweden)

    Eko Sri Kunarti

    2015-11-01

    24,66 kJ/mol. ABSTRACT Chromium (VI is a heavy metal pollutant that is harmful to health and the environment, therefore Cr(VI ions in aqueous solution removal is important to overcome the environmental pollution. Adsorption process is one of simple techniques that can be used to take metal ions. Adsorption study of dichromate ions as a wastewater model of Cr(VI has been conducted in this research by using ammine modified natural zeolite as adsorbents. The research was initiated by preparation of adsorbent of ammine-modified natural zeolites. The preparation was started by washing the natural zeolite (Z using distilled water and refluxing by 3M hydrochloric acid. Refluxed zeolites (ZA were modified by a quaternary ammonium salt, N-cethyl-N,N,N-trimethylammonium bromide (CTAB, and a primary amine, propylamine (PA. The natural zeolite (Z, acid activated zeolite (ZA and amine-modified zeolites were then applied for adsorption of dichromate ions. Characterization of zeolite samples was performed by infrared spectroscopy and X-ray diffraction methods to confirm the crystal structure, and atomic absorption spectroscopy method to analyze the adsorbed dichromate ions. Results showed that all zeolite samples contain clinoptilolite, mordernite and quartz minerals. The zeolite structure was not changed by heat and chemical treatments. Modification of zeolites enhanced the adsorption efficiency of natural zeolites. The dichromate ions were better adsorbed on ammine modified-zeolites compared to that of unmodified-zeolite with adsorption ability of CTAB modified zeolite (CTAB-Z was greater than that of propylammine modified zeolite (PA-Z. The adsorption of dichromate on zeolite samples was achieved in the order of CTAB-Z > PA-Z > ZA > Z, with the adsorption efficiency was about 1.96; 1.74; 0.90 and 0.48 mg/g, respectively. The dichromate ions adsorption by CTAB modified zeolite is chemical adsorption (chemisorption with the adsorption energy of 24.66 kJ/mol.

  16. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  17. Synthesis and structural characterization of Ce-doped bismuth titanate

    International Nuclear Information System (INIS)

    Pavlovic, Nikolina; Srdic, Vladimir V.

    2009-01-01

    Ce-modified bismuth titanate nanopowders Bi 4-x Ce x Ti 3 O 12 (x ≤ 1) have been synthesized using a coprecipitation method. DTA/TG, FTIR, XRD, SEM/EDS and BET methods were used in order to investigate the effect of Ce-substitution on the structure, morphology and sinterability of the obtained powders. The phase structure investigation revealed that after calcinations at 600 deg. C powder without Ce addition exhibited pure bismuth titanate phase; however, powders with Ce (x = 0.25, 0.5 and 0.75) had bismuth titanate pyrochlore phase as the second phase. The strongest effect of Ce addition on the structure was noted for the powder with the highest amount of Ce (x = 1) having a cubic pyrochlore structure. The presence of pure pyrochlore phase was explained by its stabilization due to the incorporation of cerium ions in titanate structure. Ce-modified bismuth titanate ceramic had a density over 95% of theoretical density and the fracture in transgranular manner most probably due to preferable distribution of Ce in boundary region

  18. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  19. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth doped germanate laser glass

    DEFF Research Database (Denmark)

    Wang, L.P.; Tan, L.L.; Yue, Yuanzheng

    2016-01-01

    As a new member of laser glass family, bismuth-doped glasses have received rising interests due to the application of fiber amplifiers and laser sources in the new spectral range for the next-generation optical communication system. For practical application of the glasses, it must be considered ...

  20. Doping of germanium telluride with bismuth tellurides

    International Nuclear Information System (INIS)

    Abrikosov, N.Kh.; Karpinskij, O.G.; Makalatiya, T.Sh.; Shelimova, L.E.

    1981-01-01

    Effect of germanium telluride doping with bismuth fellurides (Bi 2 Te 3 ; BiTe; Bi 2 Te) on phase transition temperature, lattice parameters and electrophysical properties of alloys is studied. It is shown that in alloys of GeTe-Bi 2 Te 3 (BiTe)(Bi 2 Te) cross sections solid solution of GeTe with Bi 2 Te 3 , characterized by deviation from stoichiometry, and germanium in the second phase the quantity of which increases during the transition from GeTe-Bi 2 Te 3 cross section to GeTe-Bi 2 Te are in equilibrium. Lower values of holes concentration and of electric conductivity and higher values of thermo e.m.f. coefficient in comparison with alloys of GeTe-Bi 2 Te 3 cross section with the same bismuth content are characterized for GeTe-Bi 2 Te cross section alloys. It is shown that in the range of GeTe-base solid solution the α→γ phase transformation which runs trough the two-phase region (α→γ) is observed with tellurium content increase. Extension of α-phase existence region widens with the bismuth content increase. Peculiarities of interatomic interaction in GeTe-base solid solutions with isovalent and heterovalent cation substitution are considered [ru

  1. Synthesis and characterization of zeolite material from coal ashes modified by surfactant

    International Nuclear Information System (INIS)

    Fungaro, D.A.; Borrely, S.I.

    2010-01-01

    Coal ash was used as starting material for zeolite synthesis by means of hydrothermal treatment. The surfactant-modified zeolite (SMZ) was prepared by adsorbing the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br) on the external surface of the zeolite from coal ash. The zeolite structure stability was monitored during the characterization of the materials by FTIR, XDR and SEM. The structural parameters of surfactant-modified zeolite are very close to that of corresponding non-modified zeolite which indicates that the crystalline nature of the zeolite remained intact after required chemical treatment with HDTMA-Br molecules and heating treatment for drying. The most intense peaks in the FTIR spectrum of HDTMA-Br were observed in SMZ spectrum confirming adsorption of surfactant on zeolites. (author)

  2. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  3. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    International Nuclear Information System (INIS)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-01-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  4. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Muhammad, E-mail: muhammad.ayoub@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak, Malaysia and School of Chemical Engineering, Universiti Sains Malaysia, 43000, Pinang (Malaysia); Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my [School of Chemical Engineering, Universiti Sains Malaysia, 43000, Pinang (Malaysia); Inayat, Abrar, E-mail: abrar.inayat@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  5. Effect of cadmium doping on some properties of glass-insulated bismuth-based microwires

    International Nuclear Information System (INIS)

    Meglei, D.; Dyntu, M.

    2011-01-01

    Full text: According to the literature, semiconductor converters based on films and wire crystals are widely used in present-day microelectronics. However, the production of efficient semiconductor converters requires crystals of high structural perfection with a given composition and desired electrical and mechanical properties. In this work, we describe the study of the perfection of the microstructure and mechanical properties of glass-insulated microwires based on Bi doped with cadmium (Cd) and the technique of preparation of micro resistors suitable for instrumentation applications. Microscopic studies of ground, polished, and chemically etched microwires doped with cadmium showed that they have smooth cylindrical surfaces in the entire range of diameters. Sizes of defects in the form of micropores, microcracks, dislocations, and twins on their surface are much smaller than those of pure bismuth microwire. It is also found that the tendency to twinning and the number and size of surface defects decrease with decreasing diameters; at the same time, their homogeneity increases. The tensile strength of the studied microwires with glass insulation is high for all tested diameters and ranges within 33.274.1 kg/mm with respect to internal diameters of 5.6 21.2 m; in addition, they withstand a breaking force up to 130 g and more, whereas the samples of pure bismuth microwires withstood a force up to 80 g. It is also found that the tensile strength of cadmium doped microwires is significantly higher than that of undoped samples. The bending strength as a measure of elasticity was determined using a special installation according to the critical bending radius of the sample at which the sample integrity is violated. The results of bending tests showed that, with increasing diameter of the doped samples, the critical radius linearly increases; that is, in this case, the elasticity increases with decreasing diameter. Metallographic analysis revealed that cadmium in the

  6. Donor impurity self-compensation by neutral complexes in bismuth doped lead telluride

    International Nuclear Information System (INIS)

    Ravich, Yu.I.; Nemov, S.A.; Proshin, V.I.

    1994-01-01

    Self-compensation is calculated of impurity doping action in semiconductors of the A 4 B 6 type by neutral complexes, consisting of a vacancy and two impurity atoms. Complexes entropy is estimated and the thermodynamic potential is minimized in the concentration of single two-charge vacancies and complexes. Calculation results are compared with experimental data, obtained when lead telluride doping by bismuth. Account for complex formation improves agreement theory with experiment. 4 refs., 1 fig

  7. Spectroscopic properties of 1.8 μm emission in Tm3+ doped bismuth silicate glass

    International Nuclear Information System (INIS)

    Zhao, Guoying; Tian, Ying; Wang, Xin; Fan, Huiyan; Hu, Lili

    2013-01-01

    The emission properties around 1.8 μm in Tm 3+ doped bismuth silicate glass have been investigated. Based on the obtained Raman spectroscopy and differential scanning calorimetry curves, it is found the introduced Bi 2 O 3 can efficiently reduce the phonon energy of silicate glass to 926 cm −1 . The energy gap between glass transition temperature and onset temperature of crystallization is 169 °C. The OH − content maintains lower in glass by bubbling dry O 2 during the melting process. The cut-off wavelength in mid-infrared range is as long as 5 μm. Bismuth silicate glass has high radiative transition probability of 238.80 s −1 corresponding to the Tm 3+ : 3 F 4 → 3 H 6 transition compared with conventional silicate glasses. The strongest emission at 1.8 μm with a large full width at half-maximum of 238 nm is achieved from this bismuth silicate glass doped with 0.9 mol% Tm 2 O 3 . Its fluorescence lifetime at 1.8 μm is 640 μs. - Highlights: ► The 1.8 μm fluorescence of Tm 3+ -doped bismuth silicate glass is investigated. ► The prepared glass has lower phonon energy than other typical silicate glasses. ► A broadband 1.8 μm emission with the FWHM of 238 nm is observed. ► The fluorescence lifetime of Tm 3+ : 3 F 4 level reaches 640 μs.

  8. [Preparation of HDTMA-modified Zeolite and Its Performance in Nitro-phenol Adsorption from Wastewaters].

    Science.gov (United States)

    Guo, Jun-yuan; Wang, Bin

    2016-05-15

    In this study, natural zeolite was modified by HDTMA. Effects of the modified conditions, HDTMA-modified zeolite doses, solution pH values, and reaction time on nitro-phenol removal were investigated, and the adsorption kinetics and isotherms were discussed. Compared with natural zeolite, HDTMA-modified zeolite showed better performance in nitro-phenol removal. An adsorption capacity of 2.53 mg · g⁻¹ was achieved when the concentration of HDTMA solution (pH = 10) was 1.2% in preparation of modified zeolite. This adsorption capacity was higher than that obtained by natural zeolite (0.54 mg · g⁻¹). In adsorption tests, when HDTMA- modified zeolite dose was adjusted to 8 g · L⁻¹, the removal efficiency of nitro-phenol reached 93.9% after 90 min reaction, with wastewater pH of 6. Furthermore, the nitro-phenol adsorption process could be well fitted to the pseudo-first-order kinetics model (R² > 0.90), whereas the adsorption isotherm results indicated that Langmuir model provided the best fitting for the equilibrium data at different temperatures, with R² of higher than 0.90.

  9. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    Science.gov (United States)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Red light emission from europium doped zinc sodium bismuth borate glasses

    Science.gov (United States)

    Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.

    2017-12-01

    Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.

  11. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    International Nuclear Information System (INIS)

    Zheng, Dahuai; Yao, Jiaying; Kong, Yongfa; Liu, Shiguo; Zhang, Ling; Chen, Shaolin; Xu, Jingjun

    2015-01-01

    Bismuth-doped lithium niobate (LN:Bi) crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi) reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm 2 ). An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals

  12. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dahuai; Yao, Jiaying [School of Physics, Nankai University, Tianjin 300071 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Kong, Yongfa, E-mail: kongyf@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China); MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China); R and D Center, Taishan Sports Industry Group, Leling 253600 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Liu, Shiguo [School of Physics, Nankai University, Tianjin 300071 (China); Zhang, Ling; Chen, Shaolin [MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China); Xu, Jingjun [School of Physics, Nankai University, Tianjin 300071 (China); MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2015-01-15

    Bismuth-doped lithium niobate (LN:Bi) crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi) reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm{sup 2}). An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals.

  13. Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass.

    Science.gov (United States)

    Guo, Yanyan; Li, Ming; Hu, Lili; Zhang, Junjie

    2012-01-15

    The 2.7 μm emission properties in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass were investigated in the present Letter. An intense 2.7 μm emission in Er3+-doped bismuthate glass was observed. It is found that Er3+-doped bismuthate glass possesses high spontaneous transition probability A (65.26 s(-1)) and large 2.7 μm emission cross section σ(em) (9.53×10(-21) cm2) corresponding to the stimulated emission of Er3+:4I11/2→4I13/2 transition. The emission characteristic and energy transfer process upon excitation of a conventional 980 nm laser diode in bismuthate glass were analyzed. Additionally, the structure of bismuthate glass was analyzed by the Raman spectrum. The advantageous spectroscopic characteristics of Er3+ single-doped bismuthate glass together with the prominent thermal property indicate that bismuthate glass might become an attractive host for developing solid-state lasers around 2.7 μm.

  14. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride.

    Science.gov (United States)

    Krajišnik, Danina; Daković, Aleksandra; Milojević, Maja; Malenović, Anđelija; Kragović, Milan; Bogdanović, Danica Bajuk; Dondur, Vera; Milić, Jela

    2011-03-01

    In this study an investigation of a model drug sorption onto cationic surfactant-modified natural zeolites as a drug formulation excipient was performed. Natural zeolite was modified with cetylpyridinium chloride in amounts equivalent to 100, 200 and 300% of its external cation-exchange capacity. The starting material and obtained organozeolites were characterized by Fourier transform infrared spectroscopy, zeta potential measurements and thermal analysis. In vitro sorption of diclofenac sodium as a model drug was studied for all surfactant/zeolite composites by means of sorption isotherm measurements in aqueous solutions (pH 7.4). The modified zeolites with three levels of surfactant coverage within the short activation time were prepared. Zeta potential measurements and thermal analysis showed that when the surfactant loading level was equal to external cation-exchange value, almost monolayer of organic phase were present at the zeolitic surface while higher amounts of surfactant produced less extended bilayers, ordered bilayers or admicelles at the zeolitic surface. Modified zeolites, obtained in this manner, were effective in diclofenac sodium sorption and the organic phase derived from adsorbed cetylpyridinium chloride was the primary sorption phase for the model drug. The Langmuir isotherm was found to describe the equilibrium sorption data well over the entire concentration range. The separate contributions of the adsorption and partition to the total sorption of DS were analyzed mathematically. Results revealed that that adsorption and partitioning of the model drug take place simultaneously. 2010 Elsevier B.V. All rights reserved.

  15. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Salleh, Muhamad Mat; Chen, Xiaomei; Oyama, Munetaka

    2016-01-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m -1 K -2 ) and 10 μV/K (and 19.5 μW m -1 K -2 ), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  16. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zheng, Bin; Zheng, Xiaohong; Wang, Jingtao; Yuan, Weikang; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2007-11-15

    Hybrid membranes composed of chitosan (CS) as organic matrix and surface-modified Y zeolite as inorganic filler are prepared and their applicability for DMFC is demonstrated by methanol permeability, proton conductivity and swelling property. Y zeolite is modified using silane coupling agents, 3-aminopropyl-triethoxysilane (APTES) and 3-mercaptopropyl-trimethoxysilane (MPTMS), to improve the organic-inorganic interfacial morphology. The mercapto group on MPTMS-modified Y zeolite is further oxidized into sulfonic group. Then, the resultant surface-modified Y zeolites with either aminopropyl groups or sulfonicpropyl groups are mixed with chitosan in acetic acid solution and cast into membranes. The transitional phase generated between chitosan matrix and zeolite filler reduces or even eliminates the nonselective voids commonly exist at the interface. The hybrid membranes exhibit a significant reduction in methanol permeability compared with pure chitosan and Nafion117 membranes, and this reduction extent becomes more pronounced with the increase of methanol concentration. By introducing -SO{sub 3}H groups onto zeolite surface, the conductivity of hybrid membranes is increased up to 2.58 x 10{sup -2} S cm{sup -1}. In terms of the overall selectivity index ({beta} = {sigma}/P), the hybrid membrane is comparable with Nafion117 at low methanol concentration (2 mol L{sup -1}) and much better (three times) at high methanol concentration (12 mol L{sup -1}). (author)

  17. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    International Nuclear Information System (INIS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Highlights: • Bi_2Se_3 and Ni doped Bi_2Se_3 were synthesized by solvothermal approach. • Presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement. • Complete degradation of malachite green (MG) dye was achieved by Ni doped Bi_2Se_3 with H_2O_2. • Remarkable photo-catalytic degradation by doped bismuth selenide has been explained. • Scavenger tests show degradation of MG is mainly dominated by ·OH oxidation process. - Abstract: Bismuth selenide (Bi_2Se_3) and nickel (Ni) doped Bi_2Se_3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi_2Se_3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi_2Se_3 sample exhibited higher photo-catalytic activity than that of the pure Bi_2Se_3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi_2Se_3 in presence of hydrogen peroxide (H_2O_2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  18. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    International Nuclear Information System (INIS)

    Bowman, R.S.; Sullivan, E.J.

    1995-01-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost (∼$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs + or Ca 2+ ), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb 2+ ) via ion exchange and surface complexation, and inorganic anions (CrO 4 2- , SeO 4 2- , SO 4 2- ) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants

  19. Bismuth-doped fibre amplifier operating between 1600 and 1800 nm

    Energy Technology Data Exchange (ETDEWEB)

    Firstov, S V; Alyshev, S V; Riumkin, K E; Mel' kumov, M A; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Khopin, V F; Gurjanov, A N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2015-12-31

    We report the first bismuth-doped fibre amplifier operating between 1600 and 1800 nm, which utilises bidirectional pumping (co-propagating and counter-propagating pump beams) by laser diodes at a wavelength of 1550 nm. The largest gain coefficient of the amplifier is 23 dB, at a wavelength of 1710 nm. It has a noise figure of 7 dB, 3-dB gain bandwidth of 40 nm and gain efficiency of 0.1 dB mW{sup -1}. (letters)

  20. Synthesis and Evaluation of Zeolite Surface-Modified Perlite

    Directory of Open Access Journals (Sweden)

    Kasai Makoto

    2017-01-01

    Full Text Available Perlite is volcanic glass mainly composed of amorphous aluminum silicate, mainly composed SiO2 and Al2O3 with less impurities such as heavy metals. Amorphous (glassy perlite is used in lightweight aggregate and insulation. In addition, it has also been used as a filter aid by grinding the expanded perlite. However, it has not been used as environmental cleanup materials, because the ion exchange capacity of the perlite is very low. In this study, we tried to synthesize the hybrid filter aid with chemical adsorption capacity by synthesizing the zeolite on the surface of the perlite. As a result, by using the hydrothermal synthesis method, zeolite surface modified perlite was synthesized in which the LTA type zeolites were generated on the surface of the perlite.

  1. Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light

    International Nuclear Information System (INIS)

    Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.; Kamalakkannan, J.; Prabha, S.; Senthilvelan, S.

    2013-01-01

    Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuth nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed

  2. Removal of heavy metals from water by zeolite mineral chemically modified. Mercury as a particular case

    International Nuclear Information System (INIS)

    Gebremedhin H, T.

    2002-01-01

    Research works on the removal of mercury from water by zeolite minerals show that a small quantity of this element is sorbed. In this work the mercury sorption from aqueous solutions in the presence and absence of Cu(l l), Ni(l l) and/or Zn(l l) by a Mexican zeolite mineral, natural and modified by cisteaminium chloride or cistaminium dichloride, was investigated in acidic p H. The zeolite minerals were characterized by X- Ray diffraction Ftir, scanning electron microscopy and semiquantitative elemental analysis (EDS), surface area analysis (BET) and thermogravimetric analysis (TGA). Mercury from aqueous solutions was quantified by Atomic absorption spectroscopy. The amount of sulphur on the zeolite samples treated with Na CI and modified with cisteaminium chloride (0.375 mmol/g) or cistaminium dichloride(0.475 mmol/g) was found to be higher than that of the zeolite minerals modified with cisteaminium chloride and cistaminium dichloride without treating them with Na CI. The amount of sulphur on the zeolite minerals modified with thiourea was the lowest. The diffusion coefficients and sorption isotherms for mercury were determined in the natural, treated with Na CI and, treated with Na CI and then modified with the cisteaminium chloride or cistaminium dichloride zeolite samples. The retention of mercury was the highest for the zeolite minerals treated Na CI and then modified with cisteaminium chloride or cistaminium dichloride, with adsorption capacity of 0.0511 and 0.0525 mmol Hg/g, respectively. In this research work, it was found that the retention of mercury by the modified minerals was not affected by the presence of Cu (Il), Zn(l l) y Ni (I l) under the experimental conditions. (Author)

  3. Characterization of modified zeolite as microbial immobilization media on POME anaerobic digestion

    Science.gov (United States)

    Cahyono, Rochim B.; Ismiyati, Sri; Ginting, Simparmin Br; Mellyanawaty, Melly; Budhijanto, Wiratni

    2018-03-01

    As the world’s biggest palm oil producer, Indonesia generates also huge amount of Palm Oil Mill Effluent (POME) wastewater and causes serious problem in environment. In conventional method, POME was converted into biogas using lagoon system which required extensive land area. Anaerobic Fluidized Bed Reactor (AFBR) proposes more effective biogas producing with smaller land area. In the proposed system, a immobilization media would be main factor for enhancing productivity. This research studied on characterization of Lampung natural zeolite as immobilization media in the AFBR system for POME treatment. Various activation method such as physical and chemical were attempted to create more suitable material which has larger surface area, pore size distribution as well as excellent surface structures. The physical method was applied by heating up the material till 400°C while HCl was used on the chemical activation. Based on the result, the chemical activation increased the surface area significantly into 71 m2/g compared to physical as well as original zeolite. The strong acid material was quite effective to enforce the impurities within zeolite pore structure compared to heating up the material. According to distribution data, the Lampung zeolite owned the pore size with the range of 3 – 5 μm which was mesopore material. The pore size was appropriate for immobilization media as it was smaller than size of biogas microbial. The XRD patterns verified that chemical activation could maintain the zeolite structure as the original. Obviously, the SEM photograph showed apparent structure and pore size on the modified zeolite using chemical method. The testing of modified zeolite on the batch system was done to evaluate the characterization process. The modified zeolite using chemical process resulted fast reduction of COD and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion, especially in the beginning of the process. Therefore, the

  4. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    Science.gov (United States)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  5. Performance of modified H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Hassanpour, Samaneh; Taghizadeh, Majid [Department of chemical engineering, Babol University of Technology, P.O. Box 484, 4714871167 Babol (Iran); Yaripour, Fereydoon [Catalyst Research Group, Petrochemical Research and Technology Company, National Petrochemical Company, Tehran (Iran)

    2010-10-15

    The conversion of methanol to dimethyl ether was carried out over various commercial zeolites and modified H-ZSM-5 catalysts to evaluate their catalytic performance. A series of commercially available zeolite samples were used for vapor-phase dehydration of methanol to DME. Catalyst screening tests were performed in a fixed-bed reactor under the same operating conditions (T = 300 S, P = 16 barg, WHSV = 3.8 h{sup -1}). It was found that all the H-form zeolite catalysts in this study were active and selective for DME synthesis. According to the experimental results MDHC-1 catalyst exhibited the highest activity in dehydration of methanol. After finding the most active catalyst, the H-MFI90 zeolite was modified with Na content varying from 0 to 120 mol%, via wet-impregnation method to further improve its selectivity. All of catalysts were characterized by BET, XRD, NH{sub 3}-TPD, ICP, TGA, SEM, FT-IR and TPH techniques. It was found that these materials affected activity of MDHC-1 zeolite by changing its acidity. Ultimately, among all the catalysts studied, Na{sub 100}-modified H-MFI90 zeolite exhibited optimum activity, selectivity and stability at methanol dehydration reaction. (author)

  6. Ferric chloride modified zeolite in wastewater on Cr (VI) adsorption characteristics

    Science.gov (United States)

    Wu, Xiaoqing; Zhang, Kang; Chen, Wen; Zhang, Hua

    2018-03-01

    Zeolite was modified by ferric chloride(Fe-Z) removal Cr (VI) ion from wastewater. The results showed that the effect of Cr(VI) adsorption on modified zeolite depended significantly on pH. It is favorable for the adsorption of Cr(VI) in acid condition. The Langmuir isotherm model has high fitting accuracy with experimental data, demonstrated that is monolayer adsorption and chemical adsorption.The pseudo-second-order equation provided the best correlation to the data. The model can describe the adsorption reaction process well.

  7. Adsorption and desorption of carbaryl on hexadecyl trimethyl ammonium bromide modified zeolite NaY using RGB portable photometer

    Science.gov (United States)

    Patdhanagul, Nopbhasinthu; Chanpaka, Saiphon; Intharaksa, Orapan; Sirival, Rujikarn; Thanomsith, Kannikar; Wongkwanklom, Sarayuth

    2018-04-01

    The carbaryl adsorption-desorption isotherms of zeolite NaY and hexadecyl trimethyl ammonium bromide (HTAB) modified zeolite NaY were investigated. Zeolite NaY was synthesized and modified by HTAB in the concentration range 0.1 - 10.0 mM. The adsorption isotherms indicated that zeolite modified with HTAB could significantly enhance the carbaryl adsorption capacity. Zeolite NaY modified with 5.0 mM HTAB gave great carbaryl adsorption because of hydrophilic surface. The 5.0 mM HTAB could adsorb up to 145.75 ppm g-1 of carbaryl which was equivalent to a 36.7% increase. The Surface area characterization showed the remaining of pore volume and pore size diameter and external surface area whereas the BET surface area and micropore surface area of modified zeolite slightly decreased. The XRD results indicate that modification of zeolite NaY with HTAB does not change the crystallinity of the starting zeolite. The elemental analysis indicated that the Si/Al ratio of synthesized zeolite NaY was close to 2.43. Desorption of carbaryl was tested by organic solvents such as methanol, ethanol, tetrahydrofuran, hexane and Deionized water. The results demonstrated that the percentage desorption of methanol is the highest. Carbaryl was quantitatively desorbed with percentage desorption of 82-100 %. It indicated sorption mechanism of carbaryl on the modified sorbent which was principally driven by hydrophobic forces.

  8. Synthesis and characterization of Ce doped MFI zeolite

    International Nuclear Information System (INIS)

    Kalita, Banani; Talukdar, Anup K.

    2012-01-01

    Highlights: ► Cerium was incorporated into the tetrahedral position of MFI zeolite structure. ► Unit cell volume increases with an increase of Ce content in the framework of MFI. ► A band at 310 nm in the UV–vis spectra indicates Ce incorporation in MFI structure. ► The mass loss (%) in the region 373–423 K decreases with increase of Ce in MFI. - Abstract: Ce doped MFI (mobil five) zeolites with different Si to (Ce + Al) and different Ce to Al ratios were synthesized by a hydrothermal synthesis method. All the samples were characterized by different techniques such as X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), UV–vis diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM). The results showed that almost pure MFI phase was obtained in all cases with incorporation of cerium metal into the framework. The increase in unit cell parameters observed with an increase in Ce content is indicative of incorporation of Ce into the framework structure of microporous material MFI. Corroboration of the framework incorporation of Ce into the MFI zeolite structure was also obtained from the UV–vis DRS spectra by the presence of an absorption band at 280 nm. TGA and SEM of the samples provide complementary evidence for Ce incorporation into the framework MFI structure.

  9. β-Zeolite modified by ethylenediamine for sorption of Th(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Wu, Hanyu; Yuan, Ni; Yin, Zhuoxin; Pan, Duoqiang; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Lab.; Ministry of Education, Lanzhou (China). Key Lab. of Special Function Materials and Structure Design

    2017-08-01

    β-Zeolite-EDA was modified with ethylenediamine (EDA) after synthesized. The synthesized material was characterized and used for removal of Th(IV) from aqueous solutions. The influences of pH, ionic strength, contact time, temperature and humic acid (HA) on Th(IV) sorption onto synthesized β-zeolite-EDA was studied by batch technique. The dynamic process showed that the sorption of Th(IV) onto β-zeolite-EDA matched the pseudo-second-order kinetics model. The sorption of Th(IV) on β-zeolite-EDA was significantly dependent on pH values, the sorption percentage increased markedly at pH 3.5-4.5, and then maintained a steady state as pH values increased. Through simulating the sorption isotherms by Langmuir, Freundlich and Dubini-Radushkevich (D-R) models, it could be seen respectively that the sorption pattern of Th(IV) on β-zeolite-EDA was mainly controlled by surface complexation, and that the sorption processes was endothermic and spontaneous. The presence of HA increased Th(IV) sorption on β-zeolite-EDA.

  10. Removal of lead from aqueous solutions by using the natural and Fe(III)-modified zeolite

    International Nuclear Information System (INIS)

    Kragović, Milan; Daković, Aleksandra; Sekulić, Živko; Trgo, Marina; Ugrina, Marin; Perić, Jelena; Gatta, G. Diego

    2012-01-01

    In the present study, the sorption of lead by the natural and Fe(III)-modified zeolite (clinoptilolite) is described. The characterization of the natural zeolite-rich rock and the Fe(III)-modified form was performed by chemical analysis, point of the zero charge (pH pzc ), X-ray powder diffraction, applying the Rietveld/RIR method for the quantitative phase analysis, and scanning electron microscopy. The effects of sorbents dose and the initial lead concentrations on its sorption by two sorbents were investigated. For both sorbents, it was determined that at lower initial concentrations of lead, ion exchange of inorganic cations in zeolites with lead, together with uptake of hydrogen dominated, while at higher initial lead concentrations beside these processes, chemisorption of lead occurred. Significantly higher sorption of lead was achieved with Fe(III)-modified zeolite. From sorption isotherms, maximum sorbed amounts of lead, under the applied experimental conditions, were 66 mg/g for the natural and 133 mg/g for Fe(III)-modified zeolite. The best fit of experimental data was achieved with the Freundlich model (R 2 ≥ 0.94).

  11. Characterization of natural and modified zeolites using ion beam analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico)], E-mail: andrade@fisica.unam.mx; Solis, C. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico); Aceves, J.M.; Miranda, R. [Facultad de Estudios Superiores Cuautitlan Itzcalli, Departamento de Quimica, Universidad Nacional Autonoma de Mexico, 1 de Mayo S/N, Cuatitlan Itzcalli, Edo. de Mexico, C.P. 74540 (Mexico); Cruz, J. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico); Rocha, M.F. [Escuela Superior de Ingenieria Mecanica y Electrica, Instituto Politecnico Nacional, U.P. ' Adolfo Lopez Mateos' , Zacatenco, Del. Gustavo A. Madero, Mexico D.F. 07738 (Mexico); Zavala, E.P. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico)

    2008-05-15

    Zeolites are very important materials in catalytic and industrial processes. Natural, modified and synthetic zeolites have a wide range of uses because of their good adsorption, ion exchange capacity and catalytic properties. Mexico is an import source of natural zeolites, however their utilization in the natural form is limited due to the presence of trace metallic impurities. For example, metals such as vanadium and chromium inhibit the elimination of sulfur in hydrocarbons. Therefore, it is important to know the precise composition of the zeolite material. In this work, we report the elemental characterization of zeolites using various IBA techniques. {sup 3}He{sup +} and {sup 2}H{sup +} beams were used to measure the major element concentrations (Si, Al, O, C) by RBS and NRA. PIXE and SEM-EDS were used to measure the total trace element content (V, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Pb, etc). Additionally, XRD was used to study the zeolite crystal structure.

  12. Formaldehyde Adsorption into Clinoptilolite Zeolite Modified with the Addition of Rich Materials and Desorption Performance Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Amin Kalantarifard

    2016-01-01

    Full Text Available Granite, bentonite, and starch were mixed with clinoptilolite zeolite to produce a modified zeolite. The modified zeolite was tested for its ability to absorb formaldehyde from air. The modified sample formaldehyde adsorption capacity was then compared with those of commercially available clinoptilolite, faujasite (Y, mordenite, and zeolite type A. Studies were focused on the relationships between the physical characteristics of the selected zeolites (crystal structure, surface porosity, pore volume, pore size and their formaldehyde adsorption capacity. The removal of starch at high temperature (1100°C and addition of bentonite during modified clinoptilolite zeolite (M-CLZ preparation generated large pores and a higher pore distribution on the sample surface, which resulted in higher adsorption capacity. The formaldehyde adsorption capacities of M-CLZ, clinoptilolite, faujasite (Y, zeolite type A, and mordenite were determined to be 300.5, 194.5, 123.7, 106.7, and 70 mg per gram of zeolite, respectively. The M-CLZ, clinoptilolite, and faujasite (Y crystals contained both mesoporous and microporous structures, which resulted in greater adsorption, while the zeolite type A crystal showed a layered structure and lower surface porosity, which was less advantageous for formaldehyde adsorption. Furthermore, zeolite regeneration using microwave heating was investigated focusing on formaldehyde removal by desorption from the zeolite samples. XRD, XRF, N2 adsorption/desorption, and FE-SEM experiments were performed to characterize the surface structure and textural properties the zeolites selected in this study.

  13. Dyes adsorption blue vegetable and blue watercolor by natural zeolites modified with surfactants

    International Nuclear Information System (INIS)

    Jardon S, C. C.; Olguin G, M. T.; Diaz N, M. C.

    2009-01-01

    In this work was carried out the dyes removal blue vegetable and blue watercolor of aqueous solutions, to 20 C, at different times and using a zeolite mineral of Parral (Chihuahua, Mexico) modified with hexadecyl trimethyl ammonium bromide or dodecyl trimethyl ammonium bromide. The zeolite was characterized before and after of its adaptation with NaCl and later with HDTMABr and DTMABr. For the materials characterization were used the scanning electron microscopy of high vacuum; elementary microanalysis by X-ray spectroscopy of dispersed energy and X-ray diffraction techniques. It was found that the surfactant type absorbed in the zeolite material influences on the adsorption process of the blue dye. Likewise, the chemical structure between the vegetable blue dye and the blue watercolor, determines the efficiency of the color removal of the water, by the zeolites modified with the surfactants. (Author)

  14. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar [Lehrstuhl fuer Glas und Keramik, WW3, Friedrich Alexander Universitaet Erlangen-Nuernberg, Martensstrasse 5, D-91058 Erlangen (Germany)], E-mail: mingying.peng@ww.uni-erlangen.de, E-mail: lothar.wondraczek@ww.uni-erlangen.de

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi{sub 2}O{sub 3} into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi{sup 3+} is formed. By comparing with atomic spectral data, absorption bands at {approx}320 , {approx}500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi{sup 0} transitions {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 3/2}, {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 1/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 5/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(2) and {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(1), respectively, and broadband NIR emission is assigned to the transition {sup 2}D{sub 3/2}(1){yields}{sup 4}S{sub 3/2}.

  15. The influence of bismuth oxide doping on the rechargeability of aqueous cells using MnO2 cathode and LiOH electrolyte

    International Nuclear Information System (INIS)

    Minakshi, Manickam; Mitchell, David R.G.

    2008-01-01

    Bi-doped manganese dioxide (MnO 2 ) has been prepared from γ-MnO 2 by physical admixture of bismuth oxide (Bi 2 O 3 ). The doping improved the cycling ability of the aqueous cell. These results are discussed and compared with the electrochemical behavior of bismuth-free MnO 2 . Batteries using the traditional potassium hydroxide (KOH) electrolyte are non-rechargeable. However, with lithium hydroxide (LiOH) as an electrolyte, the cell becomes rechargeable. Furthermore, the incorporation of bismuth into MnO 2 in the LiOH cell was found to result in significantly longer cycle life, compared with cells using undoped MnO 2 . The Bi-doped cell exhibited a greater capacity after 100 discharge cycles, than the undoped cell after just 40 cycles. X-ray diffraction and the microscopic analysis suggest that the presence of Bi 3+ ions reduces the magnitude of structural changes occurring in MnO 2 during cycling. Comparison with additives assessed in our previous studies (titanium disulfide (TiS 2 ); titanium boride (TiB 2 )) shows that the best rechargeability behavior is obtained for the current Bi-doped MnO 2 . As the size of Bi 3+ ions (0.96 A) is much larger than Mn 3+ (0.73 A) or Mn 2+ (0.67 A) they have effectively prevented the formation of non-rechargeable products

  16. The influence of modified zeolites as nucleating agents on crystallization behavior and mechanical properties of polypropylene

    International Nuclear Information System (INIS)

    Lv, Zhiping; Wang, Kunjun; Qiao, Zhihua; Wang, Wenjie

    2010-01-01

    Polypropylene (PP) composites with unmodified and modified zeolites were prepared by melt blending in single-screw extruder. The modified zeolites, diethoxy (distearoyl) silane (DDS)-zeolite 13X (DDS-13X) and diethoxy (distearoyl) silane-zeolite 5A (DDS-5A), were obtained by grafting diethoxy (distearoyl) silane onto zeolite 13X and 5A, respectively. The influence of the unmodified and modified zeolites as nucleating agents on properties of polypropylene was investigated with X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized light microscopy (PLM), Vicat softening temperature (VST) and mechanical properties test. The XRD results revealed that zeolite 13X and DDS-13X had a great influence on nucleation of PP compared to zeolite 5A and DDS-5A. The DSC results showed that the addition of small amount of modified zeolites lead to increase in crystallization temperature (T c ), initial crystallization temperature (T onset ) and crystallinity (X c ) of PP composites compared to unmodified zeolites, especially, DDS-13X was more effective than DDS-5A, and the highest crystallinity X c (50.48%) was observed in PP/0.3 wt.% DDS-13X, which was responsible to the higher tensile strength and flexural strength of PP/DDS-13X. The PP/DDS-5A, however, exhibited evident increase in flexural strength and a little change in tensile strength compared to pure PP. Moreover, as the addition amount of DDS-5A or DDS-13X up to 1 wt.%, the impact strength of both PP/DDS-5A and PP/DDS-13X reached 43 kJ/m 2 , which was about 2.8 times greater than that of the pure PP (11.3 kJ/m 2 ). These results were in good agreement with the spherulite morphology observed from PLM micrographs.

  17. Silicalite-1 zeolite membranes on unmodified and modified surfaces

    Indian Academy of Sciences (India)

    Silicalite-1 zeolite membranes were prepared hydrothermally on the porous ceramic supports, both unmodified and modified with 3-aminopropyl triethoxysilane (APTES) as a coupling agent following ex situ (secondary) crystal growth process. The microstructure of the membranes was examined by scanning electron ...

  18. The Catalytic Activity of Modified Zeolite Lanthanum on the Catalytic Cracking of Al-Duara Atmospheric Distillation Residue

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2016-03-01

    Full Text Available Atmospheric residue fluid catalytic cracking was selected as a probe reaction to test the catalytic performance of modified NaY zeolites and prepared NaY zeolites. Modified NaY zeolites have been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with lanthanum and the weight percent added are 0.28, 0.53, and 1.02 respectively. The effects of addition of lanthanum to zeolite Y in different weight percent on the cracking catalysts were investigated using an experimental laboratory plant scale of fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV range of 6 to 24 h-1, and the range of temperature from 450 to 510 oC. The activity of the catalyst with 1.02 wt% lanthanum has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the lanthanum causes an increase in the thermal stability of the zeolite.

  19. Evaluation of the rheological behavior of asphaltic binder modified with zeolite material

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, E.M. da; Sant' ana, Hosiberto B.; Soares, Sandra A.; Soares, Jorge B. [Federal University of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    Several new processes have been developed to reduce mixing and compaction temperatures of hot mix asphalt without sacrificing the quality of the resulting pavement. One of these processes utilizes the zeolite, a crystalline hydrated aluminum silicate. A laboratory study was conducted to determine the applicability of zeolite to improve the rheological and chemical behavior of an asphaltic binder. The synthetic asphaltic binder was produced with different zeolite contents (0,1; 0.3; and 0.5% w/w) by wet process. The rheological and chemical behavior was verified by Dynamic Shear Rheometer and Infrared Spectroscopy, respectively. The zeolite's chemical composition and morphology was studied by Dispersive X-ray Spectroscopy (EDX). Additionally, the scanning electron microscope (SEM) was utilized to establish the zeolite elemental composition. The results showed that investigated zeolite was classified as a sodium aluminum silicate and it was able to modify the rheological properties of the neat asphalt binder. The G*/sin{delta} parameter was affected by the zeolite presence, indicating better performance for the binders with zeolite. The results show that synthetic binders can partly replicate the rheological properties of conventional AB. Comparable complex modulus values was obtained. No significant difference was found in viscoelastic response, given by the phase angles as a function of both temperature and frequency. (author)

  20. Redox properties of phenosafranine at zeolite-modified electrodes-Effect of surface modification and solution pH

    International Nuclear Information System (INIS)

    Easwaramoorthi, S.; Natarajan, P.

    2008-01-01

    Redox properties of cationic dye phenosafranine (3,7-diamino-5-phenylphenazenium chloride) (PS + ) were studied at zeolite-modified electrodes using Zeolite-Y and NaZSM-5. The peak current and peak potential of phenosafranine-adsorbed zeolite were found to be influenced by the pH of the electrolyte solution. Observation of a second redox couple is suggested to be due to formation of new species at low concentration from the reduced phenosafranine at the zeolite-modified electrodes. Titanium dioxide nanoparticles encapsulated in the cavities of the zeolite or anchored on the external surface of the zeolite do not seem to affect the redox properties of adsorbed PS + . When the cyclic voltammograms are recorded immediately after the electrode is immersed into the solution, the redox potential of PS + is found to be sensitive to the nature of the zeolite surface. The peak potential shifts towards positive region under continuous cycles as the surface hydroxyl groups get protonated in acidic electrolyte solution thereby forcing the movement of dye molecules from the zeolite surface to the zeolite electrode solution interface. The electron transfer rate constants for the adsorbed dye at the electrode are calculated to be 2.5 ± 0.2 s -1 and 3.5 ± 0.2 s -1 for the zeolite-Y electrode and the ZSM-5 electrode, respectively by the Laviron equation

  1. Synthesis, characterization and luminescent properties of mixed phase bismuth molybdate-doped with Eu3+ ions

    Science.gov (United States)

    Wang, Liyong; Guo, Xiaoqing; Cai, Xiaomeng; Song, Qingwei; Han, Yuanyuan; Jia, Guang

    2018-02-01

    Red phosphors of Eu3+-doped bismuth molybdate (BMO) are prepared by a low temperature hydrothermal method assisting with Phenol Formaldehyde resin (PFr), and characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared-spectroscopy (FT-IR), thermogravimetric analyzer (TGA), differential thermal analyzer (DTA), and photoluminescence (PL) spectroscopy. PL properties influence factors including molar ratio of Bi3+ and Mo3+ ions, PFr dosage and dopants concentration are discussed in detail. The results show that BMO can act as a useful host for Eu3+ ions doping, and energy transferring from Bi3+ to Eu3+ achieved efficiently, the BMO phosphors displayed intense red color emission under ultraviolet light excitation.

  2. The role of natural zeolite and of zeolite modified with ammnonium ions to reduce the uptake of lead, zinc, copper and iron ions in Hieracium aurantium and Rumex acetosella grown on tailing ponds

    Directory of Open Access Journals (Sweden)

    Anca PETER

    2011-11-01

    Full Text Available The objective of this research is to determine if zeolite modified with ammonium ions has a higher capacity than natural zeolite to protect Hieracium aurantium and Rumex acetosella growing on tailing ponds, by reducing the quantity of metal ions these plants would accumulate in their roots and leaves. The influence of the amount of zeolite in the substrate (5% and 10% mass percentage was also studied. The experiments were carried out in laboratory and the concentration of the ions of heavy metal in roots and leaves, after 38 days of growth was established by Flame Atomic Adsorption Spectroscopy. The pH, conductivity and redox potential for each of the substrate considered were measured. The results were statistically processed using the one-way analysis of variance (one-way ANOVA. FTIR analyses were performed to establish the structural differences between the natural and modified zeolite. Hieracium aurantium and Rumex acetosella accumulate a smaller quantity of metal ions in roots and leaves in the presence of zeolite modified with ammonium ions than in the presence of natural zeolite. Laboratory tests showed that Hieracium aurantium is more tolerant to ions of heavy metals than Rumex acetosella, as demonstrated by their translocation factors.In terms of reducing the uptake of ions of heavy metals, only the zeolite modified with ammonium has a significant protective effecton Hieracium aurantium, while both natural zeolite and zeolite modified demonstrate a significant role for Rumex acetosella, asrevealed by statistical tests.

  3. Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianwei, E-mail: jwlin@shou.edu.cn [College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Pudong District, Shanghai 201306 (China); Zhan, Yanhui; Zhu, Zhiliang [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Xing, Yunqing [College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Pudong District, Shanghai 201306 (China)

    2011-10-15

    Graphical abstract: Surfactant-modified zeolites (SMZs) with various loadings of cetylpyridinium bromide (CPB) were used as adsorbents to remove tannic acid (TA) from aqueous solution. Highlights: {yields} Surfactant modified zeolites (SMZs) have a good tannic acid (TA) adsorption capacity. {yields} Adsorption capacity for SMZ with bilayer was relatively high at solution pH 3.5-7.0. {yields} Adsorption was well described by pseudo-second-order kinetic model. {yields} Adsorption fitted well with Langmuir, Redlich-Peterson and Sips isotherm models. {yields} Coexisting Cu(II) in aqueous solution resulted in markedly enhanced TA adsorption. - Abstract: Surfactant-modified zeolites (SMZs) with various loadings of cetylpyridinium bromide (CPB) were used as adsorbents to remove tannic acid (TA) from aqueous solution. The TA adsorption efficiencies for natural zeolite and various SMZs were compared. SMZ presented higher TA adsorption efficiency than natural zeolite, and SMZ with higher loading amount of CPB exhibited higher TA adsorption efficiency. The adsorption of TA onto SMZ as a function of contact time, initial adsorbate concentration, temperature, ionic strength, coexisting Cu(II) and solution pH was investigated. The adsorbents before and after adsorption were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The adsorption kinetics of TA onto SMZ with CPB bilayer coverage (SMZ-CBC) followed a pseudo-second-order model. The equilibrium adsorption data of TA onto SMZ-CBC were well represented by Langmuir, Redlich-Peterson and Sips isotherm models. The calculated thermodynamic parameters indicated that TA adsorption onto SMZ-CBC was spontaneous and exothermic. The TA adsorption capacity for SMZ-CBC slightly decreased with increasing ionic strength but significantly increased with increasing Cu(II) concentration. The TA adsorption

  4. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    Science.gov (United States)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  5. Removal of U(VI) from aqueous solution using TiO{sub 2} modified β-zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Yuan, Ni; Xiong, Wei; Wu, Hanyu; Pan, Duoqiang; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry and Nuclear Environment Laboratory; Ministry of Education, Lanzhou (China). Key Laboratory of Special Function Materials and Structure Design

    2017-07-01

    β-Zeolite was synthesized and modified with TiO{sub 2}. The synthesized materials were characterized and used for removal of U(VI) from aqueous solutions. The influences of pH, contact time and temperature on U(VI) adsorption onto modified β-zeolite by TiO{sub 2} were studied by batch technique, and XPS was employed to analysed the experimental data. The dynamic process showed that the adsorption of U(VI) onto TiO{sub 2}/β-zeolite matched the pseudo-second-order kinetics model, and the adsorption of U(VI) were significantly dependent on pH values. Through simulating the adsorption isotherms by Langmuir, Freundlich and Dubini-Radushkevich (D-R) models, it could be seen, respectively that the adsorption patterns of U(VI) onto TiO{sub 2}/β-zeolite were mainly controlled by surface complexation, and the adsorption processes were endothermic and spontaneous. The modification of β-zeolite by TiO{sub 2} it shows a novel material for the removing of U(VI) from water environment for industrialized application.

  6. Interaction of surfactant-modified zeolites and phosphate accumulating bacteria

    International Nuclear Information System (INIS)

    Hrenovic, J.; Rozic, M.; Sekovanic, L.; Anic-Vucinic, A.

    2008-01-01

    The aim of this study was to determine the interaction of surfactant-modified zeolites (SMZ) and orthophosphate (P)-accumulating bacteria in the process of P removal from wastewater. The SMZ were prepared from the natural zeolite (NZ) of size fractions <0.122 mm and 0.25-0.5 mm. The hexadecyltrimethylammonium (HDTMA) bromide was used to modify the NZ surface from partial monolayer to the bilayer coverage. The surface modification of NZ resulted in the change of zeta potential of particles from negative to positive and great enhancement of the P-adsorption capacity. Only in reactors containing <0.122 mm fraction of partial monolayer coverage of the SMZ, the P was efficiently removed from wastewater by combined adsorption onto the SMZ and bacterial uptake in the biomass. The SMZ with bilayer or patchy bilayer coverage showed the bactericidal effect. To enhance the P removal from wastewater in the aerated biological system, the SMZ can be used, but the special attention should be given to the configuration of sorbed HDTMA molecules and its potential desorption

  7. Structural and luminescence properties of Sm3+ -doped bismuth phosphate glass for orange-red photonic applications.

    Science.gov (United States)

    Damodaraiah, S; Reddy Prasad, V; Ratnakaram, Y C

    2018-05-01

    In the present study, the effect of bismuth oxide (Bi 2 O 3 ) content on the structural and optical properties of 0.5Sm 3+ -doped phosphate glass and the effect of concentration on structural and optical properties of Sm 3+ -doped bismuth phosphate (BiP) glass were studied. Structural characterization was accomplished using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and 31 P nuclear magnetic resonance (NMR) spectroscopy. Optical properties were studied using absorption, photoluminescence and decay measurements. Using optical absorption spectra, Judd-Ofelt parameters were derived to determine the local structure and bonding in the vicinity of Sm 3+ ions. The emission spectra of Sm 3+ -doped BiP glass showed two intense emission bands, 4 G 5/2 → 6 H 7/2 (orange) and 4 G 5/2 → 6 H 9/2 (red) for which the stimulated emission cross-sections (σ e ) and branching ratios (β) were found to be higher. The quantum efficiencies were also calculated from decay measurements recorded for the 4 G 5/2 level of Sm 3+ ions. The suitable combination of Bi 2 O 3 (10 mol%) and Sm 3+ (0.5 mol%) ions in these glasses acted as an efficient lasing material and might be suitable for the development of visible orange-red photonic materials. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Fabrication of CuO-doped catalytic material containing zeolite synthesized from red mud and rice husk ash for CO oxidation

    Science.gov (United States)

    Hieu Do Thi, Minh; Thinh Tran, Quoc; Nguyen, Tri; Van Nguyen Thi, Thuy; Huynh, Ky Phuong Ha

    2018-06-01

    In this study a series of the CuO-doped materials containing zeolite with varying CuO contents were synthesized from red mud (RM) and rice husk ash (RHA). The rice husk ash/red mud with the molar ratio of , and being 1.8, 2.5 and 60, respectively, were maintained during the synthetic process of materials. The characteristic structure samples were analyzed by x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area and H2 temperature program reduction (H2-TPR). The catalytic activity of samples was evaluated in CO oxidation reaction in a microflow reactor at temperature range 200 °C–350 °C. The obtained results showed that all synthetic samples there exist the A-type zeolites with the average crystal size of 15–20 nm, the specific surface area of , and pore volume of . The material synthesized from RM and RHA with the zeolite structure (ZRM, undoped CuO) could also oxidize CO completely at 350 °C, and its activity was increase significantly when doped with CuO. CuO-doped materials with the zeolite structure exhibited excellent catalytic activity in CO oxidation. The ZRM sample loading 5 wt% CuO with particle nanosize about 10–30 nm was the best one for CO oxidation with complete conversion temperature at 275 °C.

  9. Stability and activity of doped transition metal zeolites in the hydrothermal processing

    Directory of Open Access Journals (Sweden)

    Thomas François Robin

    2015-12-01

    Full Text Available This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper and iron in under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered as a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds which have an impact on the physical and chemical propriety of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts but their stability and activity under hydrothermal conditions is not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350 °C. Catalysts have been characterised before and after treatment using XRD, BET physisorption and STEM microscopy. Metal leaching was determined by analysis of the water phase following hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5 for example molybdenum improves the crystallinity of the zeolite. In general, metal doped zeolites were relatively stable under subcritical water. Activity of the catalysts for processing lipids, protein and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella and P. ellipsoidea. The catalysts exhibited greater activity towards converting lipids for example MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  10. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    International Nuclear Information System (INIS)

    Robin, Thomas François; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M.

    2015-01-01

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  11. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Thomas François, E-mail: thomas.cognac@gmail.com; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M. [School of Chemical and Process Engineering, University of Leeds, Leeds (United Kingdom)

    2015-12-14

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  12. On the origin of near-IR luminescence in SiO{sub 2} glass with bismuth as the single dopant. Formation of the photoluminescent univalent bismuth silanolate by SiO{sub 2} surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A.N., E-mail: alexey.romanov@list.ru; Haula, E.V.; Shashkin, D.P.; Vtyurina, D.N.; Korchak, V.N.

    2017-03-15

    Near infrared photoluminescent bismuth(I) silanolate centers ((≡Si-O){sub 3}Si–O-Bi) were prepared on the surface of SiO{sub 2} xerogel, by the treatment in the vapors of bismuth(I) chloride. The optical properties of these groups are almost identical to that of photoluminescent centers in the bulk SiO{sub 2} glasses with bismuth as the single dopant. - Highlights: • univalent bismuth silanolate can be prepared on SiO{sub 2} surface by treatment in BiCl vapors. • univalent bismuth silanolate is responsible for NIR photoluminescence in Bi-doped SiO{sub 2} glass. • univalent bismuth silanolate is the active center in laser, operating on Bi-doped SiO{sub 2} fiber.

  13. Determination of zinc and cadmium with characterized Electrodes of carbon and polyurethane modified by a bismuth film

    Directory of Open Access Journals (Sweden)

    Jossy Karla Brasil Bernardelli

    2011-09-01

    Full Text Available This study aims to use electrodes modified with bismuth films for the determination of zinc and cadmium. The film was electrodeposited ex situ on a composite carbon electrode with polyurethane and 2% metallic bismuth (2BiE and on a carbon bar electrode (CBE. The electrodes were characterized by scanning electron microscopy and energy dispersive spectroscopy. Through differential pulse anodic stripping voltammetry, the electrodes 2BiE and CBE containing bismuth films showed a limit of detection (LOD of 5.56 × 10-5 and 3.07 × 10-5 g.L-1 for cadmium and 1.24 × 10-4 and 1.53 × 10-4 g.L-1 for zinc, respectively. The presence of a bismuth film increased the sensitivity of both electrodes.

  14. Synthesis and characterization of zeolite material from coal ashes modified by surfactant; Sintese e caracterizacao de material zeolitico de cinzas de carvao modificado por surfactante

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, D.A., E-mail: dfungaro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CQMA/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente; Borrely, S.I. [Instituto de Pesquisas Energeticas e Nucleares (CTR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes

    2010-07-01

    Coal ash was used as starting material for zeolite synthesis by means of hydrothermal treatment. The surfactant-modified zeolite (SMZ) was prepared by adsorbing the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br) on the external surface of the zeolite from coal ash. The zeolite structure stability was monitored during the characterization of the materials by FTIR, XDR and SEM. The structural parameters of surfactant-modified zeolite are very close to that of corresponding non-modified zeolite which indicates that the crystalline nature of the zeolite remained intact after required chemical treatment with HDTMA-Br molecules and heating treatment for drying. The most intense peaks in the FTIR spectrum of HDTMA-Br were observed in SMZ spectrum confirming adsorption of surfactant on zeolites. (author)

  15. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    Science.gov (United States)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  16. Sensing characteristics of nanocrystalline bismuth oxide clad-modified fiber optic gas sensor

    Science.gov (United States)

    Manjula, M.; Karthikeyan, B.; Sastikumar, D.

    2017-08-01

    Gas sensing properties of nanocrystalline bismuth oxide clad - modified fiber optic sensor is reported for ammonia, ethanol, methanol and acetone gasses at room temperature. The output of sensor increases or decreases for certain gasses when the concentration of the gas is increased. The sensor exhibits high response and good selectivity to methanol gas. Time response characteristics of the sensor are also reported.

  17. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.

    2012-05-03

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO 2/CH 4 separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N 2 physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO 2/CH 4 selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg 2+, followed by base-induced precipitation and growth of MgO xH y nanostructures, deemed "ion exchange functionalization" here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO 2/CH 4 selectivity (∼40) than could be obtained with the other functionalization techniques (∼30), while maintaining a CO 2 permeability of ∼10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case. © 2012 American Chemical Society.

  18. Cerium-modified Aurivillius-type sodium lanthanum bismuth titanate with enhanced piezoactivities

    International Nuclear Information System (INIS)

    Wang Chunming; Zhao Liang; Wang Jinfeng; Zheng Limei; Du Juan; Zhao Minglei; Wang Chunlei

    2009-01-01

    The electrical, piezoelectric and dielectric properties of cerium-modified Aurivillius-type sodium lanthanum bismuth titanate (Na 0.5 La 0.5 Bi 4 Ti 4 O 15 , NLBT) ceramics were investigated. It was found the piezoelectric activities of NLBT ceramics were significantly improved by cerium modification. The piezoelectric coefficient d 33 and Curie temperature T c for the 0.50 wt.% cerium-modified NLBT were found to be 29 pC/N and 573 deg. C, respectively. The reasons for piezoelectric activities improvement by cerium modification were given. A small dielectric abnormity was observed in NLBT ceramics, which can be suppressed by cerium modification.

  19. The effect of metal ion exchange and alkali metal doping on the electrical conductivity of the Faujasite-type zeolite 13X

    International Nuclear Information System (INIS)

    Swart, S.

    1983-12-01

    Zeolite 13X was synthesized in the sodium form. Some transition metal cations were introduced into the zeolite framework by ion exchange reactions. These different cationic zeolite forms were doped or impregnated with sodium metal, utilizing the adsorptive properties of the zeolite. An A.C. technique was used to determine the electrical conductivity of the dehydrated ion exchanged zeolites and the sodium impregnated zeolite samples as a function of temperature. The conductivity value obtained was used to determine some thermodynamic parameters relating to the conduction process. For the dehydrated ion exchanged zeolites the electrical conductivity showed a general decrease with a decreasing ion exchange capacity. The sodium impregnated zeolites showed an increase in conductivity with respect to the dehydrated unimpregnated samples. This was attributed to the presence of Na 6 5 + centres in the impregnated zeolites. The reduction of some of the metal cations by the sodium on impregnation did not appear to have any significant effect on the overall ionic conductivity of the samples. The conductivity as a function of temperature and pressure for the dehydrated sodium form of zeolite 13X and its impregnated counterpart was determined. The conductivity was found to increase with increasing pressure and temperature

  20. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  1. Radiotracer study of the adsorption of Fe(III), Cr(III) and Cd(II) on natural and chemically modified Slovak zeolite

    International Nuclear Information System (INIS)

    Foeldesova, M.; Dillinger, P.; Lukac, P.

    1998-01-01

    In order to minimize the contamination of environment with metals in ionic form the more types of natural and chemically modified zeolites were examined to their uptake of Fe(III), Cr(III) and Cd(II) from water solutions by batch radio-exchange equilibration method. In this study was used zeolitic tuff from deposit Nizny Hrabovec (content of clinoptilolite 50-70%) with the grain size from 1.2 to 2.2 mm. The granules of zeolite were modified with the following NaOH solutions: ).5, 1, 2 and 4 mol.l -1 at 80 grad C for 4 hours. The sorption of Fe, Cr and Cd ions on all types of zeolites was studied by radio-exchange method and the sorption of Fe and Cr also flame atomic absorption method. From sorption curves the sorption coefficients were calculated. The results obtained in this work show that zeolites modified with NaOH solution are suitable for adsorption of Fe(III), Cr(III) and Cd(II) from underwater, waste water, feed water and coolant water from nuclear plants. The adsorbed zeolites can be solidified by conventional way

  2. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.

    Science.gov (United States)

    Yu, Linwei; Fortuna, Franck; O'Donnell, Benedict; Jeon, Taewoo; Foldyna, Martin; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2012-08-08

    Silicon nanowires (SiNWs) are becoming a popular choice to develop a new generation of radial junction solar cells. We here explore a bismuth- (Bi-) catalyzed growth and doping of SiNWs, via vapor-liquid-solid (VLS) mode, to fabricate amorphous Si radial n-i-p junction solar cells in a one-pump-down and low-temperature process in a single chamber plasma deposition system. We provide the first evidence that catalyst doping in the SiNW cores, caused by incorporating Bi catalyst atoms as n-type dopant, can be utilized to fabricate radial junction solar cells, with a record open circuit voltage of V(oc) = 0.76 V and an enhanced light trapping effect that boosts the short circuit current to J(sc) = 11.23 mA/cm(2). More importantly, this bi-catalyzed SiNW growth and doping strategy exempts the use of extremely toxic phosphine gas, leading to significant procedure simplification and cost reduction for building radial junction thin film solar cells.

  3. Environmental application of modified natural zeolites

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Myasoedov, B.F.

    1998-01-01

    The following techniques were used for the chemical modification of the natural zeolites: (1) treatment of natural zeolites with organic substances. Examples of applications of these sorbents to the decontamination and disinfection of solutions of different composition and surface waters are presented. (2) Treatment of the natural zeolites with a inorganic substances. (2.1) The clinoptilolite-rich tuffs were treated with a hot suspensions of freshly precipitated magnetite. This leads to the preparation of sorbents possessing magnetic properties. The radionuclides and heavy metals recovery from soils and silts was investigated using different soil and ferromagnetic zeolite weights ratios and contact times. Different soils and sorbent of varying capacities were used for these investigations. As example, the recovery 137 Cs and 85 Sr from soils of different nature is presented. (2.2) Treatment of natural zeolites with Fe-containing solutions of Fe-containing natural waters. The filtration of these solutions through clinoptilolite-rich tuffs makes leads to preparation of materials possessing high selectivity to PO 4 3- ions. The properties of these sorbents can be utilized for the PO 4 3+ decontamination of waters (e.g. waste waters) and for the subsequent use of these materials in agriculture as fertilizers.(author)

  4. Effect of Ga2O3 on the spectroscopic properties of erbium-doped boro-bismuth glasses.

    Science.gov (United States)

    Ling, Zhou; Ya-Xun, Zhou; Shi-Xun, Dai; Tie-Feng, Xu; Qiu-Hua, Nie; Xiang, Shen

    2007-11-01

    The spectroscopic properties and thermal stability of Er3+-doped Bi2O3-B2O3-Ga2O3 glasses are investigated experimentally. The effect of Ga2O3 content on absorption spectra, the Judd-Ofelt parameters Omega t (t=2, 4, 6), fluorescence spectra and the lifetimes of Er3+:4I 13/2 level are also investigated, and the stimulated emission cross-section is calculated from McCumber theory. With the increasing of Ga2O3 content in the glass composition, the Omega t (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) and the 4I 13/2 lifetimes of Er3+ first increase, reach its maximum at Ga2O3=8 mol.%, and then decrease. The results show that Er3+-doped 50Bi2O3-42B2O3-8Ga2O3 glass has the broadest FWHM (81nm) and large stimulated emission cross-section (1.03 x1 0(-20)cm2) in these glass samples. Compared with other glass hosts, the gain bandwidth properties of Er+3-doped Bi2O3-B2O3-Ga2O3 glass is better than tellurite, silicate, phosphate and germante glasses. In addition, the lifetime of 4I 13/2 level of Er(3+) in bismuth-based glass, compared with those in other glasses, is relative low due to the high-phonon energy of the B-O bond, the large refractive index of the host and the existence of OH* in the glass. At the same time, the glass thermal stability is improved in which the substitution of Ga2O3 for B2O3 strengthens the network structure. The suitability of bismuth-based glass as a host for a Er3+-doped broadband amplifier and its advantages over other glass hosts are also discussed.

  5. All-fibre Q-switching YDFL operation with bismuth-doped fibre as saturable absorber

    Science.gov (United States)

    Muhammad, A. R.; Haris, H.; Arof, H.; Tan, S. J.; Ahmad, M. T.; Harun, S. W.

    2018-05-01

    We demonstrate the generation of a passively Q-switched ytterbium-doped fibre laser (YDFL) using a bismuth-doped fibre (BDF) as a solid-state fibre saturable absorber (FSA) in a ring cavity. The BDF used has a wide and low absorption band of 5 dB/m at the 1.0 μm region due to the ion transition of ? that occurs around the region. When introduced into a YDFL laser cavity, a stable Q-switched pulse operation was observed and the pulse repetition rate was proportional to the input pump power. It was limited to 72.99 kHz by the maximum power that the laser diode could supply. Meanwhile, the pulse width decreased from 12.22 to 4.85 μs as the pump power was increased from 215.6 to 475.6 mW. The finding suggests that BDF could be used as a potential SA for the development of robust, compact, efficient and low cost Q-switched fibre lasers operating at 1 micron region.

  6. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Venkata Ramana, E.; Graça, M.P.F.; Valente, M.A.; Bhima Sankaram, T.

    2014-01-01

    Highlights: • Sr 1−x Pb x Bi 4 Ti 4 O 15 (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi 4 Ti 4 O 15 ceramics. • Pb-doped SrBi 4 Ti 4 O 15 exhibited improved pyroelectric properties with high T C . -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr 1−x Pb x Bi 4 Ti 4 O 15 (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d 33 ) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications

  7. Synthesis and characterization of zeolite from coal ashes modified by cationic surfactant; Sintese e caracterizacao de zeolita de cinzas de carvao modificada por surfactante cationico

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, D.A.; Borrely, S.I., E-mail: dfungaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-01-15

    Zeolite synthesized from coal fly ash was modified with different concentrations (2 and 20 mmol.L{sup -1}) of hexadecyltrimethylammonium bromide (HDTMA-Br). The Non-Modified Zeolite (NMZ) and Surfactant-Modified Zeolites (SMZ) were characterized by X-ray fluorescence spectrometry, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, thermogravimetric analysis, among others. The SMS presented negative charge probably due to the formation of a partial bilayer of HDTMA on exchangeable active sites on the external surface of NMZ. A decrease in surface area was observed for SMZ as compared to NMZ indicating zeolite surface coverage with HDTMA-Br molecules. The crystalline nature of the zeolite remained intact after adsorption of surfactant and heating for drying. FTIR analysis indicated that there were no significant changes in the structure of the zeolite after adsorption of surfactant. (author)

  8. Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    A new chemically modified glassy carbon electrode based on bismuth film coated mesoporous silica nanoparticles was developed and evaluated for reliable quantification of trace Pb 2+ and Cd 2+ by anodic stripping square wave voltammetry in natural water samples. Compared with conventional bismuth film electrodes or bismuth nanoparticles modified electrodes, this electrode exhibited significantly improved sensitivity and stability for Pb 2+ and Cd 2+ detection. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 2-150 μg L −1 with a detect limit of 0.2 μg L −1 for Pb 2+ , and 0.6 μg L −1 for Cd 2+ for 120s deposition. Good reproducibility was achieved on both single and equally prepared electrodes. In addition, scanning electron microscopy reveals that fibril-like bismuth structures were formed on silica nanoparticles, which could be responsible for the improved voltammetric performance due to the enhanced surface area. Finally, the developed electrode was applied to determine Pb 2+ and Cd 2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb 2+ and Cd 2+

  9. Synthesis of Zeolite NaA from Low Grade (High Impurities) Indonesian Natural Zeolite

    OpenAIRE

    Mustain, Asalil; Wibawa, Gede; Nais, Mukhammad Furoiddun; Falah, Miftakhul

    2014-01-01

    The zeolite NaA has been successfully synthesized from the low grade natural zeolite with high impurities. The synthesis method was started by mixing natural zeolite powder with NH4Cl aqueous solution in the reactor as pretreatment. The use of pretreatment was to reduce the impurities contents in the zeolite. The process was followed by alkaline fusion hydrothermal treatment to modify the framework structure of natural zeolite and reduce the SiO2/Al2O3 ratio. Finally, the synthesized zeolite ...

  10. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.; Unocic, Kinga A.; Bae, Tae-Hyun; Jones, Christopher W.; Nair, Sankar

    2012-01-01

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics

  11. THE PREPARATION OF MAGNETICALLY MODIFIED SYNTHETETIC AND NATURAL ZEOLITES AND COMPARISON OF THEIR SOME PHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Zafer DİKMEN

    2013-06-01

    Full Text Available In this study, magnetically modified zeolites (MMZ has been produced and their adsorption, ion-exchange and magnetic properties have been studied. In this study, natural zeolite mineral, clinoptilolite, which belongs to Gördes (Manisa regions and synthetic 13X zeolite, which has been produced by Sigma-Aldrich firm have been used. In order to modify the surface of these minerals, magnetite sample which belongs to Divriği (Sivas region has been used. The engagement of magnetite particles on zeolite particles has been studied. For this reason, measuring, visualization and analysis techniques as DTA-TG, XRD, XRF, SEM and EDX have been used. As a result of these procedures, it has been observed that magnetite particles get engaged on the surface of zeolite particles and magnetite contribu-tion on MMZ has changed adsorption, ion-exchange and magnetic properties.In order to determine how magnetite contribution affects adsorption, ion exchange and magnetic properties of MMZ, weightily magnetite contribution ratio (zeolite/magnetite has been applied in three different forms (1/1, 1/2, 1/3.As a result of nitrogen adsorption of MMZ, it has been observed that as the weightily magnetite contribution ratio goes up, specific surface area goes down and average pore diameter rises. It has been identified that total cation exchange capacity rises as the weightily magnetite contribution ratio goes up. It has been observed that pure zeolites, which have no magnetic properties, as a result of magnetically modification process, they have got magnetically character, and they change their magnetic properties positively as the weightily magnetite contribution goes up. It has been determined that as a result of magnetic measurements; the optimum value of applied outer magnetic field is 0.5T.

  12. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite-A nanocomposite

    International Nuclear Information System (INIS)

    Nosrati, Rahimeh; Olad, Ali; Nofouzi, Katayoon

    2015-01-01

    Graphical abstract: - Highlights: • A novel nanocomposite coating based on polyacrylic was prepared. • Nanostructured TiO 2 /Ag-exchanged-zeolite-A composite material was prepared. • Prepared nanocomposite used as additive for modification of polyacrylic latex. • Modified coatings show self-cleaning and antibacterial properties. • Modified coatings show better stability in water in versus of unmodified polymer. - Abstract: The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO 2 /Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV–visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO 2 /Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO 2 /Ag-exchanged-zeolite-A nanocomposite additive with TiO 2 to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination

  13. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    Science.gov (United States)

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  14. Growth and Low Temperature Transport Measurements of Pure and Doped Bismuth Selenide

    DEFF Research Database (Denmark)

    Mlack, Jerome Thomas

    Se3, which is a strong spin orbit material and a topological insulator. I describe a synthesis technique and low-temperature transport measurements of nanostructures of Bi2Se3, that when annealed with palladium show evidence of superconductivity. The growth method is a catalyst-free atmospheric...... with palladium via annealing, the transport properties of the samples can be altered to exhibit superconductivity. Thin films of palladium are deposited on prefabricated Bi2Se3 nanodevices and annealed at temperatures in excess of 100 Celsius. We find that Bi2Se3 absorbs Pd under these conditions...... pressure vapor-solid growth. The growth method yields a variety of nanostructures, and materials analysis shows ordered structures of bismuth selenide in all cases. Low-temperature measurements of as-grown nanostructures indicate tunable carrier density in all samples. By doping the nanostructures...

  15. Surface modified zeolite-based granulates for the sustained release of diclofenac sodium.

    Science.gov (United States)

    Serri, Carla; de Gennaro, Bruno; Quagliariello, Vincenzo; Iaffaioli, Rosario Vincenzo; De Rosa, Giuseppe; Catalanotti, Lilia; Biondi, Marco; Mayol, Laura

    2017-03-01

    In this study, a granulate for the oral controlled delivery of diclofenac sodium (DS), an anionic sparingly soluble nonsteroidal anti-inflammatory drug, has been realized by wet granulation, using a surface modified natural zeolite (SMNZ) as an excipient. The surface modification of the zeolite has been achieved by means of a cationic surfactant, so as to allow the loading of DS through ionic interaction and bestow a control over the drug release mechanism. The granules possessed a satisfactory dosage uniformity, a flowability suitable for an oral dosage form manufacturing, along with a sustained drug release up to 9h, driven by both ion exchange and transport kinetics. Furthermore, the obtained granulate did not elicit a significant cytotoxicity and could also induce a prolonged anti-inflammatory effect on RAW264.7 cells. Taking also into account that natural zeolites are generally abundant and economic, SMNZ can be considered as an attracting alternative excipient for the production of granules with sustained release features. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Nosrati, Rahimeh, E-mail: ra.nosrati@gmail.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Olad, Ali, E-mail: a.olad@yahoo.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Nofouzi, Katayoon, E-mail: nofouzi@tabrizu.ac.ir [Faculty of Veterinary Medicine, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-08-15

    Graphical abstract: - Highlights: • A novel nanocomposite coating based on polyacrylic was prepared. • Nanostructured TiO{sub 2}/Ag-exchanged-zeolite-A composite material was prepared. • Prepared nanocomposite used as additive for modification of polyacrylic latex. • Modified coatings show self-cleaning and antibacterial properties. • Modified coatings show better stability in water in versus of unmodified polymer. - Abstract: The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV–visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO{sub 2}/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite additive with TiO{sub 2} to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  17. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite-A nanocomposite

    Science.gov (United States)

    Nosrati, Rahimeh; Olad, Ali; Nofouzi, Katayoon

    2015-08-01

    The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO2/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV-visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO2/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO2/Ag-exchanged-zeolite-A nanocomposite additive with TiO2 to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  18. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Robert N.; Stark, Wendelin J. [Institute for Chemical and Bioengineering, ETH Zuerich (Switzerland)], E-mail: wendelin.stark@chem.ethz.ch

    2006-10-15

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.

  19. Bismuth-doped La1.75Sr0.25NiO4+: δ as a novel cathode material for solid oxide fuel cells

    NARCIS (Netherlands)

    Zhu, Zhesheng; Li, Mei; Xia, Changrong; Bouwmeester, Henny J.M.

    2017-01-01

    Bismuth has been doped into mixed ionic-electronic conducting La1.75Sr0.25NiO4+δ (LSN) with the 2D K2NiF4-type structure to evaluate its influence on various properties of the host material, which include its potential use as a SOFC cathode. X-ray powder diffraction indicates that LSN retains its

  20. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  1. A Sensor Based on LiCl/NaA Zeolite Composites for Effective Humidity Sensing.

    Science.gov (United States)

    Zhang, Ying; Xiang, Hongyu; Sun, Liang; Xie, Qiuhong; Liu, Man; Chen, Yu; Ruan, Shengping

    2018-03-01

    LiCl/NaA zeolite composites were successfully prepared by doping 1 wt%, 2 wt%, 5 wt%, and 8 wt% of LiCl into NaA zeolite. The humidity sensing properties of LiCl/NaA composites were investigated among 11% 95% relative humidity (RH). The LiCl/NaA composites exhibited better humidity sensing properties than pure NaA zeolite. The sensor made by 2 wt% Li-doped NaA zeolite possesses the best linearly in the whole RH. These results demonstrate that the LiCl/NaA composites have the potential application in humidity sensing.

  2. Piezoelectric properties and thermal stabilities of cobalt-modified potassium bismuth titanate

    International Nuclear Information System (INIS)

    Guo, Zhen-Lei; Wang, Chun-Ming; Zhao, Tian-Long; Yu, Si-Long; Cao, Zhao-Peng

    2013-01-01

    The cobalt-modified potassium bismuth titanate (K 0.5 Bi 4.5 Ti 4 O 15 , KBT) piezoelectric ceramics have been prepared using conventional solid–state reaction. X-ray diffraction analysis revealed that the cobalt-modified KBT ceramics have a pure four-layer (m = 4) Aurivillius-type structure. The dielectric, ferroelectric, and piezoelectric properties of cobalt-modified KBT ceramics were investigated in detail. The piezoelectric activities of KBT ceramics were significantly improved by the cobalt modification. The reasons for piezoelectric activities enhancement with cobalt modification were given. The piezoelectric coefficient d 33 and Curie temperature T c for the 5 mol% cobalt-modified KBT ceramics (KBT-Co5) were found to be 28 pC/N and 575 °C, respectively. The DC resistivity, frequency constants (N p and N t ), and electromechanical properties at elevated temperature were investigated, indicating the cobalt-modified KBT piezoelectric ceramics possess stable piezoelectric properties up to 500 °C. The results show the cobalt-modified KBT ceramics are potential materials for high temperature piezoelectric applications. - Highlights: • We examine the piezoelectric properties of the cobalt-modified K 0.5 Bi 4.5 Ti 4 O 15 . • A high level of piezoelectric activities (d 33 = 28 pC/N) are obtained. • High Curie temperature (T c = 575 °C) is acquired for the optimal composition. • The Co-modified K 0.5 Bi 4.5 Ti 4 O 15 is promising as high temperature materials

  3. Effect of cation nature of zeolite on carbon replicas and their electrochemical capacitance

    International Nuclear Information System (INIS)

    Zhou, Jin; Li, Wen; Zhang, Zhongshen; Wu, Xiaozhong; Xing, Wei; Zhuo, Shuping

    2013-01-01

    Graphical abstract: Cation nature of zeolite influences the porosity, surface chemical properties of carbon replicas of zeolite, resulting in different electrochemical capacitance. Highlights: ► The porosity of carbon replica strongly depends on zeolite's effective pore size. ► The surface chemical properties influence by the cation nature of zeolite. ► The N-doping introduces large pseudo-capacitance. ► The HYC800 carbon showed a high capacitance of up to 312 F g −1 in 1 M H 2 SO 4 . ► The prepared carbons show good durability of galvanostatic cycle. -- Abstract: N-doped carbon replicas of zeolite Y are prepared, and the effect of cation nature of zeolite (H + or Na + ) on the carbon replicas is studied. The morphology, structure and surface properties of the carbon materials are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N 2 adsorption, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The pore regularity, pore parameter and surface chemical properties of the carbons may strongly depend on the cation nature of the zeolite Y. The carbon replicas of zeolite HY (H-form of zeolite Y) possesses higher pore regularity and much larger surface area than those of zeolite NaY (Na-form of zeolite Y), while the latter carbons seem to possess higher carbonization degrees. Electrochemical measurements show a large faradaic capacitance related to the N- or O-containing groups for the prepared carbons. Owing to the large specific surface area, high pore regularity and heteroatom-doping, the HYC800 sample derived from zeolite HY presents very high gravimetric capacitance, up to 312.4 F g −1 in H 2 SO 4 electrolyte, and this carbon can operate at 1.2 V with good retention ratio in the range of 0.25 to 10 A g −1

  4. Positron annihilation in modified zeolites LTA and 13X

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A.; Garcia-Sosa, I.; Jimenez-Becerril, J. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, Col. Escandon, Del. M. Hidalgo, Mexico D. F., c. p. 11801 (Mexico); Lopez-Castanares, R.; Olea-Cardoso, O. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Tollocan esquina paseo Tollocan, esquina paseo Colon, Toluca, c. p. 50120, Estado de Mexico (Mexico)

    2007-07-01

    The pick-off annihilation lifetimes of o -Ps, {tau}{sub po}, in dehydrated Co{sup 2+} and Mn{sup 2+} exchanged zeolites LTA, in dehydrated Co{sup 2+} exchanged zeolite 13X, and in dehydrated Na{sup +} zeolites LTA and 13X, are estimated. Although {tau}{sub po} can be estimated from the lifetime spectra of the cation exchanged zeolites LTA and 13X, this lifetime can not be estimated from those spectra of Na{sup +} zeolite LTA unambiguously. The estimated pick-off lifetimes due to the annihilation of o-Ps in the internal walls of the zeolites are systematically lower than the average lifetime of p-Ps and o-Ps in vacuum {tau}{sub a}=0.5 ns. Since the pick-off process of o-Ps occurs particularly on the internal cavity walls of dehydrated zeolites, the replacement of {tau}{sub a} by {tau}{sub po} within the classical model of Tao-Eldrup to calculate cavity radius should provide more realistic cavity radii of these porous materials than when using {l_brace}{tau}{sub a}{r_brace}. This suggestion is supported by previous and present results. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Hierarchical nitrogen doped bismuth niobate architectures: Controllable synthesis and excellent photocatalytic activity

    International Nuclear Information System (INIS)

    Hou, Jungang; Cao, Rui; Wang, Zheng; Jiao, Shuqiang; Zhu, Hongmin

    2012-01-01

    Graphical abstract: Efficient visible-light-driven photocatalysts of peony-like nitrogen doped Bi 3 NbO 7 hierarchical architectures and silver-layered Bi 3 NbO 7−x Nx heterostructures were successfully synthesized in this discovery. Highlights: ► N-Bi 3 NbO 7 architectures were synthesized via two-step hydrothermal process. ► Electronic structure calculations indicated that N replaced O in samples. ► Growth mechanism is proposed for transformation of nanoparticles to microflowers. ► Excellent activities of N-Bi 3 NbO 7 architectures were obtained for degradation. ► Enhanced photocatalytic performance was observed for Ag/N-Bi 3 NbO 7 architectures. - Abstract: Nitrogen doped bismuth niobate (N-Bi 3 NbO 7 ) hierarchical architectures were synthesized via a facile two-step hydrothermal process. XRD patterns revealed that the defect fluorite-type crystal structure of Bi 3 NbO 7 remained intact upon nitrogen doping. Electron microscopy showed the N-Bi 3 NbO 7 architecture has a unique peony-like spherical superstructure composed of numerous nanosheets. UV–vis spectra indicated that nitrogen doping in the compound results in a red-shift of the absorption edge from 450 nm to 470 nm. XPS indicated that [Bi/Nb]-N bonds were formed by inducing nitrogen to replace a small amount of oxygen in Bi 3 NbO 7−x N x , which is explained by electronic structure calculations including energy band and density of states. Based on observations of architectures formation, a possible growth mechanism was proposed to explain the transformation of polyhedral-like nanoparticles to peony-like microflowers via an Ostwald riping mechanism followed by self-assembly. The N-Bi 3 NbO 7 architectures due to the large specific surface area and nitrogen doping exhibited higher photocatalytic activities in the decomposition of organic pollutant under visible-light irradiation than Bi 3 NbO 7 nanoparticles. Furthermore, an enhanced photocatalytic performance was also observed for Ag

  6. About thermo-electric properties of bismuth telluride doped by gadolinium

    International Nuclear Information System (INIS)

    Akperov, M.M.; Ismailov, Sh.S.; Shukyurova, A.A.

    2004-01-01

    Results of study of the Gd impurities effect on the bismuth telluride thermo-electric properties are presented. The experiment was carried out within the temperature range T=300-700 K. It is determined, that at temperature increase the energy level is appreciably closing up to bismuth telluride forbidden zone which makes up 0.16-0.24 eV. Such anomalous energy properties of gadolinium in telluride affect on material thermoelectric properties

  7. New Mixed Conductivity Mechanisms in the Cold Plasma Device Based on Silver-Modified Zeolite Microporous Electronic Materials

    Science.gov (United States)

    Koç, Sevgul Ozturk; Galioglu, Sezin; Ozturk, Seckin; Kurç, Burcu Akata; Koç, Emrah; Salamov, Bahtiyar G.

    2018-02-01

    We have analyzed the interaction between microdischarge and microporous zeolite electronic materials modified by silver (Ag0) nanoparticles (resistivity 1011 to 106 Ω cm) on the atmospheric pressure cold plasma generation in air. The generation and maintenance of stable cold plasma is studied according to the effect of the Ag0 nanoparticles. The role of charge carriers in mixed conductivity processes and electrical features of zeolite from low pressure to atmospheric pressure is analyzed in air microplasmas for both before and after breakdown regimes. The results obtained from the experiments indicate that Ag0 nanoparticles play a significant role in considerably reducing the breakdown voltage in plasma electronic devices with microporous zeolite electronic materials.

  8. Study on the synthesis of antibacterial plastic by using silver nanoparticles doped in zeolite framework

    International Nuclear Information System (INIS)

    Le Anh Quoc; Dang Van Phu; Nguyen Ngoc Duy; Nguyen Thi Kim Lan; Vo Thi Kim Lang; Nguyen Quoc Hien

    2015-01-01

    Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by gamma irradiation in ethanol solution of silver ion-zeolite (Ag"+/Z) prepared by ion exchange reaction between silver nitrate (AgNO_3) and zeolite 4A. The effect of the Ag"+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and AgNPs size of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~1.000 ppm) and then PP-AgNPs/Z plastics were prepared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PP-AgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96% on the plastic surface. In conclusion, possessing many advantages such as: vigorously antimicrobial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry. (author)

  9. Study on the synthesis of antibacterial plastic by using silver nanoparticles doped in zeolite framework

    International Nuclear Information System (INIS)

    Le Anh Quoc; Dang Van Phu; Nguyen Ngoc Duy; Nguyen Thi Kim Lan; Vo Thi Kim Lang; Nguyen Quoc Hien

    2016-01-01

    Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by γ-irradiation in ethanol solution of silver ion-zeolite (Ag"+/Z) prepared by ion exchange reaction between silver nitrate (AgNO_3) and zeolite 4A. The effects of the Ag"+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and the average particle size of AgNPs of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~10.000 ppm) and then PP-AgNPs/Z plastics were prepared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PPAgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96 % on the plastic surface. In conclusion, possessing many advantages such as: vigorously antibacterial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry. (author)

  10. Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells.

    Science.gov (United States)

    Wu, Xiayuan; Tong, Fei; Yong, Xiaoyu; Zhou, Jun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2016-05-05

    Two kinds of NaX zeolite-modified graphite felts were used as biocathode electrodes in hexavalent chromium (Cr(VI))-reducing microbial fuel cells (MFCs). The one was fabricated through direct modification, and the other one processed by HNO3 pretreatment of graphite felt before modification. The results showed that two NaX zeolite-modified graphite felts are excellent bio-electrode materials for MFCs, and that a large NaX loading mass, obtained by HNO3 pretreatment (the HNO3-NaX electrode), leads to a superior performance. The HNO3-NaX electrode significantly improved the electricity generation and Cr(VI) removal of the MFC. The maximum Cr(VI) removal rate increased to 10.39±0.28 mg/L h, which was 8.2 times higher than that of the unmodified control. The improvement was ascribed to the strong affinity that NaX zeolite particles, present in large number on the graphite felt, have for microorganisms and Cr(VI) ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Bhat, Swetha S M; Jang, Ho Won

    2017-08-10

    In recent years, bismuth-based nanomaterials have drawn considerable interest as potential candidates for photoelectrochemical (PEC) water splitting owing to their narrow band gaps, nontoxicity, and low costs. The unique electronic structure of bismuth-based materials with a well-dispersed valence band comprising Bi 6s and O 2p orbitals offers a suitable band gap to harvest visible light. This Review presents significant advancements in exploiting bismuth-based nanomaterials for solar water splitting. An overview of the different strategies employed and the new ideas adopted to improve the PEC performance of bismuth-based nanomaterials are discussed. Morphology control, the construction of heterojunctions, doping, and co-catalyst loading are several approaches that are implemented to improve the efficiency of solar water splitting. Key issues are identified and guidelines are suggested to rationalize the design of efficient bismuth-based materials for sunlight-driven water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transport properties of Cu-doped bismuth selenide single crystals at high magnetic fields up to 60 Tesla: Shubnikov-de Haas oscillations and π-Berry phase

    Science.gov (United States)

    Romanova, Taisiia A.; Knyazev, Dmitry A.; Wang, Zhaosheng; Sadakov, Andrey V.; Prudkoglyad, Valery A.

    2018-05-01

    We report Shubnikov-de Haas (SdH) and Hall oscillations in Cu-doped high quality bismuth selenide single crystals. To increase the accuracy of Berry phase determination by means of the of the SdH oscillations phase analysis we present a study of n-type samples with bulk carrier density n ∼1019 -1020cm-3 at high magnetic field up to 60 Tesla. In particular, Landau level fan diagram starting from the value of the Landau index N = 4 was plotted. Thus, from our data we found π-Berry phase that directly indicates the Dirac nature of the carriers in three-dimensional topological insulator (3D TI) based on Cu-doped bismuth selenide. We argued that in our samples the magnetotransport is determined by a general group of carriers that exhibit quasi-two-dimensional (2D) behaviour and are characterized by topological π-Berry phase. Along with the main contribution to the conductivity the presence of a small group of bulk carriers was registered. For 3D-pocket Berry phase was identified as zero, which is a characteristic of trivial metallic states.

  13. Advanced bismuth-doped lead-germanate glass for broadband optical gain devices

    International Nuclear Information System (INIS)

    Hughes, M.; Suzuki, T.; Ohishi, Y.

    2008-01-01

    We fabricated a series of glasses with the composition 94.7-χGeO 2 -5Al 2 O 3 -0.3Bi 2 O 3 -χPbO (χ=0-24 mol. %). Characteristic absorption bands of bismuth centered at 500, 700, 800, and 1000 nm were observed. Adding PbO was found to decrease the strength of bismuth absorption. The addition of 3%-4% PbO resulted in a 50% increase in lifetime, a 20-fold increase in quantum efficiency, and a 28-fold increase in the product of emission cross section and lifetime on the 0% PbO composition. We propose that the 800 nm absorption band relates a different bismuth center than the other absorption bands

  14. Magnetoreflection studies of ion implanted bismuth

    International Nuclear Information System (INIS)

    Nicolini, C.; Chieu, T.C.; Dresselhaus, M.S.; Massachusetts Inst. of Tech., Cambridge; Dresselhaus, G.

    1982-01-01

    The effect of the implantation of Sb ions on the electronic structure of the semimetal bismuth is studied by the magnetoreflection technique. The results show long electronic mean free paths and large implantation-induced increases in the band overlap and L-point band gap. These effects are opposite to those observed for Bi chemically doped with Sb. (author)

  15. Catalytic upgrading of oleic acid into biofuel using Mo modified zeolite supported Ni oxalate catalyst functionalized with fluoride ion

    International Nuclear Information System (INIS)

    Ayodele, O.B.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Modification of zeolite with freshly prepared molybdenum oxalate. • Functionalization of Ni oxalate with HF and incorporation into Mo modified zeolite. • Characterization of synthesized Mo modified zeolite supported Ni oxalate catalyst. • Deoxygenation of oleic acid with the synthesized zeolite supported catalyst. • Reusability study on the synthesized zeolite supported catalyst. - Abstract: In this study, fluoride ion functionalized nickel oxalate supported on molybdenum modified zeolite (NiMoFOx/Zeol) catalyst was synthesized, characterized and tested on the hydrodeoxygenation (HDO) of oleic acid (OA) into paraffinic fuel. The NiMoFOx/Zeol characterization results confirmed the presence of both Ni and Mo as well as the formation of NiMoO 4 which is a highly HDO reactive specie at 2θ value of 43.6° according to the XRD result. NiMoFOx/Zeol also showed loss in crystallinity and reduction in the average particle size leading to increase in the pore volume and specific surface area due to the combined effects of fluoride ion presence, oxalic acid functionalization and calcination. The effect of temperature, pressure and NiMoFOx/Zeol loading studied showed that initial increase in their values increased the yield of the target fractions until some points where reduction was observed. The best observed experimental conditions to hydrodeoxygenate 40 g (∼45 mL) of OA into 75% n-C 18 and 23% i-C 18 were 360 °C, 30 mg NiMoFOx/Zeol loading and 20 bar using 100 mL H 2 /min. The presence of i-C 18 was due to the functionalization of the catalyst with fluoride ion. The catalyst reusability result displayed excellent qualities with marginal loss of only 2% in activity after third reuse due to the improved synthesis protocol that employed organometallic precursor. The results are strongly encouraging for further studies toward industrialization of HDO process

  16. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    Science.gov (United States)

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modificação de zeólitas para uso em catálise Modifying zeolites for use in catalysis

    Directory of Open Access Journals (Sweden)

    Fernando J. Luna

    2001-12-01

    Full Text Available The use of zeolites and other molecular sieves as catalysts is discussed at an introductory level. The text includes a brief historic background on the use of zeolites in catalysis, and a discussion of some chemical and physical properties of silicalite, aluminosilicate, and aluminophosphate molecular sieves. The strategies currently used to chemically modify zeolites and related materials to produce catalysts with increased activity and selectivity are discussed, including the use of redox molecular sieves for hydrocarbon oxidation and the leaching of the active metals from the support.

  18. Bacterial inactivation in water by means of a combined process of pulsed dielectric barrier discharge and silver-modified natural zeolite

    International Nuclear Information System (INIS)

    Rodríguez-Méndez, B G; López-Callejas, R; Olguín, M T; Valencia-Alvarado, R; Peña-Eguiluz, R; Mercado-Cabrera, A; Alcántara-Díaz, D; Muñoz-Castro, A E; Hernández-Arias, A N; De la Piedad-Beneitez, A

    2014-01-01

    We propose a novel combined system of pulsed dielectric barrier discharges (PDBDs) and silver-modified natural zeolite (Ag–zeolite) in liquid in bubbles. The system was tested with the Escherichia coli bacteria immersed in water. In order to evaluate the efficiency of the system in bacterial inactivation a microbiological analysis was carried out; 9.82-ln of bacterial reduction was obtained using the combined system, whereas 0.43-ln of bacterial reduction was obtained using Ag–zeolite alone, and 6.26-ln with PDBD. The elapsed time was 10 minutes for the three treatments. (paper)

  19. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  20. Effect of bismuth ion substitution on structural properties of zinc ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Naraavula Suresh Kumar

    2016-06-01

    Full Text Available Bismuth doped nano zinc ferrite particles having the general formula ZnFe2-xBixO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25 were synthesized by sol-gel combustion method. The effect of bismuth doping on structural properties were investigated. The X-ray diffraction (XRD spectra confirm the single phase cubic spinel structure. The average crystallite sizes of all the samples were determined by Debye-Scherrer equation and are in the range 16–20 nm. The lattice parameter increases with the increase of bismuth ion concentration. This is due to the larger ionic radius of Bi3+ ions substituting smaller Fe3+ ions at octahedral sites (B-sites. The surface morphology of all compounds was studied by scanning electron microscope (SEM. The microstructure analysis and the particle size were examined by transmission electron microscope (TEM. The compositional stoichiometry of these samples was verified by energy dispersive spectroscopy (EDS analysis.

  1. A density functional theory study of arsenic immobilization by the Al(III)-modified zeolite clinoptilolite

    NARCIS (Netherlands)

    Awuah, Joel B.; Dzade, N.Y.; Tia, Richard; Adei, Evans; Kwakye-Awuah, Bright; Catlow, C. Richard A.; de Leeuw, Nora H.

    2016-01-01

    We present density functional theory calculations of the adsorption of arsenic acid (AsO(OH)3) and arsenous acid (As(OH)3) on the Al(III)-modified natural zeolite clinoptilolite under anhydrous and hydrated conditions. From our calculated adsorption energies, we show that adsorption of both arsenic

  2. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A.

    2012-01-01

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L −1 ). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH 3 -TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  3. Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent

    International Nuclear Information System (INIS)

    Zhan Yanhui; Lin Jianwei; Zhu Zhiliang

    2011-01-01

    Surfactant modified zeolites (SMZ) with different coverage types were prepared by loading the cetylpyridinium bromide (CPB) onto the surface of the natural zeolites. The adsorption behavior of nitrate on SMZ was investigated. Natural zeolite and SMZ with monolayer CPB coverage were inefficient for the removal of nitrate from aqueous solution. However, SMZ with patchy bilayer or bilayer CPB coverage was efficient in nitrate removal, and the nitrate adsorption capacity of SMZ increased with its CPB loading. For typical SMZ with bilayer CPB coverage, the nitrate adsorption process was well described by the pseudo-second-order kinetic model, and the experimental isotherm data fitted well with the Langmuir, Freundlich and Dubinin-Redushkevich isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and the results showed that the adsorption of nitrate on SMZ was spontaneous and exothermic in nature. The presence of competing anions such as chloride, sulfate and bicarbonate ions slightly reduced the nitrate adsorption efficiency. Anionic exchange and electrostatic interaction were proven to be the main mechanisms that govern the adsorption of nitrate on SMZ.

  4. Biodiesel production from rice bran oil by transesterification using heterogeneous catalyst natural zeolite modified with K2CO3

    Science.gov (United States)

    Taslim; Iriany; Bani, O.; Parinduri, S. Z. D. M.; Ningsih, P. R. W.

    2018-02-01

    In the present study, an effort had been made to use natural zeolite from Tapanuli Utara, North Sumatera as a potential catalyst for biodiesel production. Biodiesel production is usuallythrough transesterification, and a catalyst is employed to improve reaction rate and yield. In this research rice bran oil (RBO) was used as feedstock. The objective of this work was to discover the effectiveness of natural zeolite modified by K2CO3 as catalysts in biodiesel production from RBO. K2CO3/natural zeolite catalyst modification was by impregnation method at various K2CO3 concentrations followed by drying and calcination. Transesterification was conducted at 65°C and 500 rpm. Effect of process variables such as the amount of catalyst, reaction time, and the molar ratio of methanol to RBO was investigated.The maximum yield of 98.18% biodiesel was obtained by using 10:1 molar ratio of methanol to RBO at a reaction time of 3 hours in the presence of 4 w% catalyst. The obtained biodiesel was then characterized by its density, viscosity and ester content. The biodiesel properties met the Indonesia standard (SNI).The results showed that natural zeolite modified by K2CO3 was suitable as a catalyst in the synthesis of biodiesel through transesterification from RBO.

  5. Conversion of straight-run gas-condensate benzenes into high- octane gasolines based on modified ZSM-5 zeolites

    International Nuclear Information System (INIS)

    Erofeev, V; Reschetilowski, V; Khomajakov, I; Egorova, L; Volgina, T; Tatarkina, A

    2014-01-01

    This paper describes the conversion of straight-run benzene of gas condensate into high-octane gasoline based on zeolite catalyst ZSM-5, modified in binary system oxide- based Sn (III) and Bi (III). It was defined that the introduction of the binary system oxide-based Sn(III) and Bi (III) into the basic zeolite results in the 2-fold increase of its catalytic activity.High-octane gasoline converted from straight-run benzene is characterized by a low benzol content in comparison to the high-octane benzenes produced during the catalytic reforming

  6. Natural zeolite reactivity towards ozone: the role of compensating cations.

    Science.gov (United States)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  8. Optical properties of Dy3+ doped bismuth boro-tellurite glasses for WLED applications

    Science.gov (United States)

    Karthikeyan, P.; Marimuthu, K.

    2016-05-01

    The Dy3+ doped bismuth boro-tellurite glasses with the chemical composition (79.5-x) B2O3+xTeO2+10Bi2O3+10PbF2+0.5Dy2O3 (where x = 10, 20, 30 and 40 in wt%) have been prepared by melt quenching technique. The optical properties of the prepared glasses have been studied through absorption and emission spectral measurements. The bonding parameters, optical band gap energy, Urbach's energy and Judd-Ofelt (JO) intensity parameters (Ωλ, λ = 2, 4 and 6) were calculated from the absorption spectra. The radiative properties like transition probability (A), stimulated emission cross-section (σPE) and branching ratios (βR) were calculated from the emission spectra using JO theory. The strong emissions in the visible region, large stimulated emission cross-section and higher branching ratio values observed for the title glasses are found to be suitable for lasers and WLED applications.

  9. Removal of heavy metals from water by zeolite mineral chemically modified. Mercury as a particular case; Remocion de metales pesados del agua por mineral zeolitico quimicamente modificado. Mercurio como un caso particular

    Energy Technology Data Exchange (ETDEWEB)

    Gebremedhin H, T

    2002-07-01

    Research works on the removal of mercury from water by zeolite minerals show that a small quantity of this element is sorbed. In this work the mercury sorption from aqueous solutions in the presence and absence of Cu(l l), Ni(l l) and/or Zn(l l) by a Mexican zeolite mineral, natural and modified by cisteaminium chloride or cistaminium dichloride, was investigated in acidic p H. The zeolite minerals were characterized by X- Ray diffraction Ftir, scanning electron microscopy and semiquantitative elemental analysis (EDS), surface area analysis (BET) and thermogravimetric analysis (TGA). Mercury from aqueous solutions was quantified by Atomic absorption spectroscopy. The amount of sulphur on the zeolite samples treated with Na CI and modified with cisteaminium chloride (0.375 mmol/g) or cistaminium dichloride(0.475 mmol/g) was found to be higher than that of the zeolite minerals modified with cisteaminium chloride and cistaminium dichloride without treating them with Na CI. The amount of sulphur on the zeolite minerals modified with thiourea was the lowest. The diffusion coefficients and sorption isotherms for mercury were determined in the natural, treated with Na CI and, treated with Na CI and then modified with the cisteaminium chloride or cistaminium dichloride zeolite samples. The retention of mercury was the highest for the zeolite minerals treated Na CI and then modified with cisteaminium chloride or cistaminium dichloride, with adsorption capacity of 0.0511 and 0.0525 mmol Hg/g, respectively. In this research work, it was found that the retention of mercury by the modified minerals was not affected by the presence of Cu (Il), Zn(l l) y Ni (I l) under the experimental conditions. (Author)

  10. Stabilization of high Tc phase in bismuth cuprate superconductor by lead doping

    Science.gov (United States)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1991-01-01

    It has been widely ascertained that doping of lead in Bi-Sr-Ca-Cu-O systems promotes the growth of high T sub c (110 K) phase, improves critical current density, and lowers processing temperature. A systematic study was undertaken to determine optimum lead content and processing conditions to achieve these properties. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance temperature (R-T) measurements and x ray diffraction to determine the zero resistance temperature, T sub c(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 and 880 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T sub c single phase with highly stable superconducting properties.

  11. Human bile sorption by cancrinite-type zeolites

    International Nuclear Information System (INIS)

    Linares, Carlos F.; Colmenares, Maryi; Ocanto, Freddy; Valbuena, Oscar

    2009-01-01

    A nitrated cancrinite-type zeolite was synthesized from zeolite X, NaOH and NaNO 3 solutions under autogeneous pressure at 80 deg. C for 48 h. This zeolite was characterized by X-ray diffraction (XRD), FT-IR-spectroscopy, scanning electron microscopy (SEM) and BET surface area. XRD, SEM and FT-IR confirmed the presence of nitrated cancrinite-type zeolite without other collateral phases as sodalite. Then, this sodium zeolite was exchanged with potassium and calcium cations and finally, these modified zeolites were reacted with biliar solutions from human gallbladder. Several factors such as: mass of used cancrinite, nature of the exchanged cation and reaction time of the cancrinite-bile solution interactions were studied. The composition of bile solutions (bile acids, phospholipids and bilirubin) was analyzed before and after the cancrinite-bile solution reaction. Results showed that the components of the bile were notably reduced after the contact with solids. Ca-cancrinite, 120 min of reaction time and 500 mg of solids were the best conditions determined for the bile acid reduction in human bile. When the modified zeolites were compared with the commercial cholestyramine, it was found that zeolites were more active than the latter. These zeolites may be an alternative choice to diminish cholesterol levels in hypercholesterolemic patients

  12. Influence of bismuth on structural, elastic and spectroscopic properties of Nd{sup 3+} doped Zinc–Boro-Bismuthate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Gaurav; Sontakke, Atul D.; Karmakar, P.; Biswas, K.; Balaji, S.; Saha, R.; Sen, R.; Annapurna, K., E-mail: annapurnak@cgcri.res.in

    2014-05-01

    The present investigation reports, influence of bismuth addition on structural, elastic and spectral properties of [(99.5−x) {4ZnO−3B_2O_3}−0.5Nd{sub 2}O{sub 3}−x Bi{sub 2}O{sub 3} where x=0, 5, 10, 20, 30, 40, 50 and 60] glasses. The measured FTIR reflectance spectra facilitated a thorough insight of methodical modifications that are arising in the glass structure from borate (build by BO{sub 3} and BO{sub 4} units) to bismuthate (BiO{sub 3} and BiO{sub 6} units) network due to the increase of bismuth content ensuing with a steady decrease in host phonon energy (ν{sub ph}). The elastic properties estimated from measured longitudinal and shear ultrasonic velocities (U{sub L} and U{sub s}) demonstrated the reduction in network rigidity of glasses on Bi{sub 2}O{sub 3} inclusion. The three phenomenological Judd–Ofelt intensity parameters (Ω{sub 2,4,6}) were obtained from recorded absorption spectra of Nd{sup 3+} ions in these glasses and have been used to predict radiative properties as a function of variation in bismuth content. The reduced host phonon energy and high optical basicity effect due to Bi{sub 2}O{sub 3} incorporation remarkably improved the Nd{sup 3+} luminescence properties such as emission intensity, quantum yield and emission cross-section. The quantum yield showed a strong increase from mere 16% in Zinc–Borate glass to almost 73% in 60 mol% Bi{sub 2}O{sub 3} containing glass. Similarly, the emission cross-section for Nd{sup 3+4}F{sub 3/2}→{sup 4}I{sub 11/2} laser transition raised from 2.43×10{sup −20} cm{sup 2} to 3.95×10{sup −20} cm{sup 2} in studied concentration suggesting a strong improvement in Nd{sup 3+} laser spectroscopic properties in Zinc–Boro-Bismuthate glass. These materials may be promising for compact solid state infrared lasers. - Highlights: • Continuous structural changes associated with reduction in host phonon energy by Bi{sub 2}O{sub 3} inclusion. • Ultrasonic velocity study revealed reduced Debye

  13. Ultrasonic attenuation in the superconducting and intermediate states of pure and doped type I superconductors

    International Nuclear Information System (INIS)

    Chaudhuri, K.D.; Singh, R.

    1982-01-01

    The attenuation of longitudinal ultrasonic waves has been measured in single crystals of indium (99.999%), indium doped with 0.003 at % of tin, and indium doped with 0.002 at % of bismuth in the intermediate and superconducting states over the frequency range 10--30 MHz. For the bismuth-doped indium specimen, measurements were taken for three different physical states, i.e., for three different dislocation densities, and for the indium and the tin-doped indium specimens, measurements were for one-physical state. For a particular measurement, the same physical state was maintained both in the intermediate and superconducting states. A temperature-dependent oscillatory behavior of the ultrasonic attenuation was observed in the intermediate state in all the three specimens, but in the superconducting state the oscillatory behavior was observed only in the bismuth-doped specimen. Two phases have been identified in the superconducting layers of the intermediate state and there is only one phase in the superconducting state of the bismuth-doped sample. The origin of the two phases in the intermediate state and that of the single phase in the superconducting state of the bismuth-doped sample are discussed. A qualitative explanation is presented for the occurrence of oscillatory attenuation in the intermediate state irrespective of the nature of the dopant and the selective occurrence of oscillatory attenuation in the superconducting state due to the nature of the dopant

  14. Alkali resistant Fe-zeolite catalysts for SCR of NO with NH3 in flue gases

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2011-01-01

    . The effect of potassium doping on the acidic and redox properties of the Fe-zeolite catalysts were studied. The prepared catalysts showed high surface area and surface acidity. This is essential for increased alkali resistivity in comparison with conventional metal oxide supports like, e.g. TiO2 and ZrO2......, towards e.g. potassium salts in flue gases from biomass fired power plants. These properties allowed both undoped and potassium doped Fe-zeolite catalysts to posses high activity during the selective catalytic reduction (SCR) of NO with NH3. The extent of deactivation of the Fe-zeolite catalysts...

  15. Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles

    International Nuclear Information System (INIS)

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    We report on a glassy carbon electrode modified with bismuth nanoparticles (NanoBiE) for the simultaneous determination Pb 2+ and Cd 2+ by anodic stripping voltammetry. Operational parameters such as bismuth nanoparticles labelling amount, deposition potential, deposition time and stripping parameters were optimized with respect to the determination of Pb 2+ and Cd 2+ in 0.1 M acetate buffer solution (pH 4.5). The NanoBiE gives well-defined, reproducible and sharp stripping peaks. The peak current response increases linearly with the metal concentration in a range of 5.0–60.0 μg L −1 , with a detection limit of 0.8 and 0.4 μg L −1 for Pb 2+ and Cd 2+ , respectively. The morphology and composition of the modified electrode before and after voltammetric measurements were analysed by scanning electron microscopy and energy dispersive X-ray analysis. The NanoBiE was successfully applied to analysis of Pb 2+ and Cd 2+ in real water samples and the method was validated by ICP-MS technique, suggesting that the electrode can be considered as an interesting alternative to the bismuth film electrode for possible use in electrochemical studies and electro analysis. (author)

  16. Carbon nanotubes paste sensor modified with bismuth film for determination of metallic ions in ethanol fuel

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Gorla

    2015-05-01

    Full Text Available In the present study an anodic stripping voltammetric method using a bismuth film modified carbon nanotubes paste electrode for simultaneous determination of metals Zn2+, Cd2+and Pb2+in ethanol fuel is described. The metallic ions were preconcentrated on the bismuth film in the time and deposition potential of 500 s and -1.2 V and the stripping step was carried out by square wave voltammetry (frequency of 15 Hz, pulse amplitude of 25 mV and potential step of 5 mV. Acetate buffer at 0.1 mol L-1concentration and pH 4.5 was used as support electrolyte. The method showed linearity including the analytical blank up to 48.39 ?g L-1 for the metals and the obtained limits of detection were 3.36, 0.32 and 0.47 ?g L-1for Zn2+, Cd2+and Pb2+, respectively. The proposed method was applied in ethanol fuel samples.

  17. Ultrasonic investigations of some bismuth borate glasses doped with ...

    Indian Academy of Sciences (India)

    Keywords. Bismuth borate glasses; elastic moduli; Makishima–Mackenzie model. 1. Introduction ... former because of the small field strength of Bi3+ ion. Bi2O3 ..... Typically, when the material undergoes a phase change, the value of the.

  18. Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, R.S.; Dhankhar, Sunil; Punia, R., E-mail: rajeshpoonia13@gmail.com; Nanda, Kirti; Kishore, N.

    2014-02-25

    Highlights: • Novel materials transmitting in mid-infrared spectral region. • Studied glasses may be good candidates for military and non-linear applications. • Hydrogenic excitonic model is applicable. • Transformation of TeO{sub 4} structural units into TeO{sub 3} units with increase in bismuth content. • B{sub 2}O{sub 3} exists in the both BO{sub 3} trigonal and BO{sub 4} tetrahedral structural units. -- Abstract: Tellurium oxide based quaternary glasses in the system TeO{sub 2}⋅B{sub 2}O{sub 3}⋅Bi{sub 2}O{sub 3}⋅ZnO have been prepared by melt quenching technique. Amorphous nature of the samples has been ascertained by X-ray Diffractogram. The values of density and molar volume increase with increase in Bi{sub 2}O{sub 3} content. Theoretical calculations of crystalline volume (V{sub c}) have also been made. The glass transition temperature (T{sub g}) has been determined using differential scanning calorimetry (DSC) and its value is observed to decrease with increase in Bi{sub 2}O{sub 3} content. IR and Raman spectra of the present glass system indicate that ZnO acts as network modifier and exists in ZnO{sub 4} units. TeO{sub 2} exists as TeO{sub 3}, TeO{sub 4}, and TeO{sub 6} structural units and the number of TeO{sub 4} groups decreases with increase in bismuth content except for the glass sample with x = 5, which shows maximum number of TeO{sub 4} structural units among all other studied glass samples and transformation of some of TeO{sub 4} structural units into TeO{sub 3} structural units is observed with increase in bismuth content. Bismuth plays the role of network modifier with BiO{sub 6} octahedral structural units for glass samples with x = 5, 10, and 15, whereas, exists in network forming BiO{sub 3} pyramidal structural units for glass sample with x = 20. B{sub 2}O{sub 3} exists in the form of BO{sub 3} trigonal and BO{sub 4} tetrahedral structural units. The transmittance of the present glasses is observed to be very high (up to 95

  19. Structure and luminescence properties of Dy2O3 doped bismuth-borate glasses

    International Nuclear Information System (INIS)

    Mugoni, Consuelo; Gatto, C.; Pla-Dalmau, A.; Siligardi, C.

    2017-01-01

    In this study heavy bismuth-borate glasses were studied as host matrices of Dy 2 O 3 rare earth, for potential application as scintillator materials in high energy physics experiments and in general radiation detection systems. Glass matrices were prepared from 20BaO-xBi 2 O 3 -(80-x)B 2 O 3 (x = 20, 30, 40 mol%) ternary systems and synthesized by the melt-quenching method at different temperatures in order to obtain high density and high transparency in the UV/Vis range. Particularly, the glass manifesting the higher transparency and with sufficiently high density was doped with Dy 2 O 3 (2.5 and 5 mol%) in order to induce the luminescence characteristics. The effects of Bi 2 O 3 and Dy 2 O 3 on density, thermal behaviour, transmission as well as luminescence properties under UV excitation, were investigated. The experimental results show that the synthesized glasses can be considered promising candidate materials as dense scintillators, due to the Dy 3+ centres emission.

  20. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions.

    Science.gov (United States)

    Ates, Ayten

    2018-08-01

    A series of natural zeolites with different compositions were modified by post-synthesis modification with sodium hydroxide (NaOH) solution. Natural and modified zeolites were characterized by XRD, SEM, nitrogen adsorption, FTIR, zeta potential and temperature programmed desorption of ammonia (NH 3 -TPD). The adsorption capacities of these samples were evaluated by the adsorption of manganese from aqueous solution. The treatment with NaOH led to a decrease in the surface area and microporosity of all natural zeolites as well as partly damage of the zeolite structure depending on zeolite composition. In addition, the amount of weak, medium and strong acid sites in the zeolites was changed significantly by NaOH treatment depending on zeolite composition. The NaOH treatment resulted in a four-fold improvement in adsorption capacity of natural zeolite originated from Bigadic and a twofold decrease in that of the natural zeolite originated from Manisa-Gordes. Although the improved adsorption capacity might be mainly due to modification of porosity in the zeolites and formation of hydroxysodalite, the reduced adsorption capacity of the zeolite might be mainly due to a significant deformation of the zeolite structure. The pseudo-second-order kinetic model for the adsorption of manganese on all natural and modified zeolites fits well. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  2. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alejandro, Serguei [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Núcleo de Energías Renovables (F. Ingeniería), Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco (Chile); Valdés, Héctor, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Manéro, Marie-Hélène [Université de Toulouse (France); INPT, UPS (France); Laboratoire de Génie Chimique, 4, Allée Emile Monso, F–31030 Toulouse (France); CNRS (France); Laboratoire de Génie Chimique, F–31030 Toulouse (France); Zaror, Claudio A. [Departamento de Ingeniería Química (F. Ingeniería), Universidad de Concepción, Concepción, Correo 3, Casilla 160–C (Chile)

    2014-06-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity.

  3. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    International Nuclear Information System (INIS)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A.

    2014-01-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity

  4. Zeolites modified with silver for the development of a water disinfection system

    International Nuclear Information System (INIS)

    Aparicio V, S.

    2013-01-01

    In spite of great strides that have been taken in sanitation technologies, there still exist health problems due to microbiological contamination by water. The waterborne diseases have not been completely eradicated and are a big problem of economic interest and health. Moreover, the microbicidal properties of silver have been used for a long time. The use of silver as a disinfectant has many advantages; for example it inhibits a wide spectrum of microorganisms, it has oligo dynamic properties and owing its mechanisms of cell inactivation, it also does not allow the emergence of new resistant strains. In the present research, the kinetics of water disinfection with silver has been investigated, to develop small system for water disinfection, based in silver modified Mexican clinoptilolite. The chemical species of silver play a significant role in the disinfection processes. For this reason, in this work, were both the Ag + and nanoparticles of Ag ο considered. The synthesis of nanoparticles of Ag ο woes performed by thermal and chemical reduction. It was found that the chemical reduction of Ag + to Ag ο was more efficient because it presented more defined nano structures and better distribution than those of thermal reduction. Clinoptilolite of Taxco (Guerrero) was chosen to exchange the native ions from the clinoptilolite by Ag + from the aqueous medium, or to deposit the nanoparticles of Ag ο on this surface. These silver modified zeolitic materials were characterized by scanning electron microscopy (Sem), elemental analyses (EDS), X-ray diffraction (XRD) and neutron activation analysis (NAA). The results showed that the crystallographic structure of the clinoptilolite did not change during thermal and chemical reduction treatments of Ag + to obtain the nanoparticles of Ag ο . The bactericide activity of the silver modified zeolitic materials (with Ag + or nanoparticles of Ag ο ) was evaluated on Escherichia coli Atcc 8739, in both distilled water and well

  5. Dyes adsorption blue vegetable and blue watercolor by natural zeolites modified with surfactants;Adsorcion de colorantes azul vegetal y azul acuarela por zeolitas naturales modificadas con surfactantes

    Energy Technology Data Exchange (ETDEWEB)

    Jardon S, C. C.; Olguin G, M. T. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Diaz N, M. C., E-mail: teresa.olguin@inin.gob.m [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2009-07-01

    In this work was carried out the dyes removal blue vegetable and blue watercolor of aqueous solutions, to 20 C, at different times and using a zeolite mineral of Parral (Chihuahua, Mexico) modified with hexadecyl trimethyl ammonium bromide or dodecyl trimethyl ammonium bromide. The zeolite was characterized before and after of its adaptation with NaCl and later with HDTMABr and DTMABr. For the materials characterization were used the scanning electron microscopy of high vacuum; elementary microanalysis by X-ray spectroscopy of dispersed energy and X-ray diffraction techniques. It was found that the surfactant type absorbed in the zeolite material influences on the adsorption process of the blue dye. Likewise, the chemical structure between the vegetable blue dye and the blue watercolor, determines the efficiency of the color removal of the water, by the zeolites modified with the surfactants. (Author)

  6. Correlation between near infrared emission and bismuth radical species of Bi2O3-containing aluminoborate glass

    International Nuclear Information System (INIS)

    Masai, Hirokazu; Takahashi, Yoshihiro; Fujiwara, Takumi; Suzuki, Takenobu; Ohishi, Yasutake

    2009-01-01

    A strong correlation between bismuth radical species and emission in the near infrared (NIR) region of SnO-doped bismuth-containing aluminoborate glass, (CaO-B 2 O 3 -Bi 2 O 3 -Al 2 O 3 -TiO 2 ) (CaBBAT), was observed. Since the activation energy of the NIR emission was similar to that of electron spin resonance signal, it is expected that bismuth radical species in the CaBBAT glass is an origin of the NIR emission. Compared to the observed emission spectra with energy diagram of previous data, we have confirmed that bismuth ion possessing low valence is the origin of broad emission in the NIR region.

  7. Hydrothermally grown zeolite crystals

    International Nuclear Information System (INIS)

    Durrani, S.K.; Qureshi, A.H.; Hussain, M.A.; Qazi, N.K.

    2009-01-01

    The aluminium-deficient and ferrosilicate zeolite-type materials were synthesized by hydrothermal process at 150-170 degree C for various periods of time from the mixtures containing colloidal reactive silica, sodium aluminate, sodium hydroxide, iron nitrate and organic templates. Organic polycation templates were used as zeolite crystal shape modifiers to enhance relative growth rates. The template was almost completely removed from the zeolite specimens by calcination at 550 degree C for 8h in air. Simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) was performed to study the removal of water molecules and the amount of organic template cations occluded inside the crystal pore of zeolite framework. The 12-13% weight loss in the range of (140-560 degree C) was associated with removal of the (C/sub 3/H/sub 7/)/sub 4/ N+ cation and water molecules. X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) techniques were employed to study the structure, morphology and surface features of hydrothermally grown aluminium-deficient and ferrosilicate zeolite-type crystals. In order to elucidate the mode of zeolite crystallization the crystallinity and unit cell parameters of the materials were determined by XRD, which are the function of Al and Fe contents of zeolites. (author)

  8. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study.

    Science.gov (United States)

    de Gennaro, Bruno; Catalanotti, Lilia; Cappelletti, Piergiulio; Langella, Alessio; Mercurio, Mariano; Serri, Carla; Biondi, Marco; Mayol, Laura

    2015-06-01

    In view of zeolite potentiality as a carrier for sustained drug release, a clinoptilolite-rich rock from California (CLI_CA) was superficially modified with cetylpyridinium chloride and loaded with diclofenac sodium (DS). The obtained surface modified natural zeolites (SMNZ) were characterized by confocal scanning laser microscopy (CLSM), powder X-ray diffraction (XRPD) and laser light scattering (LS). Their flowability properties, drug adsorption and in vitro release kinetics in simulated intestinal fluid (SIF) were also investigated. CLI_CA is a Na- and K-rich clinoptilolite with a cationic exchange ability that fits well with its zeolite content (clinoptilolite=80 wt%); the external cationic exchange capacity is independent of the cationic surfactant used. LS and CLSM analyses have shown a wide distribution of volume diameters of SMNZ particles that, along with their irregular shape, make them cohesive with scarce flow properties. CLSM observation has revealed the localization of different molecules in/on SMNZ by virtue of their chemical nature. In particular, cationic and polar probes prevalently localize in SMNZ bulk, whereas anionic probes preferentially arrange themselves on SMNZ surface and the loading of a nonpolar molecule in/on SMNZ is discouraged. The adsorption rate of DS onto SMNZ was shown by different kinetic models highlighting the fact that DS adsorption is a pseudo-second order reaction and that the diffusion through the boundary layer is the rate-controlling step of the process. DS release in an ionic medium, such as SIF, can be sustained for about 5h through a mechanism prevalently governed by anionic exchange with a rapid final phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO

    International Nuclear Information System (INIS)

    Densakulprasert, Nataporn; Wannatong, Ladawan; Chotpattananont, Datchanee; Hiamtup, Piyanoot; Sirivat, Anuvat; Schwank, Johannes

    2005-01-01

    The effects of zeolite content, pore size and ion exchange capacity on electrical conductivity response to carbon monoxide (CO) of polyaniline/zeolite composites were investigated. Zeolite Y, 13X, and synthesized AlMCM41, all having the common cation Cu 2+ , were dry mixed with synthesized maleic acid (MA) doped polyaniline and compressed to form polyaniline (PANI)/zeolite pellet composites. The Y, 13X and AlMCM41 zeolite have the nominal pore sizes of 7, 10, 36 A, and the Cu 2+ exchange capacities of 0.161, 0.087, and 0.044 mol/g, respectively. With an addition of 13X zeolite to pristine polyaniline, the electrical conductivity sensitivity to CO/N 2 gas increases with zeolite content. For the effect of zeolite type, the highest electrical conductivity sensitivity is obtained with the 13X zeolite, followed by the Y zeolite, and the AlMCM41 zeolite, respectively. Poor sensitivity of zeolite AlMCM41 is probably due to its very large pore size and its lowest Cu 2+ exchange capacity. Y zeolite and 13X zeolite have comparable pore sizes but the latter has a greater pore free volume and a more favorable location distribution of the Cu 2+ ions within the pore. The temporal response time increases with the amount of zeolite in the composites but it is inversely related to the amount of ion exchange capacity

  10. The toxicity of cationic surfactant HDTMA-Br, desorbed from surfactant modified zeolite, towards faecal indicator and environmental microorganisms.

    Science.gov (United States)

    Reeve, Peter J; Fallowfield, Howard J

    2017-10-05

    Surfactant Modified Zeolite (SMZ) represents a versatile, cost-effective permeable reactive material, capable of treating multiple classes of contaminants. The potential for HDTMA-Br, a cationic surfactant commonly used to modify zeolite, to desorb from the zeolite surface has been identified as a potential issue for the ongoing use of SMZ in water remediation contexts. This paper investigates the toxicity of HDTMA-Br towards enteric virus surrogates, F-RNA bacteriophage MS2 and E. coli, Bacillus subtilis, and soil microflora. The concentration of surfactant desorbing from SMZ was quantified through a bioassay using E. coli. Results showed HDTMA-Br concentrations of ≥10 -5 M were toxic to MS2, ≥10 -4 M were toxic to E. coli and ≥10 -6 M were toxic to B. subtilis. No toxic relationship was established between HDTMA-Br and soil microflora. Desorption of ≥10 -4 M of HDTMA-Br was shown for the two SMZ samples under the mixing conditions used. Effects of this surfactant on total soil microflora were ambiguous since no toxic relationship could be established, however, HDTMA-Br, at concentrations desorbing from SMZ, were shown to impact the soil bacterium B. subtilis. Further research is required to determine the effect of this surfactant on microbial populations and species diversity in soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ce-Fe-modified zeolite-rich tuff to remove Ba(2+)-like (226)Ra(2+) in presence of As(V) and F(-) from aqueous media as pollutants of drinking water.

    Science.gov (United States)

    Olguín, María Teresa; Deng, Shuguang

    2016-01-25

    The sorption behavior of the Ba(2+)-like (226)Ra(2+) in the presence of H2AsO4(-)/HAsO4(2-) and F(-) from aqueous media using Ce-Fe-modified zeolite-rich tuff was investigated in this work. The Na-modified zeolite-rich tuff was also considered for comparison purposes. The zeolite-rich tuff collected from Wyoming (US) was in contact with NaCl and CeCl3-FeCl3 solutions to obtain the Na- and Ce-Fe-modified zeolite-rich tuffs (ZUSNa and ZUSCeFe). These zeolites were characterized by scanning electron microscopy and X-ray diffraction. The BET-specific surface and the points of zero charge were determined as well as the content of Na, Ce and Fe by neutron activation analysis. The textural characteristics and the point of zero charge were changed by the presence of Ce and Fe species in the zeolitic network. A linear model described the Ba(2+)-like (226)Ra(2+) sorption isotherms and the distribution coefficients (Kd) varied with respect to the metallic species present in the zeolitic material. The As(V) oxianionic chemical species and F(-) affected this parameter when the Ba(2+)-like (226)Ra(2+)-As(V)-F(-) solutions were in contact with ZUSCeFe. The H2AsO4(-)/HAsO4(2-) and F(-) were adsorbed by ZUSCeFe in the same amount, independent of the concentration of Ba(2+)-like (226)Ra(2+) in the initial solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand.

    Science.gov (United States)

    Roussel, Thomas; Bichara, Christophe; Gubbins, Keith E; Pellenq, Roland J-M

    2009-05-07

    We first report the atomistic grand canonical Monte Carlo simulations of the synthesis of two realistic ordered microporous carbon replica in two siliceous forms of faujasite zeolite (cubic Y-FAU and hexagonal EMT). Atomistic simulations of hydrogen adsorption isotherms in these two carbon structures and their Li-doped composites were carried out to determine their storage capacities at 77 and 298 K. We found that these new forms of carbon solids and their Li-doped versions show very attractive hydrogen storage capacities at 77 and 298 K, respectively. However, for a filling pressure of 300 bars and at room temperature, bare carbons do not show advantageous performances compared to a classical gas cylinder despite of their crystalline micropore network. In comparison, Li-doped nanostructures provide reversible gravimetric and volumetric hydrogen storage capacities twice larger (3.75 wt % and 33.7 kg/m(3)). The extreme lattice stiffness of their skeleton will prevent them from collapsing under large external applied pressure, an interesting skill compared to bundle of carbon nanotubes, and metal organic frameworks (MOFs). These new ordered composites are thus very promising materials for hydrogen storage issues by contrast with MOFs.

  13. Stabilization of high T(sub c) phase in bismuth cuprate superconductor by lead doping

    Science.gov (United States)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1990-01-01

    It has widely been ascertained that doping of lead in Bi:Sr:Ca:Cu:O systems promotes the growth of high T(sub c) (110 K) phase, improves critical current density, and lowers processing temperature. A systematic investigation is undertaken to determine optimum lead content and processing conditions to achieve these. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance-temperature (R-T) measurements and x ray diffraction (XRD) to determine the zero resistance temperature, T(sub c)(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T(sub c) single phase with highly stable superconducting properties.

  14. Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite.

    Science.gov (United States)

    Nekhunguni, Pfano Mathews; Tavengwa, Nikita Tawanda; Tutu, Hlanganani

    2017-07-15

    In this work, the synthesis of iron (hydr) oxide modified zeolite was achieved through precipitation of iron on the zeolite. The structure and surface morphology of iron (hydr) oxide modified zeolite (IHOMZ) was studied by scanning electron microscopy (SEM), coupled with an energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectra. The efficiency of IHOMZ was then investigated through batch technique for the extraction of As(V) from mine waste water. The optimum parameters for maximum As(V) adsorption were: an initial As(V) concentration (10 mg L -1 ), adsorbent dosage (3.0 g), contact time (90 min) and temperature (53 °C). The initial pH of the solution had no compelling effect on As(V) adsorption by IHOMZ. However, adsorption capacity was significantly affected by the solution temperature with 53 °C registering the maximum removal efficiency. The thermodynamic parameters: Entropy (ΔS° = 0.00815 kJ (K mol) -1 ), variation of the Gibbs free energy (ΔG°) and enthalpy (ΔH° = 9.392 kJ mol -1 ) of As(V) adsorption onto IHOMZ system signified a non-spontaneous and endothermic process. It was noted that Freundlich isotherm model exhibited a better fit to the equilibrium experimental data, implying that the adsorption process occurred on a heterogeneous surface. The kinetic data from As(V) adsorption experiments was depicted by the pseudo-second-order kinetic model (R 2  > 0.999), suggesting a chemisorption adsorption process. The experimental batch equilibrium results indicated that IHOMZ could be used as an effective sorbent for As(V) ion extraction from acid mine drainage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spectroscopic studies of lutetium pyro-silicates Lu2Si2O7 doped with bismuth and europium

    International Nuclear Information System (INIS)

    Bretheau-Raynal, Francoise

    1981-01-01

    Single crystals of thortveitite structure pyro-silicates were grown by a floating zone technique associated with an arc image furnace. The samples were systematically characterized by X-Ray diffraction and microprobe analysis. Thanks to oriented single crystals of Lu 2 Si 2 O 7 , Yb 2 Si 2 O 7 and Sc 2 Si 2 O 7 , the recorded infrared and Raman spectra allow complete attribution of internal and external vibration modes, in good agreement with group theory predictions for C 2h factor group. Spectroscopic studies of Eu 3+ doping ion in Lu 2 Si 2 O 7 confirm C 2 point symmetry for the cationic site. Oscillator strengths and Judd-Ofelt parameters for Eu 3+ were calculated. A three level scheme ( 1 S 0 , 3 P 0 , 3 P 1 ) of Bi 3+ ion is used to explain radiative and non radiative mechanisms in Lu 2 Si 2 O 7 doped with bismuth. Finally, the mechanisms of low temperature (T =9 K) energy transfer between Bi 3+ and Eu 3+ in lutetium pyro-silicate was studied. The transfer occurs by non radiative process, without any diffusion of the excitation energy within the donor system and is due to dipole-dipole interactions between Bi 3+ and Eu 3+ ions. (author) [fr

  16. Selectivity of the adsorption process of modified zeolite rock with hexadecyl trimethylammonium bromide in front to chromates and dichromates

    International Nuclear Information System (INIS)

    Salgado G, N.

    2011-01-01

    In the present investigation natural zeolite (clinoptilolite) from the Chihuahua state, which was conditioned with sodium chloride solution and subsequently modified with a hexadecyl trimethylammonium bromide solution was used to evaluate the removal of Cr (Vi) from chromate or dichromate solutions. The zeolite materials were characterized by scanning electron microscopy and X-ray diffraction. The surface area was also determined. The experiments were performed in a batch system, the influence of ph, contact time between phases were investigated and during the adsorption process was calculated the concentration of chromium ion present in aqueous solution (CrO 4 2- , Cr 2 O 7 2- ). The quantification of chromium removed from the aqueous solution by atomic absorption spectrometry technique was done. In order to understand the behaviour of the adsorption kinetics the pseudo first and pseudo second order models were applied, and to determine the adsorption capacity of the zeolite materials for Cr the Langmuir, Freundlich and Langmuir-Freundlich models were chosen. It was found that the removal efficiency of chromium ion is influenced by ph and the chemical species present: chromate or dichromate. The chromate and dichromate sorption kinetic data were best fitted to the pseudo-second and pseudo-first order models, respectively; and the Langmuir and Langmuir-Freundlich models described adequately the isotherms data considering a mono component system. In a mixture of Cr (Vi) ad CrO 4 2- and Cr 2 O 7 2- , the surfactant modified zeolite has a greater selectivity for Cr 2 O 7 2- ion than CrO 4 2- . In this case the Langmuir-Freundlich model described the adsorption isotherm behavior. (Author)

  17. Thermal stabilities of electromechanical properties in cobalt-modified strontium bismuth titanate (SrBi{sub 4}Ti{sub 4}O{sub 15})

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian; Cao, Zhao-Peng; Wang, Chun-Ming, E-mail: wangcm@sdu.edu.cn; Fu, Qing-Wei; Yin, De-Fu; Tian, Hu-He

    2016-07-25

    Bismuth layer-structured ferroelectric (BLSF) strontium bismuth titanate (SrBi{sub 4}Ti{sub 4}O{sub 15}, SBT) ceramic oxides with B-site cobalt substitutions have been synthesized using conventional solid–state reaction. The dielectric, piezoelectric, and ferroelectric properties of cobalt-modified SBT are investigated in detail. The results indicate that cobalt is very effective in promoting the piezoelectric performance of SBT. The SBT modified with 3 mol% Co{sup 3+} (SBT-3Co) exhibits the optimized piezoelectric properties, with a piezoelectric constant d{sub 33} of 28 pC/N, which is the highest value among the modified SBT-based piezoelectric ceramics ever reported. The temperature-dependent electrical impedance, resonance frequencies, and electromechanical coupling factors (k{sub p} and k{sub t}) reveal that the cobalt-modified SBT ceramics have good thermal stabilities of electromechanical properties up to 300 °C. These results demonstrate that the cobalt-modified SBT ceramics are promising materials for high temperature piezoelectric sensors applications. - Graphical abstract: The manuscript deals with the thermal stabilities of piezoelectric properties of cobalt-modified SrBi{sub 4}Ti{sub 4}O{sub 15} (SBT) ceramics. The 3 mol% Co{sup 3+} modified SBT (SBT-3Co) ceramics exhibit a piezoelectric constant d{sub 33} of 28 pC/N and a Curie temperature T{sub c} of 528 °C. The SBT-3Co ceramics have good thermal stabilities of electromechanical properties up to 300 °C. - Highlights: • A high level of piezoelectric performance (d{sub 33}∼28 pC/N)is obtained. • High Curie temperature (T{sub c}∼528 °C) is acquired for the optimal composition. • The SBT-3Co exhibits good thermal stabilities of electromechanical properties. • The Co-modified SrBi{sub 4}Ti{sub 4}O{sub 15} is promising as high temperature piezoelectric material.

  18. The effect of zeolite and diatomite on the corrosion of reinforcement steel in 1 M HCl solution

    Directory of Open Access Journals (Sweden)

    Husnu Gerengi

    2015-01-01

    Full Text Available The greatest disadvantage of reinforced concrete structures is the corrosion occurring in the reinforcement which, over time, causes a reduction in the reinforcement-concrete adherence and eventual sectional loss. The purpose of this study was to reveal the corrosion mechanism of ribbed reinforcement inside additive-free (reference, 20% zeolite-doped and 20% diatomite-doped concrete samples after exposure to 1 M HCl over 240 days. Electrochemical impedance spectroscopy (EIS measurements were made every 10 days. Consequently, it was determined that the 20% zeolite-doped concrete samples had higher concrete and reinforcement resistance compared to the 20% diatomite-doped and the reference concrete, i.e. they exhibited less corrosion.

  19. Irradiation-induced doping of Bismuth Telluride Bi2Te3

    International Nuclear Information System (INIS)

    Rischau, Carl Willem

    2014-01-01

    Bismuth Telluride Bi 2 Te 3 has attracted enormous attention because of its thermoelectric and topological insulator properties. Regarding its bulk band structure Bi 2 Te 3 is a band insulator with an energy gap of around 150-170 meV. However, the native anti-site defects that are present in real samples always dope this band insulator and shift the chemical potential into the valence or conduction band. In this PhD, the Fermi surface of as-grown and electron irradiated p-type Bi 2 Te 3 single crystals has been investigated extensively using electrical transport experiments. For moderate hole concentrations (p ∼< 5 x 10 18 cm -3 ), it is confirmed that electrical transport can be explained by a six-valley model and the presence of strong Zeeman-splitting. At high doping levels (p≅5 x 10 18 cm -3 ), the hole concentrations determined from Hall and Shubnikov-de Haas (SdH) effect differ significantly which is attributed to an impurity/defect band introduced by the anti-site defects. In this work, we show that it is possible to dope p-type Bi 2 Te 3 in a very controlled manner using electron-irradiation by performing detailed in- and ex-situ electrical transport studies on samples irradiated at room and at low temperatures with 2.5 MeV electrons. These studies show that the defects induced at both irradiation temperatures act as electron donors and can thus be used to convert the conduction from p- to n-type. The point of optimal compensation is accompanied by an increase of the low-temperature resistivity by several orders of magnitude. Irradiation at room temperature showed that both the p-type samples obtained after irradiation to intermediate doses as well as the samples in which the conduction has been converted to n-type by irradiation, still have a well defined Fermi surface as evidenced by SdH oscillations. By studying the Hall coefficient in-situ during low temperature electron irradiation, the coexistence of electron- and hole-type carriers was evidenced

  20. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor

    Directory of Open Access Journals (Sweden)

    Yanhui Sun

    2018-01-01

    Full Text Available In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO2/Al2O3 ratio, different particle size of MFI type zeolites (ZSM-5 were coated on the SnO2 to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO2/Al2O3 = 70, grain size 300 nm coated SnO2 gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO2 gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO2/Al2O3 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO2 sensors did not show much difference with SnO2 sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  1. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    Science.gov (United States)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  2. Pengaruh Kandungan Ca Pada Cao-zeolit Terhadap Kemampuan Adsorpsi Nitrogen

    OpenAIRE

    M Nasikin; Tania Surya Utami; Agustina TP Siahaan

    2002-01-01

    In industry, Ca zeolite is used as nitrogen selective adsorbent with the use of PSA (Pressure Swing Adsorption)/VSA (Vacuum Swing Adsorption) methods. Natural zeolite modified to be Cao-zeolite by ion exchange process using Ca(OH)2. Adsorption test was done on CaO-zeolite with different Ca concentration to understand how it's adsorption phenomena on oxygen and nitrogen. Adsorption test has been done for CaO-zeolite with Ca concentration = 0,682%, 0,849% and 1,244% to oxygen and nitrogen with ...

  3. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    Science.gov (United States)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Bismuth-doped Cu(In,Ga)Se2 absorber prepared by multi-layer precursor method and its solar cell

    International Nuclear Information System (INIS)

    Chantana, Jakapan; Hironiwa, Daisuke; Minemoto, Takashi; Watanabe, Taichi; Teraji, Seiki; Kawamura, Kazunori

    2015-01-01

    Bismuth (Bi)-doped Cu(In,Ga)Se 2 (CIGS) films were prepared by the so-called ''multi-layer precursor method'', obtained by depositing them onto Bi layers with various thicknesses on Mo-coated soda-lime glass (SLG) substrates. Material composition (Cu, In, Ga, and Se) profiles of the CIGS films are almost identical, whereas sodium (Na) is reduced, when Bi thickness is increased. Moreover, the incorporation of Bi into the CIGS film is enhanced with thicker Bi layer. With Bi thickness from 0 to 70 nm, the 2.4-μm-thick CIGS absorbers demonstrate the increase in CIGS grain size, carrier lifetime, and carrier concentration, thus improving their cell performances, especially open-circuit voltage (V OC ). With further increase in Bi thickness of above 70 nm, the CIGS films show the deterioration of CIGS film quality owing to the formation of Bi compounds such as Bi, BiSe, and Bi 4 Se 3 . Consequently, Bi-doped CIGS absorber with thickness of 2.4 μm, prepared with the 70-nm-thick Bi layer on Mo-coated SLG substrate, gives rise to the improvement of photovoltaic performances, especially V OC . (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    Science.gov (United States)

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Removal of arsenic species from drinking water by Iranian natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Menhaje-Bena, R.; Kazemian, H.; Shahtaheri, S.J.; Ghazi-Khansari, M.

    2003-01-01

    The main objective of this study was to find a relatively inexpensive method for removal of arsenic species from drinking water. The uptake capability of Iron (II) modified natural clinoptilolites and relevant synthetic zeolites A and P was investigated toward inorganic arsenic species from drinking water. Results obtained from sorption experiments, using a batch (static) technique showed that, among the investigated zeolites, modified synthetic zeolite A was the most selective sorbent for removal of arsenate and arsenite from drinking water. Through this study the influencing of factories including temperature, concentration, pH, particle size and interferences was evaluated on removal of arsenic species. The synthetic zeolites and their modified forms were also characterized, using XRD, XRF and thermal analysis techniques. (authors)

  7. Electrical properties of niobium doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics

    International Nuclear Information System (INIS)

    Parida, Geetanjali; Bera, J.

    2013-01-01

    Bismuth layer structured ferroelectrics (BLSFs) have attracted much attention because of their potential applications in non-volatile ferroelectric random access memories and high temperature piezoelectric. They are very attractive for these applications due to their fatigue free nature and environment friendly lead-free composition. BLSF crystal structure has layers of bismuth oxide and pseudo perovskite block stacked alternately along their c-direction, For commercial application, numerous efforts have been made to improve the electrical properties of BLSFs. Some effective approaches are: (i) doping at A-site, (ii) high valentcation doping at B-site and (iii) formation of intergrowth between different BLSFs. The intergrowth BLSFs are consist of regular stacking of one half the unit cell of m-member structure and one half the unit cell of (m+1) member BLSF structure along their c-axis. In this report, Nb-doped Bi 4 Ti 3 O 12 -SrBi 4 Ti 4 O 15 intergrowth ceramics have been prepared by modified oxalate route. XRD phase analysis confirmed the formation of single phase compound. Nb-doping does not affect the basic crystal structure of the intergrowth. SEM micrographs showed that the grain size of the ceramics decreases with Nb-doping. The temperature dependence of dielectric constant and losses was investigated in the temperature range 30 to 800℃ and frequency range 1 kHz to 1 MHz. With Nb-doping, the T c of the ferroelectrics reduces and peak permittivity increases. Doping also introduces small relaxor behaviour in the ferroelectrics. The dc conductivity of the ceramics decreases with doping. The remnant polarization (Pr) of the intergrowth ferroelectrics is increased with Nb doping. (author)

  8. Dyes removal of textile wastewater onto surfactant modified zeolite from coal ash and evaluation of the toxic effects

    International Nuclear Information System (INIS)

    Ferreira, Patricia Cunico

    2015-01-01

    Zeolites synthesized from fly and bottom ashes and modified with hexadecyltrimethylammonium (HDTMA) were used as adsorbent to remove dyes - Solophenyl Navy (SN) and Solophenyl Turquoise (ST) and their hydrolysed forms Solophenyl Navy Hydrolysed (SNH) and Solophenyl Turquoise Hydrolysed (STH), from simulated textile wastewater. The HDTMA-modified fly zeolite (ZMF) and HDTMA-modified bottom zeolite (ZMB) were characterized by different techniques, as X-ray fluorescence spectrometry, X-ray diffraction and scanning electron microscopy, etc. The ZMF and ZMB presented negative charge probably due to the formation of a partial bilayer of HDTMA on exchangeable active sites on the external surface of unmodified zeolite. Initial dye concentration, contact time and equilibrium adsorption were evaluated. The adsorption kinetic for SN, ST, SNH and STH onto the zeolites followed the pseudo second-order model. The equilibrium time was 20 min for SN and ST and 30 min for SNH and STH, respectively. Langmuir, Freundlich and Temkin models were applied to describe the adsorption isotherms. Adsorption of the dyes were best described by the Langmuir model, with exception to SN/ZPM, SNH/ZPM and SNH/ZLM systems that followed Freundlich model. The maximum adsorption capacities were 3,64; 3,57; 2,91 e 4,93 for SN, ST, SNH e STH by ZLM, respectively and 0,235; 0,492; 1,26 e 1,86 by ZPM, in this order. The best performance for hydrolyzed dyes has been attributed to reduction of the size of dyes molecules during the hydrolysis process. Acute toxicity of the dyes to a different organism were evaluated by different test-organisms. Waterflea, Ceriodaphnia dubia showed EC50 value of 1,25; 54,5; 0,78 and 2,56 mgL -1 for SN, ST, SNH and STH, respectively. The plant Lemna minor showed EC50 values of 18,9; 69,4; 10,9 and 70,9 mgL -1 for SN, ST, SNH and STH, respectively. Midges larvae of Chironomus tepperi showed EC50 values of 119 and 440 mgL -1 for SN and ST, respectively. Regarding the adsorption

  9. Bismuth ions are metabolized into autometallographic traceable bismuth-sulphur quantum dots

    Directory of Open Access Journals (Sweden)

    M Stoltenberg

    2009-06-01

    Full Text Available Bismuth – sulphur quantum dots can be silver enhanced by autometallography (AMG. In the present study, autometallographic silver enhanced bismuth-sulphur nanocrystals were isolated from unfixed cryo-sections of kidneys and livers of rats exposed to bismuth (Bi207 subnitrate. After being subjected to AMG all the organic material was removed by sonication and enzymatic digestion and the silver enhanced Bi- S quantum dots spun down by an ultracentrifuge and analyzed by scintillation. The analysis showed that the autometallographic technique traces approximately 94% of the total bismuth. This implies that the injected bismuth is ultimately captured in bismuthsulphur quantum dots, i.e., that Bi-S nanocrystals are the end product of bismuth metabolism

  10. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  11. Zeolite - a possible substitute of silica gel in spectrophotometric determination of uranium?

    International Nuclear Information System (INIS)

    Foeldesova, M; Dillinger, P.

    2006-01-01

    Zeolites sorption abilities differ from the ones of the silica gel, which is normally used for uranium determination by spectrophotometric method. The difference is obvious mainly in the case of zeolites chemically modified with 1 or 2 mol/L NaOH solution. Absorbances measured using these zeolites on an radioactive water samples were 4 to 4.2 times bigger than the ones with silica gel. This avoids a use of one universal calibration curve for experimental data evaluation. Within delivered experimental data only a calibration curve for silica gel was provided. Its application to zeolites caused substantial misinterpretation of the results. Calculational construction of individual calibration curves made at this work shaw, that zeolites have a potential to replace the silica gel. This possibility is necessary to confirm by more experiments. Better sorption abilities of the modified zeolites would be utilized to reduce the lower limit for uranium determination by spectrophotometric method. (authors)

  12. Obtaining of supports macro and micro nutrients with base in zeolites mexicans

    International Nuclear Information System (INIS)

    Cordova H, A.; Islas M, M.; Bascunan S, C.; Martines G, M.; Nikolaev N, S.

    2001-01-01

    Study the effect of application of the zeolites modified by the ionico interchange with fertilizers (NPK), N-p in the production of tomatos. The cultive of tomatos was made in lands of the Benemerita Autonoma Universidad de Puebla, Mexico, taking equal quadrants with the following ground treatments: 1) zeolite interchanged with fertilizers, 2) zeolite interchanged with a solution that contained only N-p, 3) natural zeolite without ionica modification and a quadrant witness represented by the ground without treatment. The collected data show an increase in the harvest of tomatos, as well as the retention of the decomposition of the harvested tomatos. In addition, it determinated that the optimal concentrations in the case of the zeolite dealt with 3% of fertilizer NPK are: 0,91% of potassium and 0.61% of nitrogen. These results allow to suggest the use of zeolites modified by ionico interchange in agriculture to elevate the level of the harvests of the tomato [es

  13. Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chunping; Lu, Zhong; Zhao, Huiping; Yang, Hao, E-mail: hyangwit@hotmail.com; Chen, Rong, E-mail: rchenhku@hotmail.com

    2015-10-30

    Graphical abstract: - Highlights: • Hierarchical bismuth nanostructures were synthesized by galvanic replacement reaction. • The bismuth coating shows superhydrophobicity after being modified by stearic acid. • Wetting transition could be realized by alternation of irradiation and modification. - Abstract: Special wettability such as superhydrophobicity and superhydrophilicity has aroused considerable attention in recent years, especially for the surface that can be switched between superhydrophobicity and superhydrophilicity. In this work, hierarchical bismuth nanostructures with hyperbranched dendritic architectures were synthesized via the galvanic replacement reaction between zinc plate and BiCl{sub 3} in ethylene glycol solution, which was composed of a trunk, branches (secondary branch), and leaves (tertiary branch). After being modified by stearic acid, the as-prepared bismuth coating shows superhydrophobicity with a high water contact angle of 164.8° and a low sliding angle of 3°. More importantly, a remarkable surface wettability transition between superhydrophobicity and superhydrophilicity could be easily realized by the alternation of UV–vis irradiation and modification with stearic acid. The tunable wetting behavior of bismuth coating could be used as smart materials to make a great application in practice.

  14. Structural, magnetic and dielectric properties of Y doped BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Min [School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Kumar, N. Pavan [Departmant of Physics, Osmania University, Hyderabad, 500 007 (India); Department of Physics, National Institute of Technology, Warangal, 506002 (India); Sagar, E. [Departmant of Physics, Osmania University, Hyderabad, 500 007 (India); Jian, Zhu; Yemin, Hu [School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Reddy, P. Venugopal, E-mail: paduruvenugopalreddy@gmail.com [Departmant of Physics, Osmania University, Hyderabad, 500 007 (India); Vidya Jyothi Institute of Technology, Aziz Nagar Gate, C.B. Post, Hyderabad, 500075 (India)

    2016-04-15

    With a view to understand the influence of doping Bismuth ferrite with Yttrium on structural, magnetic and dielectric behavior, a series of samples were prepared by the solid state reaction technique. After characterizing the samples with XRD and SEM studies, magnetic and dielectric measurements were carried out. The impurity phase of Bismuth ferrite is found to disappear with increasing Y doping concentration and finally the sample with x = 0.2 is found to be free from secondary phases. The dielectric constant is also found to exhibit two transitions and efforts were made to explain the observed behavior. - Highlights: • The doping of Y helped in reducing the impurity phase of BiFeO{sub 3}. • All the Y doped samples are found to exhibit peaks in magnetization. • Y doped BFO might be considered for future device applications.

  15. Zeolitic imidazolate framework-8-derived N-doped porous carbon coated olive-shaped FeOx nanoparticles for lithium storage

    Science.gov (United States)

    Gan, Qingmeng; Zhao, Kuangmin; He, Zhen; Liu, Suqin; Li, Aikui

    2018-04-01

    We propose a new strategy to uniformly coat zeolitic imidazolate framework-8 (ZIF-8) on iron oxides containing no Zn to obtain an α-Fe2O3@ZIF-8 composite. After carbonization, the α-Fe2O3@ZIF-8 transforms into iron oxides@N-doped porous carbon (FeOx@NC). The uniform N-doped porous carbon layer gives rise to a superior electrical conductivity, highly-increased specific BET surface area (179.2 m2 g-1), and abundant mesopores for the FeOx@NC composite. When served as the LIB anode, the FeOx@NC shows a high reversible capacity (of 1064 mA h g-1 at 200 mA g-1), excellent rate performance (of 198.1 mA h g-1 at 10000 mA g-1) as well as brilliant long-term cyclability (with a capacity retention of 93.3% after 800 cycles), which are much better than those of the FeOx@C and pristine FeOx anodes. Specifically, the Li-ion intercalation pseudocapacitive behavior of the FeOx@NC anode is improved by this N-doped porous carbon coating, which is beneficial for rapid Li-ion insertion/extraction processes. The excellent electrochemical performance of FeOx@NC should be ascribed to the increased electrolyte penetration areas, improved electrical conductivity, boosted lithium storage kinetics, and shortened Li-ion transport length.

  16. Bismuth-doped Cu(In,Ga)Se{sub 2} absorber prepared by multi-layer precursor method and its solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chantana, Jakapan; Hironiwa, Daisuke; Minemoto, Takashi [Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Watanabe, Taichi; Teraji, Seiki; Kawamura, Kazunori [Environment and Energy Research Center, Nitto Denko Corporation, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-06-15

    Bismuth (Bi)-doped Cu(In,Ga)Se{sub 2} (CIGS) films were prepared by the so-called ''multi-layer precursor method'', obtained by depositing them onto Bi layers with various thicknesses on Mo-coated soda-lime glass (SLG) substrates. Material composition (Cu, In, Ga, and Se) profiles of the CIGS films are almost identical, whereas sodium (Na) is reduced, when Bi thickness is increased. Moreover, the incorporation of Bi into the CIGS film is enhanced with thicker Bi layer. With Bi thickness from 0 to 70 nm, the 2.4-μm-thick CIGS absorbers demonstrate the increase in CIGS grain size, carrier lifetime, and carrier concentration, thus improving their cell performances, especially open-circuit voltage (V{sub OC}). With further increase in Bi thickness of above 70 nm, the CIGS films show the deterioration of CIGS film quality owing to the formation of Bi compounds such as Bi, BiSe, and Bi{sub 4}Se{sub 3}. Consequently, Bi-doped CIGS absorber with thickness of 2.4 μm, prepared with the 70-nm-thick Bi layer on Mo-coated SLG substrate, gives rise to the improvement of photovoltaic performances, especially V{sub OC}. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Influence of zeolite nanofillers on properties of polymeric materials

    OpenAIRE

    Kopcová, M.; Ondrušová, D.; Krmela, J.; Průša, P.; Pajtášová, M.; Jankurová, Z.

    2012-01-01

    The present work deals with the preparation and study of modified polymeric materials with the replacement of carbon black by nanofillers on the basis of zeolite that is environmentally friendly. Natural zeolites from a group of aluminosilicate nanoporous materials have wide range of possibilities for applications that are environmentally friendly. Zeolites can be used in the role of fillers into the polymer materials too [1]. The given work deals with the preparation and study of modif...

  18. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  19. Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi_4Ti_4O_1_5)

    International Nuclear Information System (INIS)

    Zhao, Tian-Long; Wang, Chun-Ming; Wang, Chun-Lei; Wang, Yi-Ming; Dong, Shuxiang

    2015-01-01

    Highlights: • Cobalt oxide modified CBT-based ceramics were prepared and investigated in detail. • XRPD analysis revealed Co ions enter into B-site of CBT-based ceramics. • CBT-Co4 ceramics show the enhanced d_3_3 of 14 pC/N and T_c of 782 °C. • CBT-Co4 ceramics present the improved high-temperature resistivity. • Thermal depoling behavior indicates CBT-Co4 ceramics exhibit good thermal stability. - Abstract: Bismuth layer-structured ferroelectric (BLSF) calcium bismuth titanate (CaBi_4Ti_4O_1_5, CBT) piezoelectric ceramics with 0.0–1.0 wt.% cobalt oxide (Co_2O_3) have been prepared via a conventional solid-state reaction method. Microstructural morphology and electrical properties of cobalt oxide-modified CBT ceramics were investigated in detail. X-ray powder diffraction (XRPD) analysis revealed that the cobalt oxide-modified CBT ceramics have a pure four-layer Aurivillius-type structure. The piezoelectric properties of CBT ceramics were significantly enhanced by cobalt oxide modifications. The piezoelectric coefficient d_3_3 and Curie temperature T_c of 0.2 wt.% cobalt oxide-modified CBT ceramics (CBT-Co4) are 14 pC/N and 782 °C, respectively. The DC resistivity and thermal depoling behavior at elevated temperature indicated that the CBT-Co4 ceramics exhibit good thermal stability, demonstrating that the CBT-Co4 ceramics are potential materials for high temperature piezoelectric applications.

  20. Adsorptive Stripping Determination of Trace Nickel Using Bismuth Modified Mesoporous Carbon Composite Electrode

    Science.gov (United States)

    Ouyang, Ruizhuo; Feng, Kai; Su, Yongfu; Zong, Tianyu; Zhou, Xia; Lei, Tian; Jia, Pengpeng; Cao, Penghui; Zhao, Yuefeng; Guo, Ning; Chang, Haizhou; Miao, Yuqing; Zhou, Shuang

    Novel bismuth nanoparticle-modified mesoporous carbon (MPC) was successfully prepared on a glassy carbon electrode (Bi@MPC/GCE) for the adsorptive stripping voltammetric determination of nickel by complexing with dimethylglyoxime (DMG). The presence of MPC obviously improved the properties of Bi particles like the electron transfer ability, particle size and hydrophicility, important parameters to achieve preferable analytical performances of Bi@MPC/GCE toward Ni(II). The best electrochemical behaviors of Bi@MPC/GCE was obtained for the stripping determination of Ni(II), compared with electrodes individually modified with Bi and MPC. The synergic effect between metallic Bi and ordered MPC (forming a 3D array like Bi microelectrodes) made major contribution to such improved electrochemical properties of Bi@MPC/GCE for Ni(II) sensing. The good linear analytical curve was achieved in a Ni(II) concentration range from 0.1μM to 5.0μM with a correlation coefficient of 0.9995. The detection limit and sensitivity were calculated to be 1.2nM (S/N=3) and 1410μAmM-1cm-2, respectively. The new method was successfully applied to Ni(II) determination in soybean samples with recoveries higher than 99% and proved to be a simple, efficient alternative for Ni(II) monitoring in real samples.

  1. Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ)

    International Nuclear Information System (INIS)

    Ozdemir, Ozgur; Turan, Mustafa; Turan, Abdullah Zahid; Faki, Aysegul; Engin, Ahmet Baki

    2009-01-01

    In this study, the ability of surfactant-modified zeolite (SMZ) to remove color from real textile wastewater was investigated. Tests were performed in a fixed-bed column reactor and the surface of natural zeolite was modified with a quaternary amine surfactant hexadecyltrimethylammonium bromide (HTAB). The zeolite bed that was modified at 1 g L -1 HTAB concentration and HTAB flow rate of 0.015 L min -1 showed good performance in removing color. Effects of wastewater color intensity, flow rates and bed heights were also studied. Wastewater was diluted several times in the ratios of 25%, 50% and 75% in order to assess the influence of wastewater strength. The breakthrough curves of the original and diluted wastewaters are dispersed due to the fact that breakthrough came late at lower color intensities and saturation of the bed appeared faster at higher color intensities. The column had a 3-cm diameter and four different bed heights of 12.5, 25, 37.5 and 50 cm, which treated 5.25, 19.50, 35.25 and 51 L original textile wastewater, respectively, at the breakthrough time at a flow rate of 0.025 L min -1 . The theoretical service times evaluated from bed depth service time (BDST) approach for different column variables. The calculated and theoretical values of the exchange zone height were found with a difference of 27%. The various design parameters obtained from fixed-bed experimental studies showed good correlation with corresponding theoretical values, under different bed heights. The regeneration of the SMZ was also evaluated using a solution consisting of 30 g L -1 NaCl and 1.5 g L -1 NaOH at pH 12 and temperature 30 o C. Twice-regenerated SMZ showed the best performance compared with the others while first- and thrice-regenerated perform lower than the original SMZ.

  2. Regeneration of zeolite catalysts of isobutane alkylation with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Manza, I.A.; Tsupryk, I.N.; Bartyshevskii, V.A.; Gaponenko, O.I.; Petrilyak, K.I.

    1986-12-10

    The industrial adoption of alkylation of isoalkanes with alkenes is held back by the rapid and irreversible deactivation of the zeolite catalysts appropriate to the process. This paper is aimed specifically at the restoration of the catalytic activity and increase in the service life of zeolite alkylation catalysts. The catalyst chosen for the investigation was HLaCaNaX zeolite both unmodified and modified with various multivalence cations. The thermochemical and oxidative regeneration process as well as the equipment utilized are described. Both the advantages and the drawbacks of the method are given; explanations for the possibly irreversible losses of the catalytic properties in the regenerated zeolites are also put forward.

  3. ZEOLITIZATION OF SEWAGE SLUDGE ASH WITH A FUSION METHOD

    Directory of Open Access Journals (Sweden)

    Jolanta Latosińska

    2016-11-01

    Full Text Available The study shows the results of zeolitization of municipal sewage sludge ash with the indirect fusion method followed by a hydrothermal method. The zeolitization of sewage sludge ash was conducted at the melting temperature of 550°C and the melting time of 60 minutes, crystallization temperatures of 60°C and 90°C, crystallization time of 6 hours and the SSA:NaOH ratio of 1:1.8; 1:1.4. The research of modified sewage sludge ashes included the observation of changes of ash particles surface and the identification of crystalized phases. The zeolitization of sewage sludge ash at the ratio of SSA:NaOH 1.0:1.4 did not cause the formation of zeolite phases. On the other hand, the zeolitization at the ratio of SSA:NaOH 1.0:1.8 resulted in the formation of desired zeolite phases such as zeolite Y (faujasite and hydroxysodalite. The presented method of sewage sludge ash zeolitization allows to obtain highly usable material. Synthesized zeolites may be used as adsorbents and ion exchangers. They can be potentially used to remove heavy metals as well as ammonia from water and wastewater.

  4. Ac irreversibility line of bismuth-based high temperature superconductors

    International Nuclear Information System (INIS)

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-01-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe ac <100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL close-quote s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.copyright 1997 Materials Research Society

  5. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth

    International Nuclear Information System (INIS)

    Malekian, Raheleh; Abedi-Koupai, Jahangir; Eslamian, Sayed Saeid

    2011-01-01

    The increasing demands for environmental protection and sustainable food production require an increase in the use of natural and non-toxic materials for agriculture. In this study, the feasibility of using surfactant-modified zeolite (SMZ) in comparison with zeolite clinoptilolite (Cp) application to reduce nitrate leaching and enhance crop growth was investigated. The effects of size (millimeter and nanometer) and application rate (20 g kg -1 and 60 g kg -1 ) of Cp and SMZ on nitrate leaching and crop response were also evaluated. Using soil lysimeters, it was determined that the maximum and mean nitrate concentration in the leachate of SMZ-amended soil were significantly (p 3 -N leached from SMZ- and Cp-amended lysimeters at the higher application rate (60 g kg -1 ) was approximately 26% and 22% lower, respectively, than that from the control system. The mean grain yield, grain nitrogen content, stover dry matter, and N uptake were significantly greater in Cp-amended than SMZ-amended lysimeters. There was no significant effect due to the particle size of the two soil amendments. The results implicitly suggest that plants may have a better response if Cp is used as a fertilizer carrier rather than SMZ when applied at a rate of 60 g kg -1 .

  6. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    Science.gov (United States)

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  7. Effect of precipitation conditions on the magnetic and sorption properties of zeolite-maghemite composites

    International Nuclear Information System (INIS)

    Matik, M.; Pechousek, J.; Zboril, R.; Sepelak, V.

    2006-01-01

    Natural zeolite (clinoptilolite) from Nizny Hrabovec (Slovakia) has been magnetically modified through maghemite (γ-Fe 2 O 3 ) nanoparticles by precipitation route at various reaction conditions. An effect of the precipitation temperature, weight ratio of Fe/zeolite and interaction time on the magnetic and surface properties of maghemite-zeolite composites was monitored by Moessbauer spectroscopy, TEM and BET surface area measurements. A decrease in reaction time and the Fe/zeolite ratio leads to smaller particles of γ-Fe 2 O 3 while lowering the precipitation temperature results in the larger crystallites. The reflection of the precipitation temperature being the key variable in the sorption properties of composites was tested with selected heavy metal ions. The sample prepared at highest temperature of 85 grad C reveals much higher maximum sorption capacity for Pb 2+ than commonly observed for magnetically modified natural zeolites. Good ability for sorption of anions was demonstrated with AsO 4 3- , which offers new applications of such modified zeolites. The sample with the best sorption properties was characterized by SEM, XRD, in-field Moessbauer spectroscopy and magnetic measurements. Following these data, maghemite nanoparticles form aggregates, which are sorbed on zeolite inhomogeneously with some free active surface of zeolite. The particles are about 15 nm in size and reveal the partial vacancies ordering as documented through the increased ratio of tetrahedral and octahedral positions being of 1/3. FC/ZFC curves confirm strongly interacting superparamagnetic particles with a blocking temperature of 230 K. (authors)

  8. Evaluation of the adsorbent properties of a zeolite rock modified for the removal of the azo dyes as water pollutants

    International Nuclear Information System (INIS)

    Torres P, J.

    2005-01-01

    At the moment some investigations which make reference to the removal of dyes for diverse adsorbent materials; as well as the factors that influence in the sorption process, considering the type so much of dye as those characteristics of the adsorbent material. In this work were investigated those adsorbent properties of a zeolite rock coming from San Luis Potosi State for the removal of azo dyes, using as peculiar cases the Red 40 (Red Allura) and the Yellow 5 (Tartrazine); for it were determined kinetic parameters and the sorption isotherms, as well as the sorption mechanisms involved in each case, between the dyes and the zeolite rock. In this work also it was considered the characterization before and after to removal of color from the water, through advanced analytical techniques such as the scanning electron microscopy of high vacuum (SEM), elementary microanalysis (EDS) and X-ray diffraction (XRD). The experimental part of the work fundamentally consisted, in the conditioning with a NaCl solution and later on the modification with HDTMA-Br of the natural zeolite rock, for then to put it in contact with solutions of the dyes R-40 and A-5, varying so much the contact times as the concentrations; the quantification of sodium in the liquid phase after the modification of the zeolite rock to determine the capacity of external cation exchange (CICE) it was carried out by means of the atomic absorption spectroscopy technique (EAA), and the quantification of the surfactant and the dyes in the liquid phase, it was carried out by means of the UV-vis spectrophotometry technique. It was found that the kinetic model that better it describes the process of sorption of R-40 and A-5 for the modified zeolite rock with HDTMA-Br, leaving of monocomponent and bi component solutions, it is the pseudo- second order. Inside of the obtained results for the sorption isotherms, as much the dye R-40 as the dye A-5 its presented a better adjustment to the Langmuir model. In what refers

  9. Ce–Fe-modified zeolite-rich tuff to remove Ba{sup 2+}-like {sup 226}Ra{sup 2+} in presence of As(V) and F{sup −} from aqueous media as pollutants of drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Olguín, María Teresa, E-mail: teresa.olguin@inin.gob.mx [Department of Chemical & Materials Engineering, New Mexico State University, P.O. Box 30001, MSC 3805, Las Cruces, NM 88003 (United States); Departamento de Química, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México D.F. (Mexico); Deng, Shuguang [Department of Chemical & Materials Engineering, New Mexico State University, P.O. Box 30001, MSC 3805, Las Cruces, NM 88003 (United States)

    2016-01-25

    Graphical abstract: Ba{sup 2+}-like {sup 226}Ra{sup 2+}, As(V) and F{sup −} simultaneous removal from aqueous media by Ce–Fe-modified natural zeolites. - Highlights: • The metallic species which modified the zeolite change the textural properties. • The pH{sub pzc} is acid for ZUSCeFe and neutral for ZUSNa. • The Linear model describes the Ba{sup 2+}-like {sup 226}Ra{sup 2+} sorption by ZUSNa and ZUSCeFe. • K{sub d} is highest for Ba{sup 2+-} like {sup 226}Ra{sup 2+}-As(V)-F{sup -} solution in contact with ZUSCeFe. • The ZUSCeFe remove simultaneously Ba{sup 2+}-like {sup 226}Ra{sup 2+}, As(V) and F{sup −}. - Abstract: The sorption behavior of the Ba{sup 2+}-like {sup 226}Ra{sup 2+} in the presence of H{sub 2}AsO{sub 4}{sup −}/HAsO{sub 4}{sup 2−} and F{sup −} from aqueous media using Ce–Fe-modified zeolite-rich tuff was investigated in this work. The Na-modified zeolite-rich tuff was also considered for comparison purposes. The zeolite-rich tuff collected from Wyoming (US) was in contact with NaCl and CeCl{sub 3}–FeCl{sub 3} solutions to obtain the Na- and Ce–Fe-modified zeolite-rich tuffs (ZUSNa and ZUSCeFe). These zeolites were characterized by scanning electron microscopy and X-ray diffraction. The BET-specific surface and the points of zero charge were determined as well as the content of Na, Ce and Fe by neutron activation analysis. The textural characteristics and the point of zero charge were changed by the presence of Ce and Fe species in the zeolitic network. A linear model described the Ba{sup 2+}-like {sup 226}Ra{sup 2+} sorption isotherms and the distribution coefficients (K{sub d}) varied with respect to the metallic species present in the zeolitic material. The As(V) oxianionic chemical species and F{sup −} affected this parameter when the Ba{sup 2+}-like {sup 226}Ra{sup 2+}-As(V)-F{sup −} solutions were in contact with ZUSCeFe. The H{sub 2}AsO{sub 4}{sup −}/HAsO{sub 4}{sup 2−} and F{sup −} were adsorbed by ZUSCe

  10. Periodic modeling of zeolite Ti-LTA.

    Science.gov (United States)

    Hernandez-Tamargo, Carlos E; Roldan, Alberto; Ngoepe, Phuti E; de Leeuw, Nora H

    2017-08-21

    We have proposed a combination of density functional theory calculations and interatomic potential-based simulations to study the structural, electronic, and mechanical properties of pure-silica zeolite Linde Type A (LTA), as well as two titanium-doped compositions. The energetics of the titanium distribution within the zeolite framework suggest that the inclusion of a second titanium atom with configurations Ti-(Si) 0 -Ti, Ti-(Si) 1 -Ti, and Ti-(Si) 2 -Ti is more energetically favorable than the mono-substitution. Infra-red spectra have been simulated for the pure-silica LTA, the single titanium substitution, and the configurations Ti-(Si) 0 -Ti and Ti-(Si) 2 -Ti, comparing against experimental benchmarks where available. The energetics of the direct dissociation of water on these Lewis acid sites indicate that this process is only favored when two titanium atoms form a two-membered ring (2MR) sharing two hydroxy groups, Ti-(OH) 2 -Ti, which suggests that the presence of water may tune the distribution of titanium atoms within the framework of zeolite LTA. The electronic analysis indicates charge transfer from H 2 O to the Lewis acid site and hybridization of their electronic states.

  11. On the nature of gallium species in gallium-modified mordenite and MFI zeolites. A comparative DRIFT study of carbon monoxide adsorption and hydrogen dissociation.

    Science.gov (United States)

    Serykh, Alexander I; Kolesnikov, Stanislav P

    2011-04-21

    The results of a DRIFT study of carbon monoxide molecular adsorption and hydrogen dissociative adsorption on gallium-modified mordenite and MFI (ZSM-5) zeolites are presented. It was found that in the reduced gallium-modified mordenite (Ga-MOR) both Ga(3+) and Ga(+) exchanged cations are present and can be detected by CO adsorption. Ga(3+) cations in Ga-MOR dissociatively adsorb molecular hydrogen at elevated temperatures, resulting in the formation of gallium hydride species and acidic hydroxyl groups. In the reduced Ga-MFI evacuated at 823 K under medium vacuum conditions only Ga(+) exchanged intrazeolite cations were detected. It was found, however, that Ga(3+) intrazeolite exchanged cations which form upon high-temperature disproportionation of Ga(+) cations in the reduced Ga-MFI and Ga-MOR can be stabilized by high-temperature oxidation of these zeolites.

  12. Structure modification of natural zeolite for waste removal application

    Science.gov (United States)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  13. Ac irreversibility line of bismuth-based high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mehdaoui, A. [Laboratoire de Physique et de Spectroscopie Electronique, URA 1435 Faculte des Sciences, Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse Cedex (France); Beille, J. [Laboratoire Louis Neel, CNRS, BP 166, 38042 Grenoble Cedex 9 (France); Berling, D.; Loegel, B. [Laboratoire de Physique et de Spectroscopie Electronique, URA 1435 Faculte des Sciences, Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse Cedex (France); Noudem, J.G.; Tournier, R. [EPM-MATFORMAG, Laboratoire dElaboration par Procede Magnetique, CNRS, BP 166, 38042 Grenoble Cedex 9 (France)

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  14. Electrochemically pretreated zeolite-modified carbon-paste electrodes for determination of linuron in an agricultural formulation and water

    International Nuclear Information System (INIS)

    Siara, L.R.; Lima, F. de; Cardoso, C.A.L.; Arruda, G.J.

    2015-01-01

    Highlights: • Cyclic voltammetry, square-wave voltammetry, electrochemical impedance spectroscopic, and scanning electron microscopy were employed. • Kinetic parameters (n, α, k s , and Γ) were calculated. • High sensitivity was observed in the linear concentration range. • Excellent recovery rates were achieved for tap water samples. • The method proved applicable to the determination of linuron in the presence of potential organic and inorganic interferents, none of which affected the results. - Abstract: A simple and inexpensive, yet highly sensitive electrochemical method for quantifying linuron in tap and distilled water and in agricultural formulations was developed using electrochemically pretreated zeolite-modified carbon-paste electrodes (ZMCPEs). Compared with untreated ZMCPEs, the electrochemically pretreated electrodes showed significantly enhanced peak currents for linuron oxidation. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to examine the structure of the zeolite-modified and unmodified carbon-paste electrodes (CPEs). ZMCPEs were electrochemically characterized using cyclic voltammetry, chronocoulometry, square-wave voltammetry, and electrochemical impedance spectroscopy. A mechanism for linuron oxidation on ZMCPE surfaces was proposed. The electrochemical variables taken into account were electrode area, number of transferred electrons, electron transfer coefficient, electrode reaction standard rate constant, surface coverage, and capacitance of the electric double layer. Zeolite was found to have a strong influence on these variables. The electrochemical procedure applied to linuron was developed using electrochemically pretreated ZMCPEs under optimal conditions. Linuron oxidation currents exhibited linear concentration in the 87.36 to 625.72 nmol L −1 range, with a limit of detection of 22.57 nmol L −1 . The proposed electrochemical method was employed to quantify linuron in tap and distilled

  15. PEG-template for surface modification of zeolite: A convenient material to the design of polypropylene based composite for packaging films

    Directory of Open Access Journals (Sweden)

    S. Toommee

    2018-06-01

    Full Text Available Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging. Keywords: Zeolite, Composite, Polypropylene, Packaging, PEG-template

  16. Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi{sub 4}Ti{sub 4}O{sub 15})

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tian-Long [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Wang, Chun-Ming, E-mail: wangcm@sdu.edu.cn [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Wang, Chun-Lei; Wang, Yi-Ming [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Dong, Shuxiang [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2015-11-15

    Highlights: • Cobalt oxide modified CBT-based ceramics were prepared and investigated in detail. • XRPD analysis revealed Co ions enter into B-site of CBT-based ceramics. • CBT-Co4 ceramics show the enhanced d{sub 33} of 14 pC/N and T{sub c} of 782 °C. • CBT-Co4 ceramics present the improved high-temperature resistivity. • Thermal depoling behavior indicates CBT-Co4 ceramics exhibit good thermal stability. - Abstract: Bismuth layer-structured ferroelectric (BLSF) calcium bismuth titanate (CaBi{sub 4}Ti{sub 4}O{sub 15}, CBT) piezoelectric ceramics with 0.0–1.0 wt.% cobalt oxide (Co{sub 2}O{sub 3}) have been prepared via a conventional solid-state reaction method. Microstructural morphology and electrical properties of cobalt oxide-modified CBT ceramics were investigated in detail. X-ray powder diffraction (XRPD) analysis revealed that the cobalt oxide-modified CBT ceramics have a pure four-layer Aurivillius-type structure. The piezoelectric properties of CBT ceramics were significantly enhanced by cobalt oxide modifications. The piezoelectric coefficient d{sub 33} and Curie temperature T{sub c} of 0.2 wt.% cobalt oxide-modified CBT ceramics (CBT-Co4) are 14 pC/N and 782 °C, respectively. The DC resistivity and thermal depoling behavior at elevated temperature indicated that the CBT-Co4 ceramics exhibit good thermal stability, demonstrating that the CBT-Co4 ceramics are potential materials for high temperature piezoelectric applications.

  17. Synthesis of zeolites coal ash in surfactant modified in application and removal of orange 8 acid solution: study in batch, fixed bed column and evaluation ecotoxicological

    International Nuclear Information System (INIS)

    Magdalena, Carina Pitwak

    2015-01-01

    In this study, synthesized zeolitic material from coal ash and modified cationic surfactant was used for removing the acid dye Orange 8 (AL8) by adsorption process using moving bed and fixed-bed column. The raw material and adsorbents were characterized by different techniques, such as X-ray diffraction, X-ray fluorescence spectroscopy, among others. The adsorption of AL8 was performed by moving bed in order to optimize the results when they are launched in a fixed bed. The effects of adsorption on zeolite AL8 were compared: (1) Effect of counterions Br - and Cl - surfactant used in the modification of the zeolite; (2) effect of type of coal ash used as raw material in the synthesis of zeolites (fly and bottom). The following adsorbents were used in the study: fly and bottom zeolite modified by surfactant hexadecyltrimethylammonium bromide (ZLMS-Br-Br and ZPMS-Br) and fly zeolite modified by surfactant hexadecyltrimethylammonium chloride (ZLMS-Cl). The pseudo-second-order kinetic described the adsorption of the dye on all adsorbents. The equilibrium time was reached 40, 60 and 120 min for ZLMS-Br, ZLMS-Cl and ZPMS-Br, respectively. The adsorption equilibrium was analyzed by the equations of the models of linear and nonlinear isotherms of Langmuir, Freundlich, Temkin and Dubinin- Radushkevivh (DR) and the criterion of best fit was evaluated using the error functions.The DR model was adjusted better to the experimental data for the system AL8 / ZLMS-Br, the Freundlich model for AL8 / ZLMS-Cl and Langmuir for AL8 / ZPMS. According to the Langmuir maximum adsorption capacity was 4.67, 1.48 and 1.38 mg g -1 for ZLMS-Br, ZLMS-Cl and ZPMS-Br, in order. In studies employing fixed bed columns, the effects of inlet concentration (20- 30 mg L -1 ), flow rate (4.0 -5.3 mL min -1 ) and the bed height (5, 5 - 6.5 cm) above the breakthrough curves characteristics in the adsorption system were determined. The Adams-Bohart, Thomas, Yoon-Nelson models were applied to experimental

  18. Integrated project: Sorption processes for removal of airborne pollutants. Sub-project 2. Scientific and technical activities accompanying the production of foamed zeolites

    International Nuclear Information System (INIS)

    Lueck, M.

    1991-01-01

    The project was to find economically efficient applications of zeolits for sorptive and catalytic treatment of hydrocarbon-containing exhaust gases. The investigations of gaseous-phase adsorption followed by desorption were carried out using hydrophobic zeolites, ceramic sorbents based on Al 2 O 3 and mixed materials of zeolite, Al 2 O 3 and activated carbon. The materials were in pellet form or, in the case of the zeolites, in the form of foamed bodies. Comparative measurements of the adsorption and desorption characteristics of pelleted and foamed hydrophobic zeolite indicated a somewhat faster and more, even desorption in the case of the foams, but there was no difference in terms of adsorptivity. The catalytic activities of zeolites with different dopings were measured using different solvent/air mixtures and different volume flow rates. Solvents used were toluene, methylisobutyl ketone, isopropanol, and n-hexane, each in a concentration of 5 g/m 3 . Volume flow rates were 7500, 11250 and 22500 l/h. The conversion/temperature behaviour of the catalyst was found to be influenced by the concentration of the active component and, in the case of the doped foams, also by the layer thickness of the zeolite/active component mixture. There is an optimum concentration and an optimum layer thickness for each active component. Below this concentration, efficiency will decrease dramatically while a further increase will not lead to higher efficiencies. (orig.) [de

  19. Effects of reactive filters based on modified zeolite in dairy industry wastewater treatment process

    Directory of Open Access Journals (Sweden)

    Kolaković Srđan

    2013-01-01

    Full Text Available Application of adsorbents based on organo-zeolites has certain advantages over conventional methods applied in food industry wastewater treatment process. The case study presented in this paper examines the possibilities and effects of treatment of dairy industry wastewater by using adsorbents based on organo-zeolites. The obtained results indicate favorable filtration properties of organo-zeolite, their high level of adsorption of organic matter and nitrate nitrogen in the analyzed wastewater. This paper concludes with recommendations of optimal technical and technological parameters for the application of these filters in practice.

  20. Structural simulation of natural zeolites

    International Nuclear Information System (INIS)

    Sanchez P, E.; Carrera G, L.M.

    1997-01-01

    The application of X-ray diffraction (XRD) in the study of crystalline structures of the natural and modified zeolites allows the identification, lattice parameter determination and the crystallinity grade of the sample of interest. Until two decades ago, simulation methods of X-ray diffraction patterns were developed with which was possible to do reliable determinations of their crystalline structure. In this work it is presented the first stage of the crystalline structure simulation of zeolitic material from Etla, Oaxaca which has been studied for using it in the steam production industry and purification of industrial water. So that the natural material was modified for increasing its sodium contents and this material in its turn was put in contact with aqueous solutions of Na, Mg and Ca carbonates. All the simulations were done with the Lazy-Pulverix method. The considered phase was clinoptilolite. It was done the comparison with three clinoptilolite reported in the literature. (Author)

  1. PEG-template for surface modification of zeolite: A convenient material to the design of polypropylene based composite for packaging films

    Science.gov (United States)

    Toommee, S.; Pratumpong, P.

    2018-06-01

    Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging.

  2. Electrode-Modified Zeolites - Electrode Microstructures Contained in and on a Heterogeneous Catalyst

    Science.gov (United States)

    1988-07-15

    zeolite Type Y and Pt supported on gamma-alumina. The electrolytic response of zeolite-supported Pt in the absence of added electrolyte salt for water or...character of metals at sizes where’ bulk metallic properties may not be exhibited. Furthermore, electrolyses are now allowed using loadings of catalysts which...in water until the filtrate tested negatively for Cl with AgNO 3; PtY was then dried a- 135 C. Equilibrium exchnge occurs at these low weight

  3. Xenon capture on silver-loaded zeolites: characterization of very strong adsorption sites

    International Nuclear Information System (INIS)

    Daniel, Cecile; Elbaraoui, Adnane; Aguado, Sonia; Schuurman, Yves; Farrusseng, David; Springuel-Huet, Marie-Anne; Nossov, Andrei; Fontaine, Jean-Pierre; Topin, Sylvain; Taffary, Thomas; Deliere, Ludovic

    2013-01-01

    The number and strength of adsorption sites for Xe in silver-modified zeolites are estimated from isotherm measurements at various temperatures over a broad range of pressure (from 1 ppm to atmospheric pressure). Fully and partially exchanged silver zeolites were synthesized starting from Na-ZSM-5(25), Na-ZSM-5(40), Na-Beta, NaX, and NaY. We have discovered that silver-modified zeolites may present one or two distinct adsorption sites depending on the nature of the material and silver loadings. The strongest adsorption sites are characterized by isosteric heat of adsorption in the order of -40 to -50 kJ.mol -1 . For Pentasil-type zeolites, we observe a linear 2:1 correlation between the total amount of silver and the number of strong sites. The highest concentration of strong sites is found for fully silver exchanged ZSM-5 (5.7 * 10 -4 mol/g), which presents the largest silver content for Pentasil-type zeolite. The equilibrium constant of Ag-ZSM-5 at low pressure is about 50 times larger than that of AgX. Qualitative correlations were established between Xe adsorption isotherms and Xe NMR signals. We show that Xe NMR could be used as a quantitative method for the characterization of the strength and of the number of strong Xe adsorption sites on silver-exchanged zeolites. The numbers of strong adsorption sites responsible for the Xe adsorption at 10-1000 ppm can be determined by the length of the plateau observed at low Xe uptake. In practice, our findings give guidelines for the discovery and optimization of silver-loaded zeolites for the capture of Xe at ppm levels. It appears that the amount of silver is a key parameter. Silver-modified ZSM-5 shows adsorption capacities 2-3 orders of magnitude larger than currently applied adsorbents for atmospheric Xe capture. (authors)

  4. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated.

  5. Fly ash based zeolitic pigments for application in anticorrosive paints

    International Nuclear Information System (INIS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-01-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na + with Mg 2+ and Ca 2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  6. Chemical reactivity of cation-exchanged zeolites

    NARCIS (Netherlands)

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed

  7. Calcining natural zeolites to improve their effect on cementitious mixture workability

    International Nuclear Information System (INIS)

    Seraj, Saamiya; Ferron, Raissa D.; Juenger, Maria C.G.

    2016-01-01

    Despite the benefits to long-term concrete durability, the use of natural zeolites as supplementary cementitious materials (SCMs) is uncommon due to their high water demand. The motivation of the research presented here was to better understand how the physical and chemical characteristics of natural zeolites influenced the workability of cementitious mixtures and whether those properties could be modified through calcination to mitigate the high water demand of natural zeolites. In this research, three different natural zeolites were characterized in their original and calcined states using x-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area measurements. Rheology experiments were then conducted on cementitious pastes containing these natural zeolites, in their original and calcined states, to assess mixture viscosity and yield stress. Results showed that calcination destabilized the structure of the natural zeolites and reduced their surface area, which led to an improvement in mixture viscosity and yield stress.

  8. Crystallinity and electrical properties of neodymium-substituted bismuth titanate thin films

    International Nuclear Information System (INIS)

    Chen, Y.-C.; Hsiung, C.-P.; Chen, C.-Y.; Gan, J.-Y.; Sun, Y.-M.; Lin, C.-P.

    2006-01-01

    We report on the properties of Nd-substituted bismuth titanate Bi 4-x Nd x Ti 3 O 12 (BNdT) thin films for ferroelectric non-volatile memory applications. The Nd-substituted bismuth titanate thin films fabricated by modified chemical solution deposition technique showed much improved properties compared to pure bismuth titanate. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 640 deg. C and grain size was found to be considerably increased as the annealing temperature increased. The film properties were found to be strongly dependent on the Nd content and annealing temperatures. The measured dielectric constant of BNdT thin films was in the range 172-130 for Bi 4-x Nd x Ti 3 O 12 with x 0.0-0.75. Ferroelectric properties of Nd-substituted bismuth titanate thin films were significantly improved compared to pure bismuth titanate. For example, the observed 2P r and E c for Bi 3.25 Nd 0.75 Ti 3 O 12 , annealed at 680 deg. C, were 38 μC/cm 2 and 98 kV/cm, respectively. The improved microstructural and ferroelectric properties of BNdT thin films suggest their suitability for high density ferroelectric random access memory applications

  9. Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method

    International Nuclear Information System (INIS)

    Shalini, M. Govindaraj; Sahoo, Subasa C.

    2016-01-01

    M-type barium hexaferrite (BaFe_1_2O_1_9) and cobalt doped barium hexaferrite (BaFe_1_1CoO_1_9) nanopowders were synthesized by modified sol-gel auto-combustion technique and were annealed at 900°C in air for 4 hours. The annealed powders were studied in the present work and X-ray diffraction studies showed pure phase formation after annealing. The average grain size in the nanopowder sample was decreased after doping. Magnetization value of 60 emu/g was observed at 300 K for the barium hexaferrite and was reduced to 54 emu/g after doping. The coercivity of 5586 Oe was observed at 300 K for the undoped sample and was found to be decreased in the doped sample. As the measurement temperature was decreased from 300 K to 60 K, magnetization value was increased in both the samples compared to those at 300 K. The coercivity of the undoped sample was found to decrease whereas it was increased for the doped sample at 60 K. The observed magnetic properties may be understood on the basis of modified exchange interaction and anisotropy in the doped sample compared to that of pure barium hexaferrite.

  10. Zeolite-zeolite composite composed of Y zeolite and single-crystal-like ZSM-5 zeolite: Fabricated by a process like “big fish swallowing little one”

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meng; Li, Peng [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Zheng, Jiajun, E-mail: zhengjiajun@tyut.edu.cn [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Yujian [SINOPEC Research Institute of Petroleum Processing, Beijing, 100083 (China); Kong, Qinglan [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Tian, Huiping [SINOPEC Research Institute of Petroleum Processing, Beijing, 100083 (China); Li, Ruifeng, E-mail: rfli@tyut.edu.cn [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-06-15

    Zeolite-zeolite composite composed of Y and ZSM-5 zeolite was prepared using depolymerized Y as partial nutrients for the growth of ZSM-5. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), FT-IR, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurement and Thermogravimetric analysis (TG). Chemical equilibrium at the solution-crystal interface was changed because of the partially depolymerized Y zeolite, the conditions necessary for the growth of ZSM-5 were therefore obtained. ZSM-5 zeolite crystals nucleated and grew on the interface, and Y zeolite crystals were then gradually swallowed by the growing single-crystal-like ZSM-5. - Graphical abstract: Y zeolite crystals in the hydrothermal system were partially depolymerized and an ambience in favor of the formation of ZSM-5 was formed, and ZSM-5 zeolite crystals nucleated and grew up on the external surfaces of Y zeolite crystals. As a consequence, Y zeolite crystals were swallowed by single-crystal-like ZSM-5. - Highlights: • Zeolite composite is composed by Y zeolite and single-crystal-like ZSM-5. • A composite material formed by a process like “big fish swallowing little one”. • Ratio of two zeolites in the as-synthesized sample can be adjusted.

  11. Bismuth absorption from sup 205 Bi-labelled pharmaceutical bismuth compounds used in the treatment of peptic ulcer disease

    Energy Technology Data Exchange (ETDEWEB)

    Dresow, B.; Fischer, R.; Gabbe, E.E.; Wendel, J.; Heinrich, H.C. (Eppendorf University Hospital, Hamburg (Germany))

    1992-04-01

    The absorption of bismuth from five {sup 205}Bi-labelled pharmaceutically used bismuth compounds was studied in man. From single oral doses of all compounds under investigation only <0.1% bismuth was absorbed and excreted with the urine. A significantly higher absorption was observed from the colloidal bismuth subcitrate and the basic bismuth gallate than from the basic bismuth salicylate, nitrate and aluminate. No retention of bismuth in the whole body was found from the single dose experiment. The biologic fast-term half-lives of absorbed bismuth were calculated to be 0.12 and 1.5 days. 14 refs., 2 figs., 1 tab.

  12. Enhanced magnetodielectric and multiferroic properties of Er-doped bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.; Banerjee, M. [Department of Physics, National Institute of Technology, Durgapur 713209 (India); Basu, S., E-mail: soumen.basu@phy.nitdgp.ac.in [Department of Physics, National Institute of Technology, Durgapur 713209 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pal, M. [CSIR-Central Glass & Ceramic Research Institute, Kolkata 700032 (India)

    2015-07-15

    An enhancement in multiferroic properties has been achieved for chemically prepared BFO nanoparticles by doping with erbium (Er). XRD along with electron microscopy study reveals the phase purity and nanocrystalline nature of BFO. Enhancement of both the magnetic moment and resistivity is observed by virtue of Er doping. The observed enhanced magnetic moment is considered to be associated with smaller crystallite whereas increase of resistivity may be attributed to a decrease of oxygen vacancies. Doping also display an improvement of leakage behaviour and dielectric constant in nanocrystalline BFO, reflected in well-developed P-E loop. In addition, large enhancement in magnetodielectric coefficient is observed because of Er doping. Therefore, the results provide interesting approaches to improve the multiferroic properties of BFO, which has great implication towards its applications. - Highlights: • Synthesis of pure Er-doped BFO nanoparticles by chemical route. • Large increase in magnetic moment and resistivity due to Er doping. • Er doping produce well developed P-E loop and enhance polarization. • Drastic increase in dielectric constant as well as magnetodielectric coefficient observes because of Er doping.

  13. Methanation of CO2 over Zeolite-Encapsulated Nickel Nanoparticles

    DEFF Research Database (Denmark)

    Goodarzi, Farnoosh; Kang, Liqun; Wang, Feng Ryan

    2018-01-01

    in an increased metal dispersion and, consequently, a high catalytic activity for CO2 methanation. With a gas hourly space velocity of 60000 ml/g catalyst h-1 and H2/CO2=4, the zeolite-encapsulated Ni nanoparticles result in 60% conversion at 450°C, which corresponds to a site-time yield of around 304 mol CH4/mol......Efficient methanation of CO2 relies on the development of more selective and stable heterogeneous catalysts. Here we present a simple and effective method to encapsulate Ni nanoparticles in zeolite silicalite-1. In this method, the zeolite is modified by selective desilication, which creates intra...

  14. Bi-doped PbO2 anodes: Electrodeposition and physico-chemical properties

    International Nuclear Information System (INIS)

    Shmychkova, O.; Luk’yanenko, T.; Velichenko, A.; Meda, L.; Amadelli, R.

    2013-01-01

    The influence of bismuth ions on kinetics of lead dioxide electrodeposition from methanesulfonate electrolytes and physico-chemical properties of obtained coatings were studied. Experimental results are consistent with a mechanism previously proposed in the literature for lead dioxide electrodeposition. The presence of bismuth ions in the electrodeposition solution causes a decrease of rate constants of lead dioxide formation due to co-adsorption phenomena. Deposits from solutions containing bismuth ions appear shiny dark grey, and show good adhesion to metal support. SEM images reveal a compact structure with spindle-shaped submicron and nanosized crystals and X-ray diffractograms demonstrated that incorporation of bismuth diminishes the size of crystal particles. Oxygen evolution was investigated to test electrocatalytic activity. It is shown, that oxygen overpotential on modified electrodes is significantly higher than on non-modified PbO 2 -electrode, which depends on bismuth content in deposit and segregation of bismuth that induces surface heterogeneity due to sites with different electroactivity for water oxidation

  15. INTERKALASI XILENOL ORANGE PADA ZEOLIT ALAM LAMPUNG SEBAGAI ELEKTRODA ZEOLIT TERMODIFIKASI

    Directory of Open Access Journals (Sweden)

    Fitriyah Fitriyah

    2016-07-01

    Full Text Available Zeolit terbagi menjadi zeolit alam dan zeolit sintesis, kapasitas adsorpsi zeolit alam umumnya lebih rendah daripada zeolit sintesis, sehingga untuk meningkatkan kapasitas adsorpsinya, karakter permukaan zeolit alam perlu diubah dengan melakukan proses modifikasi permukaan melalui berbagai metode, salah satunya dengan metode interkalasi. Tujuan penelitian ini yaitu menginterkalasi zat warna xilenol orange ke dalam zeolit alam Lampung dan mengaplikasikannya sebagai elektroda zeolit termodifikasi. Melalui proses interkalasi diharapkan dapat meningkatkan kegunaan dan nilai tambah dari zeolit. Data hasil penelitian menunjukkan bahwa xilenol orange (XO dapat diinterkalasikan ke dalam zeolit, hal ini dapat dilihat dari pita spektrum FTIR yang memiliki serapan pada bilangan gelombang 1383 cm-1, yaitu menunjukkan serapan dari S=O simetris dan asimetris pada gugus –SO3H,hal ini diduga karena XO memiliki gugus SO3 sehingga menyebabkan adanya serangan pada proton zeolit. Berdasarkan penelitian dapat disarikan bahwa xilanol orange dapat terinterkalasi pada zeolit alam Lampung dan dapat dimanfaatkan sebagai elektroda pendeteksi logam.

  16. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    Science.gov (United States)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  17. Dielectric Relaxation Behavior of Bismuth Doped (Ba0.2Sr0.8 TiO3 Ceramics

    Directory of Open Access Journals (Sweden)

    Baptista, J. L.

    1999-12-01

    Full Text Available The dielectric properties of bismuth doped (Ba0.2Sr0.8TiO3 ceramics are investigated. The temperature dependence of the dielectric permittivity and loss factor were measured from 102 to 106Hz in the temperature range 12-320K. As the amount of Bi increases, the ferroelectric-paraelectric phase transition gets diffused and relaxed. In addition to this ferroelectric-paraelectric phase transition, other two sets of dielectric anomalies, located at 50-100K and 200-300K respectively, are also found. The possible relaxation mechanisms are briefly discussed.Las propiedades dieléctricas de cerámicos dopados con bismuto son investigadas. La dependencia con la temperatura de la permitividad dieléctrica y el factor de pérdidas se midieron entre 02 y 106Hz en el rango de temperatura 12-320K. Con el aumento del contenido en Bi, la transición de fase ferroeléctrica-paraléctrica se hace difusa y reloja. Junto a esta transición de fase los conjuntos de anomalías dieléctricas, localizados a 50-100k y 200-300k respectivamente, también se encontraron. Se discute brevemente los posibles mecanismos de relajación.

  18. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...... originates almost exclusively from the support material. The methods for introducing mesopores into zeolite materials are discussed and categorized. In general, mesopores can be templated in zeolite materials by use of solid templating, supramolecular templating, or indirect templating...

  19. Nanosized zeolites as a perspective material for conductometric biosensors creation

    Science.gov (United States)

    Kucherenko, Ivan; Soldatkin, Oleksandr; Kasap, Berna Ozansoy; Kirdeciler, Salih Kaan; Kurc, Burcu Akata; Jaffrezic-Renault, Nicole; Soldatkin, Alexei; Lagarde, Florence; Dzyadevych, Sergei

    2015-05-01

    In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.

  20. Zeolite studies. Aluminium phosphate zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Haegh, G.S.; Blindheim, U.

    1983-12-01

    Alpo-zeolites (ALPO4-zeolites) have been synthesized by hydrothermal synthesis in an autoclave from alumina, tetralkylammonium hydroxide and phosphorus acid. Catalysis tests with hydrocarbons indicate that the compounds have good olefinisomerization activity and selectivity.

  1. Study of the structure, dielectric and ferroelectric behavior of BaBi_4_+_δTi_4O_1_5 ceramics

    International Nuclear Information System (INIS)

    Khokhar, Anita; Goyal, Parveen K.; Sreenivas, K.; Thakur, O. P.

    2016-01-01

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi_4_+_δTi_4O_1_5 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (T_m) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (P_r ~ 12.5  µC/cm"2), low coercive fields (E_c ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d_3_3 ~ 29 pC/N) is achieved in poled BaBi_4Ti_4O_1_5 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi_4Ti_4O_1_5 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  2. Study of the structure, dielectric and ferroelectric behavior of BaBi4+δTi4O15 ceramics

    Science.gov (United States)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2016-05-01

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi4+δTi4O15 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (Tm) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (Pr ~ 12.5 µC/cm2), low coercive fields (Ec ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d33 ~ 29 pC/N) is achieved in poled BaBi4Ti4O15 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  3. Effect of USY zeolite chemical treatment with ammonium nitrate on its VGO hydrocracking performance

    NARCIS (Netherlands)

    Agudelo, J.L.; Hensen, Emiel; Giraldo, S.A.; Hoyos, L.J.

    2016-01-01

    Chemically modified USY zeolites were obtained by ammonium nitrate (AN) treatment under hydrothermal conditions. AN treatment considerably enhanced the mesopore volume of the parent steam-treated zeolite. This treatment also caused the creation of extraframework species of weak acid nature.

  4. Application of Box-Behnken design for modeling of lead adsorption onto unmodified and NaCl-modified zeolite NaA obtained from biosilica.

    Science.gov (United States)

    Terzioğlu, Pinar; Yücel, Sevil; Öztürk, Mehmet

    2017-01-01

    The main objective of the present study was to optimize lead adsorption onto zeolite NaA. For this purpose, to synthesize zeolite NaA under hydrothermal conditions, local wheat husk was precleaned with chemical treatment using hydrochloric acid solution. The unmodified (ZU) and NaCl-modified (ZN) zeolites were characterized by Brunauer-Emmett-Teller, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction. The optimization of adsorption process was examined using Box-Behnken Experimental Design in response surface methodology by Design Expert Version 7.0.0 (Stat-Ease, USA). The effects of initial lead (II) concentration, temperature, and time were selected as independent variables. Lack of fit test indicates that the quadratic regression model was significant with the high coefficients of determination values for both adsorbents. Optimum process conditions for lead (II) adsorption onto ZU and ZN were found to be 64.40°C and 64.80°C, respectively, and 90.80 min, and 350 mg L -1 initial lead(II) concentration for both adsorbents. Under these conditions, maximum adsorption capacities of ZU and ZN for lead (II) were 293.38 mg g -1 and 321.85 mg g -1 , respectively.

  5. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.

    Science.gov (United States)

    Tran, Hai Nguyen; Viet, Pham Van; Chao, Huan-Ping

    2018-01-01

    A hydrophilic Y zeolite was primarily treated with sodium hydroxide to enhance its cation exchange capacity (Na-zeolite). The organo-zeolite (Na-H-zeolite) was prepared by a modification process of the external surface of Na-zeolite with a cationic surfactant (hexadecyltrimethylammonium; HDTMA). Three adsorbents (i.e., pristine zeolite, Na-zeolite, and Na-H-zeolite) were characterized with nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, cation exchange capacities, and zeta potential. Results demonstrated that HDTMA can be adsorbed on the surface of Na-zeolite to form patchy bilayers. The adsorption capacity of several hazardous pollutants (i.e., Pb 2+ , Cu 2+ , Ni 2+ , Cr 2 O 7 2- , propylbenzene, ethylbenzene, toluene, benzene, and phenol) onto Na-H-zeolite was investigated in a single system and multiple-components. Adsorption isotherm was measured to further understand the effects of the modification process on the adsorption behaviors of Na-H-zeolite. Adsorption performances indicated that Na-H-zeolite can simultaneously adsorb the metal cations (on the surface not covered by HDTMA), oxyanions (on the surface covered by HDTMA). Na-H-zeolite also exhibited both hydrophilic and hydrophobic surfaces to uptake organic compounds with various water solubilities (from 55 to 75,000mg/L). It was experimentally concluded that Na-H-zeolite is a potential dual-electronic and amphiphilic adsorbent for efficiently removing a wide range of potentially toxic pollutants from aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Studies on as separation behaviour of polymer blending PI/PES hybrid mixed membrane: Effect of polymer concentration and zeolite loading

    Directory of Open Access Journals (Sweden)

    Ahmad Fauzi Ismail

    2014-04-01

    Full Text Available This study is performed primarily to investigate the effect of polymer concentration of polyimide/polyethersulfone (PI/PES blending on the gas separation performance of hybrid mixed matrix membrane. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The efefct of PI/PES concentrations and zeolite loading on the dope solution were investigated for gas separation performance. The results from the Field Emission Scanning Electron Microscopy (FESEM analysis confirmed that polymer concentration and zeolite loading was affected the morphology of membrane and gas separation performance. ‘Sieve-in-a-cage’ morphology observed the poor adhesion between polymer and zeolite at higher zeolite loading. The gas separation performance of the mixed matrix membranes were relatively higher compared to that of the neat polymeric membrane.

  7. Copper removal using bio-inspired polydopamine coated natural zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shapter, Joseph G. [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia); Popelka-Filcoff, Rachel [School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia); Bennett, John W. [Centre for Nuclear Applications, Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Ellis, Amanda V., E-mail: Amanda.Ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia)

    2014-05-01

    Highlights: • Natural zeolites were modified with bio-inspired polydopamine. • A 91.4% increase in Cu(II) ion adsorption capacity was observed. • Atomic absorption and neutron activation analysis gave corroborative results. • Neutron activation analysis was used to provide accurate information on 30+ elements. • Approximately 90% of the adsorbed copper could be recovered by 0.1 M HCl treatment. - Abstract: Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2–5.5), PDA treatment time (3–24 h), contact time (0 to 24 h) and initial Cu(II) ion concentrations (1 to 500 mg dm{sup −3}) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93 mg g{sup −1} for pristine natural zeolite and 28.58 mg g{sup −1} for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01 M or 0.1 M) of either acid or base.

  8. Copper removal using bio-inspired polydopamine coated natural zeolites

    International Nuclear Information System (INIS)

    Yu, Yang; Shapter, Joseph G.; Popelka-Filcoff, Rachel; Bennett, John W.; Ellis, Amanda V.

    2014-01-01

    Highlights: • Natural zeolites were modified with bio-inspired polydopamine. • A 91.4% increase in Cu(II) ion adsorption capacity was observed. • Atomic absorption and neutron activation analysis gave corroborative results. • Neutron activation analysis was used to provide accurate information on 30+ elements. • Approximately 90% of the adsorbed copper could be recovered by 0.1 M HCl treatment. - Abstract: Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2–5.5), PDA treatment time (3–24 h), contact time (0 to 24 h) and initial Cu(II) ion concentrations (1 to 500 mg dm −3 ) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93 mg g −1 for pristine natural zeolite and 28.58 mg g −1 for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01 M or 0.1 M) of either acid or base

  9. Zeolit Sintetis Terfungsionalisasi 3-(Trimetoksisilil-1-Propantiol sebagai Adsorben Kation Cu(II dan Biru Metilena

    Directory of Open Access Journals (Sweden)

    Sri Sugiarti

    2017-05-01

    Full Text Available The more commonly used method for making synthetic zeolite from kaolin is hydrothermal method. This research tested a sol-gel method in processing synthetic zeolit  using kaolin as the basic ingrediant. The synthetic  zeolite  derived from the sol-gel method was then characterized using X-ray Difractometer and Scanning Electron Microscope, which found resulting products zeolite-A, zeolite Y and sodalite. The adsorption ability of the synthetic zeolites was tested using Cu(II and methylene blue.  Functionalization of the synthetic zeolites by 3-(trimetoksisilil-1-propantiol was  done to increase adsorption capacity. Zeolite A modified by 3-(trimetoksisilil-1-propantiol  had the greater capacity to adsorb methylene blue at 30.11 mg/g. The adsorption isotherms of all the synthetic zeolites approached the Langmuir form. The adsorption energy off all synthetic zeolites approached the chemical adsorption.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5144

  10. Dismantling and chemical characterization of spent Peltier thermoelectric devices for antimony, bismuth and tellurium recovery.

    Science.gov (United States)

    Balva, Maxime; Legeai, Sophie; Garoux, Laetitia; Leclerc, Nathalie; Meux, Eric

    2017-04-01

    Major uses of thermoelectricity concern refrigeration purposes, using Peltier devices, mainly composed of antimony, bismuth and tellurium. Antimony was identified as a critical raw material by EU and resources of bismuth and tellurium are not inexhaustible, so it is necessary to imagine the recycling of thermoelectric devices. That for, a complete characterization is needed, which is the aim of this work. Peltier devices were manually dismantled in three parts: the thermoelectric legs, the alumina plates on which remain the electrical contacts and the silicone paste used to connect the plates. The characterization was performed using five Peltier devices. It includes mass balances of the components, X-ray diffraction analysis of the thermoelectric legs and elemental analysis of each part of the device. It appears that alumina represents 45% of a Peltier device in weight. The electrical contacts are mainly composed of copper and tin, and the thermoelectric legs of bismuth, tellurium and antimony. Thermoelectric legs appear to be Se-doped Bi 2 Te 3 and (Bi 0,5 Sb 1,5 )Te 3 for n type and p type semiconductors, respectively. This work shows that Peltier devices can be considered as a copper ore and that thermoelectric legs contain high amounts of bismuth, tellurium and antimony compared to their traditional resources.

  11. Synthesis and characterization of isomorphously zirconium substituted Mobil Five (MFI) zeolite

    International Nuclear Information System (INIS)

    Shah, Kishor Kr.; Saikia, Jitu; Saikia, Durlov; Talukdar, Anup K.

    2012-01-01

    Highlights: ► In situ modification of the MFI zeolite by incorporation of Zr in various ratios. ► The samples were characterized by XRD, FT-IR, TGA, UV–vis (DRS), SAA and SEM. ► The amount of the Zr incorporated in the product is determined by EDX analysis. ► The incorporation of Zr is confirmed by XRD, FT-IR, UV–vis (DRS) and TGA. - Abstract: A series of zirconium doped Mobil Five (MFI) zeolites were synthesized hydrothermally with silicon to aluminium plus zirconium ratios of 100 and 200 and with different Al to Zr ratios. The MFI zeolite phase was identified by XRD and FT-IR analysis. UV–vis (DRS) and TG analyses suggested isomorphous substitution of Zr in the framework of MFI structure. The specific surface area, pore volume and pore size of the synthesized samples were investigated by the nitrogen adsorption method, while morphology was examined using scanning electron microscopy.

  12. Molecular simulation of water removal from simple gases with zeolite NaA.

    Science.gov (United States)

    Csányi, Eva; Ható, Zoltán; Kristóf, Tamás

    2012-06-01

    Water vapor removal from some simple gases using zeolite NaA was studied by molecular simulation. The equilibrium adsorption properties of H(2)O, CO, H(2), CH(4) and their mixtures in dehydrated zeolite NaA were computed by grand canonical Monte Carlo simulations. The simulations employed Lennard-Jones + Coulomb type effective pair potential models, which are suitable for the reproduction of thermodynamic properties of pure substances. Based on the comparison of the simulation results with experimental data for single-component adsorption at different temperatures and pressures, a modified interaction potential model for the zeolite is proposed. In the adsorption simulations with mixtures presented here, zeolite exhibits extremely high selectivity of water to the investigated weakly polar/non-polar gases demonstrating the excellent dehydration ability of zeolite NaA in engineering applications.

  13. TiO2/Ag modified penta-bismuth hepta-oxide nitrate and its adsorption performance for azo dye removal

    Institute of Scientific and Technical Information of China (English)

    Eshraq Ahmed Abdullah; Abdul Halim Abdullah; Zulkarnain Zainal; Mohd Zobir Hussein; Tan Kar Ban

    2012-01-01

    A modified hydrophilic penta-bismuth hepta-oxide nitrate (Bi5O7NO3) surface was synthesized via a precipitation method using TiO2 and Ag as modified agents.The synthesized product was characterized by different analytical techniques.The removal efficiency was evaluated using mono- and di-sulphonated azo dyes as model pollutants.Different kinetic,isotherm and diffusion models were chosen to describe the adsorption process.X-ray photoelectron spectroscopy (XPS) results revealed no noticeable differences in the chemical states of modified adsorbent when compared to pure Bi5O7NO3; however,the presence of hydrophilic centres such as TiO2 and Ag developed positively charged surface groups and improved its adsorption performance to a wide range of azo dyes.Dyes removal was found to be a function of adsorbent dosage,initial dye concentration,solution pH and temperature.The reduction of Langrnuir 1,2-mixed order kinetics to the second or first-order kinetics could be successfully used to describe the adsorption of dyes onto the modified adsorbent.Mass transfer can be described by intra-particle diffusion at a certain stage,but it was not the rate limiting step that controlled the adsorption process.Homogenous behavior of adsorbent surface can be explored by applying Langmuir isotherm to fit the adsorption data.

  14. Bismuth toxicity in patients treated with bismuth iodoform paraffin packs.

    Science.gov (United States)

    Atwal, A; Cousin, G C S

    2016-01-01

    Bismuth is a heavy metal used in bismuth iodoform paraffin paste (BIPP) antiseptic dressings and in a number of other medical preparations. It can be absorbed systemically and cause toxicity. We report 2 cases of such neurotoxicity after it was used in operations on the jaws. Copyright © 2015. Published by Elsevier Ltd.

  15. Study of point defects in bismuth

    International Nuclear Information System (INIS)

    Bois, P.

    1987-03-01

    Single crystalline samples of bismuth, pure and n or p - doped by adding tellurium or tin, were electron irradiated at low temperature (4.2 K and 20 K). In the energy range 0.7 - 2.5 MeV, a displacement threshold energy of 13 eV and an athermal recombination volume of 150 atomic volumes were determined. Joint measurements of resistivity, magnetotransport and positron annihilation enabled to precised the nature of the annealing stages: 40-50 K, free migration of interstitials; 90-120 K long range migration of vacancy. Point defects have according to their nature a different effect on the electronic properties of bismuth: isolated Frenkel pairs are globally donnors with a charge of + 0.16 e- and the vacancy is donnor, which seems to attribute to it a negative formation volume. A simple model with non-deformating bands is no longer sufficient to explain the behaviour under irradiation: one has to take into account an acceptor level with a charge of - 0,27 e-, linked to the cascade-type defects and resonating with the valence band. It's position in the band overlap and it's width (8 meV) could be precised. In first approximation this coupling with less mobile carriers does not affect the simple additive rule which exists for relaxation times. Some yet obscure magnetic properties seem to be linked to this defect level [fr

  16. Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent

    Directory of Open Access Journals (Sweden)

    Milton M. Arimi

    2017-04-01

    Full Text Available Industrial effluents with high recalcitrants should undergo post-treatment after biological treatment. The aim of this study was to use cheap and abundantly available natural materials to develop heterogeneous Fenton catalysts for the removal of colored recalcitrants in molasses distillery wastewater (MDW. The pellets of zeolite, which is naturally available in many countries, were modified by pre-treatment with sulphuric acid, nitric acid and hydrochloric acid, before embedding on them the ferrous ions. The effects of pH and temperature on heterogeneous Fenton were studied using the modified catalysts. The sulphuric acid-ferrous modified catalysts showed the highest affectivity which achieved 90% color and 60% TOC (total organic carbon removal at 150 g/L pellet catalyst dosage, 2 g/L H2O2 and 25 °C. The heterogeneous Fenton with the same catalyst caused improvement in the biodegradability of anaerobic effluent from 0.07 to 0.55. The catalyst was also applied to pre-treat the raw MDW and increased it's biodegradability by 4%. The color of the resultant anaerobic effluent was also reduced. The kinetics of total TOC removal was found to depend on operation temperature. It was best described by simultaneous first and second order kinetics model for the initial reaction and second order model for the rest of the reaction.

  17. Radio-sensitization of animals by bismuth; Radio sensibilisation de l'animal par le bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Pierotti, T; Verain, A [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Digestive absorption of bismuth by animals leads to radio-sensitization. This effect is very marked when the X-rays used are centered on the absorption line of bismuth. This work has involved the use of more than 2000 C3H/JAX mice, and has shown that a maximum lethal effect, with respect to the standard, occurs for bismuth sub-nitrate doses of the order of 3 g/kg and for exposures of 700 R. For stronger or weaker doses, the sensitization effect is less marked. (authors) [French] L'absorption digestive de bismuth provoque une radiosensibilisation de l'animal. Celle-ci est nette quand le rayonnement X utilise est centre sur la raie d'absorption du bismuth. L'etude portant sur plus de 2000 souris C3H/JAX a montre une lethalite maximale par rapport aux temoins pour des doses de sous-nitrate de bismuth de l'ordre de 3 g/kg et pour des expositions de 700 R. Pour des doses plus fortes ou plus faibles, l'effet de sensibilisation est moins net. (auteurs)

  18. Influence of bismuth on the age-hardening and corrosion behaviour of low-antimony lead alloys in lead/acid battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Lam, L.T. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Huynh, T.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Haigh, N.P. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Douglas, J.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Rand, D.A.J. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Lakshmi, C.S. [Pasminco Research Centre, Boolaroo, NSW (Australia); Hollingsworth, P.A. [Pasminco Research Centre, Boolaroo, NSW (Australia); See, J.B. [Pasminco Research Centre, Boolaroo, NSW (Australia); Manders, J. [Pasminco Ltd., Melbourne, VIC (Australia); Rice, D.M. [Pasminco Ltd., Melbourne, VIC (Australia)

    1995-01-01

    The effects of bismuth additions in the range 0.006-0.086 wt.% on the metallurgical and electrochemical properties of Pb-1.5 wt.% Sb alloy are investigated. The self-discharge behaviour of batteries produced with grids of the doped alloys is also evaluated. Addition of bismuth is found to exert no significant effects on the age-hardening behaviour, general microstructure or grain size of the alloy. It does, however, influence the morphology of the eutectic in the inter-dendritic regions. The latter changes from a mainly lamellar to an irregular type with increasing bismuth content. The corrosion rate of the grid decreases with increase of the bismuth content. Attack occurs preferentially in the inter-dendritic regions where there is an enrichment of both antimony and bismuth. Electron-probe microanalysis shows that the corrosion zone consists of a tri-layered structure, namely: a dense, continuous, inner layer (PbO{sub 1.1}); a central layer (PbO{sub 1.8}.PbSO{sub 4}); a porous outer layer n(PbO{sub 1.8}).PbSO{sub 4}, with n=2-8. In the latter, the value of n increases in the direction of corrosive penetration into the grid. Data from atomic absorption spectrometric analysis reveal that bismuth, after oxidative leaching from the grid substrate, is retained mainly in the corrosion layer. A key observation is that bismuth (i.e., up to {approx}0.09 wt.%) does not affect the self-discharge behaviour of batteries. (orig.)

  19. Na-noparticles of activated natural zeolite on textiles for protection and therapy

    Directory of Open Access Journals (Sweden)

    Ivančica Kovaček

    2009-10-01

    Full Text Available Activated natural zeolite clinoptilolite is microporous hydrated aluminosilicates crystals with well-defined structures containing AlO4 and SiO4 tetrahedral linked through the common oxygen atoms. It is to point out that zeolites act as strong adsorbents and ion-exchangers but having many other useful properties. Due to its cationexchange ability, zeolites have catalytic properties and, for that, multiple uses in medicine and industry, agriculture, water purification and detergents. Zeolites are nontoxic substance, excellent for UVR and microbes protection, for proteins and small molecules such as glucose adsorption. In this paper its positive effect on the metabolism of living organisms and its anticancerogenic, antiviral, antimetastatic and antioxidant effect. The activity of natural zeolite as natural immunostimulator was presented as well as its help in healing wounds. Therefore, the present paper is an attempt to modify cotton (by mercerization and polyester (by alkaline hydrolysis fabrics for summer clothing with addition of natural zeolite nanoparticles for achieving UV and antibacterial protective textiles

  20. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Furdikova, Zuzana [Department of Environmental Chemistry and Technology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, CZ-61200 Brno (Czech Republic); Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic); Docekal, Bohumil [Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic)], E-mail: docekal@iach.cz

    2009-04-15

    Interference effects of co-generated hydrides of arsenic, antimony and bismuth on trapping behavior of selenium hydride (analyte) within an iridium-modified, transversely heated graphite tube atomizer (THGA) were investigated. A twin-channel hydride generation system was used for independent separate generation and introduction of analyte and interferent hydrides, i.e. in a simultaneous and/or sequential analyte-interferent and interferent-analyte mode of operation. The influence of the analyte and modifier mass, interferent amount, trapping temperature and composition of the gaseous phase was studied. A simple approach for the elimination of mutual interference effects by modification of the gaseous phase with oxygen in a substoichiometric ratio to chemically generated hydrogen is proposed and the suppression of these interference effects is demonstrated. A hypothesis on the mechanism of trapping and mutual interference effects is drawn.

  1. Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method

    International Nuclear Information System (INIS)

    Wang Wei; Qiao Xueliang; Chen Jianguo; Tan Fatang

    2008-01-01

    Ti-doped MgO nanopowders were prepared via a chemical coprecipitation method using acetic acid as a modifier in the presence of the surfactant polyethylene glycol (PEG 400). The as-obtained products were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The results show that titanium atoms have been successfully incorporated into the crystal lattice of MgO with periclase structure. The modifier, acetic acid, can significantly reduce the particle size, and improve size distribution and dispersion of nanoparticles. In addition, the effect of doped titanium on the structure and morphology of magnesium oxide was also investigated

  2. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites

    DEFF Research Database (Denmark)

    Christensen, Christina Hviid; Johannsen, Kim; Toernqvist, Eric

    2007-01-01

    During the last years, several new routes to produce zeolites with controlled mesoporosity have appeared. Moreover, an improved catalytic performance of the resulting mesoporous zeolites over conventional zeolites has been demonstrated in several reactions. In most cases, the mesoporous zeolites...... exhibit higher catalytic activity, but in some cases also improved selectivity and longer catalyst lifetime has been reported. The beneficial effects of introducing mesopores into the zeolites has in most instances been attributed to improved mass transport to and from the active sites located...... in the zeolite micropores. Here, we briefly discuss the most important ways of introducing mesopores into zeolites and, for the first time, we show experimentally that the presence of mesopores dramatically increases the rate of diffusion in zeolite catalysts. This is done by studying the elution of iso...

  3. Influence of Nutrient Impregnated into Zeolite Addition on Anaerobic Digestion of Palm Oil Mill Effluent (POME)

    Science.gov (United States)

    Mellyanawaty, M.; Chusna, F. M. A.; Sudibyo, H.; Nurjanah, N.; Budhijanto, W.

    2018-03-01

    Palm oil mill effluent (POME) was wastewater generated from palm oil milling activities which was brownish liquid, acidic with pH 3-4, and contained soluble materials which were hazardous to the environment. It was characterized by high organic loading (COD 40,000–60,000 mg/L). According to its characteristics, POME was identified as a potential source to generate renewable energy through anaerobic digestion. In other words, a combination of wastewater treatment and renewable energy production would be an additional advantage to the palm oil industries. Methanogenesis was the rate limiting step in anaerobic digestion. In the conventional anaerobic digester, it required large reactors and long retention time. The addition of microbial immobilization media was to improve anaerobic reactor performance in term of higher organic removal and methane production. Additionally, better performance could lead to reduction of reactor volume and shorter retention time in high rate anaerobic digester. The loading of essential microorganism nutrient into the media might increase the affinity of bacteria to attach and grow on the media surface. Activating or inhibition effects of natural and modified zeolite addition in anaerobic digestion of POME was studied in batch reactors using erlenmeyer of 1,000 mL at COD concentrations of about 8,000 mg/L. Zeolite was impregnated with nickel and magnesium at concentrations of 0.0561 mg Ni/g zeolite and 0.0108 mg Mg/g zeolite. The effect of the different zeolite addition was determined by the measurement of soluble COD (sCOD), Volatile Fatty Acids (VFAs) and biogas production. Greater effect of modified zeolite was observed in zeolite impregnated with nickel with a 54% increase of biogas production. Meanwhile, the modified zeolite impregnated with magnesium had no positive impact to the methanogenic bacteria activities.

  4. Bismuth silicate glass: A new choice for 2 μm fiber lasers

    Science.gov (United States)

    Ding, Jia; Zhao, Guoying; Tian, Ying; Chen, Wei; Hu, Lili

    2012-11-01

    We report on a new Yb3+/Tm3+/Ho3+ co-doped bismuth silicate glass: SiO2-Bi2O3-R2O (R = Li, Na, K) for 2 μm fiber lasers. Bi2O3 was introduced into alkali silicate glass to optimize 2 μm emission properties. Physical, chemical and spectroscopic properties of Yb3+/Tm3+/Ho3+ co-doped SiO2-Bi2O3-R2O (SBR) glass were presented. The Yb3+/Tm3+/Ho3+ co-doped SBR glass shows excellent thermal stability (ΔT = 162 °C), an intense 2.0 μm emission pumped by 980 nm LD with a lifetime of 1.33 ms and width of 168 nm, large maximum emission cross section of Ho3+ (5.3 × 10-21 cm2), thus large σemτ product (7.049 × 10-24 cm2 s), which suggest its application in 2 μm fiber lasers.

  5. Multicomponent liquid ion exchange with chabazite zeolites

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent

  6. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system

    OpenAIRE

    Jon, Hery; Takahashi, Shoutarou; Sasaki, Hitoshi; Oumi, Yasunori; Sano, Tsuneji

    2008-01-01

    The highly crystalline and pure RUT (RUB-10) zeolite could be obtained from the hydrothermal conversion of FAU zeolite used as a crystalline Si/Al source in tetramethylammonium hydroxide (TMAOH) media. As compared to amorphous silica/Al(OH)3 and amorphous silica/γ-Al2O3 sources, the crystallization rate for the formation of RUT zeolite was clearly faster when FAU zeolite was employed as the Si/Al source. Moreover, it was found that the hydrothermal conversion of FAU zeolite into RUT zeolite d...

  7. Bismuth, lansoprazole, amoxicillin and metronidazole or clarithromycin as first-line Helicobacter pylori therapy.

    Science.gov (United States)

    Zhang, Wei; Chen, Qi; Liang, Xiao; Liu, Wenzhong; Xiao, Shudong; Graham, David Y; Lu, Hong

    2015-11-01

    To evaluate the efficacy and tolerability of replacing tetracycline with amoxicillin in bismuth quadruple therapy. Subjects who were infected with Helicobacter pylori and naïve to treatment were randomly (1:1) assigned to receive a 14-day modified bismuth quadruple therapy: lansoprazole 30 mg, amoxicillin 1 g, bismuth potassium citrate 220 mg (elemental bismuth), twice a day with metronidazole 400 mg four times a day (metronidazole group) or clarithromycin 500 mg twice a day (clarithromycin group). Six weeks after treatment, H. pylori eradication was assessed by 13C-urea breath test. Antimicrobial susceptibility was assessed by the twofold agar dilution method. This was a non-inferiority trial. Two hundred and fifteen subjects were randomised. Metronidazole and clarithromycin containing regimens achieved high cure rates: 94 of 97 (96.9%, 95% CI 93.5% to 100%) and 93 of 98 (94.9%, 95% CI 90.5% to 99.3%) by per-protocol and 88.9% (95% CI 83.0% to 94.8%) and 88.8% (95% CI 82.8% to 94.8%) by intention-to-treat, respectively. Amoxicillin, metronidazole and clarithromycin resistance rates were 1.5%, 45.5% and 26.5%, respectively. Only clarithromycin resistance reduced treatment success (e.g., susceptible 98.6%, resistant 76.9%, p=0.001). Adverse events were more common in the metronidazole group. These results suggest that amoxicillin can substitute for tetracycline in modified 14 day bismuth quadruple therapy as first-line treatment and still overcome metronidazole resistance in areas with high prevalence of metronidazole and clarithromycin resistance. Using clarithromycin instead of metronidazole was only effective in the presence of susceptible strains. NCT02175901. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Photocatalytic removal of SO2 using natural zeolite modified by TiO2 and polyoxypropylene surfactant.

    Science.gov (United States)

    Amini, Nasibeh; Soleimani, Mohsen; Mirghaffari, Nourollah

    2018-01-25

    Air pollution due to emission of various hazardous gases such as SO 2 into the atmosphere and its control is an important environmental issue. Application of photocatalysts is considered as a suitable process to control the gaseous pollutants. In this study, the efficiency of clinoptilolite as a natural zeolite (Ze) modified by TiO 2 (Ze-Ti) and a polymeric surfactant polyoxypropylene (Ze-Ti-POP) for removal of SO 2 was investigated. The nanocomposites were characterized by SEM, EDX, and BET analyses. The photocatalytic oxidation experiments of SO 2 by the nanocomposites and natural zeolite were done under UV irradiation with initial SO 2 concentration of 500 ppm in a photoreactor. The effects of different factors including reaction time, catalyst dose, UV irradiation intensity, humidity content, and calcination temperature and dose of TiO 2 were studied. The modification of clinoptilolite by TiO 2 and POP increased considerably the BET specific surface area of the nanocomposites. The results showed that maximum removal efficiencies of SO 2 by Ze-Ti and Ze-Ti-POP under the optimum experimental conditions were 82.1 and 87.4%, respectively. Adsorption kinetics data well fitted with the Langmuir-Hinshelwood model. Moreover, reusing of nanocomposites after three regeneration cycles indicated that application of Ze-Ti and Ze-Ti-POP nanocomposites could be a promising approach for SO 2 removal. Graphical abstract ᅟ.

  9. Bismuth Basic Nitrate as a Novel Adsorbent for Azo Dye Removal

    Directory of Open Access Journals (Sweden)

    E. A. Abdullah

    2012-01-01

    Full Text Available Bismuth basic nitrate (BBN and its TiO2-Ag modified sorbent, PTBA were successfully synthesized via a precipitation method. The structural characteristics of prepared sorbents were determined through different analytical techniques. The potential use of prepared sorbents for organic compounds' removal was evaluated using Methyl Orange and Sunset Yellow dyes as model pollutants in aqueous solutions. The experimental results showed that the presence of TiO2 and Ag particles during the crystal growth of bismuth basic nitrate has an effect on the crystal structure, point of zero charge (pHpzc, pore volume and diameter. The lower binding energy of Ti 2p core level peak indicates the octahedral coordination of TiO2 particles on the PTBA surface. The alteration of hydrophilic-hydrophobic characteristics of sorbent's surface improves the adsorptive performance of the modified sorbent and provides an efficient route for organic contaminants' removal from aqueous solutions.

  10. Study of the structure, dielectric and ferroelectric behavior of BaBi{sub 4+δ}Ti{sub 4}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khokhar, Anita, E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Goyal, Parveen K., E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110 007 (India); Thakur, O. P. [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110 054 (India)

    2016-05-23

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi{sub 4+δ}Ti{sub 4}O{sub 15} (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (T{sub m}) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (P{sub r} ~ 12.5  µC/cm{sup 2}), low coercive fields (E{sub c} ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d{sub 33} ~ 29 pC/N) is achieved in poled BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  11. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples

    International Nuclear Information System (INIS)

    Kadara, Rashid O.; Tothill, Ibtisam E.

    2008-01-01

    A bulk-modified screen-printed carbon electrode characterised for metal ion detection is presented. Bismuth oxide (Bi 2 O 3 ) was mixed with graphite-carbon ink to obtain the modified electrode. The best composition was 2% Bi 2 O 3 (wt%) in the graphite-carbon ink. The modified electrode with onboard screen-printed carbon counter and silver-silver chloride pseudo-reference electrodes exhibited good performance in the electrochemical measurement of lead (II) and cadmium (II). The electrode displayed excellent linear behaviour in the concentration range examined (20-300 μg L -1 ) with limits of detection of 8 and 16 μg L -1 for both lead (II) and cadmium (II), respectively. The analytical utility of the modified electrode was illustrated by the stripping chronopotentiometric determinations of lead (II) in soil extracts and wastewater samples

  12. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    Science.gov (United States)

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  13. Removal of Na+ from Ionic Liquids by Zeolite for High Quality Electrolyte Manufacture

    International Nuclear Information System (INIS)

    Cho, Wonje; Seo, Yongseong; Jung, Soon Jae; Lee, Won Gil; Kim, Byung Chul; Yu, Kookhyun

    2013-01-01

    This study develops a novel method to remove the free cations created during the synthesis of ionic liquid. The cations are removed from the ionic liquid by size-selective adsorption onto chemically surface-modified Zeolite. The porous crystal nano-structure of Zeolite has several electron-rich Al sites to attract cations. While large cations of an ionic liquid cannot access the Zeolite nano-structure, small cations like Na + have ready access and are adsorbed. This study confirms that: Na + can be removed from ionic liquid effectively using Zeolite; and, in contrast to the conventional and extensively applied ion exchange resin method or solvent extraction methods, this can be done without changing the nature of the ionic liquid

  14. Mode locking in a bismuth fibre laser by using a SESAM

    International Nuclear Information System (INIS)

    Krylov, A A; Dvoirin, V V; Mashinsky, V M; Kryukov, P G; Okhotnikov, O G; Guina, M

    2008-01-01

    By using a semiconductor saturable-absorber mirror (SESAM) optimised for operation in the spectral range from 1100 to 1200 nm, passive mode locking is obtained in a cw bismuth-doped fibre laser. Pumping was performed by a cw ytterbium-doped fibre laser at a wavelength of 1075 nm. The operation of the laser is studied by using either a fibre Bragg grating or a loop fibre Sagnac mirror as the output resonator mirror. Stable laser pulses of duration from 50 ps to 3.5 ns, depending on the output mirror type, were generated. The pulse repetition rate was 11 MHz at a wavelength of ∼1160 nm and the maximum spectral width of 2.1 nm. The maximum average output power was 7.8 mW upon pumping by 1140 mW. (control of laser radiation parameters)

  15. Nafion/2,2'-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Torma, Ferenc; Kadar, Mihaly; Toth, Klara; Tatar, Eniko

    2008-01-01

    This paper describes the fabrication, characterisation and the application of a Nafion/2,2'-bipyridyl/bismuth composite film-coated glassy carbon electrode (NC(Bpy)BiFE) for the anodic stripping voltammetric determination of trace metal ions (Zn 2+ , Cd 2+ and Pb 2+ ). The NC(Bpy)BiFE electrode is prepared by first applying a 2.5 mm 3 drop of a coating solution containing 0.5 wt% Nafion and 0.1% (w/v) 2,2'-bipyridil (Bpy) onto the surface of a glassy carbon electrode, while the Bi film was plated in situ simultaneously with the target metal ions at -1.4 V. The main advantage of the polymer coated bismuth film electrode is that the sensitivity of the stripping responses is increased considerably due to the incorporation of the neutral chelating agent of 2,2'-bipyridyl (Bpy) in the Nafion film, while the Nafion coating improved the mechanical stability of the bismuth film and its resistance to the interference of surfactants. The key experimental parameters relevant to both the electrode fabrication and the voltammetric measurement were optimized on the basis of the stripping signals. With a 2 min deposition time in the presence of oxygen, linear calibration curves were obtained in a wide concentration range (about 2-0.001 μM) with detection limits of 8.6 nM (0.56 μg dm -3 ) for Zn 2+ , 1.1 nM (0.12 μg dm -3 ) for Cd 2+ and 0.37 nM (0.077 μg dm -3 ) for Pb 2+ . For nine successive preconcentration/determination/electrode renewal experiments the standard deviations were between 3 and 5% at 1.2 μM for zinc and 0.3-0.3 μM concentration level for lead and cadmium, respectively, and the method exhibited excellent selectivity in the presence of the excess of several potential interfering metal ions. The analytical utility of the stripping voltammetric method elaborated was tested in the assay of heavy metals in some real samples and the method was validated by ICP-MS technique

  16. Effect of the modification of a natural mexican zeolite in the sorption of cadmium and 4-chloro phenol

    International Nuclear Information System (INIS)

    Cortes M, R.

    2007-01-01

    Clinoptilolite type zeolite is a material of relative abundance in Mexico, which possess ion exchange properties and it can be used in the removal of metal ions from polluted waters. The external surface of zeolites can be modified with cationic surfactants. This modification could have a negative effect on the removal of metal ions and provides to the material the capacity to adsorb phenolic compounds. For this reason, it is important to know the capability of the modified material on the sorption of metal ions and phenolic compounds, simultaneously. The aim of this work was to evaluate the effect of the external surface modification with surfactant of a Mexican zeolite over its sorption capacity of cadmium and 4-chloro phenol, in batch and column systems. To accomplish that, a clinoptilolite type zeolitic rock from a deposit located in the state of Sonora, Mexico, was used. It was ground, sieved and characterized with different techniques; and its external surface area was modified with hexadecyltrimethylammonium bromide (HDTMA-Br). A grain size fraction was selected to carry out sorption kinetics and equilibrium experiments, as well as packed column tests with zeolitic material and solutions of cadmium and 4-chloro phenol. There are different models proposed in literature that are used to describe sorption kinetics and equilibrium. In this work, the sorption experimental results were adjusted to some of these models to identify controlling mechanisms on the kinetics and equilibrium of the studied systems. The results showed that the cadmium adsorption on natural and modified zeolite was similar in batch systems. For the case of 4-chloro phenol sorption, it was observed that natural zeolite does not retain this compound, while in modified zeolite the sorption is better than other comparable materials. The results also showed that for the case of cadmium sorption, the mechanism involved was ion exchange; while for sorption of 4-chloro phenol, a partition mechanism

  17. Studies of adsorption and desorption of zinc ions on zeolites by means of 65Zn

    International Nuclear Information System (INIS)

    Foeldesova, M.; Dillinger, P.; Lukac, P.

    2001-01-01

    The uptake of different metals by natural and chemically modified ion-exchangers, including zeolites, were studied in order to minimize the contamination of environment with metals in ionic form. In recent years considerable attention has been devoted to the studies of chemically modified zeolites their properties and applications. The used zeolite originated from the deposit Nizny Hrabovec, eastern Slovakia (NH) and from deposit of Ukraine (U). The zeolite from Slovakia is a clinoptilolite /40 -70%/ type, the zeolite from Ukraine is a mixed mordenite /75%/ and clinoptilolite /25%/ type. A fraction of 1.5 -2.5 mm was separated from the grained zeolite by sieving. The sedimentary zeolites, being the siliceous zeolites, should exhibit substantial non-selectivity for the divalent cations having a high hydration enthalpy , including zinc ( -2026 kJ/g). Zinc is an essential trace element in all-living systems from bacteria to humans. The toxicity of zinc and most of zinc compounds is generally low, however, sometimes industrial and household wastes contain zinc in concentrations, which can be harmful to the environment. The zinc-accompanying impurities, such as cadmium and lead, are of much greater danger .The main source of zinc are waste waters and continuous emission from the production and processing of zinc, other nonferrous smelters, from coal power plants and fossil combustion. The static radio-exchange method using model radioactive solutions was utilized for the determination of the sorption of Zn by the mentioned above zeolitic materials. For this purpose the aqueous solution of 5 · 10 -2 mol dm -3 ZnCl 2 labelled with 65 Zn was used. The areas of application of natural zeolites have been well defined. However, their use can become more efficient after chemical modification. The zeolites acquire new valuable properties, while retaining their original ones. The obtained results make these materials excellent candidates for their potential use for waste water

  18. Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles

    Science.gov (United States)

    Khan, U.; Adeela, N.; Javed, K.; Riaz, S.; Ali, H.; Iqbal, M.; Han, X. F.; Naseem, S.

    2015-11-01

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe1- δ Co δ O3 (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO3. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller's law, while modified Bloch's model was employed for saturation magnetization in temperature range of 5-300 K.

  19. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples

    Energy Technology Data Exchange (ETDEWEB)

    Kadara, Rashid O. [Cranfield Health, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom); School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottinghamshire NG11 8NS (United Kingdom)], E-mail: kayusee2001@yahoo.co.uk; Tothill, Ibtisam E. [Cranfield Health, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom)

    2008-08-08

    A bulk-modified screen-printed carbon electrode characterised for metal ion detection is presented. Bismuth oxide (Bi{sub 2}O{sub 3}) was mixed with graphite-carbon ink to obtain the modified electrode. The best composition was 2% Bi{sub 2}O{sub 3} (wt%) in the graphite-carbon ink. The modified electrode with onboard screen-printed carbon counter and silver-silver chloride pseudo-reference electrodes exhibited good performance in the electrochemical measurement of lead (II) and cadmium (II). The electrode displayed excellent linear behaviour in the concentration range examined (20-300 {mu}g L{sup -1}) with limits of detection of 8 and 16 {mu}g L{sup -1} for both lead (II) and cadmium (II), respectively. The analytical utility of the modified electrode was illustrated by the stripping chronopotentiometric determinations of lead (II) in soil extracts and wastewater samples.

  20. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine.

    Science.gov (United States)

    Amiripour, Fatemeh; Azizi, Seyed Naser; Ghasemi, Shahram

    2018-06-01

    In this report, a facile, efficient and low cost electrochemical sensor based on bimetallic Au-Cu nanoparticles supported on P nanozeolite modified carbon paste electrode (Au-Cu/NPZ/CPE) was constructed and its efficiency for determination of hydrazine in trace level was studied. For this purpose, agro waste material, stem sweep ash (SSA) was employed as the starting material (silica source) for the synthesis of nano P zeolite (NPZ). After characterization of the synthesized NPZ by analytical instruments (scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy), construction of Au-Cu/NPZ/CPE was performed by three steps procedure involving preparation of nano P zeolite modified carbon paste electrode (NPZ/CPE), introducing Cu +2 ions into nano zeolite structure by ion exchange and electrochemical reduction of Cu +2 ions upon applying constant potential. This procedure is followed by partial replacement of Cu by Au due to galvanic replacement reaction (GRR). The electrochemical properties of hydrazine at the surface of Au-Cu/NPZ/CPE was evaluated using cyclic voltammetry (CV), amperometry, and chronoamperometry methods in 0.1 M phosphate buffer solution (PBS). It was found that the prepared sensor has higher electrocatalytic activity at a relatively lower potential compared to other modified electrodes including Au/NPZ/CPE, Cu/NPZ/CPE, Au-Cu/CPE and etc. Moreover, the proposed electrochemical sensor presented the favorable analytical properties for determination of hydrazine such as low detection limit (0.04 µM), rapid response time (3 s), wide linear range (0.01-150 mM), and high sensitivity (99.53 µA mM -1 ) that are related to the synergic effect of bimetallic of Au-Cu, porous structure and enough surface area of NPZ. In addition, capability of Au-Cu/NPZ/CPE sensor was successfully tested in real samples with good accuracy and precision. Copyright

  1. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting...... measurements. Additionally, the results of diffusion of n-hexadecane in conventional and mesoporous zeolites are presented. Isomerization and cracking of n-hexadecane was chosen as model test reaction for these materials. All results support that mesoporous zeolites are superior catalysts due to improved mass...... transport. Importantly, the mesoporous zeolites show significant improved resistance to poisoning by carbon formation....

  2. Solid phase extraction-inductively coupled plasma spectrometry for adsorption of Co(II) and Ni(II) from radioactive wastewaters by natural and modified zeolites

    International Nuclear Information System (INIS)

    Akbar Malekpour; Mohammad Edrisi; Shamsollah Shirzadi; Saeed Hajialigol

    2011-01-01

    Natural and modified clinoptilolite as low-cost adsorbents have been used for adsorption of Co(II) and Ni(II) from nuclear wastewaters both in batch and continuous experiments. Zeolite X was also synthesized and its ability towards the selected cations was examined. Kinetic and thermodynamic behaviors for the process were investigated and adsorption equilibrium was interpreted in term of Langmuir and Freundlich equations. The effect of various parameters including the initial concentration, temperature, ionic strength and pH of solution were examined to achieve the optimized conditions. The clinoptilolite was shown good sorption potential for Co(II) and Ni(II) ions at pH values 4-6. Based on desorption studies, nearly 74 and 85% of adsorbed Co(II) and Ni(II) were removed from clinoptilolite by HCl. The Na + and NH 4 + forms of clinoptilolite were the best modified forms for the removal of investigated cations. It is concluded that the selectivity of clinoptilolite is higher for Co(II) than Ni(II). The synthesized zeolite showed more ability to remove cobalt and nickel ions from aqueous solution than the natural clinoptilolite. The microwave irradiation was found to be more rapid and effective for ion exchange compared to conventional ion exchange process. (author)

  3. The structure of actinide ions exchanged into native and modified zeolites and clays

    International Nuclear Information System (INIS)

    Wasserman, S. R.; Soderholm, L.; Giaquinta, D. M.

    2000-01-01

    X-ray absorption spectroscopy (XAS) has been used to investigate the structure and valence of thorium (Th 4+ ) and uranyl (UO 2 2+ ) cations exchanged into two classes of microporous aluminosilicate minerals: zeolites and smectite clays. XAS is also employed to examine the fate of the exchanged cations after modification of the mineral surface using self-assembled organic films and/or exposure to hydrothermal conditions. These treatments serve as models for the forces that ultimately determine the chemical fate of the actinide cations in the environment. The speciation of the cations depends on the pore size of the aluminosilicate, which is fixed for the zeolites and variable for the smectites

  4. Possibility of Modification of Zeolites by Iron Oxides and its Utilization for Removal of Pb(II from Water Solutions

    Directory of Open Access Journals (Sweden)

    Michal Lovás

    2004-12-01

    Full Text Available Ion-exchange properties of cations from lattice and ions from solutions are characteristic for zeolites. Zeolites as sorbents are used in many branches of industry. Ion-exchange reactions of cations on zeolites have been a theme of many works. With the exception of using natural zeolites as the sorbent, a modification of surface of zeolites and preparation of synthetic zeolites has received interest lately. One of the common modification of zeolites is modification by iron oxides, which increases capacity of adsorption. In this work, we prepared a modified zeolite by the precipitation of magnetite on the surface of zeolite. This new adsorbent was used to remove of Pb(II from waste water. The maximum adsorption capacity was 73,25 mg/g from the solution of Pb with the concentration of 400 mg/l.

  5. Control of Natural Zeolite Properties by Mechanical Activation in Stirred Media Mill

    Directory of Open Access Journals (Sweden)

    Bohács K.

    2017-06-01

    Full Text Available Due to the special characteristics of zeolites, they can be applied in a very wide range of industries, i.e. agricultural, environmental or water treatment purposes. Generally, high added value zeolite products are manufactured by micro- or nanogrinding. However, these processes require high energy input and cause significant wearing of the mill parts. Therefore, the optimization of zeolite grinding, as well as the control of its properties are of a great importance. In the present paper a Hungarian natural zeolite was mechanically activated in stirred media mill for various residence times in distilled water, meanwhile the particle size distribution and the grinding energy were measured. Additionally, on-line tube rheometer was used to study the rheology of the suspension during the grinding process. The particle interaction and the suspension aggregation stability were detected by zeta-potential measurements. Structural changes due to the mechanical activation process were monitored by FTIR. It was found that the material structure of the zeolite, as well as the rheological behaviour of the zeolite suspension and its aggregation stability had been altered due to the mechanical activation in the stirred media mill. It can be concluded that the zeolite product properties can be modified by mechanical activation in order to produce a high added value tailored material.

  6. Catalytic Ozonation of Toluene Using Chilean Natural Zeolite: The Key Role of Brønsted and Lewis Acid Sites

    Directory of Open Access Journals (Sweden)

    Serguei Alejandro-Martín

    2018-05-01

    Full Text Available The influence of surface physical-chemical characteristics of Chilean natural zeolite on the catalytic ozonation of toluene is presented in this article. Surface characteristics of natural zeolite were modified by acid treatment with hydrochloric acid and ion-exchange with ammonium sulphate. Prior to catalytic ozonation assays, natural and chemically modified zeolite samples were thermally treated at 623 and 823 K in order to enhance Brønsted and Lewis acid sites formation, respectively. Natural and modified zeolite samples were characterised by N2 adsorption at 77 K, elemental analysis, X-ray fluorescence, and Fourier transform infrared (FTIR spectroscopy, using pyridine as a probe molecule. The highest values of the reaction rate of toluene oxidation were observed when NH4Z1 and 2NH4Z1 zeolite samples were used. Those samples registered the highest density values of Lewis acid sites compared to other samples used here. Results indicate that the presence of strong Lewis acid sites at the 2NH4Z1 zeolite surface causes an increase in the reaction rate of toluene oxidation, confirming the role of Lewis acid sites during the catalytic ozonation of toluene at room temperature. Lewis acid sites decompose gaseous ozone into atomic oxygen, which reacts with the adsorbed toluene at Brønsted acid sites. On the other hand, no significant contribution of Brønsted acid sites on the reaction rate was registered when NH4Z1 and 2NH4Z1 zeolite samples were used.

  7. Thermal decomposition synthesis of nanorods bismuth sulphide from bismuth N-ethyl cyclohexyl dithiocarbamate complex

    International Nuclear Information System (INIS)

    Abdullah, Nurul Hidayah; Zainal, Zulkarnain; Silong, Sidik; Tahir, Mohamed Ibrahim Mohamed; Tan, Kar-Ban; Chang, Sook-Keng

    2016-01-01

    Highlights: • Bismuth N-ethyl cyclohexyl dithiocarbamate was used as single source precursor. • No surfactant was used in the preparation of Bi_2S_3 nanorods. • Pure phase orthorhombic Bi_2S_3 is obtained. • Bismuth sulphide with an average atomic ratio of Bi:S close to 2:3 is obtained. - Abstract: Nanorods of bismuth sulphide were prepared by thermal decomposition of bismuth N-ethyl cyclohexyl dithiocarbamate at different calcination duration. X-ray diffraction (XRD) analysis shows that at 400 °C, the precursor was fully decomposed to orthorhombic bismuth sulphide after 2 h of calcination. Besides, calcination duration does not affect the existence of Bi_2S_3 phase. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses reveal that Bi_2S_3 nanorods with an average width ranging from 29–36 nm were obtained. Energy dispersive X-ray (EDX) analysis confirmed the atomic ratio of Bi and S close to 2:3, giving a possible composition of Bi_2S_3. Direct band gap energy of Bi_2S_3 decreases from 1.83 eV to 1.54 eV as calcination time increases.

  8. Influence of bismuth on the magnetic and electrical properties of La2MnNiO6 .IAEA.ATOMS

    International Nuclear Information System (INIS)

    Nautiyal, Pranjal; Motin Seikh, Md.; Pralong, V.; Kundu, Asish K.

    2013-01-01

    In this study, we report the ambient pressure and low temperature synthesis of ordered perovskite La 2−x Bi x Mn 1+y Ni 1−y O 6 with high bismuth content. Keeping y=0, we are able to substitute La by Bi up to x=0.4 i.e. 20% of La. However, 50% La could be replaced by Bi for y=0.5 without any impurity phases. Interestingly, these compounds remain ferromagnetic with the Curie temperature T C of 255 and 75 K for La 1.6 Bi 0.4 MnNiO 6 and LaBiMn 1.5 Ni 0.5 O 6 compositions, respectively. Moreover, these Bi-substituted phases become more conducting, three order of magnitude higher, at room temperature compared to the parent La 2 MnNiO 6 phase. - Highlights: • Synthesis of bismuth based perovskite at ambient pressure and low temperature with 50% Bi-doped phase. • Magnetic interactions between Mn and Ni ions have been proposed clearly for the doped phases • The band gap energy in the samples have been determined to explain their higher conductivity

  9. Adsorption of ions onto treated natural zeolite

    Directory of Open Access Journals (Sweden)

    Cristiane da Rosa Oliveira

    2007-12-01

    Full Text Available This work presents studies of modification of a natural zeolite by activation with Na+ cations and functionalisation with Ba+2 and/or Cu2+ ions (FZ. The zeolite was characterized, modified and applied in adsorption studies of sulphate and isopropilxanthate ions as flocculated and powdered forms. The reuse of SO4Ba-FZ was investigated by adsorption-removal of either Ba2+ or sulphate ions in stages. Equilibrium data showed that the FZ, flocculated or as powder, provide considerable removal of sulphate ions (q mLangmuir: 1.15 and 1.35 meq.g-1, respectively and isopropilxanthate (q mLangmuir: 0.35 and 0.93 meq.g-1, respectively. The reuse of the SO4-FZ, either powdered or flocculated also uptake significant amount of Ba2+ or sulphate ions (q mLangmuir: 1.15 meq.g-1, providing a new alternative for the exhausted adsorbent. Thus the activated and functionalised zeolites create new options on the materials engineering area with applications in environmental applied adsorption processes.

  10. The cellular uptake of antisense oligonucleotid of E6 mRNA into cervical cancer cells by DOPE-modified hydroxyapatite nanoparticles

    Directory of Open Access Journals (Sweden)

    Negin Saffarzadeh

    2014-10-01

    Full Text Available Objective(s: Although several chemical and physical methods for gene delivery have been introduced, their cytotoxicity, non-specific immune responses and the lack of biodegradability remain the main issues. In this study, hydroxyapatite nanoparticles (NPs and 1,2-dioleoyl-sn-glycero-3-phosphoethanol​amine (DOPE-modified hydroxyapatite NPs was coated with antisense oligonucleotide of E6 mRNA, and their uptakes into the cervical cancer cell line were evaluated. Materials and Methods: Calcium nitrate and diammonium phosphate were used for the synthesis of the hydroxyapatite nanoparticle. Thus, they were coated with polyethylene glycol (PEG, DOPE and antisense oligonucleotide of E6 mRNA using a cross-linker. Then, hydroxyapatite NPs and DOPE-modified hydroxyapatite NPs were incubated 48 hours with cervical cancer cells and their uptakes were evaluated by fluorescent microscopy. Results: The hydroxyapatite NPs had different shapes and some agglomeration with average size of 100 nm. The results showed DOPE-modified hydroxyapatite NPs had higher uptake than hydroxyapatite NPs (P

  11. Electron irradiation of zeolites

    International Nuclear Information System (INIS)

    Wang, S.X.; Wang, L.M.; Ewing, R.C.

    1999-01-01

    Three different zeolites (analcime, natrolite, and zeolite-Y) were irradiated with 200 keV and 400 keV electrons. All zeolites amorphized under a relatively low electron fluence. The transformation from the crystalline-to-amorphous state was continuous and homogeneous. The electron fluences for amorphization of the three zeolites at room temperature were: 7.0 x 10 19 e - /cm 2 (analcime), 1.8 x 10 20 e - /cm 2 (natrolite), and 3.4 x 10 20 e - /cm 2 (zeolite-Y). The different susceptibilities to amorphization are attributed to the different channel sizes in the structures which are the pathways for the release of water molecules and Na + . Natrolite formed bubbles under electron irradiation, even before complete amorphization. Analcime formed bubbles after amorphization. Zeolite-Y did not form bubbles under irradiation. The differences in bubble formation are attributed to the different channel sizes of the three zeolites. The amorphization dose was also measured at different temperatures. An inverse temperature dependence of amorphization dose was observed for all three zeolites: electron dose for amorphization decreased with increasing temperature. This unique temperature effect is attributed to the fact that zeolites are thermally unstable. A semi-empirical model was derived to describe the temperature effect of amorphization in these zeolites

  12. Metal-Exchanged β Zeolites as Catalysts for the Conversion of Acetone to Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Aurora J. Cruz-Cabeza

    2012-01-01

    Full Text Available Various metal-β zeolites have been synthesized under similar ion-exchange conditions. During the exchange process, the nature and acid strength of the used cations modified the composition and textural properties as well as the Brönsted and Lewis acidity of the final materials. Zeolites exchanged with divalent cations showed a clear decrease of their surface Brönsted acidity and an increase of their Lewis acidity. All materials were active as catalysts for the transformation of acetone into hydrocarbons. Although the protonic zeolite was the most active in the acetone conversion (96.8% conversion, the metal-exchanged zeolites showed varied selectivities towards different products of the reaction. In particular, we found the Cu-β to have a considerable selectivity towards the production of isobutene from acetone (over 31% yield compared to 7.5% of the protonic zeolite. We propose different reactions mechanisms in order to explain the final product distributions.

  13. Isotherms and kinetics of lead and cadmium uptake from the waste leachate by natural and modified clinoptilolite

    Directory of Open Access Journals (Sweden)

    Maryam Faraji

    2012-01-01

    Conclusions: The modified zeolite with surfactant can be used as an appropriate adsorbent for the separation of heavy metals from waste Leachate. Lead and cadmium were absorbed in a single layer on the surface of the modified zeolite with surfactant, comparing different isoterm models, indicated that the capacity of the modified zeolite for lead adsorption was more than cadmium adsorption, but cadmium was absorbed with higher energy.

  14. Comparison of Second-Line Quadruple Therapies with or without Bismuth for Helicobacter pylori Infection

    Directory of Open Access Journals (Sweden)

    Guang-Hong Jheng

    2015-01-01

    Full Text Available The bismuth-based quadruple regimen has been applied in Helicobacter pylori rescue therapy worldwide. The non-bismuth-based quadruple therapy or “concomitant therapy” is an alternative option in first-line eradication but has not been used in second-line therapy. Discovering a valid regimen for rescue therapy in bismuth-unavailable countries is important. We conducted a randomized controlled trial to compare the efficacies of the standard quadruple therapy and a modified concomitant regimen. One hundred and twenty-four patients were randomly assigned into two groups: RBTM (rabeprozole 20 mg bid., bismuth subcitrate 120 mg qid, tetracycline 500 mg qid, and metronidazole 250 mg qid and RATM (rabeprozole 20 mg bid., amoxicillin 1 g bid., tetracycline 500 mg qid, and metronidazole 250 mg qid for 10 days. The eradication rate of the RBTM and RATM regimen was 92.1% and 90.2%, respectively, in intention-to-treat analysis. Patients in both groups had good compliance (~96%. The overall incidence of adverse events was higher in the RATM group (42.6% versus 22.2%, P=0.02, but only seven patients (11.5% experienced grades 2-3 events. In conclusion, both regimens had good efficacy, compliance, and acceptable side effects. The 10-day RATM treatment could be an alternative rescue therapy in bismuth-unavailable countries.

  15. In situ high temperature MAS NMR study of the mechanisms of catalysis. Ethane aromatization on Zn-modified zeolite BEA.

    Science.gov (United States)

    Arzumanov, Sergei S; Gabrienko, Anton A; Freude, Dieter; Stepanov, Alexander G

    2009-04-01

    Ethane conversion into aromatic hydrocarbons over Zn-modified zeolite BEA has been analyzed by high-temperature MAS NMR spectroscopy. Information about intermediates (Zn-ethyl species) and reaction products (mainly toluene and methane), which were formed under the conditions of a batch reactor, was obtained by (13)C MAS NMR. Kinetics of the reaction, which was monitored by (1)H MAS NMR in situ at the temperature of 573K, provided information about the reaction mechanism. Simulation of the experimental kinetics within the frames of the possible kinetic schemes of the reaction demonstrates that a large amount of methane evolved under ethane aromatization arises from the stage of direct ethane hydrogenolysis.

  16. Cr(VI) retention and transport through Fe(III)-coated natural zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gaoxiang [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Zhaohui, E-mail: li@uwp.edu [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI 53144 (United States); Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Libing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Hanson, Renee; Leick, Samantha; Hoeppner, Nicole [Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2012-06-30

    Graphical abstract: Breakthrough curves of Cr(VI) from columns packed with raw zeolite (a) and Fe(III)-zeolite (b). The solid line in (b) is the HYDRUS-1D fit to the observed data with adsorption term only, while the dashed line in (b) includes a reduction term in the HYDRUS-1D fit. Highlights: Black-Right-Pointing-Pointer Zeolite modified with Fe(III) could be used for adsorption and retention of Cr(VI). Black-Right-Pointing-Pointer The Fe present on zeolite was in an amorphous Fe(OH){sub 3} form. Black-Right-Pointing-Pointer A Cr(VI) adsorption capacity of 82 mg/kg was found on Fe(III)-zeolite. Black-Right-Pointing-Pointer A Cr(VI) retardation factor of 3 or 5 was determined from column and batch studies. - Abstract: Cr(VI) is a group A chemical based on the weight of evidence of carcinogenicity. Its transport and retention in soils and groundwater have been studied extensively. Zeolite is a major component in deposits originated from volcanic ash and tuff after alteration. In this study, zeolite aggregates with the particle size of 1.4-2.4 mm were preloaded with Fe(III). The influence of present Fe(III) on Cr(VI) retention by and transport through zeolite was studied under batch and column experiments. The added Fe(III) resulted in an enhanced Cr(VI) retention by the zeolite with a capacity of 82 mg/kg. The Cr(VI) adsorption on Fe(III)-zeolite followed a pseudo-second order kinetically and the Freundlich adsorption isotherm thermodynamically. Fitting the column experimental data to HYDRUS-1D resulted in a retardation factor of 3 in comparison to 5 calculated from batch tests at an initial Cr(VI) concentration of 3 mg/L. The results from this study showed that enhanced adsorption and retention of Cr(VI) may happen in soils derived from volcanic ash and tuff that contains significant amounts of zeolite with extensive Fe(III) coating.

  17. Bismuth titanate nanorods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-01-01

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi 2 Ti 2 O 7 phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi 2 Ti 2 O 7 phase are a promising candidate as a visible light photocatalyst

  18. Penggunaan Zeolit Sebagai Media Penyaring Pada Pengolahan Air LimbahDomestik

    Directory of Open Access Journals (Sweden)

    Yanto Yanto

    2011-02-01

    Full Text Available Sand filter is frequentlyused to treat contaminated water. Channel filter system is a modification of sand filter where the channel is shaped thus the land requirement could be minimized, water is flowed horizontallyfrom intial tank to finaltank through sand filter. Employing the channel filter to treat domestic wastewateris capable of reducing E. Coli up to 98.14%, increasing DO up to 27% and decreasing BOD5 up to 27%. Unfortunately, the final content of E.Coli after treatment process completed is still unacceptable for drinking water. Several options are available to improve the performance of the channel filter system. One of the promising alternativesis modifying the filter medium. Zeolite is natural material that has been utilized to improvewater quality based on several parameters such as Fe, Mn, organic materials, CO and others. Application of zeolite to diminish E. Coli is a challenge. This paper will investigate the effectiveness of zeolite to lower E. Coli contained in domestic wastewater . Zeolite was added to sand filter where thefraction of zeolite is about 5%. Two kind of zeolite-sand combination was implemented that is arranged and mixed zeolite-sand. Wastewater containing E.Coli was then put in the initial tank. Through the hole createdin the tank, wastewater then flowed passing through the combined zeolite-sand filter and accumulated in the final tank. Both E. Coli from initial and final tank was measured to compute treatment efficiency. The result showsE. Coli decreases up to99.99%, BOD5and DO decrease more than 71% and 66% respectively. It can be concluded that 5% addition ofzeolite is able to improve treatment efficiency ofsand filter.

  19. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  20. MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution.

    Science.gov (United States)

    Liu, Minmin; Hou, Li-An; Yu, Shuili; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-01

    In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29 Si and 27 Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption.

  1. Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping.

    Science.gov (United States)

    Sahoo, M P K; Zhang, Yajun; Wang, Jie

    2016-07-27

    Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1 μB. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis.

  2. Influence of La Doping on Magnetic and Optical Properties of Bismuth Ferrite Nanofibers

    Directory of Open Access Journals (Sweden)

    Ziang Zhang

    2012-01-01

    Full Text Available The influence of La doping on the crystal structure, ferromagnetic, and optical properties of BFO nanofibers was investigated. Bi1−xLaxFeO3 ultrafine nanofibers were synthesized by the electrospinning method. The surface morphology and crystal structure of the as-spun and sintered fibers were not affected by the doping. The impurity phases of the BFO crystals were weakened with the increment of La concentration. The magnetization field curves showed that the magnetization weakened under low La doping proportion, but strengthened with the increase of the doped proportion. The magnetization curves also showed continuous strong enhancement of ferromagnetic behavior. The results of UV-vis and photoabsorption testing revealed little influence of La doping on the optical property.

  3. SEM-EDS Observation of Structure Changes in Synthetic Zeolites Modified for CO2 Capture Needs

    Science.gov (United States)

    Wdowin, Magdalena; Panek, Rafal; Franus, Wojciech

    Carbon dioxide is the main greenhouse gas and its amount still increase in the atmosphere. Air pollution and greenhouse effect caused by CO2 emission have become a major threat to the environment on a global scale. Carbon dioxide sequestration (i.e. capture and consequently geological storage) is the key strategy within the portfolio of actions to reduce CO2 emission to the atmosphere. The most costly stage is capture of CO2, therefore there is a need to search new solutions of this technology. For this purpose it was examined Na-X synthetic zeolites, that were silver and PEI (polyethyleneimine) activated. SEM-EDS investigation enable to find a changes in structure of this materials after treatment. Where, as a result of silver activation from EDS analysis it is seen that Ag occur in Na-X structure, what indicate a substitution of Ag2+ for Na+ ions in crystal lattice. Analysing wt% the EDS analysis has shown that zeolite Na-X after silver impregnation becomes Ag-X zeolite. For Na-X-PEI activated it is observed a distinct organic compound in the form of coatings on Na-X crystals causing a sealing of pores in tested zeolite. Further examination of these materials concern determination of surface properties and experiments of CO2 sorption. But SEM-EDS analysis enable to determine the extent of activation, what is very important in determination of optimal conditions for such treatment in order to obtain better sorbent of CO2.

  4. Optimization of Removal Efficiency and Minimum Contact Time for Cadmium and Zinc Removal onto Iron-modified Zeolite in a Two-stage Batch Sorption Reactor

    Directory of Open Access Journals (Sweden)

    M. Ugrina

    2018-01-01

    Full Text Available In highly congested industrial sites where significant volumes of effluents have to be treated in the minimum contact time, the application of a multi-stage batch reactor is suggested. To achieve better balance between capacity utilization and cost efficiency in design optimization, a two-stage batch reactor is usually the optimal solution. Thus, in this paper, a two-stage batch sorption design approach was applied to the experimental data of cadmium and zinc uptake onto iron-modified zeolite. The optimization approach involves the application of the Vermeulen’s approximation model and mass balance equation to kinetic data. A design analysis method was developed to optimize the removal efficiency and minimum total contact time by combining the time required in the two-stages, in order to achieve the maximum percentage of cadmium and zinc removal using a fixed mass of zeolite. The benefits and limitations of the two-stage design approach have been investigated and discussed

  5. Bismuth( Ⅲ ) Salts: Green Catalysts for Organic Transformations

    Institute of Scientific and Technical Information of China (English)

    C. Le Roux

    2005-01-01

    @@ 1Introduction Bismuth, the heaviest stable element in the periodic table, stands out from other heavy elements (such as mercury, thallium and lead) due to its relatively non-toxic character which confers on bismuth the enviable status of being an eco-friendly element. Therefore, bismuth and its compounds hold considerable promise as useful catalysts for green chemistry. The research presented in this communication is devoted to the applications of bismuth( Ⅲ ) salts as catalysts for organic transformations.After some general comments about bismuth and a short presentation of the various applications of bismuth( Ⅲ ) salts in organic synthesis, this communication will focus on the works done in our research group during the last several years which deals mainly with electrophilic substitutions. When appropriate, some mechanistic details will be given.

  6. Synthesis of zeolite-zeolite (mfi-fau) composite catalysts for the isomerization of n-hexane

    International Nuclear Information System (INIS)

    Ghouri, A.S; Usman, M.R.

    2017-01-01

    In this research work, the aim is to produce a relatively novel zeolite-zeolite (MFI-FAU) composite catalyst having better potential of catalyzing isomerization of lighter hydrocarbons such as light naphtha, n-pentane, n-hexane, n-heptane and mixture thereof. A series of zeolite-zeolite (MFI-FAU) composite catalysts have been synthesized by incorporating previous practices and techniques. The catalytic performance of as-synthesized zeolite-zeolite (MFI-FAU) composite catalysts have been investigated by isomerizing 95% pure n-hexane in conventional fixed bed flow micro-reactor at temperature 200-240 ºC under atmospheric pressure. In order to explore chemical and physical features of zeolite-zeolite (MFI-FAU) composite catalysts, they are examined and characterized using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectrometry (EDX), N2 adsorption-desorption measurements (BET, BJH, t-plot measurements) and Fourier transform infrared (FTIR) spectroscopy equipped with attenuated total reflectance (ATR) arrangements. (author)

  7. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    Science.gov (United States)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  8. Dual Mode Fluorophore-Doped Nickel Nitrilotriacetic Acid-Modified Silica Nanoparticles Combine Histidine-Tagged Protein Purification with Site-Specific Fluorophore Labeling

    OpenAIRE

    Kim, Sung Hoon; Jeyakumar, M.; Katzenellenbogen, John A.

    2007-01-01

    We present the first example of a fluorophore-doped nickel chelate surface- modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700–900 TMRs per ca. 23-nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni+2. Silica-embedded TMR retains very high quantum yield, is resistant to quenc...

  9. Biodiesel synthesis via transesterification of lipid Chlorophyta cultivated in walne rich carbon medium using KOH/Zeolite catalyst

    Science.gov (United States)

    Dianursanti, Hayati, Siti Zahrotul; Putri, Dwini Normayulisa

    2017-11-01

    Microalgae from the Chlorophyta division such as Nannochloropsis oculata and Chlorella vulgaris are highly potential to be developed as biodiesel feedstocks because they have a high oil content up to 58%. Biodiesel is produced by transesterification of triglycerides and alcohols with the aid of homogeneous catalysts such as KOH. However, the use of KOH catalysts produces soaps in the biodiesel synthesis. Heterogeneous catalysts are known to solve this problem. One of them is natural zeolite. Zeolite can be used as a catalyst and as a support catalyst. Loading KOH on the zeolite surface is expected to increase alkalinity in KOH/Zeolite catalysts so as to increase the activity of KOH/Zeolite catalyst in transesterification of triglyceride with methanol. In this experimental lipid of microalgae will be used for produced biodiesel via transesterification reaction with methanol and KOH/Zeolite as a catalyst heterogeneous at 60 °C for 3h and utilized catalyst modificated KOH/Zeolite with variation 0.5 M, 1 M and 1.5 M KOH. The modified zeolite was then analyzed by XRF, XRD and BET. The result showed that the yield of biodiesel from lipid N.oculata was 81,09% by 0.5KOH/Zeolite catalyst, 86,53% by 1KOH/Zeolite catalyst, 1,5KOH/Zeolite and 88,13% by 1.5KOH/Zeolit, while the biodiesel produced from lipid C.vulgaris was 59.29% by 0.5KOH/Zeolite, 82.27% by 1KOH/Zeolite and 83.72% by 1.5KOH/Zeolite.

  10. The Effect of Zeolite on Aggregate Stability Indices

    Directory of Open Access Journals (Sweden)

    F. Sohrab

    2016-02-01

    Full Text Available Introduction: Soil structural stability affects the profitability and sustainability of agricultural systems. Particle size distribution (PSD and aggregate stability are the important characteristics of soil. Aggregate stability has a significant impact on the development of the root system, water and carbon cycle and soil resistance against soil erosion. Soil aggregate stability, defined as the ability of the aggregates to remain intact when subject to a given stress, is an important soil property that affects the movement and storage of water, aeration, erosion, biological activity and growth of crops. Dry soil aggregate stability (Mean Weight Diameter (MWD, Geometric Mean Diameter (GMD and Wet Aggregate Stability (WAS are important indices for evaluating soil aggregate stability.To improve soil physical properties, including modifying aggregate, using various additives (organic, inorganic and chemicals, zeolites are among what has been studied.According to traditional definition, zeolites are hydratealuminosilicates of alkaline and alkaline-earth minerals. Their structure is made up of a framework of[SiO4]−4 and [AlO4]−5 tetrahedron linked to each other's cornersby sharing oxygen atoms. The substitution of Si+4 by Al+3 intetrahedral sites results inmore negative charges and a high cation exchange capacity.Zeolites, as natural cation exchangers, are suitable substitutes to remove toxic cations. Among the natural zeolites,Clinoptilolite seems to be the most efficient ion exchanger and ion-selective material forremoving and stabilizing heavy metals.Due to theexisting insufficient technical information on the effects of using different levels of zeolite on physical properties of different types of soils in Iran, the aim of this research was to assess the effects of two different types of zeolite (Clinoptilolite natural zeolite, Z4, and Synthetic zeolite, A4 on aggregate stability indicesof soil. Materials and Methods: In this study at first

  11. Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water.

    Science.gov (United States)

    Zavareh, Siamak; Farrokhzad, Zahra; Darvishi, Farshad

    2018-07-15

    The aim of this work was to design a low cost adsorbent for efficient and selective removal of glyphosate from water at neutral pH conditions. For this purpose, zeolite 4A, a locally abundant and cheap mineral material, was ion-exchanged with Cu 2+ to produce Cu-zeolite 4A. The FTIR results revealed that the modification has no important effect on chemical structure of zeolite 4A. After modification, highly crystalline zeolite 4A was converted to amorphous Cu-zeolite 4A according to XRD studies. The SEM images showed spherical-like particles with porous surfaces for Cu-zeolite 4A compared to cubic particles with smooth surfaces for zeolite 4A. Adsorption equilibrium data were well fitted with non-linear forms of Langmuir, Freundlich and Temkin isotherms. The maximum adsorption capacity for Cu-zeolite 4A was calculated to be 112.7 mg g -1 based on the Langmuir model. The adsorption of glyphosate by the modified adsorbent had fast kinetics fitted both pseudo-first-order and pseudo-second-order models. A mechanism based on chemical adsorption was proposed for the removal process. The modified adsorbent had a good selectivity to glyphosate over natural waters common cations and anions. It also showed desired regeneration ability as an important feature for practical uses. The potential use of the developed material as antibacterial agent for water disinfection filters was also investigated by MIC method. Relatively strong antibacterial activity was observed for Cu-zeolite 4A against Gram-positive and Gram-negative model bacteria while zeolite 4A had no antibacterial properties. No release of Cu 2+ to aqueous solutions was detected as unique feature of the developed material. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Encapsulation of krypton-85 in zeolite molecular sieve with a hot isostatic press

    International Nuclear Information System (INIS)

    Christensen, A.B.; DelDebbio, J.A.; Knecht, D.A.; Tanner, J.E.

    1986-01-01

    This paper describes pilot and full-scale experiments which demonstrated the feasibility of immobilizing Kr-85 in a zeolite 5A/glass mixture and compacting it before disposal. The full volume of a one-liter hot isostatic press (HIP) was used to trap argon in zeolite 5A. For radioactive krypton the HIP was modified to isolate the Kr-85 in the work zone. Details of the HIP modifications, experimental procedure, and sample analysis are reported

  13. Method of producing zeolite encapsulated nanoparticles

    DEFF Research Database (Denmark)

    2015-01-01

    The invention therefore relates to a method for producing zeolite, zeolite-like or zeotype encapsulated metal nanoparticles, the method comprises the steps of: 1) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal...... nanoparticles on the surface of the silica or alumina source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticles to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent...... to the carbon template coated zeolite, zeolite-like or zeotype precursor composition thereby creating a zeolite, zeolite-like or zeotype gel composition; 4b) Crystallising the zeolite, zeolite-like or zeotype gel composition by subjecting said composition to a hydrothermal treatment; 5) Removing the carbon...

  14. Method for producing zeolites and zeotypes

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a method for producing zeolite, zeolite-like or zeotype particles comprising the steps of: 1 ) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal nanoparticles on the surface of the silica or alumina...... source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticle to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent to the carbon template coated zeolite, zeolite......-like or zeotype precursor composition thereby creating a zeolite, zeolite-like or zeotype gel composition; 4b) Crystallising the zeolite, zeolite-like or zeotype gel composition by subjecting said composition to a hydrothermal treatment; 5) Removing the carbon template and structure directing agent and isolating...

  15. CO{sub 2} adsorption in amine-grafted zeolite 13X

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Diôgo P. [GPSA, Universidade Federal do Ceará (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus Ipanguaçu, Rio Grande do Norte (Brazil); Silva, Francisco W.M. da; Moura, Pedro A.S. de; Sousa, Allyson G.S.; Vieira, Rodrigo S. [GPSA, Universidade Federal do Ceará (Brazil); Rodriguez-Castellon, Enrique [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Azevedo, Diana C.S., E-mail: diana@gpsa.ufc.br [GPSA, Universidade Federal do Ceará (Brazil)

    2014-09-30

    Highlights: • CO{sub 2} adsorption mechanism in amine-grafted zeolite 13X was investigated. • The loaded amine tends to fill zeolite micropores and most of it is unaccessible to react with CO{sub 2}. • Part of loaded MEA binds covalently to the zeolitic structure and will not detach from the surface even at low pressures. • Chemisorption is likely to lead to CO{sub 2} higher uptakes upon a rise in temperature for solids with the highest amine load. - Abstract: The adsorption of CO{sub 2} on Zeolite 13X functionalized with amino groups was studied. Adsorbent functionalization was carried out by grafting with different loads of monoethanolamine (MEA). The adsorbents were characterized by N{sub 2} adsorption/desorption isotherms at 77 K, x-ray diffraction, TGA, in situ FTIR, XPS and adsorption microcalorimetry. CO{sub 2} isotherms were studied in a gravimetric device up to 10 bar at 298 and 348 K. It was found that increasing loads of amine to the adsorbent tend to reduce micropore volume of the resulting adsorbents by pore blocking with MEA. There is experimental evidence that part of the loaded MEA is effectively covalently bonded to the zeolitic structure, whereas there is also physisorbed excess MEA which will eventually be desorbed by raising the temperature beyond MEA boiling point. Heats of adsorption at nearly zero coverage indicate that some of the adsorbed CO{sub 2} reacts with available amino groups, which agrees with the finding that the adsorption capacity increases with increasing temperature for the modified zeolite with the highest MEA load.

  16. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    International Nuclear Information System (INIS)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-01-01

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  17. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro, E-mail: goto.masahiro@nims.go.jp [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sasaki, Michiko [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Yibin [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Materials Database Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhan, Tianzhuo [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Isoda, Yukihiro [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shinohara, Yoshikazu [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-06-15

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  18. Heterogeneous Photodecolorization of Methyl Green Catalyzed by Fe(II-o-Phenanthroline/Zeolite Y Nanocluster

    Directory of Open Access Journals (Sweden)

    Alireza Nezamzadeh-Ejhieh

    2011-01-01

    Full Text Available The potential of Fe(II-orthophenatrolin, as doped with synthetic zeolite Y nanocluster (Na-Y via complexation process, after wet impregnation of parent zeolite with FeSO4 aqueous solution, was studied as a photocatalyst in decolorization of Methyl Green (MG under UV irradiation. The characterization of the synthesized zeolite nanocluster and the prepared catalyst was studied using X-ray powder diffraction (XRD, infrared spectroscopy (FT-IR, thermal analysis, and SEM methods. The dye photodecolorization process was studied considering the influence of experimental parameters and it was observed that photoreactivity of the photocatalyst was varied with catalyst amount, initial dye concentration, pH of dye solution, temperature, and the presence of KBrO3. The optimal experimental parameters were obtained as follows: catalyst amount: 1 gL−1, dye concentration: 40 ppm, pH: 9, and active component value: 100 mg Fe(II-orthophenatrolin per g catalyst. The reusability of the intended catalyst was also investigated. The degradation process obeyed first-order kinetics.

  19. Synthesis of Iron Doped Zeolite Imidazolate Framework-8 and Its Remazol Deep Black RGB Dye Adsorption Ability

    Directory of Open Access Journals (Sweden)

    Mai Thi Thanh

    2017-01-01

    Full Text Available Zeolite imidazole framework-8 (ZIF-8 and the iron doped ZIF-8 (Fe-ZIF-8 were synthesized by the hydrothermal process. The obtained materials were characteristic of X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, scanning electron microscope (SEM, nitrogen adsorption/desorption isotherms, and atomic absorption spectroscopy (AAS. The results showed that the obtained Fe-ZIF-8 possessed the ZIF-8 structure with a large specific area. ZIF-8 and Fe-ZIF-8 were used for the removal of Remazol Deep Black (RDB RGB dye from aqueous solutions. The various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. The results showed that the introduction of iron into ZIF-8 provided a much larger adsorption capacity and faster adsorption kinetics than ZIF-8 without iron. The electrostatic interaction and π-π interaction between the aromatic rings of the RDB dye and the aromatic imidazolate rings of the adsorbent were responsible for the RDB adsorption. Moreover, the coordination of the nitrogen atoms and oxygen in carboxyl group in RDB molecules with the Fe2+ ions in the ZIF-8 framework played a vital role for the effective removal of RDB from aqueous solution.

  20. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Quintana, Josefina [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Amine, Aziz [Faculte des Sciences et Techniques, B.P.146, Mohammadia, Morocco, Rome (Italy); Punzo, Francesco; Destri, Giovanni Li [LAMSUN and CSGI at Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95125, Catania (Italy); Bianchini, Chiara [Dipartimento di Ingegneria Chimica Materiali Ambienti dell' Universita degli Studi ' La Sapienza' di Roma, via Eudossiana 18, 00184 Rome (Italy); Zane, Daniela; Curulli, Antonella [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR,via del Castro Laurenziano 7, 00161 Rome (Italy); Palleschi, Giuseppe; Moscone, Danila [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer 'In situ' Bi-SPE has higher sensitivity than 'ex situ' Bi-SPE and 'Bi{sub 2}O{sub 3} bulk' SPE. Black-Right-Pointing-Pointer Electrochemical treatment of SPE before Bi film deposition allows one to reach low LOD. Black-Right-Pointing-Pointer The linearity of Pb{sup 2+} in HCl and HClO{sub 4} is greatly affected by the ionic strength. Black-Right-Pointing-Pointer Satisfactory values of the recovery percentage were obtained in drinking water samples. - Abstract: Lead determination was carried out in the frame of the European Union project Biocop ( (www.biocop.org)) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using 'in situ', 'ex situ' and 'bulk' procedures was carried out. On the basis of the results obtained, we confirmed that the 'in situ' procedure resulted in better analytical performances with respect to not only 'ex situ' but also to 'Bi{sub 2}O{sub 3} bulk' modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 {mu}g L{sup -1} and a detection limit of 0.15 {mu}g L{sup -1}. We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of

  1. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection

    International Nuclear Information System (INIS)

    Calvo Quintana, Josefina; Arduini, Fabiana; Amine, Aziz; Punzo, Francesco; Destri, Giovanni Li; Bianchini, Chiara; Zane, Daniela; Curulli, Antonella; Palleschi, Giuseppe; Moscone, Danila

    2011-01-01

    Highlights: ► “In situ” Bi-SPE has higher sensitivity than “ex situ” Bi-SPE and “Bi 2 O 3 bulk” SPE. ► Electrochemical treatment of SPE before Bi film deposition allows one to reach low LOD. ► The linearity of Pb 2+ in HCl and HClO 4 is greatly affected by the ionic strength. ► Satisfactory values of the recovery percentage were obtained in drinking water samples. - Abstract: Lead determination was carried out in the frame of the European Union project Biocop ( (www.biocop.org)) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using “in situ”, “ex situ” and “bulk” procedures was carried out. On the basis of the results obtained, we confirmed that the “in situ” procedure resulted in better analytical performances with respect to not only “ex situ” but also to “Bi 2 O 3 bulk” modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 μg L −1 and a detection limit of 0.15 μg L −1 . We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of prepared “in situ” Bi-SPEs was also characterized by Atomic Force Microscopy (AFM). Finally, the Bi-SPEs were used to determine the concentration of lead ions in tap and commercial water

  2. Design and characterization of chitosan/zeolite composite films — Effect of zeolite type and zeolite dose on the film properties

    International Nuclear Information System (INIS)

    Barbosa, Gustavo P.; Debone, Henrique S.; Severino, Patrícia; Souto, Eliana B.; Silva, Classius F. da

    2016-01-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. - Highlights: • Zeolite/chitosan composite films were prepared by casting technique. • Micrographs showed slight difference according to the content and A-type zeolite. • The barrier properties of the films were suitable to the dressing application. • Film characterization suggested that zeolites interacted with the chitosan chain.

  3. Design and characterization of chitosan/zeolite composite films — Effect of zeolite type and zeolite dose on the film properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Gustavo P.; Debone, Henrique S. [Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema (Brazil); Severino, Patrícia [Universidade Tiradentes, Instituto de Tecnologia e Pesquisa, Aracaju (Brazil); Souto, Eliana B. [Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra (Portugal); Center for Neuroscience and Cell Biology & Institute for Biomedical Imaging and Life Sciences (CNC-IBILI), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra (Portugal); Silva, Classius F. da, E-mail: cfsilva@unifesp.br [Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema (Brazil)

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. - Highlights: • Zeolite/chitosan composite films were prepared by casting technique. • Micrographs showed slight difference according to the content and A-type zeolite. • The barrier properties of the films were suitable to the dressing application. • Film characterization suggested that zeolites interacted with the chitosan chain.

  4. In-Line Measurement of Water Contents in Ethanol Using a Zeolite-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2015-10-01

    Full Text Available A quartz crystal microbalance (QCM was utilized to measure the water content in ethanol. For the improvement of measurement sensitivity, the QCM was modified by applying zeolite particles on the surface with poly(methyl methacrylate (PMMA binder. The measurement performance was examined with ethanol of 1% to 5% water content in circulation. The experimental results showed that the frequency drop of the QCM was related with the water content though there was some deviation. The sensitivity of the zeolite-coated QCM was sufficient to be implemented in water content determination, and a higher ratio of silicon to aluminum in the molecular structure of the zeolite gave better performance. The coated surface was inspected by microscopy to show the distribution of zeolite particles and PMMA spread.

  5. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    Science.gov (United States)

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  6. Adsorption of nicotine on different zeolite types, from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stošić Dušan K.

    2007-01-01

    Full Text Available The plant alkaloid, nicotine, is a strongly toxic heterocyclic compound: the lethal dose for an adult human being (40-60 mg is importantly lower in comparison with the other known poisons such as arsenic or strychni­ne. Cigarettes represent "the most toxic and addictive form of nicotine". Besides the negative effects of nicotine on public health produced by self-administration, recently another potentially very dangerous effect has been recognized: because of its miscibility with water, nicotine can be found in industrial wastewaters, and consequently, in groundwater. Therefore, the problem of nicotine removal from aqueous solutions has became an interesting topic. In this work, the removal of nicotine has been probed by adsorption on solid materials. Adsorption of nicotine on different zeolites (clinoptilolite, ZSM-5 and β zeolite and on activated carbon was investigated from aqueous solutions, at 298 K. The obtained results are presented as adsorption isotherms: the amount of adsorbed nicotine as a function of equilibrium concentration. These data were obtained from the residual amount of nicotine in the aqueous phase, by the use of UV spectroscopy. The highest amounts of adsorbed nicotine was found for activated carbon and p zeolite (~ mmol·g-1. The attempt to modify the adsorption properties of ZSM-5 zeolite has been also done: ZSM-5 was modified by ion-exchange with VIII group metal (Cu2+ and Fe3+. In addition, the adsorption of nicotine on ZSM-5 zeolite with different Si/Al ratios has been done. It has been noticed that ion-exchange did not improve the adsorption possibilities, while the adsorption was importantly lower in the case of higher silicon content in ZMS-5 structure. 13C NMR spectra were collected for suspensions formed of solid adsorbent and aqueous solution of nicotine; in this way, the part of nicotine molecule which is most probably connected with the adsorbent was recognized.

  7. Study of the influence of the silica source on the synthesis of the zeolite precursor MCM-22

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Santos, E.R.F. dos; Leite, R.C.N.; Rodrigues, M.G.F.

    2012-01-01

    Zeolite MCM-22 precursors were synthesized under hydrothermal conditions in systems with hexamethyleneimine HMI as bulking agent (driver). Synthesis parameter, such as sources of silica (aerosil® and quartz) was modified to investigate the effects on the morphology and crystallization in precursor MCM-22 zeolite. The products were characterized by X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX) and Scanning Electron Microscopy (SEM). According to, the X-ray diffraction showed the same characteristic peaks of zeolite MCM-22. It was found that the parameter in this work of synthesis, silica source, affects the hydrothermal synthesis of zeolite MCM-22 precursor. This can be evidenced by the different morphologies found using the different sources of silica. (author)

  8. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    Science.gov (United States)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  9. Bismuth-silver mineralization in the Sergozerskoe gold occurrence

    Directory of Open Access Journals (Sweden)

    Kalinin A. A.

    2017-03-01

    Full Text Available Bismuth-silver mineralization attendant to gold mineralization in the Sergozerskoe gold occurrence has been studied in detail. Bi-Ag mineralization is connected with diorite porphyry dykes, which cut volcanic-sedimentary Lopian complexes of the Strel'ninsky greenstone belt – hornblendite and actinolite-chlorite amphibolites, biotite and bi-micaceous gneisses. Distribution of Bi-Ag mineralization similar to gold mineralization is controlled by 80 m thick zone of silicification. Bi minerals are found in brecciated diorite porphyry. Bismuth-silver mineralization includes native metals (bismuth, electrum, silver, tellurides (hedleyite, hessite, selenides (ikunolite, sulfides and sulfosalts of Bi and Ag (matildite, lillianite, eckerite, jalpaite, prustite, acanthite, a few undiagnosed minerals. All Bi and Ag minerals associate with galena. Composition of mineralization evolved from early to late stages of development, depending on intensity of rock alteration. The earliest Bi-Ag minerals were native bismuth and hedleyite formed dissemination in galena, and electrum with 30-45 mass.% Au. Later native bismuth was partly substituted by silver and bismuth sulfosalts and bismuth sulfides. The latest minerals were low-temperature silver sulfides eckerite, jalpaite, and acanthite, which were noted only in the most intensively altered rocks. As soon as the process of formation of Bi-Ag mineralization is the same as formation of gold, findings of bismuth-silver mineralization can serve as a positive exploration sign for gold in the region.

  10. Electronic transport and relaxation studies in bismuth modified zinc boro-tellurite glasses

    Science.gov (United States)

    Dhankhar, Sunil; Kundu, R. S.; Parmar, R.; Murugavel, S.; Punia, R.; Kishore, N.

    2015-10-01

    The ac conductivity of tellurium based quaternary glasses having composition 60 TeO2 - 10 ZnO - (30 - x) B2O3 - xBi2O3; x = 0, 5, 10, 15 and 20 has been investigated in the frequency range 10-1 Hz to 105 Hz and in the temperature range 483 K-593 K. The frequency and temperature dependent ac conductivity increase with increase in bismuth content and found to obey Jonscher's universal power law. The dc conductivity, crossover frequency and frequency exponent have been estimated from the fitting of the experimental data of conductivity with Jonscher's universal power law. In the studied glasses the ac conduction may be described by overlapping of large polaron tunneling model. The activation energy is found to be decrease with increase in bismuth content and variable range hopping (VRH) proposed by Mott with some modification suggested by Punia et al. is more or less suitable to explain dc conduction. The value of the stretched exponent (β) obtained by fitting of M″ reveals the presence of non-Debye type of relaxation in the presently studied glass samples. Scaling spectra of electric modulus (M‧ and M″) collapse into a single master curve for all the compositions and temperatures. The values of activation energy of electric modulus (ER) and conduction (W) are nearly equal for all the studied glasses, indicating that the polaron have to overcome the same energy barrier during conduction as well as relaxation processes. The conduction and relaxation process in the presently studied glass samples are composition and temperature independent.

  11. Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations

    Czech Academy of Sciences Publication Activity Database

    Pawlesa, Justyna; Zukal, Arnošt; Čejka, Jiří

    2007-01-01

    Roč. 13, 3-4 (2007), s. 257-265 ISSN 0929-5607 Grant - others:DeSSANS(XE) SES6-CT-2005-020133; INDENS(XE) MRTN-CT-2004-005503 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : MCM-22 zeolite * MCM-49 zeolite * alkali metal cation exchange * N2 and CO2 adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.880, year: 2007

  12. Zeolite function studied by neutron diffraction

    International Nuclear Information System (INIS)

    Newsam, J.M.

    1988-01-01

    Some recent figures relating to industrial uses of zeolites are summarized. Recent advances in the application of neutron diffraction to zeolite science are overviewed, with particular emphasis on powder diffraction (PND) results. Single crystal neutron diffraction studies of some 17 hydrated natural and synthetic zeolites have now appeared and they provide a consistent picture of zeolite-water interactions. Complete PND studies of hydrated synthetic ABW- and SOD-framework zeolites have also been reported. Other PND studies have explored the structural consequences of non-framework cation exchange, of framework modification by dealumination, and of framework cation substitution. Relatively simple zeolite-hydrocarbon sorbate complexes that have been studied include benzene in zeolite Y, and benzene and pyridine in zeolite L. Areas that are well poised for further development include further extensions to lower symmetry systems, the use of PND data for zeolite structure solution, studies at elevated temperatures and pressures, and further studies of zeolite sorbate complexes. (author) 68 refs., 7 figs

  13. Influence of cobalt doping on structural and magnetic properties of BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, U. [Chinese Academy of Sciences, Institute of Physics (China); Adeela, N., E-mail: adeela16@gmail.com [Centre for High Energy Physics, University of the Punjab (Pakistan); Javed, K. [Chinese Academy of Sciences, Institute of Physics (China); Riaz, S. [Centre for Solid State Physics, University of the Punjab (Pakistan); Ali, H. [Chinese Academy of Sciences, Institute of Physics (China); Iqbal, M. [Centre for High Energy Physics, University of the Punjab (Pakistan); Han, X. F. [Chinese Academy of Sciences, Institute of Physics (China); Naseem, S., E-mail: shahzad-naseem@yahoo.com [Centre for Solid State Physics, University of the Punjab (Pakistan)

    2015-11-15

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe{sub 1−δ}Co{sub δ}O{sub 3} (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO{sub 3}. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller’s law, while modified Bloch’s model was employed for saturation magnetization in temperature range of 5–300 K.Graphical Abstract.

  14. Preparation of fly ash based zeolite for removal of fluoride from drinking water

    Science.gov (United States)

    Panda, Laxmidhar; Kar, Biswabandita; Dash, Subhakanta

    2018-05-01

    Fluoride contamination of drinking water is a worldwide phenomenon and scientists are working relentlessly to find ways to remove fluoride from drinking water. Out of the different methods employed for removal fluoride from drinking water adsorption process is the most suitable because in this process the adsorbent is regenerated and the process is cost effective. In the present study fly ash is used as the raw material, which is treated with alkali (NaOH) to form NaP1 zeolite. This zeolite is then subjected to characterization by standard procedures. It is found that the synthesized zeolite has more crystalline character than the raw fly ash and has also more voids and channels on its surface. The surface of the synthesized zeolite is modified with calcium chloride and the same is employed for removal of fluoride under varying pH, contact time, initial concentration of fluoride, temperature and adsorbent dose etc so as to assess the suitably or otherwise of the synthesized product.

  15. Structural simulation of natural zeolites; Simulacion estructural de zeolitas naturales

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez P, E.; Carrera G, L.M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The application of X-ray diffraction (XRD) in the study of crystalline structures of the natural and modified zeolites allows the identification, lattice parameter determination and the crystallinity grade of the sample of interest. Until two decades ago, simulation methods of X-ray diffraction patterns were developed with which was possible to do reliable determinations of their crystalline structure. In this work it is presented the first stage of the crystalline structure simulation of zeolitic material from Etla, Oaxaca which has been studied for using it in the steam production industry and purification of industrial water. So that the natural material was modified for increasing its sodium contents and this material in its turn was put in contact with aqueous solutions of Na, Mg and Ca carbonates. All the simulations were done with the Lazy-Pulverix method. The considered phase was clinoptilolite. It was done the comparison with three clinoptilolite reported in the literature. (Author)

  16. Direct evidence of advantage of using nanosized zeolite Beta for ISFET-based biosensor construction

    International Nuclear Information System (INIS)

    Soy, Esin; Galioglu, Sezin; Soldatkin, Oleksandr O.; Dzyadevych, Sergei V.; Warzywoda, Juliusz; Sacco, Albert; Akata, Burcu

    2013-01-01

    Analytical characteristics of urease- and butyrylcholinesterase (BuChE)- based ion sensitive field-effect transistor (ISFET) biosensors were investigated by the incorporation of zeolite Beta nanoparticles with varying Si/Al ratios. The results obtained by the zeolite-modified ISFET transducers suggested that the Si/Al ratio strongly influenced the biosensor performances due to the electrostatic interactions among enzyme, substrate, and zeolite surface as well as the nature of the enzymatic reaction. Using relatively small nanoparticles (62.7 ± 10, 76.2 ± 10, and 77.1 ± 10 nm) rather than larger particles, that are widely used in the literature, allow us to produce more homogenous products which will give more control over the quantity of materials used on the electrode surface and ability to change solely Si/Al ratio without changing other parameters such as particle size, pore volume, and surface area. This should enable the investigation of the individual effect of changing acidic and electronic nature of this material on the biosensor characteristics. According to our results, high biosensor sensitivity is evident on nanosize and submicron size particles, with the former resulting in higher performance. The sensitivity of biosensors modified by zeolite particles is higher than that to the protein for both types of biosensors. Most significantly, our results show that the performance of constructed ISFET-type biosensors strongly depends on Si/Al ratio of employed zeolite Beta nanoparticles as well as the type of enzymatic reaction employed. All fabricated biosensors demonstrated high signal reproducibility and stability for both BuChE and urease.

  17. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.; Armeli, Y. P. [Department of Chemical Engineering, University of Diponegoro Prof. Soedarto, Tembalang, Semarang, 50239, Phone/Fax : (024) 7460058 (Indonesia)

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.

  18. Effect of excess bismuth on the dielectric and piezoelectric properties of strontium bismuth niobate ceramics

    International Nuclear Information System (INIS)

    Verma, Maya; Tanwar, Amit; Sreenivas, K.

    2013-01-01

    Excess Bismuth Strontium Bismuth Niobate (Sr 2 Bi 2 Nb 2 O 9 + x wt% Bi 2 O 3 ) ceramics were prepared using conventional solid state reaction method by varying x in the range (x=0%wt - 20%wt). X-ray diffraction studies reveal no significant shift in the peak positions as the Bi content increases from 0.0 to 5%wt. However, at a higher content of Bi beyond x = 5wt% secondary phases relating to Bi 2 O 3 are identified. The c-axis orientation is found to be minimum for SBN ceramic prepared with 5% excess bismuth whereas with further increase in excess Bi 2 O 3 addition during processing, SBN ceramics show a much stronger c-axis orientation. Room temperature dielectric constant measured at 100 KHz is found to increase from 117 to 130 with increase in Bi content from x = 0 to 10wt% suggesting Bi addition has make up for the bismuth losses at higher sintering temperature (1200℃), however with further increase in Bi content (x > 10wt%), the dielectric constant decreases, and could be due to the increased probability of segregation of Bi on the grains of SBN ceramics. The improvement in ferroelectric properties were obtained when the bismuth excess is increased from 0% to 5%. It may be observed that on increasing the excess bismuth to 5%, the transition temperature increases from 424 to 450℃, while further increasing to 10%, transition becomes slightly diffused and phase transition temperature gets decreased to 398℃, which may be due to the formation of secondary phase. 5% excess Bi is found to enhance the dielectric and ferroelectricity properties, and any further increase of Bi in excess (>10%) during processing is found to degrade the electrical and functional properties of SBN. (author)

  19. Removal of paraquat solution onto zeolite material

    Science.gov (United States)

    Sirival, Rujikarn; Patdhanagul, Nopbhasinthu; Preecharram, Sutthidech; Photharin, Somkuan

    2018-04-01

    The purpose of this research was to study the adsorption of paraquat herbicides onto zeolite Y materials by the batch method. Three adsorbents material: Zeolite-3, Zeolite-10, and Zeolite-100 were Si/Al ratio at 3.58, 8.57 and 154.37, respectively. The factors for adsorption of paraquat as follows, adsorption time, initial concentrations of paraquat, pH and adsorption isotherm were investigated. The results showed that zeolite-10 had higher adsorption capacity than zeolite-3 and zeolite-100. The appropriate conditions for adsorption were 24 h., Zeolite 0.1 g., Initial paraquat concentration 100 ppm at pH 6. The adsorption isotherm was found to correspond with Langmuir Isotherm and the maximum paraquat adsorption is 26.38 mg/g for zeolite-10, 21.41 mg/g and 9.60 mg/g for zeolite-3 and zeolite-100, respectively. The characterization of zeolite material with XRD, XRF and BET. Furthermore, the zeolite materials applied to remove other organic and inorganic wastewater.

  20. Development of lead-bismuth coolant technology for nuclear device

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Kitano, Teruaki; Ono, Mikinori

    2004-01-01

    Liquid lead-bismuth is a promising material as a future fast reactor coolant or an intensive neutron source material for accelerator driven transmutation system (ADS). To develop nuclear plants and their installations using lead-bismuth coolant for practical use, both coolant technologies, inhabitation process of steels and quality control of coolant, and total operation system for liquid lead-bismuth plants are required. Based on the experience of liquid metal coolant, Mitsui Engineering and Shipbuilding Co., Ltd. (MES) has completed the liquid lead-bismuth forced circulation loop and has acquired various engineering data on main components including economizer. As a result of tis operation, MES has developed key technologies of lead-bismuth coolant such as controlling of oxygen content in lead-bismuth and a purification of lead-bismuth coolant. MES participated in the national project, ''The Development of Accelerator Driven Transmutation System'', together with JAERI (Japan Atomic Energy Research Institute) and started corrosion test for beam window of ADS. (author)

  1. Composition dependence of the ferroelectric properties of lanthanum-modified bismuth titanate thin films grown by using pulsed-laser deposition

    CERN Document Server

    Bu, S D; Park, B H; Noh, T W

    2000-01-01

    Lanthanum-modified bismuth titanate, Bi sub 4 sub - sub x La sub x Ti sub 3 O sub 1 sub 2 (BLT), thin films with a La concentration of 0.25<=x<=1.00 were grown on Pt/Ti/SiO sub 2 /Si substrates by using pulsed-laser deposition. The BLT films showed well-saturated polarization-electric field curves whose remnant polarizations were 16.1 mu C/cm sup 2 , 27.8 mu C/cm sup 2 , 19.6 mu C/cm sup 2 , and 2.7 mu C/cm sup 2 , respectively, for x=0.25, 0.05, 0.75, and 1.00. The fatigue characteristics became better with increasing x up to 0.75. The Au/BLT/Pt capacitor with a La concentration of 0.50 showed an interesting dependence of the remanent polarization on the number of repetitive read/write cycles. On the other hand, the capacitor with a La concentration of 0.75 showed fatigue-free characteristics.

  2. The potential of medium-pore zeolites for improved propene yields from catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bager, F.; Salas, N.; Ernst, S. [Technische Univ. Kaiserslautern (Germany). Dept. of Chemistry, Chemical Technology

    2011-07-01

    The medium-pore zeolites ZSM-5 (MFI), ZSM-22 (TON), ZSM-23 (MTT), and EU-1 (EUO) were synthesized under hydrothermal conditions and modified by ion exchange to obtain the Broensted-acid forms. The activity and selectivity of these catalysts in catalytic cracking of a model compound, viz. n-octane, was studied in a fixed-bed flow-type reactor. The catalytic results clearly reflect the differences in the pore architectures of the tested zeolites on n-octane conversion and on the product selectivities. Over the zeolites with one-dimensional pore systems and without large intracrystalline cavities, a remarkable increase of the contribution of the monomolecular cracking mechanism could be observed as compared to the standard catalyst zeolite ZSM-5. This is indicated by a high selectivity for unsaturated products and, hence, increasing yields of propene. Large cavities in the pore system, viz. in the case of zeolite EU-1, increase the conversion in particular at lower temperatures. However, the large cavities also favor the formation of large transition states required for the classical bimolecular cracking mechanism, resulting in decreased selectivities for unsaturated products, increased selectivities for aromatics formation and faster deactivation. (orig.)

  3. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption

    International Nuclear Information System (INIS)

    Medina, Adriana; Gamero, Procoro; Almanza, Jose Manuel; Vargas, Alfredo; Montoya, Ascencion; Vargas, Gregorio; Izquierdo, Maria

    2010-01-01

    Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 o C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na 2 HAsO 4 .7H 2 O originally containing 740 ppb.

  4. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Adriana [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Gamero, Procoro, E-mail: pgamerom@hotmail.com [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Almanza, Jose Manuel [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Vargas, Alfredo; Montoya, Ascencion [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, G.A. Madero, C.P. 07730, Distrito Federal (Mexico); Vargas, Gregorio [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Izquierdo, Maria [Instituto de Ciencias de la Tierra ' Jaume Almera' , CSIC, C/Luis Sole Sabaris, s/n 08028 Barcelona (Spain)

    2010-09-15

    Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 {sup o}C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na{sub 2}HAsO{sub 4}.7H{sub 2}O originally containing 740 ppb.

  5. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  6. High-throughput preparation and testing of ion-exchanged zeolites

    International Nuclear Information System (INIS)

    Janssen, K.P.F.; Paul, J.S.; Sels, B.F.; Jacobs, P.A.

    2007-01-01

    A high-throughput research platform was developed for the preparation and subsequent catalytic liquid-phase screening of ion-exchanged zeolites, for instance with regard to their use as heterogeneous catalysts. In this system aqueous solutions and other liquid as well as solid reagents are employed as starting materials and 24 samples are prepared on a library plate with a 4 x 6 layout. Volumetric dispensing of metal precursor solutions, weighing of zeolite and subsequent mixing/washing cycles of the starting materials and distributing reaction mixtures to the library plate are automatically performed by liquid and solid handlers controlled by a single common and easy-to-use programming software interface. The thus prepared materials are automatically contacted with reagent solutions, heated, stirred and sampled continuously using a modified liquid handling. The high-throughput platform is highly promising in enhancing synthesis of catalysts and their screening. In this paper the preparation of lanthanum-exchanged NaY zeolites (LaNaY) on the platform is reported, along with their use as catalyst for the conversion of renewables

  7. Magnetic zeolites a and p synthesized from kaolin: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, R.A.; Oliveira, C.P.; Nascimento, R.F.; Bohn, F.; Loiola, A.R. [Universidade Federal do Ceara (UFCE), CE (Brazil)

    2016-07-01

    Full text: Zeolites are hydrated aluminosilicates of open chain, formed by silica and alumina tetrahedral structures linked by common oxygen atoms, generating interconnected pores and cages with molecular dimensions and well defined sizes that limit matter transference between internal surface and application medium. They can be found naturally or synthesized using different aluminum and silicon sources that may modify the produced zeolite. Their industrial application has grown enormously over the last century. However, a big issue that still remains is the difficulty in retrieving zeolite powders when used in aqueous media. This work reports the use of kaolin as an alternative raw material for zeolite syntheses by means of hydrothermal route and subsequent preparation of magnetic composites through magnetite impregnation. The syntheses of two different zeolites were carried out by mixing appropriate amounts of metakaolin (kaolin previously calcined at 600 deg C for 2 h), sodium metasilicate and sodium hydroxide solution, aged for 18 h and heated at 100 °C for 4-48 h. After these processes, the final materials were washed several times with distilled water, filtered and dried at 80 deg C for 12 h. Magnetic composites were prepared by impregnating the zeolites with of Fe3O4 nanoparticles (NP) synthesized by the partial oxidation and precipitation of Fe2+ ions. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, FTIR spectroscopy and magnetization measurements. The results of XRD and FTIR provide evidence of the success in the synthesis of both zeolites A and P as well as Fe3O4. Subsequently, composites were formed by mixtures of zeolite A + NP and zeolite P + NP. The existence of secondary crystalline phases was also confirmed. However, it did not interfered significantly in the results as these phases appear as minor amounts and are most likely residues from the clay used as the main silica and alumina sources. Scanning

  8. Magnetic properties of Eu doped BiGdO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nithya, R., E-mail: nithya@igcar.gov.in; Yadagiri, K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN (India); Shukla, Neeraj [UGC-DAE-CSR Kalpakkam Node, Kokilamedu-603 104, TN (India)

    2016-05-23

    Bulk Bismuth Gadolinium Oxide, BiGdO{sub 3} and Eu doped BiGdO{sub 3} compounds were synthesized by the conventional solid state reaction in air. Phase formation of these compounds was tracked using powder X-ray characterization technique since single phase formation was found to be sensitive to thermal treatment parameters such as cooling and heating rates. Analysis of X-ray diffraction patterns revealed cubic structure with Pm-3m symmetry. An antiferromagnetic transition around 3.8 K was observed in the pristine compound whereas doped samples showed paramagnetic nature in the whole measured temperature range.

  9. Bismuth Subgallate Toxicity in the Age of Online Supplement Use.

    Science.gov (United States)

    Sampognaro, Paul; Vo, Kathy T; Richie, Megan; Blanc, Paul D; Keenan, Kevin

    2017-11-01

    Bismuth salts have been used to treat gastroenterological disorders and are readily available over-the-counter and via the internet. Even though generally considered safe, bismuth compounds can cause a syndrome of subacute, progressive encephalopathy when taken in large quantities. We present the case of woman who developed progressive encephalopathy, aphasia, myoclonus, and gait instability after chronically ingesting large amounts of bismuth subgallate purchased from a major online marketing website to control symptoms of irritable bowel syndrome. After extensive neurological work-up, elevated bismuth levels in her blood, urine, and cerebrospinal fluid confirmed the diagnosis of bismuth-related neurotoxicity. She improved slowly following cessation of exposure. This case highlights bismuth subgallate as a neurotoxic bismuth formulation and reminds providers of the potential for safety misconceptions of positively reviewed online supplements.

  10. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-01-01

    In this study, in situ control growth of bismuth nanoparticles (Bi 0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  11. Application of l-cystine modified zeolite for preconcentration and determination of ultra-trace levels of cadmium by flame atomic absorption spectrometry.

    Science.gov (United States)

    Rezvani, Seyyed Ahmad; Soleymanpour, Ahmad

    2016-03-04

    A very convenient, sensitive and precise solid phase extraction (SPE) system was developed for enrichment and determination of ultra-trace of cadmium ion in water and plant samples. This method was based on the retention of cadmium(II) ions by l-cystine adsorbed in Y-zeolite and carry out in a packed mini-column. The retained cadmium ions then were eluted and determined by flame atomic absorption spectrometry. The scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy techniques were applied for the characterization of cystine modified zeolite (CMZ). Some experimental conditions affecting the analytical performance such as pH, eluent type, concentration of sample, eluent flow rate and also the presence of interfering ions were investigated. The calibration graph was linear within the range of 0.1-7.5ngmL(-1) and limit of detection was obtained 0.04ngmL(-1) with the preconcentration factor of 400. The relative standard deviation (RSD) was obtained 1.4%, indicating the excellent reproducibility of this method. The proposed method was successfully applied for the extraction and determination of cadmium(II) ion in black tea, cigarette's tobacco and also various water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Removal of yellow 5 by a zeolitic material conditioned with iron

    International Nuclear Information System (INIS)

    Alcantara C, A.

    2010-01-01

    The waste waters are at the present time a serious problem because are contaminated by diverse industrial wastes among which are azo dyes used to dye a lot of products, and although there are various methods for the removal of these colorants do not are effective sufficiently, so that diverse techniques more sophisticated have been proposed, such as the elimination by sorption processes. Zeolites are materials found in various regions of Mexico and due to have a good sorption capacity are used to remove metals. In this paper a zeolitic material of the Chihuahua State was conditioned with FeCl 3 and used for remove yellow 5 (tartrazine) in aqueous solutions, also the sorption capacity of modified zeolite with FeCl 3 was examined for the azo dy yellow 5 in aqueous solutions. The sorption kinetics results was adapted to the pseudo second order model, indicating that the process is chemisorption, the sorption isotherms at different temperatures were adjusted to the Langmuir-Freundlich model, which usually it is adapt to systems with heterogeneous adsorbents. On the other hand, the ph value of the aqueous solutions does not affect on the sorption of this dye by the zeolitic material. (Author)

  13. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Motojima, K.; Kawamura, F.

    1984-01-01

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  14. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong, Dai [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia); Zou, Linda [SA Water Centre for Water Management and Reuse, University of South Australia, Adelaide, SA5095 (Australia); Zifeng, Yan [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Millikan, Mary [Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia)

    2009-08-30

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N{sub 2} adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO{sub 2} particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  15. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    International Nuclear Information System (INIS)

    Dai Xiaodong; Zou, Linda; Yan Zifeng; Millikan, Mary

    2009-01-01

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N 2 adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO 2 particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  16. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  17. Angle Dependence of the Orbital Magnetoresistance in Bismuth

    Directory of Open Access Journals (Sweden)

    Aurélie Collaudin

    2015-06-01

    Full Text Available We present an extensive study of angle-dependent transverse magnetoresistance in bismuth, with a magnetic field perpendicular to the applied electric current and rotating in three distinct crystallographic planes. The observed angular oscillations are confronted with the expectations of semiclassic transport theory for a multivalley system with anisotropic mobility and the agreement allows us to quantify the components of the mobility tensor for both electrons and holes. A quadratic temperature dependence is resolved. As Hartman argued long ago, this indicates that inelastic resistivity in bismuth is dominated by carrier-carrier scattering. At low temperature and high magnetic field, the threefold symmetry of the lattice is suddenly lost. Specifically, a 2π/3 rotation of magnetic field around the trigonal axis modifies the amplitude of the magnetoresistance below a field-dependent temperature. By following the evolution of this anomaly as a function of temperature and magnetic field, we map the boundary in the (field, temperature plane separating two electronic states. In the less symmetric state, confined to low temperature and high magnetic field, the three Dirac valleys cease to be rotationally invariant. We discuss the possible origins of this spontaneous valley polarization, including a valley-nematic scenario.

  18. Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic

    International Nuclear Information System (INIS)

    Resmini Melo, Carolina; Gracher Riella, Humberto; Cabral Kuhnen, Nivaldo; Angioletto, Elidio; Melo, Aline Resmini; Bernardin, Adriano Michael; Rocha, Marcio Roberto da; Silva, Luciano da

    2012-01-01

    Highlights: ► We synthesize 4A zeolite from kaolin by hydrothermal reaction with sodium hydroxide. ► The 4A zeolite synthesized underwent ion exchange with calcium ions, with different parameters, to obtain 5A zeolites. ► The best 4A zeolite obtained was used as adsorbent material for arsenic ions. ► The results showed that the 5A zeolite material obtained is a good adsorber of heavy ions. - Abstract: The synthesis of adsorbing zeolite materials requires fine control of the processing variables. There are distinct process variable settings for obtaining specific desired types of zeolites. The intent of this study was to obtain 4A zeolites from kaolin in order to obtain 5A zeolites through ionic exchange with the previously synthesized zeolite. This zeolite 5A was used as an adsorbent for arsenic ions. The results obtained were satisfactory.

  19. Synthesis of cubic Y zeolite using a pulsed microwave heating system

    Directory of Open Access Journals (Sweden)

    Araújo L.R.G. de

    1999-01-01

    Full Text Available Cubic Y zeolite were successfully synthesized using microwave heating for 18 - 25 min, whereas 10 - 50 h are required by hydrothermal heating technique depending upon the lattice Si/Al ratio. To this end, we used a commercial microwave oven modified in order to provide pulsed microwave pumping on the synthesis mixtures. The obtained samples were analyzed by X-ray diffraction, BET surface area and infrared spectroscopy measurements. As a result, we verify that Y zeolite samples obtained from hydrogels containing low aluminum contents, present a good degree of crystallinity and then can be suitable for using in adsorption and catalysis experiments.

  20. Magnetic and electrical properties of Pr-doped Bi(Pb)-Sr-Ca-Cu-O superconductors

    International Nuclear Information System (INIS)

    Malik, A.I.; Halim, S.A.; Mohammed, S.B.; Khalid, K.; Hassan, Z.A.

    1999-01-01

    The effect of Praseodymium doping on the electrical and magnetic properties of the bismuth-based superconductors has been investigated. The doping was done on the Calcium site ranging from x=0.00 to 0.10. For low doping percentages x<0.03, the 2223 phase still persists. However beyond this concentration the samples were dominated by 2212 phase. These results were obtained from the measurements of temperature dependence of electrical resistance and ac susceptibility of the samples. The magnetic behavior of the doping element, Pr, (a 4f rare earth magnetic element) seemed to have deteriorated the superconducting properties of the system by breaking the electron pairing mechanism. Pr doping also deteriorates the coupling of the superconducting rains, as observed by the abrupt shift of the loss peaks towards lower temperatures. (author)

  1. 29Si MAS NMR for the zeolite Y - gallium oxide system

    International Nuclear Information System (INIS)

    Sulikowski, B.; Derewinski, M.; Olejniczak, Z.; Segnowski, S.

    1994-01-01

    Wide-pore zeolites modified by gallium oxide has been prepared for catalytic use. Its physico-chemical and catalytic properties have been studied. The structure changes of the catalyst have been investigated by means of MAS NMR spectroscopy. Spectra of 29 Si has been described and discussed

  2. Optical and structural properties of Mo-doped NiTiO{sub 3} materials synthesized via modified Pechini methods

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo, E-mail: ewshin@ulsan.ac.kr

    2017-07-31

    Highlights: • Mo-doped NiTiO{sub 3} materials were well prepared by a modified Pechini method. • Recombination rates of the materials were significantly inhibited by Mo doping. • Defect sites were generated by the substitution of Mo for Ni or Ti positions. • The generation of defect sites gradually decreased the grain sizes of the materials. • The surface areas of the materials were increased with decreasing the grain sizes. - Abstract: In this study, molybdenum (Mo)-doped nickel titanate (NiTiO{sub 3}) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO{sub 3} structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO{sub 3} lattice was doped with Mo. On the other hand, Mo doping of NiTiO{sub 3} materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.

  3. Study of catalysts prepared on the basis of synthetic zeolite of A-type in the reaction of oxidation of isopropyl alcohol

    International Nuclear Information System (INIS)

    Aliev, A.M; Matiev, K.I; Mirgashimov, F.M; Kuliev, F.D; Mejidov, N.J

    2011-01-01

    Full text: Partial oxidation of isopropyl alcohol into acetone at the zeolite of A-type modified by ions copper and palladium at the temperature interval 150-230 degree C, of volume velocity 2400 H - 1 under different ratio alcohol-oxygen-helium at atmoshpheric pressure has been studied. It has been established that the conversion of isopropyl alcohol on zeolites CuPdNaA and CuPdCaA is noticable however selective by acetone alcohol, modofoed zeolites, acetone

  4. Bismuth oxyfluoride @ CMK-3 nanocomposite as cathode for lithium ion batteries

    Science.gov (United States)

    Ni, Dan; Sun, Wang; Xie, Liqiang; Fan, Qinghua; Wang, Zhenhua; Sun, Kening

    2018-01-01

    Bismuth oxyfluoride impregnated CMK-3 nanocomposite is synthesized by a facile nanocasting approach. Mesoporous carbon CMK-3 can suppress the aggregation and growth of bismuth oxyfluoride particles and offer rapid electron and Li ion passageways. Bismuth oxyfluoride nanoparticles are embedded in the mesoporous channels with particle size less than 20 nm. The bismuth oxyfluoride@CMK-3 nanocomposite maintains 148 mA h g-1 after 40 cycles with the capacity from both the bismuth oxyfluoride and the functional groups on the mesoporous carbon. The hybrid with confined bismuth oxyfluoride nanoparticles, conductive carbon network, and oxygen functional groups on the carbon matrix exhibits higher capacity and cycling stability than bulk bismuth oxyfluoride particles when used as lithium ion batteries cathode.

  5. Optical, mechanical and TEM assessment of titania-doped Bi2V1 ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 37; Issue 7. Optical, mechanical and TEM assessment of titania-doped Bi2V1−TiO5.5−δ bismuth vanadate oxides. Gurbinder Kaur Gary Pickrell Vishal Kumar Om Prakash Pandey Kulvir Singh Daniel Homa. Volume 37 Issue 7 December 2014 pp ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Fabrication, characterization and gas sensing properties of gold nanoparticle and ..... k gate dielectrics investigated in the semi-classical and quantum mechanical ...... a carbon paste electrode modified with silver-doped zeolite L nanoparticles.

  7. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    Science.gov (United States)

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance.

  8. Spectroscopic properties of Er3+-doped fluorotellurite glasses containing various modifiers

    Science.gov (United States)

    Burtan-Gwizdała, Bożena; Reben, Manuela; Cisowski, Jan; Grelowska, Iwona; Yousef, El Sayed; Algarni, Hamed; Lisiecki, Radosław; Nosidlak, Natalia

    2017-11-01

    We have investigated the optical and spectroscopic properties of new Er3+-doped fluorotellurite glasses with the basic molar composition 75%TeO2-10%P2O5-10%ZnO-5%PbF2, modified by replacing 5%TeO2 by four various metal oxides, namely MgO, PbO, SrO and CdO. The ellipsometric data have provided a Sellmeier-type dispersion relation of the refractive index of the investigated glasses. The optical absorption edge has been described within the Urbach approach, while the absorption and fluorescence spectra have been analyzed in terms of the standard Judd-Ofelt theory along with the photoluminescence decay of the 4I13/2 and 4S3/2 levels of the Er3+ ion. The absorption and emission spectra of the 4I15/2 ↔ 4I13/2 infrared transition have been analyzed within the McCumber theory to yield the peak emission cross-section and figure of merit (FOM) for the amplifier gain. It appears that the glass containing MgO as a modifier is characterized by the largest FOM suggesting that the fluorotellurite matrix with this oxide can be a good novel host for Er3+ ion doping. Finally, we propose a new simple method to calculate the mean transition energy of the McCumber approach as the arithmetic average of the barycenter wavenumbers of absorption and emission spectra.

  9. Characterization of NaA Zeolite Oxygen Permeable Membrane on TiO2/α-Al2O3 Composite Support

    Directory of Open Access Journals (Sweden)

    Zhu Mengfu

    2016-01-01

    Full Text Available The NaA zeolite membrane was synthesized on the surface of TiO2/α-Al2O3 composite support with TiO2 as modifier of α-Al2O3 porous tubular ceramic membrane support by crystallization method. The structure characterization indicated that the TiO2 of the support surface could effectively improve the surface properties of the support. It didn’t affect the crystallization of NaA synthesis liquid and synthesis process of NaA zeolite membrane. There were no obvious defects between the crystal particles with size of approximate 6μm. The perfect and complete membrane with thickness of approximate 15μm combined closely with support to connection together by TiO2 modified. The oxygen permeability of the membrane on TiO2/α-Al2O3 composite support improves of 47% compared with that of α-Al2O3 support. So the process of TiO2 modifying the surface of α-Al2O3 support should increase the oxygen permeability of the NaA zeolite membrane.

  10. Natural zeolite bitumen cracking

    Energy Technology Data Exchange (ETDEWEB)

    Kuznicki, S.M.; McCaffrey, W.C.; Bian, J.; Wangen, E.; Koenig, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-07-01

    A study was conducted to demonstrate how low cost heavy oil upgrading in the field could reduce the need for diluents while lowering the cost for pipelining. Low cost field upgrading could also contribute to lowering contaminant levels. The performance of visbreaking processes could be improved by using disposable cracking agents. In turn, the economics of field upgrading of in-situ derived bitumen would be improved. However, in order to be viable, such agents would have to be far less expensive than current commercial cracking catalysts. A platy natural zeolite was selected for modification and testing due to its unique chemical and morphological properties. A catalyst-bearing oil sand was then heat-treated for 1 hour at 400 degrees C in a sealed microreactor. Under these mild cracking conditions, the catalyst-bearing oil sand produced extractable products of much lower viscosity. The products also contained considerably more gas oil and middle distillates than raw oil sand processed under the same conditions as thermal cracking alone. According to model cracking studies using hexadecane, these modified mineral zeolites may be more active cracking agents than undiluted premium commercial FCC catalyst. These materials hold promise for partial upgrading schemes to reduce solvent requirements in the field. tabs., figs.

  11. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  12. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    Science.gov (United States)

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.

  13. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    Science.gov (United States)

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  14. Thermal behavior of natural zeolites

    International Nuclear Information System (INIS)

    Bish, D.L.

    1993-01-01

    Thermal behavior of natural zeolites impacts their application and identification and varies significantly from zeolite to zeolite. Zeolites evolve H 2 0 upon heating, but recent data show that distinct ''types'' of water (e.g., loosely bound or tightly bound zeolitic water) do not exist. Rather water is bound primarily to extra-framework cations with a continuum of energies, giving rise to pseudocontinuous loss of water accompanied by a dynamic interaction between remaining H 2 0 molecules and extra-framework cations. These interactions in the channels of zeolites give rise to dehydration dependent on the extra-framework cation, in addition to temperature and water vapor pressure. The dehydration reaction and the extra-framework cation also affect the thermal expansion/contraction. Most zeolites undergo dehydration-induced contractions that may be anisotropic, although minor thermal expansion can be seen with some zeolites. Such contractions can be partially or completely irreversible if they involve modifications of the tetrahedral framework and/or if rehydration is sluggish. Thermally induced structural modifications are also driven initially by dehydration and the concomitant contraction and migration of extra-framework cations. Contraction is accommodated by rotations of structural units and tetrahedral cation-oxygen linkages may break. Thermal reactions that involve breaking of tetrahedral cation-oxygen bonds markedly irreversible and may be kinetically limited, producing large differences between short- and long-term heating

  15. Bismuth X-ray absorber studies for TES microcalorimeters

    International Nuclear Information System (INIS)

    Sadleir, J.E.; Bandler, S.R.; Brekosky, R.P.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; King, J.M.; Porter, F.S.; Robinson, I.K.; Saab, T.; Talley, D.J.

    2006-01-01

    Bismuth's large atomic number and low carrier density makes it an attractive X-ray absorber material for microcalorimeters. Bismuth's long Fermi wavelength and long mean free paths have motivated much interest in the fabrication of high quality bismuth films to study quantum size effects. Despite such incentives, fabrication of high quality bismuth films has proven difficult, and measured properties of such films are highly variable in the literature. Implementing a bismuth deposition process for TES (superconducting Transition Edge Sensor) device fabrication presents additional challenges particularly at interfaces due to the inherent granularity and surface roughness of its films, its low melting point, and its tendency to diffuse and form undesired intermetallic phases. We report observations of Bi-Cu and Bi-Au diffusion in our devices correlating with large shifts in T c (superconducting transition temperature). Using SEM and in situ R vs T annealing experiments we have been able to study these diffusion processes and identify their activation temperatures

  16. Thermodynamics Calculation and Experimental Study on Separation of Bismuth from a Bismuth Glance Concentrate Through a Low-Temperature Molten Salt Smelting Process

    Science.gov (United States)

    Yang, Jian-Guang; He, De-Wen; Tang, Chao-Bo; Chen, Yong-Ming; Sun, Ya-Hui; Tang, Mo-Tang

    2011-08-01

    The main purpose of this study is to characterize and separate bismuth from a bismuth glance concentrate through a low-temperature, sulfur-fixing smelting process. This article reports on a study conducted on the optimization of process parameters, such as Na2CO3 and zinc oxide wt pct in charging, smelting temperature, smelting duration on the bismuth yield, resultant crude bismuth grade, and sulfur-fixing rate. A maximum bismuth recovery of 97.31 pct, crude bismuth grade of 96.93 pct, and 98.23 pct sulfur-fixing rate are obtained when a charge (containing 63.50 wt pct of Na2CO3 and 22.50 wt pct of bismuth glance, as well as 5 pct in excess of the stoichiometric requirement of zinc oxide dosage) is smelted at 1000 K (727 °C) for 150 minutes. This smelting operation is free from atmospheric pollution because zinc oxide is used as the sulfur-fixing agent, which can capture sulfur from bismuth sulfide and form the more thermodynamic-stable compound, zinc sulfide. The solid residue is subjected to a mineral dressing operation to obtain suspension, which is filtered to produce a cake, representing the solid particles of zinc sulfide. Based on the results of the chemical content analysis of the as-resultant zinc sulfide, more than 93 pct zinc sulfide can be recovered, and the recovered zinc sulfide grade can reach 60.20 pct. This material can be sold as zinc sulfide concentrate or roasted to be regenerated as zinc oxide.

  17. Spin probes of chemistry in zeolites

    International Nuclear Information System (INIS)

    Werst, D.W.; Trifunac, A.D.

    1997-09-01

    Electron spin resonance (EPR) studies in zeolites are reviewed in which radiolysis was used to ionize the zeolite lattice, create reactive intermediates, spin label reaction products and to provide a window onto chemistry and transport of adsorbates and matrix control of chemistry. The review examines reactions of radical cations and the influence of the geometry constraints inside the zeolite, explores how zeolite model systems can be used to learn about energy and charge transfer in solids and illustrates the use of radiolysis and EPR for in situ spectroscopic studies of solid-acid catalysis. The various spin probes created inside the zeolite pores report on properties of the zeolites as well as shed light on radiolytic processes

  18. Synthesis of Silicalite Membrane with an Aluminum-Containing Surface for Controlled Modification of Zeolitic Pore Entries for Enhanced Gas Separation

    Directory of Open Access Journals (Sweden)

    Shaowei Yang

    2018-02-01

    Full Text Available The separation of small molecule gases by membrane technologies can help performance enhancement and process intensification for emerging advanced fossil energy systems with CO2 capture capacity. This paper reports the demonstration of controlled modification of zeolitic channel size for the MFI-type zeolite membranes to enhance the separation of small molecule gases such as O2 and N2. Pure-silica MFI-type zeolite membranes were synthesized on porous α-alumina disc substrates with and without an aluminum-containing thin skin on the outer surface of zeolite membrane. The membranes were subsequently modified by on-stream catalytic cracking deposition (CCD of molecular silica to reduce the effective openings of the zeolitic channels. Such a pore modification caused the transition of gas permeation from the N2-selective gaseous diffusion mechanism in the pristine membrane to the O2-selective activated diffusion mechanism in the modified membrane. The experimental results indicated that the pore modification could be effectively limited within the aluminum-containing surface of the MFI zeolite membrane to minimize the mass transport resistance for O2 permeation while maintaining its selectivity. The implications of pore modification on the size-exclusion-enabled gas selectivity were discussed based on the kinetic molecular theory. In light of the theoretical analysis, experimental investigation was performed to further enhance the membrane separation selectivity by chemical liquid deposition of silica into the undesirable intercrystalline spaces.

  19. RBEC lead-bismuth cooled fast reactor: review of conceptual decisions

    International Nuclear Information System (INIS)

    Alekseev, P.; Fomichenko, P.; Mikityuk, K.; Nevinitsa, V.; Shchepetina, T.; Subbotin, S.; Vasiliev, A.

    2001-01-01

    A concept of the RBEC lead-bismuth fast reactor-breeder is a synthesis, on one hand, of more than 40-year experience in development and operation of fast sodium power reactors and reactors with Pb-Bi coolant for nuclear submarines, and, on the other hand, of large R and D activities on development of the core concept for modified fast sodium reactor. The report briefly presents main parameters of the RBEC reactor, as a candidate for commercial exploitation in structure of the future nuclear power. (author)

  20. Use of Spent Zeolite Sorbents for the Preparation of Lightweight Aggregates Differing in Microstructure

    Directory of Open Access Journals (Sweden)

    Wojciech Franus

    2017-02-01

    Full Text Available Lightweight aggregates (LWAs made by sintering beidellitic clay deposits at high temperatures, with and without the addition of spent zeolitic sorbents (clinoptilolitic tuff and Na-P1 made from fly ash containing diesel oil, were investigated. Mineral composition of the aggregates determined by X-ray diffraction was highly uniformized in respect of the initial composition of the substrates. The microstructure of the LWAs, which were studied with a combination of mercury porosimetry, microtomography, nitrogen adsorption/desorption isotherms and scanning electron microscopy, was markedly modified by the spent zeolites, which diminished bulk densities, increased porosities and pore radii. The addition of zeolites decreased water absorption and the compressive strength of the LWAs. The spent Na-P1 had a greater effect on the LWAs’ structure than the clinoptilolite.

  1. Synthesis of Nd-doped ZSM-5 and its application to treating slightly polluted water

    Directory of Open Access Journals (Sweden)

    Mang Lu

    2018-03-01

    Full Text Available In this study, ZSM-5 zeolite was synthesized using diatomaceous mud as the raw material, and then doped with different amounts of Nd2O3. The orthogonal experiments were performed to investigate the influence of Nd:Si molar ratio, zeolite dosage, contact time, solution pH and temperature on the removal of humic acid (HA. The removal of HA was comprehensively evaluated by chemical oxygen demand (COD, UV254 and UV410 of the solution. The results demonstrate that solution pH and zeolite dosage are the two most important factors influencing HA adsorption. The optimum experimental conditions were determined to be: 35 °C, Nd:Si molar ratio of 1:100, 2.0 g/L zeolite, pH 4 and 50 min contact time. Under these conditions, the removal efficiencies of UV254, UV410 and COD are 82.70%, 76.00% and 82.10%, respectively, corresponding to a comprehensive removal of 81.02%.

  2. Separation of cesium and strontium with zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, T; Hashimoto, H [Tohoku Univ., Sendai (Japan). Research Inst. of Mineral Dressing and Metallurgy

    1976-06-01

    The basic studies of separation of cesium and strontium were made with specimens of zeolite, which are synthetic zeolites A, X and Y; synthetic mordenite; natural mordenite; and clinoptilolite. Ammonium chloride was used as eluent, because it was considered to be a most appropriate eluent in alkaline chlorides. Cesium was easily eluted from the zeolites A and X by ammonium chloride solution, but it was difficult to elute from the synthetic mordenite, natural mordenite and clinoptilolite by ammonium chloride solution, but it was difficult to elute from the zeolites A and X. The zeolite Y is the only one zeolite among these zeolites from which both of cesium and strontium were easily eluted by ammonium chloride solution. Strontium could be separated from cesium with zeolites by formation of Sr-EDTA chelate at pH above 11. In this process, cesium was only exchanged in zeolite column, but strontium flow out from it.

  3. Separation of cesium and strontium with zeolites

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki

    1976-01-01

    The basic studies of separation of cesium and strontium were made with specimens of zeolite, which are synthetic zeolites A, X and Y; synthetic mordenite; natural mordenite; and clinoptilolite. Ammonium chloride was used as eluent, because it was considered to be a most appropriate eluent in alkaline chlorides. Cesium was easily eluted from the zeolites A and X by ammonium chloride solution, but it was difficult to elute from the synthetic mordenite, natural mordenite and clinoptilolite by ammonium chloride solution, but it was difficult to elute from the zeolites A and X. The zeolite Y is the only one zeolite among these zeolites from which both of cesium and strontium were easily eluted by ammonium chloride solution. Strontium could be separated from cesium with zeolites by formation of Sr-EDTA chelate at pH above 11. In this process, cesium was only exchanged in zeolite column, but strontium flow out from it. (auth.)

  4. Bismuth-Based Quadruple Therapy with Bismuth Subcitrate, Metronidazole, Tetracycline and Omeprazole in the Eradication of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Raymond Lahaie

    2001-01-01

    Full Text Available BACKGROUND: A previous study showed that 14 days of qid bismuth-based triple therapy with tetracycline 500 mg, metronidazole 250 mg and colloidal bismuth subcitrate 120 mg resulted in excellent Helicobacter pylori eradication rates (89.5%. The present study looked at a shorter treatment period by adding omeprazole and by reducing the dose of tetracycline.

  5. Synthesis and Characterization of Zeolite Na−Y and Its Conversion to the Solid Acid Zeolite H−Y

    DEFF Research Database (Denmark)

    Warner, Terence Edwin; Galsgaard Klokker, Mads; Nielsen, Ulla Gro

    2017-01-01

    Zeolite Y has an iconic crystal structure, but more importantly, the hydrogen modification zeolite H−Y is the classic example of a solid acid which is used extensively as a catalyst in the oil industry. This metastable compound cannot be synthesized directly, which creates an opportunity to discuss...... various preparative strategies with the students, such as the three-stage procedure described here. Stage I concerns the hydrothermal synthesis of zeolite Na−Y, followed by ion-exchange with an ammonium acetate solution to form zeolite NH4−Y, and the latter is subsequently converted to zeolite H......−Y by thermolysis. Stages II and III may instead be performed using commercially available zeolites, Na−Y and NH4−Y, respectively, which shifts the learning objectives to structural characterization of zeolites. The characterization of the product and intermediate materials gives the students a practical insight...

  6. Processing of radioactive waste solution with zeolites. I. Thermal transformation of Na, Cs and Sr type zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, T; Mimura, H; Kitamura, T [Tohoku Univ., Sendai (Japan). Research Inst. of Mineral Dressing and Metallurgy

    1976-08-01

    Thermal transformation of Na, Cs and Sr type zeolites were studied by means of differential thermal analysis (DTA), thermogravimetric analysis (TGA) and X-ray powder diffraction. Synthetic zeolites A, X and Y, synthetic mordenite (Zeolon) and natural mordenite were used in this study. Na type zeolites of A and X recrystallized to Nepheline (NaAlSiO/sub 4/) above 1,000/sup 0/C, but the structures of zeolite Y and mordenite collapsed above about 900/sup 0/C and did not recrystallize until 1,200/sup 0/C. Cs type zeolites of A and X recrystallized to pollucite (CsAlSi/sub 2/O/sub 6/) above 1,000/sup 0/C and Cs type of zeolite Y recrystallized to it above 1,100/sup 0/C, but the structure of mordenite collapsed above 1,000/sup 0/C and did not recrystallize until 1,200/sup 0/C. On Sr type zeolites, zeolite A and X recrystallized to strontium aluminosilicate (SrAl/sub 2/Si/sub 2/O/sub 8/) above 1,100/sup 0/C and zeolite Y recrystallized to it above 1,200/sup 0/C, but the structure of mordenite collapsed above 1,000/sup 0/C. The results described above were supported by microscopic observation and the measurement of density. If this solidifications by calcination of zeolites are further studied, new informations concerning the fixation of Cs and Sr will be obtained.

  7. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  8. Highly efficient synthesis of dimethyl ether from syngas over the admixed catalyst of CuO-ZnO-Al{sub 2}O{sub 3} and antimony oxide modified HZSM-5 zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Mao Dongsen, E-mail: dsmao1106@yahoo.com.c [Research Institute of Applied Catalysis, Department of Chemical Engineering, Shanghai Institute of Technology, Shanghai 200235 (China); Xia Jianchao; Zhang Bin [Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208 (China); Lu Guanzhong [Research Institute of Applied Catalysis, Department of Chemical Engineering, Shanghai Institute of Technology, Shanghai 200235 (China)

    2010-06-15

    A series of HZSM-5 zeolites modified with various contents of antimony oxide (0-30 wt.%) were prepared by solid state ion reaction at 500 deg. C, and the acidities of the resulted materials were characterized by temperature-programmed desorption of NH{sub 3}. The direct synthesis of dimethyl ether (DME) from syngas was carried out over the admixed catalysts of an industrial CuO-ZnO-Al{sub 2}O{sub 3} methanol synthesis catalyst and the parent and antimony oxide modified HZSM-5 zeolites under pressurized fixed-bed continuous flow conditions. The results indicated that modification of HZSM-5 with suitable amount of antimony oxide significantly decreased the selectivity for undesired byproducts like hydrocarbons and carbon dioxide from 9.3% and 32.4% to less than 1% and 28%, respectively, so the selectivity for DME was enhanced greatly from 55% to 69% under temperature of 260 deg. C, pressure of 4 MPa and gas hourly space velocity of 1500 mL h{sup -1} g{sub cat}{sup -1}. The decrease in the formation of hydrocarbons and carbon dioxide can be attributed to the significant decline in the amount of strong acid sites of the HZSM-5 zeolite induced by antimony oxide modification. Additionally, the influences of the operating parameters on the performance of the most efficient catalyst were also investigated. The results showed that high reaction temperature and high gas hourly space velocity resulted in both lower carbon monoxide conversion and lower dimethyl ether selectivity, so they should be no higher than 280 deg. C and 3000 mL h{sup -1} g{sub cat}{sup -1}, respectively.

  9. Highly efficient synthesis of dimethyl ether from syngas over the admixed catalyst of CuO-ZnO-Al{sub 2}O{sub 3} and antimony oxide modified HZSM-5 zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Dongsen Mao; Guanzhong Lu [Research Institute of Applied Catalysis, Department of Chemical Engineering, Shanghai Institute of Technology, Shanghai 200235 (China); Jianchao Xia; Bin Zhang [Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208 (China)

    2010-06-15

    A series of HZSM-5 zeolites modified with various contents of antimony oxide (0-30 wt.%) were prepared by solid state ion reaction at 500 C, and the acidities of the resulted materials were characterized by temperature-programmed desorption of NH{sub 3}. The direct synthesis of dimethyl ether (DME) from syngas was carried out over the admixed catalysts of an industrial CuO-ZnO-Al{sub 2}O{sub 3} methanol synthesis catalyst and the parent and antimony oxide modified HZSM-5 zeolites under pressurized fixed-bed continuous flow conditions. The results indicated that modification of HZSM-5 with suitable amount of antimony oxide significantly decreased the selectivity for undesired byproducts like hydrocarbons and carbon dioxide from 9.3% and 32.4% to less than 1% and 28%, respectively, so the selectivity for DME was enhanced greatly from 55% to 69% under temperature of 260 C, pressure of 4 MPa and gas hourly space velocity of 1500 mL h{sup -1} g{sub cat}{sup -1}. The decrease in the formation of hydrocarbons and carbon dioxide can be attributed to the significant decline in the amount of strong acid sites of the HZSM-5 zeolite induced by antimony oxide modification. Additionally, the influences of the operating parameters on the performance of the most efficient catalyst were also investigated. The results showed that high reaction temperature and high gas hourly space velocity resulted in both lower carbon monoxide conversion and lower dimethyl ether selectivity, so they should be no higher than 280 C and 3000 mL h{sup -1} g{sub cat}{sup -1}, respectively. (author)

  10. The role of zeolite in the Fischer–Tropsch synthesis over cobalt–zeolite catalysts

    International Nuclear Information System (INIS)

    Sineva, L V; Mordkovich, V Z; Asalieva, E Yu

    2015-01-01

    The review deals with the specifics of the Fischer–Tropsch synthesis for the one-stage syncrude production from CO and H 2 in the presence of cobalt–zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer–Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer–Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references

  11. Facile synthesis of surface N-doped Bi_2O_2CO_3: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    International Nuclear Information System (INIS)

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E.; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-01-01

    another relevant bismuth based photocatalyst, BiOCl, demonstrated that surface interstitial N doping could also be achieved in this case. Therefore, our current route seems to be a general option to modify the surface properties of bismuth based photocatalysts.

  12. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    Directory of Open Access Journals (Sweden)

    Hayami Takeda

    2013-05-01

    Full Text Available Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite. The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials.

  13. Carbon monoxide hydrogenation over ruthenium zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, P.A.; Nijs, H.H.; Verdonck, J.J.; Uytterhoeven, J.B.

    1978-03-01

    Ru zeolites are active and stable methanation catalysts. Under Fischer--Tropsch conditions they show a narrow product distribution. Further work is needed to assign this to a possible effect exerted by the zeolite cages. When the size of the Ru particles enclosed in the zeolite cages is increased, a lower methanation activity is found and a higher amount of C/sub 2/ and C/sub 3/ products are formed under Fischer--Tropsch conditions. This effect has not been reported until now on other supports. The less acidic zeolites act as promoters of the CO hydrogenation: under methanation conditions the activity is increased; under Fischer--Tropsch conditions, the selectivity is shifted toward higher hydrocarbons. This is explained by the particular zeolite property that electron deficient metal agglomerates seem to be formed on the acidic zeolites. With respect to kinetic behavior, relative activity of different metals, influence of reaction temperature on product distribution, the zeolite behaves in the same way a conventional alumina support. 4 figs., 4 tables.

  14. Detergent zeolite filtration plant

    OpenAIRE

    Stanković Mirjana S.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for detergent zeolite filtration plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production, from 50,000 to 100,000 t/y. The main goal was to increase the detergent zeoli...

  15. Evaluation of a carbon paste electrode modified with Strontium substituted bismuth and titanium oxide nanoparticles in the toxic metal chromium (VI determination potentiometric method

    Directory of Open Access Journals (Sweden)

    Atefeh Badri

    2016-09-01

    Full Text Available Strontium substituted bismuth and titanium oxide nanoparticles with aurivillius morphology synthesized by chemical co-precipitation method and were characterized using XRD. The nanopartcles were used in the composition of the carbon paste to improve conductivity and transduction of chemical signal to electrical signal. A procedure for the determination of chromium is described based on pre-concentration of the dichromate anion at a carbon paste electrode modified. A novel potentiometric Cr6+carbon paste electrode incorporating Strontium substituted bismuth and titanium oxide nanoparticles (SSBTO. Ina acetate buffer solution of pH 5, the sensor displays a rapid and linear response for Cr6+ over the concentration range 1.0×10-5 to 1.0×10-1mol L-1 M with an anionic slope of 54.8± 0.2 mV decade ’ and a detection limit of the order of0.002 /µg ml ‘. The sensor is used for determination of Cr6+ by direct monitoring of Cr6+.The average recoveries of Cr6+at concentration levels of 0.5~40 pg/ml ’is 98.3. The electrode has a short response time (<6s and can be used for at least twenty days without any considerable divergence in potentials and the working pH range was 4.5-6.5. The proposed electrode was successfully used as an indicator for potentiometric determination of Cr6+in water sample.

  16. Synthesis of Zeolite from Fly Ash and Removal of Heavy Metal Ions from Newly Synthesized Zeolite

    OpenAIRE

    Solanki, Parag; Gupta, Vikal; Kulshrestha, Ruchi

    2010-01-01

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. Characteristics of the various Fly ash samples were carried out. Coal proximate analysis was done. Batch experiment was carried out for the adsorption of some heavy metal ions on to synthesized Zeolite. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  17. High pressure synthesis of zeolite/polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Julien; Thibaud, Jean-Marc; Rouquette, Jerome; Cambon, Olivier; Di Renzo, Francesco, E-mail: julien.haines@univ-montp2.fr [Institut Charles Gerhardt Montpellier (France); Lee, Arie van der [Institut Europeen des Membranes, Montpellier (France); Scelta, Demetrio; Ceppatelli, Matteo; Dziubek, Kamil; Gorelli, Federico; Bini, Roberto; Santoro, Mario [European Laboratory for Non Linear Spectroscopy, Firenze (Italy)

    2016-07-01

    Full text: Polymerization of simple organic molecules under high pressure in the subnanometric pores of pure SiO{sub 2} zeolites can be used to produce novel nanocomposite materials, which can be recovered at ambient P and have remarkable mechanical, electrical or optical properties. Polymerization of ethylene in silicalite was studied in situ at high pressure by IR and results in a nanocomposite with isolated chains of non-conducting polyethylene strongly confined in the pores based on single crystal x-ray diffraction data. The nanocomposite is much less compressible than silicalite and has a positive rather than a negative thermal expansion coefficient. In order to target novel electrical and optical properties, isolated chains of conducting polymers can also be prepared in the pores of zeolite hosts at high pressure, such as polyacetylene, which was polymerized under pressure in the pores of the 1-D zeolite TON. The structure of this nanocomposite was determined by synchrotron x-ray powder diffraction data with complete pore filling corresponding to one planar polymer chain confined in each pore with a zig-zag configuration in the yz plane. This very strong confinement can be expected to strongly modify the electrical properties of polyacetylene. In this nanocomposite, our theoretical calculations indicate that the electronic density of states of polyacetylene exhibit van Hove singularities related to quantum 1D confinement, which could lead to future technological applications. This new material is susceptible to have applications in nanoelectronics, nanophotonics and energy and light harvesting. Completely novel nanocomposites were prepared by the polymerization of carbon monoxide CO in silicalite and TON. In these materials, isolated, ideal polycarbonyl chains are obtained in contrast to the non-stoichiometric, branched bulk polymers obtained by high pressure polymerization of this simple system. These poly CO/zeolite composites could be interesting energetic

  18. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Tomar, Monika; Gupta, Vinay

    2015-01-01

    The influence of Cerium doping on the structural and magnetic properties of BiFeO 3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi 1−x Ce x FeO 3 (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm −1 ) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm −1 ), shows a minor shift. Sudden evolution of Raman mode at 668 cm −1 , manifested as A 1 -tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M s ) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi 0.88 Ce 0.12 FeO 3 thin film found to exhibit better magnetic properties with M s =15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi 1−x Ce x FeO 3 thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical applications of such materials exhibiting pinching behavior are conferred

  19. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi (India)

    2015-03-15

    The influence of Cerium doping on the structural and magnetic properties of BiFeO{sub 3} thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi{sub 1−x}Ce{sub x}FeO{sub 3} (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm{sup −1}) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm{sup −1}), shows a minor shift. Sudden evolution of Raman mode at 668 cm{sup −1}, manifested as A{sub 1}-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M{sub s}) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi{sub 0.88}Ce{sub 0.12}FeO{sub 3} thin film found to exhibit better magnetic properties with M{sub s}=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi{sub 1−x}Ce{sub x}FeO{sub 3} thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical

  20. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  1. Room temperature transparent conducting magnetic oxide (TCMO properties in heavy ion doped oxide semiconductor

    Directory of Open Access Journals (Sweden)

    Juwon Lee

    2017-08-01

    Full Text Available Bismuth doped ZnO (ZnBi0.03O0.97 thin films are grown using pulsed laser deposition. The existence of positively charged Bi, absence of metallic zinc and the Zn-O bond formation in Bi doped ZnO are confirmed using X-ray Photoelectron Spectroscopy (XPS. Temperature dependent resistivity and UV-visible absorption spectra show lowest resistivity with 8.44 × 10-4 Ω cm at 300 K and average transmittance of 93 % in the visible region respectively. The robust ferromagnetic signature is observed at 350 K (7.156 × 10-4 emu/g. This study suggests that Bi doped ZnO films should be a potential candidate for spin based optoelectronic applications.

  2. The hybrid methylene blue-zeolite system: a higher efficient photo catalyst for photo inactivation of pathogenic microorganisms

    International Nuclear Information System (INIS)

    Smolinska, M.; Cik, G.; Sersen, F.; Caplovicova, M.; Takacova, A.; Kopani, M.

    2015-01-01

    The composite system can be prepared by incorporation of methylene blue into the channels of zeolite and by adsorption on the surface of the crystals. The composite photo sensitizer effectively absorbs the red light (kmax = 648 nm) and upon illumination with light-emitting diode at a fluence rate of 1.02 mW cm-2 generates effectively reactive singlet oxygen in aqueous solution, which was proved by EPR spectroscopy. To test efficiency for inactivation of pathogenic microorganisms, we measured photo killing of bacteria Escherichia coli and Staphylococcus aureus and yeasts Candida albicans. We found out that after the microorganisms have been adsorbed at the surface of such modified zeolite, the photo generated singlet oxygen quickly penetrates their cell walls, bringing about their effective photo inactivation. The growth inhibition reached almost 50 % at 200 and 400 mg modified zeolite in 1 ml of medium in E. coli and C. albicans, respectively. On the other hand, the growth inhibition of S. aureus reached 50 % at far smaller amount of photo catalyst (30 lg per 1 ml of medium). These results demonstrate differences in sensitivities of bacteria and yeast growth. The comparison revealed that concentration required for IC50 was in case of C. albicans several orders of magnitude lower for a zeolite-immobilized dye than it was for a freely dissolved dye. In S. aureus, this concentration was even lower by four orders of magnitude. Thus, our work suggested a new possibility to exploitation of zeolite and methylene blue in the protection of biologically contaminated environment, and in photodynamic therapy.

  3. Nanophotonic Modulator with Bismuth Ferrite as Low-loss Switchable Material

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2015-01-01

    We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved.......We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved....

  4. Design and fabrication of zeolite macro- and micromembranes

    Science.gov (United States)

    Chau, Lik Hang Joseph

    2001-07-01

    The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

  5. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    Energy Technology Data Exchange (ETDEWEB)

    Enterría, Marina, E-mail: marina@incar.csic.es; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-15

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm{sup 3}/g, respectively. X-ray diffraction and N{sub 2} adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica.

  6. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    International Nuclear Information System (INIS)

    Enterría, Marina; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-01

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm 3 /g, respectively. X-ray diffraction and N 2 adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica

  7. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture.

    Science.gov (United States)

    Lupulescu, Alexandra I; Kumar, Manjesh; Rimer, Jeffrey D

    2013-05-01

    Tailoring the anisotropic growth rates of materials to achieve desired structural outcomes is a pervasive challenge in synthetic crystallization. Here we discuss a method to selectively control the growth of zeolite crystals, which are used extensively in a wide range of industrial applications. This facile method cooperatively tunes crystal properties, such as morphology and surface architecture, through the use of inexpensive, commercially available chemicals with specificity for binding to crystallographic surfaces and mediating anisotropic growth. We examined over 30 molecules as potential zeolite growth modifiers (ZGMs) of zeolite L (LTL type) crystallization. ZGM efficacy was quantified through a combination of macroscopic (bulk) and microscopic (surface) investigations that identified modifiers capable of dramatically altering the cylindrical morphology of LTL crystals. We demonstrate an ability to tailor properties critical to zeolite performance, such as external porous surface area, crystal shape, and pore length, which can enhance sorbate accessibility to LTL pores, tune the supramolecular organization of guest-host composites, and minimize the diffusion path length, respectively. We report that a synergistic combination of ZGMs and the judicious adjustment of synthesis parameters produce LTL crystals with unique surface features, and a range of length-to-diameter aspect ratios spanning 3 orders of magnitude. A systematic examination of different ZGM structures and molecular compositions (i.e., hydrophobicity and binding moieties) reveal interesting physicochemical properties governing their efficacy and specificity. Results of this study suggest this versatile strategy may prove applicable for a host of framework types to produce unrivaled materials that have eluded more conventional techniques.

  8. Wavelength-tuned light emission via modifying the band edge symmetry: Doped SnO2 as an example

    KAUST Repository

    Zhou, Hang

    2014-03-27

    We report the observation of ultraviolet photoluminescence and electroluminescence in indium-doped SnO2 thin films with modified "forbidden" bandgap. With increasing indium concentration in SnO 2, dominant visible light emission evolves into the ultraviolet regime in photoluminescence. Hybrid functional first-principles calculations demonstrate that the complex of indium dopant and oxygen vacancy breaks "forbidden" band gap to form allowed transition states. Furthermore, undoped and 10% indium-doped SnO2 layers are synthesized on p-type GaN substrates to obtain SnO2-based heterojunction light-emitting diodes. A dominant visible emission band is observed in the undoped SnO 2-based heterojunction, whereas strong near-ultraviolet emission peak at 398 nm is observed in the indium-doped SnO2-based heterojunction. Our results demonstrate an unprecedented doping-based approach toward tailoring the symmetry of band edge states and recovering ultraviolet light emission in wide-bandgap oxides. © 2014 American Chemical Society.

  9. Zeolite ZSM-57

    International Nuclear Information System (INIS)

    Valyocsik, E.W.; Page, N.M.; Chu, C.T.W.

    1989-01-01

    This patent describes a synthetic porous crystalline zeolite having a molar ratio of XO 2 ; Y 2 O 3 of at least 4. Wherein X represents silicon and/or germanium and Y represents aluminum, boron, chromium, iron and/or gallium. The porous crystalline zeolite having at least the X-ray diffraction lines as set forth in the text

  10. Investigating the Influence of the Cerium loading in prepared Y zeolite from Iraqi kaolin on its Catalytic Performance

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2018-01-01

    Full Text Available In this study, the effects of different loading doses of cerium in the prepared NaY zeolite from Iraqi kaolin were investigated. Al-Duara refinery atmospheric residue fluid catalytic cracking was selected as palpation reaction for testing the catalytic activity of cerium loading NaY zeolite. The insertion of cerium in NaY zeolites has been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with cerium and the weight percent added are 0.35, 0.64, and 1.06 respectively. The effects of cerium loading to zeolite Y in different weight percent on the cracking catalysts were studied by employing a laboratory fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV range from 6 to 24 h-1, and the temperature range from 450 to 510 oC. The activity of the catalyst with 1.06 wt% cerium has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the cerium causes an increase in the thermal stability of the zeolite.

  11. Lead- or Lead-bismuth-cooled fast reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Courouau, J.L.; Dufour, P.; Guidez, J.; Latge, C.; Martinelli, L.; Renault, C.; Rimpault, G.

    2014-01-01

    Lead-cooled fast reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. So far no lead-cooled reactors have existed in the world except lead-bismuth-cooled reactors in soviet submarines. Some problems linked to the use of the lead-bismuth eutectic appeared but were satisfactorily solved by a more rigorous monitoring of the chemistry of the lead-bismuth coolant. Lead presents various advantages as a coolant: no reactivity with water and the air,a high boiling temperature and low contamination when irradiated. The main asset of the lead-bismuth alloy is the drop of the fusion temperature from 327 C degrees to 125 C degrees. The main drawback of using lead (or lead-bismuth) is its high corrosiveness with metals like iron, chromium and nickel. The high corrosiveness of the coolant implies low flow velocities which means a bigger core and consequently a bigger reactor containment. Different research programs in the world (in Europe, Russia and the USA) are reviewed in the article but it appears that the development of this type of reactor requires technological breakthroughs concerning materials and the resistance to corrosion. Furthermore the concept of lead-cooled reactors seems to be associated to a range of low output power because of the compromise between the size of the reactor and its resistance to earthquakes. (A.C.)

  12. Short report: evaluation of Helicobacter pylori eradication with bismuth sucralfate

    NARCIS (Netherlands)

    Reijers, M. H.; Noach, L. A.; Tytgat, G. N.

    1994-01-01

    In a pilot study we have evaluated the clinical efficacy of bismuth sucralfate to eradicate H. pylori. Ten consecutive patients with chronic dyspepsia and H. pylori associated gastritis were treated with bismuth sucralfate (220 mg bismuth per tablet, 4 tablets per day for 4 weeks). If a 14C urea

  13. Energetics of sodium-calcium exchanged zeolite A.

    Science.gov (United States)

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-07

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water.

  14. Biogas Filter Based on Local Natural Zeolite Materials

    OpenAIRE

    Krido Wahono, Satriyo; Anggo Rizal, Wahyu

    2014-01-01

    UPT BPPTK LIPI has created a biogas filter tool to improve the purity of methane in the biogas. The device shaped cylindrical tube containing absorbent materials which based on local natural zeolite of Indonesia. The absorbent has been activated and modified with other materials. This absorbtion material has multi-adsorption capacity for almost impurities gas of biogas. The biogas  filter increase methane content of biogas for 5-20%. The biogas filter improve the biogas’s performance such as ...

  15. Ion-exchange properties of zeolite/glass hybrid materials

    International Nuclear Information System (INIS)

    Taira, Nobuyuki; Yoshida, Kohei; Fukushima, Takuya

    2017-01-01

    Hybrid materials were prepared from ground glass powder and various zeolites such as A-type, mordenite, X-type, and Y-type zeolites, and their ion removal effect was investigated. The hybrid materials of A-type, Y-type, and mordenite zeolites showed similar Sr"2"+ removal rates from aqueous solutions. The removal rate of Sr"2"+ ions increased as the amount of zeolite in the hybrid materials increased. Compared with other hybrid materials, the hybrid materials of X-type zeolite showed higher Sr"2"+ removal rates, especially for zeolite content greater than 25%. As the amount of X-type zeolite in the hybrid materials increased, the Sr"2"+ removal rate increased greatly, with a 100% removal rate when the content of X-type zeolite exceeded 62.5%. (author)

  16. Introduction to zeolite theory and modelling

    NARCIS (Netherlands)

    Santen, van R.A.; Graaf, van de B.; Smit, B.; Bekkum, van H.

    2001-01-01

    A review. Some of the recent advances in zeolite theory and modeling are present. In particular the current status of computational chem. in Bronsted acid zeolite catalysis, mol. dynamics simulations of mols. adsorbed in zeolites, and novel Monte Carlo technique are discussed to simulate the

  17. Alkylation of isobutane with butenes in the presence of HNaY zeolite modified by cations of nickel, calcium and rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, O.I.; Panchenkov, G.M.; Plakhotnik, V.A.; Razali, B.; Tolkacheva, Y.I.

    1981-01-01

    A study was made of alkylation of isobutane with n-butenes in the presence of ion-exchange forms of zeolites, containing ions of Ni/sup 2 +/ and rare-earth elements. It was established that the addition to HCaY zeolite of Ni/sup 2 +/ ions reduces alkylate yield and increases the content of intermediate products. The use in the reaction studied of HCaY zeolite containing La/sup 3 +/ or Gd/sup 3 +/ ions increases the content of iso-octane hydrocarbons in the alkylate and reduces the content of fractions C/sub 9/ and higher.

  18. Producing zeolites from fly ash

    International Nuclear Information System (INIS)

    Rayalu, S.; Labhestwar, N.K.; Biniwale, R.B.; Udhoji, J.S.; Meshram, S.U.; Khanna, P.

    1998-01-01

    Fly ash has virtually become a menace of thermal power generation, leading to its devastating effects on the environment. Development of alternate methods of its disposal - especially those with recourse to recovery of valuable materials-has thus become imperative. This paper deals with the utilisation of fly ash for the production of high value-added products, viz., commercial grade zeolites. The physico-chemical and morphological characteristics of fly ash based Zeolite-A (FAZ-A) compares well with commercial Zeolite-A. High calcium binding capacity, appropriate particle/pore size and other detergency characteristics of FAZ-A brings forth its potential as a substitute for phosphatic detergent builder. The technology is extremely versatile, and other products like Zeolite-X, Zeolite-Y, sodalite and mordenite are also amenable for cost effective production with modifications in certain reaction parameters. Low temperature operations, ready availability of major raw materials, simplicity of process and recycling of unused reactants and process water are special features of the process. (author)

  19. Properties of glass-bonded zeolite monoliths

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Murphy, C.D.

    1994-01-01

    It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m 2 d in 28-day tests in deionized water and in brine at 363 K (90 degrees C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young's modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt

  20. Formation of gas-phase π-allyl radicals from propylene over bismuth oxide and γ-bismuth molybdate catalysts

    International Nuclear Information System (INIS)

    Martir, W.; Lunsford, J.H.

    1981-01-01

    Gas-phase π-allyl radicals were produced when propylene reacted over Bi 2 O 3 and γ-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10 -3 and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than γ-bismuth molybdate. By contrast α-bismuth molybdate was ineffective in forming allyl radicals and MoO 3 acted as a sink for radicals which were produced elsewhere in the system. Comparison of the π-allyl radical and the stable product concentrations over Bi 2 O 3 revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system

  1. High temperature superconducting material: Bismuth strontium calcium copper oxide. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the development, fabrication, and analysis of a high temperature superconducting material based on bismuth-strontium-calcium-copper-oxides (Bi-Sr-Ca-Cu-O). Topics include the physical properties, structural and compositional analysis, magnetic field and pressure effects, and noble metal dopings of Bi-Sr-Ca-Cu-O based systems. The highest transition temperature recorded to date for this material was 120 degrees Kelvin. Fabrication methods and properties of Bi-Sr-Ca-Cu-O films and ceramics are also considered. (Contains 250 citations and includes a subject term index and title list.)

  2. Fabrication of 6FDA-durene membrane incorporated with zeolite T and aminosilane grafted zeolite T for CO2/CH4 separation

    Science.gov (United States)

    Jusoh, Norwahyu; Fong Yeong, Yin; Keong Lau, Kok; Shariff, Azmi Mohd

    2017-08-01

    In the present work, zeolite T and aminosilane grafted zeolite T are embedded into 6FDA-durene polyimide phase for the fabrication of mixed matrix membranes (MMMs). FESEM images demonstrated that the improvement of interfacial adhesion between zeolite and polymer phases in MMM loaded with aminosilane grafted zeolite T was not significant as compared to zeolite T/6FDA-durene MMM. From the gas permeation test, CO2/CH4 selectivity up to 26.4 was achieved using MMM containing aminosilane grafted zeolite T, while MMM loaded with ungrafted zeolite T showed CO2/CH4 selectivity of 19.1. In addition, MMM incorporated with aminosilane grafted zeolite T particles successfully lies on Robeson upper bound 2008, which makes it an attractive candidate for CO2/CH4 separation.

  3. Heat capacity, enthalpy and entropy of bismuth niobate and bismuth tantalate

    Czech Academy of Sciences Publication Activity Database

    Hampl, M.; Strejc, A.; Sedmidubský, D.; Růžička, K.; Hejtmánek, Jiří; Leitner, J.

    2006-01-01

    Roč. 179, - (2006), s. 77-80 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z10100521 Keywords : heat capacity * heat of formation * heat content * bismuth perovskite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2006

  4. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  5. Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhang, Yuehua; Wu, Lihua; Lei, Wu; Xia, Xifeng; Xia, Mingzhu; Hao, Qingli

    2014-01-01

    Graphical abstract: - Highlights: • Polycarbazole/N-doping graphene (PCZ/N-GE) composite was fabricated. • The PCZ/N-GE composite shows good electrocatalytic activity to 4-nitrophenol. • PCZ/N-GE modified electrode was used for determination of 4-nitrophenol. • The proposed sensor exhibits good sensitivity, stability and reproducibility. - Abstract: Polycarbazole (PCZ)/nitrogen-doped graphene (N-GE) composite was prepared by electropolymerization of carbazole on the N-GE modified glass carbon electrode (N-GE/GCE) for fabricating a novel electrochemical sensor for 4-nitrophenol (4-NP). The PCZ/N-GE shows high conductivity and well-distributed nanostructure. The redox behavior of 4-NP at a PCZ/N-GE/GCE was investigated in acetate buffer solution by cyclic voltammetry (CV), compared with the bare GCE, reduced graphene oxide (RGO), N-GE and PCZ modified GCEs. The results indicate that all modified electrodes show the enhanced reduction peak currents. However, the PCZ/N-GE/GCE exhibits the highest peak current and most positive reduction potential of 4-NP, which reflects the PCZ/N-GE composite has the best electrocatalytic activity towards 4-NP. The enhanced electrochemical performance of PCZ/N-GE and the electrocatalytic activity to 4-NP are contributed to the synergic effect of PCZ and N-GE with highly conductivity and large surface area, which can greatly facilitate the electron-transfer processes between the electrolyte and electrode. An electrochemical sensor for 4-NP was developed based on the PCZ/N-GE modified electrode under the optimized conditions. The reduction peak current was linear with the concentration of 4-NP in the range of 8 × 10 -7 ∼2 × 10 -5 M. The low detection limit of the sensor was estimated to be 0.062 μM (S/N = 3). The sensor based on PCZ/N-GE/GCE was also applied to the detection of 4-NP in real water samples

  6. Zeolites in poultry and swine production

    Directory of Open Access Journals (Sweden)

    Aline Félix Schneider

    Full Text Available ABSTRACT: Zeolites are minerals that have intriguing properties such as water absorption, ion adsorption and cation exchange capacity. There are approximately 80 species of natural zeolites recognized and hundreds of artificial zeolites, which have been researched in several fields. Due to their chemical characteristics, zeolites have great potential for use in animal production, especially in poultry and swine farms, as food additives, litter amendment and treatment of residues, with direct and indirect effects on performance, yield and quality of carcass, ambience of farm sheds and reduction of environmental pollution.

  7. Selectivity of the adsorption process of modified zeolite rock with hexadecyl trimethylammonium bromide in front to chromates and dichromates; Selectividad del proceso de adsorcion de roca zeolitica modificada con bromuro de hexadeciltrimetilamonio frente a cromatos y dicromatos

    Energy Technology Data Exchange (ETDEWEB)

    Salgado G, N.

    2011-07-01

    In the present investigation natural zeolite (clinoptilolite) from the Chihuahua state, which was conditioned with sodium chloride solution and subsequently modified with a hexadecyl trimethylammonium bromide solution was used to evaluate the removal of Cr (Vi) from chromate or dichromate solutions. The zeolite materials were characterized by scanning electron microscopy and X-ray diffraction. The surface area was also determined. The experiments were performed in a batch system, the influence of ph, contact time between phases were investigated and during the adsorption process was calculated the concentration of chromium ion present in aqueous solution (CrO{sub 4}{sup 2-}, Cr{sub 2}O{sub 7}{sup 2-}). The quantification of chromium removed from the aqueous solution by atomic absorption spectrometry technique was done. In order to understand the behaviour of the adsorption kinetics the pseudo first and pseudo second order models were applied, and to determine the adsorption capacity of the zeolite materials for Cr the Langmuir, Freundlich and Langmuir-Freundlich models were chosen. It was found that the removal efficiency of chromium ion is influenced by ph and the chemical species present: chromate or dichromate. The chromate and dichromate sorption kinetic data were best fitted to the pseudo-second and pseudo-first order models, respectively; and the Langmuir and Langmuir-Freundlich models described adequately the isotherms data considering a mono component system. In a mixture of Cr (Vi) ad CrO{sub 4}{sup 2-} and Cr{sub 2}O{sub 7}{sup 2-}, the surfactant modified zeolite has a greater selectivity for Cr{sub 2}O{sub 7}{sup 2-} ion than CrO{sub 4}{sup 2-}. In this case the Langmuir-Freundlich model described the adsorption isotherm behavior. (Author)

  8. Spectroscopic and thermal properties of Sm3+ doped iron lead bismuthate glasses

    Science.gov (United States)

    Narwal, P.; Yadav, A.; Dahiya, M. S.; Vishal, Rohit, Agarwal, A.; Khasa, S.

    2018-05-01

    The results of the structural, physical, thermal and electrical properties of the glass compositions xFe2O3•(100-x)(3Bi2O3•PbO)• Sm2O3(1 mol%) where x=0, 1, 5, 10, 12, 15 mol% prepared via melt quench technique were studied. The synthesized compositions were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis (DTA). The IR study reveals that present system is build up with lead in tetrahedral coordination and bismuth in trigonal as well as octahedral coordination. Density and molar volume have been calculated using Archimedes principle, and the variation in their values has been correlated with structural changes in the glass matrix based on the IR study. The variation in the characteristic temperatures (glass transition temperature Tg, crystallization temperature Tp and melting temperature Tm) with different heating rate and change in the composition of iron oxide were analyzed and reported in the present study.

  9. Synthesis of zeolite membrane (Y / α-alumina)

    International Nuclear Information System (INIS)

    Araujo, Ana Paula; Silva, Valmir Jose da; Crispin, Alana Carolyne; Rodrigues, Meiry Glaucia F.; Menezes, Romualdo R.

    2009-01-01

    The general aim of this study was to develop materials of the type: Y zeolite (hydrothermal synthesis), ceramic support (forming of powder) and zeolite membrane (rubbing). The preparation of the Y zeolite was conducted in accordance with the hydrothermal synthesis method, the time of crystallization was one day. The ceramic support was prepared by means of the forming of powder technique and subsequently subjected to sintering at a temperature of 1400 deg C/1h. The zeolite membrane (Y/α- alumina) was prepared by secondary growth method (rubbing). These materials were characterized by XRD and SEM. Obtaining Y zeolite could be confirmed by X ray diffractograms. From the images obtained by SEM, it was possible to derive from analysis that the Y zeolite is composed of a homogeneous morphology, where the particles are crowded, with uniform size. The results obtained for the ceramic support (α-alumina) showed that it displays characteristics peaks of aluminum oxide. By using micrographs it was possible to observe a heterogeneous microstructure with a compact form, without cracks upon the layers. According to the XRD, for the method of secondary growth (rubbing), it was observed that the Y zeolite which had been synthesized on the ceramic support displayed a crystalline structure. The micrography of the zeolite membrane (Y/α-alumina) showed the formation of a layer of zeolite on the ceramic support. (author)

  10. Oxidation of ethanol on NaX zeolite modified with transition metals

    Science.gov (United States)

    Mirzai, J. I.; Nadirov, P. A.; Velieva, A. D.; Muradkhanli, V. G.

    2017-06-01

    NaLaX, NaX + Co, and NaPdX catalysts are synthesized by modification of NaX zeolite with transition metals (La, Co, Pd). The activity of the prepared materials in catalytic ethanol oxidation is studied in the temperature range of 423-723 K. It is shown that NaPdX and NaX + Co accelerate the reactions of partial and complete oxidation of ethanol as the temperature rises. NaLaX accelerates both intramolecular and intermolecular dehydration of alcohol. It is shown that the NaPdX (1.0% Pd) sample has the highest activity in the complete oxidation of alcohol with the formation of CO2.

  11. Characterization of Mexican zeolite minerals

    International Nuclear Information System (INIS)

    Jimenez C, M.J.

    2005-01-01

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  12. Temperature gradient compatibility tests of some refractory metals and alloys in bismuth and bismuth--lithium solutions

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Cavin, O.B.

    1976-11-01

    Quartz, T-111, and Mo thermal-convection loop tests were conducted at temperatures up to 700 0 C (100 0 C ΔT) to determine the compatibility of several refractory metals/alloys with bismuth and bismuth-lithium solutions for molten salt breeder reactor applications. Methods of evaluation included weight change measurements, metallographic examination, chemical and electron microprobe analysis, and mechanical properties tests. Molybdenum, T-111, and TA--10 percent W appear to be the most promising containment materials, while niobium and iron-based alloys are unacceptable

  13. Removal of cadmium in urban wastewater with systems based on zeolite type clinoptilolite

    International Nuclear Information System (INIS)

    Barragan P, P.

    2016-01-01

    From an environmental issue detected in wastewater samples taken in a municipal wastewater collector in Nogales, Sonora, which is related to cadmium pollution, a research project came out where the principal aim was to implement a system to remove metallic ions of cadmium in wastewater, based on modified and unmodified natural zeolites. The zeolitic material used was natural clinoptilolite modified with NaCl and thiourea, sourced in El Cajon and Guaymas, Sonora. The materials were characterized with X-ray diffraction, Sem, Ft-IR spectra, and Bet analysis. The kinetics of four modified zeolites was investigated at ph=5 and initial concentration of 30 mgL"-"1 of Cd"2"+. The pseudo-first, the pseudo-second order, and Elovich models were applied to the experimental results. The results best fitted to pseudo-second order model. The maximum sorption capacity of modified zeolites was investigated through isotherms, The Langmuir model, Freundlich, and the combined Langmuir-Freundlich models were applied to the experimental results afterwards. ZGuayThio showed the highest sorption capacity, 11.60 mgg"-"1, with R"2=0.978 according to Langmuir-Freundlich model. Fixed-bed column adsorption experiments were carried out with ZGuayNa and ZGuayThio with three bed heights with 30 mgL"-"1 solution of Cd"2"+. influent at a flow rate of 1 mLmin"-"1, at ph=5. The Thomas, mass balance, and Bed Depth Service Time models were applied to the results. The dynamic adsorption capacity (No) and the constant of sorption velocity (K a) were determined, 28.67 gL"-"1 and 0.072 Lg"-"1min"-"1 respectively for ZGuayNa with R"2= 0.9954. Column experiments with municipal wastewater from Colinas del Yaqui sub-collector, previously characterized, were conducted using ZGuayNa and ZGuayThio. A mass transference model was applied to the results which accounted for K_p= 0.815 m"3Kg"-1 with R"2= 0.9789 for ZGuayNa, and K_p= 3.1 m"3Kg"-1 for ZGuayThio with R"2= 0.78. Finally, the capacity of the column system

  14. Zeolites as supports for transition-metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Le Van Mao, R

    1979-01-01

    The unique structural characteristics of the zeolites, including the presence of molecular-size cages and channels and of an internal electrostatic field, make them promising as supports for converting homogeneous to heterogeneous catalysts. The acidic sites on the zeolites may also contribute to catalysis of reactions, such as hydrocracking; may stabilize metal complexes in a highly disperse state; and may improve activity or selectivity. Recent studies on the synthesis of new types of zeolite-supported complexes of transition metals (TM), such as Co, Cu, Ag, Fe, Mo, Ru, Rh, Re, and Os, suggest the feasibility of the direct introduction of some TM complexes into the zeolitic cages during zeolite synthesis, especially during the crystallization phase. This method may considerably reduce the structural limitations associated with the incorporation of TM complexes into zeolites by conventional methods.

  15. Acidity in zeolite catalysis

    NARCIS (Netherlands)

    Santen, van R.A.; Gauw, de F.J.M.M.; Corma, A.; Melo, F.; Mendioroz, S.; Fierro, J.L.G.

    2000-01-01

    A review with 21 refs. is provided on our current understanding of the activation of hydrocarbons by protonic zeolites. One has to distinguish the proton affinity of a zeolite, measured in an equil. expt., from proton activation that dets. a kinetic catalytic result. The proton affinity depends on

  16. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  17. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  18. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    Science.gov (United States)

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-11-30

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  19. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    Science.gov (United States)

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Examination of zeolites by neutron reflection method

    International Nuclear Information System (INIS)

    Szegedi, S.; Varadi, M.; Boedy, Z.T.; Vas, L.

    1991-01-01

    Neutron reflection method has been used for the determination of zeolite content in minerals. The basis of this measurement is to observe the large difference between the water content of zeolite and that of other mineralic parts of the sample. The method suggested can be used in a zeolite mine for measuring the zeolite content continuously and controlling the quality of the end products. (author) 5 refs.; 3 figs.; 3 tabs

  1. On the doping problem of CdTe films: The bismuth case

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Brown, M. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Ruiz, C.M. [Depto. Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Vidal-Borbolla, M.A. [Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Lomas 4a. Secc., 78210 San Luis Potosi, SLP (Mexico); Ramirez-Bon, R. [CINVESTAV-IPN, U. Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Queretaro, Qro. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)], E-mail: mtufinovel@yahoo.com.mx; Calixto, M. Estela [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Compaan, A.D. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)

    2008-08-30

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10{sup 13} cm{sup -3}, depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10{sup 15} cm{sup -3}. Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented.

  2. On the doping problem of CdTe films: The bismuth case

    International Nuclear Information System (INIS)

    Vigil-Galan, O.; Brown, M.; Ruiz, C.M.; Vidal-Borbolla, M.A.; Ramirez-Bon, R.; Sanchez-Meza, E.; Tufino-Velazquez, M.; Calixto, M. Estela; Compaan, A.D.; Contreras-Puente, G.

    2008-01-01

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10 13 cm -3 , depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10 15 cm -3 . Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented

  3. Salt-occluded zeolite waste forms: Crystal structures and transformability

    International Nuclear Information System (INIS)

    Richardson, J.W. Jr.

    1996-01-01

    Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 angstrom diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms

  4. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    International Nuclear Information System (INIS)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-01-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg

  5. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  6. Effects of heating on salt-occluded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Hash, M.C.; Pereira, C.; Ackerman, J.P.

    1996-01-01

    The electrometallurgical treatment of spent nuclear fuel generates a waste stream of fission products in the electrolyte, LiCl-KCl eutectic salt. Argonne National Laboratory is developing a mineral waste form for this waste stream. The waste form consists of a composite formed by hot pressing salt-occluded zeolite and a glass binder. Pressing conditions must be judiciously chosen. For a given pressure, increasing temperatures and hold times give denser products but the zeolite is frequently converted to sodalite. Reducing the temperature or hold time leads to a porous zeolite composite. Therefore, conditions that affect the thermal stability of salt-occluded zeolite both with and without glass are being investigated in an ongoing study. The parameters varied in this stage of the work were heating time, temperature, salt loading, and glass content. The heat-treated samples were examined primarily by X-ray diffraction. Large variations were found in the rate at which salt-occluded zeolite converted to other phases such as nepheline, salt, and sodalite. The products depended on the initial salt loading. Heating times required for these transitions depended on the procedure and temperature used to prepare the salt-occluded zeolite. Mixtures of glass and zeolite reacted much faster than the pure salt-occluded zeolite and were almost always converted to sodalite

  7. Half-metallicity and electronic structures for carbon-doped group III-nitrides: Calculated with a modified Becke-Johnson potential

    Science.gov (United States)

    Fan, Shuai-wei; Wang, Ri-gao; Xu, Pemg

    2016-09-01

    The electronic structures and magnetism for carbon-doped group III-nitrides are investigated by utilizing the first principle method with the modified Becke-Johnson potential. Calculations show that carbon substituting cations (anions) would induce the group III-nitrides to be paramagnetic metals (half-metallic ferromagnets). Single carbon substituting nitrogen could produce 1.00μB magnetic moment. Electronic structures indicate that the carriers-mediated double-exchange interaction plays a crucial role in forming the ferromagnetism. Based on the mean-field theory, the Curie temperature for carbon-doped group III-nitrides would be above the room temperature. Negative chemical pair interactions imply that carbon dopants tend to form clustering distribution in group III-nitrides. The nitrogen vacancy would make the carbon-doped group III-nitrides lose the half-metallic ferromagnetism.

  8. Exfoliation of two-dimensional zeolites in liquid polybutadienes

    KAUST Repository

    Sabnis, Sanket

    2017-06-16

    Layered zeolite precursors were successfully exfoliated by brief shearing or sonication with the assistance of commercially available telechelic liquid polybutadienes at room temperature. The exfoliated zeolite nanosheets can form a stable suspension in an organic solvent, providing exciting potential for the fabrication of zeolite membranes, composite materials and hierarchical zeolites.

  9. Oxygen depletion of bismuth molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Yong, L.K.; Howe, R.F.; Keulks, G.W.; Hall, W.K.

    1978-05-01

    Pure ..cap alpha..-phase bismuth molybdate (Bi/sub 2/Mo/sub 3/O/sub 12/), which is known to be weakly active for selective oxidation, and pure ..gamma..-phase bismuth molybdate (Bi/sub 2/MoO/sub 6/), which has good activity, were subjected to oxidation-reduction cycles with known amounts of hydrogen and oxygen, at 300/sup 0/-570/sup 0/C and with evacuation steps between treatments. The volume of oxygen consumed during reoxidation was equal to half the hydrogen consumed during the reduction on the ..cap alpha..-phase, which indicated that no hydrogen was retained during reduction. For the ..gamma..-phase, the oxygen consumption was greater than half of the hydrogen consumption and it increased with extent of reduction. The excess oxygen was apparently consumed by filling anion vacancies formed during outgassing subsequent to the reduction step. ESR spectroscopy and temperature-programed oxidation-reduction indicated that lattice oxide ions which bridge between bismuth and molybdenum layers of the koechlinite structure become more labile when the catalyst is in a partially reduced state, and that this effect is greater in the ..gamma..- than the ..cap alpha..-phase. Table and 15 references.

  10. Nuclear waste treatment using Iranian natural zeolites

    International Nuclear Information System (INIS)

    Kazemian, H.; Ghannadi Maraghe, M.

    2001-01-01

    Full text: The zeolite researches in Iran is a relatively new subject which has started about 10 years ago. The motivation for this scientific and interesting field was provided after discovery of significant deposits of natural zeolites in different regions of Iran as well as further developments of research institutions and the national concern to environmental protection especially the wastewater clean-up in point of view of recycling of such waste water to compensate some needs to water in other utilizations. This paper intends to review and describes scientific researches which have done on using zeolites in the field of nuclear waste treatment in Iran to introduce the potential resources to the world in more details. Zeolite tuffs are widely distributed in huge deposits in different regions of Iran. So far, the clinoptilolite tuffs are the most abundant natural zeolite which exist with zeolite content of 65%- 95%. Nowadays several different types of Iranian natural zeolites are characterized in point of view of chemical composition, type of structure, chemical, thermal, and radiation resistance using different instrumental and classical methods such as; X-ray diffraction (XRD), X-ray fluoresce (XRF), thermal methods of analysis (TA), scanning electron microscopy (SEM), analytical chemistry and radioanalytical methods as well as different ion-exchange techniques (e.g.3-7). The ability of Iranian natural clinoptilolite for removal of some fission products from nuclear wastewaters have been investigated. The selectivity of all investigated zeolites toward radiocesium and radiostrontium have been promising (e.g. 8-10). The successful synthesize of P zeolite from Iranian clinoptilolite-reach tuffs under different conditions were performed. The compatibility of zeolites with glass and cement matrices, for final disposal of radwaste, as well as their selectivity toward most dangerous heat generating radionuclides (e.g. 137 Cs and 90 Sr) is very important in using

  11. Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics

    KAUST Repository

    Yuan, Zhongcheng

    2015-11-01

    Abstract Layered bismuth selenide (L-Bi2Se3) nanoplates were implemented as hole transporting layers (HTLs) for inverted organic solar cells. Device based on L-Bi2Se3 showed increasing power conversion efficiency (PCE) during ambient condition storage process. A PCE of 4.37% was finally obtained after 5 days storage, which outperformed the ones with evaporated-MoO3 using poly(3-hexylthiophene) (P3HT) as donor material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor. The improved device efficiency can be attributed to the high conductivity and increasing work function of L-Bi2Se3. The work function of L-Bi2Se3 increased with the storage time in ambient condition due to the oxygen atom doping. Ultraviolet photoelectron spectroscopy and high resolution X-ray photoelectron spectroscopy were conducted to verify the increased work function, which originated from the p-type doping process. The device based on L-Bi2Se3 exhibited excellent stability in ambient condition up to 4 months, which was much improved compared to the device based on traditional HTLs. © 2015 Elsevier B.V.

  12. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability.

    Science.gov (United States)

    Dai, Lei; Chen, Shi; Liu, Jianjun; Gao, Yanfeng; Zhou, Jiadong; Chen, Zhang; Cao, Chuanxiang; Luo, Hongjie; Kanehira, Minoru

    2013-07-28

    F-doped VO2 (M1) nanoparticles were prepared via one-pot hydrothermal synthesis. The F-doping can minimise the size of the VO2 (M1) nanoparticles, induce a homogeneous size distribution and effectively decrease the phase transition temperature to 35 °C at 2.93% F in VO2. VO2 smart glass foils obtained by casting these nanoparticles exhibit excellent thermochromism in the near-infrared region, which suggests that these foils can be used for energy-efficient glass. Compared to a pure VO2 foil, the 2.93% F-doped VO2 foil exhibits an increased solar-heat shielding ability (35.1%) and a modified comfortable colour, while still retaining an excellent solar modulation ability (10.7%) and an appropriate visible transmittance (48.7%). The F-doped VO2 foils are the first to simultaneously meet the requirements of a reduced phase transition temperature, diluted colour and excellent thermochromic properties, and these properties make the further improved F-doped VO2 foils suitable for commercial applications in energy efficient glass.

  13. The study of methanol transformation over Cu-modified ZSM-5, Beta zeolite and MCM-41 mesoporous silica using 11C-radioisotope labeling

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.

    2004-01-01

    Complete text of publication follows. The copper-containing zeolites and mesoporous silica, among other metals, are suitable for dehydrogenation of methanol. The Cu transition metal determines the route of methanol conversion on supports of ZSM-5 and Beta zeolite as well as MCM-41 mesoporous silica. The catalysis mechanism and the catalytic property are concluded from the composition of methanol derivates over Cu-modified catalysts. The Cu ion-exchanged ZSM-5 and Beta zeolite and MCM-41 mesoporous silica were synthesized and characterized using X-ray power diffraction, scanning electron microscope, nitrogen and pyridine adsorption, X-ray fluorescency and FTIR spectroscopy. The 11 C-radioactive labeling method ( 11 C radioisotope, T 1/2 = 20 min, is a gamma emitter by annihilation of its positron) is suitable for following the process of 11 C-methanol con- version i.e. adsorption, desorption and catalytic transformation as well as for investigation of small amounts of molecules over catalysts by very sensitive radioactivity detectors.The 11 C radioisotope was produced at cyclotron and the 11 C-methanol was synthesized by a classical radiochemical method. After catalysis the 11 C-radioactive and non radioactive volatile products were identified by radiogas chromatography hereby radiolabeled compound and -derivates were distinguished from other participant natural, nonradioactive carbon compounds. Along radioactive products dimethyl ether and small hydrocarbons products were formed by Bronsted acid sites of catalysts while formaldehyde and small methyl formate were formed by Cu metal over bifunctional Cu-ZSM-5, Cu-Beta zeolite and mesoporous Cu-MCM-41 silica at 240 deg C. The detection of methoxy methanol and dimethoxy methane confirmed the simultaneous presence of acid and basic sites of catalysts. At higher temperature (400 deg C) the CO and CO 2 final products were dominated. In our previous works, methanol conversion to hydrocarbons was observed by dehydration

  14. New developments in zeolite science and technology

    International Nuclear Information System (INIS)

    Murakami, Y.

    1986-01-01

    The contributions in this volume introduce numerous new results and concepts. MAS-NMR has become a powerful tool in the structural analysis of zeolite, metallosilicate and aluminophosphate, enabling definition at the atomic level of the silicon and aluminum forming the zeolite framework. Detailed knowledge on the structure of natural zeolite has increased. Regarding synthesis, studies on the preparation of various metallosilicates, the role of various organic compounds at templates and the kinetics of crystallization and crystal growth are presented. Developments in zeolite catalysts focus not only on the solid-acid catalysts and the shape selective catalysts but on the bifunctional type catalysts as well. Catalyses by metallosilicates or silicoaluminophosphates are reported. Attempts to improve the catalytic performance by modification are presented. Effort is also being devoted to the analysis of adsorption state and diffusion in zeolites. Zeolite deposits of economic value are reported from several countries. (Auth.)

  15. PENJERAPAN P-KHLOROFENOL DALAM AIR LIMBAH DENGAN ZEOLIT (Adsorption of p-Chlorophenol from Wastewater using Zeolite

    Directory of Open Access Journals (Sweden)

    Sarto Sarto

    2007-07-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk mempelajari kemampuan zeolit untuk menjerap p-khlorofenol dari limbah cair secara batch, pada suhu 30 °C dan tekanan 1 atmosfer. Hasil penelitian menunjukkan bahwa proses penjerapan mengikuti persamaan Freundlich dan bersifat reversibel sebagian. Nisbah kinerja desorbsi dan penjerapan adalah antara 31,85 % dan 49,36 %. Kemampuan zeolit untuk menjerap p-khlorofenol meningkat dengan semakin rendahnya pH. pada nilai pH 3,92, berat zeolit 30 g, dan konsentrasi awal p-khlorofenol 97,302 mg/L. Adapun jumlah p-khlorofenol yang terjerap adalah sebesar 8,319 mg/L.   ABSTRACT The aim of this research is to study the characteristics of zeolit to adsorb p-chlorophenol from wastewater in a batch reactor at 30 oC and atmospheric conditions. The experimental results show that the adsorbtion process is partially reversible and fits with Freundlich Equation. The ratio of  desorption and adsortion performance is between 31.85 % and 49.36 %.  The performance of zeolit to adsorb p-chlorophenol increases with decreasing pH. At  pH about 3.92, using 30 g zeolit and 97.302 mg  p-chlorophenol/L. The concentration of adsorbed p-chlorophenol is about 8.319 mg/L.

  16. Studies of corrosion resistance of Japanese steels in liquid lead-bismuth

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Ono, Hiroshi; Kitano, Teruaki; Ono, Mikinori

    2003-01-01

    Liquid lead-bismuth has attractive characteristics as a coolant in future fast reactors and Accelerator Driven Sub-critical Systems (ADS) applications. The corrosion behavior of structural materials in lead-bismuth eutectic is one of key problems in developing nuclear power plants and installations using lead-bismuth coolant. Our experiences with heat exchangers using liquid lead-bismuth and the results of corrosion tests of Japanese steels are reported in this paper. A series of corrosion tests was carried out in collaboration with the Institute of Physics and Power Engineering (IPPE). Test specimens of various Japanese steels were exposed in a non-isothermal forced circulation loop. The influence of maximum temperature and oxygen content in lead bismuth were chosen for study as the primary causes of corrosion in Japanese steels. After the corrosion tests, corrosion behavior was analyzed by visual inspection, measurement of weight loss and metallurgical examination of the microstructure of the corroded zone. The corrosion mechanism in liquid lead bismuth is discussed on the basis of the metallurgical examination of the corroded zone. (author)

  17. Zeolitic materials with hierarchical porous structures.

    Science.gov (United States)

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Helicobacter pylori second-line rescue therapy with levofloxacin- and bismuth-containing quadruple therapy, after failure of standard triple or non-bismuth quadruple treatments.

    Science.gov (United States)

    Gisbert, J P; Romano, M; Gravina, A G; Solís-Muñoz, P; Bermejo, F; Molina-Infante, J; Castro-Fernández, M; Ortuño, J; Lucendo, A J; Herranz, M; Modolell, I; Del Castillo, F; Gómez, J; Barrio, J; Velayos, B; Gómez, B; Domínguez, J L; Miranda, A; Martorano, M; Algaba, A; Pabón, M; Angueira, T; Fernández-Salazar, L; Federico, A; Marín, A C; McNicholl, A G

    2015-04-01

    The most commonly used second-line Helicobacter pylori eradication regimens are bismuth-containing quadruple therapy and levofloxacin-containing triple therapy, both offering suboptimal results. Combining bismuth and levofloxacin may enhance the efficacy of rescue eradication regimens. To evaluate the efficacy and tolerability of a second-line quadruple regimen containing levofloxacin and bismuth in patients whose previous H. pylori eradication treatment failed. This was a prospective multicenter study including patients in whom a standard triple therapy (PPI-clarithromycin-amoxicillin) or a non-bismuth quadruple therapy (PPI-clarithromycin-amoxicillin-metronidazole, either sequential or concomitant) had failed. Esomeprazole (40 mg b.d.), amoxicillin (1 g b.d.), levofloxacin (500 mg o.d.) and bismuth (240 mg b.d.) was prescribed for 14 days. Eradication was confirmed by (13) C-urea breath test. Compliance was determined through questioning and recovery of empty medication envelopes. Incidence of adverse effects was evaluated by questionnaires. 200 patients were included consecutively (mean age 47 years, 67% women, 13% ulcer). Previous failed therapy included: standard clarithromycin triple therapy (131 patients), sequential (32) and concomitant (37). A total of 96% took all medications correctly. Per-protocol and intention-to-treat eradication rates were 91.1% (95%CI = 87-95%) and 90% (95%CI = 86-94%). Cure rates were similar regardless of previous (failed) treatment or country of origin. Adverse effects were reported in 46% of patients, most commonly nausea (17%) and diarrhoea (16%); 3% were intense but none was serious. Fourteen-day bismuth- and levofloxacin-containing quadruple therapy is an effective (≥90% cure rate), simple and safe second-line strategy in patients whose previous standard triple or non-bismuth quadruple (sequential or concomitant) therapies have failed. © 2015 John Wiley & Sons Ltd.

  19. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Raz [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. 27Al and 23Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework 27Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na+ cations are directly involved in adsorption processes and reactions in zeolite cavities.

  20. Metal immobilization in soils using synthetic zeolites

    NARCIS (Netherlands)

    Osté, L.A.; Lexmond, T.M.; Riemsdijk, van W.H.

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type,

  1. CONTENT OF SELECTED HEAVY METALS IN NI-CONTAMINATED SOIL FOLLOWING THE APPLICATION OF HALLOYSITE AND ZEOLITE

    Directory of Open Access Journals (Sweden)

    Maja Radziemska

    2016-07-01

    Full Text Available Nickel has been listed as a priory control pollutant by the United States Environmental Protection Agency (US EPA. Compared with other methods, the combination of vegetation and the addition of mineral sorbents to heavy metal-contaminated soils can be readily applied on a large scale because of the simplicity of technology and low cost. Halloysite and zeolite, among others, can be used for this purpose. A greenhouse study was performed to evaluate the feasibility of using natural zeolite, as well as raw and modified halloysite for the remediation of simulated Ni-contaminated soil. The soil was spiked with five doses of nickel, i.e. 0 (control, 80, 160, 240 and 320 mg Ni kg-1 soil. The average accumulation of heavy metals in nickel-contaminated soil was found to follow the decreasing order of Ni>Zn>Cr>Cu>Pb. The highest reduction of Pb content was observed in soil samples taken from pots containing 80 and 160 mg.kg-1 of Ni along with the addition of modified halloysite. The strongest effects were caused by natural zeolite, which significantly reduced the average content of chromium. Contamination at 320 mg Ni.kg-1 of soil led to the highest increases in the Ni, Pb and Cr contents of soil.

  2. Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts.

    Science.gov (United States)

    Gómez-Álvarez, Paula; Hamad, Said; Haranczyk, Maciej; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-01-07

    To find optimal porous materials for adsorption-based separations is a challenging task due to the extremely large number of possible pore topologies and compositions. New porous material classes such as Metal Organic Frameworks (MOFs) are emerging, and hope to replace traditionally used materials such as zeolites. Computational screening offers relatively fast searching for candidate structures as well as side-by-side comparisons between material families. This work is pioneering at examining the families comprised by the experimentally known zeolites and their respective Zeolitic Imidazolate Framework (ZIF) counterparts in the context of a number of environmental and industrial separations involving carbon dioxide, nitrogen, methane, oxygen, and argon. Additionally, unlike related published work, here all the targeted structures have been previously relaxed through energy minimization. On the first level of characterization, we considered a detailed pore characterization, identifying 24 zeolites as promising candidates for gas separation based on adsorbate sizes. The second level involved interatomic potential-based calculations to assess the adsorption performance of the materials. We found no correlation in the values of heat of adsorption between zeolites and ZIFs sharing the same topology. A number of structures were identified as potential experimental targets for CO2/N2, and CO2/CH4 affinity-based separations.

  3. Natural zeolites in diet or litter of broilers.

    Science.gov (United States)

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  4. Pairing from dynamically screened Coulomb repulsion in bismuth

    Science.gov (United States)

    Ruhman, Jonathan; Lee, Patrick A.

    2017-12-01

    Recently, Prakash et al. have discovered bulk superconductivity in single crystals of bismuth, which is a semimetal with extremely low carrier density. At such low density, we argue that conventional electron-phonon coupling is too weak to be responsible for the binding of electrons into Cooper pairs. We study a dynamically screened Coulomb interaction with effective attraction generated on the scale of the collective plasma modes. We model the electronic states in bismuth to include three Dirac pockets with high velocity and one hole pocket with a significantly smaller velocity. We find a weak-coupling instability, which is greatly enhanced by the presence of the hole pocket. Therefore we argue that bismuth is the first material to exhibit superconductivity driven by retardation effects of Coulomb repulsion alone. By using realistic parameters for bismuth we find that the acoustic plasma mode does not play the central role in pairing. We also discuss a matrix element effect, resulting from the Dirac nature of the conduction band, which may affect Tc in the s -wave channel without breaking time-reversal symmetry.

  5. Methane emissions abatement by multi-ion-exchanged zeolite A prepared from both commercial-grade zeolite and coal fly ash.

    Science.gov (United States)

    Hui, K S; Chao, C Y H

    2008-10-01

    The performance of multimetal-(Cu, Cr, Zn, Ni, and Co)-ion-exchanged zeolite A prepared from both a commercial-grade sample and one produced from coal fly ash in methane emissions abatement was evaluated in this study. The ion-exchange process was used to load the metal ions in zeolite A samples. The methane conversion efficiency by the samples was studied under various parameters including the amount of metal loading (7.3-19.4 wt%), reaction temperature (25-500 degrees C), space velocity (8400-41 900 h(-1)), and methane concentration (0.5-3.2 vol %). At 500 degrees C, the original commercial-grade zeolite A catalyzed 3% of the methane only, whereas the addition of different percentages of metals in the sample enhanced the methane conversion efficiency by 40-85%. Greater methane conversion was observed by increasing the percentage of metals added to the zeolite even though the BET surface area of the zeolite consequently decreased. Higher percentage methane conversion over the multi-ion-exchanged samples was observed at lower space velocities indicating the importance of the mass diffusion of reactants and products in the zeolite. Compared to the multi-ion-exchanged zeolite A prepared from the commercial-grade zeolite, the one produced from coal fly ash demonstrated similar performances in methane emissions abatement, showing the potential use of this low cost recycled material in gaseous pollutant treatment.

  6. Computational approach in zeolite science

    NARCIS (Netherlands)

    Pidko, E.A.; Santen, van R.A.; Chester, A.W.; Derouane, E.G.

    2009-01-01

    This chapter presents an overview of different computational methods and their application to various fields of zeolite chemistry. We will discuss static lattice methods based on interatomic potentials to predict zeolite structures and topologies, Monte Carlo simulations for the investigation of

  7. Zeolites modified with silver for the development of a water disinfection system; Zeolitas modificadas con plata para el desarrollo de un sistema de desinfeccion de agua

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio V, S.

    2013-07-01

    In spite of great strides that have been taken in sanitation technologies, there still exist health problems due to microbiological contamination by water. The waterborne diseases have not been completely eradicated and are a big problem of economic interest and health. Moreover, the microbicidal properties of silver have been used for a long time. The use of silver as a disinfectant has many advantages; for example it inhibits a wide spectrum of microorganisms, it has oligo dynamic properties and owing its mechanisms of cell inactivation, it also does not allow the emergence of new resistant strains. In the present research, the kinetics of water disinfection with silver has been investigated, to develop small system for water disinfection, based in silver modified Mexican clinoptilolite. The chemical species of silver play a significant role in the disinfection processes. For this reason, in this work, were both the Ag{sup +} and nanoparticles of Ag{sup ο} considered. The synthesis of nanoparticles of Ag{sup ο} woes performed by thermal and chemical reduction. It was found that the chemical reduction of Ag{sup +} to Ag{sup ο} was more efficient because it presented more defined nano structures and better distribution than those of thermal reduction. Clinoptilolite of Taxco (Guerrero) was chosen to exchange the native ions from the clinoptilolite by Ag{sup +} from the aqueous medium, or to deposit the nanoparticles of Ag{sup ο} on this surface. These silver modified zeolitic materials were characterized by scanning electron microscopy (Sem), elemental analyses (EDS), X-ray diffraction (XRD) and neutron activation analysis (NAA). The results showed that the crystallographic structure of the clinoptilolite did not change during thermal and chemical reduction treatments of Ag{sup +} to obtain the nanoparticles of Ag{sup ο}. The bactericide activity of the silver modified zeolitic materials (with Ag{sup +} or nanoparticles of Ag{sup ο}) was evaluated on

  8. Evaluation of the potentiality of a Mexican natural zeolite chabazite-type in the lead removal in water

    International Nuclear Information System (INIS)

    Alvarado I, J.; Sotelo L, M.; Meza F, D.; Paz M, F. A.; Maubert F, M.

    2013-01-01

    The intention of this paper is to present the characterization of a natural zeolite, chabazite-type, from the Mexican reservoir La Palma, at Divisaderos, Sonora, where their potential use as ion exchange material to remove lead in water is assessed. The chabazite was characterized through X-ray diffraction, Icp-OES, Icp-Ms, EDX, Bet and TG/TGD. The results indicate the presence of Ba(1930 ppm) and Sr(1220 ppm), which are characteristic of aluminium rich phases. A chabazite modification treatment is proposed by using solutions of NaOH (0.1 M) and NH 4 NO 3 (1 M). The lead removal kinetics both in natural zeolite as in their chemically modified forms was obtained by using the ion exchange process in a batch reactor. The results show how unnecessary natural zeolite homo ionization is for the removal of lead, thereby obtaining the equilibrium concentration of unmodified zeolite for plotting the adsorption isotherm, which was adjusted to Langmuir model. The Langmuir isotherm has a good fit of the results at equilibrium (R 2 =0.92), which demonstrates that natural zeolites studied, in its natural form, contains exchangeable cations required (Ca +2 , Mg 2+ and Na + ) for potentially be used as an adsorbent material/ion exchanger for water treatment impacted by lead. (Author)

  9. The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-05-01

    The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass is successfully prepared and certain analysis like XRD,FTIR,DTA/TGA with density, molar volume are done. The amorphous phase has been identified based on X-ray diffraction analysis. The vanadium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed nonlinear variation in Tg with vanadium oxide increase, it reflects structural changes. The nonlinear variation of density and molar volume can be attributed to vanadium oxide incorporation have increased the number of Non-bridging oxygen (NBO'S).

  10. Reinventing solid state electronics: Harnessing quantum confinement in bismuth thin films

    Science.gov (United States)

    Gity, Farzan; Ansari, Lida; Lanius, Martin; Schüffelgen, Peter; Mussler, Gregor; Grützmacher, Detlev; Greer, J. C.

    2017-02-01

    Solid state electronics relies on the intentional introduction of impurity atoms or dopants into a semiconductor crystal and/or the formation of junctions between different materials (heterojunctions) to create rectifiers, potential barriers, and conducting pathways. With these building blocks, switching and amplification of electrical currents and voltages are achieved. As miniaturisation continues to ultra-scaled transistors with critical dimensions on the order of ten atomic lengths, the concept of doping to form junctions fails and forming heterojunctions becomes extremely difficult. Here, it is shown that it is not needed to introduce dopant atoms nor is a heterojunction required to achieve the fundamental electronic function of current rectification. Ideal diode behavior or rectification is achieved solely by manipulation of quantum confinement using approximately 2 nm thick films consisting of a single atomic element, the semimetal bismuth. Crucially for nanoelectronics, this approach enables room temperature operation.

  11. Ferroelectric properties of bismuth-doped PMT-PT ceramics

    International Nuclear Information System (INIS)

    Hyun, June Won; Kim, Yeon Jung; Kim, Gang Bae

    2010-01-01

    This study examined the ferroelectric properties of Bi-doped 0.66(Pb (1-3x/2) Bi x )(Mg 1/3 Ta 2/3 )O 3 - 0.34PbTiO 3 ceramics for use as a piezoelectric transformer. The optimum conditions for obtaining samples with high density and improved electrical properties were a sintering temperature of 1200 .deg. C/4 h and the addition of 3 mol% Bi. The temperature dependent dielectric constant of the ceramics was examined at frequencies ranging from 1 kHz to 100 kHz. The broad dielectric constant anomaly coupled with a shift in the dielectric maximum towards higher temperature with increasing frequency indicates a relaxor-type behavior in the ceramics. The piezoelectric coefficient (d 33 ) and the planar coupling factor (K p ) increase with the addition of 3 mol% Bi, and then decrease with further addition of Bi. The dielectric constant and the dissipation factor at room temperature could be improved by the addition of 3 mol% Bi.

  12. Encapsulation of ferro- and ferricyanide complexes inside ZSM-5 zeolite synthesized from rice straw: Implications for synthesis of Prussian blue pigment

    International Nuclear Information System (INIS)

    Ali, Ibraheem O.; Salama, Tarek M.; Thabet, Mohamed S.; El-Nasser, Karam S.; Hassan, Ali M.

    2013-01-01

    Encapsulation of [Fe(CN) 6 ] 4− and [Fe(CN) 6 ] 3− complexes in the intracrystalline pores of ZSM-5 zeolite, Fe II L/Z and Fe III L/Z respectively, by the zeolite synthesis method was reported. The modified zeolites were characterized by powder XRD, FT-IR and UV–vis spectroscopy. The nitrogen adsorption isotherms allow for the evaluation of pore structure of the complex-modified zeolites, whereas the thermal analysis (TGA/DTA) measurements provide insight into the decomposition products of the immobilized complexes. The modified zeolites exhibited smaller pore volumes and surface areas as compared with those of unpromoted ZSM-5, suggesting the inclusion of iron cyanides inside the interconnecting channels of ZSM-5. While the ferricyanide complex enhanced the formation of highly crystalline zeolite, the ferrocyanide one resulted in a lesser effect. The electronic spectra of the colloidal species developed when Fe III L/Z brought in contact with an aqueous solution of [Fe(CN) 6 ] 3− exhibit absorptions attributed to CN − → iron charge-transfer. New bands at 294 and 319 nm due to d–d transitions of Fe III tetrahedral monomeric moieties were emitted concurrently under successive adsorption of [Fe(CN) 6 ] aq 3− over Fe III L/Z, along with a broad band at 555 nm assigned to polymeric [Fe II –C–N–Fe III ] of Prussian blue (PB). The FT-IR spectra of Fe III/II L/Z devoted to the adsorption of an aqueous solution of [Fe(CN) 6 ] 3− showed a band at 2092 cm −1 assigned to the C–N stretch in the Fe II –CN–Fe III linkages. The vibrations attributable to Fe–O–Si bonding along with hydrocarbon and nitroprusside appeared only in the spectrum of Fe III L/Z, thus was found to be strong evidence for the mutual interaction between [Fe(CN) 6 ] 3− and the latter sample. - Highlights: • We synthesized ferrous and ferric cyanide complexes inside ZSM-5 zeolite. • The decomposition of the encapsulated complexes occurred at high temperatures.

  13. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  14. Structural Characterization and Magnetic Properties of Undoped and Ti-Doped ZnO Nanoparticles Prepared by Modified Oxalate Route

    Directory of Open Access Journals (Sweden)

    Ekane Peter Etape

    2018-01-01

    Full Text Available Ti-doped zinc oxide and pure zinc oxide nanoparticles were synthesized by a modified oxalate route using Averrhoa carambola fruit juice as a natural source of oxalate. The characteristics of the precursors have been investigated by FTIR, TGA, and XRD. The results from the investigation revealed that the precursors are zinc oxalate and Ti-doped zinc oxalate which readily decompose at 450°C. The as-prepared precursors were calcined at 450°C for 4 hours, and the decomposition products have been characterized by XRD, SEM, EDX, and VSM. XRD results revealed crystallinity with hexagonal wurtzite structure, while the average grain size was found to be 26 nm for Ti-doped ZnO and 29 nm for ZnO, using calculations based on Debye-Scherrer equation. Furthermore, the morphological studies by SEM showed particle agglomeration, while the presence of Ti3+ in the zinc oxide lattice is indicated by EDS analysis. Finally the hysteresis loop from VSM results shows that Ti-doped ZnO exhibits ferromagnetism.

  15. System design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Konomura, Mamoru

    2003-07-01

    In phase II of the feasibility study of JNC, we will make a concept of a dispersion power source reactor with various requirements, such as economical competitiveness and safety. In the study of a small lead-bismuth cooled reactor, a concept whose features are long life core, inherent safety, natural convection of cooling system and steam generators in the reactor vessel has been designed since 2000. The investigations which have been done in 2002 are shown as follows; Safety analysis of UTOP considering uncertainty of reactivity. Possibility of reduction of number of control rods. Estimation of construction cost. Transient analyses of UTOP have been done in considering uncertainty of reactivity in order to show the inherent safety in the probabilistic method. And the inherent safety in UTOP is realized under the condition of considering uncertainty. Transient analyses of UTOP with various numbers of control rods have been done and it is suggested that there is possibility of reduction of the number of control rods considering accident managements. The method of cost estimation is a little modified. The cost of reactor vessel is estimated from that of medium sized lead-bismuth cooled reactor and the estimation of a purity control system is by coolant volume flow rate. The construction cost is estimated 850,000yen/kWe. (author)

  16. Synthesis, characterization of organo-modified zeolitic nanomaterial from coal ash and application as adsorbent on remediation of contaminated water by rhodamine B and direct blue 71

    International Nuclear Information System (INIS)

    Alcântara, Raquel Reis

    2016-01-01

    The synthesis of zeolites from mineral coal fly and bottom ash was performed by alkaline hydrothermal treatment, which were named ZFA and ZBA, respectively. Organo-modified zeolites, SMZF and SMZB, were obtained from surface modification of ZFA and ZBA, respectively, using the cationic surfactant hexadecyltrimethylammonium bromide. From the remaining solutions generated in ZFA and ZBA synthesis it was possible to synthesis two new zeolites. The physicochemical characteristics of the synthesized nanomaterials zeolite as well as their respective raw materials, such as cation exchange capacity, density, specific area, chemical composition, mineralogical and morphological, among others, were determined. The adsorbents SMZF and SMZB were used to remove the dyes, Direct Blue 71 (DB71) and Rhodamine B (RB) from aqueous solutions in batch system. Thus, four systems DB71/SMZF, RB/SMZF, DB71/SMZB, RB/SMZB were investigated. The models of pseudo-first order and pseudo-second order were applied to the experimental data for the study the adsorption kinetics. The model of pseudo-second order was the one that best described the adsorption of all dye/organomodified-zeolites systems. The equilibrium adsorption was analyzed from four models isotherm, namely: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-B). The results show that the model Freundlich and Langmuir best described the experimental data systems DB71/SMZF and DB71/SMZB, respectively. For systems with RB, the model D-R was the best fit for both adsorbents (SMZF and SMZB). The factorial design 2 4 was applied to the analysis of the following factors influencing the adsorption process: initial concentration of dye (C o ), pH, amount of adsorbent (M) and temperature (T). Under the conditions studied it concludes with the confidence interval of 95%, which for the DB71/SMZF system, the factors and their interactions that influence more were C 0 , M, pH, pH∗M, pH∗C 0 , M∗C 0 , pH∗M∗C 0 , in that order. In DB

  17. A general method to incorporate metal nanoparticles in zeolites and zeotypes

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure.......Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure....

  18. Extreme Pressure Synergistic Mechanism of Bismuth Naphthenate and Sulfurized Isobutene Additives

    Science.gov (United States)

    Xu, Xin; Hu, Jianqiang; Yang, Shizhao; Xie, Feng; Guo, Li

    A four-ball tester was used to evaluate the tribological performances of bismuth naphthenate (BiNap), sulfurized isobutene (VSB), and their combinations. The results show that the antiwear properties of BiNap and VSB are not very visible, but they possess good extreme pressure (EP) properties, particularly sulfur containing bismuth additives. Synergistic EP properties of BiNap with various sulfur-containing additives were investigated. The results indicate that BiNap exhibits good EP synergism with sulfur-containing additives. The surface analytical tools, such as X-ray photoelectron spectrometer (XPS) scanning electron microscope (SEM) and energy dispersive X-ray (EDX), were used to investigate the topography, composition contents, and depth profile of some typical elements on the rubbing surface. Smooth topography of wear scar further confirms that the additive showed good EP capacities, and XPS and EDX analyzes indicate that tribochemical mixed protective films composed of bismuth, bismuth oxides, sulfides, and sulfates are formed on the rubbing surface, which improves the tribological properties of lubricants. In particular, a large number of bismuth atoms and bismuth sulfides play an important role in improving the EP properties of oils.

  19. Effect of the modification of a natural mexican zeolite in the sorption of cadmium and 4-chloro phenol; Efecto de la modificacion de una zeolita natural mexicana en la sorcion de cadmio y 4-clorofenol

    Energy Technology Data Exchange (ETDEWEB)

    Cortes M, R [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    Clinoptilolite type zeolite is a material of relative abundance in Mexico, which possess ion exchange properties and it can be used in the removal of metal ions from polluted waters. The external surface of zeolites can be modified with cationic surfactants. This modification could have a negative effect on the removal of metal ions and provides to the material the capacity to adsorb phenolic compounds. For this reason, it is important to know the capability of the modified material on the sorption of metal ions and phenolic compounds, simultaneously. The aim of this work was to evaluate the effect of the external surface modification with surfactant of a Mexican zeolite over its sorption capacity of cadmium and 4-chloro phenol, in batch and column systems. To accomplish that, a clinoptilolite type zeolitic rock from a deposit located in the state of Sonora, Mexico, was used. It was ground, sieved and characterized with different techniques; and its external surface area was modified with hexadecyltrimethylammonium bromide (HDTMA-Br). A grain size fraction was selected to carry out sorption kinetics and equilibrium experiments, as well as packed column tests with zeolitic material and solutions of cadmium and 4-chloro phenol. There are different models proposed in literature that are used to describe sorption kinetics and equilibrium. In this work, the sorption experimental results were adjusted to some of these models to identify controlling mechanisms on the kinetics and equilibrium of the studied systems. The results showed that the cadmium adsorption on natural and modified zeolite was similar in batch systems. For the case of 4-chloro phenol sorption, it was observed that natural zeolite does not retain this compound, while in modified zeolite the sorption is better than other comparable materials. The results also showed that for the case of cadmium sorption, the mechanism involved was ion exchange; while for sorption of 4-chloro phenol, a partition mechanism

  20. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  1. Localization and Related Phenomena in Multiply Connected Nanostructured Inverse Opal Bismuth

    Science.gov (United States)

    Bleiweiss, Michael; Saygi, Salih; Amirzadeh, Jafar; Datta, Timir; Lungu, Anca; Yin, Ming; Palm, Eric; Brandt, Bruce; Iqbal, Zafar

    2001-03-01

    The nanostructures were fabricated by pressure infiltration of bismuth into porous artificial opal and were characterized using SEM, EDX and XRD. These structures form a regular three-dimensional network in which the bismuth regions percolate in all directions between the close packed spheres of SiO_2. The sizes of the conducting regions are of the order of tens of nanometers. The static magnetic properties of both bismuth inverse opal and bulk bismuth were studied using a SQUID magnetometer. Transport measurements, including Hall, were done using standard ac four and six probe techniques in fields up to 17 T* and temperatures between 4.2 and 150 K. The results of these measurements, including the observation of localization phenomena, will be discussed. Comparisons will be made with published results on bismuth nanowires. *Performed at the National High Magnetic Field Lab (NHMFL) FSU, Tallahassee, FL. Partially supported by a grant from NASA.

  2. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  3. Vitrification of highly-loaded SDS zeolites

    International Nuclear Information System (INIS)

    Siemens, D.H.; Bryan, G.H.; Knowlton, D.E.; Knox, C.A.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is demonstrating a vitrification system designed for immobilization of highly loaded SDS zeolites. The Zeolite Vitrification Demonstration Project (ZVDP) utilizes an in-can melting process. All steps of the process have been demonstrated, from receipt of the liners through characterization of the vitrified product. The system has been tested with both nonradioactive and radioactive zeolite material. Additional high-radioactivity demonstrations are scheduled to begin in FY-83. 5 figures, 4 tables

  4. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    Science.gov (United States)

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  5. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    Science.gov (United States)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  6. AKTIVASI ZEOLIT ALAM SEBAGAI ADSORBEN PADA ALAT PENGERING BERSUHU RENDAH

    Directory of Open Access Journals (Sweden)

    Laeli Kurniasari

    2012-04-01

    Full Text Available ACTIVATION OF NATURAL ZEOLITE AS AN ADSORBENT FOR LOW TEMPERATURE DRYING SYSTEM. Drying is one process which is used in many industries, especially in food product. The process usually still has low energy efficiency and can make food deterioration because of the usage of high temperature. One alternative in drying technology is the use of zeolite as a water vapor adsorbent. This kind of drying method make it possible to operate in lower temperature, hence it will be suitable for heat sensitive product. Natural zeolit can be one promising adsorbent since it is spreadly abundant in Indonesia. Natural zeolite must be activated first before used, in order to get zeolite with high adsorption capacity. Activation process in natural zeolite will change the Si/Al ratio, polarity, and affinity of zeolite toward water vapor and also increase the porosity. Activation of natural zeolite can be done with two methods, chemical activation use NaOH and physical activation use heat. In the activation using NaOH, natural zeolite is immersed with NaOH solution 0.5-2N in 2 hour with temperature range 60-900C. The process is continued with the drying of zeolite in oven with 1100C for 4 hours. While in heat treatment, zeolit is heated into 200-5000C in furnace for 2-5 hours. SEM analysis is used to compare the change in zeolite morphology before and after each treatment, while to know the adsorption capacity of zeolite, the analyses were done in many temperature and relative humidity. Result gives the best condition in NaOH activation is NaOH 1N and temperature 700C, with water vapor loading is 0.171 gr/gr adsorbent. In heat treatment, the best condition is 3000C and 3 hours with loading 0.137 gr water vapor/gr adsorbent.  Pengeringan merupakan salah satu proses yang banyak digunakan pada produk pangan. Proses ini umumnya menyebabkan kerusakan pada bahan pangan, disamping masih rendahnya efisiensi energi. Salah satu alternatif pada proses pengeringan yaitu

  7. Measured and evaluated neutron cross sections of elemental bismuth

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Smith, D.; Whalen, J.; Howerton, R.

    1980-04-01

    Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables

  8. Niobium (V) doped bioceramics: evaluation of the hydrothermal route modified with citric acid and urea to obtain modified hydroxyapatite

    International Nuclear Information System (INIS)

    Simomukay, E.; Souza, E.C.F. de; Antunes, S.R.M.; Borges, C.P.F.; Michel, M.D.; Antunes, A.C.

    2016-01-01

    Synthetic hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ; HA) has become a widely used ceramic material for bone reconstruction due to its biocompatibility with the bone tissue. This biocompatibility as well as other physical and chemical properties of the hydroxyapatite can be modified by the addition of different ions to its structure. Niobium (V) ion has not been commonly used in the hydroxyapatite synthesis. The objective of this study was to evaluate the use of hydrothermal route in the niobium (V) doped hydroxyapatite synthesis. The route used the niobium ammonium oxalate (NH 4 H 2 [NbO(C 2 O 4 ) 3 ].3H 2 O) complex as a niobium (V) ion precursor. The addition of citric acid and urea in the hydrothermal route is used for the control of synthesis pH and precipitation rate. Pure sample and sample added with 5.3 ppm of niobium (V) ion were prepared. The coexistence of other phases besides the hydroxyapatite was not observed in any of the samples through the use of X-ray diffraction and infrared spectroscopy (FTIR) techniques. The FTIR technique revealed the presence of hydroxyapatite characteristic functional groups. The scanning electron microscopy analysis showed the formation of agglomerates composed of round particles, confirmed by the transmission electron microscopy technique. The X-ray fluorescence spectroscopic analysis detected the presence of niobium in the doped sample. The results showed that niobium (V) doped hydroxyapatite can be synthesized by means of hydrothermal route, which may be considered as huge potential for future application in bioceramics. (author)

  9. Preparatory of X zeolite (faujasite) with surfactant hexa decyl trimethyl ammonium bromide (HMDTA) for adsorption of organic compounds

    International Nuclear Information System (INIS)

    Gonzalez R, V.

    2003-01-01

    The water represents one of the most valuable natural resources for the alive beings, since it is the essential component of the alive matter. Also, it is fundamental part of our planet, since is an indispensable element for the integral development of the same one. The demographic growth, the human being's activities and the industrial growth, he/she brings as consequence an increase in the use of the water and the generation of residual waters that successively contaminate the hydrological basins, becoming an environmental problem urgent. The contamination of the water with compound such as phenol and benzene, it is a problem that it requires the search of solutions, since it is of compound not very biodegradable, able to accumulate through the food chains and very toxic to the alive beings that they enter in contact with them (Tolgyessy, 1993). In the human beings it can take place damages in liver and kidney, the Agency of Protection to the Atmosphere of the United States (EPA) it considers that the exhibition for benzene is related with the leukemia, it is also considered as a carcinogen substance. Of the methods that are used for the treatment of polluted waters, it highlights the use of adsorber and one of them is the zeolites, since they are broadly used in those separation processes. The zeolites is crystalline aluminosilicates, they are characterized for to have a big superficial area and for their great capacity of exchange cationic, due to it the process of adsorption depends on these two characteristics, since to the modified being superficially for surfactants cationic it originates an enriched layer of carbon organic, which has the capacity to remove pollutants of the water. The present work outlines as objective to carry out the superficial modification of zeolite X using hexa decyl trimethyl ammonium bromide (HMDTA-Br) to different concentrations, with the purpose of making it useful in the removal of pollutants organic, present in watery solution

  10. Absorption behavior of iodine from molten salt mixture to zeolite

    International Nuclear Information System (INIS)

    Sugihara, Kei; Terai, Takayuki; Suzuki, Akihiro; Uozumi, Koichi; Tsukada, Takeshi; Koyama, Tadafumi

    2011-01-01

    Behavior of zeolite to absorb anion fission product (FP) elements in molten LiCl-KCl eutectic salt was studied using iodine. At first, zeolite-A was selected as the suitable type of zeolite among zeolite-A (powder), zeolite-X (powder and granule), and zeolite-Y (powder) through experiments to heat the zeolite together with LiCl-KCl-KI salt, respectively. As the next step, similar experiments to immerse zeolite-A in molten LiCl-KCl-KI salt containing various concentrations of iodine were performed. The affinity of iodine to zeolite was evaluated using the separation factor (SF) value, which is defined as [I/(I+Cl) mol ratio in zeolite after immersion]/[I/(I+Cl) mol ratio in salt after immersion]. Since the SF values ranged between 4.3 and 9.1, stronger affinity of iodine than chlorine to zeolite-A was revealed. Finally, influence of co-existing cation FPs was studied by similar absorption experiments in LiCl-KCl-KI salt containing CsCl, SrCl 2 , or NdCl 3 . The SF values were less than those obtained in the LiCl-KCl-KI salt and this can be ascribed to the sharing of inner space of zeolite cage among absorbed cations and anions. (author)

  11. Radioisotopic Study of Methanol Transformation over H- and Fe-Beta Zeolites; Influence of Si/Al Ratio on Distribution of Products

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Murzin, D.Yu.

    2006-01-01

    Complete text of publication follows. The acid-basic properties of Beta zeolite can be modified by dealumination and/or ionexchange. The wide-pore H-Beta zeolite has strong Bronsted acid sites and other chemical environment which govern adsorption and conversion of methanol to dimethyl ether and hydrocarbons during catalysis [1-2]. Partly Fe-ion-exchanged Beta i.e. Fe-H-Beta zeolite keeps this behavior to a certain extent; however, the presence of Fe ions can modify the reaction pathway. In the present work, the methanol conversion was studied over H- and Fe-Beta zeolites at two different Si/Al ratios. 11 C-methanol was used to follow-up adsorption as well as desorption of methanol and its derivates. Therefore, a radioactivity detector was integrated to the gas chromatograph for exact identification of the labelled methanol and its derivates. H-Beta and Fe-Beta zeolites were applied at two different Si/Al ratios i.e. H-Beta(25) and H-Beta(300) and Fe-H-Beta(25) and Fe- H-Beta (300), respectively. A glass tube fixed-bed reactor was used as a closed static reactor. The 11 C-radioisotope (T 1/2 =20.4 min) was produced in 11 C-labelled carbon dioxide form by cyclotron. The 11 C-methanol tracer was produced by radiochemical process [3]. The mixture of 11 C-methanol and non-radioactive methanol was then introduced into zeolite by He gas flow. The volatile products of catalytic conversion of 11 C-methanol were analyzed by radio-gas chromatography (gas chromatograph with flame ionization detector (FID) coupled on-line with a radioactivity detector). The methanol conversion rate and product selectivities to dimethyl ether, hydrocarbons (methane, C 2 -C 6 olefins and paraffins), formaldehyde and carbon-oxides were measured and calculated over H- and Fe-Beta zeolites at two different Si/Al ratios at 250 and 350 deg C. Over H-Beta(25) C 2 -C 6 hydrocarbons (mostly as alkanes) with high conversion rate and some dimethyl ether were detected due to presence of strong Bronsted

  12. Comparing the Electrochemical Performance of LiFePO4/C Modified by Mg Doping and MgO Coating

    Directory of Open Access Journals (Sweden)

    Jianjun Song

    2013-01-01

    Full Text Available Supervalent cation doping and metal oxide coating are the most efficacious and popular methods to optimize the property of LiFePO4 lithium battery material. Mg-doped and MgO-coated LiFePO4/C were synthesized to analyze their individual influence on the electrochemical performance of active material. The specific capacity and rate capability of LiFePO4/C are improved by both MgO coating and Mg doping, especially the Mg-doped sample—Li0.985Mg0.015FePO4/C, whose discharge capacity is up to 163 mAh g−1, 145.5 mAh g−1, 128.3 mAh g−1, and 103.7 mAh g−1 at 1 C, 2 C, 5 C, and 10 C, respectively. The cyclic life of electrode is obviously increased by MgO surface modification, and the discharge capacity retention rate of sample LiFePO4/C-MgO2.5 is up to 104.2% after 100 cycles. Comparing samples modified by these two methods, Mg doping is more prominent on prompting the capacity and rate capability of LiFePO4, while MgO coating is superior in terms of improving cyclic performance.

  13. Effectiveness of ranitidine bismuth citrate and proton pump inhibitor ...

    African Journals Online (AJOL)

    Effectiveness of ranitidine bismuth citrate and proton pump inhibitor based triple therapies of Helicobacter pylori in Turkey. ... Results: When we look at the eradication rates of the treatment groups, only two groups (ranitidine bismuth citrate and rabeprazole groups) had eradication rates greater than 80%, both at intention to ...

  14. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  15. Progress on Zeolite-membrane-aided Organic Acid Esterification

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  16. Emulsion liquid membrane for selective extraction of bismuth from nitrate medium

    International Nuclear Information System (INIS)

    Mokhtari, Bahram; Pourabdollah, Kobra

    2013-01-01

    The novelty of this work is the selective extraction of bismuth ions from nitrate medium by emulsion liquid membrane. Di(2-ethylhexyl)phosphoric acid was used as extractant of bismuth ions from nitrate medium by emulsion liquid membrane, and Triton X-100 was used as the biodegradable surfactant in n-pentanol n-pentanol bulk membrane. The extraction of bismuth ions was evaluated by the yield of extraction. The experimental parameters were evaluated and were optimized. They included the ratio of di(2-ethylhexyl)phosphoric acid concentration to the concentration of /Triton X-100 concentration (1.0 : 0.5% w/w), nature of diluents (n-pentanol), nature and concentration of the stripping solution (sulfuric acid, 0.5M), stirring speed (1,800 rpm) and equilibrium time of extraction (20min), initial feed solution of bismuth (350 ppm) and the volume ratio of the internal stripping phase to the membrane phase (14 times). The experimental parameters of kinetic extraction revealed that the bismuth ions were extracted at 100% 97%

  17. Emulsion liquid membrane for selective extraction of bismuth from nitrate medium

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Bahram; Pourabdollah, Kobra [Islamic Azad University, Shahreza (Iran, Islamic Republic of)

    2013-07-15

    The novelty of this work is the selective extraction of bismuth ions from nitrate medium by emulsion liquid membrane. Di(2-ethylhexyl)phosphoric acid was used as extractant of bismuth ions from nitrate medium by emulsion liquid membrane, and Triton X-100 was used as the biodegradable surfactant in n-pentanol n-pentanol bulk membrane. The extraction of bismuth ions was evaluated by the yield of extraction. The experimental parameters were evaluated and were optimized. They included the ratio of di(2-ethylhexyl)phosphoric acid concentration to the concentration of /Triton X-100 concentration (1.0 : 0.5% w/w), nature of diluents (n-pentanol), nature and concentration of the stripping solution (sulfuric acid, 0.5M), stirring speed (1,800 rpm) and equilibrium time of extraction (20min), initial feed solution of bismuth (350 ppm) and the volume ratio of the internal stripping phase to the membrane phase (14 times). The experimental parameters of kinetic extraction revealed that the bismuth ions were extracted at 100% 97%.

  18. Preparation of Synthetic Zeolites from Myanmar Clay Mineral

    International Nuclear Information System (INIS)

    Phyu Phyu Win

    2004-04-01

    Faujasite type zeolite X was successfully synthesized from Myanmar clay mineral kaolinite, by treating with sodium hydroxide at 820 C followed by dissolution in water and hydrothermal treatment. It was found that the solution of fused clay powder can be crystallized at 90C under ambient pressure to synthesize faujasite type zeolite X. The effects of aging time and the amount of water on the formation of the product phase and Si/ Al ratios of the resulting products were investigated. Most of the Si and Al components in kaolinite might be dissolved into an alkaline solution and reacted to form ring-like structures. Then it was effectively transformed into zeolite materials. The maximum relative crystallinity of faujasite zeolite obtained was found to be 100%. Zeolite P was found to be a competitive phase present in some resulting products during hydrothermal treatment. The cation exchange capacity of kaolinite is very low, but increased after a proper treatment. It was found that the prepared faujasite type zeolite X, zeolite P and hydrogen zeolite (HZ) can reduce the hardness, the alkalinity, the total dissolved solid and the dissolved iron of raw water in the batch wise operation of water treatment. Therefore, it can be used as the cation exchanged resin for water treatment

  19. Exceptionally stable and hierarchically porous self-standing zeolite monolith based on a solution-mediated and solid-state transformation synergistic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Do, Manh Huy [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Cheng, Dang-guo, E-mail: dgcheng@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Chen, Fengqiu [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhan, Xiaoli [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-15

    Although many strategies exist for fabricating hierarchical zeolite monolith, it is still challenging to synthesize pure hierarchical zeolite monolith with intracrystalline meso-/macropores and stability suitable for industrial application in a general and efficient process. Here we describe a simple quasi-solid gel crystallization route to prepare hierarchical self-standing ZSM-5 zeolite monolith via the use of Na{sup +} and OH{sup −} as counterions to modify the breaking and remaking of T–O–T (T = Si or Al) bonds. X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscopy (TEM), laser scan confocal microscopy (LSCM), N{sub 2} adsorption–desorption, mercury porosimetry, solid-state nuclear magnetic resonance (NMR), and compression mechanical testing were applied to elucidate the structure and mechanical stability of the obtained monolith. The self-standing monolith is composed of self-interconnected meso-/macroporous MFI crystals with tunable intracrystalline meso-/macropores and possesses an unusually mechanical stability with a crushing strength of 5.01 MPa. Combined with controllable structure of the defect-free membrane layer on the monolith top, the self-standing zeolite monolith should widen their potential applications. - Highlights: • Hierarchical self-standing MFI zeolite monoliths were synthesized via a facile method. • Na{sup +} and OH{sup −} are used as counterions for breaking and remaking of T–O–T (T = Si or Al) bonds. • Hierarchical self-standing MFI zeolite monoliths result from zeolite crystal intergrowth. • Self-standing zeolite monolith has an excellent mechanical stability with tunable intracrystalline meso-/macropores.

  20. Strong white photoluminescence from annealed zeolites

    International Nuclear Information System (INIS)

    Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji

    2014-01-01

    The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies

  1. Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Kumar, N.; Mäki-Arvela, P.; Salmi, T.; Murzin, D. Z.; Paseka, Ivo; Heikkilä, T.; Laine, E.; Laukkanen, P.; Väyrynen, J.

    2003-01-01

    Roč. 251, č. 2 (2003), s. 385-396 ISSN 0926-860X R&D Projects: GA ČR GA104/03/0409 Institutional research plan: CEZ:AV0Z4032918 Keywords : mesoporous molecular sieve * zeolites * ruthenium Subject RIV: CA - Inorganic Chemistry Impact factor: 2.825, year: 2003

  2. Reaction mechanisms in zeolite catalysis

    NARCIS (Netherlands)

    Rozanska, X.; Santen, van R.A.; Auerbach, S.C.; Carrado, K.A.; Dutta, P.D.

    2003-01-01

    A review; described are the most basic mechanistic reaction steps that are induced by zeolite catalysts. Details on the zeolitic properties that are relevant to mol. reactivity are also provided. The theor. methods and models at hand to allow the investigation of these reaction steps and that have

  3. Photocatalysis with chromium-doped TiO2: Bulk and surface doping

    KAUST Repository

    Ould-Chikh, Samy

    2014-04-15

    The photocatalytic properties of TiO2 modified by chromium are usually found to depend strongly on the preparation method. To clarify this problem, two series of chromium-doped titania with a chromium content of up to 1.56 wt % have been prepared under hydrothermal conditions: the first series (Cr:TiO2) is intended to dope the bulk of TiO2, whereas the second series (Cr/TiO2) is intended to load the surface of TiO2 with Cr. The catalytic properties have been compared in the photocatalytic oxidation of formic acid. Characterization data provides evidence that in the Cr/TiO2 catalysts chromium is located on the surface of TiO2 as amorphous CrOOH clusters. In contrast, in the Cr:TiO 2 series, chromium is mostly dissolved in the titania lattice, although a minor part is still present on the surface. Photocatalytic tests show that both series of chromium-doped titania demonstrate visible-light-driven photo-oxidation activity. Surface-doped Cr/TiO2 solids appear to be more efficient photocatalysts than the bulk-doped Cr:TiO2 counterparts. It\\'s classified! The photocatalytic properties of TiO2 modified by chromium depend strongly on the preparation method. To clarify this problem, two types of modified titania are discussed: one with CrIII doped in the bulk and one with CrOOH clusters on the TiO2 surface (see picture). Both series show visible-light-driven photo-oxidation activity. However, surface modification appears to be a more efficient strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of spent salt treatment technology by zeolite column system. Performance evaluation of zeolite column

    International Nuclear Information System (INIS)

    Miura, Hidenori; Uozumi, Koichi

    2009-01-01

    At electrorefining process, fission products(FPs) accumulate in molten salt. To avoid influence on heating control by decay heat and enlargement of FP amount in the recovered fuel, FP elements must be removed from the spent salt of the electrorefining process. For the removal of the FPs from the spent salt, we are investigating the availability of zeolite column system. For obtaining the basic data of the column system, such as flow property and ion-exchange performance while high temperature molten salt is passing through the column, and experimental apparatus equipped with fraction collector was developed. By using this apparatus, following results were obtained. 1) We cleared up the flow parameter of column system with zeolite powder, such as flow rate control by argon pressure. 2) Zeolite 4A in the column can absorb cesium that is one of the FP elements in molten salt. From these results, we got perspective on availability of the zeolite column system. (author)

  5. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Pieterse, J.A.Z.; Van den Brink, R.W.; Booneveld, S.; De Bruijn, F.A.

    2003-01-01

    Selective catalytic reduction of NO with CH 4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH 4 -SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co 3 O 4 , Co-oxo ions) boosts SCR activity by oxidising NO to NO 2 . The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion; (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium (EFAL) in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  6. Zeolite food supplementation reduces abundance of enterobacteria.

    Science.gov (United States)

    Prasai, Tanka P; Walsh, Kerry B; Bhattarai, Surya P; Midmore, David J; Van, Thi T H; Moore, Robert J; Stanley, Dragana

    2017-01-01

    According to the World Health Organisation, antibiotics are rapidly losing potency in every country of the world. Poultry are currently perceived as a major source of pathogens and antimicrobial resistance. There is an urgent need for new and natural ways to control pathogens in poultry and humans alike. Porous, cation rich, aluminosilicate minerals, zeolites can be used as a feed additive in poultry rations, demonstrating multiple productivity benefits. Next generation sequencing of the 16S rRNA marker gene was used to phylogenetically characterize the fecal microbiota and thus investigate the ability and dose dependency of zeolite in terms of anti-pathogenic effects. A natural zeolite was used as a feed additive in laying hens at 1, 2, and 4% w/w for a 23 week period. At the end of this period cloacal swabs were collected to sample faecal microbial communities. A significant reduction in carriage of bacteria within the phylum Proteobacteria, especially in members of the pathogen-rich family Enterobacteriaceae, was noted across all three concentrations of zeolite. Zeolite supplementation of feed resulted in a reduction in the carriage of a number of poultry pathogens without disturbing beneficial bacteria. This effect was, in some phylotypes, correlated with the zeolite concentration. This result is relevant to zeolite feeding in other animal production systems, and for human pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  8. Zeolitization at uranium ore manifestation

    International Nuclear Information System (INIS)

    Petrosyan, R.V.; Buntikova, A.F.

    1981-01-01

    The process of zeolitization at uranium ore manifestation is studied. A specific type of low-temperature wall endogenous alteration of rocks due to the effect of primary acid solution with low content of carbonic acid is established. Leaching of calcium from enclosing rocks and its deposition in ore-accompanying calcium zeolites is a characteristic feature of wall-metasomatosis. Formation of desmin- calcite-laumontite and quartz-fluoroapatite of vein associations, including ore minerals (uranophane and metaotenite), is genetically connected with calcium metasomatosis. On the basis of the connection of ore minerals with endogeneous process of zeolitization a conclusion can be made on endogenous origin of uranophane and metaotenite [ru

  9. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  10. Facile synthesis of surface N-doped Bi{sub 2}O{sub 2}CO{sub 3}: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Zhao, Ziyan [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Wang, Fang; Cao, Kun [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Doronkin, Dmitry E. [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Dong, Fan [College of Environmental and Biological Engineering, Chonqing Technology and Business University, Chongqing 400067 (China); Grunwaldt, Jan-Dierk, E-mail: grunwaldt@kit.edu [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-04-15

    -transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to another relevant bismuth based photocatalyst, BiOCl, demonstrated that surface interstitial N doping could also be achieved in this case. Therefore, our current route seems to be a general option to modify the surface properties of bismuth based photocatalysts.

  11. Properties of Nanostructure Bismuth Telluride Thin Films Using Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Swati Arora

    2017-01-01

    Full Text Available Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te and bismuth (Bi were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD and scanning electron microscopy (SEM to show granular growth.

  12. Alkylation of Isobutane/2-Butene Over Modified FAU-Type Zeolites.

    Science.gov (United States)

    Ro, Youngsoo; Gim, Min Yeoung; Lee, Jong Won; Lee, Eo Jin; Song, In Kyu

    2018-09-01

    A serious of mesoporous La-zeolite X catalysts (La-x-Zeol X (x = 0, 0.25, 0.5, 0.75, 1.0, and 2.0)) were prepared by a hydrothermal method with a variation of carbon template content (x, wt%). The prepared catalysts were applied to the isobutane/2-butene alkylation. Mesopore volume of the catalysts increased with increasing carbon template content, while acidity of the catalysts decreased with increasing carbon template content. In the catalytic reaction, productivity of C8 alkylate (C8 alkylate g/g-catalyst) and selectivity for C8 alkylate showed volcano-shaped trends with respect to carbon template content. Among the catalysts, La-0.5-Zeol X showed the highest productivity and selectivity for C8 alkylate. The maximum productivity and selectivity for C8 alkylate over La-0.5-Zeol X were due to the offset of two opposite trends between mesopore volume and acidity of La-x-Zeol X catalysts.

  13. Effect of SrO content on Zeolite Structure

    Science.gov (United States)

    Widiarti, N.; Sari, U. S.; Mahatmanti, F. W.; Harjito; Kurniawan, C.; Prasetyoko, D.; Suprapto

    2018-04-01

    The aims of current studies is to investigate the effect of strontium oxide content (SrO) on synthesized zeolite. Zeolite was synthesized from Tetraethyl orthosilicate (TEOS) as precursors of SiO2 and aluminum isopropoxide (AIP) precursors. The mixture was aged for 3 days and hydrothermally treated for 6 days. The SrO content was added by impregnation method. The products were then characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Surface Area Analyzer (SAA). The diffractogram confirmed the formation of Faujasite-like zeolite. However, after the addition of SrO, the crystallinity of zeolite was deformed. The diffractograms shows the amorphous phase of zeolite were decrease as the SrO content is increase. The structural changes was also observed from FTIR spectra which shows the shifting and peak formation. The surface area analysis showed that the increasing loading of SrO/Zeolites reduced the catalyst surface area.

  14. Zeolite and swine inoculum effect on poultry manure biomethanation

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Fotidis, Ioannis; Zaganas, I.D.

    2013-01-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine...... manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without...... zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum....

  15. Zeolite and swine inoculum effect on poultry manure biomethanation

    Science.gov (United States)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  16. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2012-04-01

    Full Text Available Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities.Results: Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM.Conclusion: These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation.Keywords: zerovalent bismuth nanoparticles, antimicrobial agent, biofilm, Streptococcus mutans

  17. On the peculiarities of positron annihilation features in silicalite-1 and Y-zeolites

    CERN Document Server

    Kajcsos, Z; Liszka, L; Billard, I; Bonnenfant, A; Azenma, E; Lázár, K; Pal-Borbely, G; Caullet, P; Patarin, J; Lohonyai, L

    2000-01-01

    Conditions that facilitate high Ps formation and interactions that modify the o-Ps lifetime were investigated by positron annihilation techniques in silicalite-1 and various Y-zeolites. Long lifetimes, up to 135 ns, and o-Ps fractions as high as 40% were found. The influence of heat treatment (in the range of 90-520 K), capillary condensation of N sub 2 (0.085 MPa) and correlation with water removal was examined in Y-zeolites and in silicalite-1, respectively. The latter matrix was also studied in the presence of liquids. In various samples unexpected features were found (peculiar changes in the 2 gamma/3 gamma ratio, inversion in the trend of lifetime variations, disappearance of specific components, etc.), denoting the complexity of the processes governing the fate of e sup sup + and Ps.

  18. Three Mile Island zeolite vitirification demonstration program

    International Nuclear Information System (INIS)

    Siemens, D.H.; Knowlton, D.E.; Shupe, M.W.

    1981-06-01

    The cleanup of the high-activity-level water at Three Mile Island (TMI) provides an opportunity to further develop waste management technology. Approximately 790,000 gallons of high-activity-level water at TMI's Unit-2 Nuclear Power Station will be decontaminated at the site using the submerged demineralizer system (SDS). In the SDS process, the cesium and strontium in the water are sorbed onto zeolite that is contained within metal liners. The Department of Energy has asked the Pacific Northwest Laboratory (PNL) to take a portion of the zeolite from the SDS process and demonstrate, on a production scale, that this zeolite can be vitrified using the in-can melting process. This paper is a brief overview of the TMI zeolite vitrification program. The first section discusses the formulation of a glass suitable for immobilizing SDS zeolite. The following section describes a feed system that was developed to feed zeolite to the in-can melter. It also describes the in-can melting process and the government owned facilities in which the demonstrations will take place. Finally, the schedule for completing the program activities is outlined

  19. Zeolites and Zeotypes for Oil and Gas Conversion

    NARCIS (Netherlands)

    Vogt, Eelco T C; Whiting, Gareth T.; Dutta Chowdhury, Abhishek; Weckhuysen, Bert M.

    2015-01-01

    Zeolite-based catalyst materials are widely used in chemical industry. In this chapter, the applications of zeolites and zeotypes in the catalytic conversion of oil and gas are reviewed. After a general introduction to zeolite science and technology, we discuss refinery applications, such as fluid

  20. To Investigate the Absorption, Dynamic Contact Angle and Printability Effects of Synthetic Zeolite Pigments in an Inkjet Receptive Coating

    Science.gov (United States)

    Jalindre, Swaraj Sunil

    Ink absorption performance in inkjet receptive coatings containing synthetic zeolite pigments was studied. Coating pigment pore and particle size distribution are the key parameters that influence in modifying media surface properties, thus affecting the rate of ink penetration and drying time (Scholkopf, et al. 2004). The primary objective of this study was: (1) to investigate the synthetic zeolite pigment effects on inkjet ink absorption, dynamic contact angle and printability, and (2) to evaluate these novel synthetic zeolite pigments in replacing the fumed silica pigments in conventional inkjet receptive coatings. In this research study, single pigment coating formulations (in equal P:B ratio) were prepared using microporous synthetic zeolite pigments (5A, Organophilic and 13X) and polyvinyl alcohol (PVOH) binder. The laboratory-coated samples were characterized for absorption, air permeance, roughness, drying time, wettability and print fidelity. Based on the rheological data, it was found that the synthetic zeolite formulated coatings depicted a Newtonian flow behavior at low shear; while the industry accepted fumed silica based coatings displayed a characteristically high pseudoplastic flow behavior. Our coated samples generated using microporous synthetic zeolite pigments produced low absorption, reduced wettability and accelerated ink drying characteristics. These characteristics were caused due to the synthetic zeolite pigments, which resulted in relatively closed surface structure coated samples. The research suggested that no single selected synthetic zeolite coating performed better than the conventional fumed silica based coatings. Experimental data also showed that there was no apparent relationship between synthetic zeolite pigment pore sizes and inkjet ink absorption. For future research, above coated samples should be evaluated for pore size distribution using Mercury Porosimeter, which quantifies surface porosity of coated samples. This presented