WorldWideScience

Sample records for bismuth tellurides

  1. Electrodeposition and Characterization of Bismuth Telluride Nanowires

    Science.gov (United States)

    Frantz, C.; Stein, N.; Gravier, L.; Granville, S.; Boulanger, C.

    2010-09-01

    In this work, we report thermoelectric measurements on electroplated bismuth telluride nanowires. Porous polycarbonate membranes, obtained by ion-track irradiation lithography, were chosen as electroplating templates. Bismuth telluride nanowires were achieved in acidic media under potentiostatic conditions at -100 mV versus saturated silver chloride electrode. The filling ratio of the pores was increased to 80% by adding dimethyl sulfoxide to the electrolyte. Whatever the experimental conditions, the nanowires were polycrystalline in the rhombohedral phase of Bi2Te3. Finally, the power output of arrays of bismuth telluride nanowires was analyzed as a function of load resistance. The results were strongly dependent on the internal resistance, which can be significantly reduced by the presence of dimethyl sulfoxide during electroplating.

  2. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie;

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formatio...

  3. Tunneling behavior of bismuth telluride nanoplates in electrical transport

    OpenAIRE

    Eginligil, Mustafa; Zhang, Weiqing; Kalitsov, Alan; Lu, Xianmao; Yang, Hyunsoo

    2012-01-01

    We study the electrical transport properties of ensembles of bismuth telluride (Bi2Te3) nanoplates grown by solution based chemical synthesis. Devices consisting of Bi2Te3 nanoplates are fabricated by surface treatment after dropping the solution on the structured gold plates and the temperature dependence of resistance shows a nonmetallic behavior. Symmetric tunneling behavior in I-V was observed in both our experimental results and theoretical calculation of surface conductance based on a s...

  4. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India); Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India)

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  5. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  6. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Science.gov (United States)

    Termentzidis, K.; Pokropivny, A.; Xiong, S.-Y.; Chumakov, Y.; Cortona, P.; Volz, S.

    2012-10-01

    Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  7. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  8. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the form

  9. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    Science.gov (United States)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  10. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    Science.gov (United States)

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD.

  11. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  12. Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film

    International Nuclear Information System (INIS)

    N-type bismuth telluride (Bi2Te3) thermoelectric thin films were deposited by co-sputtering simple substance Te and Bi targets. The deposited films were annealed under various temperatures. The composition ratio, micro-structure and thermoelectric properties of the prepared films were systematically investigated by energy dispersive spectrometer, X-ray diffraction, four-probe method and Seebeck coefficient measurement system. When the annealing temperature is 400 °C, the stoichiometric N-type Bi2Te3 film is achieved, which has a maximum thermoelectric power factor of 0.821 × 10−3 W m−1 K−2. Furthermore, the dependence of Seebeck coefficient, electrical conductivity and power factor of the stoichiometric N-type Bi2Te3 film annealed at film 400 °C on the applied temperature ranging from 25 °C to 315 °C was investigated. The results show that a highest power factor of 3.288 × 10−3 W m−1 K−2 is obtained at the applied temperature of 275 °C. The structural and thermoelectric properties of the deposited bismuth telluride thin films are greatly improved by annealing and the Seebeck coefficient, electrical conductivity and power factor increase with the applied temperature rising, which are helpful and could be guidance for preparing the high-performance thin film thermoelectric materials for thermoelectric application.

  13. Preparation of bismuth telluride thin film by electrochemical atomic layer epitaxy(ECALE)

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Junyou; GAO Xianhui; HOU Jie; BAO Siqian; FAN Xian

    2007-01-01

    Thin-layer electrochemical studies of the underpotential deposition(UPD)of Bi and Te on cold rolled silver substrate have been performed.The voltammetric analysis of underpotential shift demonstrates that the initial Te UPD on Bi-covered Ag and Bi UPD on Te-covered Ag fitted UPD dynamics mechanism.A thin film of bismuth telluride was formed by alternately depositing Te and Bi via an automated flow deposition system.X-ray diffraction indicated the deposits of Bi2Te3.Energy Dispersive X-ray Detector quantitative analysis gave a 2:3 stoichiornetric ratio of Bi to Te,which was consistent with X-ray Diffraction results.Electron probe microanalysis of the deposits showed a network structure that results from the surface defects of the cold rolled Ag substrate and the lattice mismatch between substrate and deposit.

  14. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  15. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    International Nuclear Information System (INIS)

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N2 atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H2 (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K2) that of the thin films treated with EB irradiation alone

  16. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Kurita, Kensuke [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.

  17. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  18. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m-1 K-2) and 10 μV/K (and 19.5 μW m-1 K-2), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  19. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    Energy Technology Data Exchange (ETDEWEB)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh, E-mail: daryoosh.vashaee@okstate.edu [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tahmasbi Rad, Armin [School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tayebi, Lobat, E-mail: daryoosh.vashaee@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2014-05-28

    Nanocomposite thermoelectric compound of bismuth telluride (Bi{sub 2}Te{sub 3}) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi{sub 2}Te{sub 3} were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (∼500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  20. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  1. The effects of nanoparticle inclusions upon the microstructure and thermoelectric transport properties of bismuth telluride-based composites

    Science.gov (United States)

    Gothard, Nicholas Wesley

    Research into materials that have high efficiencies of thermoelectric heat-energy conversion has been at a plateau since the middle of the last century. During this time, efficiencies have been engineered high enough for several interesting niche applications but not high enough for widespread adaptation into traditional power generation or refrigeration technologies. The past decade has seen considerable advancement, as a number of theoretical works have suggested that lower dimensional structures could hold the key for enhanced efficiency, and several experiments have provided the proof of principle needed to inspire just such a research direction. The benefit of low dimensional structures for thermoelectric efficiency comes from both the potential enhancement of the electronic properties due to quantum confinement effects as well as from the potential for increased scattering of heat-carrying phonons. Widespread application of these principles for technological application requires the creation of composites of nanostructures that can be manufactured easily with dimensions on the bulk materials scale. A good starting point for such materials research is to manufacture composites of materials that are currently known to have high thermoelectric efficiencies by incorporating nanostructures into a bulk matrix. The goal of this project is to create nanocomposites using bismuth telluride, a compound known to have one of the highest thermoelectric efficiencies at room temperature, as a matrix material. Various methods of synthesizing sufficient quantities of bismuth telluride nanostructures were attempted, including pulsed laser vaporization, chemical vapor deposition, and solvothermal synthesis. The method of solvothermal synthesis was found to be the simplest approach for producing high yields of bismuth telluride nanostructures. In the initial stages of the project, cold pressing was tested as a means of compaction, but in the end a uniaxial hot pressing technique

  2. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  3. Friction Consolidation Processing of n-Type Bismuth-Telluride Thermoelectric Material

    Science.gov (United States)

    Whalen, Scott; Jana, Saumyadeep; Catalini, David; Overman, Nicole; Sharp, Jeffrey

    2016-07-01

    Refined grain sizes and texture alignment have been shown to improve transport properties in bismuth-telluride (Bi2Te3) based thermoelectric materials. In this work we demonstrate a new approach, called friction consolidation processing (FCP), for consolidating Bi2Te3 thermoelectric powders into bulk form with a high degree of grain refinement and texture alignment. FCP is a solid-state process wherein a rotating tool is used to generate severe plastic deformation within the Bi2Te3 powder, resulting in a recrystallizing flow of material. Upon cooling, the far-from-equilibrium microstructure within the flow can be retained in the material. FCP was demonstrated on n-type Bi2Te3 feedstock powder having a -325 mesh size to form pucks with a diameter of 25.4 mm and thickness of 4.2 mm. Microstructural analysis confirmed that FCP can achieve highly textured bulk materials, with sub-micrometer grain size, directly from coarse feedstock powders in a single process. An average grain size of 0.8 μm was determined for regions of one sample and a multiple of uniform distribution (MUD) value of 15.49 was calculated for the (0001) pole figure of another sample. These results indicate that FCP can yield ultra-fine grains and textural alignment of the (0001) basal planes in Bi2Te3. ZT = 0.37 at 336 K was achieved for undoped stoichiometric Bi2Te3, which approximates literature values of ZT = 0.4-0.5. These results point toward the ability to fabricate bulk thermoelectric materials with refined microstructure and desirable texture using far-from-equilibrium FCP solid-state processing.

  4. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance. PMID:27389820

  5. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-01

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson–Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm‑1 K‑2), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  6. Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite

    Science.gov (United States)

    Chatterjee, Krishanu; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2013-05-01

    Bismuth telluride (Bi2Te3) nanorods and polyaniline (PANI) nanoparticles have been synthesized by employing solvothermal and chemical oxidative processes, respectively. Nanocomposites, comprising structurally ordered PANI preferentially grown along the surface of a Bi2Te3 nanorods template, are synthesized using in situ polymerization. X-ray powder diffraction, UV-vis and Raman spectral analysis confirm the highly ordered chain structure of PANI on Bi2Te3 nanorods, leading to a higher extent of doping, higher chain mobility and enhancement of the thermoelectric performance. Above 380 K, the PANI-Bi2Te3 nanocomposite with a core-shell/cable-like structure exhibits a higher thermoelectric power factor than either pure PANI or Bi2Te3. At room temperature the thermal conductivity of the composite is lower than that of its pure constituents, due to selective phonon scattering by the nanointerfaces designed in the PANI-Bi2Te3 nanocable structures. The figure of merit of the nanocomposite at room temperature is comparable to the values reported in the literature for bulk polymer-based composite thermoelectric materials.

  7. Acetic acid-confined synthesis of uniform three-dimensional (3D) bismuth telluride nanocrystals consisting of few-quintuple-layer nanoplatelets

    KAUST Repository

    Yuan, Qiang

    2011-01-01

    High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi2Te3) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi2Te3 nanocrystals as building blocks. © The Royal Society of Chemistry 2011.

  8. High conductivity composite flip-chip joints and silver-indium bonding to bismuth telluride for high temperature applications

    Science.gov (United States)

    Lin, Wen P.

    Two projects are reported. First, the barrier layer and silver (Ag)-indium (In) transient liquid phase (TLP) bonding for thermoelectric (TE) modules at high temperature were studied, and followed with a survey of Ag microstructure and grain growth kinetics. Second, the high electrical conductivity joint materials bonded by both Ag-AgIn TLP and solid-state bonding processes for small size flip-chip applications were designed. In the first project, barrier and Ag-In TLP bonding layer for TE module at high temperature application were studied. Bismuth telluride (Bi2 Te3) and its alloys are used as materials for a TE module. A barrier/bonding composite was developed to satisfy the TE module for high temperature operation. Titanium (Ti)/ gold (Au) was chosen as the barrier layers and an Ag-rich Ag-In joint was chosen as the bonding layer. An electron-beam evaporated Ti layer was selected as the barrier layer. An Ag-In fluxless TLP bonding process was developed to bond the Bi 2Te3 chips to the alumina substrates for high temperature applications. To prepare for bonding, the Bi2Te3 chips were coated with a Ti/Au barrier layer followed by a Ag layer. The alumina substrates with titanium-tungsten (TiW)/Au were then electroplated with the Ag/In/Ag structure. These Bi2Te3 chips were bonded to alumina substrates at a bonding temperature of 180ºC with a static pressure as low as 100psi. The resulting void-free joint consists of five regions: Ag, (Ag), Ag2In, (Ag), and Ag, where (Ag) is Ag-rich solid solution with In atoms in it and Ag is pure Ag. This joint has a melting temperature higher than 660ºC, and it manages the coefficient of thermal expansion (CTE) mismatch between the Bi2Te3 and alumina substrate. The whole Ti/Au barrier layer and Ag-In bonding composite between Bi 2Te3 and alumina survived after an aging test at 250°C for 200 hours. The Ag-In joint transformed from Ag/(Ag)/Ag2In/(Ag)/Ag to a more reliable (Ag) rich layer after the aging test. Ag thin films were

  9. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Yamaguchi, Masashi [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  10. Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber

    Science.gov (United States)

    Lee, Jinho; Lee, Junsu; Koo, Joonhoi; Chung, Hojai; Lee, Ju Han

    2016-07-01

    We experimentally demonstrate a linearly polarized, passively Q-switched, erbium (Er)-doped fiber laser using a saturable absorber (SA) based on a composite consisting of a bulk-structured bismuth telluride (Bi2Te3) topological insulator (TI) and polyvinyl alcohol (PVA). The SA was constructed on a polarization maintaining (PM) fiber ferrule platform, which had a sandwich structure. Its saturation intensity and modulation depth were measured to be ˜ and ˜4.1%, respectively. Using the prepared Bi2Te3/PVA SA in a PM Er-doped fiber ring laser, stable Q-switched pulses with a degree of polarization of ˜98.6% and an azimuth angle of ˜-0.34 deg were demonstrated. The minimum pulse width was measured to be ˜1.58 μs at a repetition rate of 47.1 kHz. This experimental demonstration verifies that a thin film based on a bulk-structured Bi2Te3 TI can fit into a sandwich-structured SA based on PM fiber ferrules.

  11. Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation.

    Science.gov (United States)

    Menke, E J; Brown, M A; Li, Q; Hemminger, J C; Penner, R M

    2006-12-01

    Nanowires composed of the thermoelectric material Bi2Te3 were synthesized on highly oriented pyrolytic graphite (HOPG) electrodes using the electrochemical step edge decoration (ESED) method. Nanowire synthesis was initiated by applying a voltage pulse of -0.75 V versus SCE for 5 ms to an HOPG electrode in an aqueous solution containing both Bi3+ and TeO22-, thereby producing nuclei at the step edges. Bi2Te3 was electrodeposited onto these nuclei using a cyclic electrodeposition-stripping scheme that involved the electrodeposition of bismuth-rich Bi2Te3 on a negative-going voltammetric scan (to -0.05 V) and the subsequent anodic stripping of excess bismuth from these nanowires during a positive-going scan (to +0.35 V). When this cycle was repeated 10-50 times, Bi2Te3 nanowires in the 100-300-nm-diameter range were obtained. These nanowires were narrowly dispersed in diameter (RSDdia = 10-20%), were more than 100 microm in length, and were organized into parallel arrays containing hundreds of wires. Smaller nanowires, with diameters down to 30 nm, were obtained by electrooxidizing 150-nm-diameter Bi2Te3 nanowires at +0.37 V under conditions of kinetic control. This oxidation process unexpectedly improved the uniformity of Bi2Te3 nanowires, and X-ray photoelectron spectroscopy (XPS) shows that these nanowires retain a Bi2Te3 core but also have a thin surface layer composed of Bi and Te oxides. The ability of Bi2Te3 nanowires to generate electrical power was assessed by transferring ensembles of these nanowires onto cyanoacrylate-coated glass surfaces and evaporating 4-point nickel contacts. A dimensionless figure of merit, ZT, ranging from 0 to 0.85 was measured for fresh samples that were less than 1 day old. XPS reveals that Bi2Te3 nanowires are oxidized within a week to Bi2O3 and TeO2. These oxides may interfere with the application by evaporation of electrical contacts to these nanowires.

  12. Mechanical properties of bismuth telluride (Bi{sub 2}Te{sub 3}) processed by high pressure torsion (HPT); Propiedades mecanicas del telururo de bismuto (Bi{sub 2}Te{sub 3}) procesado mediante torsion bajo alta presion (HPT)

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, J. A.; Alkorta, J.; Gil Sevillano, J.

    2013-06-01

    Bismuth telluride, Bi{sub 2}Te{sub 3}, is the main thermoelectric material currently in use for commercial cooling devices or for energy harvesting near room temperature. Because of its highly anisotropic layered structure, Bi{sub 2}Te{sub 3} is very brittle, failing by cleavage along its basal plane. Refining its grain size is expected to increase its toughness with the advantage that, simultaneously, its thermoelectric figure of merit results increased. In this work, powders of the compound have been compacted by conventional methods as well as by severe plastic deformation under high pressure (3 GPa) using high pressure torsion (HPT, one turn at room temperature). Near-theoretical density has been achieved. The hardness and toughness of the compacts have been assessed by micro and nano-indentation. (Author) 11 refs.

  13. Growth and characterization of bismuth telluride nanowires

    International Nuclear Information System (INIS)

    Polycrystalline Bi2Te3 nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 μm. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi2Te3 and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 μm thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  14. Growth and characterization of bismuth telluride nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Picht, Oliver

    2010-05-26

    Polycrystalline Bi{sub 2}Te{sub 3} nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 {mu}m. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi{sub 2}Te{sub 3} and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 {mu}m thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  15. Bismuth, Metronidazole, and Tetracycline

    Science.gov (United States)

    Helidac® (as a kit containing Bismuth Subsalicylate, Metronidazole, Tetracycline) ... Bismuth, metronidazole, and tetracycline is used along with other ulcer medications to treat duodenal ulcers. It is in a class of medications called ...

  16. Novel Bismuth Nanotubes

    Institute of Scientific and Technical Information of China (English)

    苏长荣; 李家明

    2002-01-01

    Theoretical investigations show that bismuth nanotubes are semiconductors for all diameters. For smalldiameter bismuth nanotubes, the band structures and bandgaps vary strongly with the strong hybridization effect. When the diameters are larger than 18 A, the bandgaps ofBi (n, n) and (n, 0) nanotubes approach 0.63 e V, corresponding to the bandgap of bismuth sheet at the Γ point. Thus, bismuth nanotubes are expected to be a potential semiconductor nanomaterial in future nanoelectronics.

  17. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  18. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    Science.gov (United States)

    Sahin, Cuneyt

    V, suggesting the potential for doping or voltage tuned spin Hall current. We have also calculated intrinsic spin Hall conductivities of bismuth selenide and bismuth telluride topological insulators from an effective tight-binding Hamiltonian including two nearest-neighbor interactions. We showed that both materials exhibit giant spin Hall conductivities calculated from the Kubo formula in linear response theory and the clean static limit. We conclude that bismuth-antimony alloys and bismuth chalcogenides are primary candidates for efficiently generating spin currents through the spin Hall effect.

  19. Nanocalorimetry of bismuth nanoparticles

    Science.gov (United States)

    Olson, Eric Ashley

    The properties of nanosized bismuth particles are investigated using a nanocalorimetric technique. A brief description of the experimental method and data analysis procedures is reported. Bismuth nanoparticles are found to melt at a temperature below that of bulk material, but higher than expected using the standard model. Also included is the results of a finite element analysis and simulated melting of bismuth films on various kinds of sensors. Temperature distributions are found to be nonuniform for calorimetric sensors with Al metallizations, but much more uniform for Pt metallized sensors. The consequences of this nonuniformity on caloric data are discussed.

  20. Cadmium telluride nuclear radiation detectors

    International Nuclear Information System (INIS)

    The characteristics and performance of undoped high resistivity cadmium telluride detectors are compared to chlorine lifted counters. It is shown, in particular, that Undodep CdTe is in fact aluminium doped and that compensation occurs, as an silicon or germanium, by pair and triplet formation between the group III donor and the doubly charged cadmium vacancy acceptor. Furthermore, in chlorine doped samples, the polarization effect results from the unpaired level at Esub(c)-0,6eV

  1. Method of making a thin film cadmium telluride solar cell

    International Nuclear Information System (INIS)

    A method for making a photovoltaic cell is described comprising the steps of: (a) depositing a transparent or semi-transparent conductive window layer onto a substrate; (b) depositing a layer of cadmium telluride including phosphorus onto the window layer; (c) depositing a layer of lead telluride onto the layer of cadmium telluride; and (d) depositing a metallic electrode onto the lead telluride layer

  2. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. (University of South Florida, Tampa, FL (United States))

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  3. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  4. Cadmium zinc telluride spectral modeling

    International Nuclear Information System (INIS)

    Cadmium zinc telluride (CZT) detectors are the highest resolution room temperature gamma-ray detectors available for isotopic analysis. As with germanium detectors, accurate isotopic analysis using spectra requires peak deconvolution. The CZT peak shapes are asymmetric, with a long low energy tail. The asymmetry is a result of the physics of the electron/hole transport in the semiconductor. An accurate model of the physics of the electron/hole transport through an electric field will allow the parameterization of the peak shapes as a function of energy. In turn this leads to the ability to perform accurate spectral deconvolution and therefore accurate isotopic analysis. The model and the peak-shape parameterization as a function of energy will be presented

  5. Bismuth toxicity in patients treated with bismuth iodoform paraffin packs.

    Science.gov (United States)

    Atwal, A; Cousin, G C S

    2016-01-01

    Bismuth is a heavy metal used in bismuth iodoform paraffin paste (BIPP) antiseptic dressings and in a number of other medical preparations. It can be absorbed systemically and cause toxicity. We report 2 cases of such neurotoxicity after it was used in operations on the jaws.

  6. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  7. Electron mobility in mercury cadmium telluride

    Science.gov (United States)

    Patterson, James D.

    1988-01-01

    A previously developed program, which includes all electronic interactions thought to be important, does not correctly predict the value of electron mobility in mercury cadmium telluride particularly near room temperature. Part of the reason for this discrepancy is thought to be the way screening is handled. It seems likely that there are a number of contributors to errors in the calculation. The objective is to survey the calculation, locate reasons for differences between experiment and calculation, and suggest improvements.

  8. Growth of bismuth telluride thin film on Pt by electrochemical atomic layer epitaxy

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Jun-you; GAO Xian-hui; HOU Jie; ZHANG Tong-jun; CUI Kun

    2005-01-01

    An automated thin-layer flow cell electrodeposition system was developed for growing Bi2 Te3 thin film by ECALE. The dependence of the Bi and Te deposition potentials on Pt electrode was studied. In the first attempt,this reductive Te underpotential deposition (UPD)/reductive Bi UPD cycle was performed to 100 layers. A better linearity of the stripping charge with the number of cycles has been shown and confirmed a layer-by-layer growth mode, which is consistent with an epitaxial growth. The 4: 3 stoichiometric ratio of Bi to Te suggests that the incomplete charge transfer in HTeO2+ reduction excludes the possibility of Bi2 Te3 formation. X-ray photoelectron spectroscopy (XPS) analysis also reveals that the incomplete charge transfer in HTeO2+ occurs in Te direct deposition. The effective way of depositing Bi2 Te3 on Pt consists in oxidative Te UPD and reductive Bi UPD. The thin film deposited by this procedure was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). A polycrystalline characteristic was confirmed by XRD. The 2 : 3 stoichiometric ratio was confirmed by XPS. The SEM image indicates that the deposit looks like a series of buttons about 0.3 - 0.4 μm in diameter, which is corresponding with calculated thickness of the epitaxial film. This suggests that the particle growth appears to be linear with the number of cycles, as it is consistent with a layer by layer growth mode.

  9. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  10. Thermoelectric transport in surface- and antimony-doped bismuth telluride nanoplates

    Science.gov (United States)

    Pettes, Michael Thompson; Kim, Jaehyun; Wu, Wei; Bustillo, Karen C.; Shi, Li

    2016-10-01

    We report the in-plane thermoelectric properties of suspended (Bi1-xSbx)2Te3 nanoplates with x ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing p-type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at x ˜ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin Bi2Te3 nanoplates of comparable thickness and in the range of 0.2-0.7 W m-1 K-1 at room temperature.

  11. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo;

    2016-01-01

    -rate) using spark plasma sintering (SPS). The effects of SPS conditions on the anisotropic thermoelectric properties and microstructure evolutions were systematically investigated. The change of sintering temperature showed stronger influence than other sintering parameters to the resulting thermoelectric...

  12. Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices

    KAUST Repository

    Gupta, R. P.

    2009-08-13

    Sputtered Co is investigated as a suitable contact metal for bulk Bi2 (Te,Se) 3, and the results are compared to sputtered Ni. The coefficient of thermal expansion of Co matches that of bulk Bi 2 (Te,Se) 3 used in our study, and the compatible interface favors the selection of Co as a contact metal. Significant Ni diffusion into Bi2 (Te,Se) 3 was observed. In contrast, Co on Bi2 (Te,Se) 3 shows significantly less diffusion, even at anneal temperatures as high as 200°C. CoTe2 is the preferred phase that is formed. First principles calculations for Bi2 Te 3 support the experimental observation. © 2009 The Electrochemical Society.

  13. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.

    Science.gov (United States)

    Mun, Hyeona; Choi, Soon-Mok; Lee, Kyu Hyoung; Kim, Sung Wng

    2015-07-20

    Thermoelectrics, which transports heat for refrigeration or converts heat into electricity directly, is a key technology for renewable energy harvesting and solid-state refrigeration. Despite its importance, the widespread use of thermoelectric devices is constrained because of the low efficiency of thermoelectric bulk alloys. However, boundary engineering has been demonstrated as one of the most effective ways to enhance the thermoelectric performance of conventional thermoelectric materials such as Bi2 Te3 , PbTe, and SiGe alloys because their thermal and electronic transport properties can be manipulated separately by this approach. We review our recent progress on the enhancement of the thermoelectric figure of merit through boundary engineering together with the processing technologies for boundary engineering developed most recently using Bi2 Te3 -based bulk alloys. A brief discussion of the principles and current status of boundary-engineered bulk alloys for the enhancement of the thermoelectric figure of merit is presented. We focus mainly on (1) the reduction of the thermal conductivity by grain boundary engineering and (2) the reduction of thermal conductivity without deterioration of the electrical conductivity by phase boundary engineering. We also discuss the next potential approach using two boundary engineering strategies for a breakthrough in the area of bulk thermoelectric alloys.

  14. Comparative Study of Semiconductors Bismuth Iodate, Bismuth Triiodide and Bismuth Trisulphide Crystals

    Directory of Open Access Journals (Sweden)

    T.K. Patil

    2012-12-01

    Full Text Available In the present investigation, crystals of Bismuth Iodate[Bi(IO33], Bismuth Iodide[BiI3] and Bismuth- Tri Sulphide [Bi2S3] were grown by a simple gel technique using single diffusion method. The optimum growth conditions were established by varying various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of reactant etc. Gel was prepared by mixing sodium meta silicate (Na2SiO35H2O, glacial acetic acid (CH3COOH and supernant bismuth chloride (BiCl3 at pH value 4.4 and transferred in glass tube of diameter 2.5 cm and 25 cm in length. The mouth of test tube was covered by cotton plug and kept it for the setting. After setting the gel, it was left for aging. After 13 days duration the second supernant K(IO3, KI3 and H2S water gas solution was poured over the set gel by using pipette then it was kept undisturbed. After 72 hours of pouring the second supernatant, the small nucleation growth was observed at below the interface of gel. The good quality crystals of [Bi(IO33], [BiI3] and [Bi2S3] were grown. These grown crystals were characterized by XRD, FTIR, Chemical Analysis and Electrical Conductivity.

  15. New Layered Ternary Transition-Metal Tellurides

    Science.gov (United States)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  16. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  17. Structure of unsupported bismuth nanoparticles

    Science.gov (United States)

    Wurl, A.; Hyslop, M.; Brown, S. A.; Hall, B. D.; Monot, R.

    We present new results of electron diffraction experiments on unsupported nanometer-sized bismuth clusters. The high intensity cluster beam, necessary for electron diffraction, is provided by an inert-gas aggregation source. The cluster beam contains particles with average cluster sizes between 4.5 and 10 nm. When using Helium as a carrier gas we are able to observe a transition from crystalline clusters to a new structure, which we identify with that of amorphous or liquid clusters.

  18. Avalanche multiplication of electrons and holes in cadmium telluride

    CERN Document Server

    Demich, N V

    2001-01-01

    Determination of the ratio of the coefficients of the electrons and holes of the diode structures impact ionization is carried out with the purpose of optimizing the parameters of the avalanche diodes from the cadmium telluride. It is shown experimentally, that the process of the impact ionization in the cadmium telluride is stimulated by holes. The ratio of the coefficients of the holes and electrons impact ionization constitutes approx = 30-40

  19. Ranitidine bismuth citrate: A review

    Directory of Open Access Journals (Sweden)

    N Chiba

    2001-01-01

    Full Text Available Recognition of the relationship between Helicobacter pylori infection and the development of gastroduodenal disease has increased greatly in recent years. To avoid complications of H pylori infection, such as the development of recurrent duodenal and gastric ulcers, effective therapies are required for eradication of the infection. This article reviews ranitidine bismuth citrate (RBC, a novel complex of ranitidine, bismuth and citrate, which was developed specifically for the purpose of eradicating H pylori. Dual therapy with RBC in combination with clarithromycin for 14 days yields eradication rates of 76%. Triple therapy bid for one week with a proton pump inhibitor, clarithromycin and either amoxicillin or a nitroimidazole (tinidazole or metronidazole is advocated as the treatment of choice for H pylori eradication. Analogous regimens with RBC in place of proton pump inhibitors show effective eradication rates in comparative studies and with pooled data. RBC, used alone or in combination with other antibiotics, appears to be a safe and effective drug for the treatment of H pylori infection. Bismuth levels do not appear to rise to toxic levels.

  20. In vitro cytotoxicity of surface modified bismuth nanoparticles.

    Science.gov (United States)

    Luo, Yang; Wang, Chaoming; Qiao, Yong; Hossain, Mainul; Ma, Liyuan; Su, Ming

    2012-10-01

    This paper describes in vitro cytotoxicity of bismuth nanoparticles revealed by three complementary assays (MTT, G6PD, and calcein AM/EthD-1). The results show that bismuth nanoparticles are more toxic than most previously reported bismuth compounds. Concentration dependent cytotoxicities have been observed for bismuth nanoparticles and surface modified bismuth nanoparticles. The bismuth nanoparticles are non-toxic at concentration of 0.5 nM. Nanoparticles at high concentration (50 nM) kill 45, 52, 41, 34 % HeLa cells for bare nanoparticles, amine terminated bismuth nanoparticles, silica coated bismuth nanoparticles, and polyethylene glycol (PEG) modified bismuth nanoparticles, respectively; which indicates cytotoxicity in terms of cell viability is in the descending order of amine terminated bismuth nanoparticles, bare bismuth nanoparticles, silica coated bismuth nanoparticles, and PEG modified bismuth nanoparticles. HeLa cells are more susceptible to toxicity from bismuth nanoparticles than MG-63 cells. The simultaneous use of three toxicity assays provides information on how nanoparticles interact with cells. Silica coated bismuth nanoparticles can damage cellular membrane yet keep mitochondria less influenced; while amine terminated bismuth nanoparticles can affect the metabolic functions of cells. The findings have important implications for caution of nanoparticle exposure and evaluating toxicity of bismuth nanoparticles.

  1. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  2. Bismuth ions are metabolized into autometallographic traceable bismuth-sulphur quantum dots

    Directory of Open Access Journals (Sweden)

    M Stoltenberg

    2009-06-01

    Full Text Available Bismuth – sulphur quantum dots can be silver enhanced by autometallography (AMG. In the present study, autometallographic silver enhanced bismuth-sulphur nanocrystals were isolated from unfixed cryo-sections of kidneys and livers of rats exposed to bismuth (Bi207 subnitrate. After being subjected to AMG all the organic material was removed by sonication and enzymatic digestion and the silver enhanced Bi- S quantum dots spun down by an ultracentrifuge and analyzed by scintillation. The analysis showed that the autometallographic technique traces approximately 94% of the total bismuth. This implies that the injected bismuth is ultimately captured in bismuthsulphur quantum dots, i.e., that Bi-S nanocrystals are the end product of bismuth metabolism

  3. The Archaean gold-telluride-sulphide and gold-telluride mineralisation of a multiple stage hydrothermal vein deposit at the Commoner Mine, Zimbabwe

    International Nuclear Information System (INIS)

    The Commoner Mine is situated on the western edge of the Midlands greenstone belt, 50 km west-southwest of Kadoma, Zimbabwe. Current geological interest in this deposit was initiated by the presence of coarse grained telluride minerals in ore exposed on 21 level in 1978. The deposit is a hydrothermal quartz-calcite vein. It was found that coarse grained gold-silver tellurides fill fractures which transect the telluride breccia. Comparison of the physical and mineralogical characteristics of the Commoner orebody with those of the Tertiary gold-telluride deposits of the Circum Pacific Belt and the Archaean deposits of Canada and Australia indicates that this mineralisation was probably deposited in a near-surface environment. It was found that the gold-telluride ores of the Commoner Mine display features characteristic of both plutonic-hydrothermal and volcanic-hydrothermal styles of telluride mineralisation

  4. Preparation of Strontium Bismuth Tantalum (SBT) Fine Powder by Sol-Gel Process Using Bismuth Subnitrate as Bismuth Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Strontium bismuth tantalum (SBT) fine power was prepared by Sol-Gel method. Pentaethoxy tantalum, strontium acetate and bismuth subnitrate were used as raw materials, and were dissolved in proper order in ethylene glycol to form transparent sol. The mixed precursor was dried at 80°C and annealed at 800°C for 1 h. Crystallized nanometer sized SBT fine powder was obtained and characterized by XRD.

  5. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators

    International Nuclear Information System (INIS)

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb1-xCaxTe were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric properties remain

  6. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    M P Singh; C M Bhandari

    2004-06-01

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the degrading effect of minority carrier conduction. Lead telluride is among the best-known materials for use in the temperature range 400—900 K. This paper presents a detailed theoretical investigation of the role of minority carriers in degrading the thermoelectric properties of lead telluride and outlines the temperature range for optimal performance.

  7. Electrochemical properties of porous bismuth electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Romann, T., E-mail: tavo.romann@ut.e [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Lust, E. [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-08-01

    The properties of Bi surfaces with different roughnesses were characterized by electron microscopy, cyclic voltammetry, and impedance spectroscopy. Two different strategies were used for preparation of porous bismuth layers onto Bi microelectrode surface in aqueous 0.1 M LiClO{sub 4} solution. Firstly, treatment at potential E < -2 V (vs. Ag|AgCl in sat. KCl) has been applied, resulting in bismuth hydride formation and decomposition into Bi nanoparticles which deposit at the electrode surface. Secondly, porous Bi layer was prepared by anodic dissolution (E = 1 V) of bismuth electrode followed by fast electroreduction of formed Bi{sup 3+} ions at cathodic potentials E = -2 V. The nanostructured porous bismuth electrode, with surface roughness factor up to 220, has negligible frequency dispersion of capacitance and higher hydrogen evolution overvoltage than observed for smooth Bi electrodes.

  8. Thermoelectric properties of pressed bismuth nanoparticles

    Science.gov (United States)

    Hostler, Stephen R.; Qu, Yu Qiao; Demko, Michael T.; Abramson, Alexis R.; Qiu, Xiaofeng; Burda, Clemens

    2008-03-01

    Theory predicts a substantial increase in the dimensionless figure of merit as the dimensionality and characteristic size of a material are decreased. We explore the use of bismuth nanoparticles pressed into pellets as potential increased efficiency thermoelectric materials. The figure of merit of these pellets is determined by independently measuring the electrical conductivity, thermal conductivity and Seebeck coefficient. The results from the nanoparticle sample are compared to microparticle-based samples. Both sample types show a slight reduction in thermal conductivity relative to bulk bismuth and a Seebeck coefficient near or slightly larger in magnitude than bulk bismuth. These changes are dwarfed by a hundred-fold decrease in the electrical conductivity due to porosity and an oxide layer on the particles. The low conductivity leads to figures of merit at least two orders of magnitude smaller than bulk bismuth. Oxide layer removal and reduced pellet porosity will be required to increase the figure of merit.

  9. Thin films and solar cells of cadmium telluride and cadmium zinc telluride

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C.S.

    1991-01-01

    The objectives of this dissertation are to investigate (1) the metalorganic chemical vapor deposition (MOCVD) and properties of cadmium telluride (CdTe) and cadmium zinc telluride (Cd(1-x)Zn(z)Te) films and junctions, and their potential application to solar cells, and (2) the fabrication and characterization of CdTe solar cells by the close spaced sublimation (CSS) technique. CdTe and Cd(1-x)Zn(x)Te films have been deposited by MOCVD on a variety of substrates at 300-400 C.The effect of the deposition parameters and post deposition heat treatments on the electrical, optical, and structural properties have been investigated. Heterojunctions of the configuration CdTe/transparent conducting semiconductor (TCS) and Cd(1-x)Zn(x)Te/TCS have been prepared and characterized. CdTe(MOCVD)/CdS and Cd(1-x)Zn(x)Te(E sub g = 1.65eV)/Cd(1-x)Zn(x)S solar cells with efficiencies of 9.9 percent and 2.4 percent, respectively have been fabricated. The as-deposited CdTe(MOCVD)/CdS junctions exhibited high dark current densities due to deflects at the interface associated with small grain size. No effective post-deposition heat treatment has been developed. CdTe/CdS solar cells have also been fabricated by the close spaced sublimation (CSS). Significant improvements in material and processing have been made, and in collaboration with fellow researchers an AM1.5 conversion efficiency of 13.4 percent has been demonstrated, the highest efficiency ever measured for such devices. The highest conversion efficiency for the CdTe(CSS)/CdS solar cell was achieved by reaching high open-circuit voltages and fill factors, while the short-circuit current densities were moderate. These results indicate that further improvements to increase the short-circuit current densities can result in conversion efficiencies over 15 percent.

  10. Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode.

    Science.gov (United States)

    Lee, Gyoung-Ja; Kim, Chang Kyu; Lee, Min Ku; Rhee, Chang Kyu

    2010-12-15

    Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode has been investigated using square-wave anodic stripping voltammetry technique, scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectroscopy. From the analyses of square-wave anodic stripping voltammograms (SWASV) repetitively measured on the nano-bismuth fixed electrode, it was found that the oxidation peak currents dropped by 81%, 68% and 59% for zinc, cadmium and lead, respectively, after the 100th measurement (about 400 min of operation time). The sphere bismuth nanoparticles gradually changed to the agglomerates with petal shape as the operation time increased. From the analyses of SEM images and XRD patterns, it is confirmed that the oxidation of Bi into BiOCl/Bi(2)O(2)CO(3) and the agglomeration of bismuth nanoparticles caused by the phase change decrease a reproducibility of the stripping voltammetric response. Moreover, most of the bismuth becomes BiOCl at pH 3.0 and bismuth hydroxide, Bi(OH)(3) at pH 7.0, which results in a significant decrease in sensitivity of the nano-bismuth fixed electrode.

  11. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    Science.gov (United States)

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  12. Understanding the Meaning of the Entrance Image: The Telluride Process.

    Science.gov (United States)

    Garnham, Harry L.; Garnham, Penny

    1989-01-01

    Describes a project to define the images of Telluride (Colorado) held by its residents and tourists and contributing to sense of place. Discusses the design of the town's entry points and efforts to maintain their visual environments in harmony with the town's defined character during ongoing community development. (SV)

  13. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    Science.gov (United States)

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content. PMID:27192231

  14. Burnout current density of bismuth nanowires

    Science.gov (United States)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  15. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)

    2013-07-01

    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  16. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    CERN Document Server

    Wisniewski, Eric; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  17. The Cadmium Zinc Telluride Imager on AstroSat

    CERN Document Server

    Bhalerao, V; Vibhute, A; Pawar, P; Rao, A R; Hingar, M K; Khanna, Rakesh; Kutty, A P K; Malkar, J P; Patil, M H; Arora, Y K; Sinha, S; Priya, P; Samuel, Essy; Sreekumar, S; Vinod, P; Mithun, N P S; Vadawale, S V; Vagshette, N; Navalgund, K H; Sarma, K S; Pandiyan, R; Seetha, S; Subbarao, K

    2016-01-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZT's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to > 200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17' over a 4.6 deg x 4.6 deg (FWHM) field of view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarisation above ~100 keV, with exciting possibilities for polarisation studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  18. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. [University of South Florida, Tampa, FL (United States)

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  19. Transient Response of Cadmium Telluride Modules to Light Exposure: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; del Cueto, J.; Albin, D. S.; Petersen, C.; Tyler, L.; TamizhMani, G.

    2011-07-01

    Commercial cadmium telluride (CdTe) photovoltaic (PV) modules from three different manufacturers were monitored for performance changes during indoor and outdoor light-exposure. Short-term transients in Voc were recorded on some modules, with characteristic times of ~1.1 hours. Outdoor performance data shows a similar drop in Voc after early morning light exposure. Preliminary analysis of FF changes show light-induced changes on multiple time scales, including a long time scale.

  20. Bismuth titanate nanorods and their visible light photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-02-15

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi{sub 2}Ti{sub 2}O{sub 7} phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi{sub 2}Ti{sub 2}O{sub 7} phase are a promising candidate as a visible light photocatalyst.

  1. Harnessing Topological Band Effects in Bismuth Telluride Selenide for Large Enhancements in Thermoelectric Properties through Isovalent Doping.

    Science.gov (United States)

    Devender; Gehring, Pascal; Gaul, Andrew; Hoyer, Alexander; Vaklinova, Kristina; Mehta, Rutvik J; Burghard, Marko; Borca-Tasciuc, Theodorian; Singh, David J; Kern, Klaus; Ramanath, Ganpati

    2016-08-01

    Dilute isovalent sulfur doping simultaneously increases electrical conductivity and Seebeck coefficient in Bi2 Te2 Se nanoplates, and bulk pellets made from them. This unusual trend at high electron concentrations is underpinned by multifold increases in electron effective mass attributable to sulfur-induced band topology effects, providing a new way for accessing a high thermoelectric figure-of-merit in topological-insulator-based nanomaterials through doping.

  2. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    International Nuclear Information System (INIS)

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe3+ and Bi3+ valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi0 valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  3. Effect of Lipophilic Bismuth Nanoparticles on Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rene Hernandez-Delgadillo

    2015-01-01

    Full Text Available Lipophilic bismuth dimercaptopropanol nanoparticles (BisBAL NPs have a very important antimicrobial activity; however their effect on human cells or tissues has not been completely studied. Undesirable effects of bismuth include anemia which could result from suicidal erythrocyte death or eryptosis. The objective of this research was to determine the effect of bismuth dimercaptopropanol nanoparticles on blood cells. The nanoparticles are composed of 53 nm crystallites on average and have a spherical structure, agglomerating into clusters of small nanoparticles. Based on cell viability assays and optical microscopy, cytotoxicity on erythrocytes was observed after growing with 500 and 1000 µM of BisBAL NPs for 24 h. AM Calcein was retained inside erythrocytes when they were exposed to 100 µM (or lower concentrations of BisBAL NPs for 24 h, suggesting the absence of damage in plasmatic membrane. Genotoxic assays revealed no damage to genomic DNA of blood cells after 24 h of exposition to BisBAL NPs. Finally, 100–1000 µM of bismuth nanoparticles promotes apoptosis between blood cells after 24 h of incubation. Hence BisBAL NPs at concentrations lower than 100 µM do not cause damage on blood cells; they could potentially be used by humans without affecting erythrocytes and leukocytes.

  4. Predeposition ultraviolet treatment for adhesion improvement of thin films on mercury cadmium telluride

    International Nuclear Information System (INIS)

    Poor film adhesion to mercury cadmium telluride is a problem of general concern because of the low film deposition temperatures (11 cm-2 and slow interface state densities of 4x1010 cm-2 were obtained at 100 K for aluminum nitiride/mercury cadmium telluride metal-insulator-semiconductor structures which had undergone the treatment

  5. Bismuth( Ⅲ ) Salts: Green Catalysts for Organic Transformations

    Institute of Scientific and Technical Information of China (English)

    C. Le Roux

    2005-01-01

    @@ 1Introduction Bismuth, the heaviest stable element in the periodic table, stands out from other heavy elements (such as mercury, thallium and lead) due to its relatively non-toxic character which confers on bismuth the enviable status of being an eco-friendly element. Therefore, bismuth and its compounds hold considerable promise as useful catalysts for green chemistry. The research presented in this communication is devoted to the applications of bismuth( Ⅲ ) salts as catalysts for organic transformations.After some general comments about bismuth and a short presentation of the various applications of bismuth( Ⅲ ) salts in organic synthesis, this communication will focus on the works done in our research group during the last several years which deals mainly with electrophilic substitutions. When appropriate, some mechanistic details will be given.

  6. Electroanalysis of organic compounds at bismuth electrodes: a short review

    OpenAIRE

    Lezi, Nikolitsa; Vyskočil, Vlastimil; Economou, Anastasios; Barek, Jiří

    2012-01-01

    Over the last twelve years, it has been demonstrated that bismuth electrodes have comparable electroanalytical performance to mercury electrodes in the negative potential range. Since the toxicicty of bismuth is lower than that of mercury, bismuth can serve as an alternative “green” electrode material to mercury. However, the great majority of published work at bismuth–based electrodes is concerned with the determination of trace metals by voltammetric techniques with only few applications de...

  7. The photocorrosion of n-cadmium telluride and its suppression

    Science.gov (United States)

    Curran, J. S.

    1980-09-01

    The photoelectrochemical properties of n-type cadmium telluride were studied in water and five other organic solvents, with a view to suppression of the photocorrosion reaction which prevents this and other n-type small bandgap semiconductors from being used in a practical semiconductor-electrolyte junction solar cell. Only the low donicity organic solvents propylene carbonate and methyl nitrate reduce the corrosion rate significantly. A stable photocurrent can be obtained using a solution of ferrocene in these two solvents but analysis of photoelectrolyzed solutions revealed a slow photocorrosion. The dependence of the flatband potential and of the practical significance with respect to solar cell applications considered.

  8. An evaluation of cadmium telluride detectors for computer assisted tomography.

    Science.gov (United States)

    Chu, D; Kaufman, L; Hosier, K; Hoenninger, J

    1978-11-01

    Cadmium telluride (CdTe) presents a set of extremely attractive features as an X-ray detector for computer assisted tomography (CAT). It is stable and easily handled; has a high detection efficiency and very efficient conversion of energy to charge; and permits a high element density in a compact configuration. Unfortunately, effects due to "polarization," "tailing," high and variable leakage currents, and long "memory" are incompatible with the needs of CAT instrumentation. Pulse-processing techniques have allowed us to eliminate these problems in positive-sensitive detectors, thus opening the way for utilization of CdTe in CAT. PMID:711945

  9. Surface Passivation of Mercury-Cadmium-Telluride Infrared Detectors

    Directory of Open Access Journals (Sweden)

    R. Singh

    1991-07-01

    Full Text Available The theoretical considerations and practical aspects of passivating insulator films, in the context of their use on high-performance mercury cadmium telluride (MCT infrared detectors are reviewed. The methods of growth, the interface properties and the applications of both native and deposited passivant films have been discussed. Native films include anodic, chemical, photochemical, and plasma oxides as well as anodic sulphides and fluoro-oxides. Deposited films include ZnS, photo-CVD-grown SiO2, CDTe, and SiN/sub x/. The properties of all these passivant films on MCT have been summarized.

  10. Study of rectification at the metal-cadmium telluride contact

    International Nuclear Information System (INIS)

    The barrier heights at the contact between metals and N or P type cadmium telluride have been determined. Various surface treatments have been used for the semiconductor: lapping, polishing and etching in a bromine in methanol solution. Depending on these preparation differences of about 0.1 eV have been observed for the barrier height which in any case was no more than 0.9 - 1.0 eV. These results can not be explained by only considering the Schottky theory of rectification

  11. Origin of anomalous anharmonic lattice dynamics of lead telluride

    CERN Document Server

    Shiga, Takuma; Hori, Takuma; Delaire, Olivier; Shiomi, Junichiro

    2015-01-01

    The origin of the anomalous anharmonic lattice dynamics of lead telluride is investigated using molecular dynamics simulations with interatomic force constants (IFCs) up to quartic terms obtained from first principles. The calculations reproduce the peak asymmetry of the radial distribution functions and the double peaks of transverse optical phonon previously observed with neutron diffraction and scattering experiments. They are identified to be due to the extremely large nearest-neighbor cubic IFCs in the [100] direction. The outstanding strength of the nearest-neighbor cubic IFCs relative to the longer-range ones explains the reason why the distortion in the radial distribution function is local.

  12. Magnetoconductance fluctuations in open bismuth quantum dots

    Science.gov (United States)

    Hackens, B.; Minet, J. P.; Farhi, G.; Crahay, A.; Faniel, S.; Gustin, C.; Bayot, V.

    2002-03-01

    We investigate the low temperature (300 mK - 10 K) magnetoconductance of open circular bismuth quantum dots (diameter: 500 nm). The structures are fabricated using a combination of electron beam lithography, lift off and plasma etching techniques on bismuth thin films evaporated on heated SiO2 substrates. We observe reproducible magnetoconductance fluctuations (UCFs) up to 5T, qualitatively similar to conductance fluctuations evidenced in open quantum dots patterned in high mobility semiconductor heterostructures. In our samples, UCFs are superposed on a slowly varying negative magnetoconductance background. We also observe a sharp conductance maximum centered in B=0, which is reminescent of the spin-orbit induced anti-localisation phenomenon. The behavior of UCFs and of the conductance maximum is discussed as a function of the temperature, thickness and degree of cristallinity of the cavity.

  13. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  14. Influence of bismuth content on viscosity of lead-bismuth alloy

    International Nuclear Information System (INIS)

    In this paper, viscosities of Pb44.5 Bi55.5 (LBE), Pb60 Bi40, Pb70 Bi30, Pb80 Bi20 and Pb are studied in a certain temperature range above liquidus, the results show that the viscosities of five melts decrease with the increase of temperature. Excepting for pure Pb, anomalous changes in the viscosity values are found in LBE, Pb60 Bi40, Pb70 Bi30 and Pb80 Bi20 in the test temperature range, it is presumed that melts structure occurs at the anomalous point of the viscosity. In the temperature range of 623∼923 K, viscosity value of Pb60 Bi40 is obviously higher than that of the other proportion of lead bismuth alloy, and it increases with the decrease of bismuth content at temperature above 1023 K. The experimental results provide data support for the choice of lead-bismuth hypoeutectic applied in advanced nuclear reactor. (authors)

  15. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Robert N.; Stark, Wendelin J. [Institute for Chemical and Bioengineering, ETH Zuerich (Switzerland)], E-mail: wendelin.stark@chem.ethz.ch

    2006-10-15

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.

  16. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  17. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  18. Abnormal physics of group-II telluride system:valence contribution of d electrons

    Institute of Scientific and Technical Information of China (English)

    Duan He; Dong You-Zhong; Huang Yan; Chen Xiao-Shuang

    2011-01-01

    The physical trend of group-II tellurides is unexpected and contrary to the conventional wisdom. The present firstprinciples calculations give fundamental insights into the extent to which group-II telluride compounds present special properties upon mixing the d valence character.Our results provide explanations for the unexpected experimental observations based on the abnormal binding ordering of metal d electrons and their strong perturbation to the band edge states. The insights into the binary tellurides are useful for the study and control of the structural and chemical perturbation in their ternary alloys and heterostructures.

  19. Effect of metallic coatings on thermoelectric properties of lead telluride films

    Energy Technology Data Exchange (ETDEWEB)

    Ukhlinov, G.A.; Lakhno, I.G. (Moskovskij Inst. Ehlektronnoj Tekhniki (USSR))

    1984-05-01

    Effect of sprayed coatings of different metals on thermoelectric properties of lead telluride films was investigated. The basic films were prepared by the method of vacuum thermal evaporation of sample of stoichiometric lead telluride at 5x10/sup -4/ Pa residual pressure on mica (muscovite) sublayer at 330-350 deg C and approximately 10 nm/s deposition rate. It was established that fine coatings of copper, silver and gold modify sufficiently electric properties of lead telluride films. The effect is conditioned mainly by decoration and electric shunting of grain boundaries by metal island, which removes the contribution of grain boundaries to film electric conductivity.

  20. Optical spectroscopy of Bismuth-doped pure silica fiber preform

    OpenAIRE

    Razdobreev, Igor,; El Hamzaoui, Hicham; Ivanov, V. Yu; Kustov, E. F.; Capoen, Bruno; Bouazaoui, Mohamed

    2010-01-01

    International audience We report on the optical spectroscopy of monolithic fiber preform prepared from nanoporous bismuth-doped silica glass. The experiments reveal the existence of at least two different types of active centers and clearly demonstrate that the presence in the glass matrix of other dopant is not necessary to obtain the near-IR photoluminescence connected to Bismuth.

  1. Hall-Effect Thruster Utilizing Bismuth as Propellant

    Science.gov (United States)

    Szabo, James; Gasdaska, Charles; Hruby, Vlad; Robin, Mike

    2008-01-01

    A laboratory-model Hall-effect spacecraft thruster was developed that utilizes bismuth as the propellant. Xenon was used in most prior Hall-effect thrusters. Bismuth is an attractive alternative because it has a larger atomic mass, a larger electron-impact-ionization cross-section, and is cheaper and more plentiful.

  2. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jasmine B. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Garje, Shivram S., E-mail: ssgarje@chem.mu.ac.in [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Nuwad, Jitendra; Pillai, C.G.S. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-08-15

    Two different phase pure materials (Bi{sub 2}S{sub 3} and Bi{sub 2}P{sub 4}O{sub 13}) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi(S{sub 2}P(OR){sub 2}){sub 3} [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr{sup n}) (3) and iso-Propyl (Pr{sup i}) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi{sub 2}P{sub 4}O{sub 13}) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi{sub 2}P{sub 4}O{sub 13} thin films were also carried out. - Graphical abstract: Solvothermal decomposition of bismuth(III) dialkyldithiophosphates in ethylene glycol gave Bi{sub 2}S{sub 3} nanoparticles, whereas aerosol assisted chemical vapor deposition of these single source precursors deposited Bi{sub 2}P{sub 4}O{sub 13} thin films. Display Omitted - Highlights: • Preparation of phase pure orthorhombic Bi{sub 2}S{sub 3} nanorods and monoclinic Bi{sub 2}P{sub 4}O{sub 13} thin films. • Use of single source precursors for deposition of bismuth phosphate thin films. • Use of solvothermal decomposition and AACVD methods. • Morphology controlled synthesis of Bi{sub 2}P{sub 4}O{sub 13} thin films. • Bi{sub 2}S{sub 3} nanorods and Bi{sub 2}P{sub 4}O{sub 13} thin films using same single source precursors.

  3. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  4. Optical properties of thermally evaporated cadmium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, U.P.; Bhavsar, D.S.; Vaidya, R.U.; Bhavsar, G.P

    2003-05-26

    Polycrystalline CdTe films have been deposited onto glass substrates at 373 K by vacuum evaporation technique. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 200-2500 nm. The dependence of absorption coefficient, {alpha} on the photon energy have been determined. Analysis of the result showed that for CdTe films of different thicknesses, direct transition occurs with band gap energies in the range 1.45-1.52 eV. Refractive indices and extinction coefficients have been evaluated in the above spectral range. The XRD analysis confirmed that CdTe films are polycrystalline having hexagonal structure. The lattice parameters of thin films are almost matching with the JCPDS 82-0474 data for cadmium telluride.

  5. Mercury Cadmium Telluride Photoconductive Long Wave Infrared Linear Array Detectors

    Directory of Open Access Journals (Sweden)

    Risal Singh

    2003-07-01

    Full Text Available Mercury cadmium telluride (Hg1-x, CdxTe (MCT photoconductive long wave infrared linear arrays are still in demand due to several advantages. The linear array technology is well established, easier, economical and is quite relevant to thermal imaging even today. The scan thermal imaging systems based on this technology offer wider field of view coverage and capacity for higher resolution in the scan direction relative to staring systems that use expensive and yet to mature focal plane array detector technology. A critical review on photoconductive n-Hg1-x CdxTe linear array detector technology for the long wave infrared range has been presented. The emphasis lies on detector design and processing technology. The critical issues of diffusion and drift effects, Hi-Lo and heterostructure blocking contacts, surface passivation, and other related aspects have been considered from the detector design angle. The device processing technology aspects are of vital importance

  6. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  7. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  8. Tunable split-ring resonators using germanium telluride

    Science.gov (United States)

    Kodama, C. H.; Coutu, R. A.

    2016-06-01

    We demonstrate terahertz (THz) split-ring resonator (SRR) designs with incorporated germanium telluride (GeTe) thin films. GeTe is a chalcogenide that undergoes a nonvolatile phase change from the amorphous to crystalline state at approximately 200 °C, depending on the film thickness and stoichiometry. The phase change also causes a drop in the material's resistivity by six orders of magnitude. In this study, two GeTe-incorporated SRR designs were investigated. The first was an SRR made entirely out of GeTe and the second was a gold SRR structure with a GeTe film incorporated into the gap region of the split ring. These devices were characterized using THz time-domain spectroscopy and were heated in-situ to determine the change in the design operation with varying temperatures.

  9. Study of oxide films on the surface of cadmium telluride

    International Nuclear Information System (INIS)

    Study of oxide films on surfaces of CdTe monocrystals is continued by methods of ellipsometry and by absorption in IR-spectral range. Index values of refruction of oxide films, produced by cadmium telluride oxidation in hydrogen peroxide solutions, in oxigen flow at 673 K and by anode oxidation, as a rule, differ essentially in dependence on method of production, that gives evidence of differences in these films composition. Oxide films, produced in oxygen flow, as opposed to films, produced by two other methods, have intensive absorption, characteristic for tellurite group. Film thickness, produced by oxidation in hydrogen peroxide and in oxygen flow, varies within rather wide limits with observance of externally similar conditions of production. By contrast to it, thickness of anode films is regulated reliably by anode potential

  10. Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact

    Science.gov (United States)

    Mount, Michael; Duarte, Fernanda; Paudel, Naba; Yan, Yanfa; Wang, Weining

    Cadmium Telluride (CdTe) solar cell is one of the most promising thin film solar cells and its highest efficiency has reached 21%. To keep improving the efficiency of CdTe solar cells, a few issues need to be addressed, one of which is the back contact. The back contact of CdTe solar cells are mostly Cu-base, and the problem with Cu-based back contact is that Cu diffuses into the grain boundary and into the CdS/CdTe junction, causing degradation problem at high temperature and under illumination. To continue improving the efficiency of CdTe/CdS solar cells, a good ohmic back contact with high work function and long term stability is needed. In this work, we report our studies on the potential of conducting polymer being used as the back contact of CdTe/CdS solar cells. Conducting polymers are good candidates because they have high work functions and high conductivities, are easy to process, and cost less, meeting all the requirements of a good ohmic back contact for CdTe. In our studies, we used poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with different conductivities and compared them with traditional Cu-based back contact. It was observed that the CdTe solar cell performance improves as the conductivity of the PEDOT:PSS increase, and the efficiency (9.1%) is approaching those with traditional Cu/Au back contact (12.5%). Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact.

  11. Electron Paramagnetic Resonance Study of Thermally Treated Bismuth Subgallate

    Directory of Open Access Journals (Sweden)

    Paweł Ramos

    2014-01-01

    Full Text Available Complex of bismuth, an anti-inflammatory drug, was studied by EPR spectroscopy. The aim of this study was to determine concentrations and properties of free radicals formed during thermal sterilization of bismuth subgallate according to pharmacopoeia norms to optimize its sterilization process. Different temperatures (160°C, 170°C, and 180°C and times (120 minutes, 60 minutes, and 30 minutes of sterilization were used. Interactions of bismuth subgallate with DPPH, the model free radical reference, were checked. g-Factors, amplitudes (A, integral intensities (I, and linewidths (ΔBpp were obtained. Integral intensities were obtained by double integration of the first-derivative EPR lines. The influence of microwave power in the range of 2.2–70 mW on shape and parameters of the EPR spectra was examined. Thermal sterilization produced free radicals in bismuth subgallate in all tested cases. Strong interactions with free radicals were pointed out for all the analysed samples containing bismuth independent of sterilization conditions. Optimal conditions of thermal sterilization for bismuth subgallate with the lowest free radical formation are temperature 170°C and time of heating 60 minutes. Strong dipolar interactions exist in thermally sterilized bismuth subgallate. EPR spectroscopy is a useful method of examination of thermal sterilization conditions.

  12. Determining the background levels of bismuth in tissues of wild game birds: a first step in addressing the environmental consequences of using bismuth shotshells.

    Science.gov (United States)

    Jayasinghe, R; Tsuji, L J S; Gough, W A; Karagatzides, J D; Perera, D; Nieboer, E

    2004-11-01

    Bismuth shotshells have been approved as a "nontoxic" alternative to lead in North America. Approval was based on a limited number of studies; even background levels of bismuth in wildfowl were unknown. We report on the concentration of bismuth (and lead) in muscle and liver tissues of wildfowl (Anas platyrhynchos, Anas acuta, Anas crecca, Branta canadensis, Chen caerulescens) harvested with lead shotshell. Average liver-bismuth levels detected in the present study (e.g., teal, 0.05 microg/g dw; mallard, 0.09 microg/g dw) suggest analytical error in other studies examining the effects of bismuth in birds. Significant positive relationships between bismuth- and lead-tissue levels for muscle when all species were combined (and for B. canadensis and C. caerulescens separately) can be explained by noting that bismuth is a contaminant of lead. Thus, more research is recommended to confirm the appropriateness of bismuth as a "nontoxic" shot alternative.

  13. Hierarchical bismuth phosphate microspheres with high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Lizhai; Wei, Tian; Lin, Nan; Yu, Haiyun [Anhui University of Technology, Ma' anshan (China). Key Laboratory of Materials Science and Processing of Anhui Province

    2016-05-15

    Hierarchical bismuth phosphate microspheres have been prepared by a simple hydrothermal process with polyvinyl pyrrolidone. Scanning electron microscopy observations show that the hierarchical bismuth phosphate microspheres consist of nanosheets with a thickness of about 30 nm. The diameter of the microspheres is about 1 - 3 μm. X-ray diffraction analysis shows that the microspheres are comprised of triclinic Bi{sub 23}P{sub 4}O{sub 44.5} phase. The formation of the hierarchical microspheres depends on polyvinyl pyrrolidone concentration, hydrothermal temperature and reaction time. Gentian violet acts as the pollutant model for investigating the photocatalytic activity of the hierarchical bismuth phosphate microspheres under ultraviolet-visible light irradiation. Irradiation time, dosage of the hierarchical microspheres and initial gentian violet concentration on the photocatalytic efficiency are also discussed. The hierarchical bismuth phosphate microspheres show good photocatalytic performance for gentian violet removal in aqueous solution.

  14. Bismuth electrodes, an alternative in stripping voltammetry

    International Nuclear Information System (INIS)

    The heavy metals are known as highly toxic contaminants, the processes carried out in industry contribute that finally they remain dispersed in effluents and sewage, doing part of the food chain. The importance of controlling the levels of these heavy metals has become an international policy, so it has generated interest in developing new analytical methodologies for its determination [1, 2, 3, 4]. The stripping voltammetry has been considered as a family of electro-sensitive analytical techniques useful for the determination of trace levels of many metals in environmental, clinical and industrial samples [3, 4]. This work presents an overview of these bismuth-based electrodes which were introduced around 2000, which have interesting characteristics for detection of heavy metals and which represent an alternative to mercury electrodes

  15. Bismuth electrodes, an alternative in stripping voltammetry

    Science.gov (United States)

    Barón-Jaimez, J.; Joya, M. R.; Barba-Ortega, J.

    2013-11-01

    The heavy metals are known as highly toxic contaminants, the processes carried out in industry contribute that finally they remain dispersed in effluents and sewage, doing part of the food chain. The importance of controlling the levels of these heavy metals has become an international policy, so it has generated interest in developing new analytical methodologies for its determination [1, 2, 3, 4]. The stripping voltammetry has been considered as a family of electro-sensitive analytical techniques useful for the determination of trace levels of many metals in environmental, clinical and industrial samples [3, 4]. This work presents an overview of these bismuth-based electrodes which were introduced around 2000, which have interesting characteristics for detection of heavy metals and which represent an alternative to mercury electrodes.

  16. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  17. Electron cooling and Debye-Waller effect in photoexcited bismuth

    OpenAIRE

    Arnaud, B.; Giret, Y.

    2012-01-01

    By means of first principles calculations, we computed the effective electron-phonon coupling constant $G_0$ governing the electron cooling in photoexcited bismuth. $G_0$ strongly increases as a function of electron temperature, which can be traced back to the semi-metallic nature of bismuth. We also used a thermodynamical model to compute the time evolution of both electron and lattice temperatures following laser excitation. Thereby, we simulated the time evolution of (1 -1 0), (-2 1 1) and...

  18. Melting and solidification of bismuth inclusions in aluminium

    DEFF Research Database (Denmark)

    Thoft, N.B.; Bohr, J.; Buras, B.;

    1995-01-01

    Supercooling of crystalline bismuth inclusions in aluminium crystals has been observed and studied with different techniques: x-ray diffraction, in situ Rutherford backscattering/channelling spectrometry and transmission electron microscopy. The results of the measurements with different experime......Supercooling of crystalline bismuth inclusions in aluminium crystals has been observed and studied with different techniques: x-ray diffraction, in situ Rutherford backscattering/channelling spectrometry and transmission electron microscopy. The results of the measurements with different...

  19. Piezoelectric bismuth titanate ceramics for high temperature applications

    OpenAIRE

    Shulman, Holly Sue; Setter, Nava

    2005-01-01

    Bismuth titanate (Bi4Ti3O12) shows promise in piezoelectric applications in a temperature range (300-600 °C) which is not well served by standard piezoelectric ceramics. The proposal to use bismuth titanate ceramics for these applications has a major flaw, namely that the high electrical conductivity precludes the efficient polarization of these materials in an electric field. The degree of polarization is critical since it is directly related to the piezoelectric response. In addition, once ...

  20. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shiv Prakash; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Central Glass and Ceramic Research Institute (CSIR, India), Glass Science and Technology Section, Glass Division (India)

    2011-09-15

    In this study, in situ control growth of bismuth nanoparticles (Bi{sup 0} NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2-8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4-9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 Degree-Sign C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  1. Studies on bismuth carboxylates—synthesis and characterization of a new structural form of bismuth(III) dipicolinate

    Indian Academy of Sciences (India)

    O Anjaneyulu; K C Kumara Swamy

    2011-03-01

    Synthesis and X-ray structure of a new bismuth dipicolinate cooordination polymer, {[Bi((2,6-O2C)2C5H3N)((2-HO2C-6-O2C)C5H3N)(H2O)]2.5H2O} (7) are presented. Compound 7 has dimeric units with a Bi2O2 skeleton that are linked by additional weak Bi-O interactions leading to a polymeric structure. The overall coordination number at bismuth is 9 [two Bi-N and seven Bi-O bonds]. New routes to a second crystalline modification (4′) of the previously reported coordination polymer, bismuth tris(picolinate), [Bi(2-O2C-C5H4N)3] (4), are described; bond parameters in the two crystalline forms (4 and 4′) are compared. In both the compounds 4′ and 7, bismuth has a distorted tricapped trigonal prismatic geometry.

  2. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    International Nuclear Information System (INIS)

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs

  3. Brief review of cadmium telluride-based photovoltaic technologies

    Science.gov (United States)

    Başol, Bülent M.; McCandless, Brian

    2014-01-01

    Cadmium telluride (CdTe) is the most commercially successful thin-film photovoltaic technology. Development of CdTe as a solar cell material dates back to the early 1980s when ˜10% efficient devices were demonstrated. Implementation of better quality glass, more transparent conductive oxides, introduction of a high-resistivity transparent film under the CdS junction-partner, higher deposition temperatures, and improved Cl-treatment, doping, and contacting approaches yielded >16% efficient cells in the early 2000s. Around the same time period, use of a photoresist plug monolithic integration process facilitated the demonstration of the first 11% efficient module. The most dramatic advancements in CdTe device efficiencies were made during the 2013 to 2014 time frame when small-area cell conversion efficiency was raised to 20% range and a champion module efficiency of 17% was reported. CdTe technology is attractive in terms of its limited life-cycle greenhouse gas and heavy metal emissions, small carbon footprint, and short energy payback times. Limited Te availability is a challenge for the growth of this technology unless Te utilization rates are greatly enhanced along with device efficiencies.

  4. Review of the field performance of one cadmium telluride module

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, J.A. del [National Renewable Energy Lab., Golden, CO (United States)

    1998-12-01

    Performance data gathered in situ from a large-area cadmium telluride (CdTe) thin-film photovoltaic (PV) module that has been deployed outdoors since February 1995 are investigated. It appears that the module's performance has been stable over the last 2 years but it exhibits a semi-cyclical variation whereby the efficiency appears to peak between the autumnal equinox and winter solstice. Analyses are performed that dissect module current-voltage parameters by irradiance and examine their dependence on temperature. The temperature coefficient of the efficiency is quite small and negative from 80% of 1-sun intensity and upwards. Its meager value is the outcome of the sizes and opposite sings of the temperature coefficients of the open-circuit voltage and fill factor. Average module series resistance is quantified and shown to be a determinant in power loss of 11% at 1-sun intensity. It is demonstrated to constrain the fill factor at illumination intensities above 60% of 1-sun, which occurs in the same range of illumination intensities that the temperature coefficients of the fill factor exhibit positive values. Evidence is presented that points to some spectrally-induced variations in the efficiency. (Author)

  5. Thin tungsten telluride layer preparation by thermal annealing

    Science.gov (United States)

    Lu, Wei; Zhang, Yudao; Zhu, Zusong; Lai, Jiawei; Zhao, Chuan; Liu, Xuefeng; Liu, Jing; Sun, Dong

    2016-10-01

    We report a simple method to prepare a thin Tungsten Telluride (WTe2) flake with accurate thickness control, which allows preparing and studying this two dimensional material conveniently. First, the WTe2 flake, which is relatively thick due to its strong interlayer van der Waals forces, is obtained by a conventional mechanical exfoliation method. Then, the exfoliated flake is annealed at 600 °C under a constant Ar protecting flow. Raman and atomic force spectroscopy characterizations demonstrate that thermal annealing can effectively thin down the WTe2 flake and retain its original lattice structure, though its surface smoothness is slightly deteriorated. Additionally, systematical study indicates that the thinning process strongly depends on the initial thickness of the WTe2 flake before annealing: the thinning rate increases from 0.12 nm min-1 to 0.36 nm min-1 as the initial thickness increases from 10 nm to 45 nm, while the roughness of the final product also increases with the increase of its initial thickness. However, the method fails when it is applied to WTe2 flakes thicker than 100 nm, resulting in uneven or burnt surface, which is possibly caused by big cavities formed by a large amount of defects gathered at the top surface.

  6. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) and EG ampersand G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems

  7. Thickness-induced structural phase transformation of layered gallium telluride.

    Science.gov (United States)

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  8. Using atomistic simulations to model cadmium telluride thin film growth

    Science.gov (United States)

    Yu, Miao; Kenny, Steven D.

    2016-03-01

    Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.

  9. In-Plane Optical Anisotropy of Layered Gallium Telluride.

    Science.gov (United States)

    Huang, Shengxi; Tatsumi, Yuki; Ling, Xi; Guo, Huaihong; Wang, Ziqiang; Watson, Garrett; Puretzky, Alexander A; Geohegan, David B; Kong, Jing; Li, Ju; Yang, Teng; Saito, Riichiro; Dresselhaus, Mildred S

    2016-09-27

    Layered gallium telluride (GaTe) has attracted much attention recently, due to its extremely high photoresponsivity, short response time, and promising thermoelectric performance. Different from most commonly studied two-dimensional (2D) materials, GaTe has in-plane anisotropy and a low symmetry with the C2h(3) space group. Investigating the in-plane optical anisotropy, including the electron-photon and electron-phonon interactions of GaTe is essential in realizing its applications in optoelectronics and thermoelectrics. In this work, the anisotropic light-matter interactions in the low-symmetry material GaTe are studied using anisotropic optical extinction and Raman spectroscopies as probes. Our polarized optical extinction spectroscopy reveals the weak anisotropy in optical extinction spectra for visible light of multilayer GaTe. Polarized Raman spectroscopy proves to be sensitive to the crystalline orientation of GaTe, and shows the intricate dependences of Raman anisotropy on flake thickness, photon and phonon energies. Such intricate dependences can be explained by theoretical analyses employing first-principles calculations and group theory. These studies are a crucial step toward the applications of GaTe especially in optoelectronics and thermoelectrics, and provide a general methodology for the study of the anisotropy of light-matter interactions in 2D layered materials with in-plane anisotropy.

  10. Magnetic properties of Cr telluride-selenide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mankovsky, Sergey; Polesya, Svetlana; Ebert, Hubert [Dept. Chemie und Biochemie, Universitaet Muenchen, Butenandtstr. 5-13, D-81377 Muenchen (Germany); Huang, Zhong-Le; Bensch, Wolfgang [Institute for Anorganic Chemistry, Olshausenstr. 40, D-24098, Kiel (Germany)

    2007-07-01

    Results of a theoretical study of the magnetic properties of Cr telluride-selenide alloys having trigonal crystal structure are presented in comparison with experimental results. Both ground state and temperature-dependent magnetic properties of Cr{sub 1-{delta}}Te and Cr{sub x}(Te{sub {alpha}}Se{sub {beta}}){sub 2} (with ratio {alpha}:{beta}=7:1,6:2,5:3) have been investigated in a wide region of chromium content. For the alloys Cr{sub x}(Te{sub {alpha}}Se{sub {beta}}){sub 2} a transition to the state with antiferromagnetic order in a fully occupied sub-lattice and with no order in a partially occupied sub-lattice was obtained. For the alloys Li{sub x}Cr{sub 0.5}Ti{sub 0.75}Se{sub 2}, a non-monotonic dependence of structural and magnetic properties have been found upon increase of Li concentration x, that is in agreement with experimental results. The ground state properties have been studied on the basis of electronic structure calculations using the Korringa-Kohn-Rostoker (KKR) band structure method combined with the CPA alloy theory. Using Monte Carlo simulations we obtained the magnetic configuration at T=0 K and studied the magnetic properties at T>0 K as well. The required exchange coupling parameters were obtained from our ab-initio electronic structure calculations.

  11. High efficiency thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Britt, J.; Chen, G.; Ferekides, C.; Schultz, N.; Wang, C.; Wu, C. Q.

    1992-12-01

    Cadmium sulfide (CdS), grown from an aqueous solution, and zinc oxide (ZnO), cadmium zinc sulfide (Cd1-xZnxS), and zinc selenide (ZnSe), deposited by metalorganic chemical vapor deposition (MOCVD), have been used as the window for thin film cadmium telluride (CdTe) solar cells. Thin film solar cells were prepared by the successive deposition of the window and p-CdTe (by MOCVD and close-spaced sublimation, CSS) on SnO2:F/glass substrates. CdS/CdTe(CSS) solar cells show considerably better characteristics than CdS/CdTe(MOCVD) solar cells because of the better microstructure of CSS CdTe films. Total area conversion efficiency of 14.6%, verified by the National Renewable Energy Laboratory, has been achieved for solar cells of about 1 cm2 area. Solar cell prepared by using ZnO, ZnSe, or Cd1-xZnxS as window have significantly lower photovoltage than CdS/CdTe solar cells.

  12. X-ray computed tomography system utilizing a cadmium telluride detector

    OpenAIRE

    佐藤, 英一; 野宮, 聖一郎; 人見, 啓太朗; 尾鍋, 秀明; 河合, 敏明; 小川, 彰; 佐藤, 成大; 市丸, 俊夫; サトウ, エイイチ; ノミヤ, セイイチロウ; ヒトミ, ケイタロウ; オナベ, ヒデアキ; カワイ, トシアキ; オガワ, アキラ; サトウ, シゲヒロ

    2007-01-01

    A simple x-ray computed tomography(CT) system utilizing a cadmium telluride detector is described. The CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation table, a motor drive unit, a cadmium telluride detector, an interface unit for the detector, and a personal computer(PC). Tomography was performed by the repetition of the translation and rotation of an object. The maximum values of the tube voltage and the tube current were 110kV and 2....

  13. Current transport mechanisms in mercury cadmium telluride diode

    Science.gov (United States)

    Gopal, Vishnu; Li, Qing; He, Jiale; He, Kai; Lin, Chun; Hu, Weida

    2016-08-01

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I-V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I-V characteristics have been modelled over a range of gate voltages from -9 V to -2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I-V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from -3 V to -5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  14. Directional Solidification of Mercury Cadmium Telluride in Microgravity

    Science.gov (United States)

    Lechoczhy, Sandor L.; Gillies, Donald C.; Szofran, Frank R.; Watring, Dale A.

    1998-01-01

    Mercury cadmium telluride (MCT) has been directionally solidified for ten days in the Advanced Automated Directional Solidification Furnace (AADSF) on the second United States Microgravity Payload Mission (USMP-2). A second growth experiment is planned for the USMP-4 mission in November 1997. Results from USMP-2 demonstrated significant changes between microgravity and ground-based experiments, particularly in the compositional homogeneity. Changes were also observed during the microgravity mission which were dependent on the attitude of the space shuttle and the relative magnitudes of axial and transverse residual accelerations with respect to the growth axis of the crystal. Issues of shuttle operation, especially those concerned with safety and navigation, and the science needs of other payloads dictated the need for changes in attitude. One consequence for solidification of MCT in the USMP4 mission is the desire for a shorter growth time to complete the experiment without subjecting the sample to shuttle maneuvers. By using a seeded technique and a pre-processed boule of MCT with an established diffusion layer quenched into the solid, equilibrium steady state growth can be established within 24 hours, rather than the three days needed in USMP-2. The growth of MCT in AADSF during the USMP-4 mission has been planned to take less than 72 hours with 48 hours of actual growth time. A review of the USMP-2 results will be presented, and the rationale for the USMP-4 explained. Pre-mission ground based tests for the USN4P-4 mission will be presented, as will any available preliminary flight results from the mission.

  15. Telluride films and waveguides for IR integrated optics

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, Eleonore; Vigreux, Caroline; Pradel, Annie [Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Universite Montpellier II, CC1503, 34095 Montpellier Cedex 5 (France); Parent, Gilles [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, Universite de Nancy-Lorraine, BP239, 54506 Vandoeuvre Les Nancy Cedex (France); Barillot, Marc [Thales Alenia Space, 100 Bld. du midi, BP99, 06156 Cannes La Bocca Cedex (France)

    2011-09-15

    The fabrication of micro-components for far infrared applications such as spatial interferometry requires the realization of single-mode channel waveguides being able to work in the infrared region. One of the key issues in case of channel waveguides is the selection of materials for the core layer. Amorphous telluride films are particularly attractive for their transparency in a large spectral domain in the infrared region. A second key issue is the selection of an appropriate method for film deposition. Indeed, waveguides for far infrared applications are characterized by a thick core layer (10-15 {mu}m, typically). The challenge is thus to select a deposition method which ensures the deposition of thick films of optical quality. In this paper, it is shown that thermal co-evaporation meets this challenge. In particular, it allows varying the composition of the films very easily and thus adjusting their optical properties (refractive index, optical band gap). The example of thermally co-evaporated Te-Ge films is given. Films with typical thickness of 7-15 {mu}m were elaborated. Their morphological, structural, thermal and optical properties were measured. A particular attention was paid to the checking of the film homogeneity. The realized waveguiding structures and their optical testing are then described. In particular, the first transmission measurements at 10.6 {mu}m are presented. In conclusion, the feasibility of micro-components based on the stacking and etching of chalcogenide films is demonstrated, opening the door to applications related to detection in the mid- and thermal infrared spectral domains (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Bismuth nanoparticles for phenolic compounds biosensing application.

    Science.gov (United States)

    Mayorga-Martinez, Carmen C; Cadevall, Miquel; Guix, Maria; Ros, Josep; Merkoçi, Arben

    2013-02-15

    The rapid determination of trace phenolic compounds is of great importance for evaluating the total toxicity of contaminated water samples. Nowadays, electrochemical tyrosinase (Tyr) based biosensors constitute a promising technology for the in situ monitoring of phenolic compounds because of their advantages such as high selectivity, low production cost, promising response speed, potential for miniaturization, simple instrumentation and easy automatization. A mediator-free amperometric biosensor for phenolic compounds detection based on the combination of bismuth nanoparticles (BiNPs) and Tyr for phenol detections will be hereby reported. This is achieved through the integration of BiNPs/Tyr onto the working electrode of a screen printed electrode (SPE) by using glutaraldehyde as a cross-linking agent. BiNPs/Tyr biosensor is evaluated by amperometric measurements at -200 mV DC and a linear range of up to 71 μM and 100 μM and a correlation coefficient of 0.995 and 0.996 for phenol and catechol, respectively. The very low DC working potential ensures the avoidance of interferences making this biosensor an advantageous device for real sample applications. In addition, the response mechanism including the effect of BiNPs based on electrochemical studies and optical characterizations will be also discussed. The obtained results may open the way to many other BiNPs applications in the biosensing field.

  17. Ultrasound in lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, M.; Van Dyck, D. [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, BE-2400, Mol (Belgium)

    2011-07-01

    The Belgian Nuclear Research Centre (SCK.CEN) is in the process of designing MYRRHA, a new multi-purpose irradiation facility to replace the ageing BR2. MYRRHA is a fast spectrum reactor cooled with lead-bismuth eutectic (LBE). As liquid metal is opaque to visual light, ultrasonic measurement techniques are selected to fulfill essential tasks that, according to our assessment, will be demanded by licensing authorities, in particular: fuel assembly identification and localization of a lost fuel assembly. To that end, a considerable research effort at SCK.CEN is devoted to study ultrasonic propagation in LBE. As ultrasonic experiments in LBE are elaborate and expensive to set up, we are particularly interested in to what extent experiments in water can be extrapolated to LBE - one of the main focuses of this article. We describe and present results of a first experiment with this goal which shows that the signal to noise ratio is better in LBE and that we even see small diffuse reflections up to 40 deg. off normal. On the other hand, we do not see internal reflections in stainless steel objects in LBE which we do in water. Therefore, we conclude that experiments in water can be used to validate algorithms for LBE on the condition that they do not rely on internal reflections. We also present solutions to tackle the essential tasks: fuel assembly identification and lost object localization. The requirements for the ultrasonic equipment implementing these solutions are also discussed. (authors)

  18. Laser Spectroscopy of Neutron Rich Bismuth Isotopes

    CERN Multimedia

    2002-01-01

    %IS344 :\\\\ \\\\ The aim of the experiment is to measure the optical isotope shifts and hyperfine structures of bismuth isotopes across the N=126 shell closure in order to extract the change in mean square charge radii ($\\delta\\langle r^{2}\\rangle$) and static moments. These include the first isotones of lead to be measured directly above the shell closure and will provide new information on the systematics of the kink ($\\delta\\langle r^{2}\\rangle)$ seen in the lead isotopic chain. After two very successful runs the programme has been extended to include the neutron deficient isotopes below $^{201}$Bi to study the systematics across the $i_{13/2}$ neutron sub-shell closure at N=118.\\\\ \\\\ During the initial 2 runs (9 shifts) the isotope shifts and hyperfine structures of three new isotopes, $ ^{210,212,213}$Bi and the 9$^{-}$ isomer of $^{210}$Bi have been measured. The accuracy of the previous measurements of $^{205,206,208}$Bi have been greatly improved. The samples of $ ^{208,210,210^{m}}$Bi were prepared by c...

  19. LMO dielectronic resonances in highly charged bismuth

    Science.gov (United States)

    Smiga, Joseph; Gillaspy, John; Podpaly, Yuri; Ralchenko, Yuri

    2016-05-01

    Dielectronic resonances from high-Z elements are important for the analysis of high temperature plasmas. Thus, the extreme ultraviolet spectra of highly charged bismuth were measured using the NIST electron beam ion trap (EBIT) at beam energies ranging from 8.7 keV to 9.2 keV. The measured intensity ratios between forbidden magnetic-dipole lines in Bi64+ and Bi63+ show strong resonance features. The experimental data were compared to theoretical predictions from a large-scale collisional-radiative model with the code NOMAD, and good agreement was found that allowed the identification of observed resonance features as the LMO inner-shell dielectronic resonances. It is common practice in EBIT experiments that ions are periodically dumped from the trap and replaced. However, in this particular experiment, the contents of the trap were not dumped for the duration of each 10 minute sampling. The effects of trap stability were studied and a small but noticeable shift in beam energy over time was observed. Potential explanations for this are considered.

  20. Photoreductive generation of amorphous bismuth nanoparticles using polysaccharides--bismuth-cellulose nanocomposites.

    Science.gov (United States)

    Breitwieser, Doris; Kriechbaum, Margit; Ehmann, Heike M A; Monkowius, Uwe; Coseri, Sergiu; Sacarescu, Liviu; Spirk, Stefan

    2015-02-13

    A simple and highly reproducible synthesis of amorphous bismuth nanoparticles incorporated into a polysaccharide matrix using a photoreduction process is presented. As precursor for the generation of the Bi nanoparticles, organosoluble triphenylbismuth is used. The precursor is dissolved in toluene and mixed with a hydrophobic organosoluble polysaccharide, namely trimethylsilyl cellulose (TMSC) with high DSSi. The solution is subjected to UV exposure, which induces the homolytic cleavage of the bismuth-carbon bond in BiPh3 resulting in the formation of Bi(0) and phenyl radicals. The aggregation of the Bi atoms can be controlled in the TMSC matrix and yields nanoparticles of around 20 nm size as proven by TEM. The phenyl radicals undergo recombination to form small organic molecules like benzene and biphenyl, which can be removed from the nanocomposite after lyophilization and exposure to high vacuum. Finally, the TMSC matrix is converted to cellulose after exposure to HCl vapors, which remove the trimethylsilyl groups from the TMSC derivative. Although TMSC is converted to cellulose, the formed TMS-OH is not leaving the nanocomposite but reacts instead with surface oxide layer of the Bi nanoparticles to form silylated Bi nanoparticles as proven by TEM/EDX.

  1. Characterization of bismuth nanospheres deposited by plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: cscientific2@aec.org.sy [IBA Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Mrad, O. [Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  2. Inexpensive laser-induced surface modification in bismuth thin films

    International Nuclear Information System (INIS)

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters

  3. Thermal, structural and electrical studies of bismuth zinc borate glasses

    Science.gov (United States)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.

    2013-06-01

    Bismuth Zinc Borate glasses with compositions xBi2O3-30ZnO-(70 - x)B2O3 (where x = 30, 35, 40 and 45 mol %) have been prepared by melt quenching method. These glasses were characterized by X-ray diffraction (XRD), Differential Thermal Analysis (DTA), Fourier Transform Infrared Spectrometer (FTIR) and Broad Band Dielectric Spectrometer (BDS). DTA and FTIR analysis reveals that Non-Bridging Oxygens (NBOs) increase with increase of bismuth content in the glass. Electrical data have been analyzed in the framework of impedance and modulus formalisms. The activation energy for dc conductivity decreases with increase of bismuth concentration. The imaginary part of modulus spectra has been fitted to non-exponential Kohlrausch-Williams-Watts (KWW) function and the value of the stretched exponent (β) is found to be almost independent of temperature but slightly dependent on composition.

  4. Phase transitions in the Hubbard model for the bismuth nickelate

    Science.gov (United States)

    Kojima, Shoya; Nasu, Joji; Koga, Akihisa

    2016-07-01

    We study low temperature properties of the Hubbard model for the bismuth nickelate, where degenerate orbitals in the nickel ions and a single orbital in the bismuth ions are taken into account, combining dynamical mean-field theory with the continuous-time quantum Monte Carlo method. We discuss the effect of the attractive interactions to mimic the valence skipping phenomenon in the bismuth ions. We demonstrate how the charge and magnetically ordered states are stable against thermal fluctuations. It is furthermore clarified that the ferromagnetically ordered and orbital ordered states are stabilized due to the presence of the orbital degeneracy at low temperatures. The crossover between metallic and insulating states is also discussed.

  5. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  6. Dependence of optical properties of calcium bismuthates on synthesis conditions

    Science.gov (United States)

    Shtarev, D. S.; Shtareva, A. V.

    2016-08-01

    The article studies optical properties of calcium bismuthate nanoparticles of different composition. For the first time the synthesis of these compounds was produced by the pyrolysis of organic precursors using an organic solvent. Characterization of particles was made by scanning electron microscopy and X-ray analysis. The optical properties were investigated by diffuse reflectance spectroscopy (DRS). It is shown that the type of crystal lattice of the particles of calcium bismuthate determines the possibility to control the optical properties of nanoparticles by varying their composition. The conclusions about the production process and the composition of calcium bismuthate, the most promising for use as a photocatalyst of visible light and solar cells, were made.

  7. Thin-film cadmium telluride photovoltaics: ES and H issues, solutions, and perspectives

    International Nuclear Information System (INIS)

    Photovoltaics (PV) is a growing business worldwide, with new technologies evolving towards potentially large-volume production. PV use produces no emissions, thus offsetting many potential environmental problems. However, the new PV technologies also bring unfamiliar environment, safety, and health (ES and H) challenges that require innovative solutions. This is a summary of the issues, solutions, and perspectives associated with the use of cadmium in one of the new and important PV technologies: thin-film, cadmium telluride (CdTe) PV, which is being developed and commercialized by several companies including Solar Cells Inc. (Toledo, Ohio), BP Solar (Fairfield, California), and Matsushita (Japan). The principal ES and H issue for thin-film cadmium telluride PV is the potential introduction of cadmium--a toxic heavy metal--into the air or water. The amount of cadmium in thin-film PV, however, is quite small--one nickel cadmium flashlight battery has about as much cadmium (7 g) as a square meter of PV module using current technology--and a typical cordless power tool will have 5--10 batteries. CdTe modules are also very well sealed, limiting the chance of release. Nonetheless, minimizing the amount of cadmium in cadmium telluride modules and preventing the introduction of that cadmium into the environment is a top priority for National Renewable Energy Laboratory researchers and cadmium telluride PV manufacturers

  8. Stable, high efficiency thin film solar cells produced by electrodeposition of cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Turner, A.K.; Woodcock, J.M.; Ozsan, M.E.; Summers, J.G.; Barker, J.; Binns, S.; Buchanan, K.; Chai, C.; Dennison, S.; Hart, R.; Johnson, D.; Marshall, R.; Oktik, S.; Patterson, M.; Perks, R.; Roberts, S.; Sadeghi, M.; Sherborne, J.; Szubert, J.; Webster, S. (BP Solar, Solar House, Leatherhead (United Kingdom))

    1991-12-01

    The highest known efficiency of 9.5% for a 300x300 mm series interconnected cadmium telluride solar cell is reported. In addition, efficiencies of up to 13% have been measured for small cells based on electrodeposited CdTe. The stability of modules in outdoor tests is discussed and an outline is given of the device fabrication procedure. (orig.).

  9. Compact and Integrated Liquid Bismuth Propellant Feed System

    Science.gov (United States)

    Polzin, Kurt A.; Stanojev, Boris; Korman, Valentin; Gross, Jeffrey T.

    2007-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions [1]. There has been considerable effort in the past three years aimed at resuscitating this promising technology and validating earlier experimental results indicating the advantages of a bismuth-fed Hall thruster. A critical element of the present effort is the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre./post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work is to develop a precision liquid bismuth Propellant Management System (PMS) that provides hot, molten bismuth to the thruster while simultaneously monitoring in real-time the propellant mass flow rate. The system is a derivative of our previous propellant feed system [2], but the present system represents a more compact design. In addition, all control electronics are integrated into a single unit and designed to reside on a thrust stand and operate in the relevant vacuum environment where the thruster is operating, significantly increasing the present technology readiness level of liquid metal propellant feed systems. The design of various critical components in a bismuth PMS are described. These include the bismuth reservoir and pressurization system, 'hotspot' flow sensor, power system and integrated control system. Particular emphasis is given to selection of the electronics employed in this system and the methods that were used to isolate the power and control systems from the high-temperature portions of the feed system and thruster. Open loop calibration test results from the 'hotspot' flow sensor are reported, and results of

  10. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A., E-mail: soumen.basu@phy.nitdgp.ac.in; Banerjee, M., E-mail: soumen.basu@phy.nitdgp.ac.in; Basu, S., E-mail: soumen.basu@phy.nitdgp.ac.in [Department of Physics, National Institute of Technology, Durgapur-713209 (India); Pal, M. [CSIR-Central Mechanical Engineering Research Institute, Durgapur-713209 (India)

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  11. Lead–bismuth eutectic technology for Hyperion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J., E-mail: Zhang.3558@osu.edu [Dept. of Mechanical and Aerospace Engineering, The Ohio State University, 201 W, 19th Avenue, Columbus, OH 43210 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Kapernick, R.J.; McClure, P.R. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Trapp, T.J. [Hyperion Power Generation (United States)

    2013-10-15

    A small lead–bismuth eutectic-cooled reactor concept (referred to as the Hyperion reactor concept) is being studied at Los Alamos National Laboratory and Hyperion Power Generation. In this report, a critical assessment of the lead–bismuth eutectic technology for Hyperion reactor is presented based on currently available knowledge. Included are: material compatibility, oxygen control, thermal hydraulics, polonium control. The key advances in the technology and their applications to Hyperion reactor design are analyzed. Also, the near future studies in main areas of the technology are recommended for meeting the design requirements.

  12. High-Q bismuth silicate nonlinear glass microsphere resonators

    OpenAIRE

    Wang, Pengfei; Murugan, Ganapathy; Lee, Timothy; Ding, Ming; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Koizumi,Fumihito; Farrell, Gerald

    2012-01-01

    The fabrication and characterization of a bismuth-silicate glass microsphere resonator has been demonstrated. At wavelengths near 1550 nm, high-modes can be efficiently excited in a 179-μm diameter bismuth-silicate glass microsphere via evanescent coupling using a tapered silica fiber with a waist diameter of circa 2 μm. Resonances with Q-factors as high as were observed. The dependence of the spectral response on variations in the input power level was studied in detail to gain an insight in...

  13. Polymeric architectures of bismuth citrate based on dimeric building blocks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Four bismuth complexes, (H2En)[Bi2(cit)2(H2O)4/3]·(H2O)x (1), (H2En)3[Bi2(cit)2Cl4]·(H2O)x (2), (HPy)2[Bi2(cit)2(H2O)8/5]·(H2O)x (3) and (H2En)[Bi2(cit)2](H2O)x (4) [cit = citrate4-; En = ethylenediamine; Py = pyridine] have been synthesized and crystallized. The crystal structures reveal that the basic building blocks in all of these complexes are bismuth citrate dimeric units which combine to form polymeric architectures. The embedded protonated ethylenediamine and pyridine moieties in the polymeric frameworks have been identified by X-ray crystallography and solid-state cross polarization/magic angle spinning (CP/MAS) 13C NMR. Based on the framework of complex 1, a structural model of a clinically used antiulcer drug, ranitidine bismuth citrate (RBC) was generated. The behavior of the protonated amine-bismuth citrate complexes in acidic aqueous solution has been studied by electrospray ionization-mass spectrometry (ESI-MS).

  14. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.

    Science.gov (United States)

    Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang

    2010-11-01

    A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.

  15. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  16. Third order nonlinear optical properties of bismuth zinc borate glasses

    International Nuclear Information System (INIS)

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi2O3-30ZnO-(70-x) B2O3 (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σe) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported

  17. Third order nonlinear optical properties of bismuth zinc borate glasses

    Science.gov (United States)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.; Kuladeep, R.; Narayana Rao, D.

    2013-12-01

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi2O3-30ZnO-(70-x) B2O3 (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σe) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.

  18. Third order nonlinear optical properties of bismuth zinc borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V., E-mail: ravi.phy@pondiuni.edu.in [Department of Physics, Pondicherry University, Puducherry 605 014 (India); Kuladeep, R.; Narayana Rao, D. [School of Physics, University of Hyderabad, Hyderabad 500046, Andhra Pradesh (India)

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.

  19. Light-Induced Absorption in Nominally Pure Bismuth Silicon Oxide

    Institute of Scientific and Technical Information of China (English)

    李飞飞; 许京军; 孔勇发; 黄辉; 张光寅; 杨春晖; 徐玉恒

    2001-01-01

    Light-induced absorption in the nominally pure bismuth silicon oxide is investigated experimentally and the result shows that it consists of transient and persistent parts. The experimental evidence is analysed based on the model of three groups of trap (donor) centres.

  20. Experimenting with lead-bismuth technology in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2014-03-15

    Dr Hamid Ait Abderrahim, director of the Myrrha research reactor project, talks to NucNet about the technical specifications, the challenges, opportunities and partnerships of Belgium's new nuclear research infrastructure. Myrrha is a large research infrastructure which is based on a sub-critical reactor which is cooled with lead-bismuth as a coolant. (orig.)

  1. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    Directory of Open Access Journals (Sweden)

    Chekalin S.

    2013-03-01

    Full Text Available Femtosecond spectroscopy was applied to capture complex dynamics of non equilibrium electrons in bismuth. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along the Γ-T direction of the Brillouin zone

  2. Measured and evaluated neutron cross sections of elemental bismuth

    International Nuclear Information System (INIS)

    Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables

  3. Discovery of the thallium, lead, bismuth, and polonium isotopes

    OpenAIRE

    Fry, C; Thoennessen, M

    2012-01-01

    Currently, forty-two thallium, forty-two lead, forty-one bismuth, and forty-two polonium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  4. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  5. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    Science.gov (United States)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  6. Bismuth tri-iodide radiation detector development

    Science.gov (United States)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  7. Determining the background levels of bismuth in tissues of wild game birds: a first step in addressing the environmental consequences of using bismuth shotshells

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, R.; Tsuji, L.J.S.; Gough, W.A.; Karagatzides, J.D.; Perera, D.; Nieboer, E

    2004-11-01

    Bismuth shotshells have been approved as a 'nontoxic' alternative to lead in North America. Approval was based on a limited number of studies; even background levels of bismuth in wildfowl were unknown. We report on the concentration of bismuth (and lead) in muscle and liver tissues of wildfowl (Anas platyrhynchos, Anas acuta, Anas crecca, Branta canadensis, Chen caerulescens) harvested with lead shotshell. Average liver-bismuth levels detected in the present study (e.g., teal, 0.05 {mu}g/g dw; mallard, 0.09 {mu}g/g dw) suggest analytical error in other studies examining the effects of bismuth in birds. Significant positive relationships between bismuth- and lead-tissue levels for muscle when all species were combined (and for B. canadensis and C. caerulescens separately) can be explained by noting that bismuth is a contaminant of lead. Thus, more research is recommended to confirm the appropriateness of bismuth as a 'nontoxic' shot alternative.

  8. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor

    Indian Academy of Sciences (India)

    Sandeep Arya; Saleem Khan; Suresh Kumar; Rajnikant Verma; Parveen Lehana

    2013-08-01

    Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic solution of copper (II) sulphate (CuSO4.5H2O) and tellurium oxide (TeO2) on a copper substrate by template-assisted electrodeposition method. The electrodeposition was conducted at 30 °C and the length of nanowires was controlled by adjusting deposition time. Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4.81, 8.93, 21, 24.55, 42.5 and 80.1, respectively. The results unequivocally prove that copper telluride nanowires can be fabricated as chemical sensors with enhanced sensitivity and reliability.

  9. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J. [Physics Department at Illinois Institute of Technology, Chicago, IL 60616 and High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Accelerator Science Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Physics Department at Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  10. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  11. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.;

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  12. Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The structural and optical properties of amorphous semiconductor mercury cadmium telluride (a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve ωε 2(ω)1/2 versus ω, it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV.

  13. Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; CHEN XiaoShuang; LU Wei; HUANG Yan; WANG XiaoFang; ZHAO JiJun

    2009-01-01

    The structural and optical properties of amorphous semiconductor mercury cadmium telluride(a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve (n)ωε2(ω)1/2 versus (n)ω,it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV.

  14. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes

    OpenAIRE

    Nguyen, Kathy C; Rippstein, Peter; Tayabali, Azam F.; Willmore, William G.

    2015-01-01

    There are an increasing number of studies indicating that mitochondria are relevant targets in nanomaterial-induced toxicity. However, the underlying mechanisms by which nanoparticles (NPs) interact with these organelles and affect their functions are unknown. The aim of this study was to investigate the effects of cadmium telluride quantum dot (CdTe-QD) NPs on mitochondria in human hepatocellular carcinoma HepG2 cells. CdTe-QD treatment resulted in the enlargement of mitochondria as examined...

  15. Aqueous-solution route to zinc telluride films for application to CO₂ reduction.

    Science.gov (United States)

    Jang, Ji-Wook; Cho, Seungho; Magesh, Ganesan; Jang, Youn Jeong; Kim, Jae Young; Kim, Won Yong; Seo, Jeong Kon; Kim, Sungjee; Lee, Kun-Hong; Lee, Jae Sung

    2014-06-01

    As a photocathode for CO2 reduction, zinc-blende zinc telluride (ZnTe) was directly formed on a Zn/ZnO nanowire substrate by a simple dissolution-recrystallization mechanism without any surfactant. With the most negative conduction-band edge among p-type semiconductors, this new photocatalyst showed efficient and stable CO formation in photoelectrochemical CO2 reduction at -0.2--0.7 V versus RHE without a sacrificial reagent.

  16. The first trialkylphosphane telluride complexes of Ag(I): molecular, ionic and supramolecular structural alternatives.

    Science.gov (United States)

    Daniliuc, Constantin; Druckenbrodt, Christian; Hrib, Cristian G; Ruthe, Frank; Blaschette, Armand; Jones, Peter G; du Mont, Wolf-W

    2007-05-28

    The structures of the first phosphane telluride complexes of silver(I), obtained from i-Pr3PTe (1) with AgNMs2 [Ms = SO2CH3] and with AgSbF6, reveal the superior coordinating ability of 1, particularly as a bridging ligand, compared with related i-Pr3PS and i-Pr3PSe ligands. PMID:17713078

  17. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    Science.gov (United States)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  18. Bismuth nitrate-induced microwave-assisted expeditious synthesis of vanillin from curcumin

    OpenAIRE

    Bandyopadhyay, Debasish; Banik, Bimal K

    2012-01-01

    Background Curcumin and vanillin are the two useful compounds in food and medicine. Bismuth nitrate pentahydrate is an economical and ecofriendly reagent. Method Bismuth nitrate pentahydrate impregnated montmorillonite KSF clay and curcumin were subjected to microwave irradiation. Results Microwave-induced bismuth nitrate-promoted synthesis of vanillin from curcumin has been accomplished in good yield under solvent-free condition. Twenty-five different reaction conditions have been studied to...

  19. Standard triple, bismuth pectin quadruple and sequential therapies for Helicobacter pylori eradication

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To compare the effectiveness of standard triple, bismuth pectin quadruple and sequential therapies for Helicobacter pylori (H. pylori ) eradication in a randomized, double-blinded, comparative clinical trial in China. METHODS: A total of 215 H. pylori -positive patients were enrolled in the study and randomly allocated into three groups: group A (n = 72) received a 10-d bismuth pectin quadruple therapy (20 mg rabeprazole bid , 1000 mg amoxicillin bid , 100 mg bismuth pectin qid , and 500 mg levofloxaci...

  20. Influence of bismuth on structural, elastic and spectroscopic properties of Nd{sup 3+} doped Zinc–Boro-Bismuthate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Gaurav; Sontakke, Atul D.; Karmakar, P.; Biswas, K.; Balaji, S.; Saha, R.; Sen, R.; Annapurna, K., E-mail: annapurnak@cgcri.res.in

    2014-05-01

    The present investigation reports, influence of bismuth addition on structural, elastic and spectral properties of [(99.5−x) {4ZnO−3B_2O_3}−0.5Nd{sub 2}O{sub 3}−x Bi{sub 2}O{sub 3} where x=0, 5, 10, 20, 30, 40, 50 and 60] glasses. The measured FTIR reflectance spectra facilitated a thorough insight of methodical modifications that are arising in the glass structure from borate (build by BO{sub 3} and BO{sub 4} units) to bismuthate (BiO{sub 3} and BiO{sub 6} units) network due to the increase of bismuth content ensuing with a steady decrease in host phonon energy (ν{sub ph}). The elastic properties estimated from measured longitudinal and shear ultrasonic velocities (U{sub L} and U{sub s}) demonstrated the reduction in network rigidity of glasses on Bi{sub 2}O{sub 3} inclusion. The three phenomenological Judd–Ofelt intensity parameters (Ω{sub 2,4,6}) were obtained from recorded absorption spectra of Nd{sup 3+} ions in these glasses and have been used to predict radiative properties as a function of variation in bismuth content. The reduced host phonon energy and high optical basicity effect due to Bi{sub 2}O{sub 3} incorporation remarkably improved the Nd{sup 3+} luminescence properties such as emission intensity, quantum yield and emission cross-section. The quantum yield showed a strong increase from mere 16% in Zinc–Borate glass to almost 73% in 60 mol% Bi{sub 2}O{sub 3} containing glass. Similarly, the emission cross-section for Nd{sup 3+4}F{sub 3/2}→{sup 4}I{sub 11/2} laser transition raised from 2.43×10{sup −20} cm{sup 2} to 3.95×10{sup −20} cm{sup 2} in studied concentration suggesting a strong improvement in Nd{sup 3+} laser spectroscopic properties in Zinc–Boro-Bismuthate glass. These materials may be promising for compact solid state infrared lasers. - Highlights: • Continuous structural changes associated with reduction in host phonon energy by Bi{sub 2}O{sub 3} inclusion. • Ultrasonic velocity study revealed reduced Debye

  1. Influence of bismuth on structural, elastic and spectroscopic properties of Nd3+ doped Zinc–Boro-Bismuthate glasses

    International Nuclear Information System (INIS)

    The present investigation reports, influence of bismuth addition on structural, elastic and spectral properties of [(99.5−x) {4ZnO−3B2O3}−0.5Nd2O3−x Bi2O3 where x=0, 5, 10, 20, 30, 40, 50 and 60] glasses. The measured FTIR reflectance spectra facilitated a thorough insight of methodical modifications that are arising in the glass structure from borate (build by BO3 and BO4 units) to bismuthate (BiO3 and BiO6 units) network due to the increase of bismuth content ensuing with a steady decrease in host phonon energy (νph). The elastic properties estimated from measured longitudinal and shear ultrasonic velocities (UL and Us) demonstrated the reduction in network rigidity of glasses on Bi2O3 inclusion. The three phenomenological Judd–Ofelt intensity parameters (Ω2,4,6) were obtained from recorded absorption spectra of Nd3+ ions in these glasses and have been used to predict radiative properties as a function of variation in bismuth content. The reduced host phonon energy and high optical basicity effect due to Bi2O3 incorporation remarkably improved the Nd3+ luminescence properties such as emission intensity, quantum yield and emission cross-section. The quantum yield showed a strong increase from mere 16% in Zinc–Borate glass to almost 73% in 60 mol% Bi2O3 containing glass. Similarly, the emission cross-section for Nd3+4F3/2→4I11/2 laser transition raised from 2.43×10−20 cm2 to 3.95×10−20 cm2 in studied concentration suggesting a strong improvement in Nd3+ laser spectroscopic properties in Zinc–Boro-Bismuthate glass. These materials may be promising for compact solid state infrared lasers. - Highlights: • Continuous structural changes associated with reduction in host phonon energy by Bi2O3 inclusion. • Ultrasonic velocity study revealed reduced Debye temperature and elastic properties with bismuth addition. • Correlation of Judd–Ofelt parameters with structural modifications. • Realization of enhanced fluorescence quantum yield with

  2. Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Highlights: ► Single-phase BFO ceramics have been prepared by microwave sintering. ► The lower sintering power is benefit for the decrease of its dielectric loss and leakage. ► Pr and Ec decrease with the increase of sintering power. ► Mr and Hc increase as sintering power increases. -- Abstract: Multiferroic bismuth ferrite ceramics were fabricated via microwave sintering. The microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics sintered at different microwave powers are characterized by X-ray diffraction, scanning electron microscope, impedance analyzers, ferroelectric test system and vibrating sample magnetometer. Bismuth ferrite ceramics sintered at 3.4 kW is single phase and has dense structure and uniform grains. The lower microwave sintering power for bismuth ferrite ceramics is benefit for the decrease of its dielectric loss. The remnant polarization and coercive electric field of bismuth ferrite ceramics decrease with the increasing of microwave sintering power. The remnant polarization and the coercive electric field of bismuth ferrite ceramics decrease simultaneously as frequency increases. The leakage current of bismuth ferrite ceramics increases with the increase of microwave sintering power. Bismuth ferrite ceramics prepared by microwave sintering exhibit typical antiferromagnetic behaviors and the remnant magnetization and coercive magnetic field increase as the microwave sintering power increases. It is inferred that the optimum microwave sintering power for bismuth ferrite ceramics is 3.4 kW

  3. Preparation of high-purity bismuth by sulphur deleadization in vacuum distillation

    Institute of Scientific and Technical Information of China (English)

    熊利芝; 何则强; 刘文萍; 麻成金; 戴永年

    2004-01-01

    The feasibility of separation of impurities in refined bismuth and sulphur deleadization with vacuum distillation was studied theoretically. Experimental studies on sulphur deleadization were carried out under vacuum.The influences of amount of sulphur, distillation temperature, vacuum degree and distillation time on deleadization were investigated and an optimal technical condition was achieved. The content of lead in refined bismuth can be decreased from 30 μg/g to 0.21 μg/g, which has reached the level of "5N" high-purity bismuth. Other impurities in refined bismuth can be also removed effectively under certain conditions.

  4. Bismuth-Induced Raman Modes in GaP1-xBix

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; Alberi, Kirstin; Mascarenhas, Angelo

    2016-10-01

    Dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- x Bi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  5. Optimal biliary drainage for inoperable Klatskin's tumor based on Bismuth type

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate differences in the effects of biliary drainage procedures in patients with inoperable Klatskin's tumor based on Bismuth type, considering endoscopic retrograde biliary drainage (ERBD), external percutaneous transhepatic biliary drainage (EPTBD) and internal biliary stenting via the PTBD tract (IPTBD).METHODS: The initial success rate, cumulative patency rate, and complication rate were compared retrospectively, according to the Bismuth type and ERBD,EPTBD, and IPTBD. Patency was defined as the duration for adequate initial bile drainage or to the point of the patient's death associated with inadequate drainage.RESULTS: One hundred thirty-four patients (93 men,41 women; 21 Bismuth type Ⅱ, 47 Ⅲ, 66 Ⅳ; 34 ERBD,66 EPTBD, 34 IPTBD) were recruited. There were no differences in demographics among the groups.Adequate initial relief of jaundice was achieved in 91% of patients without a significant difference in the results among different procedures or Bismuth types. The cumulative patency rates for ERBD and IPTBD were better than those for EPTBD with Bismuth type Ⅲ.IPTBD provided an excellent response for Bismuth type Ⅳ. However, there was no difference in the patency rate among drainage procedures for Bismuth type Ⅱ.Procedure-related cholangitis occurred less frequently with EPTBD than with ERBD and IPTBD.CONCLUSION: ERBD is recommended as the firstline drainage procedure for the palliation of jaundice in patients with inoperable Klatskin's tumor of Bismuth type Ⅱ or Ⅲ, but IPTBD is the best option for Bismuth type Ⅳ.

  6. Bismuth-induced Raman modes in GaP1- x Bi x

    Science.gov (United States)

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; Alberi, Kirstin; Mascarenhas, Angelo

    2016-10-01

    Dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- x Bi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  7. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    CERN Document Server

    Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens

    2016-01-01

    We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  8. Large area bismuth absorbers for X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, J.E. E-mail: vaillancourt@wisp.physics.wisc.edu; Allen, C.A.; Brekosky, R.; Dosaj, A.; Galeazzi, M.; Kelley, R.; Liu, D.; McCammon, D.; Porter, F.S.; Rocks, L.E.; Sanders, W.T.; Stahle, C.K

    2004-03-11

    Two challenges facing the use of large area (2 mmx2 mm) bismuth absorbers for microcalorimetry are uncertainties in the heat capacity of bismuth and the effects of lateral heat conduction and position dependence due to the absorber's large size. We have measured the heat capacity of three Bi samples to be 0.3-0.6 J K{sup -1} m{sup -3} at 100 mK. These absorbers also exhibit response variations as phonons created by an X-ray event at an absorber edge will take longer to propagate to the thermometer attachment point than those at the absorber center. This effect may degrade the detector's energy resolution if the propagation time is not very short compared to the thermometer time constant. We show that the response of the largest absorber varies by {approx}4% across its area.

  9. Thermophysical properties of liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Background: Liquid lead-bismuth eutectic (LBE) is important spallation target materials and candidate coolant materials in accelerator driven subcritical (ADS) system. Purpose: Its thermodynamic physical properties are keys to understand the basic problems in ADS R&D. Methods: By the calculation of scientific laws as well as fitting other scholars' experimental results, we tried to obtain the above thermodynamics physical properties. Results: By the calculation, we got formula about characteristic temperatures, density, specific heat, viscosity and thermal conductivity of liquid lead-bismuth alloy. And by fitting other scholars' experimental results, we got the fitting formula. Conclusions: Finally, by the contrast analysis, we found that the fitting formula and calculation formula agree well, and fitting formula more approaches the experimental value with a high accuracy whose differential deviation is not over 1%. (authors)

  10. Colloidal bismuth subcitrate in non-ulcer dyspepsia.

    Directory of Open Access Journals (Sweden)

    Khanna M

    1992-07-01

    Full Text Available The effect of colloidal bismuth subcitrate (De-Nol on symptoms, Helicobacter pylori status and histological features was studied in 35 patients with non-ulcer dyspepsia. Pain (34 cases and gas bloat (18 were the predominant symptoms. H pylori was present in 26 (74.3% patients. Gastritis and duodenitis were present in 29 of 32 and 22 of 31 cases respectively in whom biopsies were available. Relief in symptoms after treatment was seen in 29 (82.8% cases. Improvement in gastritis and duodenitis was noted in 60.8% and 58.8% respectively; over 70% of H pylori positive patients cleared the organism. These changes did not correlate with the relief in symptoms. We conclude that colloidal bismuth subcitrate is effective in the short term treatment of non-ulcer dyspepsia. It also clears H pylori infection and results in improvement of histological features.

  11. Dose reduction using Bismuth protectors in chest computed tomography

    International Nuclear Information System (INIS)

    This monography is about the Dose reduction using Bismuth protectors in chest CT. The radiation protection of specific areas is necessary when the tissues or radiosensitive organs are near the path of light beam. The correct use of protection represents a challenge for the radiologist because of the time and materials required. The method used was a prospective investigatio in CHPR (TC service) and the doses was measured with TLD dosimeters. It is important to use these protectors in children hospitals.

  12. In vivo cellular uptake of bismuth ions from shotgun pellets

    OpenAIRE

    Stoltenberg, M; Locht, L.; Larsen, Agnete; Jensen, D.

    2003-01-01

    Shotgun pellets containing bismuth (Bi) are widely used and may cause a rather intense exposure of some wild animals to Bi. A Bi shotgun pellet was implanted intramuscularly in the triceps surae muscle of 18 adult male Wistar rats. Another group of 9 animals had a Bi shotgun pellet implanted intracranially in the neocortex. Eight weeks to 12 months later the release of Bi ions was analysed by autometallography (AMG) of tissue sections from different organs (bra...

  13. Weak antilocalization and UCFs in an open bismuth quantum dot

    Science.gov (United States)

    Hackens, B.; Minet, J. P.; Farhi, G.; Faniel, G.; Gustin, C.; Bayot, V.

    2003-04-01

    We report on the observation of weak antilocalization and universal conductance fluctuations in the magnetoconductance of an open quasi-ballistic bismuth nano-cavity. The electron decoherence length is comparable to sample dimensions at low temperature, while the spin-orbit coupling length is smaller. The temperature dependence of both the conductance and the dephasing length are consistent with two-dimensional electron-electron interactions being the dominant decoherence process.

  14. Proton irradiation on textured bismuth based cuprate superconductors

    International Nuclear Information System (INIS)

    Textured bulk polycrystalline samples of bismuth based cuprate superconductors have been subjected to irradiation with 15 MeV protons. In case of Bi-2212, there has been substantial increase in Tc, which may be due to proton induced knock-out of loosely bound oxygen. In case of (Bi,Pb)-2223, there has been a reduction in Tc. The difference in behaviour in these two systems towards proton irradiation has been explained. (author). 7 refs., 3 figs., 1 tab

  15. Magnetic Properties of Bismuth Ferrite Nanopowder Obtained by Mechanochemical Synthesis

    OpenAIRE

    Szafraniak-Wiza, I.; Andrzejewski, B.; Hilczer, B.

    2014-01-01

    Multiferroic bismuth ferrite (BiFeO3) nanopowders have been obtained in room temperature by mechanical synthesis. Depending on the post-synthesis processing the nanopowders have exhibited differences in the mean sizes, presence of amorphous layer and/or secondary phases. Extended magnetic study performed for fresh, annealed and hot-pressed nanopowders have revealed substantial improvement of the magnetic properties in the as-prepared powder.

  16. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  17. Bismuth pyrochlore-based thin films for dielectric energy storage

    Science.gov (United States)

    Michael, Elizabeth K.

    The drive towards the miniaturization of electronic devices has created a need for dielectric materials with large energy storage densities. These materials, which are used in capacitors, are a critical component in many electrical systems. Here, the development of dielectric energy storage materials for pulsed power applications, which require materials with the ability to accumulate a large amount of energy and then deliver it to the system rapidly, is explored. The amount of electrostatic energy that can be stored by a material is a function of the induced polarization and the dielectric breakdown strength of the material. An ideal energy storage dielectric would possess a high relative permittivity, high dielectric breakdown strength, and low loss tangent under high applied electric fields. The bismuth pyrochlores are a compositionally tunable family of materials that meet these requirements. Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate, were fabricated using a novel solution chemistry based upon the Pechini method. This solution preparation is advantageous because it avoids the use of teratogenic solvents, such as 2-methoxyethanol. Crystalline films fabricated using this solution chemistry had very small grains that were approximately 27 nm in lateral size and 35 nm through the film thickness. Impedance measurements found that the resistivity of the grain boundaries was two orders of magnitude higher than the resistivity of the grain interior. The presence of many resistive grain boundaries impeded conduction through the films, resulting in high breakdown strengths for these materials. In addition to high breakdown strengths, this family of materials exhibited moderate relative permittivities of between 55 +/- 2 and 145 +/- 5, for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 +/- 0.0001. Increases in the concentration of the tantalum

  18. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    International Nuclear Information System (INIS)

    Bismuth vanadate, Bi4V2O11, and related compounds with various metal (Me) substitutions, Bi4(MexV1−x)2O11−δ, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated

  19. Resistivity and Seebeck coefficient measurements of a bismuth microwire array

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y. [Graduate School of Science and Engineering, Saitama University, 338-8570 (Japan)]. E-mail: ishikawa@kan.env.gse.saitama-u.ac.jp; Hasegawa, Y. [Graduate School of Science and Engineering, Saitama University, 338-8570 (Japan); Morita, H. [Saitama Industrial Technology Center, Saitama Prefecture, 333-0844 (Japan); Kurokouchi, A. [Saitama Industrial Technology Center, Saitama Prefecture, 333-0844 (Japan); Wada, K. [Saitama Industrial Technology Center, Saitama Prefecture, 333-0844 (Japan); Komine, T. [Department of Media and Telecommunications Engineering, Ibaraki University, 316-8511 (Japan); Nakamura, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5252 (Japan)

    2005-11-01

    The resistivity and Seebeck coefficient of a bismuth microwire array (wire diameter: 25 {mu}m) were successfully measured from 25 to 300 K. To eliminate the influence of the contact resistance between the wire edges of the microwire array and copper electrodes, the titanium (100 nm)/copper (500 nm) film layers were deposited as interlayer on the wire edge by ion plating method. Copper electrodes were glued by using Pb-Sn solder. The resistivity and the Seebeck coefficient at 300 K were approximately 1.8x10{sup -6} {omega}m and -54x10{sup -6} V/K, respectively. The value of the resistivity and the Seebeck coefficient were in good agreement with those of bulk polycrystalline bismuth reported previously. Thus, the effects of the contact resistance for the microwire array were almost resolved, and the chemical reaction of the Pb-Sn solder and bismuth was prevented by using the thin-film layer. The technique is expected to be applicable to nanowire arrays as well.

  20. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated.

  1. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-01

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting. PMID:27246652

  2. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-01

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  3. Bismuth Propellant Feed System Development at NASA-MSFC

    Science.gov (United States)

    Polzin, Kurt A.

    2007-01-01

    NASA-MSFC has been developing liquid metal propellant feed systems capable of delivering molten bismuth at a prescribed mass flow rate to the vaporizer of an electric thruster. The first such system was delivered to NASA-JPL as part of the Very High Isp Thruster with Anode Layer (VHITAL) program. In this system, the components pictured were placed in a vacuum chamber and heated while the control electronics were located outside the chamber. The system was successfully operated at JPL in conjunction with a propellant vaporizer, and data was obtained demonstrating a new liquid bismuth flow sensing technique developed at MSFC. The present effort is aimed at producing a feed-system for use in conjunction with a bismuth-fed Hall thruster developed by Busek Co. Developing this system is more ambitious, however, in that it is designed to self-contain all the control electronics inside the same vacuum chamber as an operating bismuth-fed thruster. Consequently, the entire system, including an on-board computer, DC-output power supplies, and a gas-pressurization electro-pneumatic regulator, must be designed to survive a vacuum environment and shielded to keep bismuth plasma from intruding on the electronics and causing a shortcircuit. In addition, the hot portions of the feed system must be thermally isolated from the electronics to avoid failure due to high heat loads. This is accomplished using a thermal protection system (TPS) consisting of multiple layers of aluminum foil. The only penetrations into the vacuum chamber are an electrically isolated (floating) 48 VDC line and a fiberoptic line. The 48 VDC provides power for operation of the power supplies and electronics co-located with the system in the vacuum chamber. The fiberoptic Ethernet connection is used to communicate user-input control commands to the on-board computer and transmit real-time data back to the external computer. The partially assembled second-generation system is shown. Before testing at Busek, a

  4. Study on corrosion test techniques in lead bismuth eutectic flow. Joint research report in JFY2002

    International Nuclear Information System (INIS)

    The evaluation of corrosion behaviors of core and structural materials in lead bismuth eutectic is one of the key issues for the utilization of lead bismuth eutectic as a coolant of the primary loops of lead bismuth cooled fast breeder reactors (FBRs) and the intermediate heat transport media of new-type steam generators of the sodium cooled FBRs. The purpose of the present study is to establish corrosion test techniques in lead bismuth eutectic flow. The techniques of steel corrosion test and oxygen control in flowing lead bismuth eutectic, and the technologies of a lead bismuth flow test at high temperature and high velocity were developed through corrosion test using a lead bismuth flow test loop of the Tokyo Institute of Technology in JFY2002. The major results are summarized as follows: (1) Techniques of fabrication, mount and rinse of corrosion specimens, measurement method of weight loss, and SEM/EDX analysis method have been established through lead bismuth corrosion test. (2) Weight losses were measured, corrosion and lead bismuth-adhered layers and eroded parts were observed in two 1000 hr-corrosion tests, and the results were compared with each other for twelve existing steels including ODS, F82H and SUH-3. (3) An oxygen sensor made of zirconia electrolyte structurally resistant to thermal stress and thermal shock was developed and tested in the lead bismuth flow loop. Good performance has been obtained. (4) An oxygen control method by injecting argon and hydrogen mixture gas containing steam into lead bismuth was applied to the lead bismuth flow loop, and technical issues for the development of the oxygen control method were extracted. (5) Technical measures for freezing and leakage of lead bismuth in the flow loop were accumulated. (6) Technical measures for flow rate decrease/blockage due to precipitation of oxide and corrosion products in a low temperature section of the lead bismuth flow loop were accumulated. (7) Electromagnetic flow meters with MI

  5. Unusual anti-thermal degradation of bismuth NIR luminescence in bismuth doped lithium tantalum silicate laser glasses.

    Science.gov (United States)

    Tan, Linling; Wang, Liping; Peng, Mingying; Xu, Shanhui; Zhang, Qinyuan

    2016-08-01

    For application of bismuth laser glasses in either fiber amplifier or laser, their performance stability in long run should be understood especially in extreme conditions. However, so far, there are few reports on it. Here, we found, after the cycle experiments on heating and cooling, that the proper increase of lithium content in lithium tantalum silicate laser glass can lead to unusual anti-thermal degradation of bismuth NIR luminescence, which completely differs from the scenario in germanate glass. FTIR, 29Si MAS NMR spectra, absorption and dynamic photoluminescence spectra are employed to unravel how this happens. The results illustrate that it should be due to the decrease of polymerization of silicate glass network, which in turn allows the regeneration at 250°C, and therefore, the content increase of bismuth NIR emission centers. In the meanwhile, we noticed though Bi luminescence can be thermally quenched its peak does not shift along with temperature, which seldom appears in laser materials. The unique property might guarantee the unshift of Bi fiber laser wavelength once such glass was made into fiber devices even as the environmental temperature changes. The role of lithium is discussed in the evolution of glass structures, the suppression of glass heterogeneity, and the thermal stability of Bi luminescence, and it should be helpful to design homogeneous silicate laser glass with outstanding thermal stability. PMID:27505827

  6. Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterisation.

    Science.gov (United States)

    Nazari, P; Faramarzi, M A; Sepehrizadeh, Z; Mofid, M R; Bazaz, R D; Shahverdi, A R

    2012-06-01

    Today, synthesis of nanoparticles (NPs) using micro-organisms has been receiving increasing attention. In this investigation, a bismuth-reducing bacterium was isolated from the Caspian Sea in Northern Iran and was used for intracellular biosynthesis of elemental bismuth NPs. This isolate was identified as non-pigmented Serratia marcescens using conventional identification assays and the 16s rDNA fragment amplification method and used to prepare bismuth NPs. The biogenic bismuth NPs were released by liquid nitrogen and highly purified using an n-octanol water two-phase extraction system. Different characterisations of the purified NPs such as particle shapes, size and purity were carried out with different instruments. The energy-dispersive X-ray and X-ray diffraction (XRD) patterns demonstrated that the purified NPs consisted of only bismuth and are amorphous. In addition, the transmission electron micrograph showed that the small NPs formed larger aggregated NPs around <150 nm. Although the chemical syntheses of elemental bismuth NPs have been reported in the literature, the biological synthesis of elemental bismuth NPs has not been published yet. This is the first report to demonstrate a biological method for synthesising bismuth NPs and their purification with a simple solvent partitioning method.

  7. Attenuation and image quality in the use of protective bismuth in chest CT scans

    International Nuclear Information System (INIS)

    For chest CT scans are protective of bismuth (Bi) with the aim of reducing the dose in the breast. The aim of this study was to evaluate the attenuation with thermoluminescent dosimeters in the glandular dose average when using these protective breast CT scans and to evaluate the image quality with and without protective Bismuth.

  8. Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts

    DEFF Research Database (Denmark)

    Duc, Duc Truong; Ha, Hanh Nguyen; Fehrmann, Rasmus;

    2011-01-01

    Silica-supported bismuth molybdate catalysts have been prepared by impregnation, structurally characterized and examined as improved catalysts for the selective oxidation of propylene to acrolein. Catalysts with a wide range of loadings (from 10 to 90 wt%) of beta bismuth molybdate (β-Bi2Mo2O9...

  9. Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications.

    Science.gov (United States)

    Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan

    2015-11-25

    Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.

  10. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    Science.gov (United States)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  11. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  12. Spatial mapping of cadmium zinc telluride materials properties and electrical response to improve device yield and performance

    CERN Document Server

    Van Scyoc, J M; Yoon, H; Gilbert, T S; Hilton, N R; Lund, J C; James, R B

    1999-01-01

    Cadmium zinc telluride has experienced tremendous growth in its application to various radiation sensing problems over the last five years. However, there are still issues with yield, particularly of the large volume devices needed for imaging and sensitivity-critical applications. Inhomogeneities of various types and on various length scales currently prevent the fabrication of large devices of high spectral performance. This paper discusses the development of a set of characterization tools for quantifying these inhomogeneities, in order to develop improvement strategies to achieve the desired cadmium zinc telluride crystals for detector fabrication.

  13. Specific features of the photoconductivity of semi-insulating cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Golubyatnikov, V. A.; Grigor’ev, F. I.; Lysenko, A. P., E-mail: aplysenko@hse.ru; Strogankova, N. I.; Shadov, M. B. [National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics (Russian Federation); Belov, A. G. [OAO GIREDMET State Research and Design Institute of the Rare-Metal Industry (Russian Federation)

    2014-12-15

    The effect of local illumination providing a high level of free-carrier injection on the conductivity of a sample of semi-insulating cadmium telluride and on the properties of ohmic contacts to the sample is studied. It is found that, irrespective of the illumination region, the contact resistance of ohmic contacts decreases and the concentration of majority carriers in the sample grows in proportion to the illumination intensity. It is shown that inherent heterogeneities in crystals of semi-insulating semiconductors can be studied by scanning with a light probe.

  14. Polarity and structure peculiarities of trialkylphosphine oxides, sulfides, selenides and tellurides

    International Nuclear Information System (INIS)

    Using the quantum-chemical calculations structural characteristics of trialkylphosphine oxides, sulfates, selenides and tellurides (Alk3P=X; X O, S, Se, Te) are obtained, which are in good agreement with literature X-ray structural analysis and gas-phase electron diffraction data. The P=X bonds polarity is determined in the framework of vector-additive scheme on the base of experimental data on components dipole moments and using different base series of molecules geometry parameters. It is shown that increasing of bond moment P=X in the X = O, S, Se, Te series takes place through dipole length increasing

  15. Soft x-ray magnetic circular dichroism study of Cr tellurides

    OpenAIRE

    Yaji, Koichiro; Kimura, Akio; Koyama, Michie; Hirai, Chiyuki; Sato, Hitoshi; Shimada, Kenya; Tanaka, Arata; Taniguchi, Masaki

    2005-01-01

    Ferromagnetic chromium tellurides Cr5 Te6 (δ=0.17) and Cr2 Te3 (δ=0.33) have been investigated by Cr 2p x-ray absorption spectroscopy and x-ray magnetic circular dichroism (XMCD). The observed XMCD spectra have been analyzed by means of a configuration-interaction cluster model calculation. From calculated results, we suggest that the doped holes created by the Cr deficiency exist mainly in the Te 5p orbital of Cr1-δ Te.

  16. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  17. Conduction mechanism in bismuth silicate glasses containing titanium

    Science.gov (United States)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  18. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  19. Concentration Quenching in Erbium Doped Bismuth Silicate Glasses

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; XU Tie-Feng; NIE Qiu-Hua; SHEN Xiang; WANG Xun-Si

    2006-01-01

    @@ Er2 O3-doped bismuth silicate glasses are prepared by the conventional melt-quenching method, and the Er3+ : 4 I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. Infrared spectra are measured to estimate the exact content of OH- groups in the samples. Based on the electric dipole-dipole interaction theory,the interaction parameter CEr,Er for the migration rate of Er3+ :4 I13/2 → 4 I13/2 in proposed glasses is calculated.

  20. Coherent phonon coupling to individual Bloch states in photoexcited bismuth.

    Science.gov (United States)

    Papalazarou, E; Faure, J; Mauchain, J; Marsi, M; Taleb-Ibrahimi, A; Reshetnyak, I; van Roekeghem, A; Timrov, I; Vast, N; Arnaud, B; Perfetti, L

    2012-06-22

    We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time- and angle-resolved photoelectron spectroscopy. The binding energy of bulklike bands oscillates with the frequency of the A(1g) phonon mode, whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wave vector is correctly reproduced by ab initio calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.

  1. Gamma-ray attenuation coefficients in bismuth borate glasses

    International Nuclear Information System (INIS)

    Mass attenuation coefficients of glasses in the system: xBi2O3(1-x)B2O3 (x=0.30, 0.35, 0.40, 0.45 and 0.55) were determined at 356, 662, 1173 and 1332 keV photon energies using a narrow beam transmission method. Appreciable variations were observed in these coefficients due to changes in the chemical composition of glasses. These coefficients were then used to determine effective atomic numbers of glass samples, which were found to be constant with bismuth concentration and energy

  2. Colloidal bismuth subcitrate in non-ulcer dyspepsia.

    OpenAIRE

    Khanna M; Abraham P; Nair N; Mistry F; Vora I

    1992-01-01

    The effect of colloidal bismuth subcitrate (De-Nol) on symptoms, Helicobacter pylori status and histological features was studied in 35 patients with non-ulcer dyspepsia. Pain (34 cases) and gas bloat (18) were the predominant symptoms. H pylori was present in 26 (74.3%) patients. Gastritis and duodenitis were present in 29 of 32 and 22 of 31 cases respectively in whom biopsies were available. Relief in symptoms after treatment was seen in 29 (82.8%) cases. Improvement in gastri...

  3. Kinetics of Propagating Phase Transformation in Compressed Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, M; Bastea, S; Emig, J; Springer, P; Reisman, D

    2004-08-18

    The authors observed dynamically driven phase transitions in isentropically compressed bismuth. By changing the stress loading conditions they explored two distinct cases one in which the experimental signature of the phase transformation corresponds to phase-boundary crossings initiated at both sample interfaces, and another in which the experimental trace is due to a single advancing transformation front in the bulk of the material. They introduce a coupled kinetics-hydrodynamics model that for this second case enables them, under suitable simplifying assumptions, to directly extract characteristic transition times from the experimental measurements.

  4. Fano interference for large-amplitude coherent phonons in bismuth

    International Nuclear Information System (INIS)

    We report femtosecond time-resolved measurements of lattice dynamics in bismuth made over a wide range of temperatures and excitation levels. We demonstrate that time-integrated Fourier transforms for both the fully symmetric A1g and doubly degenerate Eg coherent oscillations of large amplitude exhibit asymmetric line shapes described by the Fano formula. Measuring the real and imaginary part of the phonon self-energy, we attempt to identify the nature of the continuum responsible for the configuration mixing. Based on the measured pump and temperature dependences, we suggest that the continuum responsible for the interference includes both the electronic and lattice degrees of freedom

  5. Telluride buried channel waveguides operating from 6 to 20 μm for photonic applications

    Science.gov (United States)

    Vigreux, C.; Escalier, R.; Pradel, A.; Bastard, L.; Broquin, J.-E.; Zhang, X.; Billeton, T.; Parent, G.; Barillot, M.; Kirschner, V.

    2015-11-01

    One of the technological challenges of direct observation of extra-solar planets by nulling interferometry is the development of a modal filter operating from 6 to 20 μm. In the present paper a candidate technology for the fabrication of such modal filters is presented: Integrated Optics. A solution based on all-telluride buried channel waveguides is considered. In the proposed waveguides, vertical guiding of light is achieved by a 15 μm-thick Te83Ge17 core film deposited onto a lower-index Te75Ge15Ga10 substrate, and covered by a 15 μm-thick Te76Ge24 superstrate. Horizontal guiding of light is obtained by modifying the geometry of the core layer by ion beam etching. As this stage, all-telluride buried channel waveguide prototypes demonstrate light guiding and transmission from 2 to 20 μm. The validity of the technology and the good quality of the fabrication process, in particular the input and output facets surface finish are thus confirmed. These results consolidate the potential of Te-based integrated optics components for nulling interferometry.

  6. A density-functional study on the electronic and vibrational properties of layered antimony telluride

    Science.gov (United States)

    Stoffel, Ralf P.; Deringer, Volker L.; Simon, Ronnie E.; Hermann, Raphaël P.; Dronskowski, Richard

    2015-03-01

    We present a comprehensive survey of electronic and lattice-dynamical properties of crystalline antimony telluride (Sb2Te3). In a first step, the electronic structure and chemical bonding have been investigated, followed by calculations of the atomic force constants, phonon dispersion relationships and densities of states. Then, (macroscopic) physical properties of Sb2Te3 have been computed, namely, the atomic thermal displacement parameters, the Grüneisen parameter γ, the volume expansion of the lattice, and finally the bulk modulus B. We compare theoretical results from three popular and economic density-functional theory (DFT) approaches: the local density approximation (LDA), the generalized gradient approximation (GGA), and a posteriori dispersion corrections to the latter. Despite its simplicity, the LDA shows excellent performance for all properties investigated—including the Grüneisen parameter, which only the LDA is able to recover with confidence. In the absence of computationally more demanding hybrid DFT methods, the LDA seems to be a good choice for further lattice dynamical studies of Sb2Te3 and related layered telluride materials.

  7. Investigation of corrosion, water reaction, polonium evaporation and bismuth resource in liquid metal lead-bismuth technology

    International Nuclear Information System (INIS)

    Lead-bismuth is the first candidate material for liquid metal target find coolant of fueled blanket system in accelerator-driven system (ADS) studied at JAERI. Advantages of the lead-bismuth utilization are non-active material, very low capture cross section, low melting point of 125degC and high boiling point of 1670degC, and beside coolant void reactivity become negative. But problems are due to the high corrosivity to most of the structural materials and the corrosive data are scarcity. In this report, corrosivity, reaction with water, thermal-hydraulics, chemical toxicity etc. are studied by investigating some facilities utilized and researched really for lead or lead-bismuth. And, furthermore, polonium evaporation rate and bismuth resource are investigated. Main results obtained are as follows: (1) In a refinery, there are enough employment experience for liquid Pb-Bi in period of about 17 years and not corrosion for the thermal conductive materials (1Cr-0.5Mo steel) used under the condition of natural convection with temperature around 400degC. (2) In Russia, extensive experience in the use as Russian submarines and in R and D during about 50 years are available. And as a result, it will be able to lead approximately zero corrosion for Cr-Si materials by adjusting oxygen film with oxygen concentration control between 10-7 to 10-5% mass. However, the corrosion data are not enough systematically collected involving them in radiation dose field. (3) In liquid-dropping experiment, it is shown that interaction between water and high temperature liquid Pb-Bi is reduced steeply with rising of atmosphere pressure. But, in order to design the second circuit removal model of ADS, the interaction should be evaluated by water continuous injection experiment. (4) Polonium forms PbPo in Pb-Bi, and the evaporation rate become less three factor than that of Po, and furthermore, the rate decreases in the atmosphere. The effects of Po on employee and environment will not be

  8. Investigation of corrosion, water reaction, polonium evaporation and bismuth resource in liquid metal lead-bismuth technology

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki; Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kitano, Teruaki [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    2000-10-01

    Lead-bismuth is the first candidate material for liquid metal target find coolant of fueled blanket system in accelerator-driven system (ADS) studied at JAERI. Advantages of the lead-bismuth utilization are non-active material, very low capture cross section, low melting point of 125degC and high boiling point of 1670degC, and beside coolant void reactivity become negative. But problems are due to the high corrosivity to most of the structural materials and the corrosive data are scarcity. In this report, corrosivity, reaction with water, thermal-hydraulics, chemical toxicity etc. are studied by investigating some facilities utilized and researched really for lead or lead-bismuth. And, furthermore, polonium evaporation rate and bismuth resource are investigated. Main results obtained are as follows: (1) In a refinery, there are enough employment experience for liquid Pb-Bi in period of about 17 years and not corrosion for the thermal conductive materials (1Cr-0.5Mo steel) used under the condition of natural convection with temperature around 400degC. (2) In Russia, extensive experience in the use as Russian submarines and in R and D during about 50 years are available. And as a result, it will be able to lead approximately zero corrosion for Cr-Si materials by adjusting oxygen film with oxygen concentration control between 10{sup -7} to 10{sup -5}% mass. However, the corrosion data are not enough systematically collected involving them in radiation dose field. (3) In liquid-dropping experiment, it is shown that interaction between water and high temperature liquid Pb-Bi is reduced steeply with rising of atmosphere pressure. But, in order to design the second circuit removal model of ADS, the interaction should be evaluated by water continuous injection experiment. (4) Polonium forms PbPo in Pb-Bi, and the evaporation rate become less three factor than that of Po, and furthermore, the rate decreases in the atmosphere. The effects of Po on employee and environment

  9. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  10. Ultra-flat bismuth films for diamagnetic levitation by template-stripping

    Energy Technology Data Exchange (ETDEWEB)

    Kokorian, J. [University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); TU Delft — 3mE-PME, Mekelweg 2, 2628 CD Delft (Netherlands); Engelen, J.B.C. [University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); IBM Research — Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Vries, J. de; Nazeer, H.; Woldering, L.A. [University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Abelmann, L., E-mail: l.abelmann@utwente.nl [University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2014-01-01

    In this paper we present a method to deposit thin films of bismuth with sub-nanometer surface roughness for application to diamagnetic levitation. Evaporated films of bismuth have a high surface roughness with peak to peak values in excess of 100 nm and average values on the order of 20 nm. We expose the smooth backside of the films using a template stripping method, resulting in a great reduction of the average surface roughness, to 0.8 nm. Atomic force microscope and X-ray diffraction measurements show that the films have a polycrystalline texture with preferential c-axis orientation. On the back side of the film, fine grains are grouped into larger clusters. Cantilever resonance shift measurements indicate that the Young's modulus of the films is on the order of 20 GPa. - Highlights: • We deposited continuous but rough bismuth films of 200–500 nm in thickness by thermal evaporation. • We analyzed the material properties of bismuth films using a variety of measurement techniques. • We reduced the roughness of bismuth films from 20 nm to 0.8 nm by a template stripping method. • The Young's modulus of bismuth thin films is comparable to bulk bismuth.

  11. Layered bismuth oxyhalide nanomaterials for highly efficient tumor photodynamic therapy

    Science.gov (United States)

    Xu, Yu; Shi, Zhenzhi; Zhang, Ling'e.; Brown, Eric Michael Bratsolias; Wu, Aiguo

    2016-06-01

    Layered bismuth oxyhalide nanomaterials have received much more interest as promising photocatalysts because of their unique layered structures and high photocatalytic performance, which can be used as potential inorganic photosensitizers in tumor photodynamic therapy (PDT). In recent years, photocatalytic materials have been widely used in PDT and photothermal therapy (PTT) as inorganic photosensitizers. This investigation focuses on applying layered bismuth oxyhalide nanomaterials toward cancer PDT, an application that has never been reported so far. The results of our study indicate that the efficiency of UV-triggered PDT was highest when using BiOCl nanoplates followed by BiOCl nanosheets, and then TiO2. Of particular interest is the fact that layered BiOCl nanomaterials showed excellent PDT effects under low nanomaterial dose (20 μg mL-1) and low UV dose (2.2 mW cm-2 for 10 min) conditions, while TiO2 showed almost no therapeutic effect under the same parameters. BiOCl nanoplates and nanosheets have shown excellent performance and an extensive range of applications in PDT.

  12. Mechanically activating formation of layered structured bismuth titanate

    International Nuclear Information System (INIS)

    Bismuth titanate-Bi4Ti3O12 (BIT) with wide application in the electronic industry as capacitors, memory devices and sensors is the simplest compound in the Aurivillius family, which consists of (Bi2O2)2+ sheets alternating with (Bi2Ti3O10)2- perovskite-like layers. The synthesis of more resistive BIT ceramics would be preferable advance in obtaining of well-densified ceramic with small grains randomly oriented to limit the conductivity along the (Bi2O2)2+ layers. Having in mind that the conventional ceramic route for the synthesis can lead to non-stoichiometry in composition, in consequence of the undesirable loss in bismuth content through volatilization of Bi2O3 at elevated temperature, our efforts were addressed to preparation of BIT by mechanical activation the constituent oxides. The nucleation and phase formation of BIT, crystal structure, microstructure, powder particle size and specific surface area were followed by XRD, Rietveld refinement analysis, thermal analysis, scanning electron microscopy (SEM) and the BET specific surface area measurements

  13. Superconductivity in Bismuth. A New Look at an Old Problem

    Science.gov (United States)

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan’s formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy. PMID:26815431

  14. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Science.gov (United States)

    Ciobanu, Gabriela; Bargan, Ana Maria; Luca, Constantin

    2015-11-01

    New bismuth-substituted hydroxyapatite [Ca10- x Bi x (PO4)6(OH)2 where x = 0-2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12-25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

  15. Electrodeposition of bismuth alloys by the controlled potential method

    International Nuclear Information System (INIS)

    We worked with the electrodeposition of three bismuth alloys, the composition of the first electrolyte was: 0.3 g/l. Bi; 20 g/l. Ni; and the conditions were pH = 5.2 - 5.6; T = 25 Centigrade degrees; current density 0.3 A / dm2 - 6.6 A / dm2. Following alloy was between Bi - Pb, composition of the electrolyte was 3.18 g/l. Bi (metallic); 31.81 g/l. Pb (Pb(NO3)2) pH : 1; T = 20 Centigrade degrees; current density 10.20 A/dm2 . The third electrolyte was Bi-Cu, its composition was: 20.89 g/l. Bi; (metallic) 63.54 g/l Cu (Cu(NO3)2) pH : 1.5 - 1.8; T = 25-30 Centigrade degrees; current density 1-2 A/dm2 . The best results were obtained with the third electrolyte. The purpose of this work was to experiment with different parameters like temperature, pH and the electrolyte concentration to obtain a bismuth alloy. (Author)

  16. Synthesis and characterization of bismuth alkaline titanate powders

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.mx [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Dominguez-Crespo, M.A. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Hernandez-Perez, M.A. [ESIQIE, Metalurgia, Instituto Politecnico Nacional, Mexico, D. F (Mexico); Garcia-Zaleta, D.S. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Brachetti-Sibaja, S.B. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo esq. Sor Juana Ines de la Cruz s/n Col. Los Mangos C.P.89440 Cd. Madero Tamaulipas (Mexico)

    2011-06-15

    In this work, samples of bismuth alkaline titanate, (K{sub 0.5}Na{sub 0.5}){sub (2-x/2)}Bi{sub (x/6)}TiO{sub 3}, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and {alpha} = 59.48{sup o}. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  17. Phase transition of solid bismuth under high pressure

    Science.gov (United States)

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan

    2016-10-01

    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  18. Genotoxic effects of bismuth (III oxide nanoparticles by comet assay

    Directory of Open Access Journals (Sweden)

    Reecep Liman

    2015-06-01

    Full Text Available Bismuth oxide is one of the important transition metal oxides and it has been intensively studied due to their peculiar characteristics (semiconductor band gap, high refractive index, high dielectric permittivity, high oxygen conductivity, resistivity, photoconductivity and photoluminescence etc.. Therefore, it is used such as microelectronics, sensor technology, optical coatings, transparent ceramic glass manufacturing, nanoenergetic gas generator, biosensor for DNA hybridization, potential immobilizing platforms for glucose oxidase and polyphenol oxidase, fuel cells, a additive in paints, an astringent in a variety of medical creams and topical ointments, and for the determination of heavy metal ions in drinking water, mineral water and urine. In addition this, Bismuth (III oxide nanoparticles (BONPs are favorable for the biomolecules adsorption than regular sized particles because of their greater advantages and novel characteristics (much higher specific surface, greater surface free energy, and good electrochemical stability etc.. Genotoxic effects of BONPs were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of BONPs at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was also observed at all concentrations of BONPs except 12.5 ppm by Comet assay. The results were also analyzed statistically by using SPSS for Windows; Duncan’s multiple range test was performed. These result indicate that BONPs exhibit genotoxic activity in A. cepa root meristematic cells.

  19. Synthesis and characterization of bismuth alkaline titanate powders

    International Nuclear Information System (INIS)

    In this work, samples of bismuth alkaline titanate, (K0.5Na0.5)(2-x/2)Bi(x/6)TiO3, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and α = 59.48o. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  20. Superconductivity in Bismuth. A New Look at an Old Problem.

    Directory of Open Access Journals (Sweden)

    Zaahel Mata-Pinzón

    Full Text Available To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216 was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi as indicated by the λ obtained via McMillan's formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy.

  1. Is the ultra-fast transformation of bismuth non-thermal?

    CERN Document Server

    Gamaly, E G

    2009-01-01

    Transient state of femtosecond laser excited bismuth has been studied by various groups with time-resolved optical, x-ray, and electron probes at the deposited energy density from below through up to several times the equilibrium enthalpy of melting. However, the interpretations of the experimental results are controversial: the optical probes reveal the absence of transition to the melting phase while the authors of x-ray and electron diffraction experiments claim the observation of ultrafast non-thermal melting. The presented analysis, based on temperature dependence of bismuth optical properties, unequivocally shows a purely thermal nature of all the observed fs-laser induced transformations in bismuth.

  2. A model bismuth oxide intergranular thin film in a ZnO twist grain boundary

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, H S [INESC, Microsistemas and Nanotecnologias, Rua Alves Redol 1-9, P-1000-029 Lisbon (Portugal)

    2010-04-14

    The electronic properties of a model bismuth oxide intergranular film in ZnO were investigated using density functional plane wave calculations. It was found that oxygen excess plays a fundamental role in the appearance of electrical activity. The introduction by oxygen interstitials or zinc vacancies results in depletion of the charge in deep gap states introduced by the bismuth impurities. This makes the boundary less metallic and promotes the formation of acceptor states localized to the boundary core, resulting in Schottky barrier enhancement. The results indicate that the origin of electrical activity in thin intergranular bismuth oxide films is probably not distinct from that in decorated ZnO boundaries.

  3. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    OpenAIRE

    Marko Rodić; Olga Vajdle; Valéria Guzsvány; Jasmina Zbiljić; Zsigmond Papp

    2011-01-01

    Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE) and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV) mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD) not exceeding 1.5%. The tricresyl phosp...

  4. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    Science.gov (United States)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  5. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE)

    Science.gov (United States)

    Dossi, Carlo; Monticelli, Damiano; Pozzi, Andrea; Recchia, Sandro

    2016-01-01

    Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors) will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance. PMID:27455338

  6. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE

    Directory of Open Access Journals (Sweden)

    Carlo Dossi

    2016-07-01

    Full Text Available Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance.

  7. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  8. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications). Quarterly progress report No. 1, April 9-July 8, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Vedam, K.

    1979-08-01

    Preparation and properties of cadmium telluride thin films for use in solar cells are studied. CdTe sputter deposition, crystal doping, and carrier typing are discussed. Future experimental plans are described. (WHK)

  9. Shielding property of bismuth glass based on MCNP 5 and WINXCOM simulated calculation

    International Nuclear Information System (INIS)

    Background: Currently, lead glass is widely used as observation window, while lead is toxic heavy metal. Purpose: Non-toxic materials and their shielding effects are researched in order to find a new material to replace lead containing material. Methods: The mass attenuation coefficients of bismuth silicate glass were investigated with gamma-ray's energy at 0.662 MeV, 1.17 MeV and 1.33 MeV, respectively, by MCNP 5 (Monte Carlo) and WINXCOM program, and compared with those of the lead glass. Results: With attenuation factor K, shielding and mechanical properties taken into consideration bismuth glass containing 50% bismuth oxide might be selected as the right material. Dose rate distributions of water phantom were calculated with 2-cm and 10-cm thick glass, respectively, irradiated by 137Cs and 60Co in turn. Conclusion: Results show that the bismuth glass may replace lead glass for radiation shielding with appropriate energy. (authors)

  10. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    Science.gov (United States)

    Sepulveda-Guzman, S.; Elizondo-Villarreal, N.; Ferrer, D.; Torres-Castro, A.; Gao, X.; Zhou, J. P.; Jose-Yacaman, M.

    2007-08-01

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  11. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S; Elizondo-Villarreal, N; Ferrer, D; Torres-Castro, A; Gao, X; Zhou, J P; Jose-Yacaman, M [Chemical Engineering Department and Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-08-22

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  12. Surface tension of liquid dilute solutions of lead-cesium and bismuth-cesium systems

    International Nuclear Information System (INIS)

    Method of the maximal pressure in a drop was used to measure the surface tension of 15 liquid dilute solutions of lead-cesium system in 0-0.214 at% concentration range and of 12 diluted solutions of bismuth-cesium system in 0-0.160 at.% cesium range from solidification temperature up to 500 dec C. It was found that cesium was characterized as surfactant in lead and bismuth melts. It was established that the temperature coefficient of surface tension changes sufficiently in maximally diluted solutions of alkali metals in bismuth and lead melts. Effect of sodium, potassium, rubidum and cesium on the value of surface tension of lead and bismuth was systematized. Growth of activity in sodium, potassium, rubidium and cesium series was noted

  13. Three-component synthesis of amidoalkyl naphthols catalyzed by bismuth(Ⅲ) nitrate pentahydrate

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Yan Liang; Ting Ting Zhang; Jing Jing Gao

    2012-01-01

    Bismuth(Ⅲ) nitrate pentahydrate catalyzed the three-component condensation of β-naphthol,aldehydes and amines/urea under solvent-free conditions to afford the corresponding amidoalkyl naphthols in excellent yields.

  14. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [Los Alamos National Laboratory

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  15. Standard triple, bismuth pectin quadruple and sequential therapies for Helicobacter pylori eradication

    OpenAIRE

    Gao, Xiao-Zhong; Qiao, Xiu-li; Song, Wen-chong; Wang, Xiao-Feng; Liu, Feng

    2010-01-01

    AIM: To compare the effectiveness of standard triple, bismuth pectin quadruple and sequential therapies for Helicobacter pylori (H. pylori) eradication in a randomized, double-blinded, comparative clinical trial in China.

  16. Vibrational spectra and structure of bismuth based quaternary glasses

    International Nuclear Information System (INIS)

    Quaternary bismuthate glasses containing Li2O, ZnO and B2O3 have been prepared by melt quench technique and studied by density, DSC, IR and Raman spectroscopy. Raman and infrared spectroscopy have been employed to investigate the (75 - x)Bi2O3-xLi2O-10ZnO-15B2O3 glasses in order to obtain information about the competitive role of Bi2O3 and B2O3 in the formation of glass network. The increase of Bi2O3 content causes a progressive conversion of three- to four-fold coordinated boron. IR and Raman spectra show that these glasses are made up of [BiO3] pyramidal and [BiO6] octahedral units. The formation of Zn in tetrahedral coordination was observed

  17. Structural investigation of Zn doped sodium bismuth borate glasses

    Science.gov (United States)

    Bhatia, V.; Kumar, D.; Singh, D.; Singh, S. P.

    2016-05-01

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na2O:15Bi2O3:70B2O3 (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO3 & BO4 structural units) have been observed.

  18. High power and compact switchable bismuth based multiwavelength fiber laser

    International Nuclear Information System (INIS)

    A compact switchable multiwavelength fibre laser (SWFL) is proposed and demonstrated using a bismuth based erbium doped fibre amplifier (Bi-EDFA) and a Sagnac loop mirror (SLM) in a ring cavity. The proposed compact SWFL can generate up to 6 switchable wavelengths with an average peak power of 11 dBm and also shows good stability over time with a high side mode signal ratio (SMSR) of 40 dB that negates minor fluctuations in the laser output. The Bi-EDF based gain medium gives the SWFL a large usable bandwidth of up to 80 nm, and it is expected that this will allow the SWFL to be used as a tunable laser source for high power applications to meet increasing demand

  19. Terahertz radiation from bismuth surface induced by femtosecond laser pulses.

    Science.gov (United States)

    Ilyakov, I E; Shishkin, B V; Fadeev, D A; Oladyshkin, I V; Chernov, V V; Okhapkin, A I; Yunin, P A; Mironov, V A; Akhmedzhanov, R A

    2016-09-15

    We report on the first experimental observation of terahertz (THz) wave generation from bismuth mono- and polycrystalline samples irradiated by femtosecond laser pulses. Dependencies of the THz signal on the crystal orientation, optical pulse energy, incidence angle, and polarization are presented and discussed together with features of the sample surfaces. The optical-to-THz conversion efficiency was up to two orders of magnitude higher than for metal at a moderate fluence of ∼1  mJ/cm2. We also found nonlinear effects not previously observed using other metal and semiconductor materials: (a) asymmetry of THz response with respect to a half-turn of a sample around its normal, (b) THz polarization control by orientation of the sample surface, and PMID:27628379

  20. Evaporation of mercury impurity from liquid lead–bismuth eutectic

    International Nuclear Information System (INIS)

    The equilibrium evaporation of mercury from dilute solutions in liquid lead–bismuth eutectic (LBE) was studied in argon atmosphere. Mercury present as impurity in LBE was evaporated and detected by atomic fluorescence spectroscopy. A method which could accurately simulate the experimental data was developed. Coefficients of the Henry constant temperature correlation for mercury dissolved in LBE were determined. Experiments with samples from several different batches of LBE revealed that mercury at mole fractions between 10−6 and 10−12 and temperatures between 150 and 350 °C evaporated from liquid LBE close to ideal behavior. Evaporation of mercury from solid LBE on the other hand was unexpectedly high. These results are important for safety evaluations of LBE based spallation targets and accelerator driven systems

  1. Enhanced multiferroic properties of Pr doped bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Pr modified Bi0.9-xLa0.1PrxFeO3 (BLPFO-x, x = 0, 0.1 and 0.2) ceramics were prepared by solid state reaction using oxide reagents and a detailed multiferroic properties is reported. X-ray analysis shows the formation of a bismuth ferrite rhombohedral phase. Pr doping significantly increases the resistivity and leads to a successful observation of electrical polarization hysteresis loops. All the samples have been found to possess a spontaneous magnetic moment at room temperature which increases further at low temperatures. The strong dependence of remnant polarization and dielectric constant on the strength of magnetic field is a direct evidence of magnetoelectric coupling in BLPFO ceramics. (author)

  2. Compatibility of structural materials with liquid bismuth, lead, and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, J.R. [Brookhaven National Lab., Upton, NY (United States)

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies, the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.

  3. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Klaus Reichmann

    2015-12-01

    Full Text Available The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  4. Bismuth coatings deposited by the pulsed dc sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M. F.; Olaya, J. J.; Alfonso, J. E., E-mail: jealfonsoo@unal.edu.co [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Ciencia de Materiales y Superficies, Carrera 45 No. 26-85, Edif. Uriel Gutierrez, Bogota D. C. (Colombia)

    2013-08-01

    In this work we present the results obtained from the deposition of nano-structured bismuth coatings through Dc pulsed unbalanced magnetron sputtering. The coatings were grown on two substrates: silicon and AISI steel 316 L. The microstructure of the Bi coatings grown on silicon and the corrosion resistance of the Bi coatings grown on AISI steel were evaluated. The microstructure was evaluated by X-ray diffraction and the corrosion resistance was characterized by means of polarization potentiodynamic and electrochemical impedance spectroscopy. Finally the morphology of the coatings was evaluated through scanning electronic microscopy. The X-ray diffraction analysis indicates that the coatings are polycrystalline; the corrosion resistance tests indicate that the films with better corrosion resistance were deposited at 40 khz. Scanning electron microscopy micrographs show that the coatings are grown as granular form. (Author)

  5. Formic Acid Oxidation at Platinum-Bismuth Clusters

    DEFF Research Database (Denmark)

    Lovic, J. D.; Stevanovic, S. I.; Tripkovic, D. V.;

    2014-01-01

    . Catalysts prepared in this way exhibit about 10 times higher activity for formic acid oxidation in comparison to pure Pt, as revealed both by potentiodynamic and quasy-potentiostatic measurements. This high activity is the result of well-balanced ensemble effect induced by Bi-oxide species interrupting Pt......Formic acid oxidation was studied on platinum-bismuth deposits on glassy carbon (GC) substrate. The catalysts of equimolar ratio were prepared by potentiostatic deposition using chronocoulometry. Bimetallic structures obtained by two-step process, comprising deposition of Bi followed by deposition...... domains. Prolonged cycling and chronoamperometry tests disclosed exceptional stability of the catalyst during formic acid oxidation. The activity is compatible with the activity of previously studied Pt2Bi alloy but the stability is significantly better. (C) 2014 The Electrochemical Society. All rights...

  6. Ni-rich precipitates in a lead bismuth eutectic loop

    Science.gov (United States)

    Kikuchi, K.; Saito, S.; Hamaguchi, D.; Tezuka, M.

    2010-03-01

    Solidified LBE was sampled from the specimens, electro-magnetic pump, filter, drain valve and oxygen sensor at the JAEA Lead Bismuth Loop-1 (JLBL-1) where the structural material was made of SS316. The concentration of Ni, Fe and Cr in LBE were analyzed by the Inductive Coupled Plasma atomic emission spectrometer. It was concluded that the solution of Ni into LBE was not saturated although the concentration of Fe and Cr almost achieved to the values in the literature. A needle-type structure appeared on the surface of solidified LBE inside the tube specimens. It was found to be Ni-rich precipitates by X-ray analyses (Field Emission Scanning Electron Microscope, FE-SEM). LBE samples collected from a circulating loop after discharging did not show the amount of impurities equivalent to the LBE bulk property.

  7. Evaporation of mercury impurity from liquid lead–bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, A., E-mail: aaertsl@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, 2400 Mol (Belgium); Danaci, S. [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, 2400 Mol (Belgium); Gonzalez Prieto, B. [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, 2400 Mol (Belgium); Centre for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Van den Bosch, J. [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, 2400 Mol (Belgium); Neuhausen, J. [Laboratory for Radio- and Environmental Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-05-01

    The equilibrium evaporation of mercury from dilute solutions in liquid lead–bismuth eutectic (LBE) was studied in argon atmosphere. Mercury present as impurity in LBE was evaporated and detected by atomic fluorescence spectroscopy. A method which could accurately simulate the experimental data was developed. Coefficients of the Henry constant temperature correlation for mercury dissolved in LBE were determined. Experiments with samples from several different batches of LBE revealed that mercury at mole fractions between 10{sup −6} and 10{sup −12} and temperatures between 150 and 350 °C evaporated from liquid LBE close to ideal behavior. Evaporation of mercury from solid LBE on the other hand was unexpectedly high. These results are important for safety evaluations of LBE based spallation targets and accelerator driven systems.

  8. Study of transport properties co - evaporated lead telluride (PbTe) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, U.P.; Bhavsar, G.P. [Thin film laboratory, Physics Department Pratap College, Amalner (India); Pawar, P.H. [Department of Electronics, Jai-Hind College, Dhule (India)

    2002-07-01

    Thin films of lead telluride (PbTe) of thicknesses ranging from 1000 A to 2500 A have been prepared by co-evaporation (three temperature) technique, onto precleaned amorphous glass substrates at various temperatures. The deposited samples were annealed and annealed samples were used for characterization. Resistivity of these samples was measured by four-probe technique as a function of thickness and temperature. Activation energy for charge transport have been evaluated and found in the range of 0.09 to 0.106 eV. Thermoelectric power has been measured and found to be positive indicating that the samples are p-type semiconducting material. Mobility variation with temperature has been estimated (evaluated) and correlated with scattering mechanism in the entire range of temperature studied. The X-ray diffraction analysis confirmed that films are polycrystalline having cubic structure cell and lattice parameters are reported. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  9. The use of cadmium telluride detectors for the qualitative analysis of diagnostic x-ray spectra.

    Science.gov (United States)

    Di Castro, E; Pani, R; Pellegrini, R; Bacci, C

    1984-09-01

    A method is introduced for the evaluation of x-ray spectra from x-ray machines operating in the range 50-100 kVp using a cadmium telluride (CdTe) detector with low detection efficiency. The pulse height distribution obtained with this kind of detector does not represent the true photon spectra owing to the presence of K-escape, Compton scattering, etc.; these effects were evaluated using a Monte Carlo method. A stripping procedure is described for implementation on a Univac 1100/82 computer. The validity of our method was finally tested by comparison with experimental results obtained with a Ge detector and with data from the literature; the results are in good agreement with published data. PMID:6483976

  10. Ion Beam Induced Charge Collection (IBICC) Studies of Cadmium Zinc Telluride (CZT) Radiation Detectors

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride is an emerging material for room temperature radiation detectors. In order to optimize the performance of these detectors, it is important to determine how the electronic properties of CZT are related to the presence of impurities and defects that are introduced during the crystal growth and detector fabrication. At the Sandia microbeam facility IBICC and Time Resolved IBICC (TRIBICC) were used to image electronic properties of various CZT detectors. Two-dimensional areal maps of charge collection efficiency were deduced from the measurements. In order to determine radiation damage to the detectors, we measured the deterioration of the IBICC signal as the function of dose. A model to explain quantitatively the pattern observed in the charge collection efficiency maps of the damaged detectors has been developed and will be discussed in the paper

  11. Electronic properties of chlorine doped cadmium telluride used as high energy photoconductive detector

    International Nuclear Information System (INIS)

    A new high energy X-ray chlorine doped Cadmium Telluride (CdTe:Cl) photoconductor is described. We discuss different deposition techniques (Sputtering, Evaporation, Electroless) to realize ohmic contacts which have low leakage current and which allow high applied electric field. The temperature dependence of the dark current give an activation energy of 0.6 eV for standard CdTe:Cl. The transient response of photoconductors under high X-ray energy beams has been characterized using three different pulse duration 150 ps, 30 ns and 4 μs. Sensitivity and speed of response are studied as a function of neutron pre-irradiated doses (0, 1014, 1015, 1016 n/cm2): neutron irradiations reduce the carrier lifetime at the expense of a lower sensitivity

  12. Internal Electric Field Behavior of Cadmium Zinc Telluride Radiation Detectors Under High Carrier Injection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.H.; Gul, R.; and James, R.B.

    2010-10-26

    The behavior of the internal electric-field of nuclear-radiation detectors substantially affects the detector's performance. We investigated the distribution of the internal field in cadmium zinc telluride (CZT) detectors under high carrier injection. We noted the build-up of a space charge region near the cathode that produces a built-in field opposing the applied field. Its presence entails the collapse of the electric field in the rest of detector, other than the portion near the cathode. Such a space-charge region originates from serious hole-trapping in CZT. The device's operating temperature greatly affects the width of the space-charge region. With increasing temperature from 5 C to 35 C, its width expanded from about 1/6 to 1/2 of the total depth of the detector.

  13. An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride.

    Science.gov (United States)

    Chen, Chia-Chu; Whitaker, John F

    2010-06-01

    A single cadmium-manganese-telluride crystal that exhibits both the Pockels and Faraday effects is used to produce a Poynting-vector sensor for signals in the microwave regime. This multi-birefringent crystal can independently measure either electric or magnetic fields through control of the polarization of the optical probe beam. After obtaining all the relevant electric and magnetic field components, a map of the Poynting vector along a 50-Omega microstrip was experimentally determined without the need for any further transformational calculations. The results demonstrate that this sensor can be used for near-field mapping of the Poynting vector. Utilizing both amplitude and phase information from the fields in the microwave signal, it was confirmed for the case of an open-terminated microstrip that no energy flowed to the load, while for a microstrip with a matched termination, the energy flowed consistently along the transmission line. PMID:20588348

  14. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yunqing; Ye Chao; Zhu Zhenghui [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Hu Yuzhu [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China) and Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China)], E-mail: njhuyuzu@126.com

    2008-03-03

    The pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as proton probes for tiopronin determination. Based on the fluorescence quenching of CdTe QDs caused by tiopronin, a simple, rapid and specific quantitative method was proposed. Under the optimal conditions, the calibration plot of ln(F{sub 0}/F) with concentration of tiopronin was linear in the range of 0.15-20 {mu}g mL{sup -1}(0.92-122.5 {mu}mol L{sup -1}) with correlation coefficient of 0.998. The limit of detection (LOD) (3{sigma}/k) was 0.15 {mu}g mL{sup -1}(0.92 {mu}mol mL{sup -1}). The content of tiopronin in pharmaceutical tablet was determined by the proposed method and the result agreed with that obtained from the oxidation-reduction titration method and the claimed value.

  15. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination

    International Nuclear Information System (INIS)

    The pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as proton probes for tiopronin determination. Based on the fluorescence quenching of CdTe QDs caused by tiopronin, a simple, rapid and specific quantitative method was proposed. Under the optimal conditions, the calibration plot of ln(F0/F) with concentration of tiopronin was linear in the range of 0.15-20 μg mL-1(0.92-122.5 μmol L-1) with correlation coefficient of 0.998. The limit of detection (LOD) (3σ/k) was 0.15 μg mL-1(0.92 μmol mL-1). The content of tiopronin in pharmaceutical tablet was determined by the proposed method and the result agreed with that obtained from the oxidation-reduction titration method and the claimed value

  16. Evaluation of DAST and zinc telluride nonlinear crystals for efficient terahertz generation

    International Nuclear Information System (INIS)

    Terahertz (THz) signal is generated from 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate (i.e. DAST Crystal) and Zinc telluride (ZnTe) nonlinear crystals by employing 140 fs laser pulses at 800 nm with 80 MHz repetition rate. The semi insulating gallium arsenide photoconductive stripline antennas (gap =5 µm, length = 20 µm) is used as a Terahertz detector. The detected temporal profile of Terahertz radiation generated from DAST crystal is high as compared to ZnTe crystal in terms of amplitude. THz effective bandwidths of these crystals are extended up to 1.1 THz range. The potential of THz generation of DAST and ZnTe crystals are evaluated with respect to incident laser power

  17. Synthesis of the titanium phosphide telluride Ti 2PTe 2: A thermochemical approach

    Science.gov (United States)

    Philipp, Frauke; Schmidt, Peer; Milke, Edgar; Binnewies, Michael; Hoffmann, Stefan

    2008-04-01

    The phosphide telluride Ti 2PTe 2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti 2PTe 2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti 2PTe 2(s) decomposes to Ti 2P (s) and Te 2(g) in six consecutive steps. The growth of single crystals of Ti 2PTe 2 is thermodynamically described as a chemical vapour transport with TiCl 4(g) acting as the transport agent.

  18. Simple routes to synthesis and characterization of nanosized tin telluride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Bazarganipour, Mehdi [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Fazl, Alireza Amini [Institute for Colorants, Paint and Coatings (ICPC), Tehran, P.O. Box. 16765/654 (Iran, Islamic Republic of)

    2010-11-15

    Nanosized tin telluride compounds were prepared by chemical reduction process and hydrothermal methods. The nanosized SnTe compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SnTe nanoalloy prepared by chemical reduction process presented quasi-spherical morphology with aggregation. The sizes of particle were 40-50 nm. The powder prepared by hydrothermal process was nearly nanospheres, and the particle sizes were 30-40 nm with narrow distribution. The effect of capping agent, reductant sort, and reaction temperature on the morphology, the particle sizes and the phase of SnTe alloys have been investigated. Experimental results indicated that N{sub 2}H{sub 4}.H{sub 2}O plays a crucial role in the formation of nanosized rode-like SnTe compounds.

  19. Nucleation and growth of noble metals on transition-metal di-tellurides

    Science.gov (United States)

    Hla, S. W.; Marinković, V.; Prodan, A.

    1997-04-01

    Transition-metal di-tellurides (α- and β-MoTe 2 and WTe 2) were used as substrates for nucleation and growth studies of noble metals. They represent a group of chemically closely related compounds with different surface topographies. Nucleation and growth of Ag and Au at room temperature were studied by means of UHV-STM, AFM and TEM. The results revealed that the growth and orientation of these metals are influenced by the topography of the substrate surfaces. Contrary to the growth on atomically flat α-MoTe 2, there is an enhanced diffusion and nucleation along the periodic surface troughs on β-MoTe 2 and WTe 2. The topography of their (001) surfaces is responsible for the orientation of metal (112) planes being parallel to the substrate surface.)

  20. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition

    Science.gov (United States)

    Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  1. Experiments and Monte Carlo modeling of a higher resolution Cadmium Zinc Telluride detector for safeguards applications

    Science.gov (United States)

    Borella, Alessandro

    2016-09-01

    The Belgian Nuclear Research Centre is engaged in R&D activity in the field of Non Destructive Analysis on nuclear materials, with focus on spent fuel characterization. A 500 mm3 Cadmium Zinc Telluride (CZT) with enhanced resolution was recently purchased. With a full width at half maximum of 1.3% at 662 keV, the detector is very promising in view of its use for applications such as determination of uranium enrichment and plutonium isotopic composition, as well as measurement on spent fuel. In this paper, I report about the work done with such a detector in terms of its characterization. The detector energy calibration, peak shape and efficiency were determined from experimental data. The data included measurements with calibrated sources, both in a bare and in a shielded environment. In addition, Monte Carlo calculations with the MCNPX code were carried out and benchmarked with experiments.

  2. Toxicity of Volatile Methylated Species of Bismuth, Arsenic, Tin, and Mercury in Mammalian Cells In Vitro

    OpenAIRE

    Rettenmeier, A W; Zimmermann, U.; Richard, J.; R. A. Diaz-Bone; Hippler, J; U. von Recklinghausen; Dopp, E.; Hirner, A. V.

    2011-01-01

    The biochemical transformation of mercury, tin, arsenic and bismuth through formation of volatile alkylated species performs a fundamental role in determining the environmental processing of these elements. While the toxicity of inorganic forms of most of these compounds are well documented (e.g., arsenic, mercury) and some of them are of relatively low toxicity (e.g., tin, bismuth), the more lipid-soluble organometals can be highly toxic. In the present study we investigated the cyto- and ge...

  3. Comparison of radiation shielding ratios of nano-sized bismuth trioxide and molybdenum

    Science.gov (United States)

    Cho, J. H.; Kim, M. S.; Rhim, J. D.

    2015-07-01

    In this study, radiation shielding fibers using non-hazardous nano-sized bismuth trioxide and molybdenum instead of lead were developed and evaluated. Among the elements with high densities and atomic numbers, non-hazardous elements such as bismuth trioxide and molybdenum were chosen as a shielding element. Then, bismuth trioxide (Bi2O3) with average particle size 1-500 µm was ball milled for 10 min to produce a powdered form of nanoparticles with average particle size of 10-100 nm. Bismuth trioxide nanoparticles were dispersed to make a colloidal suspension, followed by spreading and hardening onto one or two sides of fabric, to create the radiation shielding fabric. The thicknesses of the shielding sheets using nano-sized bismuth and molybdenum were 0.4 and 0.7 mm. According to the lead equivalent test of X-ray shielding products suggested by KS, the equivalent dose was measured, followed by calculation of the shielding rate. The shielding rate of bismuth with 0.4 mm thickness and at 50 kVp was 90.5%, which is comparable to lead of 0.082 mm thickness. The shielding rate of molybdenum was 51.89%%, which is comparable to lead of 0.034 mm. At a thickness of 0.7 mm, the shielding rate of bismuth was 98.73%, equivalent to 0.101 mm Pb, whereas the shielding rate of molybdenum was 74.68%, equivalent to 0.045 mm Pb. In conclusion, the radiation shielding fibers using nano-sized bismuth developed in this study are capable of reducing radiation exposure by X-ray and its low-dose scatter ray.

  4. Study of bismuth minerals belonging to the mineralogical collection from the National Museum

    International Nuclear Information System (INIS)

    With the purpose of searching the presence of Tellurium minerals in the Ouro Preto-Mariana country, Minas Gerais State, and considering the existence of a great number of minerals in which this element come across allied with Bismuth, samples of the mineralogical collection of the Museu Nacional, proceeding that region and classified as Bismuth minerals were studied by X-ray fluorescence analysis and diffractometric analysis. In this report the results of this research are presented. (Author)

  5. Lead-bismuth eutectic corrosion behaviors of ferritic/martensitic steels in low oxygen concentration environment

    OpenAIRE

    Liu, Jian; Shi, Quanqiang; Luan, He; Yan, Wei; Sha, Wei; Wang, Wei; Shan, Yiyin; Yang, Ke

    2015-01-01

    In order to investigate the compatibility of candidate structural materials with liquid metals, two kinds of ferritic/martensitic steels were chosen to contact with lead–bismuth eutectic in sealed quartz–glass tubes. The corrosion exposures were for 500 and 3000 h. Results showed that the oxidation layer and carbide dissolution layer on the two steels grew with contact time under oxygen unsaturated condition. Short-term corrosion behavior of a newly developed steel showed better lead–bismuth ...

  6. Intermetallic growth at the interface between copper and bismuth-tin solder

    OpenAIRE

    Vollweiler, Fred O. P.

    1993-01-01

    Approved for public release; distribution is unlimited. Tin-bismuth alloys have been proposed as alternatives to lead containing solders for interconnection and packaging applications. Consequently, the interface between copper metallizations and bismuth-tin solders needs to be evaluated with respect to brittle intermetallic formation. In the binary Bi-Sn alloys both the Cu6Sn5 and Cu3Sn intermetallic phases were found at the Cu/ solder interface after exposure at 250 deg C, 300 deg C, and...

  7. Direct Electrochemical Synthesis of Bismuth(III) Phenoxides and their Coordination Compounds

    OpenAIRE

    Harpreet Kaur; Baljit Singh

    2012-01-01

    Bismuth(III) phenoxides have been synthesized by electrochemical reactions of 1-naphthol, 2-naphthol, 4-aminophenol, 2-nitrophenol, 4-nitrophenol, 2-hydroxybenzoic acid, p-cresol, phenol, resorcinol, 2-tert-butylphenol and 2-tert-butyl-4-methoxyphenol at sacrificial bismuth anode and inert platinum cathode using tetrabutylammonium chloride as supporting electrolyte. The coordination compounds of these phenols with 1, 10-phenanthroline and 2, 2ʼ-bipyridyl have also been synthesized electrochem...

  8. Ferroelectric thin film bismuth titanate prepared from acetate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanxia; Hoelzer, D.T.; Schulze, W.A. [Alfred Univ., NY (United States); Tuttle, B.A.; Potter, B.G. [Sandia National Labs., Albuquerque, NM (United States)

    1994-10-01

    Bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) thin films were fabricated by spin coat deposition followed by rapid thermal processing (RTP). Acetate derived solutions for deposition were synthesized by blending bismuth acetate in aqueous acetic acid and then adding titanium acetate. A series of electrically insulating, semiconducting and conducting substrates were evaluated for Bi{sub 4}Ti{sub 3}O{sub 12} film deposition. While X-ray diffraction and TEM analyses indicated that the initial perovskite crystallization temperature was 500{degrees}C or less for these Bi{sub 4}Ti{sub 3}O{sub 12} films, a 700{degrees}C crystallization treatment was used to obtain single phase perovskite films. Bi{sub 4}Ti{sub 3}O{sub 12} film crystallographic orientation was shown to depend on three factors: substrate surface morphology, the number of coating layers and thermal processing. While preferred c-direction orientation was observed for Bi{sub 4}Ti{sub 3}O{sub 12} films deposited on silver foil substrates, preferred a-direction orientation was obtained for films deposited on both Si and Pt coated Si wafers. The films were dense, smooth, crack free, and had grain sizes ranging from 20 nm to 100 nm. Film thickness and refractive index were determined using a combination of ellipsometry, waveguide refractometry and TEM measurements. Both low field dielectric and ferroelectric properties were measured for an 800 nm thick film deposited on a Pt coated MgO substrate. A remanent polarization of 38 {mu}C/cm{sup 2} and a coercive field of 98 kV/cm were measured for this film that was crystallized at 700{degrees}C.

  9. Polonium problem in lead-bismuth flow target

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, D.V.; Yefimov, E.I.; Bugreev, M.I. [State Scientific Centre of Russian Federation-Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-06-01

    Alpha-active polonium nuclides Po198 - Po210 are formed in a lead-bismuth target as results of reactions Bi{sup 209}(n,{gamma})Bi{sup 210} {yields} Po{sup 210}, Bi{sup 209}(p,xn)Po{sup 210} {yields} Po{sup 210 {minus} x} (x = 1-12), Pb{sup 208}({alpha},xn) {yields} Po{sup 210 {minus} x + 2} (x = 2-14). The most important nuclides are Po-210 (T{sub {1/2}}=138.4 day), Po-209 (T{sub {1/2}}=102 years) and Po-208 (T{sub {1/2}}=2.9 years). Polonium activity of the circuit for SINQ - conditions is about 15,000 Ci after 1-year operation. Polonium radiation hazard is connected with its output from the coolant and formation of aerosol and surface alpha-activity after the circuit break-down for repair works or in accidents. One of the important issues of polonium removal system creation is containing and storing polonium removed. Its storage in solidified alkaline is not expedient because of secondary neutron formation as a result of ({alpha},n) - reaction on oxygen and sodium nucleus. The estimations carried out demonstrated that by polonium concentration {approx} 100 Ci/l neutron current on the container surface can reach {approx} 10{sup 4}n/(cm{sup 2}s). Concentration and storage of polonium in solidified lead-bisumth seems the most convenient. The calculations demonstrated that in a 100 l container 50,000 Ci of polonium can be stored (as much as 3 times more than 1-year polonium product in SINQ-conditions) under temperature in the container less than melting point of lead bismuth (the wall temperature is about 100{degrees}C).

  10. Epithermal Gold-Silver Deposits in Western Java, Indonesia: Gold-Silver Selenide-Telluride Mineralization

    Directory of Open Access Journals (Sweden)

    Euis Tintin Yuningsih

    2014-09-01

    Full Text Available DOI: 10.17014/ijog.v1i2.180The gold-silver ores of western Java reflect a major metallogenic event during the Miocene-Pliocene and Pliocene ages. Mineralogically, the deposits can be divided into two types i.e. Se- and Te-type deposits with some different characteristic features. The objective of the present research is to summarize the mineralogical and geochemical characteristics of Se- and Te-type epithermal mineralization in western Java. Ore and alteration mineral assemblage, fluid inclusions, and radiogenic isotope studies were undertaken in some deposits in western Java combined with literature studies from previous authors. Ore mineralogy of some deposits from western Java such as Pongkor, Cibaliung, Cikidang, Cisungsang, Cirotan, Arinem, and Cineam shows slightly different characteristics as those are divided into Se- and Te-types deposits. The ore mineralogy of the westernmost of west Java region such as Pongkor, Cibaliung, Cikidang, Cisungsang, and Cirotan is characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, while to the eastern part of West Java such as Arinem and Cineam deposits are dominated by silver-gold tellurides. The average formation temperatures measured from fluid inclusions of quartz associated with ore are in the range of 170 – 220°C with average salinity of less than 1 wt% NaClequiv for Se-type and 190 – 270°C with average salinity of ~2 wt% NaClequiv for Te-type.

  11. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  12. Adverse events with bismuth salts for Helicobacter pylori eradication:Systematic review and meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Alexander C Ford; Peter Malfertheiner; Monique Giguére; José Santana; Mostafizur Khan; Paul Moayyedi

    2008-01-01

    AIM:To assess the safety of bismuth used in Helicobacter pylori (H pylori) eradication therapy regimens.METHODS:We conducted a systematic review and meta-analysis.MEDLINE and EMBASE were searched (up to October 2007) to identify randomised controlled trials comparing bismuth with placebo or no treatment,or bismuth salts in combination with antibiotics as part of eradication therapy with the same dose and duration of antibiotics alone or,in combination,with acid suppression.Total numbers of adverse events were recorded.Data were pooled and expressed as relative risks with 95% confidence intervals (CI).RESULTS:We identified 35 randomised controlled trials containing 4763 patients.There were no serious adverse events occurring with bismuth therapy.There was no statistically significant difference detected in total adverse events with bismuth [relative risk (RR)=1.01;95% CI:0.87-1.16],specific individual adverse events,with the exception of dark stools (RR = 5.06;95% CI:1.59-16.12),or adverse events leading to withdrawal of therapy (RR = 0.86;95% CI:0.54-1.37).CONCLUSION:Bismuth for the treatment of H pylori is safe and well-tolerated.The only adverse event occurring significantly more commonly was dark stools.

  13. Exhaustive removal of chloride ions from water with the aid of a bismuth-based metallic sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, L.N.; Ushenko, V.G.

    1988-04-20

    The authors discuss the sorption properties of sorbents based on metallic bismuth, in relation to a solution of the problem of exhaustive removal of chloride ions from water. Metallic sorbents with bismuth contents of 10 mass % on polytetrafluoroethylene were used. The sorption properties of sorbents based on metallic bismuth and on Bi/sub 2/O/sub 3/ were studied under dynamic conditions. Their results show that bismuth-based metal sorbents and sorbents based on bismuth oxide can be used as inorganic anion-exchangers. In order to demonstrate the possibility of selective separation of chloride ions from solutions they determined the dynamic exchange capacity for chloride ions at various nitrate-ion concentrations. The use of the proposed sorbents based on metallic bismuth for exhaustive purification of water lowers the chloride-ion concentration in the water sharply in comparison with the level achieved by ion-exchange purification with the aid of organic anion-exchangers.

  14. Geology of the florencia gold – telluride deposit (camagüey, cuba) and some metallurgical considerations

    OpenAIRE

    López K Jesús M.; Moreira Jesús; Gandarillas José

    2011-01-01

    This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after b...

  15. New bismuth borophosphate Bi4BPO10: Synthesis, crystal structure, optical and band structure analysis

    International Nuclear Information System (INIS)

    New bismuth borophosphate Bi4BPO10 was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi2O2]2+ -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi4BPO10. The strips combining stacks are separated by flat triangle [BO3]3− -anions within stacks. Neighboring stacks are separated by tetrahedral [PO4]3−-anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi4BPO10 is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi4BPO10 was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi4BPO10 was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi4O3]6+ forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  16. Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Naha, Pratap C; Zaki, Ajlan Al; Hecht, Elizabeth; Chorny, Michael; Chhour, Peter; Blankemeyer, Eric; Yates, Douglas M; Witschey, Walter R T; Litt, Harold I; Tsourkas, Andrew; Cormode, David P

    2014-12-14

    Bismuth nanoparticles have been proposed as a novel CT contrast agent, however few syntheses of biocompatible bismuth nanoparticles have been achieved. We herein report the synthesis of composite bismuth-iron oxide nanoparticles (BION) that are based on a clinically approved, dextran-coated iron oxide formulation; the particles have the advantage of acting as contrast agents for both CT and MRI. BION were synthesized and characterized using various analytical methods. BION CT phantom images revealed that the X-ray attenuation of the different formulations was dependent upon the amount of bismuth present in the nanoparticle, while T2-weighted MRI contrast decreased with increasing bismuth content. No cytotoxicity was observed in Hep G2 and BJ5ta cells after 24 hours incubation with BION. The above properties, as well as the yield of synthesis and bismuth inclusion efficiency, led us to select the Bi-30 formulation for in vivo experiments, performed in mice using a micro-CT and a 9.4 T MRI system. X-ray contrast was observed in the heart and blood vessels over a 2 hour period, indicating that Bi-30 has a prolonged circulation half-life. Considerable signal loss in T2-weighted MR images was observed in the liver compared to pre-injection scans. Evaluation of the biodistribution of Bi-30 revealed that bismuth is excreted via the urine, with significant concentrations found in the kidneys and urine. In vitro experiments confirmed the degradability of Bi-30. In summary, dextran coated BION are biocompatible, biodegradable, possess strong X-ray attenuation properties and also can be used as T2-weighted MR contrast agents.

  17. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  18. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2012-04-01

    Full Text Available Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities.Results: Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM.Conclusion: These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation.Keywords: zerovalent bismuth nanoparticles, antimicrobial agent, biofilm, Streptococcus mutans

  19. Electrical transport measurements of individual bismuth nanowires and carbon nanotubes

    Science.gov (United States)

    Jang, Wan Young

    Nanostructures are defined by reducing dimensions. When the reduced size of materials is comparable to the Fermi wavelength, quantum size effect occurs. Dimensionality plays a critical role in determining the electronic properties of materials, because the density of states of materials is quite different. Nanowires have attracted much attention recently due to their fundamental interest and potential applications. A number of materials have been tried. Among them, bismuth has unique properties. Bismuth has the smallest effective mass as small as 0.001me. This small effective mass of Bi nanowires allows one to observe the quantum confinement effect easily. Also Bi nanowires are good candidates for a low-dimensional transport study due to long mean free path. Because of these remarkable properties of Bi nanowires, many efforts have been made to study Bi nanowires. However, because bismuth is extremely sensitive to the oxide, it is very difficult to make a reliable device. So far, array measurements of Bi nanowires have been reported. The study is focused on the synthesis and electric transport measurements of individual Bi nanowires. Bi nanowires are synthesized by electrodeposition using either anodic aluminum oxide (AAO) templates or commercially available track etched polycarbonate membranes (PCTE). The desired nanowire has a heterostructure of Au - Bi - Au. Au wires on both sides serve as contact electrodes with Bi. To extract nanowires from PCTE or AAO, several attempts have been made. Devices consisting of single Bi nanowires grown by hydrothermal method are fabricated and electrical measurements have been carried out after in-situ deposition of Pt electrodes. The temperature dependence of resistance of majority of nanowires increases with decreasing temperature, showing polycrystalline nature of nanowires. However, some nanowires show resistance peaks at low temperature, suggesting quantum size effect (QSE). Magnetoresistance (MR) has also been measured. We

  20. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman; Gassman, Paul L.; Engelhard, Mark H.; Lea, Alan S.; Rosso, Kevin M.

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Second derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.

  1. Synthesis, Characterization and Molecular Structures of some Bismuth(III) Complexes with Thiosemicarbazones and Dithiocarbazonic Acid Methylester Derivatives with Activity against Helicobacter Pylori

    OpenAIRE

    Diemer, Rolf; Dittes, Uwe; Nuber, Bernhard; Seifried, Volker; Opferkuch, Wolfgang; Keppler, Bernhard K.

    1995-01-01

    The reactions of bismuth(III) nitrate pentahydrate and bismuth(III) chloride with heterocyclic thiosemicarbazones and derivatives of dithiocarbazonic acid methylester were used to synthesize the respective bismuth(III) complexes, which could be divided into five groups D-H because of their stoichiometrical properties and their molecular structures. The molecular structure and the near coordination sphere of the bismuth(III) central atom of four representative compounds were determined by sing...

  2. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, M., E-mail: mar.floc@hotmail.com [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camps, E. [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camacho-López, M. [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Muhl, S. [Instituto de Investigación en Materiales (UNAM), Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, D.F., México (Mexico); and others

    2015-09-15

    Highlights: • Bismuth nanoparticles have been obtained by laser ablation of solids in liquids. • The technique allows controlling the size and concentration of the samples. • Bi np’s in base oils can improve the tribological characteristics of the lubricant. - Abstract: The improvement of the tribological properties of mineral base oils through the addition of bismuth nanoparticles as an additive, together with the idea of obtaining lubricants free of heavy metals, was evaluated. Bismuth nanoparticles were produced directly in the heavy and light viscosity mineral base oils (BS900 and BS6500) using the technique of laser ablation of solids immersed in liquids. Transmission electron microscopy measurements showed the presence of pure bismuth nanoparticles. Small Angle X-ray Scattering (SAXS) measurements showed that the average size of the nanoparticles was between 7 and 65 nm depending on the experimental conditions used. The tribological properties of the base oil with the bismuth nanoparticles additives were evaluated using a four-ball tester. Tests were performed using the base oil with and without Bi nanoparticles. It was observed that the coefficient of friction of the oil decrease with an increasing concentration of the nanoparticles. The results also showed that the wear rate was reduced when the Bi nanoparticle additives were used.

  3. Electrochemical study on determination of diffusivity, activity and solubility of oxygen in liquid bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Rajesh [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gnanasekaran, T. [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: gnani@igcar.ernet.in; Srinivasa, Raman S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2006-06-15

    Diffusivity of oxygen in liquid bismuth was measured by potentiostatic method and is given bylg(D{sub O}{sup Bi}/cm{sup 2}.s{sup -1})(+/-0.042)=-3.706-1377/(TK{sup -1})(804bismuth was determined by coulometric titrations and using the measured data standard free energy of dissolution of oxygen in liquid bismuth was derived for the reaction:1/2O{sub 2}(g)=[O]{sub Bi}(at.%)and is given by{delta}G{sub O(Bi)}{sup o}/(J.g-atomO{sup -1})(+/-720)=-108784+20.356TK{sup -1}(753bismuth was derived as a function of temperature and is given by the following expressions:lg(S/at%O)(+/-0.05)=-4476/TK{sup -1}+4.05(753bismuth is compared with the literature data.

  4. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  5. Role of bismuth in improving Helicobacter pylori eradication with triple therapy.

    Science.gov (United States)

    Dore, Maria Pina; Lu, Hong; Graham, David Y

    2016-05-01

    In most regions of the world, antimicrobial resistance has increased to the point where empirical standard triple therapy forHelicobacter pylorieradication is no longer recommended. The treatment outcome in a population is calculated as the sum of the treatment success in the subpopulation with susceptible infections plus treatment success in the subpopulation with resistant infections. The addition of bismuth (ie, 14-day triple therapy plus bismuth) can improve cure rates despite a high prevalence of antimicrobial resistance. The major bismuth effect is to add an additional 30%-40% to the success with resistant infections. The overall result is therefore dependent on the prevalence of resistance and the treatment success in the subpopulation with resistant infections (eg, with proton-pump inhibitor-amoxicillin dual therapy). Here, we explore the contribution of each component and the mechanisms of how bismuth might enhance the effectiveness of triple therapy. We also discuss the limitations of this approach and provide suggestions how triple therapy plus bismuth might be further improved. PMID:26848181

  6. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use.

    Science.gov (United States)

    Martirosyan, K S; Wang, L; Vicent, A; Luss, D

    2009-10-01

    Our experiments showed that the combustion of an Al-Bi2O3 nanoparticle mixture generated the highest pressure pulse among common nanothermite reactions and can potentially be used as a nanoenergetic gas generator. The combustion front propagation velocity and rate of energy release increased by up to three orders of magnitude when the particle size was reduced to a nanosize range for both the aluminum and the oxidizer. We developed a novel one-step (metal nitrate-glycine) combustion synthesis of nanostructured amorphous-like and highly crystalline bismuth trioxide nanoparticles. The combustion synthesis was conducted using a solution of molten bismuth nitrate as an oxidizer and glycine as a fuel. The glycine was completely combusted during the thermal decomposition of the bismuth nitrate pentahydrate and generated a temperature front that propagated through the sample. Increasing the fuel concentration increased the maximum combustion temperature from 280 to 1200 degrees C and the Bi2O3 particle size from 20 to 100 nm. The oxidizer/fuel ratio had a strong impact on the bismuth trioxide particle crystallinity. At low temperature (280 degrees C), amorphous-like bismuth trioxide nanoparticles formed, while at T > or =370 degrees C the structures were crystalline. A peak pressure of approximately 12 MPa and a thermal front propagating velocity of approximately 2500 m s(-1) were achieved during the combustion of an Al-Bi2O3 mixture containing 80 wt% of the synthesized Bi2O3 crystalline nanoparticles (size: 40-50 nm).

  7. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    Energy Technology Data Exchange (ETDEWEB)

    Andreici, Emiliana-Laura, E-mail: andreicilaura@yahoo.com [Department of Physics, West University of Timisoara, Bd. V. Parvan 4,300223 Timisoara (Romania); Petkova, Petya [Shumen University “Konstantin Preslavsky”, 115 Universitetska street, 9712 Shumen (Bulgaria); Avram, Nicolae M. [Department of Physics, West University of Timisoara, Bd. V. Parvan 4,300223 Timisoara (Romania); Academy of Romanian Scientists, Independentei 54, 050094-Bucharest (Romania)

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  8. Aromatic amino acids in high selectivity bismuth(III) recognition.

    Science.gov (United States)

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan phenylalanine amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  9. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, Mariela [Instituto Nacional de Investigaciones Nucleares (Mexico); Vega-Jiménez, Alejandro L., E-mail: argelia.almaguer@mac.com; Almaguer-Flores, Argelia [Universidad Nacional Autónoma de México, Facultad de Odontología, DEPeI, I (Mexico); Camps, Enrique; Pérez, Mario [Instituto Nacional de Investigaciones Nucleares (Mexico); Silva-Bermudez, Phaedra [Instituto Nacional de Rehabilitación, Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa (Mexico); Berea, Edgardo [FarmaQuimia SA de CV. (Mexico); Rodil, Sandra E. [Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales (Mexico)

    2015-11-15

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  10. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    Science.gov (United States)

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  11. Bismuth alloying properties in GaAs nanowires

    International Nuclear Information System (INIS)

    First-principles calculations have been performed to investigate the structural, electronic and optical properties of bismuth alloying in GaAs nanowires. A typical model of Ga31As31 nanowires is introduced for its reasonable band gap. The band gap of GaAs1−xBix shrinks clearly with the increasing Bi concentration and the band edge shifts when spin–orbit coupling (SOC) is considered. The insertion of Bi atom leads to hybridization of Ga/As/Bi p states which contributes a lot around Fermi level. Scissor effect is involved. The optical properties are presented, including dielectric function, optical absorption spectra and reflectivity, which are also varied with the increasing of Bi concentrations. - Graphical abstract: Top view of Bi-doped GaAs nanowires. Ga, As, and Bi atoms are denoted with grey, purple and red balls, respectively. Display Omitted - Highlights: • A typical model of Ga31As31 nanowires is introduced for its reasonable band gap. • The band gap of GaAs1−xBix shrinks clearly with the increasing Bi concentration. • The band edge shifts when spin–orbit coupling (SOC) is considered. • The insertion of Bi atom leads to hybridization of Ga/As/Bi p states

  12. Transport phenomena in nanowires based on bismuth alloys

    International Nuclear Information System (INIS)

    Full text: In this work, we study the conductivity and thermopower of quantum wires (QW) based on bismuth alloys. Calculations are carried out for nanowires with degenerate and nondegenerate gas of carriers at various crystalline orientations taking into account the real band structure of Bi. We find the energy eigenvalues of holes and taking into account the nonparabolicity of the band, the energy eigenvalues for electrons. The conductivity and thermopower determined with the use of the Kubo formulae in the case when the basic mechanism of carrier scattering is assumed to be elastic acoustic-phonon scattering and on a roughness surface of QW. Dependences of kinetic coefficients on temperature, nanowire diameter and crystalline orientation are investigated. The conductivity and thermopower of a QW contains the contributions of electrons and holes. Taking into account values of carrier effective masses and other band parameters of Bi, it is possible to conclude that the contribution of holes to the conductivity of nondegenerate carriers of QWs is more less than that of electrons, which is attributed to smaller effective mass of electrons. For a semiconducting Bi QW the conductivity depends exponentially on a temperature and wire diameter. The thermopower of a semiconducting and of a semimetallic Bi QW at low temperatures can be positive and change sign in more higher temperatures. The theoretical results are close to experiment for Bi wires with diameter of 50-100 nm. (author)

  13. One-dimensional Topological Edge States of Bismuth Bilayers

    Science.gov (United States)

    Drozdov, Ilya; Alexandradinata, Aris; Jeon, Sangjun; Nadj-Perge, Stevan; Ji, Huiwen; Cava, Robert; Bernevig, B. Andrei; Yazdani, Ali

    2014-03-01

    The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the sample. Bilayers of bismuth (Bi), an elemental system theoretically predicted to be a Quantum Spin Hall (QSH) insulator1, has been studied with Scanning Tunneling Microscopy (STM) and the electronic structure of its bulk and edge modes has been experimentally investigated. Spectroscopic mapping with STM reveals the presence of the state bound to the edges of the Bi-bilayer. By visualizing quantum interference of the edge state quasi-particles in confined geometries we characterize their dispersion and demonstrate that their properties are consistent with the absence of backscattering. Hybridization of the edge modes to the underlying substrate will be discussed. [1] Shuichi Murakami, Phys. Rev. Lett. 97, 236805 (2006). The work at Princeton and the Princeton Nanoscale Microscopy Laboratory was supported by ARO MURI program W911NF-12-1-0461, DARPA-SPWAR Meso program N6601-11-1-4110, NSF-DMR1104612, and NSF-MRSEC programs through the Princeton Center for Complex Materials (DMR-0819860)

  14. Investigation of solution-processed bismuth-niobium-oxide films

    International Nuclear Information System (INIS)

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550 °C involving three phases: an amorphous phase, Bi3NbO7 fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO4 crystals at 590 °C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550 °C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500 °C contained approximately 6.5 atm. % carbon, which was lost at approximately 550 °C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  15. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  16. Bismuth alloying properties in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lu [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Cao, Huawei; Cai, Ningning; Yu, Zhongyuan [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2013-09-15

    First-principles calculations have been performed to investigate the structural, electronic and optical properties of bismuth alloying in GaAs nanowires. A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration and the band edge shifts when spin–orbit coupling (SOC) is considered. The insertion of Bi atom leads to hybridization of Ga/As/Bi p states which contributes a lot around Fermi level. Scissor effect is involved. The optical properties are presented, including dielectric function, optical absorption spectra and reflectivity, which are also varied with the increasing of Bi concentrations. - Graphical abstract: Top view of Bi-doped GaAs nanowires. Ga, As, and Bi atoms are denoted with grey, purple and red balls, respectively. Display Omitted - Highlights: • A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. • The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration. • The band edge shifts when spin–orbit coupling (SOC) is considered. • The insertion of Bi atom leads to hybridization of Ga/As/Bi p states.

  17. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    Science.gov (United States)

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication. PMID:25994368

  18. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    Science.gov (United States)

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-01

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr2+ system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  19. Ferroelectric and photocatalytic behavior of bismuth ferrite nano wire

    Science.gov (United States)

    William, R. V.; Marikani, A.; Madhavan, D.

    2016-05-01

    Multiferroic bismuth ferrite nanowires are prepared through polyol method with an average diameter of 35 nm with a narrow size distribution. The band gap was determined to be 2.10 eV, indicating their potential application as visible-light-response photo catalyst. The magnificent photocatalytic behaviors of BiFeO3 nanowires are understood from the methyl violet degradation under visible light irradiation. Moreover, the nano-wire takes only a lesser time for the diffusion of electron-hole pair from the surface of the sample. Further the BiFeO3 nano-wire was characterized using XRD, SEM, and U-V. The ferroelectric studies of BiFeO3 nano-wire show a frequency dependent property and maximum coercivity of 2.7 V/cm were achieved with a remanent polarization at 0.5 µC/cm2 at the frequency 4 kHz. The coercivity of BiFeO3 nano wire changes with variation of frequency from 1 kHz to 4 kHz.

  20. Synthesis and characterization of bismuth doped barium sulphide nanoparticles

    International Nuclear Information System (INIS)

    We have synthesized BaS:Bi nanocrystalline powder of average grain size 35 nm by solid-state diffusion method using sodium thiosulphate as a flux. During this work we have optimized the nature and amount of flux, amount of the dopant and temperature of firing for maximum yield of photoluminescence. The samples were characterized by X-ray powder diffraction (XRD) method, transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible techniques. On excitation by 425 nm, these nanophosphors give one emission peak at 575 nm which corresponds to green color. In the excitation spectra of these particles there are two peaks at 350 nm and 425 nm. The effect of dopant concentration on the photoluminescence of BaS:Bi nanocrystallites has been studied which is in agreement with the principle of concentration quenching. The energy band gap of bismuth doped BaS nanopowder has been calculated to be 4.25 eV and is blue shifted in comparison to their bulk counterparts. The blue shift may be due to the quantum confinement in the particles.

  1. Synthesis and characterization of bismuth zinc niobate pyrochlore nanopowders

    Directory of Open Access Journals (Sweden)

    Sonia Maria Zanetti

    2007-09-01

    Full Text Available Bismuth zinc niobate pyrochlores Bi1.5ZnNb1.5O7 (alpha-BZN, and Bi2(Zn1/3Nb2/32O 7 (beta-BZN have been synthesized by chemical method based on the polymeric precursors. The pyrochlore phase was investigated by differential scanning calorimetry, infrared spectroscopy, and X ray diffraction. Powder and sintered pellets morphology was examined by scanning electron microscopy. The study of alpha-BZN phase formation reveals that, at 500 °C, the pyrochlore phase was already present while a single-phased nanopowder was obtained after calcination at 700 °C. The crystallization mechanism of the beta-BZN is quite different, occurring through the crystallization of alpha-BZN and BiNbO4 intermediary phases. Both compositions yielded soft agglomerated powders. alpha-BZN pellets, sintered at 800 °C for 2 hours, presented a relative density of 97.3% while those of beta-BZN, sintered at 900 °C for 2 hours, reached only 91.8%. Dielectric constant and dielectric loss, measured at 1 MHz, were 150 and 4 x/10-4 for a-BZN, and 97 and 8 x 10-4 for beta-BZN.

  2. Magnetic and Electrical Characteristics of Bismuth Ferrite, Depending on the Impurities, Method of Preparation and Size of the Nanoparticles

    Directory of Open Access Journals (Sweden)

    V.M. Sarnatsky

    2016-10-01

    Full Text Available The prospect of application of the multiferroics in devices and spintronics devices is shown. A comparative analysis of magnetic and dielectric properties of nanostructures based on bismuth ferrite which were synthesized by various ways was made. The results of studies of the structure and properties of the nanostructured bismuth ferrite powder, synthesized by combustion of nitrate - organic precursors, are presented.

  3. Insights into the growth of bismuth nanoparticles on 2D structured BiOCl photocatalysts: an in situ TEM investigation.

    Science.gov (United States)

    Chang, Xiaofeng; Wang, Shuangbao; Qi, Qi; Gondal, Mohammed A; Rashid, Siddique G; Gao, Si; Yang, Deyuan; Shen, Kai; Xu, Qingyu; Wang, Peng

    2015-09-28

    The synthetic techniques for novel photocatalytic crystals had evolved by a trial-and-error process that spanned more than two decades, and an insight into the photocatalytic crystal growth process is a challenging area and prerequisite for achieving an excellent photoactivity. Bismuth nanoparticle based hybrids, such as Bi/BiOCl composites, have recently been investigated as highly efficient photocatalytic systems because of the localized surface plasmon resonance (LSPR) of nanostructured bismuth. In this work, the observation towards the formation and growth of bismuth nanoparticles onto 2D structured BiOCl photocatalysts has been performed using a transmission electron microscope (TEM) directly in real time. The growth of bismuth nanoparticles on BiOCl nanosheets can be emulated and speeded up driven by the electron beam (e(-) beam) in TEM. The crystallinity, growth and the elemental evolution during the formation of bismuth nanoparticles have also been probed in this work.

  4. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    International Nuclear Information System (INIS)

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work

  5. Assessment of the Eye Lens Dose Reduction by Bismuth Shields in Rando Phantom Undergoing CT of the Head

    International Nuclear Information System (INIS)

    The aim of this study is to assess the dose reduction of eye lens and availability of bismuth garments resulting from the use of radioprotective bismuth garments to shield the eyes of patients undergoing head CT. Rando phantom and TLDs were used to determine the amount of dose reduction by bismuth shielding of the eye in the following simulated CT scans : (a) scanning of the head including orbits, (b) scanning of the whole head, and (c) angled scanning of the head excluding orbits. The average dose reduction of eye lens was 43.2%, 36.0% and 1.4% for the three CT scans listed above. Significant reduction in the eye lens dose was achieved by using superficial orbital bismuth shielding during head CT scans. However, bismuth shields should not be used for the patients when their eyes are excluded from the primarily exposed region.

  6. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    International Nuclear Information System (INIS)

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors

  7. Novel Cadmium Zinc Telluride Devices for Myocardial Perfusion Imaging-Technological Aspects and Clinical Applications.

    Science.gov (United States)

    Ben-Haim, Simona; Kennedy, John; Keidar, Zohar

    2016-07-01

    Myocardial perfusion imaging plays an important role in the assessment of patients with known or suspected coronary artery disease and is well established for diagnosis and for prognostic evaluation in these patients. The dedicated cardiac SPECT cameras with solid-state cadmium zinc telluride (CZT) detectors were first introduced a decade ago. A large body of evidence is building up, showing the superiority of the new technology compared with conventional gamma cameras. Not only the CZT detectors, but also new collimator geometries, the ability to perform focused imaging optimized for the heart and advances in data processing algorithms all contribute to the significantly improved sensitivity up to 8-10 times, as well as improved energy resolution and improved reconstructed spatial resolution compared with conventional technology. In this article, we provide an overview of the physical characteristics of the CZT cameras, as well as a review of the literature published so far, including validation studies in comparison with conventional myocardial perfusion imaging and with invasive coronary angiography, significant reduction in radiation dose, and new imaging protocols enabled by the new technology.

  8. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Brunett; J. C. Lund; J. M. Van Scyoc; N. R. Hilton; E. Y. Lee; R. B. James

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors.

  9. Varying cadmium telluride growth temperature during deposition to increase solar cell reliability

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S.; Johnson, James Neil; Zhao, Yu; Korevaar, Bastiaan Arie

    2016-04-26

    A method for forming thin films or layers of cadmium telluride (CdTe) for use in photovoltaic modules or solar cells. The method includes varying the substrate temperature during the growth of the CdTe layer by preheating a substrate (e.g., a substrate with a cadmium sulfide (CdS) heterojunction or layer) suspended over a CdTe source to remove moisture to a relatively low preheat temperature. Then, the method includes directly heating only the CdTe source, which in turn indirectly heats the substrate upon which the CdTe is deposited. The method improves the resulting CdTe solar cell reliability. The resulting microstructure exhibits a distinct grain size distribution such that the initial region is composed of smaller grains than the bulk region portion of the deposited CdTe. Resulting devices exhibit a behavior suggesting a more n-like CdTe material near the CdS heterojunction than devices grown with substrate temperatures held constant during CdTe deposition.

  10. Directional Solidification of Mercury Cadmium Telluride During the Second United States Microgravity Payload Mission (USMP-2)

    Science.gov (United States)

    Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Watring, D. A.; Alexander, H. A.; Jerman, G. A.

    1996-01-01

    As a solid solution semiconductor having, a large separation between liquidus and solidus, mercury cadmium telluride (MCT) presents a formidable challenge to crystal growers desiring an alloy of high compositional uniformity. To avoid constitutional supercooling during Bridgman crystal growth it is necessary to solidify slowly in a high temperature gradient region. The necessary translation rate of less than 1 mm/hr results in a situation where fluid flow induced by gravity on earth is a significant factor in material transport. The Advanced Automated Directional Solidification Furnace (AADSF) is equipped to provide the stable thermal environment with a high gradient, and the required slow translation rate needed. Ground based experiments in AADSF show clearly the dominance of flow driven transport. The first flight of AADSF in low gravity on USMP-2 provided an opportunity to test theories of fluid flow in MCT and showed several solidification regimes which are very different from those observed on earth. Residual acceleration vectors in the orbiter during the mission were measured by the Orbital Acceleration Research Experiment (OARE), and correlated well with observed compositional differences in the samples.

  11. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  12. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  13. Heart imaging by cadmium telluride gamma cameraEuropean Program ``BIOMED'' consortium

    Science.gov (United States)

    Scheiber, Ch.; Eclancher, B.; Chambron, J.; Prat, V.; Kazandjan, A.; Jahnke, A.; Matz, R.; Thomas, S.; Warren, S.; Hage-Hali, M.; Regal, R.; Siffert, P.; Karman, M.

    1999-06-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3×3 mm, field of view: 15 cm×15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parrallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15° tilt of the collimator with respect to the detector grid. A 16×16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16±0.6 keV (mean ± standard deviation, n=30). Uniformity was ±10%, improving to ±1% when using a correction table. Test objects (emission data: letters 1.8 mm in width) and cold rods in scatter medium have been acquired. The CdTe images have been compared to those acquired with a conventionnal gamma camera.

  14. Thin film cadmium telluride solar cells by two chemical vapor deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.

    1988-01-15

    Cadmium telluride (CdTe) has long been recognized as a promising thin film photovoltaic material. In this work, polycrystalline p-CdTe films have been deposited by two chemical vapor deposition techniques, namely the combination of vapors of elements (CVE) and close-spaced sublimation (CSS). The CVE technique is more flexible in controlling the composition of deposited films while the CSS technique can provide very high deposition rates. The resistivity of p-CdTe films deposited by the CVE and CSS techniques can be controlled by intrinsic (cadmium vacancies) or extrinsic (arsenic or antimony) doping, and the lowest resistivity obtainable is about 200 ..cap omega.. cm. Both front-wall (CdTe/TCS/glass) and back-wall (TCS/CdTe/substrate) cells have been prepared. The back-wall cells are less efficient because of the high and irreproducible p-CdTe-substrate interface resistance. The CSS technique is superior to the CVE technique because of its simplicity and high deposition rates; however, the cleaning of the substrate in situ is more difficult. The interface cleanliness is an important factor determining the electrical and photovoltaic characteristics of the heterojunction. Heterojunction CdS/CdTe solar cells of area 1 cm/sup 2/ with conversion efficiencies higher than 10% have been prepared and junction properties characterized.

  15. Investigation of the Electronic Properties of Cadmium Zinc Telluride (CZT) Detectors using a Nuclear Microprobe

    International Nuclear Information System (INIS)

    The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated

  16. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fan, Junpeng; Shao, Ming; Lai, Lu; Liu, Yi; Xie, Zhixiong

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe) QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L) were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L) to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator), combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. PMID:27524895

  17. Investigation of the electrochemical deposition of thick layers of cadmium telluride

    International Nuclear Information System (INIS)

    This research thesis deals with the problem of electrochemical deposition of thick layers of cadmium telluride (CdTe) meeting the requirements of high energy radiation detection. The author first recalls the physicochemical properties of CdTe and the basic principles of radiology. He details the different criteria which define a material for X ray detection. He describes the experimental conditions, the nature and preparation of substrates, and the different electrochemical systems used in this research. He studies the impact of the applied potential on the material properties, and compares previously obtained results available in the literature with those obtained in the chosen pool conditions. He discusses the synthesis of CdTe thick layers for which different methods are tested: static in potential, static in intensity, pulsed. The coatings obtained with a given potential and then with a given current are investigated. Finally, the influence of a thermal treatment in presence or absence of a sintering agent on the morphology, the chemical composition, and the crystalline and electric properties of the deposited material is discussed, and the results of the behaviour under X rays of a electrodeposited layer are presented

  18. 3D Particle Track Reconstrution in a Single Layer Cadmium-Telluride Hybrid Active Pixel Detector

    CERN Document Server

    Filipenko, Mykhaylo; Anton, Gisela; Michel, Thilo

    2014-01-01

    In the past 20 years the search for neutrinoless double beta decay has driven many developements in all kind of detector technology. A new branch in this field are highly-pixelated semiconductor detectors - such as the CdTe-Timepix detectors. It compromises a cadmium-telluride sensor of 14 mm x 14 mm x 1 mm size with an ASIC which has 256 x 256 pixel of 55 \\textmu m pixel pitch and can be used to obtain either spectroscopic or timing information in every pixel. In regular operation it can provide a 2D projection of particle trajectories; however, three dimensional trajectories are desirable for neutrinoless double beta decay and other applications. In this paper we present a method to obtain such trajectories. The method was developed and tested with simulations that assume some minor modifications to the Timepix ASIC. Also, we were able to test the method experimentally and in the best case achieved a position resolution of about 90 \\textmu m with electrons of 4.4 GeV.

  19. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    Science.gov (United States)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  20. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z. [Institute of Semiconductor Physics, 03028 Kiev (Ukraine); Dvoretskii, S. [Institute of Semiconductor Physics of SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  1. Synthesis of the titanium phosphide telluride Ti2PTe2: A thermochemical approach

    International Nuclear Information System (INIS)

    The phosphide telluride Ti2PTe2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti2PTe2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti2PTe2(s) decomposes to Ti2P(s) and Te2(g) in six consecutive steps. The growth of single crystals of Ti2PTe2 is thermodynamically described as a chemical vapour transport with TiCl4(g) acting as the transport agent. - Graphical abstract: Oxygen partial pressure and electrochemical potential above the oxides of titanium, tellurium and phosphorus calculated at 1000 K, marked: level of equalisation of oxygen partial pressure

  2. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.

    Science.gov (United States)

    Kovalenko, Maksym V; Spokoyny, Boris; Lee, Jong-Soo; Scheele, Marcus; Weber, Andrew; Perera, Susanthri; Landry, Daniel; Talapin, Dmitri V

    2010-05-19

    The energy efficiency of heat engines could be improved by the partial recovery of waste heat using thermoelectric (TE) generators. We show the possibility of designing nanostructured TE materials using colloidal inorganic nanocrystals functionalized with molecular antimony telluride complexes belonging to the family of Zintl ions. The unique advantage of using Zintl ions as the nanocrystal surface ligands is the possibility to convert them into crystalline metal chalcogenides, thus linking individual nanobuilding blocks into a macroscopic assembly of electronically coupled functional modules. This approach allows preserving the benefits of nanostructuring and quantum confinement while enabling facile charge transport through the interparticle boundaries. A developed methodology was applied for solution-based fabrication of nanostructured n- and p-type Bi(2-x)Sb(x)Te(3) alloys with tunable composition and PbTe-Sb(2)Te(3) nanocomposites with controlled grain size. Characterization of the TE properties of these materials showed that their Seebeck coefficients, electrical and thermal conductivities, and ZT values compared favorably with those of previously reported solution-processed TE materials.

  3. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    Science.gov (United States)

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-09-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1- x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1- x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1- x Cd x Te etch rate. It is also observed that the exposed Hg1- x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1- x Cd x Te etch rate. Further, the exposed Hg1- x Cd x Te area is shown to affect the etch rate of the Hg1- x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1- x Cd x Te are listed, herein.

  4. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  5. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-01-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations. PMID:27669995

  6. Fluorescence Emission Centres and the Corresponding Infrared Fluorescence Saturation in a Bismuth-Doped Silica Fibre

    Institute of Scientific and Technical Information of China (English)

    QIU Yan-Qing; SHEN Yong-Hang

    2008-01-01

    We investigate the fluorescence characteristics of bismuth doped silica fibres with and without Al co-dopant which are fabricated by means of modified chemical vapour deposition (MCVD) technique, and find that the fluorescences in the red region (centred around 750nm) and in the infrared region (centred around 1100nm) may originate from different emission sites in the fibre. Strong upconversion phenomena are observed in both Al-codoped and non Al codoped bismuth fibres when the fibres are excited by an acoustic-optic Q-switched Nd: YVO4 laser. Both the aspects indicate that the upper energy level absorption reported in the work of the bismuth doped silica fibre lasers may result from the fluorescence emission sites that are not responsible for the infrared emission. It is thus expected that optimizing the compositions and the fabrication conditions of the fibre and then transferring more fluorescence emission centres are helpful for the infrared emission.

  7. Facile preparation of Bi nanoparticles by novel cathodic dispersion of bulk bismuth electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xin [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Chen Shu; Huang Wei [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Lushan Road, Changsha 410081 (China); Zheng Jufang [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Li Zelin, E-mail: lizelin@zjnu.c [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Lushan Road, Changsha 410081 (China)

    2009-12-01

    A novel electrochemical approach has been developed to prepare clean bismuth nanoparticles (NPs) with a bulk Bi electrode in a 0.5 mol dm{sup -3} NaOH solution under highly cathodic polarization of -8 V versus a saturated mercurous sulfate electrode, requiring no any precursor ions and organic protective agents. The bulk Bi electrode can be facilely dispersed into Bi NPs at the condition of intensive hydrogen evolution. This cathodic dispersion of the bulk Bi electrode involves the formation and decomposition of unstable bismuth hydrides and the aggregation of atomic bismuth from the decomposition. Moreover, Bi{sub 2}O{sub 3} NPs have also been achieved by heating the precursor Bi NPs. Field-emission scanning electron microscopy, transmission electron microscope and X-ray diffraction were used to characterize these NPs. The as-prepared Bi NPs mainly existed in rhombohedral phase.

  8. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine J., E-mail: cherepy1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Sanner, Robert D.; Beck, Patrick R.; Swanberg, Erik L.; Tillotson, Thomas M.; Payne, Stephen A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hurlbut, Charles R. [Eljen Technology, Sweetwater, TX (United States)

    2015-04-01

    Transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. In another configuration, a bismuth-loaded PVT plastic is coated with ZnS({sup 6}Li) paint, permitting simultaneous gamma and neutron detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%.

  9. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver (INEEL); J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas (MIT)

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  10. Poisoning effect of bismuth on modification behaviour of strontium in LM25 alloy

    Indian Academy of Sciences (India)

    S Farahany; A Ourdjini; M H Idris; L T Thai

    2011-10-01

    Nucleation and growth, temperature measurements andmicrostructure observations of silicon phase are presented for strontium modified Al–7%Si (LM25) cast alloy treated with bismuth. The results show that addition of bismuth in strontium modified alloys may have a poisoning effect resulting in lost modification of the silicon phase. With increasing Bi/Sr ratio, thermal analysis measurements showed that the eutectic growth temperature increased remarkably to 573°C and recalescence decreased to 0.2°C and the morphology of silicon displayed the same flakelike structure as in the unmodified alloys. Microstructural observation showed that a minimum Bi/Sr ratio of 1.2 which is equivalent to a Sr/Bi ratio of 0.43 is required for effective strontium modification and neutralization of the poisoning effect of bismuth.

  11. Bismuth subcarbonate as filler particle for an Epoxy-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Eduardo Schwartzer

    2013-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the addition of bismuth subcarbonate with different concentrations regarding the rheological properties of an experimental epoxy-based root canal sealer. Materials and Methods: Endodontic sealers were prepared with epoxy resin-based sealer with bismuth subcarbonate additions of 20%, 40%, 60%, 80%, 100%, and 120%. Flow, film thickness, working time, setting time, dimensional change, sorption, solubility, and cytotoxicity were studied according to the ISO standards. Data were statistically analyzed by one-way ANOVA, and Tukey multiple comparisons were used, with a significance level of 5%. Results: The flow, working time, water sorption, and solubility significantly decreased and the film thickness and dimensional change increased with higher filler particle addition. There were no statistically significant differences for setting time and cytotoxicity between the filler particle proportions. Conclusion: Experimental resin-based sealer with bismuth subcarbonate addition up to 40% can be an alternative for root canal sealer.

  12. Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion?

    Directory of Open Access Journals (Sweden)

    Jadranka Milikić

    2016-06-01

    Full Text Available Different carbon electrodes were explored for application in electroanalysis, namely for sensing of bismuth ion as model analyte. Carbon materials tested included glassy carbon, basal and edge plane pyrolytic graphite, as well as nanostructured carbonized polyaniline prepared in the presence of 3,5-dinitrosalicylic acid. Bismuth ion was chosen as model analyte as protocol for its detection and quantifications is still to be determined. Herein, anodic stripping voltammetry was used with study of effect of several parameters such as scan rate and deposition time. Electrode based on carbonized polyaniline showed the highest activity for bismuth ion sensing in terms of the highest current densities recorded both in a laboratory and in real sample, while basal plane pyrolytic graphite electrode gave the lowest limit of detection.

  13. Melting behaviour of lead and bismuth nano-particles in quasicrystalline matrix - The role of interfaces

    Indian Academy of Sciences (India)

    Alok Singh; A P Tsai

    2003-02-01

    Nanomaterials are playing an increasingly important role in modern technologies. Interfaces are crucial in nanotechnology. In this study, we have examined the stability of nanoparticles. Major emphasis is on understanding the effect of interfaces on melting. Melting behaviour of nanocrystalline interfaces, created by embedding lead and bismuth nanoparticles in quasicrystalline matrices, was studied. Sharply faceted and coherent interfaces can be related to sharper melting transitions, while irregularly shaped and incoherent interfaces can be directly correlated with lowering of melting temperatures. It is shown here that solid lead forms a high energy interface with phason strain-free quasicrystal (resulting in a lowering of the melting temperature) while bismuth forms a low energy interface with the quasicrystal (resulting in superheating, unusual for bismuth).

  14. Application of Thermodynamic Calculations to the Pyro-refining Process for Production of High Purity Bismuth

    Science.gov (United States)

    Mezbahul-Islam, Mohammad; Belanger, Frederic; Chartrand, Patrice; Jung, In-Ho; Coursol, Pascal

    2016-04-01

    The present work has been performed with the aim to optimize the existing process for the production of high purity bismuth (99.999 pct). A thermo-chemical database including most of the probable impurities of bismuth (Bi-X, X = Ag, Au, Al, Ca, Cu, Fe, Mg, Mn, Na, Ni, Pb, S, Sb, Sn, Si, Te, Zn) has been constructed to perform different thermodynamic calculations required for the refining process. Thermodynamic description for eight of the selected binaries, Bi-Ca, Cu, Mn, Ni, Pb, S, Sb, and Sn, has been given in the current paper. Using the current database, different thermodynamic calculations have been performed to explain the steps involved in the bismuth refining process.

  15. Potentiation of the action of metronidazole on Helicobacter pylori by omeprazole and bismuth subcitrate

    DEFF Research Database (Denmark)

    Andersen, L P; Colding, H; Kristiansen, J E

    2000-01-01

    Treatment failures using triple therapy that include metronidazole, are common in patients infected with metronidazole-resistant Helicobacter pylori in the gastric mucosa. Higher eradication rates in such patients have been described when treatment regimens include bismuth salts compared...... to regimens that include proton pump inhibitors. In the present study, the synergistic effect of subinhibitory concentrations (0.25-0.5 MIC) of either bismuth subcitrate or omeprazole with metronidazole on the susceptibility of 42 H. pylori strains was investigated by agar dilution method and the Epsilometer...... test (Etest). With 0.5 MIC of either of the two drugs, the susceptibility of all H. pylori4 mg/l) reverted to being metronidazole sensitive. These results suggested that either bismuth salts or proton pump inhibitors may be effective in the treatment of some infections with metronidazole-resistant H...

  16. Radioactive Iodine (I-129) Gas Adsorption by Using Bismuth-Embedded SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan; Cho, Yong-Jun; Park, Jang Jin; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    The efficient capture of the long-lived I-129, released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi{sub 2}S{sub 3} within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities with 540 mg-I/g-sorbent maximally, which benefitted from the high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI{sub 3} compound. Iodine physisorption could effectively be suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement.

  17. Growth morphology and structure of bismuth thin films on GaSb(110)

    DEFF Research Database (Denmark)

    Gemmeren, T. van; Lottermoser, L.; Falkenberg, G.;

    1998-01-01

    Photoelectron spectroscopy, low-energy electron diffraction, scanning tunneling microscopy and surface X-ray diffraction were used to investigate the growth of thin layers of bismuth on GaSb(110). At submonolayer coverages, growth of two-dimensional islands occurs. A uniform (1 x I)-reconstructio...... that the (1 x 1)-phases formed by antimony and bismuth adsorbates on (110) surfaces of other III-V compound semiconductors are also described by the epitaxial continued layer model. (C) 1998 Elsevier Science B.V. All rights reserved....

  18. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    Full text: One of the main requirements of advanced nuclear-power engineering is inherent safety of power installations. It initiates R and D of heavy liquid metals (lead, lead- bismuth eutectic) application in fission reactors as substitute of sodium. The same requirement makes advisable R and D of the lead and lead-bismuth eutectic application in blanket of fusion reactors as substitute of lithium. High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease MHD-resistance authors propose to form electro-insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the electro-insulating coatings characteristics rd (r - specific resistance of coatings, d - thickness) is ∼ 10-5Ω·m2 for steels and 5, 0x10-6 - 5, 0x10-5Ω·m2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there electro-insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steam generators and another equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem

  19. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng;

    Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion......, but also concerning the metal particle formation, and the broadband near infrared luminescence. Both the inward diffusion and the infrared luminescence depend on the bismuth oxidation state. The latter can be varied by adjusting the parameters of the heat-treatment, e.g., time, temperature, and...

  20. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  1. Field and photo-emission in a short-pulse, high-charge Cesium telluride RF photoinjector

    Science.gov (United States)

    Wisniewski, Eric E.

    A new high-charge RF gun is now operating at the Argonne Wakefield Accelerator (AWA) facility at Argonne National Laboratory (ANL). The 1.5 cell 1.3 GHz gun uses a Cesium telluride photocathode driven with a 248 nm laser to provide short-pulse, high charge electron beams for the new 75 MeV drive beamline. The high-gradient RF gun (peak field on the cathode > 80MV/m) is a key piece of the facility upgrade. The large Cs2Te photocathode (diameter > 30 mm) was fabricated in-house. The photo-injector will be used to generate high-charge, short pulse, single bunches (Q > 100 nC) and bunch-trains (Q > 1000 nC) for wakefield experiments, typically involving dielectric-loaded accelerating structures. Details of the photocathode fabrication process and the results of associated diagnostic measurements are presented, including QE measurements and work function measurements performed with a Kelvin probe. Fieldemitted dark current from the Cs2Te cathode was measured during RF conditioning and characterized. Fowler-Nordheim plots of the data are presented and compared to similar measurements made using a copper cathode in the initial phase of conditioning. The results for cesium telluride exhibited non-linear regions within the Fowler-Nordheim plots similar to previous experimental results for other p-type semiconductors. Results of quantum efficiency (QE) studies are presented with the cathode operating in both single and bunch-train modes. QE uniformity and lifetime studies are presented. During commissioning, the cesium telluride photocathode produced bunch-charge of 100 nC, breaking the previous record. No evidence of bunch-train position-dependence of QE was found when generating four-bunch trains with total charge up to 200 nC.

  2. The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

    Directory of Open Access Journals (Sweden)

    K. Boubaker

    2013-01-01

    Full Text Available Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT. Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2 at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.

  3. Characterization of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by floating zone method

    Science.gov (United States)

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Gul, R.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R. B.

    2014-09-01

    Recently, Cadmium Manganese Telluride (CMT) emerged as a promising material for roomtemperature X- and gamma-ray detectors. However, our studies revealed several material defects primarily related to growth processes that are impeding the production of large single crystals with high resistivity and high mobility-lifetime product. In this work, we characterized various defects in materials grown by the floating zone method, including twins, Te inclusions, and dislocations, using our unique facilities. We also fabricated detectors from selected CMT crystals and tested their performance. This paper discusses our detailed findings on the material's properties and the performance of fabricated CMT detectors.

  4. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2

    Science.gov (United States)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.

  5. On the possible role played by tunnel recombination in the loss processes of excess current carriers in cadmium telluride

    Science.gov (United States)

    Novikov, G. F.; Marinin, A. A.; Gapanovich, M. V.; Rabenok, E. V.

    2010-05-01

    The microwave photoconductivity method was used to study the kinetics of the decay of current carriers generated by nitrogen laser pulses in n- and p-type cadmium telluride. The dependences of the shape and amplitude of photoresponse decays on temperature and light intensity were studied. Photoresponse decays contained "fast" (at t 50 ns) components. At long times, the dependence of photoresponse on the logarithm of time was linear. The shape of slow component decays was almost independent of temperature. The slow component of photoresponse decay could correspond to the loss process of entrapped charges in tunnel recombination.

  6. NaBH{sub 4}/[bmim]BF{sub 4}: a new reducing system to access vinyl selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Goncalves, Loren C.C.; Mendes, Samuel R.; Saraiva, Maiara T.; Alves, Diego; Jacob, Raquel G.; Perin, Gelson, E-mail: lenardao@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)

    2010-07-01

    A general and simple method for the synthesis of vinyl selenides and tellurides starting from terminal alkynes and diorganyl chalcogenides using NaBH{sub 4} and [bmim]BF{sub 4} as a recyclable solvent was developed. This efficient and improved method furnishes the corresponding vinyl chalcogenides preferentially with Z configuration. We also observed that when the same protocol was applied to phenyl acetylene, (E)-bis-phenylchalcogeno styrenes were obtained in good yields and high selectivity. The ionic liquid was reused up three times without lost of efficiency. (author)

  7. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2.

    Science.gov (United States)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M; Wu, Jerry J

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes. PMID:27131144

  8. Cadmium zinc telluride based infrared interferometry for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lohstroh, A., E-mail: A.Lohstroh@surrey.ac.uk; Della Rocca, I. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Parsons, S. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); AWE Aldermaston, Reading RG7 4PR (United Kingdom); Langley, A.; Shenton-Taylor, C.; Blackie, D. [AWE Aldermaston, Reading RG7 4PR (United Kingdom)

    2015-02-09

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm{sup 3} CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes.

  9. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Manciu, Felicia S., E-mail: fsmanciu@utep.edu [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Salazar, Jessica G. [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Diaz, Aryzbe; Quinones, Stella A. [Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)

    2015-08-31

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  10. Cadmium zinc telluride based infrared interferometry for X-ray detection

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm3 CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes

  11. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  12. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    Science.gov (United States)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  13. Investigations of portable cadmium telluride (CdTe(Cl)) detectors for clinical studies with radioactive indicators

    International Nuclear Information System (INIS)

    The combination of small, portable γ-radiation-sensitive Cadmium Telluride (CdTE(Cl)) crystal detectors and portable solid state data storage memories makes it feasible to extend the measuring period in a number of clinical investigations based on the use of various radioisotopes and external detection. Blood sampling can be avoided in some cases. Continuous ambulatory monitoring of relevant physiological parameters is practicable, e.g. kidney function (GFR), left ventricular ejection fraction, subcutaneous blood flow, muscle blood flow and insulin absorption in diabetic patients. In the present methodological study the applicability of the 133-Xe washout technique to subcutaneous (s.c.) adipose tissue blood flow (SBF) has been investigated and adapted to the use of CdTe(Cl) detectors attached to the skin surface for the measurement of local 133-Xe-disappearance rate constants (k). Physical characterization of CdTe(Cl) detectors as γ-sensitive devices has been performed, and adequate counting sensitivities were found without detector energy-resolution properties. The CdTe(Cl) detectors are therefore suitable for single indicator studies. The measuring geometry of CdTe(Cl) detectors was studied and compared with that of stationary Sodium Iodide (NaI(Tl)) detectors in both phantom and in vivo investigations. The spatial properties of CdTe(Cl) detectors could to some extent be adjusted by pulse height discrimination and lead collimation. When long-term measurements were complicated by for instance physical activity of the patients, the small CdTe(Cl) detectors in general showed equal or better performance than the heavy and voluminous NaI(Tl) detectors. The free movement of the ambulatory patient and the avoidance of cable connections to stationary data-collecting systems gave improved possibilities for measurements of the relevant parameters. From this point of view, portable CdTe(Cl) detectors must be considered an important advance for radioactivity studies in

  14. Electronic control of germanium telluride (GeTe) phase transition for electronic memory applications

    Science.gov (United States)

    Gwin, Alex H.; Coutu, Ronald A.

    2014-03-01

    Germanium telluride (GeTe) is a phase change material (PCM) that undergoes an exponential decrease in resistance from room temperature to its transition temperature at approximately 200 °C. Its resistivity decreases by as much as six orders of magnitude between amorphous and crystalline phases as it is heated. Chalcogenides such as GeTe have been utilized typically in nonvolatile optical memories such as CDs, DVDs, and Blu-ray discs, where the change in reflectivity between phases gives enough contrast for ON and OFF bits. Research over the past several years has begun to characterize the electronic control of PCM thin films for advanced electronic memory applications. By applying a voltage to control its resistance and crystallinity, GeTe has become a candidate for ultra-fast switching electronic memory, perhaps as an alternative to Flash memory. In this research, micro-scale PCM cells were fabricated using RF sputtering of a GeTe target and electron-beam evaporation on c-Si, SiO2/Si, Si3N4/Si, and Al2O3. Characterizations of the crystallization process were completed with spectroscopic ellipsometry (SE), varied voltage, and varied temperature in order to draw a comparison of the switching mechanism between thermally and electronically induced transition. The results show an optical contrast of Δn + iΔk = -0.858 + i1.056. Heat conduction experiments prove a growthdominated crystallization and fracturing of conductive crystallites when deposited on Al2O3. PCM cells exhibit memory-like I-V curves for smaller cell dimensions according to the trap-limited conduction model in chalcogenides. RF structures show the capability of being utilized as improved RF switches.

  15. Selenide and telluride glasses for mid-infrared bio-sensing

    Science.gov (United States)

    Cui, Shuo; Chahal, Radwan; Shpotyuk, Yaroslav; Boussard, Catherine; Lucas, Jacques; Charpentier, Frederic; Tariel, Hugues; Loréal, Olivier; Nazabal, Virginie; Sire, Olivier; Monbet, Valérie; Yang, Zhiyong; Lucas, Pierre; Bureau, Bruno

    2014-02-01

    Fiber Evanescent Wave Spectroscopy (FEWS) is an efficient way to collect optical spectra in situ, in real time and even, hopefully, in vivo. Thanks to selenide glass fibers, it is possible to get such spectra over the whole mid-infrared range from 2 to 12 μm. This working window gives access to the fundamental vibration band of most of biological molecules. Moreover selenide glasses are stable and easy to handle, and it is possible to shape the fiber and create a tapered sensing head to drastically increase the sensitivity. Within the past decades, numerous multi-disciplinary studies have been conducted in collaboration with the City Hospital of Rennes. Clinical trials have provided very promising results in biology and medicine which have led to the creation in 2011 of the DIAFIR Company dedicated to the commercialization of fiber-based infrared biosensors. In addition, new glasses based on tellurium only have been recently developed, initially in the framework of the Darwin mission led by the European Space Agency (ESA). These glasses transmit light further into the far-infrared and could also be very useful for medical applications in the near future. Indeed, they permit to reach the vibrational bands of biomolecules laying from 12 to 16 μm where selenide glasses do not transmit light anymore. However, while Se is a very good glass former, telluride glasses tend to crystallize easily due to the metallic nature of Te bonds. Hence, further work is under way to stabilize the glass composition for fibers drawing and to lower the optical losses for improving their sensitivity as bio-sensors.

  16. Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Ho [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Choi, Young-Suk [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kang, Kyongha [Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)]. E-mail: kkang@bnl.gov; Yang, Sung Ik [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of)]. E-mail: siyang@khu.ac.kr

    2007-01-16

    In situ nanometer-sized bismuth particles were synthesized by irradiation of the electron beam in the TEM. The size of the crystalline Bi nanoparticles could be controlled by adjusting the irradiation time of the electron beam. Characterization of TEM reveals that the Bi nanoparticles exist in rhombic structure, same as to bulk Bi.

  17. Controlled oxidative synthesis of Bi nanoparticles and emission centers in bismuth glass nanocomposites for photonic application

    Science.gov (United States)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-09-01

    Here we demonstrate an oxidative process to control metallic bismuth (Bi 0) nanoparticles (NPs) creation in bismuth glass nanocomposites by using K 2S 2O 8 as oxidant and enhanced transparency of bismuth glasses. Formation of Bi 0 NPs has been monitored by their distinct surface plasmon resonance (SPR) band at 460 nm in the UV-visible absorption spectra. It is further confirmed by the transmission electron microscopy (TEM) images which disclose the formation of spherical Bi 0 NPs whereas the selected area electron diffraction (SAED) pattern reveals their crystalline rhombohedral phase. These glasses are found to exhibit visible and near infrared (NIR) luminescence bands at 630 and 843 nm respectively on excitation at 460 nm of the SPR band. It is realized that the luminescence center of bismuth species is an uncertain issue, however, it is reasonable to consider that the emission band at 630 nm is due to the combination of 2D 5/2 → 4S 3/2 of Bi 0 and 2P 3/2 (1) → 2P 1/2 of Bi 2+ transitions, and that of NIR emission band at 843 nm is attributed to the 2D 3/2 → 4S 3/2 of Bi 0 transition.

  18. The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori.

    Science.gov (United States)

    Nazari, P; Dowlatabadi-Bazaz, R; Mofid, M R; Pourmand, M R; Daryani, N E; Faramarzi, M A; Sepehrizadeh, Z; Shahverdi, A R

    2014-01-01

    Organic salts of bismuth are currently used as antimicrobial agents against Helicobacter pylori. This study evaluated the antibacterial effect of elemental bismuth nanoparticles (Bi NPs) using a serial agar dilution method for the first time against different clinical isolates and a standard strain of H. pylori. The Bi NPs were biologically prepared and purified by a recently described method and subjected to further characterization by infrared spectroscopy and anti-H. pylori evaluation. Infrared spectroscopy results showed the presence of carboxyl functional groups on the surface of biogenic Bi NPs. These biogenic nanoparticles showed good antibacterial activity against all tested H. pylori strains. The resulting MICs varied between 60 and 100 μg/ml for clinical isolates of H. pylori and H. pylori (ATCC 26695). The antibacterial effect of bismuth ions was also tested against all test strains. The antimicrobial effect of Bi ions was lower than antimicrobial effect of bismuth in the form of elemental NPs. The effect of Bi NPs on metabolomic footprinting of H. pylori was further evaluated by (1)H NMR spectroscopy. Exposure of H. pylori to an inhibitory concentration of Bi NPs (100 μg/ml) led to release of some metabolites such as acetate, formic acid, glutamate, valine, glycine, and uracil from bacteria into their supernatant. These findings confirm that these nanoparticles interfere with Krebs cycle, nucleotide, and amino acid metabolism and shows anti-H. pylori activity.

  19. A sensitive fluorescence quenching method for determination of bismuth with tiron

    Energy Technology Data Exchange (ETDEWEB)

    Taher, Mohammad Ali; Rahimi, Mina [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Fazelirad, Hamid, E-mail: hamidfazelirad@gmail.com [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Department of Chemistry, Science and Research Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of); Young Researchers Society, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman (Iran, Islamic Republic of)

    2014-01-15

    We describe a fluorescence quenching method for determination of bismuth with tiron. The method is based on the reaction of tiron by bismuth(III) in acidic media. The influence of variables such as the pH, type of buffer, tiron concentration, reaction time and temperature were investigated. Under optimized conditions, the fluorescence quenching extent is proportional to the concentration of bismuth for Bi–tiron system at the range 0.13–2.09 μg mL{sup −1} and the detection limit is 0.05 μg mL{sup −1}. The proposed sensor presented good repeatability, evaluated in terms of relative standard deviation (R.S.D.=±0.498%) for 11 replicates. This sensitive, rapid and accurate method has been successfully applied to the determination of trace bismuth(III) in water and hair samples and certified reference materials. -- Highlights: • No previous paper report on use of fluorescence quenching for determination of Bi. • Fluorescence quenching of trion is a sensitive method for determination of Bi(III). • Under the optimum conditions the detection limit is very low (0.05 μg mL{sup −1}). • The procedure is simple and safe and has high tolerance limit to interferences.

  20. 75 FR 14491 - Listing of Color Additives Exempt From Certification; Bismuth Citrate

    Science.gov (United States)

    2010-03-26

    ... level of bismuth citrate as a color additive in cosmetics intended for coloring hair on the scalp. This.... Ellison, Center for Food Safety and Applied Nutrition (HFS-265), Food and Drug Administration, 5100 Paint... notice published in the Federal Register of February 25, 2008 (73 FR 10035), FDA announced that a...

  1. 75 FR 34360 - Listing of Color Additives Exempt From Certification; Bismuth Citrate; Confirmation of Effective...

    Science.gov (United States)

    2010-06-17

    ... level of bismuth citrate as a color additive in cosmetics intended for coloring hair on the scalp. DATES: The effective date for the final rule published in the Federal Register of March 26, 2010 (75 FR 14491... Safety and Applied Nutrition (HFS-265), Food and Drug Administration, 5100 Paint Branch Pkwy.,...

  2. Microwave and magneto-optic properties of bismuth-substituted yttrium iron garnet thin films

    Science.gov (United States)

    Butler, J. C.; Kramer, J. J.; Esman, R. D.; Craig, A. E.; Lee, J. N.; Ryuo, T.

    1990-05-01

    Microwave and magneto-optic measurements have been made on bismuth-substituted yttrium iron garnet (BiYIG) films. Forward-volume (FV) magnetostatic-wave (MSW) attenuation has been measured from ferrimagnetic resonance and from pulse delay data. We report the indirect observation of FV MSW in BiYIG using two independent techniques: a pulse transmission technique and a passband measurement technique. Faraday rotation in the films was also recorded at a wavelength of 1.3 μm. The bismuth-substituted films are grown on carefully cleaned substrates and have yttrium:bismuth ratios of 1:1. The composition of the bismuth substituted films is Y1.5Bi1.5Fe5O12 deduced from lattice parameters and absolute Faraday rotation. These films show particular promise for use in waveguide-type high-speed MSW-optical devices where low MSW attenuation and high Faraday rotation are among the necessary criteria for successful operation.

  3. The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori.

    Science.gov (United States)

    Nazari, P; Dowlatabadi-Bazaz, R; Mofid, M R; Pourmand, M R; Daryani, N E; Faramarzi, M A; Sepehrizadeh, Z; Shahverdi, A R

    2014-01-01

    Organic salts of bismuth are currently used as antimicrobial agents against Helicobacter pylori. This study evaluated the antibacterial effect of elemental bismuth nanoparticles (Bi NPs) using a serial agar dilution method for the first time against different clinical isolates and a standard strain of H. pylori. The Bi NPs were biologically prepared and purified by a recently described method and subjected to further characterization by infrared spectroscopy and anti-H. pylori evaluation. Infrared spectroscopy results showed the presence of carboxyl functional groups on the surface of biogenic Bi NPs. These biogenic nanoparticles showed good antibacterial activity against all tested H. pylori strains. The resulting MICs varied between 60 and 100 μg/ml for clinical isolates of H. pylori and H. pylori (ATCC 26695). The antibacterial effect of bismuth ions was also tested against all test strains. The antimicrobial effect of Bi ions was lower than antimicrobial effect of bismuth in the form of elemental NPs. The effect of Bi NPs on metabolomic footprinting of H. pylori was further evaluated by (1)H NMR spectroscopy. Exposure of H. pylori to an inhibitory concentration of Bi NPs (100 μg/ml) led to release of some metabolites such as acetate, formic acid, glutamate, valine, glycine, and uracil from bacteria into their supernatant. These findings confirm that these nanoparticles interfere with Krebs cycle, nucleotide, and amino acid metabolism and shows anti-H. pylori activity. PMID:24104691

  4. Fridel-Crafts acylation using bismuth triflate in [BMI][PF6

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Duus, Fritz; Le, Thach Ngoc

    2012-01-01

    Bismuth trifluoromethanesulfonate was found to be a good catalyst for the Friedel–Craftsacylation. Bismuthtriflate immobilized in an ionic liquid was the most efficient catalytic system. Bismuthtriflate in [BMI][PF6] catalyzes this reaction under microwave irradiation allowing the rapid synthesis...

  5. Examination of dielectric dispersion of complex oxides on the basis of bismuth-containing titanates

    International Nuclear Information System (INIS)

    In the present work the samples of complex oxide compounds on the basis of bismuth titanates with chalcolamprite structure type and layered perovskite doped with Cr, Fe and Co were studied at room temperature by the method of dielectric spectroscopy in the frequency range of 30 to 106 Hz

  6. Thermodynamics of neptunium in LiCl-KCl eutectic/liquid bismuth systems

    International Nuclear Information System (INIS)

    Thermodynamic properties of neptunium in LiCl-KCl eutectic/liquid bismuth systems in the temperature range 400--500 C have been studied using a galvanic cell method for the pyrometallurgical reprocessing of nuclear spent fuels. The standard potential of the Np/Np(III) couple vs. the Ag/AgCl (1 wt% AgCl) reference electrode in LiCl-KCl eutectic was measured and given by the equation ENp/Np(III)0 = minus2.0667 + 0.0007892 T (σ = 0.0009), where E is in volts, T is in kelvin, and σ is the standard deviation. The potential of neptunium-bismuth alloy, ENp-Bi, was measured as a function of neptunium concentration, XNpinBi. The curves for EBi-Np vs. log XNpinBi indicated the neptunium solubility in liquid bismuth to be 0.34 ± 0.02, 0.61 ± 0.08, and 1.06 ± 0.09 (±σ) atom % at 400, 450, and 500 C, respectively. The excess partial free energy of neptunium in liquid bismuth was represented by the equation, Δbar GNpxs (kcal/g atom) = minus32.5 (±0.7) + 0.0072 (±0.0010) T. The values of the solubility and excess partial free energy for neptunium were closer to those for plutonium rather than uranium

  7. Dynamic spatial structure of spontaneous beams in photorefractive bismuth sillicon oxide

    DEFF Research Database (Denmark)

    Buchhave, Preben; Lyuksyutov, S.; Vasnetsov, M.;

    1996-01-01

    We report the domain structure of spontaneously occurring beams (subharmonics) in photorefractive bismuth silicon oxide with an applied electric field from 1 to 6 kV/cm and a running grating. The subharmonic beams are generated in a pattern of domains that evolve dynamically as they move through ...

  8. Microwave-assisted facile and rapid Friedel-Crafts benzoylation of arenes catalysed by bismuth trifluoromethanesulfonate

    DEFF Research Database (Denmark)

    Tran, Phoung Hoang; Hansen, Poul Erik; Pham, Thuy Than;

    2014-01-01

    The catalytic activity of metal triflates was investigated in Friedel–Crafts benzoylation under microwave irradiation. Friedel–Crafts benzoylation with benzoyl chloride of a variety of arenes containing electron-rich and electron-poor rings using bismuth triflate under microwave irradiation is...

  9. Group III-nitride thin films grown using MBE and bismuth

    Science.gov (United States)

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  10. Determination of (111) ordered domains on platinum electrodes by irreversible adsorption of bismuth.

    Science.gov (United States)

    Rodríguez, Paramaconi; Solla-Gullón, José; Vidal-Iglesias, Francisco J; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2005-08-15

    Irreversible adsorbed bismuth can be used to determine the fraction of (111) domains on a given platinum sample. On Pt(111) electrodes, the surface redox process of adsorbed bismuth takes place at 0.63 V in a well-defined peak. The behavior of this redox process on the Pt(111) vicinal surfaces indicates that the bismuth atoms involved in the redox process are only those deposited on the (111) terrace sites and that the charge under the peak at 0.63 V is directly proportional to the number of sites on (111) ordered domains (terraces). The good linear relationship obtained between the charge for the bismuth redox process and the number of (111) terrace sites on the vicinal surfaces allows construction of a calibration curve. This calibration curve has been used to directly estimate the amount of (111) ordered domain terrace sites on polycrystalline platinum samples with different surface ordered domains. The results agree with what we would expect from our knowledge of these surfaces. PMID:16097774

  11. Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters

    Science.gov (United States)

    Bonds, Kevin; Polzin, Kurt A.

    2010-01-01

    Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so

  12. Hall Plateaus at magic angles in ultraquantum Bismuth

    Science.gov (United States)

    Benoît, Fauqué.

    2009-03-01

    The behaviour of a three-dimensional electron gas in the presence of a magnetic field strong enough to put all carriers in the first Landau level (i.e. beyond the quantum limit) is a longstanding question of theoretical condensed matter physics [1]. This issue has been recently explored by two high-field experiments on elemental semi-metal Bismuth. In a first study of transport coefficients (which are dominated by hole-like carriers), the Nernst coefficient presented three unexpected maxima that are concomitant with quasi-plateaux in the Hall coefficient [2]. In a second series of experiments, torque magnetometry (which mainly probes the three Dirac valley electron pockets) detected a field-induced phase transition [3]. The full understanding of the electron and hole behaviours above the quantum limit of pure Bi is therefore still under debate. In this talk, we will present our measurement of the Hall resistivity and torque magnetometry with magnetic field up to 31 T and rotating in the trigonal-bisectrix plane [4]. The Hall response is dominated by the hole pockets according to its sign as well as the period and the angular dependence of its quantum oscillations. In the vicinity of the quantum limit, it presents additional anomalies which are the fingerprints of the electron pockets. We found that for particular orientations of the magnetic field (namely ``magic angles''), the Hall response becomes field-independent within the experimental resolution around 20T. This drastic dependence of the plateaux on the field orientation provides strong constraints for theoretical scenarios. [4pt] [1] Bertrand I. Halperin, Japanese Journal of Applied Physics, 26, Supplement 26-3 (1987).[0pt] [2] Kamran Behnia, Luis Balicas, Yakov Kopelevich, Science, 317, 1729 (2008).[0pt] [3] Lu Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong , Science, 321, 5888 (2008).[0pt] [4] Benoît Fauqu'e, Luis Balicas, Ilya Sheikin, Jean Paul Issi and Kamran Behnia

  13. Synthesis of mercuric iodide and bismuth tri-iodide nanoparticles for heavy metal iodide films nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Fornaro, L.; Pereira, H.Bentos [Compound Semiconductors Group, CURE, Universidad de la Republica, Rocha (Uruguay); Aguiar, I.; Perez Barthaburu, M. [Compound Semiconductors Group, Facultad de Quimica, Univ. de la Republica, Montevideo (Uruguay)

    2011-12-15

    We synthesized mercuric iodide and bismuth tri-iodide nanoparticles by suspension in octadecene, from Hg(NO{sub 3}){sub 2}.H{sub 2}O and I{sub 2}, and from Bi(NO{sub 3}){sub 3}.5H{sub 2}O and I{sub 2}, respectively. The best synthesis conditions were 2 h at 70-80 C, followed by 10 min at 110 C for mercuric iodide nanoparticles, and 4 h at 80-110 C, followed by 10 min at 180-210 C for bismuth tri-iodide ones. Nanoparticles were then washed and centrifuged with ether repeatedly. Compounds identity was confirmed by X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). We found shifts of the X-ray diffraction maxima for nanoparticles of both compounds. We characterized the nanoparticles by transmission (TEM) and scanning (SEM) electron microscopy. We obtained disk-like and squared mercuric iodide nanostructures, 80-140 nm and 100-125 nm in size respectively. We also obtained rounded and rod-like bismuth tri-iodide nanoparticles, 30-500 nm in size. Acetonitrile and isopropanol suspensions of mercuric iodide nanoparticles, and acetonitrile suspension of bismuth tri-iodide nanoparticles exhibited peak maxima shifts in their UV-Vis spectra. We synthesized for the first time mercuric iodide and bismuth tri-iodide nanoparticles by the suspension method, although we have not yet obtained uniform shape and size distributions. They offer interesting perspectives for crystalline film nucleation and for improving current applications of these materials, as well as for opening new ones. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum.

  15. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum. PMID:27177274

  16. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fan J

    2016-07-01

    Full Text Available Junpeng Fan,1–4 Ming Shao,1–4 Lu Lai,3–5 Yi Liu,3–5 Zhixiong Xie1–4,6 1College of Life Sciences, Wuhan University, 2Hubei Provincial Cooperative Innovation Center of Industrial Fermentation,3State Key Laboratory of Virology, 4Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE, 5College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 6School of Life Science and Technology, Hubei Engineering University, Xiaogan, People’s Republic of China Abstract: Cadmium telluride quantum dots (CdTe QDs are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator, combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. Keywords: CdTe quantum dots, Saccharomyces cerevisiae, toxicity, autophagy

  17. Electrodes modified with bismuth, antimony and tin precursor compounds for electrochemical stripping analysis of trace metals (a short review)

    OpenAIRE

    Lezi, Nikolitsa; Economou, Anastasios; Barek, Jiří

    2014-01-01

    Over the last decade, intensive research is being carried out towards the development of “green” electrochemical sensors. Bismuth, antimony and tin electrodes have been proposed as potential substitutes of mercury electrodes in electrochemical stripping analysis of trace metals. The main advantage of these metals as electrode materials is their lower toxicity compared to mercury. Among the different configuration of bismuth, antimony and tin electrodes, one of the most attractive inv...

  18. ELECTRA: A European Lead-bismuth Cooled Training Reactor

    International Nuclear Information System (INIS)

    The lack of low power liquid metal cooled reactors has meant that few engineers within the nuclear power industry and research community are familiar with operational procedures of this family of coolants, expected to be used for Generation IV fast neutron systems. The reasons for this lack may include safety issues related to use of Mercury, NaK or sodium as applied in early low power reactors. Especially in western Europe, no low power liquid metal cooled reactor was ever in operation. Here, we present the design of a 2 MWth lead-bismuth cooled reactor with (Pu,Zr)N fuel, relying on natural convection for full power operation. The combination of low power density with natural convection for heat removal makes the reactor ideal for training purposes. The large thermal expansion of heavy liquid metals makes is possible to design low power fast neutron reactors relying on natural convection. Since at present, there exists no suitable material for pumps operating at high velocity in lead alloy environments, the only possible short term solution for constructing such a reactor is anyway to design for 100% natural circulation of the coolant. For this purpose, a small core height, a large difference between coolant inlet and outlet temperatures and a low coolant velocity is desired. By application of (Pu,Zr)N fuel, criticality can be achieved with a fissile inventory of 100 kg LWR grade plutonium. Monte Carlo simulations show that 19 hexagonal fuel assemblies, each with 91 fuel pins having an outer diameter of 1.1 cm, and an active height of 15 cm is sufficient to obtain a critical core. Including end pellets, gas plenum and end caps, the total core height is limited to 30 cm. Adopting P/D = 1.25 and a heat exchanger elevation of 4 m, it is found that 2 MW of thermal power may be removed by a natural circulation velocity of 0.4 m/s. This corresponds to a linear rating of 8 kW/m and a temperature increase of the coolant equal to 240 degrees. Limiting the clad temperature

  19. Bismuth-ceramic nanocomposites through ball milling and liquid crystal synthetic methods

    Science.gov (United States)

    Dellinger, Timothy Michael

    Three methods were developed for the synthesis of bismuth-ceramic nanocomposites, which are of interest due to possible use as thermoelectric materials. In the first synthetic method, high energy ball milling of bismuth metal with either MgO or SiO2 was found to produce nanostructured bismuth dispersed on a ceramic material. The morphology of the resulting bismuth depended on its wetting behavior with respect to the ceramic: the metal wet the MgO, but did not wet on the SiO2. Differential Scanning Calorimetry measurements on these composites revealed unusual thermal stability, with nanostructure retained after multiple cycles of heating and cooling through the metal's melting point. The second synthesis methodology was based on the use of lyotropic liquid crystals. These mixtures of water and amphiphilic molecules self-assemble to form periodic structures with nanometer-scale hydrophilic and hydrophobic domains. A novel shear mixing methodology was developed for bringing together reactants which were added to the liquid crystals as dissolved salts. The liquid crystals served to mediate synthesis by acting as nanoreactors to confine chemical reactions within the nanoscale domains of the mesophase, and resulted in the production of nanoparticles. By synthesizing lead sulfide (PbS) and bismuth (Bi) particles as proof-of-concept, it was shown that nanoparticle size could be controlled by controlling the dimensionality of the nanoreactors through control of the liquid crystalline phase. Particle size was shown to decrease upon going from three-dimensionally percolating nanoreactors, to two dimensional sheet-like nanoreactors, to one dimensional rod-like nanoreactors. Additionally, particle size could be controlled by varying the precursor salt concentration. Since the nanoparticles did not agglomerate in the liquid crystal immediately after synthesis, bismuth-ceramic nanocomposites could be prepared by synthesizing Bi nanoparticles and mixing in SiO2 particles which

  20. Syntheses, crystal structures and characterizations of two new bismuth(III) arsenites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Junhui [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Kong Fang [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Gai Yanli [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Mao Jianggao, E-mail: mjg@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

    2013-01-15

    Two new bismuth arsenites with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2), have been synthesized by the solid-state reactions. Compound 1 exhibits novel 2D bismuth arsenite layers with Bi{sub 4}O{sub 4} rings capped by oxide anions, which are further interconnected by Bi-Cl-Bi bridges into a 3D network. Compound 2 contains both arsenite and arsenate anions, its 3D structures are based on 1D bismuth arsenite and 1D bismuth arsenate chains both along b-axis, which are interconnected by oxide anions via Bi-O-Bi bridges, forming 1D tunnels of Bi{sub 4}As{sub 4} 8-membered rings (MRs) along b-axis, the lone pairs of the arsenite groups are orientated toward the centers of the above tunnels. Thermogravimetric analysis indicated that both compounds display high thermal stability. Optical property measurements revealed that they are wide band-gap semiconductors. Both compounds display broad green-light emission bands centered at 506 nm under excitation at 380 and 388 nm. - Graphical abstract: Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new compounds with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2). They represent the first examples of bismuth arsenates. Highlights: Black-Right-Pointing-Pointer Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new phases. Black-Right-Pointing-Pointer They represent the first examples of bismuth arsenites. Black-Right-Pointing-Pointer The two compounds exhibit two different structural types.

  1. Pharmacokinetics and bioequivalence of ranitidine and bismuth derived from two compound preparations

    Institute of Scientific and Technical Information of China (English)

    Quan Zhou; Zou-Rong Ruan; Hong Yuan; Bo Jiang; Dong-Hang Xu

    2006-01-01

    AIM: To evaluate the bioequivalence of ranitidine and bismuth derived from two compound preparations.METHODS: The bioavailability was measured in 20healthy male Chinese volunteers following a single oral dose (equivalent to 200 mg of ranitidine and 220 mg of bismuth) of the test or reference products in the fasting state. Then blood samples were collected for 24 h.Plasma concentrations of ranitidine and bismuth were analyzed by high-performance liquid chromatography and inductively coupled plasma-mass spectrometry (ICPMS), respectively. The non-compartmental method was used for pharmacokinetic analysis. Log-transformed Cmax,AUC(0-t) and AUC(0-∞) were tested for bioequivalence using ANOVA and Schuirmann two-one sided t-test. Tmax was analyzed by Wilcoxon's test.RESULTS: Various pharmacokinetic parameters of ranitidine derived from the two compound preparations,including Cmax, AUC(0-t), AUC(0-∞), Tmax and T1/2, were nearly consistent with previous observations. These parameters derived from test and reference drug were as follows: Cmax(0.67 ± 0.21 vs 0.68 ± 0.22mg/L), AUC(0-t)(3.1 ± 0.6 vs 3.0 ± 0.7 mg/L per hour),AUC(0-∞)(3.3 ± 0.6 vs 3.2 ± 0.8 mg/L per hour),Tmax (2.3 ± 0.9 vs 2.1 ± 0.9 h) and T1/2 (2.8 ± 0.3 vs 3.1± 0.4 h). In addition, double-peak absorption profiles of ranitidine were found in some Chinese volunteers.For bismuth, those parameters derived from test and reference drug were as follows: Cmax (11.80 ± 7.36 vs 11.40 ± 6.55 μg/L),AUC(0-t) (46.65 ± 16.97 vs 47.03 ±21.49 μg/L per hour), Tmax (0.50 ± 0.20 vs 0.50 ± 0.20 h)and T1/2 (10.2 ± 2.3 vs 13.0 ± 6.9 h). Ninety percent of confidence intervals for the test/reference ratio of Cmax,AUC(0-t) and AUC(0-∞) derived from both ranitidine and bismuth were found within the bioequivalence acceptable range of 80%-125%. No significant difference was found in Tmax derived from both ranitidine and bismuth.CONCLUSION: The two compound preparations are bioequivalent and may be prescribed

  2. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  3. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    Science.gov (United States)

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process.

  4. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Science.gov (United States)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  5. Zero-dimensional nanostructured material with metallic bismuth nanoparticles: a new route for thermoelectrics

    Science.gov (United States)

    Benoit, Roland; Treguer, Mona; Saboungi, Marie-Louise

    2011-03-01

    The thermoelectric figure of merit ZT has so far not exceeded the value ZT=3 need to compete with mechanical energy conversion systems. However, theoretical work has shown that it is possible to reach values of ZT higher than this. One of the most promising routes is nanostructured materials, which offer the opportunity to tailor physical properties such as electrical and heat transport, due to the effects of electron filtering and phonon confinement. Dresselhaus et al. (ref.?) were among the first to show that 2D and 1D structures are capable of reaching ZT values higher than 2. The thermoelectric materials of current interest are in the form of nanotubes, nanodots and, more generally, superlattices composed of a matrix and nanoparticles. In our work we synthesize a periodic network of bismuth nanoparticles in a matrix of mesoporous Si O2 . We find that in this form bismuth transforms from a rhombohedral to a cubic structure, with improved filtering of electrons and phonons.

  6. Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing

    Science.gov (United States)

    Firstov, S. V.; Firstova, E. G.; Alyshev, S. V.; Khopin, V. F.; Riumkin, K. E.; Melkumov, M. A.; Guryanov, A. N.; Dianov, E. M.

    2016-08-01

    The effect of annealing temperature on the luminescent properties of bismuth-doped fibers bleached by 532 nm laser radiation was investigated. The photoluminescence (PL) measurements were performed in pristine and photobleached samples which were thermally annealed at various temperatures ranging from 100 to 900 °C and slowly cooled. We observed that the intensity of the PL band at 1700 nm in the photobleached fibers recovered its pre-bleached level. Moreover, it was shown that a significant increase of the PL level could be achieved using the special annealing regime. Thereby, we obtained the experimental evidence of a thermally activated recovery process of the PL intensity showing that photoinduced changes of PL in bismuth-doped fibers are completely reversible. The mechanism of the thermal recovery of the PL is discussed.

  7. Synthesis of Bismuth Ferrite Nanoparticles via a Wet Chemical Route at Low Temperature

    Directory of Open Access Journals (Sweden)

    Yongming Hu

    2011-01-01

    Full Text Available Nanoparticles (NPs of multiferroic bismuth ferrite (BiFeO3 with narrow size distributions were synthesized via a wet chemical route using bismuth nitrate and iron nitrate as starting materials and excess tartaric acid and citric acid as chelating agent, respectively, followed by thermal treatment. It was found that BiFeO3 NPs crystallized at ∼350∘C when using citric acid as chelating agent. Such crystallization temperature is much lower than that of conventional chemical process in which other types of chelating agent are used. BiFeO3 NPs with different sizes distributions show obvious ferromagnetic properties, and the magnetization is increased with reducing the particle size.

  8. Quantum transport, anomalous dephasing, and spin-orbit coupling in an open ballistic bismuth nanocavity

    Science.gov (United States)

    Hackens, B.; Minet, J. P.; Faniel, S.; Farhi, G.; Gustin, C.; Issi, J. P.; Heremans, J. P.; Bayot, V.

    2003-03-01

    The phase coherence time τφ and spin-orbit coupling time τso are measured in a bismuth quasiballistic nanocavity and in bismuth thin films using weak antilocalization and universal conductance fluctuations. The cavity is found to be zero dimensional for phase-coherent processes at low temperature. Weak antilocalization seems weakly affected by this drastic reduction of dimensionality. The temperature dependence of τφ is similar in both types of samples, qualitatively consistent with low-energy transfer two-dimensional electron-electron interaction effects as the dominant dephasing mechanism. Strikingly, τφ in the dot is found to be an order-of-magnitude smaller than in the film, and orders-of-magnitude smaller than the theoretical prediction.

  9. Synthesis and Electrochemical Sensing Toward Heavy Metals of Bunch-like Bismuth Nanostructures

    Directory of Open Access Journals (Sweden)

    Zhang Zhi

    2009-01-01

    Full Text Available Abstract Large-scale bunch-like bismuth (Bi nanostructures were the first time to be synthesized via two-step electrochemical deposition. The growth mechanism of the nanostructures was discussed. Such a designed bunch-like Bi electrode has high sensitivity to detect the heavy metal ions due to its unique three-dimensional structures and strong ability of adsorbing the heavy metal ions. The bunch-like Bi electrode’s detection of heavy metals was statically performed using anodic stripping voltammetry (ASV. The detection in the Pb(II concentration range of 2.5–50 μg/l was also performed. Based on the experimental results, this bunch-like Bi electrode can be considered as an interesting alternative to common mercury electrodes and bismuth film electrodes for possible use in electrochemical studies and electroanalytical applications.

  10. Intercalation of pyridine and its derivatives into crystalline bismuth molybdenum hydrous oxide

    International Nuclear Information System (INIS)

    Bismuth molybdenum hydrous oxide was prepared by water-thermally direct precipitation in relatively concentrated solutions. The composition of the resulting product was Bi2Mo3O12 x 3.86 H2O determined by thermal analysis and ICP. The X-ray powder diffraction patterns of the crystal synthesized was identical with that of Bi2Mo3O12 x 4.75 H2O. Pyridine, 2,5-dimethylpyridine and 4-benzylpiridine were intercalated into inorganic crystal, significantly expanding interlayer distance along b axis in the monoclinic cell unit of bismuth molybdenum hydrous oxide. The organic molecules were intercalated by solvent exchange mechanism which mainly devoted to the expansion of interlayer spacing. (author)

  11. Equilibrium evaporation of trace polonium from liquid lead–bismuth eutectic at high temperature

    International Nuclear Information System (INIS)

    Highlights: •We studied evaporation of trace polonium from liquid lead–bismuth eutectic. •Our methods for Po are validated through analysis of LBE evaporation. •At low concentration Po evaporates from LBE according to Henry’s law. •New Henry constant-temperature correlations for Po in LBE are presented. -- Abstract: The evaporation of Po from its dilute solution in liquid lead–bismuth eutectic (LBE) was determined between 700 and 1000 °C in Ar/5%H2 by the transpiration method. Concurrent measurements of the evaporation of LBE could be well reproduced by calculations using literature data, confirming conditions of equilibrium and convective vapor transport in our transpiration method experiments. This allowed to model the Po evaporation data and extract accurate temperature correlations for the Henry constant for Po dissolved in LBE at two different Po concentrations. Extrapolations of the new correlations were in excellent agreement with existing data at lower temperature

  12. Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses

    Science.gov (United States)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Yenchai, Chadet; Laopaiboon, Raewat

    2012-07-01

    The attenuation coefficients of barium-bismuth-borosilicate glasses have been measured for gamma-ray photon energies of 662, 1173 and 1332 keV using a narrow beam transmission geometry. These coefficients were then used to obtain the values of mass attenuation coefficients, effective atomic number, effective electron density and mean free path. Good agreement has been observed between experimental and theoretical values of these parameters. From the obtained results it is reported here that from the barium-bismuth-borosilicate glasses are better shields to gamma-radiations in comparison to the standard radiation shielding concretes from the shielding point of view. The molar volume, FTIR and acoustic investigations have been used to study the structural properties of the prepared glass system. The obtained results reveal that the formation of non-bridging oxygens occurs at higher concentration of Bi2O3.

  13. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  14. Synthesis and Electrochemical Sensing Toward Heavy Metals of Bunch-like Bismuth Nanostructures

    Science.gov (United States)

    Zhang, Zhi; Yu, Ke; Bai, Dan; Zhu, Ziqiang

    2010-02-01

    Large-scale bunch-like bismuth (Bi) nanostructures were the first time to be synthesized via two-step electrochemical deposition. The growth mechanism of the nanostructures was discussed. Such a designed bunch-like Bi electrode has high sensitivity to detect the heavy metal ions due to its unique three-dimensional structures and strong ability of adsorbing the heavy metal ions. The bunch-like Bi electrode’s detection of heavy metals was statically performed using anodic stripping voltammetry (ASV). The detection in the Pb(II) concentration range of 2.5-50 μg/l was also performed. Based on the experimental results, this bunch-like Bi electrode can be considered as an interesting alternative to common mercury electrodes and bismuth film electrodes for possible use in electrochemical studies and electroanalytical applications.

  15. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    International Nuclear Information System (INIS)

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  16. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  17. Structural, optical and glass transition studies on Nd3+-doped lead bismuth borate glasses

    International Nuclear Information System (INIS)

    Nd3+-doped lead bismuth borate (PbO-Bi2O3-B2O3) glasses were prepared with different concentrations of Nd3+. The structural studies were done through FTIR spectral analysis. The glass transition studies were done through differential scanning calorimetry. The optical analysis was done by using Judd-Ofelt theory. The structural study reveals that the glass has [BiO3], BO4, BO3 and PbO4 units as the local structures

  18. Electroless deposition of bismuth on Si(111) wafer from hydrogen fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Romann, T., E-mail: tavo.romann@ut.e [Institute of Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia); Anderson, E.; Kallip, S. [Institute of Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia); Maendar, H.; Matisen, L. [Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu (Estonia); Lust, E. [Institute of Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia)

    2010-05-03

    Thin Bi layers were deposited by simple immersion of silicon chip into diluted HF aqueous solution, containing bismuth(III) ions. Bi nanoparticles or continuous up to 300 nm thick Bi film can be grown on silicon by the variation of the temperature and deposition time. Prepared surfaces have been characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering, photoluminescence and resistivity measurement methods. It was found that thinner Bi layers have a yellowish colour.

  19. Quantum Interference of Surface States in Bismuth Nanowires in Transverse Magnetic Fields

    Science.gov (United States)

    Konopko, L. A.; Huber, T. E.; Nikolaeva, A. A.; Burceacov, L. A.

    2013-06-01

    We report the results of studies of the magnetoresistance (MR) and electric field effect (EFE) of single-crystal Bi nanowires with diameter dMurakami, bismuth bilayers can exhibit the quantum spin Hall effect. A Bi crystal can be viewed as a stacking of bilayers with a honeycomblike lattice structure along the [111] direction. An interpretation of transverse MR oscillations with using this theory is presented.

  20. Equilibrium distribution of samarium and europium between fluoride salt melts and liquid bismuth

    Science.gov (United States)

    Zagnit'ko, A. V.; Ignat'ev, V. V.

    2016-01-01

    The extraction of samarium and europium from a melt of a molar composition 73LiF-27BeF2 into liquid bismuth with additions of lithium as a reducing agent at a temperature of 600-610°C was studied. The equilibrium distribution coefficients of samarium and europium were measured. In the metal fluoride salt melt under study, the valence of samarium and europium was shown to be equal to two.

  1. Analysis of the color alteration and radiopacity promoted by bismuth oxide in calcium silicate cement

    Directory of Open Access Journals (Sweden)

    Marina Angelica Marciano

    2013-07-01

    Full Text Available The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO, determined by weight. Mineral trioxide aggregate (MTA was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/Tukey tests (p 3 mm equivalent of Al. The MTA group was statistically similar to the CSC / 30% BO group (p > 0.05. In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC / 50% BO group (p < 0.05. The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC / 15% BO and CSC / 50% BO groups (p < 0.05. After 30 days, CSC showed statistically higher ΔE values than CSC / 30% BO and CSC / 50% BO (p < 0.05. In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.

  2. Report - Melter Testing of New High Bismuth HLW Formulations VSL-13R2770-1

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The primary objective of the work described was to test two glasses formulated for a high bismuth waste stream on the DM100 melter system. Testing was designed to determine processing characteristics and production rates, assess the tendency for foaming, and confirm glass properties. The glass compositions tested were previously developed to maintain high waste loadings and processing rates while suppressing the foaming observed in previous tests

  3. Thin-film cadmium telluride solar cells: Final subcontract report, 1 May 1985--31 May 1988

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.

    1988-06-01

    This report describes results of research performed to demonstrate thin-film cadmium telluride heterojunction solar cells with a total area greater than 1 cm/sup 2/ and efficiencies of 13% or higher. Efforts were directed to (1) the deposition, resistivity control, and characterization of p-CdTe films by combining the vapor of the elements (CVE) and close-spaced sublimation (CSS) techniques; (2) the deposition and characterization of transparent conducting semiconductors; (3) the deposition of p-HgTe as a low-resistance ohmic contact to p-CdTe; (4) the electrical properties of CdS/CdTe heterojunctions; and (5) the preparation and evaluation of heterojunction solar cells. CdS/CdTe solar cells showed the best photovoltaic characteristics, and the best cell had a conversion efficiency of about 10.6%. 20 refs., 30 figs., 1 tab.

  4. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots

    Science.gov (United States)

    Tashkhourian, Javad; Absalan, Ghodratollah; Jafari, Marzieh; Zare, Saber

    2016-01-01

    A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of doxycycline could quench the fluorescence of TGA/CdTe QDs via electron transfer from the QDs to doxycycline through a dynamic quenching mechanism. The sensor permitted determination of doxycycline in a concentration range of 1.9 × 10-6-6.1 × 10-5 mol L-1 with a detection limit of 1.1 × 10-7 mol L-1. The sensor was applied for determination of doxycycline in honey and human serum samples.

  5. Cuprous Iodide Catalyzed Synthesis of Diaryl Selenide and Telluride from Organoboronic Acids with Diphenyl Diselenide and Ditelluride

    Institute of Scientific and Technical Information of China (English)

    WANG,Lei; WANG,Min; YAN,Jin-Can; LI,Pin-Hua

    2004-01-01

    @@ Organoselenium and tellurium compounds have received much attention not only as synthetic reagents or intermediates in organic synthesis but also as promising donor molecules for conductive materials.[1] A number of synthetic methods have been reported to prepare organoselenium and tellurium derivatives. A convenient and general method to introduce a selenium or tellurium moiety into organic molecules is the reaction of a metal selenolate or tellurolate with appropriate electrophiles such as organic halides, acyl chlorides, epoxides, and α, β-enones.[2] However, it is difficult to synthesize the unsymmetrical diarylselenides and tellurides through the reaction of selenide anion with organic halides because of the less reactivity of aryl halides. To accomplish this purpose, the reaction (iodobenzene with phenylselenol)was generally carried out in the presence of catalysts, ligands and strong bases. But, the reaction needs longer time to accomplish and form the products in moderate yields.

  6. Thin-film cadmium telluride photovoltaic cells. Final subcontract report, 1 November 1992--1 January 1994

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.D.; Bohn, R.G. [Toledo Univ., OH (United States)

    1994-09-01

    This report describes work to develop and optimize radio-frequency (rf) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by rf sputtering was studied as a function of substrate temperature, gas pressure, and rf power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.

  7. Baseline Evaluation of Thin-Film Amorphous Silicon, Copper Indium Diselenide, and Cadmium Telluride for the 21st Century: Preprint

    International Nuclear Information System (INIS)

    This paper examines three thin-film PV technologies: amorphous silicon, cadmium telluride, and copper indium selenide. The purpose is to: (1) assess their status and potential; (2) provide an improved set of criteria for comparing these existing thin films against any new PV technological alternatives, and examining the longer-term (c. 2050) potential of thin films to meet cost goals that would be competitive with conventional sources of energy without any added value from the substantial environmental advantages of PV. Among the conclusions are: (1) today's thin films have substantial economic potential, (2) any new approach to PV should be examined against the substantial achievements and potential of today's thin films, (3) the science and technology base of today's thin films needs substantial strengthening, (4) some need for alternative technologies exists, especially as the future PV marketplace expands beyond about 30 GW of annual production

  8. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  9. Fabrication and modeling of bismuth titanate-PZT ceramic transducers for high temperature applications

    Science.gov (United States)

    Reinhardt, B.; Searfass, C.; Cyphers, R.; Sinding, K.; Pheil, C.; Tittmann, B.

    2013-01-01

    Utilization of a spray-on deposition technique of ferroelectric bismuth titanate (Bi4Ti3O12) composites has a competitive advantage to standard ultrasonic transducers. These can conform to curved surfaces, can operate at high temperature (Curie-Weiss temperature 685 °C) and are mechanically well-coupled to a substrate. However, an issue with many high temperature transducers such as bismuth titanate ceramics is that they have relatively low transduction efficiency, i.e. d33 is about 12-14 pC/F in Bi4Ti3O12 versus 650 pC/F in PZT-5H. It is a common conception that high-temperature capability comes at the cost of electro-mechanical coupling. It will be shown that the high temperature capability of bismuth-titanate-PZT composite transducers using the spray-on deposition technique previously developed, improves the electro-mechanical coupling while maintaining the high temperature performance and mechanical coupling. This material could provide advantages in harsh environments where high signal-to-noise ratios are needed.

  10. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    Science.gov (United States)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-02-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.

  11. Bismuth Modified Porous Silica Preparation, Characterization and Photocatalytic Activity Evaluation for Degradation of Isoproturon

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar Reddy Police; Srinivas Basavaraju; Durga Kumari Valluri; Subrahmanyam Machiraju

    2013-01-01

    Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Sio5 species containing surface.The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD),X-ray photoelectron spectroscopy (XPS),UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS),scanning electron microscopy (SEM),energy dispersive analysis of X-ray (EDAX),transmission electron microscopy (TEM),Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques.EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2Sio5,which is substantiated by XRD.The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica.FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework.SEM and TEM show the spherical morphology,whereas N2 adsorption/desorption study confirms the porosity of the prepared materials.The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa Tio2.

  12. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, K.D.; Herring, J.S.; Macdonald, P.E. [Idaho National Engineering and Environment Lab., Advanced Nuclear Energy, Idaho (United States)

    2001-07-01

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  13. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to “incinerate” or “transmutate” the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  14. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures

    Energy Technology Data Exchange (ETDEWEB)

    Waghmare, Shivaji D.; Jadhav, Vijaykumar V.; Gore, Shaym K. [Center for Nanomaterials and Energy Devices, School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra (India); Yoon, Seog-Joon; Ambade, Swapnil B. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Seoul 133-1791 (Korea, Republic of); Lokhande, B.J. [Department of Physics, Solapur University, Solapur (India); Mane, Rajaram S., E-mail: rsmane_2000@yahoo.com [Center for Nanomaterials and Energy Devices, School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra (India); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Seoul 133-1791 (Korea, Republic of)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ► These structures were characterized by XRD and SEM. ► LPG, CO{sub 2} and NH{sub 4} gases were exposed. ► Properties related to gas sensors were measured and reported. -- Abstract: Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO{sub 2}) and ammonium (NH{sub 3}) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO{sub 2} and NH{sub 3} gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported.

  15. Growth of GaAsBi alloy under alternated bismuth flows by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Chine, Z.; Fitouri, H.; Zaied, I.; Rebey, A.; El Jani, B.

    2011-09-01

    A successful method to epitaxy GaAsBi layer on (0 0 1) GaAs substrate is proposed. During growth, alternated trimethyl bismuth (TMBi) flows were used. These TMBi flashes were switched on for a short time. The growth was monitored in situ by laser reflectometry using a 632.8 nm beam. The reflectance signal is found to change significantly during both bismuth flashes and GaAs growth stages. High-resolution X-ray diffraction (HRXRD), secondary ion mass spectroscopy (SIMS) and photoreflectance spectroscopy (PR) have been used to characterize the obtained GaAsBi layer. HRXRD curve shows a diffraction peak that can be attributed to a GaAsBi epilayer. SIMS measurements of GaAsBi layer suggest that bismuth diffuses faster near the interface. The PR spectrum indicates the band-to-band transition in GaAsBi layer. The band gap energy was determined by adjusting the PR spectrum with a multilayer model.

  16. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: ► Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ► These structures were characterized by XRD and SEM. ► LPG, CO2 and NH4 gases were exposed. ► Properties related to gas sensors were measured and reported. -- Abstract: Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO2) and ammonium (NH3) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO2 and NH3 gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported.

  17. Effect of ferromagnetic dopants on laser induced optical parameters of bismuth doped CaS phosphors

    Science.gov (United States)

    Kumar, Sunil; Jeon, H. C.; Kang, T. W.; Devraj; Sekhon, Jaskanwal; Verma, N. K.; Bhatti, H. S.; Choubey, Ravi Kant

    2015-12-01

    The effect of ferromagnetic impurities (Fe, Co, and Ni) on the laser induced optical parameters of CaS:Bi phosphors has been studied. The studies were done for the Bismuth concentration of 0.4% in CaS phosphors due to the highest value of oscillator strength as reported earlier. The studies were conducted using nitrogen laser as a excitation source in a pulse excitation mode at room temperature. Appreciable changes in the optical properties have been detected after the addition of ferromagnetic impurities in the CaS phosphor doped with bismuth. The nature of the multiple exponential decays remains the same even after the addition of ferromagnetic impurities in the present case of bismuth-doped phosphors which is in agreement with the earlier work reported on other dopants in sulfide type phosphors. As ferromagnetic impurities enhanced the optical parameters of CaS phosphors appreciably, these studies shows that they can be used to control the transition probability and the corresponding optical parameters.

  18. Iron modified structural and optical spectral properties of bismuth silicate glasses

    International Nuclear Information System (INIS)

    Iron bismuth silicate glasses have been successfully synthesized by melt quenching technique. The amorphous nature of the glass samples is ascertained by the XRD patterns. The values of density, molar volume and crystalline volume have been measured and are found to decrease with increase in iron content. The glass transition temperature measured using Differential Scanning Calorimetry (DSC) also varies with increase in Fe2O3 content. The Raman and FTIR spectra of the studied glass system taken at room temperature suggests that Fe2O3 modifies the structure of bismuth silicate glasses and it acts as both network modifier as well as network former. Bismuth also plays the role of both network modifier (BiO6 octahedra) as well as network former (BiO3 pyramids) and SiO2 exists in SiO4 tetrahedral structural units with two non-bridging oxygens. The Hydrogenic excitonic model is found to be applicable to the studied glass compositions. The variation in Urbach energy value observed for the studied glass samples suggests the possibility of increase in the number of glass defects. The metallization criterion for the synthesized glass samples is determined and found to be in the range 0.30–0.38

  19. Topological nature and the multiple Dirac cones hidden in Bismuth high-Tc superconductors.

    Science.gov (United States)

    Li, Gang; Yan, Binghai; Thomale, Ronny; Hanke, Werner

    2015-01-01

    Recent theoretical studies employing density-functional theory have predicted BaBiO3 (when doped with electrons) and YBiO3 to become a topological insulator (TI) with a large topological gap (~0.7 eV). This, together with the natural stability against surface oxidation, makes the Bismuth-Oxide family of special interest for possible applications in quantum information and spintronics. The central question, we study here, is whether the hole-doped Bismuth Oxides, i.e. Ba(1-x)K(x)BiO3 and BaPb(1-x)Bi(x)O3, which are "high-Tc" bulk superconducting near 30 K, additionally display in the further vicinity of their Fermi energy EF a topological gap with a Dirac-type of topological surface state. Our electronic structure calculations predict the K-doped family to emerge as a TI, with a topological gap above EF. Thus, these compounds can become superconductors with hole-doping and potential TIs with additional electron doping. Furthermore, we predict the Bismuth-Oxide family to contain an additional Dirac cone below EF for further hole doping, which manifests these systems to be candidates for both electron- and hole-doped topological insulators. PMID:26014056

  20. Underpotential Deposition Study and Determination of Bismuth on Gold Electrode by Using Voltammetry

    Institute of Scientific and Technical Information of China (English)

    DU,Yong-Ling(杜永令); WANG,Chun-Ming(王春明)

    2002-01-01

    The cyclic voltammetry (CV) and the semidifferential anodic stripping voltanmetry (SdASV) were used for investigation of bismuth(Ⅲ) underpotential deposition (UPD) on gold electrode. Based on the excellent electrochemical properties of Au/Bi UPD system, a new method for determining bismuth (Ⅲ)was established. A solution of 0.1 mol/L HNO3 was selected as the supporting electrolyte. Factors affecting the Bi(Ⅲ) UPD and stripping steps were investigated and an opthmized analytical procedure was developed. The calibration plots for Bi(Ⅲ) concentration in the range 1.25 × 10-8-1.0 × 10-7 mol/L were obtained. The detection limit, calculated as three times the standard deviation of the analytical signal of 8.3×10-8 mol/L for a 90 s electrodeposition at 0.00 V (while the solution magnetically stirred at a speed of 300 rpm), was 7.5× 10-9 mol/ L. For8 successive determinations of 1.25 × 10-7 mol/L Bi(Ⅲ), the obtained RSD (relative standard deviation) was 0.4%. The developed method was applied to bismuth determining in medicine and urine samples. The analytical results were compared with that of atomic emission spectrometry (AES) method.

  1. Bismuth labeling for the CT assessment of local administration of magnetic nanoparticles

    Science.gov (United States)

    Veintemillas-Verdaguer, S.; Luengo, Y.; Serna, C. J.; Andrés-Vergés, M.; Varela, M.; Calero, Macarena; Lazaro-Carrillo, Ana; Villanueva, Angeles; Sisniega, A.; Montesinos, P.; Morales, M. P.

    2015-03-01

    Many therapeutic applications of magnetic nanoparticles involve the local administration of nanometric iron oxide based materials as seeds for magnetothermia or drug carriers. A simple and widespread way of controlling the process using x-ray computed tomography (CT) scanners is desirable. The combination of iron and bismuth in one entity will increase the atenuation of x-rays, offering such a possibility. In order to check this possibility core-shell nanocrystals of iron oxide@bismuth oxide have been synthesized by an aqueous route and stabilized in water by polyethylene glycol (PEG), and we have evaluated their ability to generate contrast by CT and magnetic resonance imaging (MRI) to measure the radiopacity and proton relaxivities using phantoms. High-resolution scanning transmission electron microscopy (STEM) revealed that the material consists of a highly crystalline 8 nm core of maghemite and a 1 nm shell of bismuth atoms either isolated or clustered on the nanocrystal’s surface. The comparison of μCT and MRI images of mice acquired in the presence of the contrast shows that when local accumulations of the magnetic nanoparticles take place, CT images are more superior in the localization of the magnetic nanoparticles than MRI images, which results in magnetic field inhomogeneity artifacts.

  2. The Growth of Bismuth Sulfide Nanorods from Spherical-Shaped Amorphous Precursor Particles under Hydrothermal Condition

    Directory of Open Access Journals (Sweden)

    Pravas Kumar Panigrahi

    2013-01-01

    Full Text Available A surfactant/solid-template-free hydrothermal process has been developed for the synthesis of single-crystalline nanorods of bismuth sulfide (Bi2S3 using triethanolamine as a complexing agent for the Bi3+ ions and elemental sulfur, solubilized in monoethanolamine, as the sulfur source. X-ray diffraction and morphological studies of a series of samples synthesized at different reaction conditions suggest that the growth of nanorods occurred at the expense of the low-crystalline spherical precursor particles of aminium compounds of bismuth sulfide or bismuth sulfate formed at room temperature. In the process, the reaction condition is optimized for obtaining crystalline nanorods of pure Bi2S3 with high aspect ratio. From the XRD, XPS, and HRTEM analysis of the samples, the growth of nanorods was assessed to be due to the cooperative effects of solid-solution-solid transformation and controlled oriented attachment. The hydrothermal process parameters and the presence of water in the reaction system have been found to play a crucial role in the formation of high aspect ratio nanorods. The optical band gap of the synthesized sample at optimized conditions is found to be 1.46 eV as calculated from its diffused reflectance spectrum at room temperature.

  3. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and 125Te NMR measurements in complex tellurides

    Science.gov (United States)

    Levin, E. M.

    2016-06-01

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S , depends on the free (mobile) carrier concentration, n , and effective mass, m*, as S ˜m*/n2 /3 . The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1 /T1 , depends on both n and m* as 1 /T1˜(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1 /T1˜(m*)2n2 /3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study A gxS bxG e50-2xT e50 , well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.

  4. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    Science.gov (United States)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  5. Research work for utilizing technology of the lead-bismuth eutectic. 2nd report: Research on corrosion resistance of ODS-Al steels in high temperature lead-bismuth eutectic under oxygen concentration control (Joint research)

    International Nuclear Information System (INIS)

    In 2002, the Japan Atomic Energy Agency (past organization name: Japan Nuclear Cycle Development Institute) was made a contract with the Central Research Institute of Electric Power Industry on the research work for utilizing technology of the lead bismuth eutectic. In the contract, research on corrosion of FBR materials in high temperature lead bismuth eutectic was performed. This work was composed of two stages. In the first stage, corrosion test of high chromium martensitic steel, which was one candidate material for structures of advanced fast reactor, was performed in oxygen controlled lead bismuth eutectic at 650degC. Effect of chromium on corrosion in the lead bismuth eutectic was estimated. In this second research, corrosion test of oxide dispersion strengthened ferritic steels whose chemical compositions of chromium and aluminum were differed has been performed in the lead bismuth eutectic for up to 4,000 hours. As the results, although chromium effect on corrosion has not been observed, good corrosion resistance by aluminum oxide formation on the surface has been obtained. (author)

  6. Li3PO4 Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery.

    Science.gov (United States)

    Sun, Chuan-Fu; Hu, Junkai; Wang, Peng; Cheng, Xi-Yuan; Lee, Sang Bok; Wang, YuHuang

    2016-09-14

    Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.

  7. Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    Highlights: • The leakage current is effectively reduced by adding a certain amount of titanium. • Addition of titanium increases the remnant polarization and decreases the band gap. • The power conversion efficiency increases as titanium content increases. - Abstract: Ti-doped bismuth ferrite thin films were prepared via sol–gel spin-coating method. The effects of titanium on the microstructure, optical, leakage, ferroelectric and photovoltaic characteristics have been investigated systematically. The result shows that bismuth ferrite thin films doped with 0–8 at.% Ti are rhombohedral distortion perovskite structure. The addition of titanium inhibits the grain growth and enhances the thickness uniformity and can decrease the band gap of bismuth ferrite thin films. The leakage current of bismuth ferrite thin films is effectively reduced by adding a certain amount of titanium and the leakage mechanism has been investigated. Addition of titanium increases the remnant polarization of the films. As titanium content increases, the short circuit photocurrent density decrease first and then increase, while the open circuit photovoltage increase first and then decrease. The power conversion efficiency of Ti-doped bismuth ferrite thin films increases as titanium content increases, which can be explained as a result of the increased remnant polarization and decreased band gap

  8. Li3PO4 Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery.

    Science.gov (United States)

    Sun, Chuan-Fu; Hu, Junkai; Wang, Peng; Cheng, Xi-Yuan; Lee, Sang Bok; Wang, YuHuang

    2016-09-14

    Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles. PMID:27518908

  9. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography

    Science.gov (United States)

    Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.

    2014-10-01

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.Reports of molecular and cellular imaging using

  10. Structural studies of bismuth nanocrystals embedded in SiO2 or GeO2 matrices

    International Nuclear Information System (INIS)

    The layer of bismuth nanoclusters embedded in glass matrices and the surface layer of bismuth grains have been obtained by thermal treatment in hydrogen atmosphere of Bi0.33Ge0.67O1.84 and Bi0.57Si0.43O1.72 glass. The thickness and structure of such layers strongly depend on temperature and time of reduction. The structural studies of bismuth nanocrystals embedded in SiO2 or GeO2 matrices were performed with optical microscopy and atomic force microscopy. By the use of a slow-positron beam we monitored the structural changes undergoing in near-to-surface layers after the first steps of isothermal annealing. A simple two-layer model of reduced glasses explains the evolution of the surface layer and electrical properties of the material during the reduction process

  11. NIR photoluminescence of bismuth-doped CsCdBr{sub 3} – The first ternary bromide phase with a univalent bismuth impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Alexey N., E-mail: alexey.romanov@list.ru [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Veber, Alexander A. [Universität Erlangen-Nürnberg, Lehrstuhl für Glas und Keramik, Martensstraße 5, 91058 Erlangen (Germany); Vtyurina, Daria N. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Kouznetsov, Mikhail S.; Zaramenskikh, Ksenia S.; Lisitsky, Igor S. [State Scientific-Research and Design Institute of Rare-Metal Industry “Giredmet” JSC, 5-1 B.Tolmachevsky Lane, 119017 Moscow (Russian Federation); Fattakhova, Zukhra T.; Haula, Elena V. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Loiko, Pavel A.; Yumashev, Konstantin V. [Center for Optical Materials and Technologies, Belarusian National Technical University, 65/17 Nezavisimosti Avenue, 220013 Minsk (Belarus); Korchak, Vladimir N. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation)

    2015-11-15

    Single crystals of ternary bromide phase CsCdBr{sub 3} doped with univalent bismuth cations are prepared for the first time by the Bridgman method. Bi{sup +} impurity center emits a broadband long-lived near-infrared photoluminescence with a maximum at ~1053 nm. The characteristics of this photoluminescence and its relations with the energy spectrum of Bi{sup +} impurity center are discussed. A comparison of Bi{sup +} photoluminescence in CsCdBr{sub 3} and ternary chlorides (studied previously) is performed. - Highlights: • Single crystals of Bi{sup +}-doped ternary bromide CsCdBr{sub 3} were prepared. • Broadband NIR photoluminescence was observed from Bi{sup +}-doped CsCdBr{sub 3}. • Single optical center is responsible for NIR emission in Bi{sup +}-doped CsCdBr{sub 3}.

  12. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar [Lehrstuhl fuer Glas und Keramik, WW3, Friedrich Alexander Universitaet Erlangen-Nuernberg, Martensstrasse 5, D-91058 Erlangen (Germany)], E-mail: mingying.peng@ww.uni-erlangen.de, E-mail: lothar.wondraczek@ww.uni-erlangen.de

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi{sub 2}O{sub 3} into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi{sup 3+} is formed. By comparing with atomic spectral data, absorption bands at {approx}320 , {approx}500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi{sup 0} transitions {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 3/2}, {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 1/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 5/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(2) and {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(1), respectively, and broadband NIR emission is assigned to the transition {sup 2}D{sub 3/2}(1){yields}{sup 4}S{sub 3/2}.

  13. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Science.gov (United States)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar

    2009-07-01

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi2O3 into elementary Bi. Darkening of bismuthate glass melted at 1300 °C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi3+ is formed. By comparing with atomic spectral data, absorption bands at ~320 , ~500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi0 transitions {}^{4}\\mathrm {S_{3/2}} \\to {}^{2}\\mathrm {P_{3/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {P_{1/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{5/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2}}(2) and {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2 }}(1) , respectively, and broadband NIR emission is assigned to the transition {}^{2}\\mathrm {D_{3/2}(1)}\\to {}^{4}\\mathrm {S_{3/2}} .

  14. Optical property tuning of bismuth chalcogenides using chemical intercalation (Presentation Recording)

    Science.gov (United States)

    Yao, Jie

    2015-10-01

    Two-dimensional (2D) materials with natural layer structures have been proven to provide extraordinary physical and chemical properties. Bismuth chalcogenides are examples of such two-dimensional materials. They are strongly bonded within layers and weak van der Waals interaction ties those layers together. Such naturally layered structure allows chemical intercalation of foreign atoms into the van der Waals gaps. Here, we show that by adding large number of copper atoms into van der Waals gaps of bismuth chalcogenides, we observed counter-intuitive enhancement of optical transparency together with improved electrical conductivity, which is on the contrary to most bulk materials in which doping reduces the light transmission. This surprising behavior is caused by substantial tuning of material optical property and nanophotonic anti-reflection effect unique to ultra-thin nanoplates. With the intercalation of copper atoms, large number of electrons have been added into the semiconducting material system and effectively lift the Fermi level of the resulting material to its conduction band, as proved by our densityfunctional- theory computations. Occupied lower states in the conduction band do not allow the optical excitation of electrons in the valence band to the bottom of the conduction band, leading to an effective widening of optical band gap. Optical transmission is further enhanced by constructive interference of reflected beams as bismuth chalcogenides have large permittivity than the environment. The synergy of these two effects in two-dimensional nanostructures can be exploited for various optoelectronic applications including transparent electrode. The reversible intercalation process allows potential dynamic tuning capability.

  15. Evaluation of Radiation Dose Reduction during CT Scans Using Oxide Bismuth and Nano-Barium Sulfate Shields

    OpenAIRE

    Seoung, Youl-Hun

    2015-01-01

    The purpose of the present study was to evaluate radiation dose reduction and image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS were composed of nano-barium sulfate (BaSO4), filling the gaps left by the large oxide bismuth (Bi2O3) particle sizes. The radiation dose was measured five times at directionss of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom to calculate an average...

  16. On the evaluation of the pressure losses in a lead-bismuth-eutectics cooled fuel assembly with TRACE and SUSA

    International Nuclear Information System (INIS)

    The prediction of the pressure drop in a pool-type reactor operated with lead-bismuth-eutectics is of crucial importance. A pressure drop of e.g. 1 bar is equivalent to a lead-bismuth-eutectics column of about 1 m, which has a big influence on the financial aspects of the design proposal. The paper presents results on the hydraulic evaluation of a fuel assembly with the emphasis on uncertainties and variations of relevant parameters like the mass flow rate, form, and friction loss coefficients. With the subsequent uncertainty and sensitivity study, in connection with thermal hydraulic investigations, the influence of these uncertain parameters was evaluated. (author)

  17. Variation of the electronic densities of states as a function of impurity concentration in amorphous bismuth alloys

    Science.gov (United States)

    Mata-Pinzon, Zaahel; Valladares, Ariel Alberto; Valladares, Alexander; Valladares, Renela Maria

    2014-03-01

    The properties of materials are strongly related to their atomic topology, especially when we compare properties related to the ordered and disordered phases. Using Density Functional Theory methods on 64-atom supercells we obtain the structure and calculate the electronic density of states (eDOS) as a function of the concentration of lead, thallium or antimony in an amorphous bismuth supercell. This is done to investigate how the eDOS affects the superconducting transition temperature (Tc), taking into account the measurements made by Shier and Ginsberg[2] on contaminated amorphous bismuth thin films. Supported by CONACYT and DGAPA (UNAM).

  18. Study of iron structure stability in high temperature molten lead-bismuth eutectic with oxygen injection using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Arkundato, Artoto [Physics Department, Faculty of Mathematical and Natural Sciences, Jember University, Jl. Kalimantan 37 Jember (Indonesia); Su' ud, Zaki [Physics Department, Faculty of Mathematical and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung (Indonesia); Sudarko [Chemistry Department, Faculty of Mathematical and Natural Sciences, Jember University, Jl. Kalimantan 37 Jember (Indonesia); Shafii, Mohammad Ali [Physics Department, Faculty of Mathematical and Natural Sciences, Andalas University, Padang (Indonesia); Celino, Massimo [ENEA, CR Casaccia, Via Anguillarese 301, Rome (Italy)

    2014-09-30

    Corrosion of structural materials in high temperature molten lead-bismuth eutectic is a major problem for design of PbBi cooled reactor. One technique to inhibit corrosion process is to inject oxygen into coolant. In this paper we study and focus on a way of inhibiting the corrosion of iron using molecular dynamics method. For the simulation results we concluded that effective corrosion inhibition of iron may be achieved by injection 0.0532 wt% to 0.1156 wt% oxygen into liquid lead-bismuth. At this oxygen concentration the structure of iron material will be maintained at about 70% in bcc crystal structure during interaction with liquid metal.

  19. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    Science.gov (United States)

    Liu, Jian; Yan, Wei; Sha, Wei; Wang, Wei; Shan, Yiyin; Yang, Ke

    2016-05-01

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test.

  20. Electrical characteristics of bismuth titanate glass-ceramics containing SiO2 and Nd2O3

    OpenAIRE

    Stanislav S. Slavov; Milena Z. Krapchanska; Elena P. Kashchieva; Yanko B. Dimitriev

    2010-01-01

    Bismuth-titanate ceramics containing SiO2 and Nd2O3 as additives are synthesized at two different ways of cooling of the melts. The introduction of SiO2 and Nd2O3 leads to more complex crystallization with participation of several phases including Bi4Ti3O12. It is proved that the applied methods of synthesis are suitable for generation of different microstructures in the bulk doped bismuth titanate ceramics, which is promising basis for modification of their electrical properties. The increas...

  1. Dielectric and Piezoelectric Properties of Sodium Bismuth Titanate Ceramics with KCe Substitution

    Institute of Scientific and Technical Information of China (English)

    XU Jian-Xiu; ZHAO Liang; ZHANG Cheng-Ju

    2008-01-01

    @@ The piezoelectric properties of the (KCe)-substituted sodium bismuth titanate (Na0.5Bi4.5 Ti4O15, NBT) piezo-electric ceramics are investigated. The piezoelectric properties of NBT ceramics are significantly enhanced by (KCe) substitution. The Curie temperature Tc, and piezoelectric coefficient d33 for the (KCe)-substituted NBT are found to be 663°C, and 27pC/N, respectively. Dielectric and annealing spectroscopy present that the (KCe) co-substituted NBT piezoelectric ceramics possess stable piezoelectric properties.

  2. Effect of oxygen on fouling behavior in lead bismuth coolant systems

    Science.gov (United States)

    Niu, Fenglei; Candalino, Robert; Li, Ning

    2007-06-01

    This experimental research investigates the effects of the oxygen in lead-bismuth eutectic on fouling. The analysis was carried out by performing three tests with different oxygen concentration on the recuperator where the heat transfer rate is susceptible to fouling, and introducing a correlation for the fouling factor. The comparison of fouling factors obtained with each oxygen level is presented, the relationship between fouling factors and oxygen concentrations is correlated, and the effects of oxidation on heat transfer are demonstrated qualitatively by wetting conditions of the samples.

  3. Effect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia

    Directory of Open Access Journals (Sweden)

    Liwei Liu

    2016-03-01

    Full Text Available Bismuth oxide (Bi2O3-doped yttria-stabilized zirconia (YSZ were prepared via the solid state reaction method. X-ray diffraction and electron diffraction spectroscopy results indicate that doping with 2 mol% Bi2O3 and adding 10 mol% yttria result in a stable zirconia cubic phase. Adding Bi2O3 as a dopant increases the density of zirconia to above 96%, while reducing its normal sintering temperature by approximately 250 °C. Moreover, electrical impedance analyses show that adding Bi2O3 enhances the conductivity of zirconia, improving its capability as a solid electrolyte for intermediate or even lower temperatures.

  4. Optical properties of Dy3+ doped bismuth zinc borate glass and glass ceramics

    Science.gov (United States)

    Shanmugavelu, B.; Kanth Kumar, V. V. Ravi

    2012-06-01

    Dy3+ doped bismuth zinc borate transparent glasses were prepared by melt quenching technique and these glasses were used precursor to obtain transparent glass ceramics by heat treatment method. XRD pattern of the glass ceramic shows the formation of the β-BiB3O6 and Bi2ZnOB2O6 phases. The visible emission intensity of the glass ceramics is stronger than the glass. This can be due to the formation of nano nonlinear optical crystallites in glass matrix.

  5. Observation of dimension dependent magnetic ordering in bismuth ferrite particulate and fiber nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sakar, M.; Bharathkumar, S.; Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600 025 (India); Saravanan, P. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2015-06-24

    Nanoparticles and nanofibers of bismuth ferrite were fabricated by sol-gel and electrospinning methods respectively. The structural and morphological analysis was carried out by XRD and FESEM techniques respectively. The magnetic measurements were carried out by SQUID magnetometer. The BFO nanofibers showed an enhanced magnetic property compared to nanoparticles. The observed magnetic properties were found to be associated with their magnetic ordering in the system where the antiferromagnetic/ferromagnetic core/shell like nature and ‘canted’ spin structure ordering was found to be the magnetic origin in the particulate and fiber nanostructures respectively.

  6. Effect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia.

    Science.gov (United States)

    Liu, Liwei; Zhou, Zheng; Tian, He; Li, Jixue

    2016-03-14

    Bismuth oxide (Bi2O3)-doped yttria-stabilized zirconia (YSZ) were prepared via the solid state reaction method. X-ray diffraction and electron diffraction spectroscopy results indicate that doping with 2 mol% Bi2O3 and adding 10 mol% yttria result in a stable zirconia cubic phase. Adding Bi2O3 as a dopant increases the density of zirconia to above 96%, while reducing its normal sintering temperature by approximately 250°C. Moreover, electrical impedance analyses show that adding Bi2O3 enhances the conductivity of zirconia, improving its capability as a solid electrolyte for intermediate or even lower temperatures.

  7. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deb, Marwan, E-mail: marwan.deb@ipcms.unistra.fr; Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS, Université de Strasbourg, BP 43, 23 rue du Loess, 67034 Strasbourg Cedex 02 (France)

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  8. RBEC lead-bismuth cooled fast reactor: review of conceptual decisions

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.; Fomichenko, P.; Mikityuk, K.; Nevinitsa, V.; Shchepetina, T.; Subbotin, S.; Vasiliev, A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2001-07-01

    A concept of the RBEC lead-bismuth fast reactor-breeder is a synthesis, on one hand, of more than 40-year experience in development and operation of fast sodium power reactors and reactors with Pb-Bi coolant for nuclear submarines, and, on the other hand, of large R and D activities on development of the core concept for modified fast sodium reactor. The report briefly presents main parameters of the RBEC reactor, as a candidate for commercial exploitation in structure of the future nuclear power. (author)

  9. Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation

    International Nuclear Information System (INIS)

    Bismuth vanadates (BiVO4) with various crystal structures (tetragonal scheelite, monoclinic scheelite, and tetragonal zircon) and morphologies (sphere-, nanosheet-, dendrite-, and flower-like) were controllably fabricated by using a mild additive-free hydrothermal treatment process under the different preparation conditions. The crystal structures, morphologies, and photophysical properties of the products were well-characterized. Subsequently, their UV- as well as visible-light photocatalytic performance was evaluated via dyes rhodamine B (RB) and methylene blue (MB) degradation. Special attention was paid to evaluate the correlation of the reactivity with crystal structure, morphology, and electronic structure of as-prepared BiVO4 samples.

  10. Interaction study between MOX fuel and Eutectic Lead-Bismuth coolant

    OpenAIRE

    VIGIER JEAN-FRANCOIS; POPA KARIN; TYRPEKL VACLAV; GARDEUR Sebastien; FREIS DANIEL; SOMERS Joseph

    2015-01-01

    In the frame of the MYRRHA reactor project, the interaction between fuel pellets and the reactor coolant is essential for safety evaluations, e.g. in case of a pin breach. Therefore, interaction tests between uranium-plutonium mixed oxide (MOX) pellets and molten lead bismuth eutectic (LBE) have been performed and three parameters were studied, namely the interaction temperature (500 °C and 800 °C), the oxygen content in LBE and the stoichiometry of the MOX (U0.7Pu0.3O2-x and U0.7Pu0.3O2.00)....

  11. Corrosion behavior of cold-worked austenitic stainless steels in liquid lead–bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Yuji, E-mail: kurata.yuji@jaea.go.jp

    2014-05-01

    Highlights: • Austenitic stainless steels cold-worked up to 50% were exposed to lead–bismuth. • Lead–bismuth with the low oxygen concentration caused deep ferritization at 550 °C. • Ferritization also occurred at 550 °C during 3000 h under the high oxygen condition. • Cold working accelerated ferritization and Pb–Bi penetration without a protective film. • Attention should be also focused on the cold-working effect on corrosion behavior. - Abstract: The effect of cold working on the corrosion behavior of austenitic stainless steels in liquid lead–bismuth eutectic (LBE) was studied to develop accelerator-driven systems for the transmutation of long-lived radioactive wastes and lead–bismuth cooled fast reactors. Corrosion tests on solution-treated, 20% cold-worked and 50% cold-worked 316SS and JPCA (15Cr–15Ni–Ti) were conducted in oxygen-controlled LBE. Slight ferritization caused by Ni dissolution and Pb–Bi penetration were observed for all specimens in the corrosion test conducted at 500 °C for 1000 h in liquid LBE with an intermediate oxygen concentration (1.4 × 10{sup −7} wt.%). In the corrosion test performed at 550 °C for 1000 h in liquid LBE with a low oxygen concentration (4.2 × 10{sup −9} wt.%), the depth of the ferritization of 316SS and JPCA increased with the extent of cold working. Only oxidation was observed in the corrosion test that was performed at 550 °C for 1000 h in liquid LBE with a high oxygen concentration (approximately 10{sup −5} wt.%). Cold working accelerated the formation of the double layer oxide and increased the thickness of the oxide layer slightly. In contrast, the ferritization accompanied by Pb–Bi penetration was widely observed with oxidation for all specimens corrosion tested at 550 °C for 3000 h under the high-oxygen condition. Cold working increased the depth of the ferritization of 316SS and JPCA. It is considered that cold working accelerated the ferritization and Pb–Bi penetration

  12. Laboratory-Scale Bismuth Phosphate Extraction Process Simulation To Track Fate of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. JEFFREY; Lindberg, Michael J.; Jones, Thomas E.; Schaef, Herbert T.; Krupka, Kenneth M.

    2007-02-28

    Recent field investigation that collected and characterized vadose zone sediments from beneath inactive liquid disposal facilities at the Hanford 200 Areas show lower than expected concentrations of a long-term risk driver, Tc-99. Therefore laboratory studies were performed to re-create one of the three processes that were used to separate the plutonium from spent fuel and that created most of the wastes disposed or currently stored in tanks at Hanford. The laboratory simulations were used to compare with current estimates based mainly on flow sheet estimates and spotty historical data. Three simulations of the bismuth phosphate precipitation process show that less that 1% of the Tc-99, Cs-135/137, Sr-90, I-129 carry down with the Pu product and thus these isotopes should have remained within the metals waste streams that after neutralization were sent to single shell tanks. Conversely, these isotopes should not be expected to be found in the first and subsequent cycle waste streams that went to cribs. Measurable quantities (~20 to 30%) of the lanthanides, yttrium, and trivalent actinides (Am and Cm) do precipitate with the Pu product, which is higher than the 10% estimate made for current inventory projections. Surprisingly, Se (added as selenate form) also shows about 10% association with the Pu/bismuth phosphate solids. We speculate that the incorporation of some Se into the bismuth phosphate precipitate is caused by selenate substitution into crystal lattice sites for the phosphate. The bulk of the U daughter product Th-234 and Np-237 daughter product Pa-233 also associate with the solids. We suspect that the Pa daughter products of U (Pa-234 and Pa-231) would also co-precipitate with the bismuth phosphate induced solids. No more than 1 % of the Sr-90 and Sb-125 should carry down with the Pu product that ultimately was purified. Thus the current scheme used to estimate where fission products end up being disposed overestimates by one order of magnitude the

  13. New Bismuth Germanate Oxide Nanoparticle Material for Biolabel Applications in Medicine

    OpenAIRE

    M. J. Oviedo; Contreras, O. E.; Y. Rosenstein; Vazquez-Duhalt, R.; Z. S. Macedo; Carbajal-Arizaga, G. G.; G. A. Hirata

    2016-01-01

    Bismuth germanate (Bi4Ge3O12, BGO) has been the focus of several studies due to its scintillation properties. It has been employed as detector in scientific research and medicine, and herein we studied its possible biomedical applications. The photoluminescence properties of the uncoated and protein-coated nanoparticles were analyzed in different body fluids, at different pH. The nanoparticles yielded blueish-white luminescence with a maximum emission peak at 485 nm corresponding to the 3P1→1...

  14. Thermoelectrically-cooled Cadmium Zinc Telluride detectors (CZT) for X-ray and gamma-ray detection

    International Nuclear Information System (INIS)

    Recently, Cadmium Zinc Telluride (CZT) became one of the most promising room temperature semiconductor detectors. Although significant progress has been made in the growth and characterization of CZT crystals, the energy resolution of CZT detectors at room temperature is still limited by leakage current and the charge transport effects. To optimize the performance of the room temperature CZT detectors a compromise should be made when selecting the shaping time constant of the spectroscopy amplifier. A short shaping time constant reduces leakage current fluctuations. However, the short pulse shapes are more sensitive to ballistic deficit and charge collection fluctuations. In addition, when short shaping time constants are used, the charge sensitive preamplifier noise limits the energy resolution, especially when low energy X-rays are detected. It is therefore important to reduce the leakage current of the detector and to keep the preamplifier noise as low as possible. One way to do this is to cool the detector, the front stage, and the feedback components of the preamplifier. This paper describes a compact, thermoelectrically-cooled radiation detector using a CZT crystal, designated the XR-100T-CZT. (J.P.N.)

  15. Effect of oxygen on structural stability of nitrogen-doped germanium telluride films with and without silicon nitride layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hong [AE group, Corporate Technology Operations SAIT, Samsung Electronics Co. Ltd. Yongin, 446-712 (Korea, Republic of); Choi, Sang-Jun, E-mail: sangjun5545.choi@samsung.com [System LSI, Samsung Electronics Co. Ltd., Yong-In, 446-712 (Korea, Republic of); Kyoung, Yong-Koo; Lee, Jun-Ho [AE group, Corporate Technology Operations SAIT, Samsung Electronics Co. Ltd. Yongin, 446-712 (Korea, Republic of)

    2012-03-30

    Nitrogen-doped germanium telluride (N-GeTe) films with and without silicon nitride (SiN) layer were thermally annealed in an air atmosphere. The SiN layer prevented the oxidation of GeTe films despite the massive in-diffusion of oxygen atoms. The phase transition from cubic to rhombohedral phase occurred only in the air-annealed samples, not in the samples annealed at 2.0 mPa. The in-diffused oxygen is probably the leading cause of this phase transition. N-GeTe films without SiN layer showed an increase in sheet resistance after 1000 min of air annealing; this could be attributable to a phase transition from the cubic GeTe phase to the amorphous germanium oxide and metallic tellurium phases. - Highlights: Black-Right-Pointing-Pointer SiN layer prevented oxidation of GeTe despite the massive in-diffusion of oxygen. Black-Right-Pointing-Pointer The in-diffused oxygen have a critical role in the changes of crystal structure. Black-Right-Pointing-Pointer N-GeTe exhibited phase transition into amorphous Ge oxide and metallic Te phase.

  16. Controlled cadmium telluride thin films for solar-cell applications. Final technical report, June 1, 1980-May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.B.; Krishnaswamy, S.V.

    1981-06-01

    The objectives of this contract were to carry out a systematic study on the preparation and characterization of rf-sputtered CdTe thin films in order to establish reproducibility of the films with good electrical characteristics and to demonstrate the feasibility of fabricating various types of junctions and ohmic contacts with reproducible characteristics and finally to optimize the most promising solar cell structure in order to achieve an efficiency of 6% or higher. Efforts have been directed to the control of various sputtering parameters in order to obtain good quality films. The structure, crystallographic, compositional and electrical properties of cadmium telluride films sputtered over a wide range of conditions have been evaluated. A series of doping experiments have been carried out using primarily Cd, Te, In, as the n-type dopants and Cu as the p-type dopant. Of these dopants, indium doping provided films with which S.B. junctions can be obtained for further electrical characterization. Use of cadmium overpressure during CdTe:In sputtering has improved the film characteristics. Ion Beam Sputtering was attempted as an alternative technique for film preparation. For lack of time and due to a number of mechanical failures, no significant results could be obtained.

  17. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  18. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  19. Measurement of the electrical properties of a polycrystalline cadmium telluride for direct conversion flat panel x-ray detector

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) is one of the best candidate direct conversion material for medical X-ray application because it satisfies the requirements of direct conversion x-ray material such as high atomic absorption, density, bandgap energy, work fuction, and resistivity. With such properties, single crystal CdTe exhibits high quantum efficiency and charge collection efficiency. However, for the development of low-cost large area detector, the study of the improvement of polycrystalline CdTe property is desirable. In this study, in order to improve the properties of polycrystalline CdTe, we produced polycrystalline CdTe with different kinds of raw materials, high purity Cd and Te powder compounds and bulk CdTe compound synthesized from single crystal CdTe. The electric properties including resistivity, x-ray sensitivity, and charge transport properties were investigated. As a result, polycrystalline CdTe exhibited simular level of resistivity and x-ray sensitivity to single crystal CdTe. The carrier transport properties of polycrystalline CdTe showed poorer properties than those of single crystal CdTe due to significant charge trapping. However, the polycrystalline CdTe fabricated with bulk CdTe compound synthesized from single crystal CdTe showed better charge transport properties than the polycrystalline CdTe fabricated with CdTe powder compounds. This is suitable for diagnostic x-ray detectors, especially for digital fluoroscopy

  20. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    International Nuclear Information System (INIS)

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted

  1. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs Due to Oxidative Stress in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2015-09-01

    Full Text Available With the applications of quantum dots (QDs expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12. CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2 deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes.

  2. A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors

    Science.gov (United States)

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Guo, Dongming; Kang, Renke; Zhang, Bi

    2016-03-01

    A novel approach of chemical mechanical polishing (CMP) is developed for mercury cadmium telluride (HgCdTe or MCT) semiconductors. Firstly, fixed-abrasive lapping is used to machine the MCT wafers, and the lapping solution is deionized water. Secondly, the MCT wafers are polished using the developed CMP slurry. The CMP slurry consists of mainly SiO2 nanospheres, H2O2, and malic and citric acids, which are different from previous CMP slurries, in which corrosive and toxic chemical reagents are usually employed. Finally, the polished MCT wafers are cleaned and dried by deionized water and compressed air, respectively. The novel approach of CMP is environment-friendly. Surface roughness Ra, and peak-to-valley (PV) values of 0.45, and 4.74 nm are achieved, respectively on MCT wafers after CMP. The first and second passivating processes are observed in electrochemical measurements on MCT wafers. The fundamental mechanisms of CMP are proposed according to the X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Malic and citric acids dominate the first passivating process, and the CMP slurry governs the second process. Te4+3d peaks are absent after CMP induced by the developed CMP slurry, indicating the removing of oxidized films on MCT wafers, which is difficult to achieve using single H2O2 and malic and citric acids solutions.

  3. Adaptive statistical iterative reconstruction and bismuth shielding for evaluation of dose reduction to the eye and image quality during head CT

    International Nuclear Information System (INIS)

    There is a concern regarding the adverse effects of increasing radiation doses due to repeated computed tomography (CT) scans, especially in radiosensitive organs and portions thereof, such as the lenses of the eyes. Bismuth shielding with an adaptive statistical iterative reconstruction (ASIR) algorithm was recently introduced in our clinic as a method to reduce the absorbed radiation dose. This technique was applied to the lens of the eye during CT scans. The purpose of this study was to evaluate the reduction in the absorbed radiation dose and to determine the noise level when using bismuth shielding and the ASIR algorithm with the GE DC 750 HD 64-channel CT scanner for CT of the head of a humanoid phantom. With the use of bismuth shielding, the noise level was higher in the beam-hardening artifact areas than in the revealed artifact areas. However, with the use of ASIR, the noise level was lower than that with the use of bismuth alone; it was also lower in the artifact areas. The reduction in the radiation dose with the use of bismuth was greatest at the surface of the phantom to a limited depth. In conclusion, it is possible to reduce the radiation level and slightly decrease the bismuth-induced noise level by using a combination of ASIR as an algorithm process and bismuth as an in-plane hardware-type shielding method.

  4. Low-Temperature Synthesis of Bismuth Chalcohalides: Candidate Photovoltaic Materials with Easily, Continuously Controllable Band gap

    Science.gov (United States)

    Kunioku, Hironobu; Higashi, Masanobu; Abe, Ryu

    2016-09-01

    Although bismuth chalcohalides, such as BiSI and BiSeI, have been recently attracting considerable attention as photovoltaic materials, the methods available to synthesize them are quite limited thus far. In this study, a novel, facile method to synthesize these chalcohalides, including BiSBr1-xIx solid solutions, at low temperatures was developed via the substitution of anions from O2- to S2- (or Se2-) using bismuth oxyhalide precursors. Complete phase transition was readily observed upon treatment of BiOI particles with H2S or H2Se at surprisingly low temperatures of less than 150 °C and short reaction times of less than 1 h, producing BiSI and BiSeI particles, respectively. This method was also applied for synthesizing BiSBr1-xIx, where continuous changes in their band gaps were observed depending on the ratio between iodine and bromine. The composition of all elements (except oxygen) in the chalcohalides thus produced was almost identical to that of the oxyhalide precursors, attributed to the suppressed volatilization of halogens at such low temperatures. All chalcohalides loaded on FTO clearly exhibited an anodic photocurrent in an acetonitrile solution containing I-, attributed to their n-type nature, e.g., the BiSI electrode exhibited high IPCE (64% at 700 nm, +0.2 V vs. Ag/AgCl).

  5. Carbon nanotubes paste sensor modified with bismuth film for determination of metallic ions in ethanol fuel

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Gorla

    2015-05-01

    Full Text Available In the present study an anodic stripping voltammetric method using a bismuth film modified carbon nanotubes paste electrode for simultaneous determination of metals Zn2+, Cd2+and Pb2+in ethanol fuel is described. The metallic ions were preconcentrated on the bismuth film in the time and deposition potential of 500 s and -1.2 V and the stripping step was carried out by square wave voltammetry (frequency of 15 Hz, pulse amplitude of 25 mV and potential step of 5 mV. Acetate buffer at 0.1 mol L-1concentration and pH 4.5 was used as support electrolyte. The method showed linearity including the analytical blank up to 48.39 ?g L-1 for the metals and the obtained limits of detection were 3.36, 0.32 and 0.47 ?g L-1for Zn2+, Cd2+and Pb2+, respectively. The proposed method was applied in ethanol fuel samples.

  6. Low-Temperature Synthesis of Bismuth Chalcohalides: Candidate Photovoltaic Materials with Easily, Continuously Controllable Band gap

    Science.gov (United States)

    Kunioku, Hironobu; Higashi, Masanobu; Abe, Ryu

    2016-09-01

    Although bismuth chalcohalides, such as BiSI and BiSeI, have been recently attracting considerable attention as photovoltaic materials, the methods available to synthesize them are quite limited thus far. In this study, a novel, facile method to synthesize these chalcohalides, including BiSBr1‑xIx solid solutions, at low temperatures was developed via the substitution of anions from O2‑ to S2‑ (or Se2‑) using bismuth oxyhalide precursors. Complete phase transition was readily observed upon treatment of BiOI particles with H2S or H2Se at surprisingly low temperatures of less than 150 °C and short reaction times of less than 1 h, producing BiSI and BiSeI particles, respectively. This method was also applied for synthesizing BiSBr1‑xIx, where continuous changes in their band gaps were observed depending on the ratio between iodine and bromine. The composition of all elements (except oxygen) in the chalcohalides thus produced was almost identical to that of the oxyhalide precursors, attributed to the suppressed volatilization of halogens at such low temperatures. All chalcohalides loaded on FTO clearly exhibited an anodic photocurrent in an acetonitrile solution containing I‑, attributed to their n-type nature, e.g., the BiSI electrode exhibited high IPCE (64% at 700 nm, +0.2 V vs. Ag/AgCl).

  7. Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra.

    Science.gov (United States)

    Wang, Y W; Hong, Byung Hee; Kim, Kwang S

    2005-04-21

    We introduced a simple chemical method to synthesize semimetal bismuth nanoparticles in N,N-dimethylformamide (DMF) by reducing Bi(3+) with sodium borohydride (NaBH(4)) in the presence of poly(vinylpyrroldone) (PVP) at room temperature. The size and dispersibility of Bi nanoparticles can be easily controlled by changing the synthetic conditions such as the molar ratio of PVP to BiCl(3) and the concentration of BiCl(3). The UV-visible absorption spectra of Bi nanoparticles of different diameters are systematically studied. The surface plasmon peaks broaden with the increasing molar ratio of PVP to BiCl(3) as the size of bismuth nanoparticles decreases. Infrared (IR) spectra of the complexes with different molar ratios of PVP/BiCl(3) show a strong interaction between the carboxyl oxygen (C=O) of PVP and Bi(3+) ion and a weak interaction between the carboxyl oxygen (C=O) of PVP and the Bi atom in nanoparticles. This indicates that PVP serves as an effective capping ligand, which prevents the nanoparticles from aggregation.

  8. Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound.

    Science.gov (United States)

    Soltani, T; Entezari, M H

    2013-09-01

    In this paper, the photocatalytic degradation of Reactive Black 5 (RB5) was investigated with ferrite bismuth synthesized via ultrasound under direct sunlight irradiation. The intensity of absorption peaks of RB5 gradually decreased by increasing the irradiation time and finally vanished in 50 min in acidic medium. The formation of new intermediate was observed in basic medium. The relative concentration of RB5 in solution and on the surface of ferrite bismuth (BiFeO3) nanoparticles was considered during the experiment in acidic and basic media. The effects of various parameters such as amount of catalyst, concentration of dye, and pH of the solution have been studied on the dye degradation. The adsorption isotherm and the kinetic of photocatalytic degradation of RB5 were investigated. The adsorption constants in the dark and in the presence of sunlight irradiation were compared. The photocatalytic degradation mechanism of RB5 has been evaluated through the addition of some scavengers to the solution. In addition, the stability and reusability of the catalyst were examined in this work.

  9. Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped Bismuth Ferrite

    International Nuclear Information System (INIS)

    Nanostructured multiferroic Bi(1−x)BaxFeO3x=0.0, 0.1, 0.2 were prepared by hydrothermal technique. All samples belonged to the rhombohedrally distorted perovskite structure. The morphology of the particles changed with the doping of barium. Effect of barium doping on the dielectric constant was studied over a wide frequency range of 1000 Hz–1 MHz. The activation energy due to relaxation and due to conduction was measured from the Cole Cole plot and the AC conductivity versus frequency plot respectively. The activation energy estimated from both the studies was close to each other. The activation energy also enhanced with the increase in the barium content. The magnetization at the highest available field (∼1.6 T) increased from 0.05 emu/g for the sample with x=0.0–12 emu/g for the sample with x=0.2. The magnetic measurements show a significant increase in magnetization around 400 °C. Remnant polarization for x=0.0 was negligible and it increased to 0.06 µC/cm2 for x=0.2. - Highlights: • Bismuth Ferrite nanostructures were synthesized by the hydrothermal technique. • Barium was doped in Bismuth site. • Morphology changed with doping. • Ferromagnetic, Ferroelectric and Dielectric properties enhanced with doping. • An unreported magnetic transition due to spin canting was observed near 550 °C

  10. Growth of epitaxial sodium-bismuth-titanate films by metal-organic chemical vapor phase deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzkopf, J., E-mail: schwarzkopf@ikz-berlin.de [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Schmidbauer, M.; Duk, A.; Kwasniewski, A. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Anooz, S. Bin [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Physics Department, Faculty of Science, Hadhramout University of Science and Technology, Mukalla 50511, Republic of Yemen (Yemen); Wagner, G. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Devi, A. [Inorganic Materials Chemistry, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum (Germany); Fornari, R. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany)

    2011-10-31

    The liquid-delivery spin metal-organic chemical vapor phase deposition method was used to grow epitaxial sodium-bismuth-titanate films of the system Bi{sub 4}Ti{sub 3}O{sub 12} + xNa{sub 0.5}Bi{sub 0.5}TiO{sub 3} on SrTiO{sub 3}(001) substrates. Na(thd), Ti(O{sup i}Pr){sub 2}(thd){sub 2} and Bi(thd){sub 3}, solved in toluene, were applied as source materials. Depending on the substrate temperature and the Na/Bi ratio in the gas phase several structural phases of sodium-bismuth-titanate were detected. With increasing temperature and/or Na/Bi ratio, phase transitions from an Aurivillius phase with m = 3 to m = 4 via an interleaved state with m = 3.5, and, finally, to Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} with perovskite structure (m = {infinity}) were established. These phase transitions proceed at remarkably lower temperatures than in ceramics or bulk crystals for which they had been exclusively observed so far.

  11. Laser-diode excited intense upconversion luminescence of Er3+ in bismuth-lead-germanate glasses

    Institute of Scientific and Technical Information of China (English)

    Li Tao; Zhang Qin-Yuan; Jiang Zhong-Hong

    2007-01-01

    We have investigated infrared-to-visible upconversion luminescence of Er3 in bismuth-lead-germanate glasses.The UV cutoff wavelength is shortened while its lifetime is increased almost linearly, with PbF2 substituting for PbO in the bismuth-lead-germanate glasses. Three emissions centred at around 529, 545 and 657 nm are clearly observed, which are identified as originating from the 2H11/2 →4 I15/2,4 Ss/2 →4 I15/2 and 4F9/2 →4 I15/2 transitions, respectively. It is noted that all the upconversion emission intensities increase with PbF2 concentration increasing. The ratio between the intensities of red and green emissions increases with the increasing of PbF2 content. Energy transfer processes and nonradiative phonon-assisted decays account for the populations of the 2H11/2,4 S3/2 and 4F9/2 levels. The quadratic dependence of fluorescence on excitation laser power confirms a two-photon process to contribute to the upconversion emissions.

  12. Sol-gel synthesis and property studies of layered perovskite bismuth titanate thin films

    International Nuclear Information System (INIS)

    Layered perovskite bismuth titanate (BTO) thin films were deposited on platinum coated silicon substrates by spin coating. A homogeneous and stable precursor solution was prepared by sol-gel process using bismuth nitrate and titanium(IV) butoxide as starting materials, glacial acetic acid and ethanolamine were selected as solvent and stabilizing agent, respectively. The crystal structure, surface morphology, composition and electrical properties of the films have been investigated. Crystal structure and morphology of the films are strongly influenced by the heat cycle adopted to form crystalline BTO films. Morphology of the films studied by AFM is found to be smooth, dense, and crack free. The deposited films possess good compositional homogeneity and thickness uniformity. The dielectric constant and the dissipation factor measured at 1 kHz at room temperature are found to be 135 and 0.018, respectively, for the films of 0.4-μm thickness annealed at 600 deg. C for 1 h. The remnant polarization and coercive field values are estimated to be 5 μC cm-2 and 45 kV cm-1. The films possess good fatigue properties and useful for application in the non-volatile memories

  13. Sol-gel synthesis and property studies of layered perovskite bismuth titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Madeswaran, S.; Giridharan, N.V.; Jayavel, R

    2003-04-29

    Layered perovskite bismuth titanate (BTO) thin films were deposited on platinum coated silicon substrates by spin coating. A homogeneous and stable precursor solution was prepared by sol-gel process using bismuth nitrate and titanium(IV) butoxide as starting materials, glacial acetic acid and ethanolamine were selected as solvent and stabilizing agent, respectively. The crystal structure, surface morphology, composition and electrical properties of the films have been investigated. Crystal structure and morphology of the films are strongly influenced by the heat cycle adopted to form crystalline BTO films. Morphology of the films studied by AFM is found to be smooth, dense, and crack free. The deposited films possess good compositional homogeneity and thickness uniformity. The dielectric constant and the dissipation factor measured at 1 kHz at room temperature are found to be 135 and 0.018, respectively, for the films of 0.4-{mu}m thickness annealed at 600 deg. C for 1 h. The remnant polarization and coercive field values are estimated to be 5 {mu}C cm{sup -2} and 45 kV cm{sup -1}. The films possess good fatigue properties and useful for application in the non-volatile memories.

  14. BaBiO sub 2. 5 , a new bismuth oxide with a layered structure

    Energy Technology Data Exchange (ETDEWEB)

    Lightfoot, P. (Argonne National Lab., IL (United States) Univ. of St. Andrews, Fife (England)); Hriljac, J.A. (Brookhaven National Lab., Upton, NY (United States)); Pei, Shiyou; Mitchell, A.W.; Zheng, Ying; Richards, D.R.; Dabrowski, B.; Jorgensen, J.D.; Hinks, D.G. (Argonne National Lab., IL (United States))

    1991-06-01

    A new Bi(III) oxide, BaBiO{sub 2.5}, has been prepared by slow-cooling of the perovskite-like BaBiO{sub 3} in a reducing atmosphere. The structure was solved ab initio from a combination of synchrotron x-ray and pulsed neutron powder diffraction data. The phase crystallizes in the monoclinic space group P2{sub 1}/c, with a = 7.3412(1) {angstrom}, b = 7.5793(1) {angstrom}, c = 6.0722(1) {angstrom}, and {beta} = 99.187(2){degree}. A novel layer-type structure is adopted consisting of double BiO{sub x} sheets in the bc plane separated by Ba ions along the a direction. Bi is four-coordinated in a pseudotrigonal bipyramidal environment, with the electron lonepair occupying one of the equatorial sites, similar to that found in {beta}-Bi{sub 2}O{sub 3}. There are, thus significant differences from either the Aurivillius phases or the high-T{sub c} bismuth cuprate superconductors, which may also be regarded as layered bismuth oxides.

  15. Development and Testing of an Americium/Lanthanide Separation Flowsheet Using Sodium Bismuthate

    Energy Technology Data Exchange (ETDEWEB)

    Jack Law; Bruce Mincher; Troy Garn; Mitchell Greenhalgh; Nicholas Schmitt; Veronica Rutledge

    2014-04-01

    The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term heat load of material interred in a future high-level waste repository. A separation process amenable to process scale-up remains elusive. Given only subtle chemistry differences within and between the ions of the trivalent actinide and lanthanide series this separation is challenging ; however, higher oxidation states of americium can be prepared using sodium bismuthate and separated via solvent extraction using diamylamylphosphonate (DAAP) extraction. Among the other trivalent metals only Ce is also oxidized and extracted. Due to the long-term instability of Am(VI) , the loaded organic phase is readily selectively stripped to partition the actinide to a new acidic aqueous phase. Batch extraction distribution ratio measurements were used to design a flowsheet to accomplish this separation. Additionally, crossflow filtration was investigated as a method to filter the bismuthate solids from the feed solution prior to extraction. Results of the filtration studies, flowsheet development work and flowsheet performance testing using a centrifugal contactor are detailed.

  16. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  17. Evaluation of the efficiency of bismuth breast shield in CT chest paediatric examinations

    International Nuclear Information System (INIS)

    The aim of this study is to evaluate the efficiency of bismuth breast shield in CT chest paediatric examinations when automatic exposure control techniques are used. The influence in the radiation dose and the image quality has been evaluated with and without the breast shield in the scoutview. In addition the radiation dose in shielded and non-shielded areas has been compared. Measurements were made in a 16 cm diameter cylindrical PMMA phantom simulating a newborn, and older children were simulated controlling the maximum intensities allowed by the automatic exposure control system AutomA. The highest dose reduction (59%) was obtained with AutomA system and when the breast shield is not used in the scoutview. This reduction in the radiation dose does not mean a significant increase of noise level. The use of the breast shield in the scoutview yielded an increase in the radiation dose in non-shielded areas. The use of bismuth breast shield is recommended only after the scoutview in order to optimise the radiation dose in CT chest paediatric examination when using automatic exposure control AutomA. (Author)

  18. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Marina Ratova

    2016-01-01

    Full Text Available Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD. Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS. Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating.

  19. Optical and electrical properties of thin films of bismuth ferric oxide

    International Nuclear Information System (INIS)

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe2O3) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO3 in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO3 composition. These samples showed a secondary phase (Bi25FeO40 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe2O3) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  20. Molecular Design for Tailoring a Single-Source Precursor for Bismuth Ferrite.

    Science.gov (United States)

    Bendt, Georg; Schiwon, Rafael; Salamon, Soma; Landers, Joachim; Hagemann, Ulrich; Limberg, Christian; Wende, Heiko; Schulz, Stephan

    2016-08-01

    Nearly phase-pure bismuth ferrite particles were formed by thermolysis of the single-source precursor [Cp(CO)2FeBi(OAc)2] (1) in octadecene at 245 °C, followed by subsequent calcination at 600 °C for 3 h. In contrast, the slightly modified compound [Cp(CO)2FeBi(O2C(t)Bu)2] (2) yielded only mixtures of different bismuth oxide phases, revealing the distinctive influence of molecular design in material synthesis. The chemical composition, morphology, and crystallinity of the resulting materials were investigated by X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the optical properties were investigated by Fourier transform infrared and UV-vis spectroscopies, showing a strong band gap absorption in the visible range at 590 nm (2.2 eV). The magnetic behavior was probed by vibrating-sample and superconducting quantum interference device magnetometry, as well as (57)Fe Mössbauer spectroscopy. PMID:27391769