WorldWideScience

Sample records for bismuth sulfides

  1. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jasmine B. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Garje, Shivram S., E-mail: ssgarje@chem.mu.ac.in [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Nuwad, Jitendra; Pillai, C.G.S. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-08-15

    Two different phase pure materials (Bi{sub 2}S{sub 3} and Bi{sub 2}P{sub 4}O{sub 13}) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi(S{sub 2}P(OR){sub 2}){sub 3} [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr{sup n}) (3) and iso-Propyl (Pr{sup i}) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi{sub 2}P{sub 4}O{sub 13}) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi{sub 2}P{sub 4}O{sub 13} thin films were also carried out. - Graphical abstract: Solvothermal decomposition of bismuth(III) dialkyldithiophosphates in ethylene glycol gave Bi{sub 2}S{sub 3} nanoparticles, whereas aerosol assisted chemical vapor deposition of these single source precursors deposited Bi{sub 2}P{sub 4}O{sub 13} thin films. Display Omitted - Highlights: • Preparation of phase pure orthorhombic Bi{sub 2}S{sub 3} nanorods and monoclinic Bi{sub 2}P{sub 4}O{sub 13} thin films. • Use of single source precursors for deposition of bismuth phosphate thin films. • Use of solvothermal decomposition and AACVD methods. • Morphology controlled synthesis of Bi{sub 2}P{sub 4}O{sub 13} thin films. • Bi{sub 2}S{sub 3} nanorods and Bi{sub 2}P{sub 4}O{sub 13} thin films using same single source precursors.

  2. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    OpenAIRE

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ; Leonas NARUŠKEVIČIUS; Žielienė, Albina; Birutė ŠIMKŪNAITĖ-STANYNIENĖ; Genovaitė VALIULIENĖ; Aloyzas SUDAVIČIUS

    2011-01-01

    The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ...

  3. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    Science.gov (United States)

    Nair, M. T. S.; Nair, Padmanabhan K.; Garcia, Victor M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  4. LiBi3S5-A lithium bismuth sulfide with strong cation disorder

    Science.gov (United States)

    Nakhal, Suliman; Wiedemann, Dennis; Stanje, Bernhard; Dolotko, Oleksandr; Wilkening, Martin; Lerch, Martin

    2016-06-01

    Among chalcogenide semiconductors for thermoelectric applications, alkali-metal bismuth compounds occur in many complex compositions favorable for high performance. Although LiBi3S5 had been announced in 1977, the potential 1D lithium-ion conductor has hitherto eluded selective synthesis and structure determination. In this study, we present a solid-state route to phase-pure LiBi3S5 powder starting from LiBiS2 and Bi2S3. Neutron diffractograms and lithium NMR spectra reveal its crystal structure to be a cation-disordered variety of the AgBi3S5 type (synthetic pavonite; monoclinic, C2/m). Topological analyses and lithium NMR relaxometry suggest that correlated lithium-ion diffusion with activation energies up to 0.66(2) eV occurs along the channels in b direction including tetrahedral voids. Because of cation disorder, immobile bismuth(III) ions clog these pathways, making LiBi3S5 a moderate to poor ionic conductor. The synthesis route reported is nonetheless promising for new lithium bismuth sulfides with, possibly ordered, structure types of the pavonite homologous series.

  5. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    Directory of Open Access Journals (Sweden)

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ

    2011-03-01

    Full Text Available The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ are observed in the solution containing acetate anion as compared to those in the solution containing sulfate anion. As the reduction of bismuth sulfide film in the background solutions depends on the nature of anion, it influences the cathodic reduction of Ni2+ ions prior to OPD of Ni. A greater current and mass change (Dƒ is conditioned by simultaneously occurring reduction of bismuth sulfide film when the film is reduced in the acetate nickel plating electrolyte in contrast to that in the sulfate one.http://dx.doi.org/10.5755/j01.ms.17.1.244

  6. Weak antilocalization and universal conductance fluctuations in bismuth telluro-sulfide topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Tanuj, E-mail: tanuj@utexas.edu; Sonde, Sushant; Movva, Hema C. P.; Banerjee, Sanjay K., E-mail: banerjee@ece.utexas.edu [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2016-02-07

    We report on van der Waals epitaxial growth, materials characterization, and magnetotransport experiments in crystalline nanosheets of Bismuth Telluro-Sulfide (BTS). Highly layered, good-quality crystalline nanosheets of BTS are obtained on SiO{sub 2} and muscovite mica. Weak-antilocalization (WAL), electron-electron interaction-driven insulating ground state and universal conductance fluctuations are observed in magnetotransport experiments on BTS devices. Temperature, thickness, and magnetic field dependence of the transport data indicate the presence of two-dimensional surface states along with bulk conduction, in agreement with theoretical models. An extended-WAL model is proposed and utilized in conjunction with a two-channel conduction model to analyze the data, revealing a surface component and evidence of multiple conducting channels. A facile growth method and detailed magnetotransport results indicating BTS as an alternative topological insulator material system are presented.

  7. Comparative study on solubilities of bismuth, bismuth oxide,and bismuth sulfide in hydrochloric acid-thiourea%铋、氧化铋、硫化铋在盐酸-硫脲中溶解性的比较研究

    Institute of Scientific and Technical Information of China (English)

    马哈亚·艾斯江; 巴哈尔古丽·别克吐尔逊

    2012-01-01

    在盐酸介质中及55℃加热条件下,铋与硫脲形成黄色络合物,从而建立了用分光光度法比较铋、氧化铋、硫化铋在盐酸-硫脲中溶解性的新方法.研究了反应介质、试剂浓度、加热时间、加热温度、震荡速率等因素的影响.在最佳实验条件下,溶液的质量浓度为0.04~0.24 mg/mL时符合比尔定律.相关系数R=0.999 9,检出限为1.05×10-2 μg/mL,标准偏差SD=0.003 5,相对标准偏差RSD=2.42%,摩尔吸收系数为1.515×105 L/(mol·cm),加标回收率为96.7%~98.8%.实验结果表明,铋、氧化铋、硫化铋的溶解性顺序大小为:铋>氧化铋>硫化铋.%A yellow complex is formed from bismuth and thiourea in hydrochloric acid under the heated condition of 55 °C. Thus a new method is set up to compare the solubilities of bismuth, bismuth oxide, and bismuth sulfide in hydrochloric acid-thiourea by using spectrophotometry.Effects of factors, such as reaction medium, reagent concentration, heating time, heating temperature, and oscillation speed,were studied respectively .Under the optimum experimental conditions, mass concentration of the solution is in line with Beer's law, when it is within the range of 0.04-0.24 mg/mL.The correlation coefficient (R) is 0.999 9.The detection limit is 1.05xl0-2μg/mL.The standard deviation is 0.003 5.The relative standard deviation (RSD) is 2.42%.The molar absorption coefficient is 1.515xl05 L/(mol-cm).The recovery rate of standard addition is at 96.7%~98.8%. Experimental result showed that the solubilities of bismuth,bismuth oxide,and bismuth sulfide in hydrochloric acid-thiourea is in order by size as following: Bi>Bi2O3>Bi2S3.

  8. Preparation of cauliflower-like bismuth sulfide and itsapplication in electrochemical sensor

    Institute of Scientific and Technical Information of China (English)

    Qing Xiang Wang; Feng Gao; Shun Xing Li; Wen Weng; Zheng Shui Hu

    2008-01-01

    A solvothermal process was developed for the preparation of cauliflower-like Bi2S3 from N,N-dimethylformamide (DMF)solution of bismuth nitrate [Bi(NO3)3.5H2O] and thioacetamide (TAA) with 2-undecyl-1-dithioureido-ethyl-imidazoline (SUDEI)as the morphology-controlling agent. The obtained Bi2S3 products were characterized by transmission electron microscopy (TEM),scanning electron microscopy (SEM), and X-ray diffraction (XRD), etc. The sensing properties of Bi2S3 with differentmorphologies were evaluated by the electrochemical analysis of dopamine (DA) and ascorbic acid (AA) coexisting solution.The results showed that cauliflower-like Bi2S3 showed a better resolving ability than rod-like Bi2S3 for the simultaneousdetermination of DA and AA.2008 Qing Xiang Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  9. In vitro and in vivo CT imaging using bismuth sulfide modified with a highly biocompatible Pluronic F127

    Science.gov (United States)

    Chen, Jun; Yang, Xiao-Quan; Meng, Yuan-Zheng; Huang, Huan-Huan; Qin, Meng-Yao; Yan, Dong-Mei; Zhao, Yuan-Di; Ma, Zhi-Ya

    2014-07-01

    Probe bismuth sulfide modified with Pluronic F127 (Bi2S3-PF127), which has high biocompatibility and dispersibility, is synthesized using triblock copolymer Pluronic F127 to modify hydrophobic Bi2S3 nanoparticles that are prepared by a hot injection method. TEM results show that most of the probe has a length of about 14.85 ± 1.70 nm and a breadth of about 4.79 ± 0.63 nm. After injected into the tail vein of a mouse, the probe has obvious CT contrast enhancement capability from x-ray CT imaging results. Meanwhile, the probe’s in vivo toxicity is also studied. It is found that hematoxylin and eosin stains of major organs have no change. A biochemical analysis (alanine aminotransferase and aspartate aminotransferase) prove the probe has no adverse effects. The results of a blood analysis (white blood cell count, red blood cell count, hemoglobin, and platelet count) are also normal. The biological distribution of Bi by ICP-AES shows that most of nanoparticles are cleaned out after injection 48 h, and the circulation half-life of the probe is 5.0 h, suggesting that Bi2S3-PF127 has a long circulation and indicating that the Bi2S3-PF127 probe has good biocompatibility and safety.

  10. Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract

    Science.gov (United States)

    Zheng, Xiaopeng; Shi, Junxin; Bu, Yang; Tian, Gan; Zhang, Xiao; Yin, Wenyan; Gao, Bifen; Yang, Zhiyong; Hu, Zhongbo; Liu, Xiangfeng; Yan, Liang; Gu, Zhanjun; Zhao, Yuliang

    2015-07-01

    Non-invasive and real-time imaging of the gastrointestinal (GI) tract is particularly desirable for research and clinical studies of patients with symptoms arising from gastrointestinal diseases. Here, we designed and fabricated silica-coated bismuth sulfide nanorods (Bi2S3@SiO2 NRs) for a non-invasive spatial-temporally imaging of the GI tract. The Bi2S3 NRs were synthesized by a facile solvothermal method and then coated with a SiO2 layer to improve their biocompatibility and stability in the harsh environments of the GI tract, such as the stomach and the small intestine. Due to their strong X-ray- and near infrared-absorption abilities, we demonstrate that, following oral administration in mice, the Bi2S3@SiO2 NRs can be used as a dual-modal contrast agent for the real-time and non-invasive visualization of NRs distribution and the GI tract via both X-ray computed tomography (CT) and photoacoustic tomography (PAT) techniques. Importantly, integration of PAT with CT provides complementary information on anatomical details with high spatial resolution. In addition, we use Caenorhabditis Elegans (C. Elegans) as a simple model organism to investigate the biological response of Bi2S3@SiO2 NRs by oral administration. The results indicate that these NRs can pass through the GI tract of C. Elegans without inducing notable toxicological effects. The above results suggest that Bi2S3@SiO2 NRs pave an alternative way for the fabrication of multi-modal contrast agents which integrate CT and PAT modalities for a direct and non-invasive visualization of the GI tract with low toxicity.Non-invasive and real-time imaging of the gastrointestinal (GI) tract is particularly desirable for research and clinical studies of patients with symptoms arising from gastrointestinal diseases. Here, we designed and fabricated silica-coated bismuth sulfide nanorods (Bi2S3@SiO2 NRs) for a non-invasive spatial-temporally imaging of the GI tract. The Bi2S3 NRs were synthesized by a facile

  11. PEG-phospholipid-encapsulated bismuth sulfide and CdSe/ZnS quantum dot core–shell nanoparticle and its computed tomography/fluorescence performance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Yang, Xiao-Quan; Qin, Meng-Yao; Zhang, Xiao-Shuai; Xuan, Yang; Zhao, Yuan-Di, E-mail: zydi@mail.hust.edu.cn [Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology (China)

    2015-11-15

    In this paper, polyethylene glycol-phospholipid structure is used to synthesize hybrid cluster of 40–50 nm diameter that contains hydrophobic bismuth sulfide nanoparticles and CdSe/ZnS quantum dots. The composite probe’s toxicity, CT imaging, and fluorescence imaging performance are also studied. Experimental results show that the nanocomposite hybrid cluster has obvious CT contrast enhancement and fluorescence imaging capability in vitro even after cellular uptake. It gives a CT number of 700 (Hounsfield units) at 15 mg/mL, higher than that of the current iobitridol CT contrast agent. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide experiment reveals that it has low cytotoxicity at concentration up to of 3.14 mg/mL of Bi, indicating the composite probe has potential ability for CT and fluorescence bimodal imaging.

  12. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    Science.gov (United States)

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring.

  13. Tribochemistry of Bismuth and Bismuth Salts for Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Nieuwenhuijzen, van den K.J.H.; Lette, W.; Schipper, D.J.; Elshof, ten J.E.

    2016-01-01

    One of the main trends in the past decades is the reduction of wastage and the replacement of toxic compounds in industrial processes. Some soft metallic particles can be used as nontoxic solid lubricants in high-temperature processes. The behavior of bismuth metal particles, bismuth sulfide (Bi2S3)

  14. L-胱氨酸辅助合成硫化铋纳米棒%L-CYSTINE-ASSISTED SYNTHESIS OF BISMUTH SULFIDE NANORODS

    Institute of Scientific and Technical Information of China (English)

    钟家松; 向卫东; 杨昕宇; 刘丽君; 梁晓娟; 刘海涛

    2009-01-01

    以Bi(NO_3)_3·5H_2O和L-胱氨酸为反应原料,分别以N,N-二甲基甲酰胺(N,N-dimethylformarnide,DMF)、蒸馏水-乙二醇(体积比为2:1)和蒸馏水为溶剂,采用溶剂热法在160℃下反应120 h,得到了不同形貌的硫化铋(Bi_2S_3)粉体.利用X射线衍射、能量色散谱、X射线光电能谱、场发射扫描电子显微镜和透射电子显微镜分别对所合成的Bi_2S_3的晶型结构、组成和表面形貌等进行了表征.结果表明:所合成的产物为典型的Bi_2S_3正交结构,在DMF溶剂中得到的Bi_2S_3纳米棒长为4~11μm,直径为120nm.在蒸馏水-乙二醇和蒸馏水溶剂中得到的是片状的Bi_2S_3晶粒.讨论了不同溶剂对Bi_2S_3的形成及其形貌的影响,并根据实验结果对所合成的一维纳米棒可能的形成机理进行了探讨.%Nanostructured bismuth sulfide(Bi_2S_3) powder samples with different morphologies were synthesized by solvothermal method at 160℃ for 120 h using N, N-dimethylformamide (DMF), distilled water and distilled water-ethylene glycol (volume ratio 2:1) as the reaction solvent and Bi(NO_3)_3-5H_2O and L-cystine as the raw materials. The crystallinity, phase structure and morphology of the as-prepared samples were investigated by X-ray diffraction, energy dispersion spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and transmission electron microscopy. The results show the as-prepared Bi_2S_3 sample is typical Bi_2S_3 orthorhombic phase, and the diameters and lengths of nanorods of Bi_2S_3 synthesized in the DMF solvent are approximately 120 nm and 4-11μm, respectively. However, the Bi_2S_3 powder consists of nanoflakes when synthesis is carried out with distilled water and distilled water-ethylene glycol as the reaction solvent. The morphology and formation mechanism of Bi_2S_3 in different solvents are also discussed. A possible growth mechanism of one-dimensional nanorods is provided.

  15. Determination of Ruthenium, Rhodium, Palladium, Iridium and Platinum in Copper-Nickel Sulfide Ores by Bismuth-Antimony Fire Assay%铋锑试金测定硫化铜镍矿中钌铑钯铱铂

    Institute of Scientific and Technical Information of China (English)

    李可及; 刘淑君; 邵坤

    2014-01-01

    建立了用于预富集硫化铜镍矿中钌铑钯铱铂5种铂族元素的铋锑试金方法。40.0 g 氧化铋、25.0 g硼酸、10.0 g 碳酸钠、1.00 g 淀粉与10.0 g 待测样品于120 mL 瓷皿中,充分混匀,850℃入炉,20 min 后升至1000℃,保留40 min,出炉后趁热倾倒熔渣,使铋试金于空气中自然冷却。设计两段灰吹流程,铋试金先在镁砂灰皿内灰吹,直至剩余直径约5 mm,而后直接转入盛有20 g 熔融锑粉的坩埚盖中继续灰吹,获得直径约1 mm 的试金合粒。所得合粒经微波消解,冷却后定容至10 mL。铂钯用 ICP-OES 分析;钌铑铱质量数选择99 Ru,103 Rh 和191 Ir,以115 In 和185 Re 为内标,应用 ICP-MS 分析。对标准物质 GBW07196平行测定12次,铂族元素相对标准偏差为7.0%~9.5%。在10 g 取样量条件下,方法对 Ru, Rh, Pd, Ir 和 Pt 的检出限分别为0.027,0.016,0.11,0.10和0.11 ng/ g。应用本方法处理标准物质 GBW07194,GBW07195和 GBW07196均获得了满意的结果。%A bismuth-antimony fire assay method for the preconcentration of ruthenium, rhodium, palladium, iridium and platinum in copper-nickel sulfide ores was developed. 40. 0 g bismuth trioxide, 25. 0 g boric acid, 10. 0 g sodium carbonate and 1. 00 g starch were mixed with 10. 0 g sample in a 120 mL porcelain bowl, which was put in a furnace at 850 ℃. After 20 min the temperature was raised to 1000 ℃ and held for another 40 min, and then the bowl was taken out, with the slag poured, which left the bismuth button to air cooling. A two-step cupellation procedure was developed. During the first step, the bismuth button was cupellated in a magnesia cupel until its diameter reached 5 mm or so, then it was transferred to a crucible cover containing 20 g melting antimony and kept cupellating, at last a bead with a diameter of 1 mm was obtained. The bead was microwave-digested, after cooling down to room temperature, the solvent of which was transferred to a volumetric flask and

  16. Novel Bismuth Nanotubes

    Institute of Scientific and Technical Information of China (English)

    苏长荣; 李家明

    2002-01-01

    Theoretical investigations show that bismuth nanotubes are semiconductors for all diameters. For smalldiameter bismuth nanotubes, the band structures and bandgaps vary strongly with the strong hybridization effect. When the diameters are larger than 18 A, the bandgaps ofBi (n, n) and (n, 0) nanotubes approach 0.63 e V, corresponding to the bandgap of bismuth sheet at the Γ point. Thus, bismuth nanotubes are expected to be a potential semiconductor nanomaterial in future nanoelectronics.

  17. Nanocalorimetry of bismuth nanoparticles

    Science.gov (United States)

    Olson, Eric Ashley

    The properties of nanosized bismuth particles are investigated using a nanocalorimetric technique. A brief description of the experimental method and data analysis procedures is reported. Bismuth nanoparticles are found to melt at a temperature below that of bulk material, but higher than expected using the standard model. Also included is the results of a finite element analysis and simulated melting of bismuth films on various kinds of sensors. Temperature distributions are found to be nonuniform for calorimetric sensors with Al metallizations, but much more uniform for Pt metallized sensors. The consequences of this nonuniformity on caloric data are discussed.

  18. Bismuth vanadate process

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M.

    1990-06-26

    This patent describes the process for the preparation of bismuth vanadate and bismuth vanadate-containing compounds wherein the precursor materials are calcined in the solid state at temperatures sufficient to react the precursor materials to prepare the vanadate compounds. It comprises: wet grinding the calcined product, contacting the calcined product with sufficient alkaline material to provide a pH level of 7.0-13.0 and recovering the treated product, the wet grinding of the calcined product being conducted either in the presence of the alkaline material or prior to the contacting with the alkaline material.

  19. THORIUM DISPERSION IN BISMUTH

    Science.gov (United States)

    Bryner, J.S.

    1961-07-01

    The growth of thorium bismutaide particles, which are formed when thorium is suspended in liquid bismuth, is inhibited when the liquid metal suspension is being flowed through a reactor and through a heat exchanger in sequence. It involves the addition of as little as 1 part by weight of tellurium to 100 parts of thorium. This addition is sufficient to inhibit particle growth and agglomeration.

  20. Layered bismuth vanadate ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Osipyan, V.G.; Savchenko, L.M.; Elbakyan, V.L.; Avakyan, P.B.

    1987-08-01

    The authors synthesize new layered bismuth vanadate ferroelectrics. The x-ray diffraction characteristics of Bi/sub 2/VO/sub 5.5/ are shown. Thermal expansion of ceramics with various compositions are presented, as are the temperature dependences of the dielectric constant of the ceramic with various compositions. Unit-cell parameters, Curie temperature, electrical conductivity and the dielectric characteristics of the compositions studied are shown.

  1. Bismuth toxicity in patients treated with bismuth iodoform paraffin packs.

    Science.gov (United States)

    Atwal, A; Cousin, G C S

    2016-01-01

    Bismuth is a heavy metal used in bismuth iodoform paraffin paste (BIPP) antiseptic dressings and in a number of other medical preparations. It can be absorbed systemically and cause toxicity. We report 2 cases of such neurotoxicity after it was used in operations on the jaws.

  2. Bismuth(V) oxide and silver bismuthate as oxidizing agents for gas-chromatographic elemental microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Shvykin, A.Y.; Platonov, V.V.; Proskuryakov, V.P.; Chilachava, K.B.; Khmarin, E.M.; Kovtun, I.V. [Tolstoy State Pedag University, Tula (Russian Federation)

    2004-07-01

    Bismuth(V) oxide, silver bismuthate, and a mixture of bismuth(V) oxide with fine silver powder were studied as oxidizing additives in gas-chromatographic elemental microanalysis of readily combustible organic substances and coal.

  3. Bismuth ochers from San Diego Co., California

    Science.gov (United States)

    Schaller, W.T.

    1911-01-01

    The chief points brought out in this paper may be briefly summarized as follows: (1) The existence of natural Bi2O3 has not been established. (2) Natural bismite or bismuth ocher, when pure, is more probably a bismuth hydroxide. (3) The bismuth ochers from San Diego County, California, are either a bismuth hydroxide or bismuth vanadate, pucherite, or mixtures of these two. (4) Pucherite has been found noncrystallin and determined for the first time in the United States.

  4. Energetics of bismuth vanadate

    Energy Technology Data Exchange (ETDEWEB)

    Nagabhushana, G.P.; Tavakoli, A.H.; Navrotsky, A., E-mail: anavrotsky@ucdavis.edu

    2015-05-15

    Bismuth vanadate has gained considerable interest as a photoanode for water splitting reactions under visible light. It exists in four different polymorphs, out of which three of them have been synthesized. Thermodynamic properties of these three polymorphs are investigated using high temperature oxide melt solution calorimetry. The monoclinic scheelite phase which exhibits photocatalytic activity under visible light is found to be the most stable polymorph, followed by tetragonal scheelite which exhibits activity under UV light. The photocatalytically inactive tetragonal zircon form is found to be the least stable polymorph. The small difference in enthalpy of formation between the two scheelite structures (−8 kJ/mol) is in accord with the reversibility of the transformation between them and the larger difference between the most stable monoclinic phase and the least stable tetragonal zircon phase (−23 kJ/mol) is in accord with the irreversible (monoclinic→tetragonal zircon) phase transformation. - Graphical abstract: Schematic representation of polymorphic transitions in BiVO{sub 4} along with their formation enthalpies. - Highlights: • Bismuth vanadate crystallizes in three different polymorphs. • High temperature calorimetric measurements were made to determine their formation enthalpies. • Enthalpy of formation decreases in the order BV-ms→BV-ts→BV-tz. • Photocatalytically active monoclinic-BiVO{sub 4} was found to be the most stable polymorph.

  5. Energetics of bismuth vanadate

    Science.gov (United States)

    Nagabhushana, G. P.; Tavakoli, A. H.; Navrotsky, A.

    2015-05-01

    Bismuth vanadate has gained considerable interest as a photoanode for water splitting reactions under visible light. It exists in four different polymorphs, out of which three of them have been synthesized. Thermodynamic properties of these three polymorphs are investigated using high temperature oxide melt solution calorimetry. The monoclinic scheelite phase which exhibits photocatalytic activity under visible light is found to be the most stable polymorph, followed by tetragonal scheelite which exhibits activity under UV light. The photocatalytically inactive tetragonal zircon form is found to be the least stable polymorph. The small difference in enthalpy of formation between the two scheelite structures (-8 kJ/mol) is in accord with the reversibility of the transformation between them and the larger difference between the most stable monoclinic phase and the least stable tetragonal zircon phase (-23 kJ/mol) is in accord with the irreversible (monoclinic→tetragonal zircon) phase transformation.

  6. Mineral resource of the month: bismuth

    Science.gov (United States)

    Carlin, James F.

    2006-01-01

    Bismuth compounds are most known for their soothing effects on the stomach, wounds and sores. These properties make the compounds an essential part of many medicinal and cosmetic preparations, which until 1930 accounted for about 90 percent of the bismuth used. The subsequent development of low-melting alloys and chemical catalysts containing bismuth, as well as its use as an additive to casting alloys, has resulted in a wider variety of industrial applications for bismuth.

  7. Comparative Study of Semiconductors Bismuth Iodate, Bismuth Triiodide and Bismuth Trisulphide Crystals

    Directory of Open Access Journals (Sweden)

    T.K. Patil

    2012-12-01

    Full Text Available In the present investigation, crystals of Bismuth Iodate[Bi(IO33], Bismuth Iodide[BiI3] and Bismuth- Tri Sulphide [Bi2S3] were grown by a simple gel technique using single diffusion method. The optimum growth conditions were established by varying various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of reactant etc. Gel was prepared by mixing sodium meta silicate (Na2SiO35H2O, glacial acetic acid (CH3COOH and supernant bismuth chloride (BiCl3 at pH value 4.4 and transferred in glass tube of diameter 2.5 cm and 25 cm in length. The mouth of test tube was covered by cotton plug and kept it for the setting. After setting the gel, it was left for aging. After 13 days duration the second supernant K(IO3, KI3 and H2S water gas solution was poured over the set gel by using pipette then it was kept undisturbed. After 72 hours of pouring the second supernatant, the small nucleation growth was observed at below the interface of gel. The good quality crystals of [Bi(IO33], [BiI3] and [Bi2S3] were grown. These grown crystals were characterized by XRD, FTIR, Chemical Analysis and Electrical Conductivity.

  8. Hydrothermal synthesis of bismuth germanium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.

    2016-12-13

    A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.

  9. Bismuth absorption from sup 205 Bi-labelled pharmaceutical bismuth compounds used in the treatment of peptic ulcer disease

    Energy Technology Data Exchange (ETDEWEB)

    Dresow, B.; Fischer, R.; Gabbe, E.E.; Wendel, J.; Heinrich, H.C. (Eppendorf University Hospital, Hamburg (Germany))

    1992-04-01

    The absorption of bismuth from five {sup 205}Bi-labelled pharmaceutically used bismuth compounds was studied in man. From single oral doses of all compounds under investigation only <0.1% bismuth was absorbed and excreted with the urine. A significantly higher absorption was observed from the colloidal bismuth subcitrate and the basic bismuth gallate than from the basic bismuth salicylate, nitrate and aluminate. No retention of bismuth in the whole body was found from the single dose experiment. The biologic fast-term half-lives of absorbed bismuth were calculated to be 0.12 and 1.5 days. 14 refs., 2 figs., 1 tab.

  10. Structure of unsupported bismuth nanoparticles

    Science.gov (United States)

    Wurl, A.; Hyslop, M.; Brown, S. A.; Hall, B. D.; Monot, R.

    We present new results of electron diffraction experiments on unsupported nanometer-sized bismuth clusters. The high intensity cluster beam, necessary for electron diffraction, is provided by an inert-gas aggregation source. The cluster beam contains particles with average cluster sizes between 4.5 and 10 nm. When using Helium as a carrier gas we are able to observe a transition from crystalline clusters to a new structure, which we identify with that of amorphous or liquid clusters.

  11. Ranitidine bismuth citrate: A review

    Directory of Open Access Journals (Sweden)

    N Chiba

    2001-01-01

    Full Text Available Recognition of the relationship between Helicobacter pylori infection and the development of gastroduodenal disease has increased greatly in recent years. To avoid complications of H pylori infection, such as the development of recurrent duodenal and gastric ulcers, effective therapies are required for eradication of the infection. This article reviews ranitidine bismuth citrate (RBC, a novel complex of ranitidine, bismuth and citrate, which was developed specifically for the purpose of eradicating H pylori. Dual therapy with RBC in combination with clarithromycin for 14 days yields eradication rates of 76%. Triple therapy bid for one week with a proton pump inhibitor, clarithromycin and either amoxicillin or a nitroimidazole (tinidazole or metronidazole is advocated as the treatment of choice for H pylori eradication. Analogous regimens with RBC in place of proton pump inhibitors show effective eradication rates in comparative studies and with pooled data. RBC, used alone or in combination with other antibiotics, appears to be a safe and effective drug for the treatment of H pylori infection. Bismuth levels do not appear to rise to toxic levels.

  12. In vitro cytotoxicity of surface modified bismuth nanoparticles.

    Science.gov (United States)

    Luo, Yang; Wang, Chaoming; Qiao, Yong; Hossain, Mainul; Ma, Liyuan; Su, Ming

    2012-10-01

    This paper describes in vitro cytotoxicity of bismuth nanoparticles revealed by three complementary assays (MTT, G6PD, and calcein AM/EthD-1). The results show that bismuth nanoparticles are more toxic than most previously reported bismuth compounds. Concentration dependent cytotoxicities have been observed for bismuth nanoparticles and surface modified bismuth nanoparticles. The bismuth nanoparticles are non-toxic at concentration of 0.5 nM. Nanoparticles at high concentration (50 nM) kill 45, 52, 41, 34 % HeLa cells for bare nanoparticles, amine terminated bismuth nanoparticles, silica coated bismuth nanoparticles, and polyethylene glycol (PEG) modified bismuth nanoparticles, respectively; which indicates cytotoxicity in terms of cell viability is in the descending order of amine terminated bismuth nanoparticles, bare bismuth nanoparticles, silica coated bismuth nanoparticles, and PEG modified bismuth nanoparticles. HeLa cells are more susceptible to toxicity from bismuth nanoparticles than MG-63 cells. The simultaneous use of three toxicity assays provides information on how nanoparticles interact with cells. Silica coated bismuth nanoparticles can damage cellular membrane yet keep mitochondria less influenced; while amine terminated bismuth nanoparticles can affect the metabolic functions of cells. The findings have important implications for caution of nanoparticle exposure and evaluating toxicity of bismuth nanoparticles.

  13. Microwave-assisted synthesis of bismuth oxide

    Directory of Open Access Journals (Sweden)

    Eva Bartonickova

    2007-12-01

    Full Text Available Single phase and ultrafine bismuth oxide was synthesized via microwave-assisted hydrothermal synthesis. The effect of reaction parameters (temperature/pressure and pH on the product phase composition and morphology was discussed. The transformation of bismuth hydroxide into bismuth oxide was controlled by pH value and it was accelerated by time and temperature. The phase composition of reaction products was strongly dependent on pH value. The amorphous products were obtained at acidic pH conditions and the crystalline single phase product α-Bi2O3 phase was obtained at pH ≥12. The particle size was reduced from micrometric to nanometric size in the presence of a chelating agent. The bismuth hydroxides into bismuth oxides transformation mechanism, consisting in polycondensation ofBi–OH bounds to Bi–O–Bi bridges and crystallization of Bi2O3, was proposed.

  14. Bismuth ions are metabolized into autometallographic traceable bismuth-sulphur quantum dots

    Directory of Open Access Journals (Sweden)

    M Stoltenberg

    2009-06-01

    Full Text Available Bismuth – sulphur quantum dots can be silver enhanced by autometallography (AMG. In the present study, autometallographic silver enhanced bismuth-sulphur nanocrystals were isolated from unfixed cryo-sections of kidneys and livers of rats exposed to bismuth (Bi207 subnitrate. After being subjected to AMG all the organic material was removed by sonication and enzymatic digestion and the silver enhanced Bi- S quantum dots spun down by an ultracentrifuge and analyzed by scintillation. The analysis showed that the autometallographic technique traces approximately 94% of the total bismuth. This implies that the injected bismuth is ultimately captured in bismuthsulphur quantum dots, i.e., that Bi-S nanocrystals are the end product of bismuth metabolism

  15. Preparation of Strontium Bismuth Tantalum (SBT) Fine Powder by Sol-Gel Process Using Bismuth Subnitrate as Bismuth Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Strontium bismuth tantalum (SBT) fine power was prepared by Sol-Gel method. Pentaethoxy tantalum, strontium acetate and bismuth subnitrate were used as raw materials, and were dissolved in proper order in ethylene glycol to form transparent sol. The mixed precursor was dried at 80°C and annealed at 800°C for 1 h. Crystallized nanometer sized SBT fine powder was obtained and characterized by XRD.

  16. Electrochemical properties of porous bismuth electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Romann, T., E-mail: tavo.romann@ut.e [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Lust, E. [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-08-01

    The properties of Bi surfaces with different roughnesses were characterized by electron microscopy, cyclic voltammetry, and impedance spectroscopy. Two different strategies were used for preparation of porous bismuth layers onto Bi microelectrode surface in aqueous 0.1 M LiClO{sub 4} solution. Firstly, treatment at potential E < -2 V (vs. Ag|AgCl in sat. KCl) has been applied, resulting in bismuth hydride formation and decomposition into Bi nanoparticles which deposit at the electrode surface. Secondly, porous Bi layer was prepared by anodic dissolution (E = 1 V) of bismuth electrode followed by fast electroreduction of formed Bi{sup 3+} ions at cathodic potentials E = -2 V. The nanostructured porous bismuth electrode, with surface roughness factor up to 220, has negligible frequency dispersion of capacitance and higher hydrogen evolution overvoltage than observed for smooth Bi electrodes.

  17. Thermoelectric properties of pressed bismuth nanoparticles

    Science.gov (United States)

    Hostler, Stephen R.; Qu, Yu Qiao; Demko, Michael T.; Abramson, Alexis R.; Qiu, Xiaofeng; Burda, Clemens

    2008-03-01

    Theory predicts a substantial increase in the dimensionless figure of merit as the dimensionality and characteristic size of a material are decreased. We explore the use of bismuth nanoparticles pressed into pellets as potential increased efficiency thermoelectric materials. The figure of merit of these pellets is determined by independently measuring the electrical conductivity, thermal conductivity and Seebeck coefficient. The results from the nanoparticle sample are compared to microparticle-based samples. Both sample types show a slight reduction in thermal conductivity relative to bulk bismuth and a Seebeck coefficient near or slightly larger in magnitude than bulk bismuth. These changes are dwarfed by a hundred-fold decrease in the electrical conductivity due to porosity and an oxide layer on the particles. The low conductivity leads to figures of merit at least two orders of magnitude smaller than bulk bismuth. Oxide layer removal and reduced pellet porosity will be required to increase the figure of merit.

  18. Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode.

    Science.gov (United States)

    Lee, Gyoung-Ja; Kim, Chang Kyu; Lee, Min Ku; Rhee, Chang Kyu

    2010-12-15

    Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode has been investigated using square-wave anodic stripping voltammetry technique, scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectroscopy. From the analyses of square-wave anodic stripping voltammograms (SWASV) repetitively measured on the nano-bismuth fixed electrode, it was found that the oxidation peak currents dropped by 81%, 68% and 59% for zinc, cadmium and lead, respectively, after the 100th measurement (about 400 min of operation time). The sphere bismuth nanoparticles gradually changed to the agglomerates with petal shape as the operation time increased. From the analyses of SEM images and XRD patterns, it is confirmed that the oxidation of Bi into BiOCl/Bi(2)O(2)CO(3) and the agglomeration of bismuth nanoparticles caused by the phase change decrease a reproducibility of the stripping voltammetric response. Moreover, most of the bismuth becomes BiOCl at pH 3.0 and bismuth hydroxide, Bi(OH)(3) at pH 7.0, which results in a significant decrease in sensitivity of the nano-bismuth fixed electrode.

  19. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    Science.gov (United States)

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  20. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    Science.gov (United States)

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content.

  1. Bismuth-ceramic nanocomposites through ball milling and liquid crystal synthetic methods

    Science.gov (United States)

    Dellinger, Timothy Michael

    Three methods were developed for the synthesis of bismuth-ceramic nanocomposites, which are of interest due to possible use as thermoelectric materials. In the first synthetic method, high energy ball milling of bismuth metal with either MgO or SiO2 was found to produce nanostructured bismuth dispersed on a ceramic material. The morphology of the resulting bismuth depended on its wetting behavior with respect to the ceramic: the metal wet the MgO, but did not wet on the SiO2. Differential Scanning Calorimetry measurements on these composites revealed unusual thermal stability, with nanostructure retained after multiple cycles of heating and cooling through the metal's melting point. The second synthesis methodology was based on the use of lyotropic liquid crystals. These mixtures of water and amphiphilic molecules self-assemble to form periodic structures with nanometer-scale hydrophilic and hydrophobic domains. A novel shear mixing methodology was developed for bringing together reactants which were added to the liquid crystals as dissolved salts. The liquid crystals served to mediate synthesis by acting as nanoreactors to confine chemical reactions within the nanoscale domains of the mesophase, and resulted in the production of nanoparticles. By synthesizing lead sulfide (PbS) and bismuth (Bi) particles as proof-of-concept, it was shown that nanoparticle size could be controlled by controlling the dimensionality of the nanoreactors through control of the liquid crystalline phase. Particle size was shown to decrease upon going from three-dimensionally percolating nanoreactors, to two dimensional sheet-like nanoreactors, to one dimensional rod-like nanoreactors. Additionally, particle size could be controlled by varying the precursor salt concentration. Since the nanoparticles did not agglomerate in the liquid crystal immediately after synthesis, bismuth-ceramic nanocomposites could be prepared by synthesizing Bi nanoparticles and mixing in SiO2 particles which

  2. Interstellar hydrogen sulfide.

    Science.gov (United States)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  3. Liquid Bismuth Propellant Flow Sensor

    Science.gov (United States)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  4. Photobleaching effect in bismuth-doped germanosilicate fibers.

    Science.gov (United States)

    Firstov, Sergei; Alyshev, Sergey; Khopin, Vladimir; Melkumov, Mikhail; Guryanov, Alexey; Dianov, Evgeny

    2015-07-27

    Photoinduced reduction of absorption (photobleaching) in bismuth-doped germanosilicate fibers irradiated with 532-nm laser has been observed for the first time. It was demonstrated that bismuth-related active centers having the absorption bands at wavelengths of 1400 and 1700 nm degrade under photoexcitation at 532 nm. The photobleaching process rate was estimated using conventional stretched exponential technique. It was found that the photobleaching rate in bismuth-doped germanosilicate fibers does not depend on type of bismuth-related active center. The possible underlying mechanism of photobleaching process in bismuth-doped fibers is discussed.

  5. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)

    2013-07-01

    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  6. Burnout current density of bismuth nanowires

    Science.gov (United States)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  7. Bismuth titanate nanorods and their visible light photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-02-15

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi{sub 2}Ti{sub 2}O{sub 7} phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi{sub 2}Ti{sub 2}O{sub 7} phase are a promising candidate as a visible light photocatalyst.

  8. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha, E-mail: s.kulkarni@iiserpune.ac.in [Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India); Sarkar, Indranil [DESY Photon Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg (Germany); Shirolkar, Mandar M. [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jeng, U-Ser; Yeh, Yi-Qi [National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Science Park, Hsinchu 3007-6, Taiwan (China)

    2014-09-08

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  9. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen;

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide o...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  10. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen;

    2012-01-01

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide o...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  11. Bismuth phosphates as intermediate temperature proton conductors

    DEFF Research Database (Denmark)

    Huang, Yunjie; Christensen, Erik; Shuai, Qin

    2016-01-01

    Proton conducting electrolyte materials operational in the intermediate temperature range of 200-400 °C are of special interest for applications in fuel cells and water electrolysers. Bismuth phosphates in forms of polycrystalline powders and amorphous glasses are synthesized and investigated...

  12. Development and Investigation of Bismuth Nanowires

    Science.gov (United States)

    2008-06-05

    To: technicalreports@afosr.af.mil Subject: Final Statement to Dr. Donald Silversmith Contract/Grant Title: Development and Investigation of...Report Development and Investigation of Bismuth Nanowires – Start up phase FA9550-07-1-0472 To Dr. Donald Silversmith AFOSR PI: Jimmy Xu

  13. Effect of Lipophilic Bismuth Nanoparticles on Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rene Hernandez-Delgadillo

    2015-01-01

    Full Text Available Lipophilic bismuth dimercaptopropanol nanoparticles (BisBAL NPs have a very important antimicrobial activity; however their effect on human cells or tissues has not been completely studied. Undesirable effects of bismuth include anemia which could result from suicidal erythrocyte death or eryptosis. The objective of this research was to determine the effect of bismuth dimercaptopropanol nanoparticles on blood cells. The nanoparticles are composed of 53 nm crystallites on average and have a spherical structure, agglomerating into clusters of small nanoparticles. Based on cell viability assays and optical microscopy, cytotoxicity on erythrocytes was observed after growing with 500 and 1000 µM of BisBAL NPs for 24 h. AM Calcein was retained inside erythrocytes when they were exposed to 100 µM (or lower concentrations of BisBAL NPs for 24 h, suggesting the absence of damage in plasmatic membrane. Genotoxic assays revealed no damage to genomic DNA of blood cells after 24 h of exposition to BisBAL NPs. Finally, 100–1000 µM of bismuth nanoparticles promotes apoptosis between blood cells after 24 h of incubation. Hence BisBAL NPs at concentrations lower than 100 µM do not cause damage on blood cells; they could potentially be used by humans without affecting erythrocytes and leukocytes.

  14. Bismuth( Ⅲ ) Salts: Green Catalysts for Organic Transformations

    Institute of Scientific and Technical Information of China (English)

    C. Le Roux

    2005-01-01

    @@ 1Introduction Bismuth, the heaviest stable element in the periodic table, stands out from other heavy elements (such as mercury, thallium and lead) due to its relatively non-toxic character which confers on bismuth the enviable status of being an eco-friendly element. Therefore, bismuth and its compounds hold considerable promise as useful catalysts for green chemistry. The research presented in this communication is devoted to the applications of bismuth( Ⅲ ) salts as catalysts for organic transformations.After some general comments about bismuth and a short presentation of the various applications of bismuth( Ⅲ ) salts in organic synthesis, this communication will focus on the works done in our research group during the last several years which deals mainly with electrophilic substitutions. When appropriate, some mechanistic details will be given.

  15. Sulfide detoxification in plant mitochondria.

    Science.gov (United States)

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.

  16. Electrical resistivity of thin bismuth films

    Science.gov (United States)

    Kumar, A.; Katyal, O. P.

    1990-05-01

    The effect of the film thickness of a bismuth film deposited on glass substrate on its electrical resistivity was investigated for films from 41 to 225 nm thickness, in the temperature range 77-350 K. Results show that the electrical resistivity decreases with increasing temperature and that, for films 98.3 and 225.9 nm thick there exists a minimum (between 260 and 350 K) in resistivity at some temperature, Tc. This minimum shifts toward higher temperature for thinner samples, and lies above 350 K. The thickness dependence of the bismuth film resistivity, obtained at 77, 150, and 300 K, can be explained by a modified Fuchs model, which takes into account the thickness dependence of carrier density.

  17. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Robert N.; Stark, Wendelin J. [Institute for Chemical and Bioengineering, ETH Zuerich (Switzerland)], E-mail: wendelin.stark@chem.ethz.ch

    2006-10-15

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.

  18. Factors affecting bismuth vanadate photoelectrochemical performance

    OpenAIRE

    Sinclair, Timothy S.; Hunter, Bryan M.; Winkler, Jay R.; Gray, Harry B.; Müller, Astrid M.

    2015-01-01

    Bismuth vanadate is a promising photoanode material, but recent reports on undoped BiVO_4 without sublayers and co-catalysts showed large variations in photocurrent generation. We addressed this issue by correlating photoelectrochemical performance with physical properties. We devised a novel anodic electrodeposition procedure with iodide added to the aqueous plating bath, which allowed us to prepare BiVO_4 photoanodes with virtually identical thicknesses but different morphologies, and we co...

  19. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  20. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth doped germanate laser glass

    DEFF Research Database (Denmark)

    Wang, L.P.; Tan, L.L.; Yue, Yuanzheng

    2016-01-01

    on how to improve the luminescence efficiency. Here, we demonstrate that addition of aluminum can enhance the bismuth near-infrared luminescence by more than 10 000 times, which is right followed by the discussion on the mechanism on why this can happen. We believe this work can be helpful for designing...... bismuth-doped multiple component laser glasses with high efficiency. In addition, because of high susceptibility of bismuth to local field change, it can be used as probe ion to envision glass structures. Using bismuth as a luminescent structural probe, we can see the modifier ions of Bi...

  1. Heat-Pipe Bismuth Laser; Examination of Laser Action at 4722A in Bismuth Vapor

    Science.gov (United States)

    1976-11-01

    transitions in other atomic vapors. 13. MODELING OF THE INITIAL BREAKDOWN PROCESS During the initial nanosecond after the fast thyratron switch closes suddenly...lasers computer modeling , laser kin etics bismuth vapor pressure and composition excitation cross sections bismuth dim ers e8ifn.eividienibbek 2Q...P3 / 2 " p $3/4 transi- 3/4 3/2 tion probability is at least a factor of 20 too low. Continuation of the computer modeling begun in this study could

  2. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    Science.gov (United States)

    Sahin, Cuneyt

    The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained strontium titanate (STO) and a two-dimensional electron gas in STO (such as at the LAO/STO interface). Our results suggest robust spin coherence and spin transport properties in STO related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony (BISb) semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((h/e)O--1cm--1) for bismuth to 96((h/e)O--1cm --1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 e

  3. Structural relaxation in bismuth and lead borate glasses

    Science.gov (United States)

    Bajaj, Anu; Khanna, Atul

    2012-06-01

    Bismuth and lead borate glasses were prepared by melt quench technique. Effects of heat treatment on the density and thermal properties of bismuth and lead borate glasses was studied by annealing the glasses at 350°C for 500 h. Density of all bismuth borate glasses increases by about 0.5-0.7% with annealing and the effect is more in glasses with higher Bi2O3 concentration. In bismuth borate glasses with 50 and 55 mol % Bi2O3 we found an extraordinary large increase of Tg by 15°C after thermal annealing. All bismuth borate glasses remained completely clear and transparent on annealing. Lead borate glasses become cloudy on thermal annealing indicating occurrence of phase separation in these glasses.

  4. Bismuth-Based Quadruple Therapy with Bismuth Subcitrate, Metronidazole, Tetracycline and Omeprazole in the Eradication of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Raymond Lahaie

    2001-01-01

    Full Text Available BACKGROUND: A previous study showed that 14 days of qid bismuth-based triple therapy with tetracycline 500 mg, metronidazole 250 mg and colloidal bismuth subcitrate 120 mg resulted in excellent Helicobacter pylori eradication rates (89.5%. The present study looked at a shorter treatment period by adding omeprazole and by reducing the dose of tetracycline.

  5. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  6. Optical properties of bismuth tellurite based glass.

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi(2)O(3))(x) (TeO(2))(100-) (x) was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi(3+) increase, this is due to the increased polarization of the ions Bi(3+) and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, E(opt) decreases while the refractive index increases when the ion Bi(3+) content increases.

  7. Determining the background levels of bismuth in tissues of wild game birds: a first step in addressing the environmental consequences of using bismuth shotshells.

    Science.gov (United States)

    Jayasinghe, R; Tsuji, L J S; Gough, W A; Karagatzides, J D; Perera, D; Nieboer, E

    2004-11-01

    Bismuth shotshells have been approved as a "nontoxic" alternative to lead in North America. Approval was based on a limited number of studies; even background levels of bismuth in wildfowl were unknown. We report on the concentration of bismuth (and lead) in muscle and liver tissues of wildfowl (Anas platyrhynchos, Anas acuta, Anas crecca, Branta canadensis, Chen caerulescens) harvested with lead shotshell. Average liver-bismuth levels detected in the present study (e.g., teal, 0.05 microg/g dw; mallard, 0.09 microg/g dw) suggest analytical error in other studies examining the effects of bismuth in birds. Significant positive relationships between bismuth- and lead-tissue levels for muscle when all species were combined (and for B. canadensis and C. caerulescens separately) can be explained by noting that bismuth is a contaminant of lead. Thus, more research is recommended to confirm the appropriateness of bismuth as a "nontoxic" shot alternative.

  8. Sulfide intrusion and detoxification in Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2014-01-01

    indicating a possible role of sulfide in the sulfur nutrition beside the detoxification function. Our results suggest different adaptations of Z. marina to reduced sediments and sulfide intrusion ranging from bacterial and chemical reoxidation of sulfide to sulfate to incorporation of sulfide into organic...

  9. A novel method for improving cerussite sulfidization

    Institute of Scientific and Technical Information of China (English)

    Qi-cheng Feng; Shu-ming Wen; Wen-juan Zhao; Qin-bo Cao; Chao L

    2016-01-01

    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sul-fide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  10. Prevention of sulfide oxidation in sulfide-rich waste rock

    Science.gov (United States)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  11. Inhibition of urease by bismuth(III): implications for the mechanism of action of bismuth drugs.

    Science.gov (United States)

    Zhang, Li; Mulrooney, Scott B; Leung, Andy F K; Zeng, Yibo; Ko, Ben B C; Hausinger, Robert P; Sun, Hongzhe

    2006-10-01

    Bismuth compounds are widely used for the treatment of peptic ulcers and Helicobacter pylori infections. It has been suggested that enzyme inhibition plays an important role in the antibacterial activity of bismuth towards this bacterium. Urease, an enzyme that converts urea into ammonia and carbonic acid, is crucial for colonization of the acidic environment of the stomach by H. pylori. Here, we show that three bismuth complexes exhibit distinct mechanisms of urease inhibition, with some differences dependent on the source of the enzyme. Bi(EDTA) and Bi(Cys)(3) are competitive inhibitors of jack bean urease with K(i) values of 1.74 +/- 0.14 and 1.84 +/- 0.15 mM, while the anti-ulcer drug, ranitidine bismuth citrate (RBC) is a non-competitive inhibitor with a K (i) value of 1.17 +/- 0.09 mM. A (13)C NMR study showed that Bi(Cys)(3) reacts with jack bean urease during a 30 min incubation, releasing free cysteines from the metal complex. Upon incubation with Bi(EDTA) and RBC, the number of accessible cysteine residues in the homohexameric plant enzyme decreased by 5.80 +/- 0.17 and 11.94 +/- 0.13, respectively, after 3 h of reaction with dithiobis(2-nitrobenzoic acid). Kinetic analysis showed that Bi(EDTA) is both a competitive inhibitor and a time-dependent inactivator of the recombinant Klebsiella aerogenes urease. The active C319A mutant of the bacterial enzyme displays a significantly reduced sensitivity toward inactivation by Bi(EDTA) compared with the wild-type enzyme, consistent with binding of Bi(3+) to the active site cysteine (Cys(319)) as the mechanism of enzyme inactivation.

  12. Hydrogen sulfide in signaling pathways.

    Science.gov (United States)

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  13. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  14. Hierarchical bismuth phosphate microspheres with high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Lizhai; Wei, Tian; Lin, Nan; Yu, Haiyun [Anhui University of Technology, Ma' anshan (China). Key Laboratory of Materials Science and Processing of Anhui Province

    2016-05-15

    Hierarchical bismuth phosphate microspheres have been prepared by a simple hydrothermal process with polyvinyl pyrrolidone. Scanning electron microscopy observations show that the hierarchical bismuth phosphate microspheres consist of nanosheets with a thickness of about 30 nm. The diameter of the microspheres is about 1 - 3 μm. X-ray diffraction analysis shows that the microspheres are comprised of triclinic Bi{sub 23}P{sub 4}O{sub 44.5} phase. The formation of the hierarchical microspheres depends on polyvinyl pyrrolidone concentration, hydrothermal temperature and reaction time. Gentian violet acts as the pollutant model for investigating the photocatalytic activity of the hierarchical bismuth phosphate microspheres under ultraviolet-visible light irradiation. Irradiation time, dosage of the hierarchical microspheres and initial gentian violet concentration on the photocatalytic efficiency are also discussed. The hierarchical bismuth phosphate microspheres show good photocatalytic performance for gentian violet removal in aqueous solution.

  15. Diffused phase transition in fine-grained bismuth vanadate ceramics

    OpenAIRE

    Shantha, K; Varma, KBR

    1999-01-01

    Nanocrystalline powders of ferroelectric bismuth vanadate, Bi4V2O11 (n-BiV), with crystallite size less than 50 nm, were obtained by mechanical milling of a stoichiometric mixture of bismuth oxide and vanadium pentoxide. The n-BiV powders on sintering yielded high-density, fine-grained ceramics with improved dielectric and polar characteristics. Dielectric studies on samples obtained from milled powders indicated that the ferroelectric-to-paraelectric phase transition temperature is strongly ...

  16. Melting and solidification of bismuth inclusions in aluminium

    DEFF Research Database (Denmark)

    Thoft, N.B.; Bohr, J.; Buras, B.

    1995-01-01

    Supercooling of crystalline bismuth inclusions in aluminium crystals has been observed and studied with different techniques: x-ray diffraction, in situ Rutherford backscattering/channelling spectrometry and transmission electron microscopy. The results of the measurements with different experime......Supercooling of crystalline bismuth inclusions in aluminium crystals has been observed and studied with different techniques: x-ray diffraction, in situ Rutherford backscattering/channelling spectrometry and transmission electron microscopy. The results of the measurements with different...

  17. Reduction smelting on bismuth oxide residue in FeO-SiO2-CaO ternary slag system

    Institute of Scientific and Technical Information of China (English)

    张杜超; 张新望; 杨天足; 剑锋; 刘伟锋; 陈霖; 饶帅; 肖庆凯; 郝占东

    2016-01-01

    Reduction smelting of the bismuth oxide residue from pressure leaching of bismuth sulfide was investigated in the FeO−SiO2−CaO ternary slag system. The results show that all the recovery ratios of Bi, Ag, Cu and Pb increase with the increase of reductive coal proportion, reaction temperature and time, while too much reductive coal would help Fe enter metal phase;CaO/SiO2 and FeO/SiO2 of the chosen slag system should be 0.5−0.75 and 1.25−1.75, respectively, for the reason that the slag system has the optimum mobility and is beneficial for the recovery of metals. The corresponding optimum conditions are determined as follows:the added coal proportion is 7%of the leaching residue, CaO/SiO2 mass ratio in the chosen slag system is 0.5 and FeO/SiO2 is 1.5, the reaction temperature is 1300 °C and the reaction time is 40 min. Under the above conditions, the recovery ratios of Bi, Ag, Cu and Pb are 99.6%, 99.8%, 97.0%and 97.3%, respectively.

  18. Studies on bismuth carboxylates—synthesis and characterization of a new structural form of bismuth(III) dipicolinate

    Indian Academy of Sciences (India)

    O Anjaneyulu; K C Kumara Swamy

    2011-03-01

    Synthesis and X-ray structure of a new bismuth dipicolinate cooordination polymer, {[Bi((2,6-O2C)2C5H3N)((2-HO2C-6-O2C)C5H3N)(H2O)]2.5H2O} (7) are presented. Compound 7 has dimeric units with a Bi2O2 skeleton that are linked by additional weak Bi-O interactions leading to a polymeric structure. The overall coordination number at bismuth is 9 [two Bi-N and seven Bi-O bonds]. New routes to a second crystalline modification (4′) of the previously reported coordination polymer, bismuth tris(picolinate), [Bi(2-O2C-C5H4N)3] (4), are described; bond parameters in the two crystalline forms (4 and 4′) are compared. In both the compounds 4′ and 7, bismuth has a distorted tricapped trigonal prismatic geometry.

  19. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shiv Prakash; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Central Glass and Ceramic Research Institute (CSIR, India), Glass Science and Technology Section, Glass Division (India)

    2011-09-15

    In this study, in situ control growth of bismuth nanoparticles (Bi{sup 0} NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2-8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4-9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 Degree-Sign C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  20. China Plays an Important Role in the World Bismuth Market Place

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Available statistics shows that China not only has the world largest bismuth deposit but also is the world largest producer, exporter and consumer country. Particularly in the recent three years, China’s production and supply as well as the related policy changes has become a major factor in the bismuth market price fluctuations. China’s bismuth ore production in the recent two years has been kept stable and China’s output of bismuth ore concentrates accounts for

  1. Synthesis of furan from allenic sulfide derivatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH, β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group. β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  2. Synthesis of furan from allenic sulfide derivatives

    Institute of Scientific and Technical Information of China (English)

    PENG LingLing; ZHANG Xiu; MA Jie; ZHONG ZhenZhen; ZHANG Zhe; ZHANG Yan; WANG JianBo

    2009-01-01

    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH.,β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group.β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  3. Prognostic Value of Bismuth Typing and Modified T-stage in Hilar Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Shengen Yi

    2015-01-01

    Conclusion: The majority of our patients with HCC were characterized as Subtype IV in Bismuth typing and Stage T3 in modified T-stage. Both Bismuth typing and modified T-stage showed prognostic value in HCC. Compared with Bismuth typing, modified T-stage is a better indicator of the resectability of HCC.

  4. Nanostructured metal sulfides for energy storage.

    Science.gov (United States)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-07

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  5. 30 CFR 250.604 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  6. 30 CFR 250.504 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  7. 30 CFR 250.808 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  8. Bismuth X-ray absorber studies for TES microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Sadleir, J.E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States) and University of Illinois Physics Department, Urbana, IL 61801 (United States)]. E-mail: sadleir@milkyway.gsfc.nasa.gov; Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brekosky, R.P. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Chervenak, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkbeiner, F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R.L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); King, J.M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Robinson, I.K. [University of Illinois Physics Department, Urbana, IL 61801 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Talley, D.J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2006-04-15

    Bismuth's large atomic number and low carrier density makes it an attractive X-ray absorber material for microcalorimeters. Bismuth's long Fermi wavelength and long mean free paths have motivated much interest in the fabrication of high quality bismuth films to study quantum size effects. Despite such incentives, fabrication of high quality bismuth films has proven difficult, and measured properties of such films are highly variable in the literature. Implementing a bismuth deposition process for TES (superconducting Transition Edge Sensor) device fabrication presents additional challenges particularly at interfaces due to the inherent granularity and surface roughness of its films, its low melting point, and its tendency to diffuse and form undesired intermetallic phases. We report observations of Bi-Cu and Bi-Au diffusion in our devices correlating with large shifts in T{sub c} (superconducting transition temperature). Using SEM and in situ R vs T annealing experiments we have been able to study these diffusion processes and identify their activation temperatures.

  9. Photoreductive generation of amorphous bismuth nanoparticles using polysaccharides--bismuth-cellulose nanocomposites.

    Science.gov (United States)

    Breitwieser, Doris; Kriechbaum, Margit; Ehmann, Heike M A; Monkowius, Uwe; Coseri, Sergiu; Sacarescu, Liviu; Spirk, Stefan

    2015-02-13

    A simple and highly reproducible synthesis of amorphous bismuth nanoparticles incorporated into a polysaccharide matrix using a photoreduction process is presented. As precursor for the generation of the Bi nanoparticles, organosoluble triphenylbismuth is used. The precursor is dissolved in toluene and mixed with a hydrophobic organosoluble polysaccharide, namely trimethylsilyl cellulose (TMSC) with high DSSi. The solution is subjected to UV exposure, which induces the homolytic cleavage of the bismuth-carbon bond in BiPh3 resulting in the formation of Bi(0) and phenyl radicals. The aggregation of the Bi atoms can be controlled in the TMSC matrix and yields nanoparticles of around 20 nm size as proven by TEM. The phenyl radicals undergo recombination to form small organic molecules like benzene and biphenyl, which can be removed from the nanocomposite after lyophilization and exposure to high vacuum. Finally, the TMSC matrix is converted to cellulose after exposure to HCl vapors, which remove the trimethylsilyl groups from the TMSC derivative. Although TMSC is converted to cellulose, the formed TMS-OH is not leaving the nanocomposite but reacts instead with surface oxide layer of the Bi nanoparticles to form silylated Bi nanoparticles as proven by TEM/EDX.

  10. Bismuth nanoparticles for phenolic compounds biosensing application.

    Science.gov (United States)

    Mayorga-Martinez, Carmen C; Cadevall, Miquel; Guix, Maria; Ros, Josep; Merkoçi, Arben

    2013-02-15

    The rapid determination of trace phenolic compounds is of great importance for evaluating the total toxicity of contaminated water samples. Nowadays, electrochemical tyrosinase (Tyr) based biosensors constitute a promising technology for the in situ monitoring of phenolic compounds because of their advantages such as high selectivity, low production cost, promising response speed, potential for miniaturization, simple instrumentation and easy automatization. A mediator-free amperometric biosensor for phenolic compounds detection based on the combination of bismuth nanoparticles (BiNPs) and Tyr for phenol detections will be hereby reported. This is achieved through the integration of BiNPs/Tyr onto the working electrode of a screen printed electrode (SPE) by using glutaraldehyde as a cross-linking agent. BiNPs/Tyr biosensor is evaluated by amperometric measurements at -200 mV DC and a linear range of up to 71 μM and 100 μM and a correlation coefficient of 0.995 and 0.996 for phenol and catechol, respectively. The very low DC working potential ensures the avoidance of interferences making this biosensor an advantageous device for real sample applications. In addition, the response mechanism including the effect of BiNPs based on electrochemical studies and optical characterizations will be also discussed. The obtained results may open the way to many other BiNPs applications in the biosensing field.

  11. Laser Spectroscopy of Neutron Rich Bismuth Isotopes

    CERN Multimedia

    2002-01-01

    %IS344 :\\\\ \\\\ The aim of the experiment is to measure the optical isotope shifts and hyperfine structures of bismuth isotopes across the N=126 shell closure in order to extract the change in mean square charge radii ($\\delta\\langle r^{2}\\rangle$) and static moments. These include the first isotones of lead to be measured directly above the shell closure and will provide new information on the systematics of the kink ($\\delta\\langle r^{2}\\rangle)$ seen in the lead isotopic chain. After two very successful runs the programme has been extended to include the neutron deficient isotopes below $^{201}$Bi to study the systematics across the $i_{13/2}$ neutron sub-shell closure at N=118.\\\\ \\\\ During the initial 2 runs (9 shifts) the isotope shifts and hyperfine structures of three new isotopes, $ ^{210,212,213}$Bi and the 9$^{-}$ isomer of $^{210}$Bi have been measured. The accuracy of the previous measurements of $^{205,206,208}$Bi have been greatly improved. The samples of $ ^{208,210,210^{m}}$Bi were prepared by c...

  12. LMO dielectronic resonances in highly charged bismuth

    Science.gov (United States)

    Smiga, Joseph; Gillaspy, John; Podpaly, Yuri; Ralchenko, Yuri

    2016-05-01

    Dielectronic resonances from high-Z elements are important for the analysis of high temperature plasmas. Thus, the extreme ultraviolet spectra of highly charged bismuth were measured using the NIST electron beam ion trap (EBIT) at beam energies ranging from 8.7 keV to 9.2 keV. The measured intensity ratios between forbidden magnetic-dipole lines in Bi64+ and Bi63+ show strong resonance features. The experimental data were compared to theoretical predictions from a large-scale collisional-radiative model with the code NOMAD, and good agreement was found that allowed the identification of observed resonance features as the LMO inner-shell dielectronic resonances. It is common practice in EBIT experiments that ions are periodically dumped from the trap and replaced. However, in this particular experiment, the contents of the trap were not dumped for the duration of each 10 minute sampling. The effects of trap stability were studied and a small but noticeable shift in beam energy over time was observed. Potential explanations for this are considered.

  13. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  14. Characterization of bismuth nanospheres deposited by plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: cscientific2@aec.org.sy [IBA Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Mrad, O. [Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  15. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  16. Dependence of optical properties of calcium bismuthates on synthesis conditions

    Science.gov (United States)

    Shtarev, D. S.; Shtareva, A. V.

    2016-08-01

    The article studies optical properties of calcium bismuthate nanoparticles of different composition. For the first time the synthesis of these compounds was produced by the pyrolysis of organic precursors using an organic solvent. Characterization of particles was made by scanning electron microscopy and X-ray analysis. The optical properties were investigated by diffuse reflectance spectroscopy (DRS). It is shown that the type of crystal lattice of the particles of calcium bismuthate determines the possibility to control the optical properties of nanoparticles by varying their composition. The conclusions about the production process and the composition of calcium bismuthate, the most promising for use as a photocatalyst of visible light and solar cells, were made.

  17. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  18. Compact and Integrated Liquid Bismuth Propellant Feed System

    Science.gov (United States)

    Polzin, Kurt A.; Stanojev, Boris; Korman, Valentin; Gross, Jeffrey T.

    2007-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions [1]. There has been considerable effort in the past three years aimed at resuscitating this promising technology and validating earlier experimental results indicating the advantages of a bismuth-fed Hall thruster. A critical element of the present effort is the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre./post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work is to develop a precision liquid bismuth Propellant Management System (PMS) that provides hot, molten bismuth to the thruster while simultaneously monitoring in real-time the propellant mass flow rate. The system is a derivative of our previous propellant feed system [2], but the present system represents a more compact design. In addition, all control electronics are integrated into a single unit and designed to reside on a thrust stand and operate in the relevant vacuum environment where the thruster is operating, significantly increasing the present technology readiness level of liquid metal propellant feed systems. The design of various critical components in a bismuth PMS are described. These include the bismuth reservoir and pressurization system, 'hotspot' flow sensor, power system and integrated control system. Particular emphasis is given to selection of the electronics employed in this system and the methods that were used to isolate the power and control systems from the high-temperature portions of the feed system and thruster. Open loop calibration test results from the 'hotspot' flow sensor are reported, and results of

  19. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A., E-mail: soumen.basu@phy.nitdgp.ac.in; Banerjee, M., E-mail: soumen.basu@phy.nitdgp.ac.in; Basu, S., E-mail: soumen.basu@phy.nitdgp.ac.in [Department of Physics, National Institute of Technology, Durgapur-713209 (India); Pal, M. [CSIR-Central Mechanical Engineering Research Institute, Durgapur-713209 (India)

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  20. Microscopic and voltammetric properties of lustrous bismuth deposits

    OpenAIRE

    Krolicka, Agnieszka; Bobrowski, Andrzej; Pamuła, Elżbieta

    2010-01-01

    A comparison of lustrous bismuth films, plated at glassy carbon, platinum and gold supports, is presented. The voltammetric performance of preplated bismuth film electrodes was tested using 50 μg/L In(III) and 50 μg/L Pb(II) solutions in 0.1 M acetic buffer in square wave and differential pulse modes. The influence of support material, plating solution concentration and storing conditions on the voltammetric response of BiFEs is discussed. The results of microscopic examination...

  1. Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates.

    Science.gov (United States)

    Miersch, L; Rüffer, T; Schlesinger, M; Lang, H; Mehring, M

    2012-09-03

    Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) Å, b = 13.4298(9) Å, c = 17.8471(14) Å, β = 94.531(6)°, V = 2210.5(3) Å(3); 2, a = 9.0149(3) Å, b = 16.9298(4) Å, c = 15.6864(4) Å, β = 90.129(3)°, V = 2394.06(12) Å(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1 both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) Å, b = 20.3871(9) Å, c = 34.9715(15) Å, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) Å(3); 5, a = 20.0329(4) Å, b = 20.0601(4) Å, c = 34.3532(6) Å, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) Å(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.

  2. Bismuth centred magnetic perovskite: A projected multiferroic

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Asish K., E-mail: asish.k@gmail.com [Discipline of Physics, Indian Institute of Information Technology, Design and Manufacturing, Dumna Airport Road, Jabalpur 482005 (India); Seikh, Md. Motin [Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal 731235 (India); Nautiyal, Pranjal [Discipline of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Dumna Airport Road, Jabalpur 482005 (India)

    2015-03-15

    In recent time substantial attention has been initiated to understand the physics behind multiferroism and to design new multiferroic materials. BiMnO{sub 3} and BiFeO{sub 3} are the well-studied Bi-centred multiferroic oxides. BiMnO{sub 3} is a ferromagnetic–ferroelectric (metastable) phase and require drastic conditions to synthesize. However, lanthanum substituted BiMnO{sub 3} phases stabilized at ambient pressure. It is thus of major importance to increase the number of ferromagnetic perovskites with Bi cations that could be designed under ambient conditions. In this article, we have presented an up to date report of investigations on Bi-centred magnetic perovskites, a prospective material for multiferroic application. Central focus is concentrated on La{sub 0.5}Bi{sub 0.5}MnO{sub 3} perovskite with various substitutions at different levels. A few of these perovskites are found to be of practical importance e.g. La{sub 0.5}Bi{sub 0.5}Mn{sub 0.67}Co{sub 0.33}O{sub 3} with high dielectric permittivity coupled with ferromagnetism. A comprehensive analysis of different physical functionalities and their interrelation for a wide range of compositions of these Bi-centred perovskites is presented. It has been found that the complex magnetic behaviour originates from mixed valence metal ions. The ferroelectricity is associated with the 6s{sup 2} lone pair of Bi{sup 3+} cations. The magnetic ground state influences the dielectric properties reflecting the multiferroism in a single material. - Highlights: • Multiferroics have attracted increasing attention due to their possible device applications. • Bismuth centred magnetic perovskite is one kind of such promising multiferroic materials. • Ferromagnetic Bi-perovskites, which are synthesized at ambient conditions, have been discussed.

  3. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    Directory of Open Access Journals (Sweden)

    Chekalin S.

    2013-03-01

    Full Text Available Femtosecond spectroscopy was applied to capture complex dynamics of non equilibrium electrons in bismuth. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along the Γ-T direction of the Brillouin zone

  4. REMOVAL OF CERTAIN FISSION PRODUCT METALS FROM LIQUID BISMUTH COMPOSITIONS

    Science.gov (United States)

    Dwyer, O.E.; Howe, H.E.; Avrutik, E.R.

    1959-11-24

    A method is described for purifying a solution of urarium in liquid bismuth containing at least one metal from the group consisting of selenium, tellurium, palladium, ruthenium, rhodium, niobium, and zirconium. The solution is contacted with zinc in an inert atmosphere to form a homogeneous melt, a solid zinc phase is formed, and the zinc phase containing the metal is separated from the melt.

  5. Polymeric architectures of bismuth citrate based on dimeric building blocks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Four bismuth complexes, (H2En)[Bi2(cit)2(H2O)4/3]·(H2O)x (1), (H2En)3[Bi2(cit)2Cl4]·(H2O)x (2), (HPy)2[Bi2(cit)2(H2O)8/5]·(H2O)x (3) and (H2En)[Bi2(cit)2](H2O)x (4) [cit = citrate4-; En = ethylenediamine; Py = pyridine] have been synthesized and crystallized. The crystal structures reveal that the basic building blocks in all of these complexes are bismuth citrate dimeric units which combine to form polymeric architectures. The embedded protonated ethylenediamine and pyridine moieties in the polymeric frameworks have been identified by X-ray crystallography and solid-state cross polarization/magic angle spinning (CP/MAS) 13C NMR. Based on the framework of complex 1, a structural model of a clinically used antiulcer drug, ranitidine bismuth citrate (RBC) was generated. The behavior of the protonated amine-bismuth citrate complexes in acidic aqueous solution has been studied by electrospray ionization-mass spectrometry (ESI-MS).

  6. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.

    Science.gov (United States)

    Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang

    2010-11-01

    A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.

  7. Oxygen semi-permeability of erbia-stabilized bismuth oxide

    NARCIS (Netherlands)

    Bouwmeester, H.J.M.; Kruidhof, H.; Burggraaf, A.J.; Gellings, P.J.

    1992-01-01

    The isothermal permeability of oxygen through sintered dense disks of bismuth oxide stabilized with 25 mol% erbia (BE25) has been studied at 610–810°C and oxygen pressures of 0.0001–1 atm. It is concluded that the permeating flux is rate limited both by solid state diffusion of electron holes and by

  8. Light-Induced Absorption in Nominally Pure Bismuth Silicon Oxide

    Institute of Scientific and Technical Information of China (English)

    李飞飞; 许京军; 孔勇发; 黄辉; 张光寅; 杨春晖; 徐玉恒

    2001-01-01

    Light-induced absorption in the nominally pure bismuth silicon oxide is investigated experimentally and the result shows that it consists of transient and persistent parts. The experimental evidence is analysed based on the model of three groups of trap (donor) centres.

  9. Bismuth-lead oxide, a new highly conductive oxygen materials

    NARCIS (Netherlands)

    Honnart, F.; Boivin, J.C.; Thomas, D.; Vries, de K.J.

    1983-01-01

    The transport properties of an oxygen-deficient solid solution containing lead and bismuth oxides have been investigated. The conductivity is larger than 1 (ω× cm)−1 at 600 °C. Thermogalvanic measurements confirm that no significant electronic contribution occurs in the range 1–10−3atm p O2. The hea

  10. High ionic conductivity in confined bismuth oxide-based heterostructures

    DEFF Research Database (Denmark)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens

    2016-01-01

    Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure -Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made...

  11. Nanometer bismuth oxide produced by resistance heating vapor oxidation

    Institute of Scientific and Technical Information of China (English)

    HU Han-xiang; QIU Ke-qiang

    2006-01-01

    Bismuth oxide has wide applications in superconductive material, photoelectric material, electronic ceramic, electrolyte, and catalysts. To produce ultrafine bismuth oxide powders, some costly heating sources, such as plasma, high frequency induction, electron beam or laser, have to be used in the conventional vapor oxidation methods. The vapor oxidation method was improved by adding a reducing agent in the reaction system, where heating source was resistance tubular oven, instead of special heat source requirement. Nanometer bismuth oxide was prepared at 1 000-1 140 ℃, and the particle characteristics were investigated by XRD, SEM, DTA, laser sedimentograph. With low oxygen concentration (less than 20%) in the carrier gas, the bismuth oxide particle was near-sphere β-Bi2O3 with uniform and fine particle size (d0.5=65 nm, GSD=1.42); while with higher oxygen content (more than 50%), the powders were mixture of Bi2O2CO3 and β-Bi2O3.

  12. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  13. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  14. Hydrogen sulfide and translational medicine

    OpenAIRE

    Guo, Wei; Cheng, Ze-yu; Zhu, Yi-Zhun

    2013-01-01

    Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S...

  15. Redox Biochemistry of Hydrogen Sulfide*

    OpenAIRE

    Kabil, Omer; Banerjee, Ruma

    2010-01-01

    H2S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of γ-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H2S production in the vasculature. However, patients with inherited deficiency in γ-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxid...

  16. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    Science.gov (United States)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  17. Bismuth tri-iodide radiation detector development

    Science.gov (United States)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  18. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...... not present in terrestrial plants at that level. Sulfide is not necessarily toxic but used as sulfur nutrition, presupposing healthy seagrass ecosystems that can support detoxification mechanisms. Presence or absence of those mechanisms determines susceptibility of seagrass ecosystems to sediment sulfide...

  19. Determining the background levels of bismuth in tissues of wild game birds: a first step in addressing the environmental consequences of using bismuth shotshells

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, R.; Tsuji, L.J.S.; Gough, W.A.; Karagatzides, J.D.; Perera, D.; Nieboer, E

    2004-11-01

    Bismuth shotshells have been approved as a 'nontoxic' alternative to lead in North America. Approval was based on a limited number of studies; even background levels of bismuth in wildfowl were unknown. We report on the concentration of bismuth (and lead) in muscle and liver tissues of wildfowl (Anas platyrhynchos, Anas acuta, Anas crecca, Branta canadensis, Chen caerulescens) harvested with lead shotshell. Average liver-bismuth levels detected in the present study (e.g., teal, 0.05 {mu}g/g dw; mallard, 0.09 {mu}g/g dw) suggest analytical error in other studies examining the effects of bismuth in birds. Significant positive relationships between bismuth- and lead-tissue levels for muscle when all species were combined (and for B. canadensis and C. caerulescens separately) can be explained by noting that bismuth is a contaminant of lead. Thus, more research is recommended to confirm the appropriateness of bismuth as a 'nontoxic' shot alternative.

  20. Operating Practice for Recovering Bismuth from Bismuth Dross%从铋渣中回收铋的生产实践

    Institute of Scientific and Technical Information of China (English)

    刘金铭

    2015-01-01

    阐述了从处理铅阳极泥时产生的铋渣中回收铋的生产实践,采用湿法浸出→氯氧铋→热浓碱转型→氧化铋→还原熔炼→火法精炼的生产工艺,为铋渣的处理提供了新的途径。%This paper expounds operating practice for recovering bismuth from bismuth dross that were outputed during dealing with the lead anode mud in pyrometallurgical process,which uesd production process of leaching—bismuth oxychloride—transformation—bismuth oxide—reduction smelting—pyrometallurgical refining.The operating practice provided a new technology to process the bismuth dross.

  1. Dielectric spectra of bismuth vanadate Bi4V2O11

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, V.N.; Pashkov, V.M.; Poplavko, IU.M.; Avakian, P.B.; Osipian, V.G. (Kievskii Politekhnicheskii Institut, Kiev (Ukrainian SSR))

    1990-06-01

    Results of a study of the temperature-frequency dependence of the behavior of the dielectric parameters of bismuth vanadate, Bi4V2O11, in the frequency range 1-100 GHz are reported. It is shown that bismuth vanadate is characterized by a large number of phase transitions. Yet another, previously unknown, phase transition in bismuth vanadate, masked by a relaxation process, has been observed in the temperature range 410-420 K. 12 refs.

  2. Dielectric spectra of bismuth vanadate Bi4V2O11

    Science.gov (United States)

    Borisov, V. N.; Pashkov, V. M.; Poplavko, Iu. M.; Avakian, P. B.; Osipian, V. G.

    1990-06-01

    Results of a study of the temperature-frequency dependence of the behavior of the dielectric parameters of bismuth vanadate, Bi4V2O11, in the frequency range 1-100 GHz are reported. It is shown that bismuth vanadate is characterized by a large number of phase transitions. Yet another, previously unknown, phase transition in bismuth vanadate, masked by a relaxation process, has been observed in the temperature range 410-420 K.

  3. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements

    OpenAIRE

    Murata, Masayuki; Hasegawa, Yasuhiro

    2013-01-01

    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the ...

  4. Standard triple, bismuth pectin quadruple and sequential therapies for Helicobacter pylori eradication

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To compare the effectiveness of standard triple, bismuth pectin quadruple and sequential therapies for Helicobacter pylori (H. pylori ) eradication in a randomized, double-blinded, comparative clinical trial in China. METHODS: A total of 215 H. pylori -positive patients were enrolled in the study and randomly allocated into three groups: group A (n = 72) received a 10-d bismuth pectin quadruple therapy (20 mg rabeprazole bid , 1000 mg amoxicillin bid , 100 mg bismuth pectin qid , and 500 mg levofloxaci...

  5. Hydrogen sulfide and vascular relaxation

    Institute of Scientific and Technical Information of China (English)

    SUN Yan; TANG Chao-shu; DU Jun-bao; JIN Hong-fang

    2011-01-01

    Objective To review the vasorelaxant effects of hydrogen sulfide (H2S) in arterial rings in the cardiovascular system under both physiological and pathophysiological conditions and the possible mechanisms involved.Data sources The data in this review were obtained from Medline and Pubmed sources from 1997 to 2011 using the search terms "hydrogen sulfide" and ""vascular relaxation".Study selection Articles describing the role of hydrogen sulfide in the regulation of vascular activity and its vasorelaxant effects were selected.Results H2S plays an important role in the regulation of cardiovascular tone.The vasomodulatory effects of H2S depend on factors including concentration,species and tissue type.The H2S donor,sodium hydrosulfide (NarS),causes vasorelaxation of rat isolated aortic rings in a dose-dependent manner.This effect was more pronounced than that observed in pulmonary arterial rings.The expression of KATP channel proteins and mRNA in the aortic rings was increased compared with pulmonary artery rings.H2S is involved in the pathogenesis of a variety of cardiovascular diseases.Downregulation of the endogenous H2S pathway is an important factor in the pathogenesis of cardiovascular diseases.The vasorelaxant effects of H2S have been shown to be mediated by activation of KATP channels in vascular smooth muscle cells and via the induction of acidification due to activation of the CI/HCO3 exchanger.It is speculated that the mechanisms underlying the vasoconstrictive function of H2S in the aortic rings involves decreased NO production and inhibition of cAMP accumulation.Conclusion H2S is an important endogenous gasotransmitter in the cardiovascular system and acts as a modulator of vascular tone in the homeostatic regulation of blood pressure.

  6. Medical Functions of Hydrogen Sulfide.

    Science.gov (United States)

    Olas, Beata

    2016-01-01

    Hydrogen sulfide (H(2)S) is a gasomediator synthesized from L- and D-cysteine in various tissues. It is involved in a number of physiological and pathological processes. H(2)S exhibits antiatherosclerotic, vasodilator, and proangiogenic properties, and protects the kidney and heart from damage following ischemia/reperfusion injury. H(2)S donors may be natural or synthetic, and may be used for the safe treatment of a wide range of diseases. This review article summarizes the current state of knowledge of the therapeutic function of H(2)S.

  7. Molybdenum sulfide/carbide catalysts

    Science.gov (United States)

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  8. Bismuth-Induced Raman Modes in GaP1-xBix

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; Alberi, Kirstin; Mascarenhas, Angelo

    2016-10-01

    Dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- x Bi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  9. Antibacterial effects of Bismuth compounds and it synergy with Tetracycline and Metronidazole on Helicobacter Pylori

    Directory of Open Access Journals (Sweden)

    Rajabie A

    1997-04-01

    Full Text Available Bismuth salts and different antimicrobials including Metonidazole & Tetracyclines were used in the assessment of inhibition zone of Helicobacter pylori cultures on solid media. Antibiotics were used or in combined in order to find out their possible synergistic effects. It was showed that: only Bismuth substrate and not then salts have antibacterial effects on Helicobacter pylori and also on the other bacteria such as staphylococci; salmonella and brulla. In addition, only Bismuth substrances showed remarkable synergistic effects with antimicrobial drugs against Helicobacter pylori. Therefore the data obtained from this investigation confirm previously known effect of combination antibiotic therapy including Bismuth compounds in eradicating Helicobacter pylori.

  10. Elimination of the beam effect on channeling dips of bismuth implanted in silicon

    Science.gov (United States)

    Wagh, A. G.; Radhakrishnan, S.; Gaonkar, S. G.; Kansara, M. J.

    1980-01-01

    The effect of the analysing He + ion beam has been eliminated from channeling measurements on Si(Bi) by extrapolating the plot of normalised yield against He + dose to zero ion dose. The magnitude of the beam effect varies with the angle of incidence, being minimum for beam incidence along the crystallographic axis. The axial channeling dips thus obtained exhibit similar minimum yields for bismuth and silicon. The bismuth dips are, however, narrower than for silicon. The planar channeling experiments, on the other hand, yield nearly identical bismuth and silicon dips. The results indicate that the bismuth atom occupies the substitutional site in silicon, but the lattice is strained in its vicinity.

  11. Preparation of high-purity bismuth by sulphur deleadization in vacuum distillation

    Institute of Scientific and Technical Information of China (English)

    熊利芝; 何则强; 刘文萍; 麻成金; 戴永年

    2004-01-01

    The feasibility of separation of impurities in refined bismuth and sulphur deleadization with vacuum distillation was studied theoretically. Experimental studies on sulphur deleadization were carried out under vacuum.The influences of amount of sulphur, distillation temperature, vacuum degree and distillation time on deleadization were investigated and an optimal technical condition was achieved. The content of lead in refined bismuth can be decreased from 30 μg/g to 0.21 μg/g, which has reached the level of "5N" high-purity bismuth. Other impurities in refined bismuth can be also removed effectively under certain conditions.

  12. Nanophotonic Modulator with Bismuth Ferrite as Low-loss Switchable Material

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2015-01-01

    We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved.......We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved....

  13. Bismuth-induced Raman modes in GaP1- x Bi x

    Science.gov (United States)

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; Alberi, Kirstin; Mascarenhas, Angelo

    2016-10-01

    Dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- x Bi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  14. Optimal biliary drainage for inoperable Klatskin's tumor based on Bismuth type

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate differences in the effects of biliary drainage procedures in patients with inoperable Klatskin's tumor based on Bismuth type, considering endoscopic retrograde biliary drainage (ERBD), external percutaneous transhepatic biliary drainage (EPTBD) and internal biliary stenting via the PTBD tract (IPTBD).METHODS: The initial success rate, cumulative patency rate, and complication rate were compared retrospectively, according to the Bismuth type and ERBD,EPTBD, and IPTBD. Patency was defined as the duration for adequate initial bile drainage or to the point of the patient's death associated with inadequate drainage.RESULTS: One hundred thirty-four patients (93 men,41 women; 21 Bismuth type Ⅱ, 47 Ⅲ, 66 Ⅳ; 34 ERBD,66 EPTBD, 34 IPTBD) were recruited. There were no differences in demographics among the groups.Adequate initial relief of jaundice was achieved in 91% of patients without a significant difference in the results among different procedures or Bismuth types. The cumulative patency rates for ERBD and IPTBD were better than those for EPTBD with Bismuth type Ⅲ.IPTBD provided an excellent response for Bismuth type Ⅳ. However, there was no difference in the patency rate among drainage procedures for Bismuth type Ⅱ.Procedure-related cholangitis occurred less frequently with EPTBD than with ERBD and IPTBD.CONCLUSION: ERBD is recommended as the firstline drainage procedure for the palliation of jaundice in patients with inoperable Klatskin's tumor of Bismuth type Ⅱ or Ⅲ, but IPTBD is the best option for Bismuth type Ⅳ.

  15. Ammonia and hydrogen sulfide removal using biochar

    Science.gov (United States)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  16. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through ...... partial switching of ferroelectric domain orientati on under applied voltage. Both phase and amplitude modulations are envisaged.......We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  17. Large area bismuth absorbers for X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, J.E. E-mail: vaillancourt@wisp.physics.wisc.edu; Allen, C.A.; Brekosky, R.; Dosaj, A.; Galeazzi, M.; Kelley, R.; Liu, D.; McCammon, D.; Porter, F.S.; Rocks, L.E.; Sanders, W.T.; Stahle, C.K

    2004-03-11

    Two challenges facing the use of large area (2 mmx2 mm) bismuth absorbers for microcalorimetry are uncertainties in the heat capacity of bismuth and the effects of lateral heat conduction and position dependence due to the absorber's large size. We have measured the heat capacity of three Bi samples to be 0.3-0.6 J K{sup -1} m{sup -3} at 100 mK. These absorbers also exhibit response variations as phonons created by an X-ray event at an absorber edge will take longer to propagate to the thermometer attachment point than those at the absorber center. This effect may degrade the detector's energy resolution if the propagation time is not very short compared to the thermometer time constant. We show that the response of the largest absorber varies by {approx}4% across its area.

  18. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    CERN Document Server

    Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens

    2016-01-01

    We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  19. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  20. Low temperature Hall effect in bismuth chalcogenides thin films

    OpenAIRE

    Kuntsevich, A. Yu.; Gabdullin, A. A.; Prudkogliad, V. A.; Selivanov, Yu. G.; Chizhevskii, E. G.; Pudalov, V. M.

    2016-01-01

    Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures thin films of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization should lead to resistivity decrease at low temperatures; in experiments, however, resistivity grows as temperature decreases. From transport measurements for several thin films (with various carrier density, thickness, and carrier mobility), and by using purely phenomenologi...

  1. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Vladimir Petrochenko; Georgy Toshinsky

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  2. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-07

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  3. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated.

  4. Bismuth pyrochlore-based thin films for dielectric energy storage

    Science.gov (United States)

    Michael, Elizabeth K.

    The drive towards the miniaturization of electronic devices has created a need for dielectric materials with large energy storage densities. These materials, which are used in capacitors, are a critical component in many electrical systems. Here, the development of dielectric energy storage materials for pulsed power applications, which require materials with the ability to accumulate a large amount of energy and then deliver it to the system rapidly, is explored. The amount of electrostatic energy that can be stored by a material is a function of the induced polarization and the dielectric breakdown strength of the material. An ideal energy storage dielectric would possess a high relative permittivity, high dielectric breakdown strength, and low loss tangent under high applied electric fields. The bismuth pyrochlores are a compositionally tunable family of materials that meet these requirements. Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate, were fabricated using a novel solution chemistry based upon the Pechini method. This solution preparation is advantageous because it avoids the use of teratogenic solvents, such as 2-methoxyethanol. Crystalline films fabricated using this solution chemistry had very small grains that were approximately 27 nm in lateral size and 35 nm through the film thickness. Impedance measurements found that the resistivity of the grain boundaries was two orders of magnitude higher than the resistivity of the grain interior. The presence of many resistive grain boundaries impeded conduction through the films, resulting in high breakdown strengths for these materials. In addition to high breakdown strengths, this family of materials exhibited moderate relative permittivities of between 55 +/- 2 and 145 +/- 5, for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 +/- 0.0001. Increases in the concentration of the tantalum

  5. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  6. Resistivity and Seebeck coefficient measurements of a bismuth microwire array

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y. [Graduate School of Science and Engineering, Saitama University, 338-8570 (Japan)]. E-mail: ishikawa@kan.env.gse.saitama-u.ac.jp; Hasegawa, Y. [Graduate School of Science and Engineering, Saitama University, 338-8570 (Japan); Morita, H. [Saitama Industrial Technology Center, Saitama Prefecture, 333-0844 (Japan); Kurokouchi, A. [Saitama Industrial Technology Center, Saitama Prefecture, 333-0844 (Japan); Wada, K. [Saitama Industrial Technology Center, Saitama Prefecture, 333-0844 (Japan); Komine, T. [Department of Media and Telecommunications Engineering, Ibaraki University, 316-8511 (Japan); Nakamura, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5252 (Japan)

    2005-11-01

    The resistivity and Seebeck coefficient of a bismuth microwire array (wire diameter: 25 {mu}m) were successfully measured from 25 to 300 K. To eliminate the influence of the contact resistance between the wire edges of the microwire array and copper electrodes, the titanium (100 nm)/copper (500 nm) film layers were deposited as interlayer on the wire edge by ion plating method. Copper electrodes were glued by using Pb-Sn solder. The resistivity and the Seebeck coefficient at 300 K were approximately 1.8x10{sup -6} {omega}m and -54x10{sup -6} V/K, respectively. The value of the resistivity and the Seebeck coefficient were in good agreement with those of bulk polycrystalline bismuth reported previously. Thus, the effects of the contact resistance for the microwire array were almost resolved, and the chemical reaction of the Pb-Sn solder and bismuth was prevented by using the thin-film layer. The technique is expected to be applicable to nanowire arrays as well.

  7. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India); Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India)

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  8. Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides

    Science.gov (United States)

    Wohlgemuth-Ueberwasser, Cora C.; Fonseca, Raúl O. C.; Ballhaus, Chris; Berndt, Jasper

    2013-01-01

    Typical magmatic sulfides are dominated by pyrrhotite and pentlandite with minor chalcopyrite, and the bulk atomic Cu/Fe ratio of these sulfides is typically less than unity. However, there are rare magmatic sulfide occurrences that are dominated by Cu-rich sulfides (e.g., bornite, digenite, and chalcopyrite, sometimes coexisting with metallic Cu) with atomic Cu/Fe as high as 5. Typically, these types of sulfide assemblages occur in the upper parts of moderately to highly fractionated layered mafic-ultramafic intrusions, a well-known example being the Pd/Au reef in the Upper Middle Zone of the Skaergaard intrusion. Processes proposed to explain why these sulfides are so unusually rich in Cu include fractional crystallization of Fe/(Ni) monosulfide and infiltration of postmagmatic Cu-rich fluids. In this contribution, we explore and experimentally evaluate a third possibility: that Cu-rich magmatic sulfides may be the result of magmatic oxidation. FeS-dominated Ni/Cu-bearing sulfides were equilibrated at variable oxygen fugacities in both open and closed system. Our results show that the Cu/Fe ratio of the sulfide melt increases as a function of oxygen fugacity due to the preferential conversion of FeS into FeO and FeO1.5, and the resistance of Cu2S to being converted into an oxide component even at oxygen fugacities characteristic of the sulfide/sulfate transition (above FMQ + 1). This phenomenon will lead to an increase in the metal/S ratio of a sulfide liquid and will also depress its liquidus temperature. As such, any modeling of the sulfide liquid line of descent in magmatic sulfide complexes needs to address this issue.

  9. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfide resins. 177.2490 Section 177... Components of Articles Intended for Repeated Use § 177.2490 Polyphenylene sulfide resins. Polyphenylene sulfide resins (poly(1,4-phenylene sulfide) resins) may be safely used as coatings or components...

  10. Adequate hydrogen sulfide, healthy circulation

    Institute of Scientific and Technical Information of China (English)

    DU Jun-bao; CHEN Stella; JIN Hong-fang; TANG Chao-shu

    2011-01-01

    Previously,hydrogen sulfide (H2S) was considered to be a toxic gas.However,recently it was discovered that it could be produced in mammals and even in plants,throughtheproductionandmetabolismof sulfur-containing amino acids.In mammals,H2S is mainly catalyzed by cystathionine-γ-lyase (CSE),cystathionin-β-lyase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) with the substrate of L-cysteine.Endogenous H2S exerts many important physiological and pathophysiological functions,including hypotensive action,vasorelaxation,myocardial dilation,inhibition of smooth muscle cell proliferation,and antioxidatve actions.Importantly,it plays a very important role in the pathogenesis of systemic hypertension,pulmonary hypertension,atherosclerosis,myocardialinjury,angiogenesis,hyperhomocysteinemi aandshock.Therefore,H2S is now being considered to be a novel gasotransmitter after nitric oxide and carbon monoxide in the regulation of circulatory system.

  11. Redox biochemistry of hydrogen sulfide.

    Science.gov (United States)

    Kabil, Omer; Banerjee, Ruma

    2010-07-16

    H(2)S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of gamma-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H(2)S production in the vasculature. However, patients with inherited deficiency in gamma-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxidative phosphorylation while also exposing cytochrome c oxidase to this metabolic poison. This report focuses on the biochemistry of H(2)S biogenesis and clearance, on the molecular mechanisms of its action, and on its varied biological effects.

  12. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  13. Effect of O-vacancies on magnetic properties of bismuth ferrite nanoparticles by solution evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, A.M., E-mail: Amirafzal461@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Umair, M., E-mail: umairranwerr@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Dastgeer, G., E-mail: dtedastgeer@gmail.com [Department of Physics, University of Agriculture, Faisalabad 38000 (Pakistan); Rizwan, M., E-mail: h.rizwan70@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Yaqoob, M.Z., E-mail: zeeshaan32@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Rashid, R., E-mail: rashid.kanwar22@gmail.com [Department of Physics, University of Agriculture, Faisalabad 38000 (Pakistan); Munir, H.S., E-mail: sadiamunir.cute@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan)

    2016-02-01

    Bismuth ferrite is a multiferroic material which shows high magnetization and polarization at room temperature. In present work, the effect of Oxygen (O) vacancies on magnetic properties of bismuth ferrite nanoparticles is studied. Bismuth ferrite nanoparticles (BiFeO{sub 3}) were synthesized by solution evaporation method (SEM) at room temperature. The sample was annealed under two different atmospheres such as in air and oxygen, to check the effect of O-vacancies on magnetic properties. The average crystallite size of Bismuth ferrite nanoparticles (NPs) as calculated by X-ray diffraction (XRD) falls in the range of 23–32 nm and 26–39 nm for the case of air and oxygen respectively. The crystallite size of bismuth ferrite nanoparticles increases as the temperature was varied from 450 °C to 650 °C. Further the influence of annealing temperature on the magnetic properties of the bismuth ferrite nanoparticles was also observed. It was concluded that the magnetic properties of Bismuth ferrite nanoparticles are directly interconnected to annealing atmosphere and annealing temperature. The magnetic properties were increased in the case of oxygen annealing, which actually leads in our case to an improvement of the crystallinity. - Highlights: • Bismuth ferrite was synthesized by solution evaporation method. • The effect of different annealing atmosphere on magnetic properties was studied. • The magnetic properties dramatically increased in case of Oxygen annealing. • The influence of crystalline size on magnetic properties was studied. • The magnetization was decreased as the temperature and crystallite size increased.

  14. Electronic Properties of Tin and Bismuth from Angular Correlation of Annihilation Photons

    DEFF Research Database (Denmark)

    Mogensen, O.E.; Trumpy, Georg

    1969-01-01

    A linear slit setup has been used to obtain results of angular-correlation measurements in (a) tin single crystals in three orientations: [001], [100], and [110], (b) bismuth single crystals in four orientations: [111], [100], [1¯10], and [2¯1¯1], (c) solid and liquid tin and bismuth, and (d) def...

  15. Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterisation.

    Science.gov (United States)

    Nazari, P; Faramarzi, M A; Sepehrizadeh, Z; Mofid, M R; Bazaz, R D; Shahverdi, A R

    2012-06-01

    Today, synthesis of nanoparticles (NPs) using micro-organisms has been receiving increasing attention. In this investigation, a bismuth-reducing bacterium was isolated from the Caspian Sea in Northern Iran and was used for intracellular biosynthesis of elemental bismuth NPs. This isolate was identified as non-pigmented Serratia marcescens using conventional identification assays and the 16s rDNA fragment amplification method and used to prepare bismuth NPs. The biogenic bismuth NPs were released by liquid nitrogen and highly purified using an n-octanol water two-phase extraction system. Different characterisations of the purified NPs such as particle shapes, size and purity were carried out with different instruments. The energy-dispersive X-ray and X-ray diffraction (XRD) patterns demonstrated that the purified NPs consisted of only bismuth and are amorphous. In addition, the transmission electron micrograph showed that the small NPs formed larger aggregated NPs around <150 nm. Although the chemical syntheses of elemental bismuth NPs have been reported in the literature, the biological synthesis of elemental bismuth NPs has not been published yet. This is the first report to demonstrate a biological method for synthesising bismuth NPs and their purification with a simple solvent partitioning method.

  16. Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts

    DEFF Research Database (Denmark)

    Duc, Duc Truong; Ha, Hanh Nguyen; Fehrmann, Rasmus

    2011-01-01

    Silica-supported bismuth molybdate catalysts have been prepared by impregnation, structurally characterized and examined as improved catalysts for the selective oxidation of propylene to acrolein. Catalysts with a wide range of loadings (from 10 to 90 wt%) of beta bismuth molybdate (β-Bi2Mo2O9...

  17. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  18. Effects of In Vitro Antibiotic Resistance on Treatment: Bismuth-Containing Regimens

    Directory of Open Access Journals (Sweden)

    Naoki Chiba

    2000-01-01

    Full Text Available Bismuth compounds remain useful for Helicobacter pylori eradication therapy. These include colloidal bismuth subcitrate (CBS, bismuth subsalicylate (BSS and, most recently, ranitidine bismuth citrate (RBC. CBS appears to prevent the development of imidazole resistance when coadministered with nitroimidazoles. Traditional triple therapy with bismuth, metronidazole and tetracycline or amoxicillin (BMT/A only partially overcomes metronidazole resistance. However, the addition of a PPI to bismuth triple therapy largely overcomes established metronidazole resistance if treatment is given for at least one week or more. When RBC rather than PPI is used with clarithromycin, this dual regimen appears to be more effective in preventing the development of secondary clarithromycin resistance. The triple combination of RBC, metronidazole and clarithromycin appears to be effective against metronidazole resistant strains of H pylori. Thus, overall, there is some evidence that bismuth compounds may prevent the development of antibiotic resistance and that existing antibiotic resistance may at least be partially overcome in vitro and in vivo. With the growing emergence of H pylori resistance to metronidazole and clarithromycin, further research to clarify the role of bismuth compounds is required.

  19. Local Structural Distortion Induced Uniaxial Negative Thermal Expansion in Nanosized Semimetal Bismuth.

    Science.gov (United States)

    Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-11-01

    The corrugated layer structure bismuth has been successfully tailored into negative thermal expansion along c axis by size effect. Pair distribution function and extended X-ray absorption fine structure are combined to reveal the local structural distortion for nanosized bismuth. The comprehensive method to identify the local structure of nanomaterials can benefit the regulating and controlling of thermal expansion in nanodivices.

  20. 铋、氧化铋、硫化铋在硝酸-硫脲中的溶解性%Solubility of Bismuth ,Bismuth Oxide and Bismuth Sulfide in Nitric Acid-Thiourea

    Institute of Scientific and Technical Information of China (English)

    马哈亚·艾斯江; 巴哈尔古丽·别克吐尔汗; 孙娜娜

    2012-01-01

    研究了铋、氧化铋、硫化铋在硝酸-硫脲中的溶解性.三价铋离子与硫脲溶液可形成黄色络合物,在波长为460nm处,反应温度为25 ℃,反应时间为6min,硝酸浓度为1.0mol/L,硫脲浓度为0.5mol/L,振荡速率为160r/min条件下铋含量在0.059-4.57μg/mL范围内服从郎伯-比尔定律,检出限为m=0.04μg.铋矿物的溶解性顺序大小为Bi2O3>Bi>Bi2S3.本方法操作简便,可靠,实验结果满意,具有广泛的实用意义.

  1. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m.

    OpenAIRE

    Kanagawa, T; Mikami, E.

    1989-01-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  2. Hydrogen Sulfide Induces Oxidative Damage to RNA and DNA in a Sulfide-Tolerant Marine Invertebrate

    OpenAIRE

    Joyner-Matos, Joanna; Predmore, Benjamin L.; Stein, Jenny R.; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes ...

  3. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.

    Science.gov (United States)

    De Gusseme, Bart; De Schryver, Peter; De Cooman, Michaël; Verbeken, Kim; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2009-01-01

    The emission of hydrogen sulfide into the atmosphere of sewer systems induces the biological production of sulfuric acid, causing severe concrete corrosion. As a possible preventive solution, a microbial consortium of nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) was enriched in a continuously stirred tank reactor in order to develop a biological technique for the removal of dissolved sulfide. The consortium, dominated by Arcobacter sp., was capable of removing 99% of sulfide. Stable isotope fractioning of the sulfide indicated that the oxidation was a biological process. The capacity of the NR-SOB consortium for rapid removal of sulfide was demonstrated by using it as an inoculum in synthetic and real sewage. Removal rates up to 52 mg sulfide-S g VSS(-1) h(-1) were achieved, to our knowledge the highest removal rate reported so far for freshwater species in the absence of molecular oxygen. Further long-term incubation experiments revealed the capacity of the bacteria to oxidize sulfide without the presence of nitrate, suggesting that an oxidized redox reserve is present in the culture.

  4. Enhanced Lithium-Ion Storage Capability of a Bismuth Sulfide/Graphene Oxide/Poly(3,4-ethylenedioxythiophene) Composite.

    Science.gov (United States)

    Mukkabla, Radha; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-10-26

    A Bi2 S3 /graphene oxide (GO) composite enwrapped by a poly(3,4-ethylenedioxythiophene) (PEDOT) coating was prepared for the first time for use as an anode in Li-ion batteries. Pristine Bi2 S3 nanoflowers and composites of Bi2 S3 /GO and Bi2 S3 /GO/PEDOT were assembled into half cells with Li metal as the counter electrode, and initial discharge capacities of 833, 1020, and 1300 mAh g(-1) , respectively, were obtained. Composites of Bi2 S3 /GO/PEDOT and Bi2 S3 /GO showed superior cycling stability and better rate capability than pristine Bi2 S3 . GO provides highly conducting interconnections, which allow facile propagation of electrons during charge/discharge, and this improves the ion-uptake capability of the Bi2 S3 nanoflowers and also increases the rate capability. PEDOT furnishes a protective coating that prevents detachment of the material from the current collector during cycling, and it also imparts better cycling stability to the Bi2 S3 /GO/PEDOT composite.

  5. Hydrogen sulfide in hemostasis: friend or foe?

    Science.gov (United States)

    Olas, Beata

    2014-06-25

    Hydrogen sulfide (H2S) is a well known toxic gas that is synthesized from the amino acids: cysteine (Cys) and homocysteine (Hcy) by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and mercaptopyruvate sulfurtransferase (3-MST). Hydrogen sulfide, like carbon monoxide (CO) or nitric oxide (NO) is a signaling molecule in different biological systems, including the cardiovascular system. Moreover, hydrogen sulfide plays a role in the pathogenesis of various cardiovascular diseases. It modulates different elements of hemostasis (activation of blood platelet, and coagulation process) as well as proliferation and apoptosis of vascular smooth muscle cells. However, the biological role and the therapeutic potential of H2S is not clear. This review summarizes the different functions of hydrogen sulfide in hemostasis.

  6. [Fatal outcome of an hydrogen sulfide poisoning].

    Science.gov (United States)

    Querellou, E; Jaffrelot, M; Savary, D; Savry, C; Perfus, J-P

    2005-10-01

    We report a case of fatal outcome poisoning by massive exposure to hydrogen sulfide of a sewer worker. This rare event was associated with a moderate intoxication of two members of the rescue team. The death was due to asystole and massive lung oedema. Autopsy analysis showed diffuse necrotic lesions in lungs. Hydrogen sulfide is a direct and systemic poison, produced by organic matter decomposition. The direct toxicity mechanism is still unclear. The systemic toxicity is due to an acute toxicity by oxygen depletion at cellular level. It is highly diffusable and potentially very dangerous. At low concentration, rotten egg smell must trigger hydrogen sulfide suspicion since at higher concentration it is undetectable, making intoxication possible. In case of acute intoxication, there is an almost instantaneous cardiovascular failure and a rapid death. Hydrogen sulfide exposure requires prevention measures and more specifically the use of respiratory equipment for members of the rescue team.

  7. An atomic absorption spectrometric method for the determination of phosphorus in foodstuffs using the bismuth phosphomolybdate complex

    Directory of Open Access Journals (Sweden)

    LJILJANA V. MIHAJLOVIC

    2000-06-01

    Full Text Available A new indirect AAS method using the bismuth phosphomolybdate complex for the determination of phosphorus in foodstuffs is suggested. The bismuth phosphomolybdate complex in acid medium was extacted with isobutyl methylketone and the phosphorus was determined through bismuth in an air/acetylene flame by utilising the 223.06 nm resonance line of bismuth. The interference caused by antimony and titanium can be neglected in the presence of excess of bismuth. The detection limit of the method is 0.008 mg/mL of phosphorus.

  8. Mechanism of mechanical activation for sulfide ores

    Institute of Scientific and Technical Information of China (English)

    HU Hui-ping; CHEN Qi-yuan; YIN Zhou-lan; HE Yue-hui; HUANG Bai-yun

    2007-01-01

    Structural changes for mechanically activated pyrite, sphalerite, galena and molybdenite with or without the exposure to ambient air, were systematically investigated using X-ray diffraction analysis(XRD), particle size analysis, gravimetrical method, X-ray photo-electron spectroscopy(XPS) and scanning electron microscopy(SEM), respectively. Based on the above structural changes for mechanically activated sulfide ores and related reports by other researchers, several qualitative rules of the mechanisms and the effects of mechanical activation for sulfide ores are obtained. For brittle sulfide ores with thermal instability, and incomplete cleavage plane or extremely incomplete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with thermal instability, and complete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed, and lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with excellent thermal stability, and complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For sulfide ores with high toughness, good thermal stability and very excellent complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation, but the lattice deformation ratio is very small. The effects of mechanical activation are worst.

  9. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  10. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  11. Conduction mechanism in bismuth silicate glasses containing titanium

    Science.gov (United States)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  12. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    Science.gov (United States)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  13. Coherent phonon coupling to individual Bloch states in photoexcited bismuth.

    Science.gov (United States)

    Papalazarou, E; Faure, J; Mauchain, J; Marsi, M; Taleb-Ibrahimi, A; Reshetnyak, I; van Roekeghem, A; Timrov, I; Vast, N; Arnaud, B; Perfetti, L

    2012-06-22

    We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time- and angle-resolved photoelectron spectroscopy. The binding energy of bulklike bands oscillates with the frequency of the A(1g) phonon mode, whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wave vector is correctly reproduced by ab initio calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.

  14. Low-temperature Hall effect in bismuth chalcogenides thin films

    Science.gov (United States)

    Kuntsevich, A. Yu.; Gabdullin, A. A.; Prudkogliad, V. A.; Selivanov, Yu. G.; Chizhevskii, E. G.; Pudalov, V. M.

    2016-12-01

    Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures, thin films of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization should lead to resistivity decrease at low temperatures; in experiments, however, resistivity grows as temperature decreases. From transport measurements for several thin films (with various carrier density, thickness, and carrier mobility), and by using a purely phenomenological approach, with no microscopic theory, we show that the low-temperature growth of the resistivity is accompanied by growth of the Hall coefficient, in agreement with the diffusive electron-electron interaction correction mechanism. Our data reasonably explain the low-temperature resistivity upturn.

  15. Concentration Quenching in Erbium Doped Bismuth Silicate Glasses

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; XU Tie-Feng; NIE Qiu-Hua; SHEN Xiang; WANG Xun-Si

    2006-01-01

    @@ Er2 O3-doped bismuth silicate glasses are prepared by the conventional melt-quenching method, and the Er3+ : 4 I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. Infrared spectra are measured to estimate the exact content of OH- groups in the samples. Based on the electric dipole-dipole interaction theory,the interaction parameter CEr,Er for the migration rate of Er3+ :4 I13/2 → 4 I13/2 in proposed glasses is calculated.

  16. Kinetics of Propagating Phase Transformation in Compressed Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, M; Bastea, S; Emig, J; Springer, P; Reisman, D

    2004-08-18

    The authors observed dynamically driven phase transitions in isentropically compressed bismuth. By changing the stress loading conditions they explored two distinct cases one in which the experimental signature of the phase transformation corresponds to phase-boundary crossings initiated at both sample interfaces, and another in which the experimental trace is due to a single advancing transformation front in the bulk of the material. They introduce a coupled kinetics-hydrodynamics model that for this second case enables them, under suitable simplifying assumptions, to directly extract characteristic transition times from the experimental measurements.

  17. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  18. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.

    2014-01-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  19. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    Science.gov (United States)

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  20. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    Science.gov (United States)

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.

  1. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements.

    Science.gov (United States)

    Murata, Masayuki; Hasegawa, Yasuhiro

    2013-09-26

    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the bismuth nanowire, and a difference between the resistivities of the two-wire and four-wire methods was observed. It was concluded that the two-wire method was unsuitable for estimation of the resistivity due to the influence of contact resistance, even if the magnitude of the bismuth nanowire resistance was greater than the kilo-ohm order. Furthermore, Hall measurement of a 4-μm-diameter bismuth microwire was also performed as a trial, and the evaluated temperature dependence of the carrier mobility was in agreement with that for bulk bismuth, which indicates that the carrier mobility was successfully measured using this technique. PACS: 81.07.Gf.

  2. Investigation of corrosion, water reaction, polonium evaporation and bismuth resource in liquid metal lead-bismuth technology

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki; Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kitano, Teruaki [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    2000-10-01

    Lead-bismuth is the first candidate material for liquid metal target find coolant of fueled blanket system in accelerator-driven system (ADS) studied at JAERI. Advantages of the lead-bismuth utilization are non-active material, very low capture cross section, low melting point of 125degC and high boiling point of 1670degC, and beside coolant void reactivity become negative. But problems are due to the high corrosivity to most of the structural materials and the corrosive data are scarcity. In this report, corrosivity, reaction with water, thermal-hydraulics, chemical toxicity etc. are studied by investigating some facilities utilized and researched really for lead or lead-bismuth. And, furthermore, polonium evaporation rate and bismuth resource are investigated. Main results obtained are as follows: (1) In a refinery, there are enough employment experience for liquid Pb-Bi in period of about 17 years and not corrosion for the thermal conductive materials (1Cr-0.5Mo steel) used under the condition of natural convection with temperature around 400degC. (2) In Russia, extensive experience in the use as Russian submarines and in R and D during about 50 years are available. And as a result, it will be able to lead approximately zero corrosion for Cr-Si materials by adjusting oxygen film with oxygen concentration control between 10{sup -7} to 10{sup -5}% mass. However, the corrosion data are not enough systematically collected involving them in radiation dose field. (3) In liquid-dropping experiment, it is shown that interaction between water and high temperature liquid Pb-Bi is reduced steeply with rising of atmosphere pressure. But, in order to design the second circuit removal model of ADS, the interaction should be evaluated by water continuous injection experiment. (4) Polonium forms PbPo in Pb-Bi, and the evaporation rate become less three factor than that of Po, and furthermore, the rate decreases in the atmosphere. The effects of Po on employee and environment

  3. Indium sulfide buffer/CIGSSe interface engineering: Improved cell performance by the addition of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Allsop, N.A. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany)]. E-mail: allsop@hmi.de; Camus, C. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Haensel, A. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Gledhill, S.E. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Lauermann, I. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Lux-Steiner, M.C. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Fischer, Ch.-H. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany)

    2007-05-31

    Indium sulfide buffer layers deposited by the spray-ion layer gas reaction (Spray-ILGAR) technique are a viable alternative to the traditional cadmium sulfide buffer layer in thin film solar cells. In the present work we report on the results of manipulating the absorber/buffer interface between the chalcopyrite Cu(In,Ga)(S,Se){sub 2} absorber (CIGSSe) and the indium sulfide buffer. It is shown that the deposition of a small amount of zinc sulfide at the absorber/buffer interface can be used to increase the open circuit voltage. A small but significant increase of 20 mV (up to 580 mV), as compared to the pure indium sulfide buffered cells is possible leading to an increase in the overall efficiency.

  4. Magnetic anisotropies in ultrathin bismuth iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Elena, E-mail: popova@physique.uvsq.fr [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Franco Galeano, Andres Felipe [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Deb, Marwan [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Warot-Fonrose, Bénédicte [Centre d' Elaboration de Matériaux et d' Etudes Structurales (CEMES), CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS–Universidad de Zaragoza (Spain); Kachkachi, Hamid [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Gendron, François [Institut des NanoSciences de Paris (INSP), CNRS/Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Boîte courrier 840, 75252 Paris Cedex 05 (France); Ott, Frédéric [Laboratoire Léon Brillouin (LLB), CNRS/CEA, Bâtiment 563, CEA Saclay, 91191 Gif sur Yvette Cedex (France); and others

    2013-06-15

    Ultrathin bismuth iron garnet Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi{sub 3}Fe{sub 5}O{sub 12} films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi{sub 3}Fe{sub 5}O{sub 12} were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed.

  5. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Science.gov (United States)

    Ciobanu, Gabriela; Bargan, Ana Maria; Luca, Constantin

    2015-11-01

    New bismuth-substituted hydroxyapatite [Ca10- x Bi x (PO4)6(OH)2 where x = 0-2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12-25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

  6. Preparation and characterization of nanocrystalline powders of bismuth vanadate

    Energy Technology Data Exchange (ETDEWEB)

    Shantha, K.; Varma, K.B.R. [Indian Inst. of Science, Bangalore (India). Materials Research Centre

    1999-05-31

    The influence of mechanical activation on the formation of Bi{sub 2}VO{sub 5.5}, bismuth vanadate (BiV) phase, was investigated by ball-milling a stoichiometric mixture of bismuth oxide and vanadium pentoxide. The structural evolution of the desired BiV phase, via an intermediate BiVO{sub 4} phase, was investigated using X-ray powder diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). Milling for 54h yielded monophasic {gamma}-BiV powders with an average crystallite size of 30 nm. The electron paramagnetic resonance (EPR) peaks associated with the V{sup 4+} ions are stronger and broader in nanocrystalline (n) BiV than in the conventionally prepared microcrystalline (m) BiV, suggesting that a significant portion of V{sup 5+} has been transformed to V{sup 4+} during milling. The optical bandgap of n-BiV was found to be higher than that of m-BiV. High density (97% of the theoretical density), fine-grained (average grain-size of 2 {mu}m) ceramics with uniform grain-size distribution could be fabricated using n-BiV powders. These fine-grained ceramics exhibit improved dielectric, pyro and ferroelectric properties. (orig.) 29 refs.

  7. Superconductivity in Bismuth. A New Look at an Old Problem

    Science.gov (United States)

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan’s formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy. PMID:26815431

  8. Synthesis and characterization of bismuth alkaline titanate powders

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.mx [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Dominguez-Crespo, M.A. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Hernandez-Perez, M.A. [ESIQIE, Metalurgia, Instituto Politecnico Nacional, Mexico, D. F (Mexico); Garcia-Zaleta, D.S. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Brachetti-Sibaja, S.B. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo esq. Sor Juana Ines de la Cruz s/n Col. Los Mangos C.P.89440 Cd. Madero Tamaulipas (Mexico)

    2011-06-15

    In this work, samples of bismuth alkaline titanate, (K{sub 0.5}Na{sub 0.5}){sub (2-x/2)}Bi{sub (x/6)}TiO{sub 3}, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and {alpha} = 59.48{sup o}. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  9. Genotoxic effects of bismuth (III oxide nanoparticles by comet assay

    Directory of Open Access Journals (Sweden)

    Reecep Liman

    2015-06-01

    Full Text Available Bismuth oxide is one of the important transition metal oxides and it has been intensively studied due to their peculiar characteristics (semiconductor band gap, high refractive index, high dielectric permittivity, high oxygen conductivity, resistivity, photoconductivity and photoluminescence etc.. Therefore, it is used such as microelectronics, sensor technology, optical coatings, transparent ceramic glass manufacturing, nanoenergetic gas generator, biosensor for DNA hybridization, potential immobilizing platforms for glucose oxidase and polyphenol oxidase, fuel cells, a additive in paints, an astringent in a variety of medical creams and topical ointments, and for the determination of heavy metal ions in drinking water, mineral water and urine. In addition this, Bismuth (III oxide nanoparticles (BONPs are favorable for the biomolecules adsorption than regular sized particles because of their greater advantages and novel characteristics (much higher specific surface, greater surface free energy, and good electrochemical stability etc.. Genotoxic effects of BONPs were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of BONPs at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was also observed at all concentrations of BONPs except 12.5 ppm by Comet assay. The results were also analyzed statistically by using SPSS for Windows; Duncan’s multiple range test was performed. These result indicate that BONPs exhibit genotoxic activity in A. cepa root meristematic cells.

  10. Nonproportionality in the scintillation light yield of bismuth germanate

    CERN Document Server

    Gentile, T R; Breuer, H; Chupp, T E; Coakley, K J; Cooper, R L; Nico, J S; O'Neill, B

    2015-01-01

    We present measurements of nonproportionality in the scintillation light yield of bismuth germanate (BGO) for gamma-rays with energies between 6 keV and 662 keV. The scintillation light was read out by avalanche photodiodes (APDs) with both the BGO crystals and APDs operated at a temperature of approximately 90 K. Data were obtained using radioisotope sources to illuminate both a single BGO crystal in a small test cryostat and a 12-element detector in a neutron radiative beta-decay experiment. In addition one datum was obtained in a 4.6 T magnetic field based on the bismuth K x-ray escape peak produced by a continuum of background gamma rays in this apparatus. These measurements and comparison to prior results were motivated by an experiment to study the radiative decay mode of the free neutron. The combination of data taken under different conditions yields a reasonably consistent picture for BGO nonproportionality that should be useful for researchers employing BGO detectors at low gamma ray energies.

  11. Phase transition of solid bismuth under high pressure

    Science.gov (United States)

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan

    2016-10-01

    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  12. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    Science.gov (United States)

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling

  13. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose new designs of plasmonic modulators, which can beused for dynamic signal switching in photonic integrated circuits. We studyperformance of a plasmonic waveguide modulator with bismuth ferrite as atunable material. The bismuth ferrite core is sandwiched between metalplates (metal...... modulation in both phase andamplitude control schemes. Due to high field confinement between themetal layers, existence of mode cut-offs for certain values of the corethickness, and near-zero material losses in bismuth ferrite, efficientmodulation performance is achieved. For the phase control scheme...

  14. Is the ultra-fast transformation of bismuth non-thermal?

    CERN Document Server

    Gamaly, E G

    2009-01-01

    Transient state of femtosecond laser excited bismuth has been studied by various groups with time-resolved optical, x-ray, and electron probes at the deposited energy density from below through up to several times the equilibrium enthalpy of melting. However, the interpretations of the experimental results are controversial: the optical probes reveal the absence of transition to the melting phase while the authors of x-ray and electron diffraction experiments claim the observation of ultrafast non-thermal melting. The presented analysis, based on temperature dependence of bismuth optical properties, unequivocally shows a purely thermal nature of all the observed fs-laser induced transformations in bismuth.

  15. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE)

    Science.gov (United States)

    Dossi, Carlo; Monticelli, Damiano; Pozzi, Andrea; Recchia, Sandro

    2016-01-01

    Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors) will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance. PMID:27455338

  16. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE

    Directory of Open Access Journals (Sweden)

    Carlo Dossi

    2016-07-01

    Full Text Available Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance.

  17. A study of the stability of cadmium sulfide/copper sulfide and cadmium sulfide copper-indium-diselenide solar cells

    Science.gov (United States)

    Noel, G.; Richard, N.; Gaines, G.

    1984-08-01

    Groups of high efficiency cadmium sulfide/copper sulfide solar cells were exposed to combinations of stresses designed to isolate and accelerate intrinsic degradation mechanisms. Stresses included elevated temperature, illumination intensity, and cell loading conditions. All stress exposures and tests were conducted in a benign (high purity argon) atmosphere. Two primary intrinsic modes of degradation were identified: degradation of the open circuit voltage under continuous illumination and nonzero loading was found to be self recovering upon interruption of illumination or upon shorting or reverse biasing the cells. It was attributed to traps in the depletion region. Recovery from decay of light generated current was not spontaneous but could be partially accomplished by annealing in a reducing (hydrogen) environment. It was attributed to changes in the stoichiometry of the copper sulfide under the influence of electric fields and currents.

  18. Sulfide capacities of fayalite-base slags

    Science.gov (United States)

    Simeonov, S. R.; Sridhar, R.; Toguri, J. M.

    1995-04-01

    The sulfide capacities of fayalite-base slags were measured by a gas-slag equilibration technique under controlled oxygen and sulfur potentials similar to those encountered in the pyrometallurgical processing of nonferrous metals. The oxygen pressure range was from 10-9.5 to 10-11 MPa and the sulfur pressure range from 10-3 to 10-4.5 MPa, over a temperature range of 1473 to 1623 K. The slags studied were FeO-SiO2 at silica saturation and those with addition of CaO, MgO, and Al2O3 to determine their effect on sulfide capacities. For these slags, the sulfide capacities were found to vary from 10-3.3 to 10-5. The sulfide capacities increased with increasing temperature from 1473 to 1623 K. A comparison of the reported plant data on sulfur content of industrial slags shows good agreement with the present experimental results. The present data will be useful in estimating metal losses in slag due to metal sulfide entrainment in nonferrous smelters.

  19. Solar thermal extraction of copper from sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, L.; Guesdon, C.; Sturzenegger, M.

    2003-03-01

    With the aim to develop a solar-driven process for the extraction of copper from sulfide concentrates re-search on the decomposition of copper sulfides under inert atmospheres has been initiated. Thermogravimetric measurements on chalcocite (Cu{sub 2}S) revealed that copper is formed already at 1823 K. Chalcopyrite (CuFeS{sub 2}) also disintegrates at this temperature, although at a lower rate. Copper and iron have been identified in the solid residue. The results confirm the feasibility of copper extraction by direct decomposition of sulfides under atmospheric pressure. The decomposition under inert atmosphere prevents generation of SO{sub 2}, and is beneficial to the removal of volatile impurities. Chemical equilibrium calculations for CuFeS{sub 2} contaminated with enargite (Cu{sub 3}AsS{sub 4}) have shown that the absence of an oxidic slag allows for a complete evaporation of arsenic and subsequent separation. (author)

  20. Sulfide and methane production in sewer sediments.

    Science.gov (United States)

    Liu, Yiwen; Ni, Bing-Jie; Ganigué, Ramon; Werner, Ursula; Sharma, Keshab R; Yuan, Zhiguo

    2015-03-01

    Recent studies have demonstrated significant sulfide and methane production by sewer biofilms, particularly in rising mains. Sewer sediments in gravity sewers are also biologically active; however, their contribution to biological transformations in sewers is poorly understood at present. In this study, sediments collected from a gravity sewer were cultivated in a laboratory reactor fed with real wastewater for more than one year to obtain intact sediments. Batch test results show significant sulfide production with an average rate of 9.20 ± 0.39 g S/m(2)·d from the sediments, which is significantly higher than the areal rate of sewer biofilms. In contrast, the average methane production rate is 1.56 ± 0.14 g CH4/m(2)·d at 20 °C, which is comparable to the areal rate of sewer biofilms. These results clearly show that the contributions of sewer sediments to sulfide and methane production cannot be ignored when evaluating sewer emissions. Microsensor and pore water measurements of sulfide, sulfate and methane in the sediments, microbial profiling along the depth of the sediments and mathematical modelling reveal that sulfide production takes place near the sediment surface due to the limited penetration of sulfate. In comparison, methane production occurs in a much deeper zone below the surface likely due to the better penetration of soluble organic carbon. Modelling results illustrate the dependency of sulfide and methane productions on the bulk sulfate and soluble organic carbon concentrations can be well described with half-order kinetics.

  1. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    Science.gov (United States)

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  2. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    Science.gov (United States)

    Sepulveda-Guzman, S.; Elizondo-Villarreal, N.; Ferrer, D.; Torres-Castro, A.; Gao, X.; Zhou, J. P.; Jose-Yacaman, M.

    2007-08-01

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  3. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S; Elizondo-Villarreal, N; Ferrer, D; Torres-Castro, A; Gao, X; Zhou, J P; Jose-Yacaman, M [Chemical Engineering Department and Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-08-22

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  4. Potentiation of the action of metronidazole on Helicobacter pylori by omeprazole and bismuth subcitrate

    DEFF Research Database (Denmark)

    Andersen, L P; Colding, H; Kristiansen, J E

    2000-01-01

    Treatment failures using triple therapy that include metronidazole, are common in patients infected with metronidazole-resistant Helicobacter pylori in the gastric mucosa. Higher eradication rates in such patients have been described when treatment regimens include bismuth salts compared...

  5. Three-component synthesis of amidoalkyl naphthols catalyzed by bismuth(Ⅲ) nitrate pentahydrate

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Yan Liang; Ting Ting Zhang; Jing Jing Gao

    2012-01-01

    Bismuth(Ⅲ) nitrate pentahydrate catalyzed the three-component condensation of β-naphthol,aldehydes and amines/urea under solvent-free conditions to afford the corresponding amidoalkyl naphthols in excellent yields.

  6. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [Los Alamos National Laboratory

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  7. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  8. Modeling of Sulfide Microenvironments on Mars

    Science.gov (United States)

    Schwenzer, S. P.; Bridges, J. C.; McAdam, A.; Steer, E. D.; Conrad, P. G.; Kelley, S. P.; Wiens, R. C.; Mangold, N.; Grotzinger, J.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.

    2016-01-01

    Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.

  9. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming

    1998-01-01

    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......, it was deduced that they were not deposited but instead grew within the deposit. The presence of unburned char particles within the deposits supports the concept that a reducing environment existed in the deposits. Two processes are proposed for explaining the existence of pyrrhotite crystals within a deposit...

  10. Use of biogenic sulfide for ZnS precipitation

    NARCIS (Netherlands)

    Esposito, G.; Veeken, A.; Weijma, J.; Lens, P.N.L.

    2006-01-01

    A 600 ml continuously stirred tank reactor was used to assess the performance of a zinc sulfide precipitation process using a biogenic sulfide solution (the effluent of a sulfate-reducing bioreactor) as sulfide source. In all experiments, a proportional-integral (PI) control algorithm was used to co

  11. A physiologically based kinetic model for bacterial sulfide oxidation

    NARCIS (Netherlands)

    Klok, J.B.; Graaff, M. de; Bosch, P.L. van den; Boelee, N.C.; Keesman, K.J.; Janssen, A.J.W.M.

    2013-01-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concl

  12. Effects of bismuth vandate and anthraquinone dye on the photodegradation of polycarbonate

    OpenAIRE

    Saron,Clodoaldo; Felisberti, Maria Isabel; Zulli, Fabio; Giordano, Marco

    2007-01-01

    Both inorganic and organic compounds, such as oxides or salts of metals and polycyclic and azo compounds, are frequently used as colorants in polymeric systems. Bismuth vanadate pigment has been used as an environmentally friendly alternative for cadmium containing pigments and anthraquinone dyes represent a polycyclic colorant class of wide use in polymers. Besides their coloring properties, both bismuth vanadate and anthraquinone present photocatalytic activity or photochemical properties t...

  13. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Science.gov (United States)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  14. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator

    OpenAIRE

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose new designs of plasmonic modulators, which can be utilized for dynamic signal switching in photonic integrated circuits. We study performance of plasmonic waveguide modulator with bismuth ferrite as an active material. The bismuth ferrite core is sandwiched between metal plates (metal-insulator-metal configuration), which also serve as electrodes so that the core changes its refractive index under applied voltage by means of partial in-plane to out-of-plane reorientation of ferroel...

  15. Hydrogen photoproduction from hydrogen sulfide on Bi{sub 2}S{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bessekhouad, Y.; Trari, M. [Laboratoire de Stockage et de Valorisation des Energies Renouvelables, Faculte de Chimie, USTHB B.P. 32 Algiers (Algeria); Mohammedi, M. [Ecole Polytechnique EMP,BP 17 Algiers (Algeria)

    2002-07-01

    Films of polycrystalline Bi{sub 2}S{sub 3} have been prepared onto bismuth and platinum substrates by electrodeposition from an aqueous sulfide bath. The films were thin, uniform and well adhered. Bi{sub 2}S{sub 3} is a direct band gap semiconductor with a value of 1.28eV optimally matched with the solar spectrum. The photoelectrochemical study was undertaken for the generation of hydrogen by using illuminated n-Bi{sub 2}S{sub 3} particles; it was found that hydrogen evolution depends highly on the synthesis method of powder. Impregnation of platinum onto Bi{sub 2}S{sub 3} shows a production enhancement of about 25%. The most active photocatalyst, prepared by a solvent thermal process and loaded with Pt in 0.1MS{sup 2-} alkaline electrolyte, yields 2.13x10{sup -2}mlmg{sup -1} of H{sub 2} after 4h of irradiation with the visible output of a 500W halogen lamp.

  16. Exhaustive removal of chloride ions from water with the aid of a bismuth-based metallic sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, L.N.; Ushenko, V.G.

    1988-04-20

    The authors discuss the sorption properties of sorbents based on metallic bismuth, in relation to a solution of the problem of exhaustive removal of chloride ions from water. Metallic sorbents with bismuth contents of 10 mass % on polytetrafluoroethylene were used. The sorption properties of sorbents based on metallic bismuth and on Bi/sub 2/O/sub 3/ were studied under dynamic conditions. Their results show that bismuth-based metal sorbents and sorbents based on bismuth oxide can be used as inorganic anion-exchangers. In order to demonstrate the possibility of selective separation of chloride ions from solutions they determined the dynamic exchange capacity for chloride ions at various nitrate-ion concentrations. The use of the proposed sorbents based on metallic bismuth for exhaustive purification of water lowers the chloride-ion concentration in the water sharply in comparison with the level achieved by ion-exchange purification with the aid of organic anion-exchangers.

  17. Fabrication and characterization of grain-oriented bismuth vanadate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shantha, K.; Varma, K.B.R. [Indian Inst. of Science, Bangalore (India). Materials Research Centre

    1997-11-01

    Grain-oriented (GO; 79%), high density (96% of the theoretical value) ceramics of bismuth vanadate, Bi{sub 2}VO{sub 5.5}, have been fabricated via a liquid-phase-aided two-stage sintering process. Scanning electron microscopy (SEM) was employed to monitor the crystallite size and the morphology of the starting powders and the microstructure of the sintered ceramics. X-ray diffraction (XRD) studies were carried out to verify the grain-orientation in the ceramics. The dielectric constant and the conductivity studies carried out along the directions perpendicular and parallel to the pressing axis show significant anisotropies (1.7 and 5.3, respectively, at 300 K). The grain-oriented ceramics were found to exhibit improved ferroelectric properties, with higher remnant polarization (P{sub r}) and lower coercive field (E{sub c}) than those of the randomly oriented (RO) ceramics.

  18. High ionic conductivity in confined bismuth oxide-based heterostructures

    Science.gov (United States)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens; Pryds, Nini

    2016-12-01

    Bismuth trioxide in the cubic fluorite phase (δ -Bi2O3 ) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure δ -Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made of alternative layers of δ -Bi2O3 and Yttria Stabilized Zirconia (YSZ), deposited by pulsed laser deposition. The resulting [δ -Bi2O3 /YSZ ] heterostructures are found to be stable over a wide temperature range (500-750 °C) and exhibits stable high ionic conductivity over a long time comparable to the value of the pure δ -Bi2O3 , which is approximately two orders of magnitude higher than the conductivity of YSZ bulk.

  19. Structural investigation of Zn doped sodium bismuth borate glasses

    Science.gov (United States)

    Bhatia, V.; Kumar, D.; Singh, D.; Singh, S. P.

    2016-05-01

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na2O:15Bi2O3:70B2O3 (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO3 & BO4 structural units) have been observed.

  20. High thermoelectric performance of the distorted bismuth(110) layer.

    Science.gov (United States)

    Cheng, L; Liu, H J; Zhang, J; Wei, J; Liang, J H; Jiang, P H; Fan, D D; Sun, L; Shi, J

    2016-07-14

    The thermoelectric properties of the distorted bismuth(110) layer are investigated using first-principles calculations combined with the Boltzmann transport equation for both electrons and phonons. To accurately predict the electronic and transport properties, the quasiparticle corrections with the GW approximation of many-body effects have been explicitly included. It is found that a maximum ZT value of 6.4 can be achieved for n-type systems, which essentially stemmed from the weak scattering of electrons. Moreover, we demonstrate that the distorted Bi layer retains high ZT values in relatively broad regions of both temperature and carrier concentration. Our theoretical work emphasizes that the deformation potential constant characterizing the electron-phonon scattering strength is an important paradigm for searching high thermoelectric performance materials.

  1. Compatibility of structural materials with liquid bismuth, lead, and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, J.R. [Brookhaven National Lab., Upton, NY (United States)

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies, the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.

  2. Spark plasma sintering of hydrothermally synthesized bismuth ferrite

    Directory of Open Access Journals (Sweden)

    Zorica Branković

    2016-12-01

    Full Text Available Bismuth ferrite, BiFeO3 (BFO, powder was synthesized by hydrothermal method from Bi(NO33·5 H2O and Fe(NO33·9 H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS. The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric and magnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630 °C for 20 min, under uniaxial pressure of 90 MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

  3. High ionic conductivity in confined bismuth oxide-based heterostructures

    Directory of Open Access Journals (Sweden)

    Simone Sanna

    2016-12-01

    Full Text Available Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3 exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure δ-Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made of alternative layers of δ-Bi2O3 and Yttria Stabilized Zirconia (YSZ, deposited by pulsed laser deposition. The resulting [δ-Bi2O3/YSZ] heterostructures are found to be stable over a wide temperature range (500-750 °C and exhibits stable high ionic conductivity over a long time comparable to the value of the pure δ-Bi2O3, which is approximately two orders of magnitude higher than the conductivity of YSZ bulk.

  4. Formic Acid Oxidation at Platinum-Bismuth Clusters

    DEFF Research Database (Denmark)

    Lovic, J. D.; Stevanovic, S. I.; Tripkovic, D. V.

    2014-01-01

    Formic acid oxidation was studied on platinum-bismuth deposits on glassy carbon (GC) substrate. The catalysts of equimolar ratio were prepared by potentiostatic deposition using chronocoulometry. Bimetallic structures obtained by two-step process, comprising deposition of Bi followed by deposition...... of Pt, were characterized by AFM spectroscopy which indicated that Pt crystallizes preferentially onto previously formed Bi particles. The issue of Bi leaching (dissolution) from PtBi catalysts, and their catalytic effect alongside the HCOOH oxidation is rather unresolved. In order to control Bi...... dissolution, deposits were subjected to electrochemical oxidation, in the relevant potential range and supporting electrolyte, prior to use as catalysts for HCOOH oxidation. Anodic striping charges indicated that along oxidation procedure most of deposited Bi was oxidized. ICP mass spectroscopy analysis...

  5. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Klaus Reichmann

    2015-12-01

    Full Text Available The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  6. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    Science.gov (United States)

    Kulsi, Chiranjit; Kargupta, Kajari; Banerjee, Dipali

    2016-04-01

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S1) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S2). But due to a substantial increase in the electrical conductivity (σ) of the film (S2) over the pellet (S1), the power factor and the figure of merit is higher for sample S2 than the sample S1 at room temperature.

  7. Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders

    Science.gov (United States)

    Beck, Jan; Alvarado, Manuel; Nemir, David; Nowell, Mathew; Murr, Lawrence; Prasad, Narasimha

    2012-06-01

    Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results.

  8. A novel synthesis of perovskite bismuth ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Alexandre Z. Simões

    2011-09-01

    Full Text Available Microwave assisted hydrothermal (MAH method was used to synthesize crystalline bismuth ferrite (BiFeO3 nanoparticles (BFO at temperature of 180°C with times ranging from 5 min to 1 h. For comparison, BFO powders were also crystallized by the soft chemistry route in a conventional furnace at a temperature of 850°C for 4 h. X-ray diffraction (XRD results verified the formation of perovskite BFO crystallites while infrared data showed no traces of carbonate. Field emission scanning microcopy (FE/SEM revealed a homogeneous size distribution of nanometric BFO powders. MAH method produced nanoparticles of 96% pure perovskite, with a size of 130 nm. These results are in agreement with Raman scattering values which show that the MAH synthesis route is rapid and cost effective. This method could be used as an alternative to other chemical methods in order to obtain BFO nanoparticles.

  9. Bismuth coatings deposited by the pulsed dc sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M. F.; Olaya, J. J.; Alfonso, J. E., E-mail: jealfonsoo@unal.edu.co [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Ciencia de Materiales y Superficies, Carrera 45 No. 26-85, Edif. Uriel Gutierrez, Bogota D. C. (Colombia)

    2013-08-01

    In this work we present the results obtained from the deposition of nano-structured bismuth coatings through Dc pulsed unbalanced magnetron sputtering. The coatings were grown on two substrates: silicon and AISI steel 316 L. The microstructure of the Bi coatings grown on silicon and the corrosion resistance of the Bi coatings grown on AISI steel were evaluated. The microstructure was evaluated by X-ray diffraction and the corrosion resistance was characterized by means of polarization potentiodynamic and electrochemical impedance spectroscopy. Finally the morphology of the coatings was evaluated through scanning electronic microscopy. The X-ray diffraction analysis indicates that the coatings are polycrystalline; the corrosion resistance tests indicate that the films with better corrosion resistance were deposited at 40 khz. Scanning electron microscopy micrographs show that the coatings are grown as granular form. (Author)

  10. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  11. Adverse events with bismuth salts for Helicobacter pylori eradication:Systematic review and meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Alexander C Ford; Peter Malfertheiner; Monique Giguére; José Santana; Mostafizur Khan; Paul Moayyedi

    2008-01-01

    AIM:To assess the safety of bismuth used in Helicobacter pylori (H pylori) eradication therapy regimens.METHODS:We conducted a systematic review and meta-analysis.MEDLINE and EMBASE were searched (up to October 2007) to identify randomised controlled trials comparing bismuth with placebo or no treatment,or bismuth salts in combination with antibiotics as part of eradication therapy with the same dose and duration of antibiotics alone or,in combination,with acid suppression.Total numbers of adverse events were recorded.Data were pooled and expressed as relative risks with 95% confidence intervals (CI).RESULTS:We identified 35 randomised controlled trials containing 4763 patients.There were no serious adverse events occurring with bismuth therapy.There was no statistically significant difference detected in total adverse events with bismuth [relative risk (RR)=1.01;95% CI:0.87-1.16],specific individual adverse events,with the exception of dark stools (RR = 5.06;95% CI:1.59-16.12),or adverse events leading to withdrawal of therapy (RR = 0.86;95% CI:0.54-1.37).CONCLUSION:Bismuth for the treatment of H pylori is safe and well-tolerated.The only adverse event occurring significantly more commonly was dark stools.

  12. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Science.gov (United States)

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Diaz, David; Arevalo-Niño, Katiushka; Garza-Enriquez, Marianela; De la Garza-Ramos, Myriam A; Cabral-Romero, Claudio

    2012-01-01

    Background and methods Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities. Results Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM. Conclusion These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation. PMID:22619547

  13. Wine as a digestive aid: comparative antimicrobial effects of bismuth salicylate and red and white wine.

    Science.gov (United States)

    Weisse, M. E.; Eberly, B.; Person, D. A.

    1995-01-01

    OBJECTIVE--To test whether red and white wines are as potent as bismuth salicylate against the bacteria responsible for traveller's diarrhoea to try to explain wine's legendary reputation as a digestive aid. DESIGN--Red and white wine, bismuth salicylate, two solutions containing ethanol (diluted absolute ethanol and tequila), and sterilised water were tested against suspensions of salmonella, shigella, and Escherichia coli to determine relative antibacterial activity. Suspensions of 10(7) colony forming units of shigella, salmonella, and E coli were added to the test solutions and plated on standard nutrient agar at 0, 10, 20, 30, 60, and 120 minutes and 24 hours. Dilutions of wine and bismuth salicylate were then tested with E coli as the test bacterium, and the experiment repeated. MAIN OUTCOME MEASURES--Exposure times necessary for eradication of organisms for the different solutions; decreases in colony counts at the different exposure times for dilutions of wine and bismuth salicylates. RESULTS--Undiluted wine and bismuth salicylate were both effective in reducing the number of viable organisms (by 10(5)-10(6) colony forming units) after 20-30 minutes. Dilutions of wine were much more effective in decreasing colony counts than were similar dilutions of bismuth salicylate. CONCLUSION--The antibacterial property of wine is largely responsible for wine's reputation as a digestive aid. Images p1659-a PMID:8541747

  14. Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films.

    Science.gov (United States)

    Walker, Emily S; Na, Seung Ryul; Jung, Daehwan; March, Stephen D; Kim, Joon-Seok; Trivedi, Tanuj; Li, Wei; Tao, Li; Lee, Minjoo L; Liechti, Kenneth M; Akinwande, Deji; Bank, Seth R

    2016-11-09

    We report the first direct dry transfer of a single-crystalline thin film grown by molecular beam epitaxy. A double cantilever beam fracture technique was used to transfer epitaxial bismuth thin films grown on silicon (111) to silicon strips coated with epoxy. The transferred bismuth films retained electrical, optical, and structural properties comparable to the as-grown epitaxial films. Additionally, we isolated the bismuth thin films on freestanding flexible cured-epoxy post-transfer. The adhesion energy at the bismuth/silicon interface was measured to be ∼1 J/m(2), comparable to that of exfoliated and wet transferred graphene. This low adhesion energy and ease of transfer is unexpected for an epitaxially grown film and may enable the study of bismuth's unique electronic and spintronic properties on arbitrary substrates. Moreover, this method suggests a route to integrate other group-V epitaxial films (i.e., phosphorus) with arbitrary substrates, as well as potentially to isolate bismuthene, the atomic thin-film limit of bismuth.

  15. Polonium problem in lead-bismuth flow target

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, D.V.; Yefimov, E.I.; Bugreev, M.I. [State Scientific Centre of Russian Federation-Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-06-01

    Alpha-active polonium nuclides Po198 - Po210 are formed in a lead-bismuth target as results of reactions Bi{sup 209}(n,{gamma})Bi{sup 210} {yields} Po{sup 210}, Bi{sup 209}(p,xn)Po{sup 210} {yields} Po{sup 210 {minus} x} (x = 1-12), Pb{sup 208}({alpha},xn) {yields} Po{sup 210 {minus} x + 2} (x = 2-14). The most important nuclides are Po-210 (T{sub {1/2}}=138.4 day), Po-209 (T{sub {1/2}}=102 years) and Po-208 (T{sub {1/2}}=2.9 years). Polonium activity of the circuit for SINQ - conditions is about 15,000 Ci after 1-year operation. Polonium radiation hazard is connected with its output from the coolant and formation of aerosol and surface alpha-activity after the circuit break-down for repair works or in accidents. One of the important issues of polonium removal system creation is containing and storing polonium removed. Its storage in solidified alkaline is not expedient because of secondary neutron formation as a result of ({alpha},n) - reaction on oxygen and sodium nucleus. The estimations carried out demonstrated that by polonium concentration {approx} 100 Ci/l neutron current on the container surface can reach {approx} 10{sup 4}n/(cm{sup 2}s). Concentration and storage of polonium in solidified lead-bisumth seems the most convenient. The calculations demonstrated that in a 100 l container 50,000 Ci of polonium can be stored (as much as 3 times more than 1-year polonium product in SINQ-conditions) under temperature in the container less than melting point of lead bismuth (the wall temperature is about 100{degrees}C).

  16. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.

    NARCIS (Netherlands)

    Tangerman, A.

    2009-01-01

    This review deals with the measurement of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH

  17. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices

    NARCIS (Netherlands)

    Tangerman, Albert

    2009-01-01

    This review deals with the measurement of the volatile Sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH

  18. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco

    DEFF Research Database (Denmark)

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild;

    2015-01-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree...... such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers...... (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit...

  19. Comparison of Hydrogen Sulfide Analysis Techniques

    Science.gov (United States)

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  20. Microbial Fuel Cells for Sulfide Removal

    NARCIS (Netherlands)

    Rabaey, K.; Sompel, van de S.; Maignien, L.; Boon, N.; Aelterman, P.; Clauwaert, P.; Schamphelaire, de L.; The Pham, H.; Vermeulen, J.; Verhaege, M.; Lens, P.N.L.; Verstraete, W.

    2006-01-01

    Thus far, microbial fuel cells (MFCs) have been used to convert carbon-based substrates to electricity. However, sulfur compounds are ubiquitously present in organic waste and wastewater. In this study, a MFC with a hexacyanoferrate cathodic electrolyte was used to convert dissolved sulfide to eleme

  1. 30 CFR 250.490 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... been confirmed. Well-control fluid means drilling mud and completion or workover fluid as appropriate... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Hydrogen Sulfide § 250.490 Hydrogen... section when conducting drilling, well-completion/well-workover, and production operations in zones...

  2. Hydrogen Sulfide in Preeclampsia : Potential Therapeutic Implications

    NARCIS (Netherlands)

    Holwerda, Kim

    2015-01-01

    The thesis provide insights into the production and possible therapeutic effect of the gaseous molecule hydrogen sulfide (H2S) in preeclampsia (PE). H2S is an important molecule in the (human) body. It is among others involved in blood pressure regulation, stimulation of vascular growth and modulati

  3. Nucleation of mercury sulfide by dealkylation

    Science.gov (United States)

    Enescu, Mironel; Nagy, Kathryn L.; Manceau, Alain

    2016-12-01

    Metal sulfide minerals are assumed to form naturally at ambient conditions via reaction of a metallic element with (poly)sulfide ions, usually produced by microbes in oxygen-depleted environments. Recently, the formation of mercury sulfide (β-HgS) directly from linear Hg(II)-thiolate complexes (Hg(SR)2) in natural organic matter and in cysteine solutions was demonstrated under aerated conditions. Here, a detailed description of this non-sulfidic reaction is provided by computations at a high level of molecular-orbital theory. The HgS stoichiometry is obtained through the cleavage of the S-C bond in one thiolate, transfer of the resulting alkyl group (R’) to another thiolate, and subsequent elimination of a sulfur atom from the second thiolate as a thioether (RSR’). Repetition of this mechanism leads to the formation of RS-(HgS)n-R chains which may self-assemble in parallel arrays to form cinnabar (α-HgS), or more commonly, quickly condense to four-coordinate metacinnabar (β-HgS). The mechanistic pathway is thermodynamically favorable and its predicted kinetics agrees with experiment. The results provide robust theoretical support for the abiotic natural formation of nanoparticulate HgS under oxic conditions and in the absence of a catalyst, and suggest a new route for the (bio)synthesis of HgS nanoparticles with improved technological properties.

  4. Platinum metals in magmatic sulfide ores

    Science.gov (United States)

    Naldrett, A.J.; Duke, J.M.

    1980-01-01

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. Copyright ?? 1980 AAAS.

  5. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  6. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with sca......Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most...

  7. Sulfide removal by moderate oxygenation of anaerobic sludge environments

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zee, F.P.; Villaverde, S.; Polanco, F. [Valladolid Univ., Valladolid (Spain). Dept. of Chemical Engineering; Garcia, P.A.

    2004-07-01

    Treating wastewater through anaerobic bioreactors results in the formation of hydrogen sulfide. The sulfide can be removed from the biogas by introducing air directly into the anaerobic bioreactor system. This study presents the results of batch experiments that provided a better insight into the fate of sulfur compounds and oxygen during microaerobic sulfide oxidation in granular sludge. It was shown that sulfide could be removed rapidly upon introduction of low amounts of oxygen to the sulfide-amended batch vials with granular sludge treating vinasse. Initially, the sulfide was oxidized to elemental sulfur, thiosulfate and polysulfide. Significant production of sulfate did not occur. The introduction of oxygen, however, could result in the growth of aerobic organic-chemical oxygen demand-oxidizing bacteria that compete with sulfide oxidation for oxygen. 6 refs., 1 tab., 1 fig.

  8. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman; Gassman, Paul L.; Engelhard, Mark H.; Lea, Alan S.; Rosso, Kevin M.

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Second derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.

  9. Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Naha, Pratap C; Zaki, Ajlan Al; Hecht, Elizabeth; Chorny, Michael; Chhour, Peter; Blankemeyer, Eric; Yates, Douglas M; Witschey, Walter R T; Litt, Harold I; Tsourkas, Andrew; Cormode, David P

    2014-12-14

    Bismuth nanoparticles have been proposed as a novel CT contrast agent, however few syntheses of biocompatible bismuth nanoparticles have been achieved. We herein report the synthesis of composite bismuth-iron oxide nanoparticles (BION) that are based on a clinically approved, dextran-coated iron oxide formulation; the particles have the advantage of acting as contrast agents for both CT and MRI. BION were synthesized and characterized using various analytical methods. BION CT phantom images revealed that the X-ray attenuation of the different formulations was dependent upon the amount of bismuth present in the nanoparticle, while T2-weighted MRI contrast decreased with increasing bismuth content. No cytotoxicity was observed in Hep G2 and BJ5ta cells after 24 hours incubation with BION. The above properties, as well as the yield of synthesis and bismuth inclusion efficiency, led us to select the Bi-30 formulation for in vivo experiments, performed in mice using a micro-CT and a 9.4 T MRI system. X-ray contrast was observed in the heart and blood vessels over a 2 hour period, indicating that Bi-30 has a prolonged circulation half-life. Considerable signal loss in T2-weighted MR images was observed in the liver compared to pre-injection scans. Evaluation of the biodistribution of Bi-30 revealed that bismuth is excreted via the urine, with significant concentrations found in the kidneys and urine. In vitro experiments confirmed the degradability of Bi-30. In summary, dextran coated BION are biocompatible, biodegradable, possess strong X-ray attenuation properties and also can be used as T2-weighted MR contrast agents.

  10. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  11. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2012-04-01

    Full Text Available Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities.Results: Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM.Conclusion: These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation.Keywords: zerovalent bismuth nanoparticles, antimicrobial agent, biofilm, Streptococcus mutans

  12. Sulfide, the first inorganic substrate for human cells.

    Science.gov (United States)

    Goubern, Marc; Andriamihaja, Mireille; Nübel, Tobias; Blachier, François; Bouillaud, Frédéric

    2007-06-01

    Hydrogen sulfide (H2S) is produced inside the intestine and is known as a poison that inhibits cellular respiration at the level of cytochrome oxidase. However, sulfide is used as an energetic substrate by many photo- and chemoautotrophic bacteria and by animals such as the lugworm Arenicola marina. The concentrations of sulfide present in their habitats are comparable with those present in the human colon. Using permeabilized colonic cells to which sulfide was added by an infusion pump we show that the maximal respiratory rate of colonocyte mitochondria in presence of sulfide compares with that obtained with succinate or L-alpha-glycerophosphate. This oxidation is accompanied by mitochondrial energization. In contrast, other cell types not naturally exposed to high concentration of sulfide showed much lower oxidation rates. Mitochondria showed a very high affinity for sulfide that permits its use as an energetic substrate at low micromolar concentrations, hence, below the toxic level. However, if the supply of sulfide exceeds the oxidation rate, poisoning renders mitochondria inefficient and our data suggest that an anaerobic mechanism involving partial reversion of Krebs cycle already known in invertebrates takes place. In conclusion, this work provides additional and compelling evidence that sulfide is not only a toxic compound. According to our study, sulfide appears to be the first inorganic substrate for mammalian cells characterized thus far.

  13. The Evolution of Sulfide Tolerance in the Cyanobacteria

    Science.gov (United States)

    Miller, Scott R.; Bebout, Brad M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Understanding how the function of extant microorganisms has recorded both their evolutionary histories and their past interactions with the environment is a stated goal of astrobiology. We are taking a multidisciplinary approach to investigate the diversification of sulfide tolerance mechanisms in the cyanobacteria, which vary both in their degree of exposure to sulfide and in their capacity to tolerate this inhibitor of photosynthetic electron transport. Since conditions were very reducing during the first part of Earth's history and detrital sulfides have been found in Archean sediments, mechanisms conferring sulfide tolerance may have been important for the evolutionary success of the ancestors of extant cyanobacteria. Two tolerance mechanisms have been identified in this group: (1) resistance of photosystem II, the principal target of sulfide toxicity; and (2) maintenance of the ability to fix carbon despite photosystem II inhibition by utilizing sulfide as an electron donor in photosystem I - dependent, anoxygenic photosynthesis. We are presently collecting comparative data on aspects of sulfide physiology for laboratory clones isolated from a variety of habitats. These data will be analyzed within a phylogenetic framework inferred from molecular sequence data collected for these clones to test how frequently different mechanisms of tolerance have evolved and which tolerance mechanism evolved first. In addition, by analyzing these physiological data together with environmental sulfide data collected from our research sites using microelectrodes, we can also test whether the breadth of an organism's sulfide tolerance can be predicted from the magnitude of variation in environmental sulfide concentration it has experienced in its recent evolutionary past and whether greater average sulfide concentration and/or temporal variability in sulfide favors the evolution of a particular mechanism of sulfide tolerance.

  14. Speciation of arsenic in sulfidic waters

    Directory of Open Access Journals (Sweden)

    Ford Robert G

    2003-03-01

    Full Text Available Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH2S from 10-7.5 to 10-3.0 M, ΣAs from 10-5.6 to 10-4.8 M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH30, and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10-4.3 M at neutral pH. Conversion from neutral As(OH30 to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions.

  15. Iron-sulfide redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  16. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... by the competition between chain‐branching and ‐propagating steps; modeling predictions are particularly sensitive to the branching fraction for the OCS + O reaction to form CO + SO or CO2 + S....

  17. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  18. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, M., E-mail: mar.floc@hotmail.com [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camps, E. [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camacho-López, M. [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Muhl, S. [Instituto de Investigación en Materiales (UNAM), Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, D.F., México (Mexico); and others

    2015-09-15

    Highlights: • Bismuth nanoparticles have been obtained by laser ablation of solids in liquids. • The technique allows controlling the size and concentration of the samples. • Bi np’s in base oils can improve the tribological characteristics of the lubricant. - Abstract: The improvement of the tribological properties of mineral base oils through the addition of bismuth nanoparticles as an additive, together with the idea of obtaining lubricants free of heavy metals, was evaluated. Bismuth nanoparticles were produced directly in the heavy and light viscosity mineral base oils (BS900 and BS6500) using the technique of laser ablation of solids immersed in liquids. Transmission electron microscopy measurements showed the presence of pure bismuth nanoparticles. Small Angle X-ray Scattering (SAXS) measurements showed that the average size of the nanoparticles was between 7 and 65 nm depending on the experimental conditions used. The tribological properties of the base oil with the bismuth nanoparticles additives were evaluated using a four-ball tester. Tests were performed using the base oil with and without Bi nanoparticles. It was observed that the coefficient of friction of the oil decrease with an increasing concentration of the nanoparticles. The results also showed that the wear rate was reduced when the Bi nanoparticle additives were used.

  19. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  20. Electrochemical study on determination of diffusivity, activity and solubility of oxygen in liquid bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Rajesh [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gnanasekaran, T. [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: gnani@igcar.ernet.in; Srinivasa, Raman S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2006-06-15

    Diffusivity of oxygen in liquid bismuth was measured by potentiostatic method and is given bylg(D{sub O}{sup Bi}/cm{sup 2}.s{sup -1})(+/-0.042)=-3.706-1377/(TK{sup -1})(804bismuth was determined by coulometric titrations and using the measured data standard free energy of dissolution of oxygen in liquid bismuth was derived for the reaction:1/2O{sub 2}(g)=[O]{sub Bi}(at.%)and is given by{delta}G{sub O(Bi)}{sup o}/(J.g-atomO{sup -1})(+/-720)=-108784+20.356TK{sup -1}(753bismuth was derived as a function of temperature and is given by the following expressions:lg(S/at%O)(+/-0.05)=-4476/TK{sup -1}+4.05(753bismuth is compared with the literature data.

  1. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanwen [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Hu Zhongai, E-mail: zhongai@nwnu.edu.c [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2010-12-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 {sup o}C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g{sup -1} (based on composite) is obtained at a specific current of 1 A g{sup -1} as compared with 71 F g{sup -1} for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g{sup -1} even at 10 A g{sup -1}. In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  2. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use.

    Science.gov (United States)

    Martirosyan, K S; Wang, L; Vicent, A; Luss, D

    2009-10-01

    Our experiments showed that the combustion of an Al-Bi2O3 nanoparticle mixture generated the highest pressure pulse among common nanothermite reactions and can potentially be used as a nanoenergetic gas generator. The combustion front propagation velocity and rate of energy release increased by up to three orders of magnitude when the particle size was reduced to a nanosize range for both the aluminum and the oxidizer. We developed a novel one-step (metal nitrate-glycine) combustion synthesis of nanostructured amorphous-like and highly crystalline bismuth trioxide nanoparticles. The combustion synthesis was conducted using a solution of molten bismuth nitrate as an oxidizer and glycine as a fuel. The glycine was completely combusted during the thermal decomposition of the bismuth nitrate pentahydrate and generated a temperature front that propagated through the sample. Increasing the fuel concentration increased the maximum combustion temperature from 280 to 1200 degrees C and the Bi2O3 particle size from 20 to 100 nm. The oxidizer/fuel ratio had a strong impact on the bismuth trioxide particle crystallinity. At low temperature (280 degrees C), amorphous-like bismuth trioxide nanoparticles formed, while at T > or =370 degrees C the structures were crystalline. A peak pressure of approximately 12 MPa and a thermal front propagating velocity of approximately 2500 m s(-1) were achieved during the combustion of an Al-Bi2O3 mixture containing 80 wt% of the synthesized Bi2O3 crystalline nanoparticles (size: 40-50 nm).

  3. How reliable are environmental data on 'orphan' elements? The case of bismuth concentrations in surface waters.

    Science.gov (United States)

    Filella, Montserrat

    2010-01-01

    Like all elements of the periodic table, bismuth is ubiquitously distributed throughout the environment as a result of natural processes and human activities. It is present as Bi(III) in environmental, biological and geochemical samples. Although bismuth and its compounds are considered to be non-toxic to humans, its increasing use as a replacement for lead has highlighted how little is known about its environmental and ecotoxicological behaviour. In this first critical review paper on the existing information on bismuth occurrence in natural waters, 125 papers on fresh and marine waters have been collated. Although the initial objective of this study was to establish the range of the typical concentrations of total dissolved bismuth in natural waters, this proved impossible to achieve due to the wide, and hitherto unexplained, dispersion of published data. Since analytical limitations might be one of the reasons underlying value dispersion, new analytical methods published since 2000--intended to be applied to natural waters--have also been reviewed. Disappointingly, the detection limits of the bulk of them are well above those required; they are thus of limited usefulness. Analysis of the existing information on bismuth in secondary references (i.e., books, review chapters) and on its chemical speciation in seawater revealed that the uncritical reproduction of old data is a widespread practice.

  4. Subsurface heaters with low sulfidation rates

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  5. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  6. Hydrogen sulfide prodrugs—a review

    Science.gov (United States)

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-01-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  7. Computational chemistry calculations of stability for bismuth nanotubes, fullerene-like structures and hydrogen-containing nanostructures.

    Science.gov (United States)

    Kharissova, Oxana V; Osorio, Mario; Vázquez, Mario Sánchez; Kharisov, Boris I

    2012-08-01

    Using molecular mechanics (MM+), semi-empirical (PM6) and density functional theory (DFT) (B3LYP) methods we characterized bismuth nanotubes. In addition, we predicted the bismuth clusters {Bi(20)(C(5V)), Bi(24)(C(6v)), Bi(28)(C(1)), B(32)(D(3H)), Bi(60)(C(I))} and calculated their conductor properties.

  8. Magnetic and Electrical Characteristics of Bismuth Ferrite, Depending on the Impurities, Method of Preparation and Size of the Nanoparticles

    Directory of Open Access Journals (Sweden)

    V.M. Sarnatsky

    2016-10-01

    Full Text Available The prospect of application of the multiferroics in devices and spintronics devices is shown. A comparative analysis of magnetic and dielectric properties of nanostructures based on bismuth ferrite which were synthesized by various ways was made. The results of studies of the structure and properties of the nanostructured bismuth ferrite powder, synthesized by combustion of nitrate - organic precursors, are presented.

  9. Redetermination of piperidinium hydrogen sulfide structure

    Science.gov (United States)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    The presence of adventitious water in a reaction between dicyclopentamethylene thiuram-disulfide (C5H10NCS2)(sub 2) and a picoline solution of tricyclopentadienyl indium(III) (C5H5)(sub 3). It resulted in the formation of piperidinium hydrogen sulfide (C5H13NS). The piperidinium hydrogen sulfide produced in this way was unambiguously characterized by X-ray crystallography. The structure determination showed that the piperidinium hydrogen sulfide crystal (MW = 119.23 g/mol) has an orthorhombic (Pbcm) unit cell whose parameters are: a = 9.818(2), b = 7.3720(1), c = 9.754(1) A, V = 706.0(3) A(exp 3), Z=4. D(sub chi) = 1.122 g cm(exp -3), Mo K(alpha) (lamda = 0.71073), mu= 3.36 cm(exp -1), F(000) = 264.0, T =293 K, R = 0.036 for 343 reflections with F(sub O)(sup 2) greater than 3 sigma (F(sub O)(sup 2)) and 65 variables. The compound consists of (C5H10NH2)(+) cations and (SH)(-) anions with both species residing on crystallographic mirror planes. N-H -- S hydrogen bonding contributes to the interconnection of neighboring piperidinium components of the compound.

  10. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.;

    2004-01-01

    experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...... differences in KLaH2S at pH values between 4.5 and 8.0 became larger as the turbulence level increased, whereas those at pH between 4.5 and 7.0 did not statistically show any change. At constant pH, KLaH2S/KLaO2 was observed not to be dependent on the turbulence range studied. KLaH2S/KLaO2 ratio was 0...

  11. One-dimensional Topological Edge States of Bismuth Bilayers

    Science.gov (United States)

    Drozdov, Ilya; Alexandradinata, Aris; Jeon, Sangjun; Nadj-Perge, Stevan; Ji, Huiwen; Cava, Robert; Bernevig, B. Andrei; Yazdani, Ali

    2014-03-01

    The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the sample. Bilayers of bismuth (Bi), an elemental system theoretically predicted to be a Quantum Spin Hall (QSH) insulator1, has been studied with Scanning Tunneling Microscopy (STM) and the electronic structure of its bulk and edge modes has been experimentally investigated. Spectroscopic mapping with STM reveals the presence of the state bound to the edges of the Bi-bilayer. By visualizing quantum interference of the edge state quasi-particles in confined geometries we characterize their dispersion and demonstrate that their properties are consistent with the absence of backscattering. Hybridization of the edge modes to the underlying substrate will be discussed. [1] Shuichi Murakami, Phys. Rev. Lett. 97, 236805 (2006). The work at Princeton and the Princeton Nanoscale Microscopy Laboratory was supported by ARO MURI program W911NF-12-1-0461, DARPA-SPWAR Meso program N6601-11-1-4110, NSF-DMR1104612, and NSF-MRSEC programs through the Princeton Center for Complex Materials (DMR-0819860)

  12. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, Mariela [Instituto Nacional de Investigaciones Nucleares (Mexico); Vega-Jiménez, Alejandro L., E-mail: argelia.almaguer@mac.com; Almaguer-Flores, Argelia [Universidad Nacional Autónoma de México, Facultad de Odontología, DEPeI, I (Mexico); Camps, Enrique; Pérez, Mario [Instituto Nacional de Investigaciones Nucleares (Mexico); Silva-Bermudez, Phaedra [Instituto Nacional de Rehabilitación, Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa (Mexico); Berea, Edgardo [FarmaQuimia SA de CV. (Mexico); Rodil, Sandra E. [Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales (Mexico)

    2015-11-15

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  13. Shape-dependent photocatalytic activities of bismuth subcarbonate nanostructures.

    Science.gov (United States)

    Tang, Jiale; Cheng, Gang; Zhou, Huamin; Yang, Hao; Lu, Zhong; Chen, Rong

    2012-05-01

    Different shaped bismuth subcarbonate ((BiO)2CO3) nanostructures including irregular nanoplates, relatively uniform nanoplates and nanocubes were prepared and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflection spectroscopy (DRS) and nitrogen adsorption. The photocatalytic performance of the as-synthesized (BiO)2CO3 nanostructures on the degradation of Rhodamine B (RhB), methyl orange (MO) and methyl blue (MB) were evaluated under UV-vis light irradiation (modeling sunlight). The photocatalysis tests showed that all the different (BiO)2CO3 nanostructures displayed enhanced photodegradation performance compared with commercial (BiO)2CO3. The irregular (BiO)2CO3 nanoplates exhibited the highest photocatalytic activity on the degradation of different organic dyes. (BiO)2CO3 nanosturctures exhibited the different capacity to bleach the three organic dyes, which might be attributed to their different molecular structures. This work may provide a potential photocatalyst for the environmental pollutants treatments.

  14. Dielectric and Impedance Spectroscopy of Barium Bismuth Vanadate Ferroelectrics

    Science.gov (United States)

    Sutar, B. C.; Choudhary, R. N. P.; Das, Piyush R.

    2014-07-01

    Structural, micro-structural and electrical properties of barium bismuth vanadate Ba(Bi0.5V0.5)O3 ceramics were investigated. X-ray diffraction (XRD) analysis of the prepared material confirmed the formation of the compound with monoclinic crystal system. Scanning electron microscopy (SEM) of the compound exhibits well-defined grains that are uniformly distributed throughout the surface of the sample. Dielectric properties of the compound were studied as a function of temperature at different frequencies. An observation of dielectric anomaly at 295 °C is due to ferroelectric phase transition that was later confirmed by the appearance of hysteresis loop. Detailed studies of complex impedance spectroscopy have provided a better understanding of the relaxation process and correlations between the microstructure-electrical properties of the materials. The nature of frequency dependence of ac conductivity obeys the Debye power law. The dc conductivity, calculated from the ac conductivity spectrum, shows the negative temperature coefficient of resistance behavior similar to that of a semiconductor.

  15. Mechanically Activated Synthesis of Nanocrystalline Powders of Ferroelectric Bismuth Vanadate

    Science.gov (United States)

    Shantha, K.; Subbanna, G. N.; Varma, K. B. R.

    1999-01-01

    Mechanical milling of a stoichiometric mixture of Bi2O3and V2O5yielded nanosized powders of bismuth vanadate, Bi2VO5.5(BiV). Structural evolution of the desired BiV phase, through an intermediate product (BiVO4), was monitored by subjecting the powders, ball milled for various durations to X-ray powder diffraction (XRD), differential thermal analysis (DTA), and transmission electron microscopic (TEM) studies. XRD studies indicate that the relative amount of the BiV phase present in the ball-milled mixture increases with increase in milling time and its formation reaches completion within 54 h of milling. Assynthesized powders were found to stabilize in the high-temperature tetragonal (γ) phase. DTA analyses of the powders milled for various durations suggest that the BiV phase-formation temperature decreases with increase in milling time. The nanometric size (30 nm) of the crystallites in the final product was confirmed by TEM and XRD studies. TEM studies clearly demonstrate the growth of BiV onBi2O3crystallites.

  16. Aromatic amino acids in high selectivity bismuth(III) recognition.

    Science.gov (United States)

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan phenylalanine amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  17. Optical analysis of samarium doped sodium bismuth silicate glass

    Science.gov (United States)

    Thomas, V.; Sofin, R. G. S.; Allen, M.; Thomas, H.; Biju, P. R.; Jose, G.; Unnikrishnan, N. V.

    2017-01-01

    Samarium doped sodium bismuth silicate glass was synthesized using the melt quenching method. Detailed optical spectroscopic studies of the glassy material were carried out in the UV-Vis-NIR spectral range. Using the optical absorption spectra Judd-Ofelt (JO) parameters are derived. The calculated values of the JO parameters are utilized in evaluating the various radiative parameters such as electric dipole line strengths (Sed), radiative transition probabilities (Arad), radiative lifetimes (τrad), fluorescence branching ratios (β) and the integrated absorption cross- sections (σa) for stimulated emission from various excited states of Sm3 +‡ ion. The principal fluorescence transitions are identified by recording the fluorescence spectrum. Our analysis revealed that the novel glassy system has the optimum values for the key parameters viz. spectroscopic quality factor, optical gain, stimulated emission cross section and quantum efficiency, which are required for a high performance optical amplifier. Calculated chromaticity co-ordinates (0.61, 0.38) also confirm its application potential in display devices.

  18. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    Science.gov (United States)

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  19. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  20. On the use of bismuth as a neutron filter

    CERN Document Server

    Adib, M

    2003-01-01

    A formula is given which, for neutron energies in the range 10 sup - sup 4 bismuth temperature and crystalline form. Computer programs have been developed which allow calculations for the Bi rhombohedral structure in its poly-crystalline form and its equivalent hexagonal close-packed structure. The calculated total neutron cross-sections for poly-crystalline Bi at different temperatures were compared with the measured values. An overall agreement is indicated between the formula fits and experimental data. Agreement was also obtained for values of Bi-single crystals, at room and liquid nitrogen temperatures. A feasibility study for use of Bi in powdered form, as a cold neutron filter, is detailed in terms of the optimum Bi-single crystal thickness, mosaic spread, temperature and cutting plane for efficient transmission of thermal-reactor neutrons, and also for rejection of the accom...

  1. Synthesis and characterization of bismuth zinc niobate pyrochlore nanopowders

    Directory of Open Access Journals (Sweden)

    Sonia Maria Zanetti

    2007-09-01

    Full Text Available Bismuth zinc niobate pyrochlores Bi1.5ZnNb1.5O7 (alpha-BZN, and Bi2(Zn1/3Nb2/32O 7 (beta-BZN have been synthesized by chemical method based on the polymeric precursors. The pyrochlore phase was investigated by differential scanning calorimetry, infrared spectroscopy, and X ray diffraction. Powder and sintered pellets morphology was examined by scanning electron microscopy. The study of alpha-BZN phase formation reveals that, at 500 °C, the pyrochlore phase was already present while a single-phased nanopowder was obtained after calcination at 700 °C. The crystallization mechanism of the beta-BZN is quite different, occurring through the crystallization of alpha-BZN and BiNbO4 intermediary phases. Both compositions yielded soft agglomerated powders. alpha-BZN pellets, sintered at 800 °C for 2 hours, presented a relative density of 97.3% while those of beta-BZN, sintered at 900 °C for 2 hours, reached only 91.8%. Dielectric constant and dielectric loss, measured at 1 MHz, were 150 and 4 x/10-4 for a-BZN, and 97 and 8 x 10-4 for beta-BZN.

  2. Pressure effects on crystal and electronic structure of bismuth tellurohalides

    Science.gov (United States)

    Rusinov, I. P.; Menshchikova, T. V.; Sklyadneva, I. Yu; Heid, R.; Bohnen, K.-P.; Chulkov, E. V.

    2016-11-01

    We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal-TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.

  3. Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons

    Science.gov (United States)

    Tang, Hao; Wang, Xiaomeng; Xiong, Yucheng; Zhao, Yang; Zhang, Yin; Zhang, Yan; Yang, Juekuan; Xu, Dongyan

    2015-04-01

    Bismuth selenide (Bi2Se3) nanoribbons have attracted tremendous research interest recently to study the properties of topologically protected surface states that enable new opportunities to enhance the thermoelectric performance. However, the thermoelectric characterization of individual Bi2Se3 nanoribbons is rare due to the technological challenges in the measurements. One challenge is to ensure good contacts between the nanoribbon and electrodes in order to determine the thermal and electrical properties accurately. In this work, we report the thermoelectric characterization of individual Bi2Se3 nanoribbons via a suspended microdevice method. Through careful measurements, we have demonstrated that contact thermal resistance is negligible after the electron-beam-induced deposition (EBID) of platinum/carbon (Pt/C) composites at the contacts between the nanoribbon and electrodes. It is shown that the thermal conductivity of the Bi2Se3 nanoribbons is less than 50% of the bulk value over the whole measurement temperature range, which can be attributed to enhanced phonon boundary scattering. Our results indicate that intrinsic Bi2Se3 nanoribbons prepared in this work are highly doped n-type semiconductors, and therefore the Fermi level should be in the conduction band and no topological transport behavior can be observed in the intrinsic system.

  4. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    Energy Technology Data Exchange (ETDEWEB)

    Andreici, Emiliana-Laura, E-mail: andreicilaura@yahoo.com [Department of Physics, West University of Timisoara, Bd. V. Parvan 4,300223 Timisoara (Romania); Petkova, Petya [Shumen University “Konstantin Preslavsky”, 115 Universitetska street, 9712 Shumen (Bulgaria); Avram, Nicolae M. [Department of Physics, West University of Timisoara, Bd. V. Parvan 4,300223 Timisoara (Romania); Academy of Romanian Scientists, Independentei 54, 050094-Bucharest (Romania)

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  5. Bismuth alloying properties in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lu [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Cao, Huawei; Cai, Ningning; Yu, Zhongyuan [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2013-09-15

    First-principles calculations have been performed to investigate the structural, electronic and optical properties of bismuth alloying in GaAs nanowires. A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration and the band edge shifts when spin–orbit coupling (SOC) is considered. The insertion of Bi atom leads to hybridization of Ga/As/Bi p states which contributes a lot around Fermi level. Scissor effect is involved. The optical properties are presented, including dielectric function, optical absorption spectra and reflectivity, which are also varied with the increasing of Bi concentrations. - Graphical abstract: Top view of Bi-doped GaAs nanowires. Ga, As, and Bi atoms are denoted with grey, purple and red balls, respectively. Display Omitted - Highlights: • A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. • The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration. • The band edge shifts when spin–orbit coupling (SOC) is considered. • The insertion of Bi atom leads to hybridization of Ga/As/Bi p states.

  6. Insights into the growth of bismuth nanoparticles on 2D structured BiOCl photocatalysts: an in situ TEM investigation.

    Science.gov (United States)

    Chang, Xiaofeng; Wang, Shuangbao; Qi, Qi; Gondal, Mohammed A; Rashid, Siddique G; Gao, Si; Yang, Deyuan; Shen, Kai; Xu, Qingyu; Wang, Peng

    2015-09-28

    The synthetic techniques for novel photocatalytic crystals had evolved by a trial-and-error process that spanned more than two decades, and an insight into the photocatalytic crystal growth process is a challenging area and prerequisite for achieving an excellent photoactivity. Bismuth nanoparticle based hybrids, such as Bi/BiOCl composites, have recently been investigated as highly efficient photocatalytic systems because of the localized surface plasmon resonance (LSPR) of nanostructured bismuth. In this work, the observation towards the formation and growth of bismuth nanoparticles onto 2D structured BiOCl photocatalysts has been performed using a transmission electron microscope (TEM) directly in real time. The growth of bismuth nanoparticles on BiOCl nanosheets can be emulated and speeded up driven by the electron beam (e(-) beam) in TEM. The crystallinity, growth and the elemental evolution during the formation of bismuth nanoparticles have also been probed in this work.

  7. Review - Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering

    Directory of Open Access Journals (Sweden)

    Satoshi Tanaka, Yusuke Tomita, Ryoichi Furushima, Hiroyuki Shimizu, Yutaka Doshida and Keizo Uematsu

    2009-01-01

    Full Text Available High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a- and b-axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 ° C.

  8. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis; A. S. Shieh

    2000-04-02

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  9. Overview of the Use of ATHENA for Thermal-Hydraulic Analysis of Systems with Lead-Bismuth Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee; Shieh, Arthur Shan Luk

    2000-04-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  10. Sulfide scaling in low enthalpy geothermal environments; A survey

    Energy Technology Data Exchange (ETDEWEB)

    Criaud, A.; Fouillac, C. (Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France))

    1989-01-01

    A review of the sulfide scaling phenomena in low-temperature environments is presented. While high-temperature fluids tend to deposit metal sulfides because of their high concentrations of dissolved metals and variations of temperature, pressure and fluid chemistry, low temperature media are characterized by very low metal content but much higher dissolved sulfide. In the case of the goethermal wells of the Paris Basin, detailed studies demonstrate that the relatively large concentrations of chloride and dissolved sulfide are responsible for corrosion and consequent formation of iron sulfide scale composed of mackinawite, pyrite and pyrrhotite. The effects of the exploitation schemes are far less important than the corrosion of the casings. The low-enthalpy fluids that do not originate from sedimentary aquifers (such as in Iceland and Bulgaria), have a limited corrosion potential, and the thin sulfide film that appears may prevent the progress of corrosion.

  11. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    calibrated and validated against field data. In the extension to the WATS model, sulfur transformations were described by six processes: 1. Sulfide production taking place in the biofilm and sediments covering the permanently wetted sewer walls; 2. Biological sulfide oxidation in the permanently wetted...... on oxidation and precipitation of sulfide, which are considered important processes in the sulfur cycle in wastewater and biofilms of sewer networks. Based on experimental studies, it was the objective to establish kinetics and stoichiometry of oxidation and precipitation of sulfide and to integrate...... the processes in an already existing sewer process model, thereby improving its capabilities for prediction of sulfide buildup in wastewater and atmosphere of sewer networks. Accordingly, efforts were made to develop experimental procedures for estimation of model parameters. Sulfide oxidation in both...

  12. Organization of the human mitochondrial hydrogen sulfide oxidation pathway.

    Science.gov (United States)

    Libiad, Marouane; Yadav, Pramod Kumar; Vitvitsky, Victor; Martinov, Michael; Banerjee, Ruma

    2014-11-07

    Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.

  13. Measurement of plasma hydrogen sulfide in vivo and in vitro

    OpenAIRE

    Shen, Xinggui; Pattillo, Christopher B.; Pardue, Sibile; Bir, Shyamal C.; Wang, Rui; Kevil, Christopher G.

    2011-01-01

    The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H2S in plasma down to nanom...

  14. Experimental investigation of the shock response of bismuth under one-dimensional shock-loading

    Science.gov (United States)

    Whiteman, Glenn; Millett, Jeremy; Appleby-Thomas, Gareth; Wood, David; Hameed, Amer

    2017-01-01

    Interest in the dynamic response of bismuth is largely derived from the existence of multiple phase transitions attainable with increasing pressure. In addition, its industrial use has grown in recent years (e.g. in solder as a replacement for lead), in part due to its relatively low toxicity. While some shock experiments have been conducted on bismuth they have largely concentrated on equation of state research at relatively low stresses. To the authors' knowledge the strength behaviour under shock is not prevalent in the literature. To this end, the low pressure response of bismuth targets has been experimentally investigated here using commercial stress gauges mounted in both longitudinal and lateral orientation with respect to the loading axis. Of particular note was the potential to observe the relatively low pressure phase transitions in the lateral stress response.

  15. Radioactive Iodine (I-129) Gas Adsorption by Using Bismuth-Embedded SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan; Cho, Yong-Jun; Park, Jang Jin; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    The efficient capture of the long-lived I-129, released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi{sub 2}S{sub 3} within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities with 540 mg-I/g-sorbent maximally, which benefitted from the high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI{sub 3} compound. Iodine physisorption could effectively be suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement.

  16. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    Science.gov (United States)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  17. Poisoning effect of bismuth on modification behaviour of strontium in LM25 alloy

    Indian Academy of Sciences (India)

    S Farahany; A Ourdjini; M H Idris; L T Thai

    2011-10-01

    Nucleation and growth, temperature measurements andmicrostructure observations of silicon phase are presented for strontium modified Al–7%Si (LM25) cast alloy treated with bismuth. The results show that addition of bismuth in strontium modified alloys may have a poisoning effect resulting in lost modification of the silicon phase. With increasing Bi/Sr ratio, thermal analysis measurements showed that the eutectic growth temperature increased remarkably to 573°C and recalescence decreased to 0.2°C and the morphology of silicon displayed the same flakelike structure as in the unmodified alloys. Microstructural observation showed that a minimum Bi/Sr ratio of 1.2 which is equivalent to a Sr/Bi ratio of 0.43 is required for effective strontium modification and neutralization of the poisoning effect of bismuth.

  18. Facile preparation of Bi nanoparticles by novel cathodic dispersion of bulk bismuth electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xin [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Chen Shu; Huang Wei [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Lushan Road, Changsha 410081 (China); Zheng Jufang [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Li Zelin, E-mail: lizelin@zjnu.c [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Lushan Road, Changsha 410081 (China)

    2009-12-01

    A novel electrochemical approach has been developed to prepare clean bismuth nanoparticles (NPs) with a bulk Bi electrode in a 0.5 mol dm{sup -3} NaOH solution under highly cathodic polarization of -8 V versus a saturated mercurous sulfate electrode, requiring no any precursor ions and organic protective agents. The bulk Bi electrode can be facilely dispersed into Bi NPs at the condition of intensive hydrogen evolution. This cathodic dispersion of the bulk Bi electrode involves the formation and decomposition of unstable bismuth hydrides and the aggregation of atomic bismuth from the decomposition. Moreover, Bi{sub 2}O{sub 3} NPs have also been achieved by heating the precursor Bi NPs. Field-emission scanning electron microscopy, transmission electron microscope and X-ray diffraction were used to characterize these NPs. The as-prepared Bi NPs mainly existed in rhombohedral phase.

  19. Application of Thermodynamic Calculations to the Pyro-refining Process for Production of High Purity Bismuth

    Science.gov (United States)

    Mezbahul-Islam, Mohammad; Belanger, Frederic; Chartrand, Patrice; Jung, In-Ho; Coursol, Pascal

    2017-02-01

    The present work has been performed with the aim to optimize the existing process for the production of high purity bismuth (99.999 pct). A thermo-chemical database including most of the probable impurities of bismuth (Bi-X, X = Ag, Au, Al, Ca, Cu, Fe, Mg, Mn, Na, Ni, Pb, S, Sb, Sn, Si, Te, Zn) has been constructed to perform different thermodynamic calculations required for the refining process. Thermodynamic description for eight of the selected binaries, Bi-Ca, Cu, Mn, Ni, Pb, S, Sb, and Sn, has been given in the current paper. Using the current database, different thermodynamic calculations have been performed to explain the steps involved in the bismuth refining process.

  20. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    , but also concerning the metal particle formation, and the broadband near infrared luminescence. Both the inward diffusion and the infrared luminescence depend on the bismuth oxidation state. The latter can be varied by adjusting the parameters of the heat-treatment, e.g., time, temperature, and partial......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses....

  1. Melting behaviour of lead and bismuth nano-particles in quasicrystalline matrix - The role of interfaces

    Indian Academy of Sciences (India)

    Alok Singh; A P Tsai

    2003-02-01

    Nanomaterials are playing an increasingly important role in modern technologies. Interfaces are crucial in nanotechnology. In this study, we have examined the stability of nanoparticles. Major emphasis is on understanding the effect of interfaces on melting. Melting behaviour of nanocrystalline interfaces, created by embedding lead and bismuth nanoparticles in quasicrystalline matrices, was studied. Sharply faceted and coherent interfaces can be related to sharper melting transitions, while irregularly shaped and incoherent interfaces can be directly correlated with lowering of melting temperatures. It is shown here that solid lead forms a high energy interface with phason strain-free quasicrystal (resulting in a lowering of the melting temperature) while bismuth forms a low energy interface with the quasicrystal (resulting in superheating, unusual for bismuth).

  2. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver (INEEL); J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas (MIT)

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  3. Fluorescence Emission Centres and the Corresponding Infrared Fluorescence Saturation in a Bismuth-Doped Silica Fibre

    Institute of Scientific and Technical Information of China (English)

    QIU Yan-Qing; SHEN Yong-Hang

    2008-01-01

    We investigate the fluorescence characteristics of bismuth doped silica fibres with and without Al co-dopant which are fabricated by means of modified chemical vapour deposition (MCVD) technique, and find that the fluorescences in the red region (centred around 750nm) and in the infrared region (centred around 1100nm) may originate from different emission sites in the fibre. Strong upconversion phenomena are observed in both Al-codoped and non Al codoped bismuth fibres when the fibres are excited by an acoustic-optic Q-switched Nd: YVO4 laser. Both the aspects indicate that the upper energy level absorption reported in the work of the bismuth doped silica fibre lasers may result from the fluorescence emission sites that are not responsible for the infrared emission. It is thus expected that optimizing the compositions and the fabrication conditions of the fibre and then transferring more fluorescence emission centres are helpful for the infrared emission.

  4. Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion?

    Directory of Open Access Journals (Sweden)

    Jadranka Milikić

    2016-06-01

    Full Text Available Different carbon electrodes were explored for application in electroanalysis, namely for sensing of bismuth ion as model analyte. Carbon materials tested included glassy carbon, basal and edge plane pyrolytic graphite, as well as nanostructured carbonized polyaniline prepared in the presence of 3,5-dinitrosalicylic acid. Bismuth ion was chosen as model analyte as protocol for its detection and quantifications is still to be determined. Herein, anodic stripping voltammetry was used with study of effect of several parameters such as scan rate and deposition time. Electrode based on carbonized polyaniline showed the highest activity for bismuth ion sensing in terms of the highest current densities recorded both in a laboratory and in real sample, while basal plane pyrolytic graphite electrode gave the lowest limit of detection.

  5. Bismuth subcarbonate as filler particle for an Epoxy-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Eduardo Schwartzer

    2013-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the addition of bismuth subcarbonate with different concentrations regarding the rheological properties of an experimental epoxy-based root canal sealer. Materials and Methods: Endodontic sealers were prepared with epoxy resin-based sealer with bismuth subcarbonate additions of 20%, 40%, 60%, 80%, 100%, and 120%. Flow, film thickness, working time, setting time, dimensional change, sorption, solubility, and cytotoxicity were studied according to the ISO standards. Data were statistically analyzed by one-way ANOVA, and Tukey multiple comparisons were used, with a significance level of 5%. Results: The flow, working time, water sorption, and solubility significantly decreased and the film thickness and dimensional change increased with higher filler particle addition. There were no statistically significant differences for setting time and cytotoxicity between the filler particle proportions. Conclusion: Experimental resin-based sealer with bismuth subcarbonate addition up to 40% can be an alternative for root canal sealer.

  6. INVESTIGATION OF THIN FILM CADMIUM SULFIDE SOLAR CELLS.

    Science.gov (United States)

    SOLAR CELLS , *CADMIUM COMPOUNDS, FILMS, SULFIDES, VAPOR PLATING, VACUUM APPARATUS, SINGLE CRYSTALS, TITANIUM, COPPER COMPOUNDS, CHLORIDES, INDIUM, MOLYBDENUM, SILICON COMPOUNDS, MONOXIDES, SURFACE PROPERTIES, ENERGY CONVERSION.

  7. Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy.

    Science.gov (United States)

    Song, Kai; Wang, Fen; Li, Qian; Shi, Yong-Bing; Zheng, Hui-Fen; Peng, Hanjing; Shen, Hua-Ying; Liu, Chun-Feng; Hu, Li-Fang

    2014-06-01

    Hydrogen sulfide has recently been found decreased in chronic kidney disease. Here we determined the effect and underlying mechanisms of hydrogen sulfide on a rat model of unilateral ureteral obstruction. Compared with normal rats, obstructive injury decreased the plasma hydrogen sulfide level. Cystathionine-β-synthase, a hydrogen sulfide-producing enzyme, was dramatically reduced in the ureteral obstructed kidney, but another enzyme cystathionine-γ-lyase was increased. A hydrogen sulfide donor (sodium hydrogen sulfide) inhibited renal fibrosis by attenuating the production of collagen, extracellular matrix, and the expression of α-smooth muscle actin. Meanwhile, the infiltration of macrophages and the expression of inflammatory cytokines including interleukin-1β, tumor necrosis factor-α, and monocyte chemoattractant protein-1 in the kidney were also decreased. In cultured kidney fibroblasts, a hydrogen sulfide donor inhibited the cell proliferation by reducing DNA synthesis and downregulating the expressions of proliferation-related proteins including proliferating cell nuclear antigen and c-Myc. Further, the hydrogen sulfide donor blocked the differentiation of quiescent renal fibroblasts to myofibroblasts by inhibiting the transforming growth factor-β1-Smad and mitogen-activated protein kinase signaling pathways. Thus, low doses of hydrogen sulfide or its releasing compounds may have therapeutic potentials in treating chronic kidney disease.

  8. Limitation of Sulfide Capacity Concept for Molten Slags

    Science.gov (United States)

    Jung, In-Ho; Moosavi-Khoonsari, Elmira

    2016-04-01

    The sulfide capacity concept has been widely used in pyrometallurgy to define sulfur removal capacities of slags. Typically, the sulfide capacity is considered to be a unique slag property depending only on temperature regardless of partial pressures of oxygen and sulfur. In the present study, it is demonstrated that sulfide capacities of slags in particular those of Na2O-containing slags can vary with partial pressures of oxygen and sulfur due to large solubility of sulfide in Na2O-containing slag systems.

  9. Influence of iron on sulfide inhibition in dark biohydrogen fermentation.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Nakhla, George

    2012-12-01

    Sulfide impact on biohydrogen production using dark fermentation of glucose at 37 °C was investigated. Dissolved sulfide (S(2-)) at a low concentration (25mg/L) increased biohydrogen production by 54% relative to the control (without iron addition). Whereas on initial dissolved S(2-) concentration of 500 mg/L significantly inhibited the biohydrogen production with total cumulative biohydrogen decreasing by 90% compared to the control (without iron addition). At sulfide concentrations of 500 mg S(2-)/L, addition of Fe(2+) at 3-4 times the theoretical requirement to precipitate 100% of the dissolved S(2-) entirely eliminated the inhibitory effect of sulfide.

  10. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  11. MEASURING METAL SULFIDE COMPLEXES IN OXIC RIVER WATERS WITH SQUARE WAVE VOLTAMMETRY. (R825395)

    Science.gov (United States)

    A sulfide identification protocol was developed to quantify specific metal sulfides that could exist in river water. Using a series of acid additions, nitrogen purges, and voltammetric analyses, metal sulfides were identified and semiquantified in three specific gr...

  12. Spin-Polarized Tunneling Study on Spin-Momentum Locking in the Topological Insulator Bismuth Selenide

    Science.gov (United States)

    Chen, Ching-Tzu; Liu, Luqiao; Richardella, Anthony; Garate, Ion; Zhu, Yu; Samarth, Nitin

    2015-03-01

    In this talk, we will demonstrate that the helical spin texture on topological insulator (TI) surfaces can be electrically detected using four-terminal tunnel junction devices with ferromagnetic top electrodes. Consistent results are obtained in both the Edelstein and spin-galvanic effect configurations, allowing a quantitative determination of the charge-spin conversion efficiency in bismuth selenide. By applying finite DC biases at the junction, we further extract the energy dependence of the effective spin polarization in bismuth selenide. The observed temperature stability up to 200K suggests that TIs can be highly promising for room-temperature spintronics applications

  13. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting

    OpenAIRE

    Kim, Tae Woo; Ping, Yuan; Galli, Giulia A.; Choi, Kyoung-Shin

    2015-01-01

    n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effective...

  14. Simultaneous Determination of Bismuth and Copper by Square Wave Voltammetry in The Presence of Ethylenediaminetetraacedic Acid

    OpenAIRE

    HASDEMİR, Erdoğan; KARABODUK, Kuddusi

    2010-01-01

    A sensitive and selective method for the simultaneous determination of copper and bismuth by square wave voltammetry (SWV) was developed using ethylenediaminetetraacedic acid (EDTA) as complexing agent. Factors affecting the pH and concentrations ratios of copper and bismuth were investigated. Optimal analytical conditions were  found to be: pH of 8.0, the ratio of [Cu2+]/[Bi3+] was 0.13-2.5. The limit of detection (3δ) was 1.26 × 10-7 mol dm-3 for copper,  1.30×10...

  15. Investigation on bismuth-oxide photonic crystal fiber for optical parametric amplification

    Institute of Scientific and Technical Information of China (English)

    JIN Cang; RAO Lan; YUAN Jin-hui; SHEN Xiang-wei; YU Chong-xiu

    2011-01-01

    A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity. This simulation and calculation results show that the bismuth-oxide photonic crystal fiber (Bi-PCF) has near zero dispersion around 1550 nm. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model field distribution are obtained. Compared with the experimental results by SiO-PCF, it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification (OPA).

  16. Structural investigations of bismuth lead borosilicate glasses under the influence of gamma irradiation through ultrasonic studies

    Science.gov (United States)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Laopaiboon, Raewat

    2012-04-01

    The ultrasonic velocity measurements for different compositions of irradiated bismuth lead borosilicate glasses xBi2O3-(50-x)PbO-20B2O3-30SiO2 (x=2, 4, 6, 8, and 10 mol.%) were performed at room temperature using pulse-echo technique. Densities of glass samples were measured by Archimedes' principle using n-hexane as the immersion liquid. The results from the studies show that ultrasonic velocity, elastic moduli, Poisson's ratio, microhardness, and the Debye temperature increase with increasing bismuth oxide content and increasing gamma-radiation dose (3-12 Gy).

  17. Growth morphology and structure of bismuth thin films on GaSb(110)

    DEFF Research Database (Denmark)

    Gemmeren, T. van; Lottermoser, L.; Falkenberg, G.

    1998-01-01

    Photoelectron spectroscopy, low-energy electron diffraction, scanning tunneling microscopy and surface X-ray diffraction were used to investigate the growth of thin layers of bismuth on GaSb(110). At submonolayer coverages, growth of two-dimensional islands occurs. A uniform (1 x I)-reconstructio...... that the (1 x 1)-phases formed by antimony and bismuth adsorbates on (110) surfaces of other III-V compound semiconductors are also described by the epitaxial continued layer model. (C) 1998 Elsevier Science B.V. All rights reserved....

  18. Toxicological analysis of 17 autopsy cases of hydrogen sulfide poisoning resulting from the inhalation of intentionally generated hydrogen sulfide gas.

    Science.gov (United States)

    Maebashi, Kyoko; Iwadate, Kimiharu; Sakai, Kentaro; Takatsu, Akihiro; Fukui, Kenji; Aoyagi, Miwako; Ochiai, Eriko; Nagai, Tomonori

    2011-04-15

    Although many cases of fatal hydrogen sulfide poisoning have been reported, in most of these cases, it resulted from the accidental inhalation of hydrogen sulfide gas. In recent years, we experienced 17 autopsy cases of fatal hydrogen sulfide poisoning due to the inhalation of intentionally generated hydrogen sulfide gas. In this study, the concentrations of sulfide and thiosulfate in blood, urine, cerebrospinal fluid and pleural effusion were examined using GC/MS. The sulfide concentrations were blood: 0.11-31.84, urine: 0.01-1.28, cerebrospinal fluid: 0.02-1.59 and pleural effusion: 2.00-8.59 (μg/ml), while the thiosulfate concentrations were blood: 0-0.648, urine: 0-2.669, cerebrospinal fluid: 0.004-0.314 and pleural effusion: 0.019-0.140 (μmol/ml). In previous reports, the blood concentration of thiosulfate was said to be higher than that of sulfide in hydrogen sulfide poisoning cases, although the latter was higher than the former in 8 of the 14 cases examined in this study. These results are believed to be strongly influenced by the atmospheric concentration of hydrogen sulfide the victims were exposed to and the time interval between exposure and death.

  19. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  20. Microwave-hydrothermal synthesis of perovskite bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Biasotto, G. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil); Simoes, A.Z., E-mail: alezipo@yahoo.com [Universidade Estadual Paulista-Unesp, Faculdade de Engenharia de Guaratingueta, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Pedregulho, CEP 12516-410, Guaratingueta, SP (Brazil); Foschini, C.R.; Zaghete, M.A.; Varela, J.A.; Longo, E. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer BiFeO{sub 3} (BFO) nanoparticles were grown by hydrothermal microwave method (HTMW). Black-Right-Pointing-Pointer The soaking time is effective in improving phase formation. Black-Right-Pointing-Pointer Rietveld refinement reveals an orthorhombic structure. Black-Right-Pointing-Pointer The observed magnetism of the BFO crystallites is a consequence of particle size. Black-Right-Pointing-Pointer The HTMW is a genuine technique for low temperatures and short times of synthesis. -- Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline bismuth ferrite (BiFeO{sub 3}) nanoparticles (BFO) in the temperature of 180 Degree-Sign C with times ranging from 5 min to 1 h. BFO nanoparticles were characterized by means of X-ray analyses, FT-IR, Raman spectroscopy, TG-DTA and FE-SEM. X-ray diffraction results indicated that longer soaking time was benefit to refraining the formation of any impurity phases and growing BFO crystallites into almost single-phase perovskites. Typical FT-IR spectra for BFO nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH{sup -} groups, commonly found in materials obtained by HTMW process. Compared with the conventional solid-state reaction process, submicron BFO crystallites with better homogeneity could be produced at the temperature as low as 180 Degree-Sign C. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain BFO nanoparticles in the temperature of 180 Degree-Sign C for 1 h.

  1. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco.

    Science.gov (United States)

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild; Nielsen, Asbjørn Haaning

    2015-11-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit with some uncertainty. It was concluded that the model could be applied for the purpose in mind.

  2. Mercury Sulfide Dimorphism in Thioarsenate Glasses

    OpenAIRE

    KASSEM, Mohammad; Sokolov, Anton; Cuisset, Arnaud,; Usuki, Takeshi; Khaoulani, Sohayb; Masselin, Pascal; Le Coq, David,; Feygenson, M.; Benmore, C. J.; Hannon, Alex,; Neuefeind, J. C.; Bychkov, Eugene

    2016-01-01

    International audience; Crystalline mercury sulfide exists in two drastically different polymorphic forms in different domains of the P,T-diagram: red chain-like insulator α-HgS, stable below 344 °C, and black tetrahedral narrow-band semiconductor β-HgS, stable at higher temperatures. Using pulsed neutron and high-energy X-ray diffraction, we show that these two mercury bonding pattern are present simultaneously in mercury thioarsenate glasses HgS-As2S3. The population and interconnectivity o...

  3. Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: the effects of seagrasses on sulfide dynamics.

    Science.gov (United States)

    Lee; Dunton

    2000-12-20

    The dynamics of the seagrass-sulfide interaction were examined in relation to diel changes in sediment pore water sulfide concentrations in Thalassia testudinum beds and adjacent bare areas in Corpus Christi Bay and lower Laguna Madre, Texas, USA, during July 1996. Pore water sulfide concentrations in seagrass beds were significantly higher than in adjacent bare areas and showed strong diurnal variations; levels significantly decreased during mid-day at shallow sediment depths (0-10 cm) containing high below-ground tissue biomass and surface area. In contrast, diurnal variations in sediment sulfide concentrations were absent in adjacent bare patches, and at deeper (>10 cm) sediment depths characterized by low below-ground plant biomass or when the grasses were experimentally shaded. These observations suggest that the mid-day depressions in sulfide levels are linked to the transport of photosynthetically produced oxygen to seagrass below-ground tissues that fuels sediment sulfide oxidation. Lower sulfide concentrations in bare areas are likely a result of low sulfate reduction rates due to low organic matter available for remineralization. Further, high reoxidation rates due to rapid exchange between anoxic pore water and oxic overlying water are probably stimulated in bare areas by higher current velocity on the sediment surface than in seagrass beds. The dynamics of pore water sulfides in seagrass beds suggest no toxic sulfide intrusion into below-ground tissues during photosynthetic periods and demonstrate that the sediment chemical environment is considerably modified by seagrasses. The reduced sediment sulfide levels in seagrass beds during photosynthetic periods will enhance seagrass production through reduced sulfide toxicity to seagrasses and sediment microorganisms related to the nutrient cycling.

  4. Recent findings on sinks for sulfide in gravity sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2006-01-01

    summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However...

  5. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia.

    Science.gov (United States)

    Bos, Eelke M; van Goor, Harry; Joles, Jaap A; Whiteman, Matthew; Leuvenink, Henri G D

    2015-03-01

    Hydrogen sulfide (H2 S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2 S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia.

  6. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  7. Mechanical properties of gutta-percha sulfide modified asphalt

    Science.gov (United States)

    Zou, X. Y.; Gu, X. Y.; Wang, X. W.

    2017-01-01

    Gutta-percha is the isomer of caoutchouc and can be used to enhance the performance of asphalt. In this paper, the produce proceedings of gutta-percha sulfide and gutta-percha sulfide modified asphalt are introduced. The performance indices of gutta-percha sulfide modified asphalt samples with different proportions are examined based on laboratory tests and the optimum ratio of gutta-percha and sulfur is decided.The micromechanism, temperature sensitivity, high and low temperature properties and viscoelasticity of the polymer modified asphalt are analyzed to discuss the modified mechanism and to decide the optimal polymer content. Low temperature bending tests are carried out to verify the low temperature performance of gutta-percha sulfide modified asphalt mixture. Research results showed that gutta-percha sulfide modified asphalt has good low temperature performance and a promising application prospect in the cold regions.

  8. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  9. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    Directory of Open Access Journals (Sweden)

    Priyanka Jood

    2015-03-01

    Full Text Available Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor.

  10. Effect of palladium on sulfide tarnishing of noble metal alloys.

    Science.gov (United States)

    Suoninen, E; Herø, H; Minni, E

    1985-10-01

    Electron spectroscopic studies of Au-Ag-Cu alloys of the type used for dental castings show that small additions (less than or equal to 3 wt%) of palladium reduce essentially the thickness of the sulfide layer formed on surfaces of samples treated in aqueous Na2S solutions. Relative to silver, palladium does not enrich in the sulfide, but statistically significant enrichment is found immediately below the sulfide layer. This enrichment probably takes place during the exposure of the substrate surface to atmosphere before the sulfiding treatment. The mechanism of the impeding effect of palladium on sulfiding is assumed to be a decrease in diffusion from the bulk alloy to the surface due to the enriched layer. The effect cannot be explained by changes in the electronic structure of the alloy due to palladium alloying.

  11. Extractive Spectrophotometric Determination of Bismuth(III in Water Using Some Ion Pairing Reagents

    Directory of Open Access Journals (Sweden)

    Abdulaziz S. Bashammakh

    2011-01-01

    Full Text Available Two novel and low cost liquid-liquid extraction methods for the separation of bismuth(III at trace level from aqueous medium have been developed. The two methods were based upon the formation of yellow colored ternary complex ion associates of tetraiodobismuth(III complex anion, BiI4- with the ion-pairing reagent 2,3,5-tetraphenyltetrazoliumchloride (Tz+.Cl– and 1, 10 phenanthroline (Phen in sulfuric acid medium. The effect of various parameters e.g. pH, organic solvent, shaking time, etc. on the preconcentration of bismuth(III from the aqueous media by the reagent was investigated. The developed colored complex ion associates [Tz+.BiI4-] and [Phen+.BiI4-] were extracted quantitatively into acetone-chloroform (1:1v/v and methyliso- butylketone (MIBK, respectively. The compositions of the formed complex ion associates [Tz+.BiI4-] and [Phen+.BiI4-] were determined by the Job's method at 500 and 490 nm, respectively. The plots of bismuth(III concentration (0-17 μg mL-1 versus absorbance of the associates at 500 and 490 nm were linear with good correlation coefficient (R2=0.998. The developed method of the ion associate [Tz+.BiI4-] two methods was applied successfully for the analysis of bismuth in water.

  12. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the form

  13. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage

    Science.gov (United States)

    Yang, Jae Hwan; Cho, Yong-Jun; Shin, Jin Myeong; Yim, Man-Sung

    2015-10-01

    Efficient capture and stable storage of the long-lived iodine-129 (129I), released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi2S3 within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities (up to 540 mg-I/g-sorbent), which benefitted from high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI3 compound. Iodine physisorption was effectively suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement. Furthermore, a chemically durable iodine-bearing material was made with a facile post-sorption process, during which the iodine-incorporated phase was changed from BiI3 to chemically durable Bi5O7I. Thus, our results showed that both efficient capture and stabilization of 129I would be possible with the bismuth-embedded SBA-15, in contrast to other sorbents mainly focused on iodine capture.

  14. A sensitive fluorescence quenching method for determination of bismuth with tiron

    Energy Technology Data Exchange (ETDEWEB)

    Taher, Mohammad Ali; Rahimi, Mina [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Fazelirad, Hamid, E-mail: hamidfazelirad@gmail.com [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Department of Chemistry, Science and Research Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of); Young Researchers Society, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman (Iran, Islamic Republic of)

    2014-01-15

    We describe a fluorescence quenching method for determination of bismuth with tiron. The method is based on the reaction of tiron by bismuth(III) in acidic media. The influence of variables such as the pH, type of buffer, tiron concentration, reaction time and temperature were investigated. Under optimized conditions, the fluorescence quenching extent is proportional to the concentration of bismuth for Bi–tiron system at the range 0.13–2.09 μg mL{sup −1} and the detection limit is 0.05 μg mL{sup −1}. The proposed sensor presented good repeatability, evaluated in terms of relative standard deviation (R.S.D.=±0.498%) for 11 replicates. This sensitive, rapid and accurate method has been successfully applied to the determination of trace bismuth(III) in water and hair samples and certified reference materials. -- Highlights: • No previous paper report on use of fluorescence quenching for determination of Bi. • Fluorescence quenching of trion is a sensitive method for determination of Bi(III). • Under the optimum conditions the detection limit is very low (0.05 μg mL{sup −1}). • The procedure is simple and safe and has high tolerance limit to interferences.

  15. Dismantling and chemical characterization of spent Peltier thermoelectric devices for antimony, bismuth and tellurium recovery.

    Science.gov (United States)

    Balva, Maxime; Legeai, Sophie; Garoux, Laetitia; Leclerc, Nathalie; Meux, Eric

    2017-04-01

    Major uses of thermoelectricity concern refrigeration purposes, using Peltier devices, mainly composed of antimony, bismuth and tellurium. Antimony was identified as a critical raw material by EU and resources of bismuth and tellurium are not inexhaustible, so it is necessary to imagine the recycling of thermoelectric devices. That for, a complete characterization is needed, which is the aim of this work. Peltier devices were manually dismantled in three parts: the thermoelectric legs, the alumina plates on which remain the electrical contacts and the silicone paste used to connect the plates. The characterization was performed using five Peltier devices. It includes mass balances of the components, X-ray diffraction analysis of the thermoelectric legs and elemental analysis of each part of the device. It appears that alumina represents 45% of a Peltier device in weight. The electrical contacts are mainly composed of copper and tin, and the thermoelectric legs of bismuth, tellurium and antimony. Thermoelectric legs appear to be Se-doped Bi2Te3 and (Bi0,5Sb1,5)Te3 for n type and p type semiconductors, respectively. This work shows that Peltier devices can be considered as a copper ore and that thermoelectric legs contain high amounts of bismuth, tellurium and antimony compared to their traditional resources.

  16. Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Ho [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Choi, Young-Suk [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kang, Kyongha [Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)]. E-mail: kkang@bnl.gov; Yang, Sung Ik [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of)]. E-mail: siyang@khu.ac.kr

    2007-01-16

    In situ nanometer-sized bismuth particles were synthesized by irradiation of the electron beam in the TEM. The size of the crystalline Bi nanoparticles could be controlled by adjusting the irradiation time of the electron beam. Characterization of TEM reveals that the Bi nanoparticles exist in rhombic structure, same as to bulk Bi.

  17. Controlled oxidative synthesis of Bi nanoparticles and emission centers in bismuth glass nanocomposites for photonic application

    Science.gov (United States)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-09-01

    Here we demonstrate an oxidative process to control metallic bismuth (Bi 0) nanoparticles (NPs) creation in bismuth glass nanocomposites by using K 2S 2O 8 as oxidant and enhanced transparency of bismuth glasses. Formation of Bi 0 NPs has been monitored by their distinct surface plasmon resonance (SPR) band at 460 nm in the UV-visible absorption spectra. It is further confirmed by the transmission electron microscopy (TEM) images which disclose the formation of spherical Bi 0 NPs whereas the selected area electron diffraction (SAED) pattern reveals their crystalline rhombohedral phase. These glasses are found to exhibit visible and near infrared (NIR) luminescence bands at 630 and 843 nm respectively on excitation at 460 nm of the SPR band. It is realized that the luminescence center of bismuth species is an uncertain issue, however, it is reasonable to consider that the emission band at 630 nm is due to the combination of 2D 5/2 → 4S 3/2 of Bi 0 and 2P 3/2 (1) → 2P 1/2 of Bi 2+ transitions, and that of NIR emission band at 843 nm is attributed to the 2D 3/2 → 4S 3/2 of Bi 0 transition.

  18. The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori.

    Science.gov (United States)

    Nazari, P; Dowlatabadi-Bazaz, R; Mofid, M R; Pourmand, M R; Daryani, N E; Faramarzi, M A; Sepehrizadeh, Z; Shahverdi, A R

    2014-01-01

    Organic salts of bismuth are currently used as antimicrobial agents against Helicobacter pylori. This study evaluated the antibacterial effect of elemental bismuth nanoparticles (Bi NPs) using a serial agar dilution method for the first time against different clinical isolates and a standard strain of H. pylori. The Bi NPs were biologically prepared and purified by a recently described method and subjected to further characterization by infrared spectroscopy and anti-H. pylori evaluation. Infrared spectroscopy results showed the presence of carboxyl functional groups on the surface of biogenic Bi NPs. These biogenic nanoparticles showed good antibacterial activity against all tested H. pylori strains. The resulting MICs varied between 60 and 100 μg/ml for clinical isolates of H. pylori and H. pylori (ATCC 26695). The antibacterial effect of bismuth ions was also tested against all test strains. The antimicrobial effect of Bi ions was lower than antimicrobial effect of bismuth in the form of elemental NPs. The effect of Bi NPs on metabolomic footprinting of H. pylori was further evaluated by (1)H NMR spectroscopy. Exposure of H. pylori to an inhibitory concentration of Bi NPs (100 μg/ml) led to release of some metabolites such as acetate, formic acid, glutamate, valine, glycine, and uracil from bacteria into their supernatant. These findings confirm that these nanoparticles interfere with Krebs cycle, nucleotide, and amino acid metabolism and shows anti-H. pylori activity.

  19. Microwave-assisted facile and rapid Friedel-Crafts benzoylation of arenes catalysed by bismuth trifluoromethanesulfonate

    DEFF Research Database (Denmark)

    Tran, Phoung Hoang; Hansen, Poul Erik; Pham, Thuy Than;

    2014-01-01

    The catalytic activity of metal triflates was investigated in Friedel–Crafts benzoylation under microwave irradiation. Friedel–Crafts benzoylation with benzoyl chloride of a variety of arenes containing electron-rich and electron-poor rings using bismuth triflate under microwave irradiation is de...

  20. Effect of bismuth citrate, lactose, and organic acid on necrotic enteritis in broilers

    Science.gov (United States)

    Clostridium perfringens – associated necrotic enteritis causes significant losses and increased morbidity in poultry. The objective of this study was to evaluate the effect of bismuth citrate and acidifiers on the development of necrotic enteritis in broilers. The first study was a dose response t...

  1. 1.3 µm Raman-bismuth fiber amplifier pumped by semiconductor disk laser.

    Science.gov (United States)

    Chamorovskiy, A; Rautiainen, J; Rantamäki, A; Golant, K M; Okhotnikov, O G

    2011-03-28

    A hybrid Raman-bismuth fiber amplifier pumped in co-propagation configuration by a single 1.22 µm semiconductor disk laser is presented. The unique attribute of this dual-gain system is that both amplifiers require the pump source with the same wavelength because pump-Stokes spectral shift in 1.3 µm Raman amplifier and pump-gain bandwidth separation in 1.3 µm bismuth fiber amplifier have the same value. Residual pump power at the output of Raman amplifier in this scheme is efficiently consumed by bismuth-doped fiber thus increasing the overall conversion efficiency. The small-signal gain of 18 dB at 1.3 W of pump power has been achieved for hybrid scheme which is by 9 dB higher as compared with isolated Raman amplifier without bismuth fiber. Low noise performance of pump semiconductor disk laser with RIN of -150 dB/Hz combined with nearly diffraction-limited beam quality and Watt-level output powers allows for efficient core-pumping of a single-mode fiber amplifier systems and opens up new opportunities for amplification in O-band spectral range.

  2. Group III-nitride thin films grown using MBE and bismuth

    Science.gov (United States)

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  3. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Science.gov (United States)

    Termentzidis, K.; Pokropivny, A.; Xiong, S.-Y.; Chumakov, Y.; Cortona, P.; Volz, S.

    2012-10-01

    Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  4. Preparation of Bismuth Oxide Photocatalyst and Its Application in White-light LEDs

    Directory of Open Access Journals (Sweden)

    Yen-Chang Chu

    2013-01-01

    Full Text Available Bismuth oxide photocatalysts were synthesized and coated on the front surface of phosphor-converted white light-emitting diodes to produce a safe and environmentally benign lighting source. Bismuth oxide photocatalyst powders were synthesized with a spray pyrolysis method at 500°C, 600°C, 700°C, and 800°C. Using the absorption spectrum in the blue and UV regions of the bismuth oxide photocatalysts, the blue light and UV leakage problems of phosphor-converted white LEDs can be significantly reduced. The experimental results showed that bismuth oxide photocatalyst synthesized at 700°C exhibited the most superior spectrum inhibiting ability. The suppressed ratio reached 52.33% in the blue and UV regions from 360 to 420 nm. Related colorimetric parameters and the photocatalyst decomposition ability of fabricated white-light LEDs were tested. The CIE chromaticity coordinates (x,y were (0.349, 0.393, and the correlated color temperature was 4991 K. In addition, the coating layer of photocatalyst can act as an air purifier and diffuser to reduce glare. A value of 66.2±0.60 ppmv of molecular formaldehyde gas can be decomposed in 120 mins.

  5. Thickness dependence of oxygen permeation through erbia-stabilized bismuth oxide-silver composites

    NARCIS (Netherlands)

    Chen, C.S.; Kruidhof, H.; Bouwmeester, H.J.M.; Verweij, H.; Burggraaf, A.J.

    1997-01-01

    Oxygen permeation measurements were performed on erbia-stabilized bismuth oxide-silver (40 v/o) composite membranes in the range of thickness of 1.60–0.23 mm and temperature of 850–650 °C. Air was fed at one side of the membranes while permeated oxygen on the other side was swept away with helium. A

  6. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part II. Structural and mechanical properties

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, K.; Velde, van de G.M.H.; Vries, de K.J.; Burggraaf, A.J.

    1988-01-01

    Coprecipitation as a method of preparation for bismuth oxides based ceramics yields relatively strong and machineable materials in comparison with the solid state reaction. Compositions within the system (1−x)Bi2O3|xEr2O3 containing up to twenty five mole percent of erbium oxide show a slow transiti

  7. Dynamic spatial structure of spontaneous beams in photorefractive bismuth sillicon oxide

    DEFF Research Database (Denmark)

    Buchhave, Preben; Lyuksyutov, S.; Vasnetsov, M.

    1996-01-01

    We report the domain structure of spontaneously occurring beams (subharmonics) in photorefractive bismuth silicon oxide with an applied electric field from 1 to 6 kV/cm and a running grating. The subharmonic beams are generated in a pattern of domains that evolve dynamically as they move through...

  8. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator.

    Science.gov (United States)

    Babicheva, Viktoriia E; Zhukovsky, Sergei V; Lavrinenko, Andrei V

    2014-11-17

    We propose new designs of plasmonic modulators, which can be used for dynamic signal switching in photonic integrated circuits. We study performance of a plasmonic waveguide modulator with bismuth ferrite as a tunable material. The bismuth ferrite core is sandwiched between metal plates (metal-insulator-metal configuration), which also serve as electrodes. The core changes its refractive index by means of partial in-plane to out-of-plane reorientation of ferroelectric domains in bismuth ferrite under applied voltage. As a result, guided modes change their propagation constant and absorption coefficient, allowing light modulation in both phase and amplitude control schemes. Due to high field confinement between the metal layers, existence of mode cut-offs for certain values of the core thickness, and near-zero material losses in bismuth ferrite, efficient modulation performance is achieved. For the phase control scheme, the π phase shift is provided by a 0.8-μm long device with propagation losses 0.29 dB/μm. For the amplitude control scheme, up to 38 dB/μm extinction ratio with 1.2 dB/μm propagation loss is predicted.

  9. Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Purkayastha, A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Lupo, F. [Max Planck Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Kim, S.; Borca-Tasciuc, T. [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Ramanath, G. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2006-02-17

    Synthesis of single-crystal bismuth telluride nanorods is reported by using a low-temperature, template-free approach. Films of thioglycolic acid functionalized nanorods doped with sulfur exhibit n-type behavior with a high Seebeck coefficient, holding promise for thermoelectric device applications. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the lead-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL...

  11. Response of Ag Thick Film Microstripline due to Superstrate Strontium Substituted Bismuth Manganites

    Directory of Open Access Journals (Sweden)

    S.N. Mathad

    2014-06-01

    Full Text Available The purpose of this paper is to describe the use of strontium-substituted bismuth manganites bulk ceramic superstrate on Ag thick film microstripline, to modify its response and measure complex permittivity as a function of strontium. Bismuth strontium manganites (Bi1 − xSrxMnO3 have been synthesized by solid state sintering technique. The perturbation obtained in the transmittance and reflectance of thick film microstripline due to the Bi1 − xSrxMnO3 (0.20  x  0.50 overlay has been used to obtain the permittivity at microwave frequencies in X and Ku band range. Due to the overlay of Bismuth strontium manganites (BSM pellets a substantial increase in the effective dielectric constant was observed in X band more compared to Ku band. The in-touch overlay method provides ease loading and unloading. The perturbation obtained in the transmittance and reflectance of thick film microstripline due to the bismuth strontium manganites overlay has been used to obtain the permittivity.

  12. 75 FR 34360 - Listing of Color Additives Exempt From Certification; Bismuth Citrate; Confirmation of Effective...

    Science.gov (United States)

    2010-06-17

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 73 Listing of Color Additives Exempt From... March 26, 2010. The final rule amended the color additive regulations by increasing the permitted use level of bismuth citrate as a color additive in cosmetics intended for coloring hair on the scalp....

  13. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  14. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone

    DEFF Research Database (Denmark)

    Bruchert, V.; Jørgensen, BB; Neumann, K.;

    2003-01-01

    and the low capacity to oxidize and trap sulfide. The inner shelf break marks the seaward border of sulfidic bottom waters, and separates two different regimes of bacterial sulfate reduction. In the sulfidic bottom waters on the shelf, up to 55% of sulfide oxidation is mediated by the large nitrate...... to the sediment-water interface and reduce the hydrogen sulfide flux to the water column. Modeling of pore water sulfide concentration profiles indicates that sulfide produced by bacterial sulfate reduction in the uppermost 16 cm of sediment is sufficient to account for the total flux of hydrogen sulfide...... to the water column. However, the total pool of hydrogen sulfide in the water column is too large to be explained by steady state diffusion across the sediment-water interface. Episodic advection of hydrogen sulfide, possibly triggered by methane eruptions, may contribute to hydrogen sulfide in the water...

  15. Carbonyl sulfide: No remedy for global warming

    Science.gov (United States)

    Taubman, Steven J.; Kasting, James F.

    1995-04-01

    The enhancement of the stratospheric aerosol layer caused by the eruption of Mt. Pinatubo (June 15, 1991), and the subsequent cooling of the earth's lower atmosphere [Dutton and Christy, 1992; Minnis et al., 1993] shows that stratospheric aerosols can have a strong effect on the earth's climate. This supports the notion that the intentional enhancement of the stratospheric aerosol layer through increased carbonyl sulfide (OCS) emissions might be an effective means for counteracting global warming. Through the use of a one-dimensional photochemical model, we investigate what effect such a program might have on global average stratospheric ozone. In addition, we consider the impact of enhanced OCS emissions on rainwater acidity and on the overall health of both plants and animals. We find that while the warming produced by a single CO2 doubling (1 to 4°C) might be offset with ozone losses of less than 5%, any attempt to use carbonyl sulfide as a permanent solution to global warming could result in depletion of global average ozone by 30% or more. We estimate that in order to achieve cooling of 4°C rainwater pH would fall to between 3.5 and 3.8. Finally, a 4°C cooling at the surface will require that ambient near ground OCS levels rise to above 10 ppmv which is probably greater than the safe exposure limit for humans. Thus, enhanced OCS emissions do not provide an environmentally acceptable solution to the problem of global warming.

  16. Hydrogen Sulfide and Polysulfides as Biological Mediators

    Directory of Open Access Journals (Sweden)

    Hideo Kimura

    2014-10-01

    Full Text Available Hydrogen sulfide (H2S is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS, cystathionine γ-lyase (CSE, and 3-mercaptopyruvate sulfurtransferase (3MST. The activity of CBS is enhanced by S-adenosyl methionine (SAM and glutathionylation, while it is inhibited by nitric oxide (NO and carbon monoxide (CO. The activity of CSE and cysteine aminotransferase (CAT, which produces the 3MST substrate 3-mercaptopyruvate (3MP, is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR, sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1 channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2 to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN by sulfurating (sulfhydrating the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  17. Normal state of metallic hydrogen sulfide

    Science.gov (United States)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-02-01

    A generalized theory of the normal properties of metals in the case of electron-phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green's function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ɛ) renormalized by strong electron-phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3¯ m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/ mmm ( D4 h1¯7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.

  18. Hydrogen sulfide and polysulfides as biological mediators.

    Science.gov (United States)

    Kimura, Hideo

    2014-10-09

    Hydrogen sulfide (H2S) is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST). The activity of CBS is enhanced by S-adenosyl methionine (SAM) and glutathionylation, while it is inhibited by nitric oxide (NO) and carbon monoxide (CO). The activity of CSE and cysteine aminotransferase (CAT), which produces the 3MST substrate 3-mercaptopyruvate (3MP), is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR), sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn) have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1) channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN) by sulfurating (sulfhydrating) the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  19. First detection of doubly deuterated hydrogen sulfide

    CERN Document Server

    Vastel, C; Ceccarelli, C; Pearson, J

    2003-01-01

    This work was carried out with using the Caltech Submillimeter Observatory and presents the observational study of HDS and D2S towards a sample of Class 0 sources, and dense cores. We report the first detection of doubly deuterated hydrogen sulfide (D2S) in two dense cores and analyze the chemistry of these molecules aiming to help understand the deuteration processes in the interstellar medium. The observed values of the D2S/HDS ratio, and upper limits, require an atomic D/H ratio in the accreting gas of 0.1-1. The study presented in this Letter supports the hypothesis that formaldehyde, methanol and hydrogen sulfide are formed on the grain surfaces, during the cold pre-stellar core phase, where the CO depleted gas has large atomic D/H ratios. The high values for the D/H ratios are consistent with the predictions of a recent gas-phase chemical model that includes H3+ and its deuterated isotopomers, H2D+, D2H+ and D3+ (Roberts et al. 2003).

  20. Calculation of sulfide capacities of multicomponent slags

    Science.gov (United States)

    Pelton, Arthur D.; Eriksson, Gunnar; Romero-Serrano, Antonio

    1993-10-01

    The Reddy-Blander model for the sulfide capacities of slags has been modified for the case of acid slags and to include A12O3 and TiO2 as components. The model has been extended to calculate a priori sulfide capacities of multicomponent slags, from a knowledge of the thermodynamic activities of the component oxides, with no adjustable parameters. Agreement with measurements is obtained within experimental uncertainty for binary, ternary, and quinary slags involving the components SiO2-Al2O3-TiO2-CaO-MgO-FeO-MnO over wide ranges of composition. The oxide activities used in the computations are calculated from a database of model parameters obtained by optimizing thermodynamic and phase equilibrium data for oxide systems. Sulfur has now been included in this database. A computing system with automatic access to this and other databases has been developed to permit the calculation of the sulfur content of slags in multicomponent slag/metal/gas/solid equilibria.

  1. CALCULATION OF CONDITIONAL EQUILIBRIUM IN SERIAL MULTIPLE PRECIPITATION OF METAL SULFIDES WITH HYDROGEN SULFIDE STREAM GENERATED FROM SODIUM SULFIDE: A DIDACTIC TOOL FOR CHEMISTRY TEACHING

    Directory of Open Access Journals (Sweden)

    Renata Bellová

    2016-07-01

    Full Text Available Hydrogen sulfide is presented in textbooks as toxic, environmentally unacceptable species, however some positive effects in human metabolism were discovered in the last decades. It is important to offer students also some new information about this compound. As didactic tool in this case may serve serial precipitation of Cd2+, Cu2+, Zn2+, Mn2+ and Pb2+ ions forming various colored sulfides in bubblers with chemically generated hydrogen sulfide stream. This experiment has strong and diverse color effect for enhancing the visual perception to motivate students to understand more abstract and complex information about hydrogen sulfide. It also may be helpful in analytical chemistry courses for conditional precipitation equilibrium teaching and calculations.

  2. Synthesis of mercuric iodide and bismuth tri-iodide nanoparticles for heavy metal iodide films nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Fornaro, L.; Pereira, H.Bentos [Compound Semiconductors Group, CURE, Universidad de la Republica, Rocha (Uruguay); Aguiar, I.; Perez Barthaburu, M. [Compound Semiconductors Group, Facultad de Quimica, Univ. de la Republica, Montevideo (Uruguay)

    2011-12-15

    We synthesized mercuric iodide and bismuth tri-iodide nanoparticles by suspension in octadecene, from Hg(NO{sub 3}){sub 2}.H{sub 2}O and I{sub 2}, and from Bi(NO{sub 3}){sub 3}.5H{sub 2}O and I{sub 2}, respectively. The best synthesis conditions were 2 h at 70-80 C, followed by 10 min at 110 C for mercuric iodide nanoparticles, and 4 h at 80-110 C, followed by 10 min at 180-210 C for bismuth tri-iodide ones. Nanoparticles were then washed and centrifuged with ether repeatedly. Compounds identity was confirmed by X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). We found shifts of the X-ray diffraction maxima for nanoparticles of both compounds. We characterized the nanoparticles by transmission (TEM) and scanning (SEM) electron microscopy. We obtained disk-like and squared mercuric iodide nanostructures, 80-140 nm and 100-125 nm in size respectively. We also obtained rounded and rod-like bismuth tri-iodide nanoparticles, 30-500 nm in size. Acetonitrile and isopropanol suspensions of mercuric iodide nanoparticles, and acetonitrile suspension of bismuth tri-iodide nanoparticles exhibited peak maxima shifts in their UV-Vis spectra. We synthesized for the first time mercuric iodide and bismuth tri-iodide nanoparticles by the suspension method, although we have not yet obtained uniform shape and size distributions. They offer interesting perspectives for crystalline film nucleation and for improving current applications of these materials, as well as for opening new ones. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Dose reduction in CT using bismuth shielding: measurements and Monte Carlo simulations.

    Science.gov (United States)

    Chang, Kyung-Hwan; Lee, Wonho; Choo, Dong-Myung; Lee, Choon-Sik; Kim, Youhyun

    2010-03-01

    In this research, using direct measurements and Monte Carlo calculations, the potential dose reduction achieved by bismuth shielding in computed tomography was evaluated. The patient dose was measured using an ionisation chamber in a polymethylmethacrylate (PMMA) phantom that had five measurement points at the centre and periphery. Simulations were performed using the MCNPX code. For both the bare and the bismuth-shielded phantom, the differences of dose values between experiment and simulation were within 9%. The dose reductions due to the bismuth shielding were 1.2-55% depending on the measurement points, X-ray tube voltage and the type of shielding. The amount of dose reduction was significant for the positions covered by the bismuth shielding (34 - 46% for head and 41 - 55% for body phantom on average) and negligible for other peripheral positions. The artefact on the reconstructed images were minimal when the distance between the shielding and the organs was >1 cm, and hence the shielding should be selectively located to protect critical organs such as the eye lens, thyroid and breast. The simulation results using the PMMA phantom was compared with those using a realistically voxelised phantom (KTMAN-2). For eye and breast, the simulation results using the PMMA and KTMAN-2 phantoms were similar with each other, while for thyroid the simulation results were different due to the discrepancy of locations and the sizes of the phantoms. The dose reductions achieved by bismuth and lead shielding were compared with each other and the results showed that the difference of the dose reductions achieved by the two materials was less than 2-3%.

  4. Hall Plateaus at magic angles in ultraquantum Bismuth

    Science.gov (United States)

    Benoît, Fauqué.

    2009-03-01

    The behaviour of a three-dimensional electron gas in the presence of a magnetic field strong enough to put all carriers in the first Landau level (i.e. beyond the quantum limit) is a longstanding question of theoretical condensed matter physics [1]. This issue has been recently explored by two high-field experiments on elemental semi-metal Bismuth. In a first study of transport coefficients (which are dominated by hole-like carriers), the Nernst coefficient presented three unexpected maxima that are concomitant with quasi-plateaux in the Hall coefficient [2]. In a second series of experiments, torque magnetometry (which mainly probes the three Dirac valley electron pockets) detected a field-induced phase transition [3]. The full understanding of the electron and hole behaviours above the quantum limit of pure Bi is therefore still under debate. In this talk, we will present our measurement of the Hall resistivity and torque magnetometry with magnetic field up to 31 T and rotating in the trigonal-bisectrix plane [4]. The Hall response is dominated by the hole pockets according to its sign as well as the period and the angular dependence of its quantum oscillations. In the vicinity of the quantum limit, it presents additional anomalies which are the fingerprints of the electron pockets. We found that for particular orientations of the magnetic field (namely ``magic angles''), the Hall response becomes field-independent within the experimental resolution around 20T. This drastic dependence of the plateaux on the field orientation provides strong constraints for theoretical scenarios. [4pt] [1] Bertrand I. Halperin, Japanese Journal of Applied Physics, 26, Supplement 26-3 (1987).[0pt] [2] Kamran Behnia, Luis Balicas, Yakov Kopelevich, Science, 317, 1729 (2008).[0pt] [3] Lu Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong , Science, 321, 5888 (2008).[0pt] [4] Benoît Fauqu'e, Luis Balicas, Ilya Sheikin, Jean Paul Issi and Kamran Behnia

  5. Synthesis of Diaryl Ethers, Diaryl Sulfides, Heteroaryl Ethers and Heteroaryl Sulfides under Microwave Heating

    Institute of Scientific and Technical Information of China (English)

    LI,Feng; ZOU,Jiong; WANG,Quan-Rui; TAO,Feng-Gang

    2004-01-01

    @@ Diaryl ether moiety is found in a pool of naturally occurring and medicinally important compounds.[1] As a consequent, considerable efforts have been devoted to the assembly of this framework.[2] Recently, we have developed a microwave heating version of the synthesis of diaryl ethers as well as aryl sulfides. Under our conditions, even the extremely electron-poor 4-nitrophenol works well and its reaction with 1-halo-4-nitrobenzenes produces 4-(nitrophenoxy)-benzonitriles in satisfactory yield. The scope of the present protocol has been expanded to hydroxylated six-membered heterocycles as well as 2-pyrimidinethiol with mildly activated aryl halides, affording heteroaryl ethers and respectively sulfides. The advantages of the present method include the wide substrate scope, no use of any metal catalysts, the ease of product isolation and high yields.

  6. Experimental study on the effects of bismuth subgallate on the inflammatory process and angiogenesis of the oral mucosa

    Directory of Open Access Journals (Sweden)

    Eduardo Vieira Couto

    2016-02-01

    Full Text Available ABSTRACT INTRODUCTION: Bismuth subgallate is a salt derived from heavy metal. The aim of this study was to evaluate the effect of this salt on some phases of healing. OBJECTIVES: To assess the effect of subgallate on mucosa and to evaluate the association between the use of bismuth subgallate and neogenesis of vessels in oral mucosal wounds. METHODS: This was a prospective and experimental study. This study used sixty rats, which were divided into control and experimental groups. The animals were submitted to a surgical procedure, which caused oral mucosal injury. A saline solution was applied on the wound of the control group, and in the experimental group, a solution of bismuth subgallate was administrated. RESULTS: The experimental group showed greater inflammatory reaction with increasing monomorphic proliferation. There was increased vessel proliferation in the control group. CONCLUSION: Bismuth subgallate had a negative influence on the healing process, delaying the rate of new vessel formation and optimal wound healing.

  7. Measurement of plasma hydrogen sulfide in vivo and in vitro.

    Science.gov (United States)

    Shen, Xinggui; Pattillo, Christopher B; Pardue, Sibile; Bir, Shyamal C; Wang, Rui; Kevil, Christopher G

    2011-05-01

    The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H₂S in plasma down to nanomolar levels, using monobromobimane (MBB). The current standard assay using methylene blue provides erroneous results that do not actually measure H₂S. The method presented herein involves derivatization of sulfide with excess MBB in 100 mM Tris-HCl buffer (pH 9.5, 0.1 mM DTPA) for 30 min in 1% oxygen at room temperature. The fluorescent product sulfide-dibimane (SDB) is analyzed by RP-HPLC using an eclipse XDB-C18 (4.6 × 250 mm) column with gradient elution by 0.1% (v/v) trifluoroacetic acid in acetonitrile. The limit of detection for sulfide-dibimane is 2 nM and the SDB product is very stable over time, allowing batch storage and analysis. In summary, our MBB method is suitable for sensitive quantitative measurement of free hydrogen sulfide in multiple biological samples such as plasma, tissue and cell culture lysates, or media.

  8. Sulfide elimination by intermittent nitrate dosing in sewer sediments

    Institute of Scientific and Technical Information of China (English)

    Yanchen Liu; Chen Wu; Xiaohong Zhou; David Z.Zhu; Hanchang Shi

    2015-01-01

    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards,and requires expensive programs for its prevention.The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments.The study was carried out based on lab-scale experiments and batch tests using real sewer sediments.The intermittent nitrate dosing mode and the optimal control condition were investigated.The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment.The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide)ratio with slight excess nitrate is necessary for optimal conditions ofefficient sulfide control with lower carbon source loss.The opth-nal control condition is feasible for the sulfide elimination in sewer systems.

  9. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  10. Recent progress of bismuth-containing photocatalysts%含铋光催化材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    王伟华; 叶红齐; 覃涛; 刘宣业; 黄辉; 赵炜康; 朱坤杰

    2014-01-01

    Bismuth-containing photocatalysts can be used in many fields because of narrow band gap and ability of adsorbing visible light. In this paper , the latest research status and progress of bismuth-containing photocatalysts are reviewed. Bismuth oxide , halide bismuth oxide , bismuth titanate,bismuth tungstate,bismuth vanadate,bismuth molybdate and bismuth ferrite are introduced and the methods of improving photocatalytic performance are highlighted,including improvement of synthesis methods,photocatalysts doping and preparation of photocatalyst composites. Finally,the research directions of bismuth-containing photocatalysts are presented,aimed at improving overall performance and realizing industrial application of bismuth-containing photocatalysts , such as preparing multi-doped photocatalysts,multiple photocatalyst composites and supported catalysts.%含铋光催化材料因其能吸收可见光、催化活性高而具有广阔的应用前景。本文主要回顾了含铋光催化材料近年来的研究概况,详细介绍了铋氧化物、卤氧化铋及钛酸铋、钨酸铋、钒酸铋、钼酸铋、铁酸铋等光催化剂的结构、制备和光催化性能,重点对光催化性能的改进方法进行了综述,包括制备方法的改良、催化剂的掺杂改性及复合催化剂的制备等;最后针对进一步提高光催化剂整体性能、实现工业化应用两点,提出了未来可以利用多元元素掺杂、多元半导体复合进行改性和负载于某些载体制备整体催化剂进行改良的观点。

  11. Gallium sulfide and indium sulfide nanoparticles from complex precursors: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, D.P. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)]. E-mail: duttadimple@yahoo.co.in; Sharma, G. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kulshreshtha, S.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2007-03-15

    Nanocrystalline gallium sulfide (Ga{sub 2}S{sub 3}) and indium sulfide (In{sub 2}S{sub 3}) have been prepared by a two-step process. The first step involves metathesis reaction of trimethyl gallium/indium ether adduct (Me{sub 3}Ga/In.OEt{sub 2}) with 1,2-ethanedithiol (HSCH{sub 2}CH{sub 2}SH) resulting in the formation of a polymeric precursor. The precursor complex has been characterized using Ga/In analysis, IR, proton NMR and mass spectroscopy. The thermal behavior of both complexes has been studied using thermogravimetric (TG) analysis. In the second step, these precursor complexes have been pyrolysed in furnace under flowing nitrogen atmosphere whereupon they undergo thermodestruction to yield nanometer-sized particles of gallium/indium sulfide. The nanoparticles obtained were characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDS). The average size of the nanoparticles ranged from 10 to 12 nm for Ga{sub 2}S{sub 3} and 20 to 22 nm for In{sub 2}S{sub 3}, respectively. This is the first report on use of a binary single source precursor to synthesize {beta}-Ga{sub 2}S{sub 3} nanoparticles.

  12. 钒酸铋掺杂体系的研究进展%DEVELOPMENT OF DOPED BISMUTH VANADATE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    朱振峰; 张炼

    2012-01-01

    This paper mainly introduces development of bismuth vanadate doped with rare earth elements,transition elements,carbon group elements and other elements and put forward a development direction of bismuth vanadate materials in the future.%介绍了稀土元素、过渡元素、碳族元素和其它元素的钒酸铋掺杂体系,并对未来的发展方向做出展望。

  13. Bismuth Based Hybrid Perovskites A3Bi2 I9 (A: Methylammonium or Cesium) for Solar Cell Application.

    Science.gov (United States)

    Park, Byung-Wook; Philippe, Bertrand; Zhang, Xiaoliang; Rensmo, Håkan; Boschloo, Gerrit; Johansson, Erik M J

    2015-11-18

    Low-toxic bismuth-based perovskites are prepared for the possible replacement of lead perovskite in solar cells. The perovskites have a hexagonal crystalline phase and light absorption in the visible region. A power conversion efficiency of over 1% is obtained for a solar cell with Cs3 Bi2 I9 perovskite, and it is concluded that bismuth perovskites have very promising properties for further development in solar cells.

  14. Signaling of hydrogen sulfide and polysulfides.

    Science.gov (United States)

    Kimura, Hideo

    2015-02-10

    It has been almost two decades since the first demonstration of hydrogen sulfide (H2S) as a physiological mediator of cognitive function and vascular tone. H2S is physiologically important because it protects various organs from ischemia-reperfusion injury besides regulating inflammation, oxygen sensing, cell growth, and senescence. The production, metabolism, and regulation of H2S have been studied extensively. H2S modulates target proteins through sulfhydration (or sulfuration) or by the reduction of cysteine disulfide bonds. A large number of novel H2S-donating compounds are being developed owing to the therapeutic potential of H2S. Recently, polysulfides, rather than H2S, have been identified as molecules that sulfhydrate (or sulfurate) their target proteins.

  15. Structure of 4-methylpyridinium Hydrogen Sulfide

    Science.gov (United States)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Martuch, Robert A.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    4-Methylpyridinium hydrogen sulfide, (C6H7NH)HS, M(sub r) = 127.21, consists of C6H7NH(+) cations and HS(-) anions. Z = 2 for the crystal with monoclinic space group Cm (#8), dimensions of a = 8.679(2) A, b = 7.964(1) A, and c = 4.860(2) A, an angle beta of 101.10(2) degrees, and a volume of V = 329.6(3) A(exp 3). R = 0.039 and R(sub w) = 0.048 for 385 reflections with F(sub o)(exp 2) greater than 3 sigma(F(sub o)(exp 2)) and 59 variables. Both the C6H7NH(+) cation and the HS(-) anion lie on crystallographic mirror planes with the N,S, two carbon atoms, and two hydrogen atoms positioned in the planes. The hydrogen atom of the HS(-) anion was not located.

  16. Hydrogen sulfide in a circumstellar envelope

    Science.gov (United States)

    Ukita, N.; Morris, M.

    1983-01-01

    A search for hydrogen sulfide in the cool circumstellar envelopes of 25 stars was made using the 1(10)-1(01) rotational line at 1.8 mm. It was detected in the bipolar nebula/OH maser OH231.8+4.2, an object having a high rate of mass loss. An approximate analysis indicates that 1/60 of the sulfur in this outflowing envelope is in the form of H2S, a fraction which may be similar to that in the atmosphere of the central star. In addition, the shape of the observed line profile is discussed in terms of a possible variation of the outflow velocity with latitude above the system's equatorial plane.

  17. Hydrogen sulfide in gastrointestinal and liver physiopathology.

    Science.gov (United States)

    Cipriani, Sabrina; Mencarelli, Andrea

    2011-04-01

    Hydrogen sulfide (H(2)S) is a gas that can be formed by the action of two enzymes, cystathionine gamma lyase (CSE) and cystathionine beta synthase (CBS). H(2)S has been known for hundreds of years for its poisoning effect, however the idea that H(2)S is not only a poison, but can exert a physiological role in mammalian organisms, originates from the evidence that this gaseous mediator is produced endogenously. In addition to H(2)S synthesis by gastrointestinal tissue, the intestinal mucosa, particularly in the large intestine, is regularly exposed to high concentrations of H(2)S that are generated by some species of bacteria and through the reduction of unabsorbed intestinal inorganic sulphate. This review reports on the effects of H(2)S in the gastrointestinal tract and liver and provides information on the therapeutic applications of H(2)S-donating drugs.

  18. Nanomaterials for the Selective Detection of Hydrogen Sulfide in Air

    Science.gov (United States)

    Llobet, Eduard; Brunet, Jérôme; Pauly, Alain; Ndiaye, Amadou; Varenne, Christelle

    2017-01-01

    This paper presents a focused review on the nanomaterials and associated transduction schemes that have been developed for the selective detection of hydrogen sulfide. It presents a quite comprehensive overview of the latest developments, briefly discusses the hydrogen sulfide detection mechanisms, identifying the reasons for the selectivity (or lack of) observed experimentally. It critically reviews performance, shortcomings, and identifies missing or overlooked important aspects. It identifies the most mature/promising materials and approaches for achieving inexpensive hydrogen sulfide sensors that could be employed in widespread, miniaturized, and inexpensive detectors and, suggests what research should be undertaken for ensuring that requirements are met. PMID:28218674

  19. Effect of radiation on wettability and floatability of sulfide minerals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The feasibility for modifying the wettability and floatability of sulfide minerals by electron beam irradiation has been studied experimentally. The wettability of crystalline pyrite and floatability of some sulfide as pyrite, arsenopyrite, chalcopyrite and marmatite after irradiation were examined by flotation in a modified Hallimond tube. Experimental results show that the hydrophobicity of crystalline pyrite enhances with the increase of irradiation dose in a low dose range. And the flotation responses of sulfide minerals on irradiation dosevary with the mineral species and particle size. The floatability of minerals can be regulated by altering irradiation dose. An explanationfor the mechanism has been suggested based on the principle of radiation chemistry.

  20. Sulfide capacities of MnO-SiO2 slags

    Science.gov (United States)

    Reddy, Ramana G.; Blander, Milton

    1989-04-01

    Sulfide capacities of binary MnO-SiO2 slags at 1773 and 1923 K were calculated thermodynamically. Only known data, such as the standard free energy of formation of MnO and MnS and activities of MnO in the melt, are used in making calculations based on fundamental concepts. Excellent agreement is found between our calculations and published experimental data. Correlations of sulfide capacities, based on optical basicity using Pauling electronegativities or empirically deduced optical basicities, differ from the experimental data in both magnitude and concentration dependence. Our method provides useful predictions of sulfide capacities a priori.

  1. Nanostructured Oxides and Sulfides for Thermoelectrics

    Science.gov (United States)

    Koumoto, Kunihito

    2011-03-01

    Thermoelectric power generation can be applied to various heat sources, both waste heat and renewable energy, to harvest electricity. Even though each heat source is of a small scale, it would lead to a great deal of energy saving if they are combined and collected, and it would greatly contribute to reducing carbon dioxide emission. We have been engaged in developing novel thermoelectric materials to be used for energy saving and environmental protection and are currently developing nanostructured ceramics for thermoelectric conversion. We have demonstrated a quantum confinement effect giving rise to two dimensional electron gas (2DEG) in a 2D superlattice, STO/STO:Nb (STO: strontium titanate), which could generate giant thermopower while keeping high electrical conductivity. One unit-cell thick Nb-doped well layer was estimated to show ZT=2.4 at 300K. Then, a ``synergistic nanostructuring'' concept incorporating 2DEG grain boundaries as well as nanosizing of grains has been applied to our STO material and 3D superlattice ceramics was designed and proposed. It was verified by numerical simulation that this 3D superlattice ceramics should be capable of showing ZT=1.0 at 300K which is comparable to or even higher than that of conventional bismuth telluride-based thermoelectrics. We have recently proposed titanium disulfide-based misfit-layered compounds as novel TE materials. Insertion of misfit-layers into the van der Waals gaps in layer-structured titanium disulfide thus forming a natural superlattice gives rise to internal nanointerfaces and dramatically reduces its lattice thermal conductivity. ZT value reaches 0.37 at 673 K even without optimization of electronic properties. Our challenge to further increase ZT by controlling their electronic system and superlattice structures will be presented.

  2. Micellar-mediated extractive spectrophotometric determination of hydrogen sulfide/sulfide through Prussian Blue reaction: application to environmental samples.

    Science.gov (United States)

    Pandurangappa, Malingappa; Samrat, Devaramani

    2010-01-01

    A sensitive surfactant-mediated extractive spectrophotometric method has been developed, based on the reaction of ferric iron with sulfide to form ferrous iron and its subsequent reaction with ferricyanide to form Prussian Blue, to quantify trace levels of hydrogen sulfide/sulfide in environmental samples. The method obeys Beer's law in the concentration range 2-10 microg of sulfide in 25 mL of aqueous phase with molar absorptivity (epsilon) of 3.92 x 10(4) L mol(-1) cm(-1). The colored species has been extracted into isoamyl acetate in the presence of a cationic surfactant i.e. cetylpyridinium chloride, to enhance the sensitivity of the method with epsilon value 5.2 x 10(4) L mol(-1) cm(-1). The relative standard deviation has been found to be 0.69% for 10 determinations at 4 microg of sulfide and the limit of detection was 0.009 microg mL(-1). The interference from common anions and cations has been studied. The proposed method has been applied to the determination of residual hydrogen sulfide in the laboratory fume hood as well as ambient atmospheric hydrogen sulfide in the vicinity of open sewer lines after fixing the analyte in ionic form using suitable trapping medium.

  3. Micro-aeration for hydrogen sulfide removal from biogas

    Science.gov (United States)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  4. Pharmacokinetics and bioequivalence of ranitidine and bismuth derived from two compound preparations

    Institute of Scientific and Technical Information of China (English)

    Quan Zhou; Zou-Rong Ruan; Hong Yuan; Bo Jiang; Dong-Hang Xu

    2006-01-01

    AIM: To evaluate the bioequivalence of ranitidine and bismuth derived from two compound preparations.METHODS: The bioavailability was measured in 20healthy male Chinese volunteers following a single oral dose (equivalent to 200 mg of ranitidine and 220 mg of bismuth) of the test or reference products in the fasting state. Then blood samples were collected for 24 h.Plasma concentrations of ranitidine and bismuth were analyzed by high-performance liquid chromatography and inductively coupled plasma-mass spectrometry (ICPMS), respectively. The non-compartmental method was used for pharmacokinetic analysis. Log-transformed Cmax,AUC(0-t) and AUC(0-∞) were tested for bioequivalence using ANOVA and Schuirmann two-one sided t-test. Tmax was analyzed by Wilcoxon's test.RESULTS: Various pharmacokinetic parameters of ranitidine derived from the two compound preparations,including Cmax, AUC(0-t), AUC(0-∞), Tmax and T1/2, were nearly consistent with previous observations. These parameters derived from test and reference drug were as follows: Cmax(0.67 ± 0.21 vs 0.68 ± 0.22mg/L), AUC(0-t)(3.1 ± 0.6 vs 3.0 ± 0.7 mg/L per hour),AUC(0-∞)(3.3 ± 0.6 vs 3.2 ± 0.8 mg/L per hour),Tmax (2.3 ± 0.9 vs 2.1 ± 0.9 h) and T1/2 (2.8 ± 0.3 vs 3.1± 0.4 h). In addition, double-peak absorption profiles of ranitidine were found in some Chinese volunteers.For bismuth, those parameters derived from test and reference drug were as follows: Cmax (11.80 ± 7.36 vs 11.40 ± 6.55 μg/L),AUC(0-t) (46.65 ± 16.97 vs 47.03 ±21.49 μg/L per hour), Tmax (0.50 ± 0.20 vs 0.50 ± 0.20 h)and T1/2 (10.2 ± 2.3 vs 13.0 ± 6.9 h). Ninety percent of confidence intervals for the test/reference ratio of Cmax,AUC(0-t) and AUC(0-∞) derived from both ranitidine and bismuth were found within the bioequivalence acceptable range of 80%-125%. No significant difference was found in Tmax derived from both ranitidine and bismuth.CONCLUSION: The two compound preparations are bioequivalent and may be prescribed

  5. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    Science.gov (United States)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  6. Three-Component One-Pot Synthesis of Novel Benzo[b]1,8-naphthyridines Catalyzed by Bismuth(III Chloride

    Directory of Open Access Journals (Sweden)

    Tangali R. Ravikumar Naik

    2008-01-01

    Full Text Available A novel and efficient three-component one-pot synthesis of benzo[b]1,8-naphthyridines by 2-amino-4-methylquinoline, aromatic aldehydes, and malononitrile was done. The reaction was catalyzed by an acidic Bismuth(III chloride, functionalized Bismuth(III chloride, at room temperature to give various benzo[b]1,8-naphthyridines in high yields. The Bismuth(III chloride is an environmentally friendly catalyst.

  7. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  8. [L'application des radioisotopes a la chromatographie sur colonnes de celluloses substituees-IV L'analyse du mercure et du zinc dans le bismuth].

    Science.gov (United States)

    Muzzarelli, R A; Marcotrigiano, G

    1967-03-01

    The Chromatographic behaviour of nanogram amounts of bismuth has been studied by radioisotope techniques on cellobiose, cellulose and seven substituted celluloses. All celluloses in ethyl ether adsorb bismuth, provided that it is as nitrate, and that excess of nitric acid is avoided. Bismuth can be eluted with thiocyanate in ether-methanol or with hydrochloric acid in methanol, depending on the retention strength of the various functional groups of celluloses. A very simple method of separation of bismuth from mercury over a wide range of concentration is presented.

  9. Hydrogen Sulfide Micro-Sensor for Biomass Fouling Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hydrogen Sulfide (H2S)is the leading chemical agent causing human fatalities following inhalation exposures. The overall aim of this project is to develop and...

  10. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Xue; Huang, Jia-Qi; Zhang, Qiang; Mai, Liqiang

    2017-02-03

    Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed.

  11. Selective adsorption of bacteria on sulfide minerals surface

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yun; WEI De-zhou; LIU Wen-gang; HAN Cong; GAO Shu-ling; WANG Yu-juan

    2008-01-01

    The adsorption of bacteria on sulfide minerals surface was studied, and the selective adsorption mechanism of cells on the sulfide minerals was investigated by means of FTIR, UVS and XPS. The results show that the three strains of bacteria adsorbed more preferentially on pyrite than on other two sulfide minerals surface at neutral and alkaline pH conditions. FTIR and UVS of three strains of bacteria indicate that there are more functional groups on their surface, such as O-H, C=O, N-H, C-O, and the content of saccharide is more than that of protein. The state of every element on sulfide minerals surface was analyzed by XPS. The empty orbital number of electronic shell of metal ions on minerals surface is important in selective adsorption process, and some stable constants of metal coordinates can be used to explain the contribution of some groups in saccharide of cell wall to the selective adsorption.

  12. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    Science.gov (United States)

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  13. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  14. An eco-friendly oxidation of sulfide compounds

    Indian Academy of Sciences (India)

    RAVINDRA B WAGH; SITARAM H GUND; JAYASHREE M NAGARKAR

    2016-08-01

    An improved green route has been developed for the oxidation of sulfide compounds. Albendazole is converted to ricobendazole or albendazole sulfone using H₂O₂ as an oxidant and H₂O as the solvent. High yields of the corresponding products were obtained by carrying out the reaction at room temperature. This synthetic method is environmentally clean and safe, operationally simple for the oxidation of other benzimidazole anthelmintics and various sulfide compounds.

  15. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    OpenAIRE

    Z. O. Lipatova; E. V. Kolobkova; V. A. Aseev

    2015-01-01

    Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been fou...

  16. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  17. Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing

    Science.gov (United States)

    Firstov, S. V.; Firstova, E. G.; Alyshev, S. V.; Khopin, V. F.; Riumkin, K. E.; Melkumov, M. A.; Guryanov, A. N.; Dianov, E. M.

    2016-08-01

    The effect of annealing temperature on the luminescent properties of bismuth-doped fibers bleached by 532 nm laser radiation was investigated. The photoluminescence (PL) measurements were performed in pristine and photobleached samples which were thermally annealed at various temperatures ranging from 100 to 900 °C and slowly cooled. We observed that the intensity of the PL band at 1700 nm in the photobleached fibers recovered its pre-bleached level. Moreover, it was shown that a significant increase of the PL level could be achieved using the special annealing regime. Thereby, we obtained the experimental evidence of a thermally activated recovery process of the PL intensity showing that photoinduced changes of PL in bismuth-doped fibers are completely reversible. The mechanism of the thermal recovery of the PL is discussed.

  18. Bismuth Basic Nitrate as a Novel Adsorbent for Azo Dye Removal

    Directory of Open Access Journals (Sweden)

    E. A. Abdullah

    2012-01-01

    Full Text Available Bismuth basic nitrate (BBN and its TiO2-Ag modified sorbent, PTBA were successfully synthesized via a precipitation method. The structural characteristics of prepared sorbents were determined through different analytical techniques. The potential use of prepared sorbents for organic compounds' removal was evaluated using Methyl Orange and Sunset Yellow dyes as model pollutants in aqueous solutions. The experimental results showed that the presence of TiO2 and Ag particles during the crystal growth of bismuth basic nitrate has an effect on the crystal structure, point of zero charge (pHpzc, pore volume and diameter. The lower binding energy of Ti 2p core level peak indicates the octahedral coordination of TiO2 particles on the PTBA surface. The alteration of hydrophilic-hydrophobic characteristics of sorbent's surface improves the adsorptive performance of the modified sorbent and provides an efficient route for organic contaminants' removal from aqueous solutions.

  19. Sandwich heterostructures of antimony trioxide and bismuth trioxide films: Structural, morphological and optical analysis

    Science.gov (United States)

    Condurache-Bota, Simona; Praisler, Mirela; Gavrila, Raluca; Tigau, Nicolae

    2017-01-01

    Thin film heterostructures can be advantageous since they either exhibit novel or a combination of the properties of their components. Here we propose sandwich-type of heterostructures made of antimony trioxide and bismuth trioxide thin films, which were deposited on glass substrates by thermal vacuum deposition at three substrate temperatures, 50° Celsius apart. Their morphology and optical properties are studied as compared to the corresponding monolayers. It was found that even small substrate temperature changes strongly influence their morphology, increasing their roughness, while the optical transmittance shows a slight decrease as compared with the individual layers. The corresponding absorption coefficient exhibits intermediate values as compared to the component oxides, while the energy bandgaps for the indirect allowed transitions move towards the Infrared when overlapping the antimony and bismuth trioxides.

  20. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  1. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    Science.gov (United States)

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process.

  2. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Science.gov (United States)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  3. Zero-dimensional nanostructured material with metallic bismuth nanoparticles: a new route for thermoelectrics

    Science.gov (United States)

    Benoit, Roland; Treguer, Mona; Saboungi, Marie-Louise

    2011-03-01

    The thermoelectric figure of merit ZT has so far not exceeded the value ZT=3 need to compete with mechanical energy conversion systems. However, theoretical work has shown that it is possible to reach values of ZT higher than this. One of the most promising routes is nanostructured materials, which offer the opportunity to tailor physical properties such as electrical and heat transport, due to the effects of electron filtering and phonon confinement. Dresselhaus et al. (ref.?) were among the first to show that 2D and 1D structures are capable of reaching ZT values higher than 2. The thermoelectric materials of current interest are in the form of nanotubes, nanodots and, more generally, superlattices composed of a matrix and nanoparticles. In our work we synthesize a periodic network of bismuth nanoparticles in a matrix of mesoporous Si O2 . We find that in this form bismuth transforms from a rhombohedral to a cubic structure, with improved filtering of electrons and phonons.

  4. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    Science.gov (United States)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  5. A novel antifuse structure based on amorphous bismuth zinc niobate thin films

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Li Wei; Li Ping; Li Zuxiong; Fan Xue; Jiang Jing

    2012-01-01

    A novel antifuse structure with amorphous bismuth zinc niobate (a-BZN) dielectrics was proposed.The characteristics of the a-BZN antifuse were investigated.Programming direction of up to down was chosen to rupture the a-BZN antifuse.The breakdown voltage of the a-BZN antifuse was obtained at a magnitude of 6.56 V.A large off-state resistance of more than 1 GΩ for the a-BZN antifuse was demonstrated.The surface micrograph of the ruptured a-BZN antifuses was illustrated.Programming characteristics with the programming time of 0.46 ms and on-state properties with the average resistance value of 26.1 Ω of the a-BZN antifuse were exhibited.The difference of characteristics of the a-BZN antifuse from that of a cubic pyrochlore bismuth zinc niobate (cp-BZN) antifuse and gate oxide antifuse was compared and analyzed.

  6. Methylene blue photocatalysis in the presence of bismuth oxide under UV and solar light irradiation

    Directory of Open Access Journals (Sweden)

    Vanessa Rocha Liberatti

    2014-05-01

    Full Text Available Bismuth oxide (Bi2O3, an n-type semiconductor has been satisfactorily investigated for photocatalytic organic contaminant remediation. The Bi2O3 was prepared by solution combustion synthesis (SCS using as the oxidizing bismuth nitrate in acidic medium and urea as fuel. The influence of the type of synthesis on the photocatalytic properties of the oxide formed was investigated by XRD. From the diffractograms was verified that the materials obtained are predominantly of Bi2O3 crystals, it is possible to identify a sample with two crystalline phases, monoclinic (α-Bi2O3 and tetragonal (β-Bi2O3, and the other with only the monoclinic (α-Bi2O3. The two-phase oxide showed higher photocatalytic activity for discoloration of methylene blue under UV irradiation (60.59% and under sunlight (61.64% in 664 nm, followed kinetic law of pseudo-first order.

  7. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    Directory of Open Access Journals (Sweden)

    Dahuai Zheng

    2015-01-01

    Full Text Available Bismuth-doped lithium niobate (LN:Bi crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm2. An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals.

  8. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  9. Synthesis of Bismuth Ferrite Nanoparticles via a Wet Chemical Route at Low Temperature

    Directory of Open Access Journals (Sweden)

    Yongming Hu

    2011-01-01

    Full Text Available Nanoparticles (NPs of multiferroic bismuth ferrite (BiFeO3 with narrow size distributions were synthesized via a wet chemical route using bismuth nitrate and iron nitrate as starting materials and excess tartaric acid and citric acid as chelating agent, respectively, followed by thermal treatment. It was found that BiFeO3 NPs crystallized at ∼350∘C when using citric acid as chelating agent. Such crystallization temperature is much lower than that of conventional chemical process in which other types of chelating agent are used. BiFeO3 NPs with different sizes distributions show obvious ferromagnetic properties, and the magnetization is increased with reducing the particle size.

  10. Effect of Fe2O3 on the physical and structural properties of bismuth silicate glasses

    Science.gov (United States)

    Parmar, Rajesh; Kundu, R. S.; Punia, R.; Aghamkar, P.; Kishore, N.

    2013-06-01

    Iron containing bismuth silicate glasses with compositions 70SiO2ṡ(100-x)Bi2O3ṡxFe2O3 have been prepared using conventional melt-quenching method and their amorphous nature has been investigated using XRD. Density has been measured using Archimedes' principle and molar volume (Vm) have also been estimated. With increase in Fe2O3 content, there is a decrease in density and molar volume of the glass samples. The glass transition temperature (Tg) have been determined using Differential Scanning Calorimetry (DSC) and are observed to increase with increase in Fe2O3 content. In the present glass system bismuth and iron plays the role of network modifier and the symmetry of silicate network goes on increasing with Fe2O3 content and it modifies the physical and structural properties of these glasses.

  11. Synthesis and Electrochemical Sensing Toward Heavy Metals of Bunch-like Bismuth Nanostructures

    Directory of Open Access Journals (Sweden)

    Zhang Zhi

    2009-01-01

    Full Text Available Abstract Large-scale bunch-like bismuth (Bi nanostructures were the first time to be synthesized via two-step electrochemical deposition. The growth mechanism of the nanostructures was discussed. Such a designed bunch-like Bi electrode has high sensitivity to detect the heavy metal ions due to its unique three-dimensional structures and strong ability of adsorbing the heavy metal ions. The bunch-like Bi electrode’s detection of heavy metals was statically performed using anodic stripping voltammetry (ASV. The detection in the Pb(II concentration range of 2.5–50 μg/l was also performed. Based on the experimental results, this bunch-like Bi electrode can be considered as an interesting alternative to common mercury electrodes and bismuth film electrodes for possible use in electrochemical studies and electroanalytical applications.

  12. Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses

    Science.gov (United States)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Yenchai, Chadet; Laopaiboon, Raewat

    2012-07-01

    The attenuation coefficients of barium-bismuth-borosilicate glasses have been measured for gamma-ray photon energies of 662, 1173 and 1332 keV using a narrow beam transmission geometry. These coefficients were then used to obtain the values of mass attenuation coefficients, effective atomic number, effective electron density and mean free path. Good agreement has been observed between experimental and theoretical values of these parameters. From the obtained results it is reported here that from the barium-bismuth-borosilicate glasses are better shields to gamma-radiations in comparison to the standard radiation shielding concretes from the shielding point of view. The molar volume, FTIR and acoustic investigations have been used to study the structural properties of the prepared glass system. The obtained results reveal that the formation of non-bridging oxygens occurs at higher concentration of Bi2O3.

  13. Compatibility tests on steels in molten lead and lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, C. E-mail: concetta@netbra.brasimone.enea.it; Benamati, G.; Martini, C.; Palombarini, G

    2001-07-01

    The compatibility of steels with liquid lead and liquid lead-bismuth is a critical issue for the development of accelerator-driven system (ADS). In this work the results of a set of preliminary tests carried out in stagnant molten lead at 737 K and in lead-bismuth at 573, 673 and 749 K are summarised. The tests were conducted for 700, 1200, 1500 and 5000 h. Three steels were tested: two martensitic steels (mod. F82H and MANET II) and one austenitic steel (AISI 316L). The martensitic steels underwent oxidation phenomena at the higher testing temperature, due to oxygen dissolved in the melts. At a lower test temperature (573 K) and higher exposure time (5000 h) the oxidation rate of the martensitic steel seems to be lower and the developed oxide layer protective against liquid metal corrosion. The austenitic steel, in turn, exhibited an acceptable resistance to corrosion-oxidation under the test conditions.

  14. Using polycrystalline bismuth filter in an ultracold neutron source with superfluid helium

    Science.gov (United States)

    Serebrov, A. P.; Lyamkin, V. A.; Runov, V. V.; Ivanov, S. A.; Onegin, M. S.; Fomin, A. K.

    2015-10-01

    Placing polycrystalline bismuth filter in front of an ultracold neutron (UCN) source with superfluid helium at 1 K is shown to be effective. The use of this filter ensures a 30-fold decrease (down to 0.5 W) in the level of heat load in the UCN source, while reducing by 30% the flux of neutrons with 9-Å wavelength (which are converted into UCNs). The phenomenon of small-angle scattering on polycrystalline bismuth has been studied and shown to be insignificant. Cooling of the filter to liquid nitrogen temperature increases the transmission of 9-Å neutrons by only 8%; hence, creation of this cooling system is inexpedient. A project of a technological complex designed for the UCN source at the PIK reactor is presented, which ensures the removal of 1-W heat load from the UCN source with superfluid helium at a 1-K temperature level.

  15. Sulfide oxidation in fluidized bed bioreactor using nylon support material

    Institute of Scientific and Technical Information of China (English)

    Varsha Midha; M K Jha; Apurba Dey

    2012-01-01

    A continuous fluidized bed bioreactor(FBBR)with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25,50 and 75 min and upflow velocity of 14,17 and 20 m/hr.The effects of upflow velocity,hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model.Mixed culture obtained from the activated sludge,taken from tannery effluent treatment plant,was used as a source for microorganisms.The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3,respectively.Experiments were carried out in the reactor at a temperature of(30± 2)℃,at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles.Biofilm thickness reached(42±3)μm after 15 days from reactor start-up.The sulfide oxidation,sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities.The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times.Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate.The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  16. Sulfide oxidation in fluidized bed bioreactor using nylon support material.

    Science.gov (United States)

    Midha, Varsha; Jha, M K; Dey, Apurba

    2012-01-01

    A continuous fluidized bed bioreactor (FBBR) with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25, 50 and 75 min and upflow velocity of 14, 17 and 20 m/hr. The effects of upflow velocity, hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model. Mixed culture obtained from the activated sludge, taken from tannery effluent treatment plant, was used as a source for microorganisms. The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3, respectively. Experiments were carried out in the reactor at a temperature of (30 +/- 2) degrees C, at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles. Biofilm thickness reached (42 +/- 3) microm after 15 days from reactor start-up. The sulfide oxidation, sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities. The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times. Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate. The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  17. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; FOSSING, H.; WIRSEN, CO;

    1991-01-01

    The depth distributions of O2 and H2S and of the activity of chemical or bacterial sulfide oxidation were studied in the chemocline of the central Black Sea. Relative to measurements from earlier studies, the sulfide zone had moved upwards by 20-50 m and was now (May 1988) situated at a depth of 81......-99 m. Oxygen in the water column immediately overlying the sulfide zone was depleted to undetectable levels resulting in a 20-30-m deep intermediate layer of O2- and H2S-free water. Radiotracer studies with S-35-labelled H2S showed that high rates of sulfide oxidation, up to a few micromoles per liter...... to a maximum of 200 nmol l-1 at the top of the sulfide zone. Sulfide oxidation was stimulated by particles suspended at the chemocline, probably by bacteria. Green phototrophic sulfur bacteria were abundant in the chemocline, suggesting that photosynthetic H2S oxidation took place. Flux calculations showed...

  18. Sulfide capacity of high alumina blast furnace slags

    Science.gov (United States)

    Shankar, Amitabh; Görnerup, Märten; Seetharaman, S.; Lahiri, A. K.

    2006-12-01

    Sulfide capacities of high alumina blast furnace slags were experimentally determined using the gas-slag equilibration technique. Two different slag systems were considered for the current study, namely, CaO-SiO2-MgO-Al2O3 quaternary and CaO-SiO2-MgO-Al2O3-TiO2 quinary system. The liquid slag was equilibrated with the Ar-CO-CO2-SO2 gas mixture. Experiments were conducted in the temperature range of 1773 to 1873 K. The effects of temperature, basicity, and the MgO and TiO2 contents of slags on sulfide capacity were studied. As expected, sulfide capacity was found to increase with the increase in temperature and basicity. At the higher experimental temperature, titania decreases the sulfide capacity of slag. However, at the lower temperature, there was no significant effect of titania on the sulfide capacity of slag. Sulfide capacity increases with the increase in MgO content of slag if the MgO content is more than 5 pct.

  19. Quantum Interference of Surface States in Bismuth Nanowires in Transverse Magnetic Fields

    Science.gov (United States)

    Konopko, L. A.; Huber, T. E.; Nikolaeva, A. A.; Burceacov, L. A.

    2013-06-01

    We report the results of studies of the magnetoresistance (MR) and electric field effect (EFE) of single-crystal Bi nanowires with diameter dMurakami, bismuth bilayers can exhibit the quantum spin Hall effect. A Bi crystal can be viewed as a stacking of bilayers with a honeycomblike lattice structure along the [111] direction. An interpretation of transverse MR oscillations with using this theory is presented.

  20. A kinetic study of jack-bean urease denaturation by a new dithiocarbamate bismuth compound

    Science.gov (United States)

    Menezes, D. C.; Borges, E.; Torres, M. F.; Braga, J. P.

    2012-10-01

    A kinetic study concerning enzymatic inhibitory effect of a new bismuth dithiocarbamate complex on jack-bean urease is reported. A neural network approach is used to solve the ill-posed inverse problem arising from numerical treatment of the subject. A reaction mechanism for the urease denaturation process is proposed and the rate constants, relaxation time constants, equilibrium constants, activation Gibbs free energies for each reaction step and Gibbs free energies for the transition species are determined.

  1. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment.

    Science.gov (United States)

    Ceh, Justin; Youd, Tom; Mastrovich, Zach; Peterson, Cody; Khan, Sarah; Sasser, Todd A; Sander, Ian M; Doney, Justin; Turner, Clark; Leevy, W Matthew

    2017-02-24

    Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene) filaments infused with varied concentrations of bismuth (1.2-2.7 g/cm³), a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT) experiments of these filaments indicated that a density of 1.2 g/cm³ of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm³ created a stable material that could attenuate 50% of (99m)Technetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization.

  2. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    Science.gov (United States)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-05-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg.

  3. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

  4. Influence of inherent strain on the curie temperature of rare earth ion-doped bismuth vanadate

    OpenAIRE

    Sooryanarayana, K; Row, TNG; R. Somashekar; Varma, KBR

    1998-01-01

    X-ray line broadening is found to be an effective parameter to estimate the strain associated with rare earth ion (Gd3+)-doped polycrystalline bismuth vanadate(Bi2VO5.5). The strain increases with increasing Gd3+ concentration. It is anisotropic and found to be maximum in (111) plane. The Curie temperature which is known to decrease with increase in the rare earth ion concentration in these compounds is correlated with increase in strain.

  5. Photoelectroactivity of Bismuth Vanadate Prepared by Combustion Synthesis: Effect of Different Fuels and Surfactants

    OpenAIRE

    Afonso,Renata; Serafim, Jessica A.; Lucilha,Adriana C.; Marcelo R. Silva; Lepre, Luiz F.; Ando, Romulo A.; Dall'Antonia,Luiz H.

    2014-01-01

    The bismuth vanadate (BiVO4) is a semiconductor that has attracted much attention due to the photocatalytic efficiency in the visible light region. The objective of this work was to synthesize monoclinic BiVO4 by solution combustion synthesis, with different surfactants and fuels and apply it as photoelectrodes. The characterization by infrared spectroscopy and Raman spectroscopy showed that all samples showed characteristic bands of the monoclinic structure BiVO4. The samples synthesized wit...

  6. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    OpenAIRE

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.

    2016-01-01

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and compo...

  7. Improving the photoactivity of bismuth vanadate thin film photoanodes through doping and surface modification strategies

    OpenAIRE

    Quiñonero, Javier; Lana Villarreal, Teresa; Gómez, Roberto

    2016-01-01

    Currently, one of the most attractive and desirable ways to solve the energy challenge is harvesting energy directly from the sunlight through the so-called artificial photosynthesis. Among the ternary oxides based on earth–abundant metals, bismuth vanadate has recently emerged as a promising photoanode. Herein, BiVO4 thin film photoanodes have been successfully synthesized by a modified metal-organic precursor decomposition method, followed by an annealing treatment. In an attempt to improve...

  8. Dielectric, piezoelectric, and pyroelectric anisotropy in KCL- modified grain-oriented bismuth vanadate ceramics

    OpenAIRE

    Shantha, K; Varma, KBR

    1999-01-01

    The effect of the additive KCl, on the structural, microstructural, and polar properties of bismuth vanadate (BiV) ceramics is investigated. The scanning electron microscopic (SEM) studies reveal a remarkable modification in the microstructure and the occurrence of high grain-orientation (75%) on KCl addition. The energy dispersive x ray (EDX) analyses indicate the presence of chemically inhomogeneous distribution of KCl, with core-shell-like grain structure. The KCl-modified BiV samples exhi...

  9. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment

    Directory of Open Access Journals (Sweden)

    Justin Ceh

    2017-02-01

    Full Text Available Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene filaments infused with varied concentrations of bismuth (1.2–2.7 g/cm3, a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT experiments of these filaments indicated that a density of 1.2 g/cm3 of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm3 created a stable material that could attenuate 50% of 99mTechnetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization.

  10. STUDY ON THE DETERMINATION OF TRACE BISMUTH(Ⅲ) BY THIN-LAYER RESIN PHASE SPECTROPHOTOMETRY

    Institute of Scientific and Technical Information of China (English)

    YAN Yongsheng; LU Xiaohua; FU Chengguang

    2003-01-01

    In this paper, a new thin-layer ion-exchange resin phase analytical method is introduced. It is based on that, the bismuthous cation can associate with iodic anions, so as to formed an anioncomplex [BiI-4] in a strong acidic environments. This anion complex can also exchanges with a weaker anions on the surface active site of anion exchange resin, so that a [R+] [BiI-4] solid phase binary associational system is produced. Owing to the solid system is a great many dispersive particulates, it can be pressed to a thin-layer by press tools of the so called "thin-layer resin phase"or "resin phase ", and using this solid association system spectrophotometry for the determination of trace metals. So it can increase the analytical sensitivity. This association system exhibits maximum absorbance at 460nm, and obeys Beer's law over the concentration range 0. 01ug/ml~1.20ug/ml of bismuthous(Ⅲ). It has a molar absorptivity of 7.1 ×105 [L/mol cm]. It indicated the resin phase spectrophotometry is a sensitive analytical method for trace bismuthous. It is 18 times higher than routine aqueous spectrophotometry. The relative standard deviations is 1.82% (n=6) for the measurements of 0. 5ug/ml Bi(Ⅲ). The detection limit of Bismuthous(Ⅲ) is 1.4 ×10-8mol/L. The method has applied to the analysis Bi(Ⅲ) in environmental water samples.

  11. Report - Melter Testing of New High Bismuth HLW Formulations VSL-13R2770-1

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The primary objective of the work described was to test two glasses formulated for a high bismuth waste stream on the DM100 melter system. Testing was designed to determine processing characteristics and production rates, assess the tendency for foaming, and confirm glass properties. The glass compositions tested were previously developed to maintain high waste loadings and processing rates while suppressing the foaming observed in previous tests

  12. Electroless deposition of bismuth on Si(111) wafer from hydrogen fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Romann, T., E-mail: tavo.romann@ut.e [Institute of Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia); Anderson, E.; Kallip, S. [Institute of Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia); Maendar, H.; Matisen, L. [Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu (Estonia); Lust, E. [Institute of Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia)

    2010-05-03

    Thin Bi layers were deposited by simple immersion of silicon chip into diluted HF aqueous solution, containing bismuth(III) ions. Bi nanoparticles or continuous up to 300 nm thick Bi film can be grown on silicon by the variation of the temperature and deposition time. Prepared surfaces have been characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering, photoluminescence and resistivity measurement methods. It was found that thinner Bi layers have a yellowish colour.

  13. Analysis of the color alteration and radiopacity promoted by bismuth oxide in calcium silicate cement

    Directory of Open Access Journals (Sweden)

    Marina Angelica Marciano

    2013-07-01

    Full Text Available The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO, determined by weight. Mineral trioxide aggregate (MTA was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/Tukey tests (p 3 mm equivalent of Al. The MTA group was statistically similar to the CSC / 30% BO group (p > 0.05. In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC / 50% BO group (p < 0.05. The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC / 15% BO and CSC / 50% BO groups (p < 0.05. After 30 days, CSC showed statistically higher ΔE values than CSC / 30% BO and CSC / 50% BO (p < 0.05. In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.

  14. Single crystals of bismuth silicon oxide grown by the Czochralski technique and their characterisation

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    1999-09-01

    Full Text Available Single crystals of Bi12SiO20 were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. X-Ray measurements were performed on powdered samples to obtain the lattice parameters. The optical properties of the bismuth silicon oxide single crystals were investigated. The obtained results are discussed and compared with published data.

  15. Effect of bismuth addition to the triple therapy of Helicobacter pylori eradication

    Directory of Open Access Journals (Sweden)

    Ezel Taşdemir

    2012-03-01

    Full Text Available Objective: Success rates of amoxicillin, clarithromycin, and proton-pump inhibitor therapy in the Helicobacter pylori (Hp eradication have been decreasing. The aim of this study was to investigate the impact of bismuth subcitrate addition to triple therapy.Materials and methods: 148 patients diagnosed Hp infection with both histology and Hp stool antigen (HpSA tests were examined retrospectively. The patients were divided into 3 groups according to the eradication therapy. The first group received triple therapy with claritromycine 2x 500 mg, amoxicilline 2x1 g and PPI 2x1 for 14 days (n=40. The second group had bismuth subcitrate 4x120 mg with triple therapy for 14 days (n=73. The third group received 14 days pretreatment with bismuth subcitrate 4x1 together with PPI 2x1 then had triple therapy for 14 days (n=35. (14C urea breath and HpSA tests were used to detect posttreatment H.pylori status.Results: There were no statistical difference between the groups in terms of gender and age (p > 0.05. In group one 12 patients, in group two 20 patients and in group three 10 patients were identified as Hp positive after treatment. Eradication rates were 70% for group one, 72.6% for group two and 71.4% for group three respectively. There was no statistical difference between the groups in terms of eradication rates of treatment (p > 0.05.Conclusions: The addition of bismuth to conventional triple therapy did not affect treatment success rates.

  16. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    Science.gov (United States)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present inBi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely 241Am and 137Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  17. Dihydrogen Activation by Titanium Sulfide Complexes

    Science.gov (United States)

    Sweeney, Zachary K.; Polse, Jennifer L.; Bergman*, Robert G.; Andersen*, Richard A.

    2005-01-01

    The titanocene sulfido complex Cp*2Ti(S)py (1, Cp* = pentamethylcyclopentadienyl; py = pyridine) is synthesized by addition of a suspension of S8 to a toluene solution of Cp*2Ti-(CH2CH2) (2) and py. The rate of rotation of the pyridine ligand in solution was determined by 1H NMR spectroscopy, and the structure of 1 was determined by X-ray crystallography. Complex 1 reacts reversibly with dihydrogen to give Cp*2Ti(H)SH (6) and py. Reaction of 1 with HD gives an equilibrium mixture of Cp*2Ti(D)SH and Cp*2Ti(H)SD; H2 and D2 are not formed in this reaction. 1D 1H NMR magnetization transfer spectra and 2D EXSY 1H NMR spectra of 6 in the presence of H2 show that in solution the H2, hydride, and hydrosulfido hydrogen atoms exchange. A four-center mechanism for this exchange is proposed. The EXSY studies show that the Ti–H and S–H hydrogens exchange with each other more rapidly than either of those hydrogens exchanges with external H2. A transient dihydrogen complex intermediate is proposed to explain this observation. The infrared spectrum of 6 shows an absorption assigned to the Ti–H stretching mode at 1591 cm−1 that shifts upon deuteration to 1154 cm−1. Reaction of 1 with trimethylsilane, diethylsilane, or dimethylsilane gives Cp*2-Ti(H)SSiMe3 (7), Cp*2Ti(H)SSiHEt2 (8), or Cp*2Ti(H)SSiHMe2 (9), respectively. The isotope effect for the reaction producing 7 has been measured, and a mechanism is proposed. Treatment of 1 with an additional equivalent of S8 results in the formation of the disulfide Cp*2Ti(S2) (4). Acetylene inserts into the Ti–S bond of 4 to produce the vinyl disulfide complex 5. The structures of 4 and 5 have been determined by X-ray diffraction. Compound 4 reacts with 2 in the presence of py to produce 1. Phosphines react with 4 in the presence of H2 to provide 6 and the corresponding phosphine sulfide. Reaction of hydrogen with 4 gives Cp*2-Ti(SH)2 (3). The reactions of 1 and 4 with dihydrogen provide a model for possible mechanisms of H2

  18. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    Science.gov (United States)

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD.

  19. Bismuth Modified Porous Silica Preparation, Characterization and Photocatalytic Activity Evaluation for Degradation of Isoproturon

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar Reddy Police; Srinivas Basavaraju; Durga Kumari Valluri; Subrahmanyam Machiraju

    2013-01-01

    Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Sio5 species containing surface.The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD),X-ray photoelectron spectroscopy (XPS),UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS),scanning electron microscopy (SEM),energy dispersive analysis of X-ray (EDAX),transmission electron microscopy (TEM),Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques.EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2Sio5,which is substantiated by XRD.The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica.FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework.SEM and TEM show the spherical morphology,whereas N2 adsorption/desorption study confirms the porosity of the prepared materials.The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa Tio2.

  20. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures

    Energy Technology Data Exchange (ETDEWEB)

    Waghmare, Shivaji D.; Jadhav, Vijaykumar V.; Gore, Shaym K. [Center for Nanomaterials and Energy Devices, School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra (India); Yoon, Seog-Joon; Ambade, Swapnil B. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Seoul 133-1791 (Korea, Republic of); Lokhande, B.J. [Department of Physics, Solapur University, Solapur (India); Mane, Rajaram S., E-mail: rsmane_2000@yahoo.com [Center for Nanomaterials and Energy Devices, School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra (India); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Seoul 133-1791 (Korea, Republic of)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ► These structures were characterized by XRD and SEM. ► LPG, CO{sub 2} and NH{sub 4} gases were exposed. ► Properties related to gas sensors were measured and reported. -- Abstract: Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO{sub 2}) and ammonium (NH{sub 3}) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO{sub 2} and NH{sub 3} gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported.

  1. Alkali-metal-supported bismuth polyhedra-principles and theoretical studies.

    Science.gov (United States)

    Monakhov, Kirill Yu; Linti, Gerald; Wolters, Lando P; Bickelhaupt, F Matthias

    2011-06-20

    We have quantum chemically investigated the structure, stability, and bonding mechanism in highly aggregated alkali-metal salts of bismuthanediide anions [RBi](2-) using relativistic density functional theory (DFT, at ZORA-BP86/TZ2P) in combination with a quantitative energy decomposition analysis (EDA). Our model systems are alkali-metal-supported bismuth polyhedra [(RBi)(n)M(2n-4)](4-) with unique interpenetrating shells of a bismuth polyhedron and an alkali-metal superpolyhedron. Furthermore, we have analyzed the trianionic inclusion complexes [M'@{(RBi)(n)M(2n-4)}](3-) involving an additional endohedral alkali-metal ion M'. The main objective is to assist the further development of synthetic approaches toward this class of compounds. Our analyses led to electron-counting rules relating, for example, the number of bonding orbitals (N(bond)) of the cage molecules [(RBi)(n)M(2n+Q)](Q) to the number of bismuth atoms (n(Bi)), alkali-metal atoms (n(M)), and net charge Q as N(bond) = n(Bi) + n(M) - Q (R = one-electron donor ligand; M = alkali metal; n = 4-12; Q = -4, -6, -8). Finally, on the basis of our findings, we predict the next members in the 5-fold symmetrical row of alkali-metallobismaspheres with a macroicosahedral arrangement.

  2. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures

    Science.gov (United States)

    Shi, Xinjian; Choi, Il Yong; Zhang, Kan; Kwon, Jeong; Kim, Dong Yeong; Lee, Ja Kyung; Oh, Sang Ho; Kim, Jong Kyu; Park, Jong Hyeok

    2014-09-01

    Tungsten trioxide/bismuth vanadate heterojunction is one of the best pairs for solar water splitting, but its photocurrent densities are insufficient. Here we investigate the advantages of using helical nanostructures in photoelectrochemical solar water splitting. A helical tungsten trioxide array is fabricated on a fluorine-doped tin oxide substrate, followed by subsequent coating with bismuth vanadate/catalyst. A maximum photocurrent density of ~5.35±0.15 mA cm-2 is achieved at 1.23 V versus the reversible hydrogen electrode, and related hydrogen and oxygen evolution is also observed from this heterojunction. Theoretical simulations and analyses are performed to verify the advantages of this helical structure. The combination of effective light scattering, improved charge separation and transportation, and an enlarged contact surface area with electrolytes due to the use of the bismuth vanadate-decorated tungsten trioxide helical nanostructures leads to the highest reported photocurrent density to date at 1.23 V versus the reversible hydrogen electrode, to the best of our knowledge.

  3. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting

    Science.gov (United States)

    Kim, Tae Woo; Ping, Yuan; Galli, Giulia A.; Choi, Kyoung-Shin

    2015-10-01

    n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO4 is its relatively wide bandgap (~2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ~0.2 eV but also increases the majority carrier density and mobility, enhancing electron-hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by ab initio calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO4 for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge.

  4. The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yue [Institute of Material Physical Chemistry, Huaqiao University, Key Laboratory for Functional Materials of Fujian Higher Education, Quanzhou, Fujian 362021 (China); Huang Miaoliang, E-mail: huangml@hqu.edu.c [Institute of Material Physical Chemistry, Huaqiao University, Key Laboratory for Functional Materials of Fujian Higher Education, Quanzhou, Fujian 362021 (China); Huang Yi; Lin Jianming; Wu Jihuai [Institute of Material Physical Chemistry, Huaqiao University, Key Laboratory for Functional Materials of Fujian Higher Education, Quanzhou, Fujian 362021 (China)

    2010-04-30

    Bismuth vanadate powders were prepared by hydrothermal method with NaVO{sub 3} and Bi(NO{sub 3}){sub 3} as starting materials and with Na{sub 2}CO{sub 3} to adjust pH, and characterized by XRD, SEM, EDS and surface area analyzer. The results showed that the phase formation of bismuth vanadate depended on the adding amount of Na{sub 2}CO{sub 3}. The bismuth vanadate samples existed as monoclinic BiVO{sub 4} by adding 0.019 and 0.038 mol of Na{sub 2}CO{sub 3} with corresponding pH value of 0.2 and 5.8, respectively, and as Bi{sub 4}V{sub 2}O{sub 11} by adding 0.057 mol of Na{sub 2}CO{sub 3} with corresponding pH value of 9.7. The photocatalytic activities of the samples were evaluated by the decolorization of methylene blue (MB) under visible light irradiation. The sample with monoclinic form obtained by adding 0.019 mol of Na{sub 2}CO{sub 3} had the highest photocatalytic activity, the decolorization rate of MB reached to 96.4% under visible light irradiation in 200 min and the reaction rate constant was 0.015 min{sup -1}.

  5. Synthesis, crystal growth and mechanical properties of Bismuth Silicon Oxide (BSO) single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Riscob, B. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India); Shkir, Mohd. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Ganesh, V. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Vijayan, N.; Maurya, K.K. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Kishan Rao, K. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Bhagavannarayana, G., E-mail: bhagavan@mail.nplindia.ernet.in [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India)

    2014-03-05

    Highlights: • Synthesis of Bismuth Silicon Oxide (BSO). • Single crystal growth of BSO by Czochralski (Cz) method. • Complete mechanical analysis by device fabrication point of view. • Theoretical and experimental calculations of mechanical properties. -- Abstract: Bismuth Silicon Oxide (BSO) is an efficient material for piezo-electric and electro-optic applications. In this article, growth of BSO single crystal by high temperature Czochralski melt growth technique and its detailed mechanical characterization by Vickers microhardness, fracture toughness, crack propagation, brittleness index and yield strength have been reported. The raw material was synthesized by solid state reaction using the stoichiometric ratio of high purity bismuth tri-oxide and silicon di-oxide. The synthesized material was charged in the platinum crucible and then melted. The required rotation and pulling rate was optimized for BSO single crystal growth and good quality single crystal has been harvested after a time span of 5 days. Powder X-ray diffraction analysis confirms the parent crystallization phase of BSO. The experimentally studied mechanical behavior of the crystal is explained using various theoretical models. The anisotropic nature of the crystals is studied using Knoop indentation technique.

  6. Underpotential Deposition Study and Determination of Bismuth on Gold Electrode by Using Voltammetry

    Institute of Scientific and Technical Information of China (English)

    DU,Yong-Ling(杜永令); WANG,Chun-Ming(王春明)

    2002-01-01

    The cyclic voltammetry (CV) and the semidifferential anodic stripping voltanmetry (SdASV) were used for investigation of bismuth(Ⅲ) underpotential deposition (UPD) on gold electrode. Based on the excellent electrochemical properties of Au/Bi UPD system, a new method for determining bismuth (Ⅲ)was established. A solution of 0.1 mol/L HNO3 was selected as the supporting electrolyte. Factors affecting the Bi(Ⅲ) UPD and stripping steps were investigated and an opthmized analytical procedure was developed. The calibration plots for Bi(Ⅲ) concentration in the range 1.25 × 10-8-1.0 × 10-7 mol/L were obtained. The detection limit, calculated as three times the standard deviation of the analytical signal of 8.3×10-8 mol/L for a 90 s electrodeposition at 0.00 V (while the solution magnetically stirred at a speed of 300 rpm), was 7.5× 10-9 mol/ L. For8 successive determinations of 1.25 × 10-7 mol/L Bi(Ⅲ), the obtained RSD (relative standard deviation) was 0.4%. The developed method was applied to bismuth determining in medicine and urine samples. The analytical results were compared with that of atomic emission spectrometry (AES) method.

  7. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Science.gov (United States)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  8. Effect of bismuth ion substitution on structural properties of zinc ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Naraavula Suresh Kumar

    2016-06-01

    Full Text Available Bismuth doped nano zinc ferrite particles having the general formula ZnFe2-xBixO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25 were synthesized by sol-gel combustion method. The effect of bismuth doping on structural properties were investigated. The X-ray diffraction (XRD spectra confirm the single phase cubic spinel structure. The average crystallite sizes of all the samples were determined by Debye-Scherrer equation and are in the range 16–20 nm. The lattice parameter increases with the increase of bismuth ion concentration. This is due to the larger ionic radius of Bi3+ ions substituting smaller Fe3+ ions at octahedral sites (B-sites. The surface morphology of all compounds was studied by scanning electron microscope (SEM. The microstructure analysis and the particle size were examined by transmission electron microscope (TEM. The compositional stoichiometry of these samples was verified by energy dispersive spectroscopy (EDS analysis.

  9. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    Science.gov (United States)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-02-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.

  10. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zulfiqar; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Butt, Faheem K.; Tahir, Muhammad; Tanveer, M.; Aslam, Imran; Rizwan, Muhammad; Idrees, Faryal; Khalid, Syed [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Butt, Sajid [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-11-15

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximately of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.

  11. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  12. Landau spectrum and twin boundaries of bismuth in the extreme quantum limit.

    Science.gov (United States)

    Zhu, Zengwei; Fauqué, Benoît; Malone, Liam; Antunes, Arlei Borba; Fuseya, Yuki; Behnia, Kamran

    2012-09-11

    The Landau spectrum of bismuth is complex and includes many angle-dependent lines in the extreme quantum limit. The adequacy of single-particle theory to describe this spectrum in detail has been an open issue. Here, we present a study of angle-resolved Nernst effect in bismuth, which maps the angle-resolved Landau spectrum for the entire solid angle up to 28 T. The experimental map is in good agreement with the results of a theoretical model with parabolic dispersion for holes and an extended Dirac Hamiltonian for electrons. The angular dependence of additional lines in the Landau spectrum allows us to uncover the mystery of their origin. They correspond to the lines expected for the hole Landau levels in a secondary crystal tilted by 108°, the angle between twinned crystals in bismuth. According to our results, the electron reservoirs of the two identical tilted crystals have different chemical potentials, and carriers across the twin boundary have different concentrations. An exceptional feature of this junction is that it separates two electron-hole compensated reservoirs. The link between this edge singularity and the states wrapping a three-dimensional electron gas in the quantum limit emerges as an outstanding open question.

  13. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    Science.gov (United States)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-01-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures. PMID:26847409

  14. The fabrication and thermal properties of bismuth-aluminum oxide nanothermometers

    Science.gov (United States)

    Wang, Chiu-Yen; Chen, Shih-Hsun; Tsai, Ping-Hsin; Chiou, Chung-Han; Hsieh, Sheng-Jen

    2017-01-01

    Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al2O3) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al2O3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al2O3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al2O3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

  15. Bio-orthogonal "click-and-release" donation of caged carbonyl sulfide (COS) and hydrogen sulfide (H2S).

    Science.gov (United States)

    Steiger, Andrea K; Yang, Yang; Royzen, Maksim; Pluth, Michael D

    2017-01-24

    Hydrogen sulfide (H2S) is an important biomolecule with high therapeutic potential. Here we leverage the inverse-electron demand Diels-Alder (IEDDA) click reaction between a thiocarbamate-functionalized trans-cyclooctene and a tetrazine to deliver carbonyl sulfide (COS), which is quickly converted to H2S by the uniquitous enzyme carbonic anhydrase (CA), thus providing a new strategy for bio-orthogonal COS/H2S donation.

  16. Hydrogen Sulfide--Mechanisms of Toxicity and Development of an Antidote.

    Science.gov (United States)

    Jiang, Jingjing; Chan, Adriano; Ali, Sameh; Saha, Arindam; Haushalter, Kristofer J; Lam, Wai-Ling Macrina; Glasheen, Megan; Parker, James; Brenner, Matthew; Mahon, Sari B; Patel, Hemal H; Ambasudhan, Rajesh; Lipton, Stuart A; Pilz, Renate B; Boss, Gerry R

    2016-02-15

    Hydrogen sulfide is a highly toxic gas-second only to carbon monoxide as a cause of inhalational deaths. Its mechanism of toxicity is only partially known, and no specific therapy exists for sulfide poisoning. We show in several cell types, including human inducible pluripotent stem cell (hiPSC)-derived neurons, that sulfide inhibited complex IV of the mitochondrial respiratory chain and induced apoptosis. Sulfide increased hydroxyl radical production in isolated mouse heart mitochondria and F2-isoprostanes in brains and hearts of mice. The vitamin B12 analog cobinamide reversed the cellular toxicity of sulfide, and rescued Drosophila melanogaster and mice from lethal exposures of hydrogen sulfide gas. Cobinamide worked through two distinct mechanisms: direct reversal of complex IV inhibition and neutralization of sulfide-generated reactive oxygen species. We conclude that sulfide produces a high degree of oxidative stress in cells and tissues, and that cobinamide has promise as a first specific treatment for sulfide poisoning.

  17. H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments.

    Science.gov (United States)

    Tobler, Michael; Henpita, Chathurika; Bassett, Brandon; Kelley, Joanna L; Shaw, Jennifer H

    2014-09-01

    Disentangling the effects of plasticity, genetic variation, and their interactions on organismal responses to environmental stressors is a key objective in ecological physiology. We quantified the expression of five candidate genes in response to hydrogen sulfide (H2S) exposure in fish (Poecilia mexicana, Poeciliidae) from a naturally sulfide-rich environment as well as an ancestral, non-sulfidic population to test for constitutive and environmentally dependent population differences in gene expression patterns. Common garden raised individuals that had never encountered environmental H2S during their lifetime were subjected to short or long term H2S exposure treatments or respective non-sulfidic controls. The expression of genes involved in responses to H2S toxicity (cytochrome c oxidase, vascular endothelial growth factor, and cytochrome P450-2J6), H2S detoxification (sulfide:quinone oxidoreductase), and endogenous H2S production (cystathionine γ lyase) was determined in both gill and liver tissues by real time PCR. The results indicated complex changes in expression patterns that--depending on the gene--not only differed between organs and populations, but also on the type of H2S exposure. Populations differences, both constitutive and H2S exposure dependent (i.e., plastic), in gene expression were particularly evident for sulfide:quinone oxidoreductase, vascular endothelial growth factor, and to a lesser degree for cytochrome P450-2J6. Our study uncovered putatively adaptive modifications in gene regulation that parallel previously documented adaptive changes in phenotypic traits.

  18. Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling?

    Science.gov (United States)

    Bouillaud, Frédéric; Blachier, François

    2011-07-15

    Sulfide is a molecule with toxicity comparable to that of cyanide. It inhibits mitochondrial cytochrome oxidase at submicromolar concentrations. However, at even lower concentrations, sulfide is a substrate for the mitochondrial electron transport chain in mammals, and is comparable to succinate. This oxidation involves a sulfide quinone reductase. Sulfide is thus oxidized before reaching a toxic concentration, which explains why free sulfide concentrations are very low in mammals, even though sulfide is constantly released as a result of cellular metabolism. It has been suggested that sulfide has signaling properties in mammals like two other gases, NO and CO, which are also cytochrome oxidase inhibitors. The oxidation of sulfide by mitochondria creates further complexity in the description/use of sulfide signaling in mammals. In fact, in the many studies reported in the literature, the sulfide concentrations that have been used were well within the range that affects mitochondrial activity. This review focuses on the relevance of sulfide bioenergetics to sulfide biology and discusses the case of colonocytes, which are routinely exposed to higher sulfide concentrations. Finally, we offer perspectives for future studies on the relationship between the two opposing aspects of this Janus-type molecule, sulfide.

  19. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  20. Subnanometer Thin β-Indium Sulfide Nanosheets.

    Science.gov (United States)

    Acharya, Shinjita; Sarkar, Suresh; Pradhan, Narayan

    2012-12-20

    Nanosheets are a peculiar kind of nanomaterials that are grown two-dimensionally over a micrometer in length and a few nanometers in thickness. Wide varieties of inorganic semiconductor nanosheets are already reported, but controlling the crystal growth and tuning their thickness within few atomic layers have not been yet explored. We investigate here the parameters that determine the thickness and the formation mechanism of subnanometer thin (two atomic layers) cubic indium sulfide (In2S3) nanosheets. Using appropriate reaction condition, the growth kinetics is monitored by controlling the decomposition rate of the single source precursor of In2S3 as a function of nucleation temperature. The variation in the thickness of the nanosheets along the polar [111] direction has been correlated with the rate of evolved H2S gas, which in turn depends on the rate of the precursor decomposition. In addition, it has been observed that the thickness of the In2S3 nanosheets is related to the nucleation temperature.

  1. Detection of thiol modifications by hydrogen sulfide.

    Science.gov (United States)

    Williams, E; Pead, S; Whiteman, M; Wood, M E; Wilson, I D; Ladomery, M R; Teklic, T; Lisjak, M; Hancock, J T

    2015-01-01

    Hydrogen sulfide (H2S) is an important gasotransmitter in both animals and plants. Many physiological events, including responses to stress, have been suggested to involve H2S, at least in part. On the other hand, numerous responses have been reported following treatment with H2S, including changes in the levels of antioxidants and the activities of transcription factors. Therefore, it is important to understand and unravel the events that are taking place downstream of H2S in signaling pathways. H2S is known to interact with other reactive signaling molecules such as reactive oxygen species (ROS) and nitric oxide (NO). One of the mechanisms by which ROS and NO have effects in a cell is the modification of thiol groups on proteins, by oxidation or S-nitrosylation, respectively. Recently, it has been reported that H2S can also modify thiols. Here we report a method for the determination of thiol modifications on proteins following the treatment with biological samples with H2S donors. Here, the nematode Caenorhabditis elegans is used as a model system but this method can be used for samples from other animals or plants.

  2. Hydrogen Sulfide and Cellular Redox Homeostasis

    Directory of Open Access Journals (Sweden)

    Zhi-Zhong Xie

    2016-01-01

    Full Text Available Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1 is also one of the focuses of this review.

  3. Hydrogen Sulfide and Cellular Redox Homeostasis

    Science.gov (United States)

    Xie, Zhi-Zhong; Liu, Yang; Bian, Jin-Song

    2016-01-01

    Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review. PMID:26881033

  4. Mercury Sulfide Dimorphism in Thioarsenate Glasses.

    Science.gov (United States)

    Kassem, M; Sokolov, A; Cuisset, A; Usuki, T; Khaoulani, S; Masselin, P; Le Coq, D; Neuefeind, J C; Feygenson, M; Hannon, A C; Benmore, C J; Bychkov, E

    2016-06-16

    Crystalline mercury sulfide exists in two drastically different polymorphic forms in different domains of the P,T-diagram: red chain-like insulator α-HgS, stable below 344 °C, and black tetrahedral narrow-band semiconductor β-HgS, stable at higher temperatures. Using pulsed neutron and high-energy X-ray diffraction, we show that these two mercury bonding patterns are present simultaneously in mercury thioarsenate glasses HgS-As2S3. The population and interconnectivity of chain-like and tetrahedral dimorphous forms determine both the structural features and fundamental glass properties (thermal, electronic, etc.). DFT simulations of mercury species and RMC modeling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 ≤ m ≤ 6) are acting as a network former while the HgS4/4-related mixed agglomerated units behave as a modifier.

  5. 铋含量对铅铋合金表面张力的影响分析%Influence of Bismuth Content on Surface Tension of Lead-bismuth Alloy

    Institute of Scientific and Technical Information of China (English)

    王龙; 徐敬尧; 徐刚; 刘少军; 黄群英

    2013-01-01

    Liquid lead-bismuth alloy has been considered as the potential candidates for the liquid spallation targets and the coolant of accelerator driven sub-critical system (ADS ) . Surface tension is one of the important thermal and physical properties parameters of lead-bismuth alloy , and temperature and chemical composition are important influence factors of surface tension . In this paper , the surface tension of liquid lead-bismuth alloy was measured by sessile drop (SD ) method . The results indicate that the surface tension of lead-bismuth alloy firstly increases and then decreases with the increase of the test temperature ,and the surface tension for low test temperature is significantly small .At the same temperature ,the surface tension of lead-bismuth alloy decreases with the increase of bismuth content , and segregation of bismuth onto the surface of molten lead-bismuth alloy is a key factor leading to the smaller surface tension .T he results of this study provide basic reference for composition optimization of lead-bismuth alloy ,w hich is of great significance for the development of spallation targets and the coolant materials of accelerated driven sub-critical system .%液态铅铋合金是加速器驱动的次临界系统(ADS )中散裂靶兼冷却剂的主要候选材料。表面张力是液态铅铋合金的重要热物性参数之一,而温度和化学组成是影响表面张力的关键因素。本文采用静滴法测量了5种不同成分铅铋合金的表面张力。实验结果显示:在测试温度范围内,铅铋合金的表面张力均随温度的升高先增大后减小,且在低温区表面张力非常小;相同温度下,铅铋合金的表面张力随Bi含量的增大逐渐降低,其中Bi的表面偏聚是导致其变小的重要因素之一。本研究结果为铅铋合金的成分优化提供了基本参考,对发展ADS散裂靶和冷却剂材料具有重要意义。

  6. The effects of varying humidity on copper sulfide film formation.

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Thomas Michael; Missert, Nancy A.; Barbour, John Charles; Sullivan, John Patrick; Copeland, Robert Guild; Campin, Michael J. (International Sematech, Austin, TX)

    2004-02-01

    Detailed experiments involving extensive high resolution transmission electron microscopy (TEM) revealed significant microstructural differences between Cu sulfides formed at low and high relative humidity (RH). It was known from prior experiments that the sulfide grows linearly with time at low RH up to a sulfide thickness approaching or exceeding one micron, while the sulfide initially grows linearly with time at high RH then becomes sub-linear at a sulfide thickness less than about 0.2 microns, with the sulfidation rate eventually approaching zero. TEM measurements of the Cu2S morphology revealed that the Cu2S formed at low RH has large sized grains (75 to greater than 150 nm) that are columnar in structure with sharp, abrupt grain boundaries. In contrast, the Cu2S formed at high RH has small equiaxed grains of 20 to 50 nm in size. Importantly, the small grains formed at high RH have highly disordered grain boundaries with a high concentration of nano-voids. Two-dimensional diffusion modeling was performed to determine whether the existence of localized source terms at the Cu/Cu2S interface could be responsible for the suppression of Cu sulfidation at long times at high RH. The models indicated that the existence of static localized source terms would not predict the complete suppression of growth that was observed. Instead, the models suggest that the diffusion of Cu through Cu2S becomes restricted during Cu2S formation at high RH. The leading speculation is that the extensive voiding that exists at grain boundaries in this material greatly reduces the flux of Cu between grains, leading to a reduction in the rate of sulfide film formation. These experiments provide an approach for adding microstructural information to Cu sulfidation rate computer models. In addition to the microstructural studies, new micro-patterned test structures were developed in this LDRD to offer insight into the point defect structure of Cu2S and to permit measurement of surface reaction

  7. Crystal structures of a pentavalent bismuthate, SrBi2O6 and a lead bismuth oxide (Pb1/3Bi2/3O1.4

    Directory of Open Access Journals (Sweden)

    Nobuhiro Kumada

    2014-06-01

    Full Text Available The crystal structures of a pentavalent bismuthate, SrBi2O6 with the PbSb2O6-type structure and a lead bismuth oxide, (Pb1/3Bi2/3O1.4 with the fluorite-type structure were refined by using neutron diffraction data. The final R-factors were Rwp = 4.49, Rp = 3.46, RI = 4.50 and RF = 1.70% for SrBi2O6 and Rwp = 5.04, Rp = 3.93, RI = 5.47 and RF = 4.26% for (Pb1/3Bi2/3O1.4. SrBi2O6 prepared from NaBiO3·1.4H2O is the first example of the bismuthate with the PbSb2O6-type structure. The fluorite-type lead bismuth oxide, (Pb1/3Bi2/3O1.4 was obtained by heating the PbSb2O6-type lead bismuthate, PbBi2O5.9·H2O which was prepared also from NaBiO3·1.4H2O.

  8. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  9. Carbonyl sulfide and dimethyl sulfide exchange between lawn and the atmosphere

    Science.gov (United States)

    Geng, Chunmei; Mu, Yujing

    2004-06-01

    The exchange of carbonyl sulfide (COS) between lawn and the atmosphere was investigated by using a static enclosure under natural field conditions. The results indicated that the lawn acted as a sink for atmospheric COS and a source of dimethyl sulfide (DMS). The exchange fluxes of COS and DMS ranged between -3.24 pmol m-2 s-1 and -94.52 pmol m-2 s-1, and between 0 and 3.14 pmol m-2 s-1, respectively. The lawn was capable of continuously absorbing COS in nighttime as well as in daytime. The COS fluxes depended strongly on the ambient COS mixing ratios. The dependency of DMS emission fluxes on temperature was observed in November 2002. Soil also acted as a sink for COS during our study. However, the COS exchange fluxes of the lawn were much higher than that of the soil. The average COS and DMS fluxes were much higher in spring than in autumn and in summer. The daytime vertical profiles of COS also indicated that the lawn acted as a net sink for COS.

  10. Li3PO4 Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery.

    Science.gov (United States)

    Sun, Chuan-Fu; Hu, Junkai; Wang, Peng; Cheng, Xi-Yuan; Lee, Sang Bok; Wang, YuHuang

    2016-09-14

    Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.

  11. Microbial control of hydrogen sulfide production in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.; Wofford, N.Q. [Univ. of Oklahoma, Norman, OK (United States); Sublette, K.L. [Univ. of Tulsa, OK (United States)

    1996-12-31

    The ability of a sulfide- and glutaraldehyde-tolerant strain of Thiobacillus denitrificans (strain F) to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa natural gas storage facility was investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F, and the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200-460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70-110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate, and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3800 pM, and then decreased to about 1100 {mu}M after 5 wk. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160-330 {mu}M. Nitrate consumption (5 mM) and high concentrations (101-1011 cells/mL) of strain F were detected in the test core system. An accumulation of biomass occurred in the influent lines during 2 mo of continuous operation, but only a small increase in injection pressure was observed. These studies showed that inoculation with strain F was needed for effective control of sulfide production, and that significant plugging or loss of injectivity owing to microbial inoculation did not occur. 7 refs., 3 figs., 1 tab.

  12. Species-specific enzymatic tolerance of sulfide toxicity in plant roots.

    Science.gov (United States)

    Martin, Nicole M; Maricle, Brian R

    2015-03-01

    Toxic effects of sulfide come from a poisoning of a number of enzymes, especially cytochrome c oxidase, which catalyzes the terminal step in mitochondrial aerobic respiration. Despite this, some estuarine plants live in sulfide-rich sediments. We hypothesized estuarine and flooding-tolerant species might be more tolerant of sulfide compared to upland species, and this was tested by measures of root cytochrome c oxidase and alcohol dehydrogenase activities in extracts exposed to sulfide. Enzyme activities were measured in 0, 5, 10, 15, and 20 μM sodium sulfide, and compared among 17 species of plants. Activities of alcohol dehydrogenase and cytochrome c oxidase were both reduced by increasing sulfide concentration, but cytochrome c oxidase was more sensitive to sulfide compared to alcohol dehydrogenase. Activities of cytochrome c oxidase were reduced to near zero at 5-10 μM sulfide whereas alcohol dehydrogenase activities were only reduced by about 50% at 10 μM sulfide. All species were sensitive to increasing sulfide, but to different degrees. Cytochrome c oxidase in flooding-sensitive species was decreased to near zero activity at 5 μM sulfide, whereas activities in some flooding-tolerant species were still detectable until 15 μM sulfide. Cytochrome c oxidase activities in some estuarine species were low even in the absence of sulfide, perhaps an adaptation to avoid sulfide vulnerability in their native, sulfide-rich habitat. This illustrates the potent metabolic effects of sulfide, and this is the first demonstration of varying sensitivities of cytochrome c oxidase to sulfide across organisms, making these data of novel importance.

  13. Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions.

    Science.gov (United States)

    Miller, Carrie L; Mason, Robert P; Gilmour, Cynthia C; Heyes, Andrew

    2007-04-01

    The complexation of Hg under sulfidic conditions influences its bioavailability for microbial methylation. Neutral dissolved Hg-sulfide complexes are readily available to Hg-methylating bacteria in culture, and thermodynamic models predict that inorganic Hg-sulfide complexes dominate dissolved Hg speciation under natural sulfidic conditions. However, these models have not been validated in the field. To examine the complexation of Hg in natural sulfidic waters, octanol/water partitioning methods were modified for use under environmentally relevant conditions, and a centrifuge ultrafiltration technique was developed. These techniques demonstrated much lower concentrations of dissolved Hg-sulfide complexes than predicted. Furthermore, the study revealed an interaction between Hg, dissolved organic matter (DOM), and sulfide that is not captured by current thermodynamic models. Whereas Hg forms strong complexes with DOM under oxic conditions, these complexes had not been expected to form in the presence of sulfide because of the stronger affinity of Hg for sulfide relative to its affinity for DOM. The observed interaction between Hg and DOM in the presence of sulfide likely involves the formation of a DOM-Hg-sulfide complex or results from the hydrophobic partitioning of neutral Hg-sulfide complexes into the higher-molecular-weight DOM. An understanding of the mechanism of this interaction and determination of complexation coefficients for the Hg-sulfide-DOM complex are needed to adequately assess how our new finding affects Hg bioavailability, sorption, and flux.

  14. Interaction of hydrogen sulfide with ion channels.

    Science.gov (United States)

    Tang, Guanghua; Wu, Lingyun; Wang, Rui

    2010-07-01

    1. Hydrogen sulfide (H(2)S) is a signalling gasotransmitter. It targets different ion channels and receptors, and fulfils its various roles in modulating the functions of different systems. However, the interaction of H(2)S with different types of ion channels and underlying molecular mechanisms has not been reviewed systematically. 2. H(2)S is the first identified endogenous gaseous opener of ATP-sensitive K(+) channels in vascular smooth muscle cells. Through the activation of ATP-sensitive K(+) channels, H(2)S lowers blood pressure, protects the heart from ischemia and reperfusion injury, inhibits insulin secretion in pancreatic beta cells, and exerts anti-inflammatory, anti-nociceptive and anti-apoptotic effects. 3. H(2)S inhibited L-type Ca(2+) channels in cardiomyocytes but stimulated the same channels in neurons, thus regulating intracellular Ca(2+) levels. H(2)S activated small and medium conductance K(Ca) channels but its effect on BK(Ca) channels has not been consistent. 4. H(2)S-induced hyperalgesia and pro-nociception seems to be related to the sensitization of both T-type Ca(2+) channels and TRPV(1) channels. The activation of TRPV(1) and TRPA(1) by H(2)S is believed to result in contraction of nonvascular smooth muscles and increased colonic mucosal Cl(-) secretion. 5. The activation of Cl(-) channel by H(2)S has been shown as a protective mechanism for neurons from oxytosis. H(2)S also potentiates N-methyl-d-aspartic acid receptor-mediated currents that are involved in regulating synaptic plasticity for learning and memory. 6. Given the important modulatory effects of H(2)S on different ion channels, many cellular functions and disease conditions related to homeostatic control of ion fluxes across cell membrane should be re-evaluated.

  15. Hydrogen sulfide and nervous system regulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng-fang; TANG Xiao-qing

    2011-01-01

    Objective This review discusses the current status and progress in studies on the roles of hydrogen sulfide (H2S) in regulation of neurotoxicity,neuroprotection,and neuromodulator,as well as its therapeutic potential for neurodegenerative disorders.Data sources The data used in this review were mainly from Medline and PubMed published in English from 2001 to August 2011.The search terms were “hydrogen sulfide”,“neuron”,and “neurodegenerative disorders”.Study selection Articles regarding the regulation of neuronal function,the protection against neuronal damage and neurological diseases,and their possible cellular and molecular mechanisms associated with H2S were selected.Results The inhibited generation of endogenous H2S is implicated in 1-methy-4-phenylpyridinium ion,6-OHDA,and homocysteine-triggered neurotoxicity.H2S elicits neuroprotection in Alzheimer's disease and Parkinson's disease models as well as protecting neurons against oxidative stress,ischemia,and hypoxia-induced neuronal death.H2S offers anti-oxidant,anti-inflammatory and anti-apoptotic effects,as well as activates ATP-sensitive potassium channels and cystic fibrosis transmembrane conductance regulator Cl- channels.H2S regulates the long-term potentiation (LTP) and GABAB receptors in the hippocampus,as well as intracellular calcium and pH homeostasis in neurons and glia cells.Conclusions These articles suggest that endogenous H2S may regulate the toxicity of neurotoxin.H2S not only acts as a neuroprotectant but also serves as a novel neuromodulator.

  16. Electrical properties of seafloor massive sulfides

    Science.gov (United States)

    Spagnoli, Giovanni; Hannington, Mark; Bairlein, Katharina; Hördt, Andreas; Jegen, Marion; Petersen, Sven; Laurila, Tea

    2016-06-01

    Seafloor massive sulfide (SMS) deposits are increasingly seen as important marine metal resources for the future. A growing number of industrialized nations are involved in the surveying and sampling of such deposits by drilling. Drill ships are expensive and their availability can be limited; seabed drill rigs are a cost-effective alternative and more suitable for obtaining cores for resource evaluation. In order to achieve the objectives of resource evaluations, details are required of the geological, mineralogical, and physical properties of the polymetallic deposits and their host rocks. Electrical properties of the deposits and their ore minerals are distinct from their unmineralized host rocks. Therefore, the use of electrical methods to detect SMS while drilling and recovering drill cores could decrease the costs and accelerate offshore operations by limiting the amount of drilling in unmineralized material. This paper presents new data regarding the electrical properties of SMS cores that can be used in that assessment. Frequency-dependent complex electrical resistivity in the frequency range between 0.002 and 100 Hz was examined in order to potentially discriminate between different types of fresh rocks, alteration and mineralization. Forty mini-cores of SMS and unmineralized host rocks were tested in the laboratory, originating from different tectonic settings such as the intermediate-spreading ridges of the Galapagos and Axial Seamount, and the Pacmanus back-arc basin. The results indicate that there is a clear potential to distinguish between mineralized and non-mineralized samples, with some evidence that even different types of mineralization can be discriminated. This could be achieved using resistivity magnitude alone with appropriate rig-mounted electrical sensors. Exploiting the frequency-dependent behavior of resistivity might amplify the differences and further improve the rock characterization.

  17. Chemical dosing for sulfide control in Australia: An industry survey.

    Science.gov (United States)

    Ganigue, Ramon; Gutierrez, Oriol; Rootsey, Ray; Yuan, Zhiguo

    2011-12-01

    Controlling sulfide (H(2)S) production and emission in sewer systems is critical due to the corrosion and malodour problems that sulfide causes. Chemical dosing is one of the most commonly used measures to mitigate these problems. Many chemicals have been reported to be effective for sulfide control, but the extent of success varies between chemicals and is also dependent on how they are applied. This industry survey aims to summarise the current practice in Australia with the view to assist the water industry to further improve their practices and to identify new research questions. Results showed that dosing is mainly undertaken in pressure mains. Magnesium hydroxide, sodium hydroxide and nitrate are the most commonly used chemicals for sewers with low flows. In comparison, iron salts are preferentially used for sulfide control in large systems. The use of oxygen injection has declined dramatically in the past few years. Chemical dosing is mainly conducted at wet wells and pumping stations, except for oxygen, which is injected into the pipe. The dosing rates are normally linked to the control mechanisms of the chemicals and the dosing locations, with constant or profiled dosing rates usually applied. Finally, key opportunities for improvement are the use of mathematical models for the selection of chemicals and dosing locations, on-line dynamic control of the dosing rates and the development of more cost-effective chemicals for sulfide control.

  18. Do garlic-derived allyl sulfides scavenge peroxyl radicals?

    Science.gov (United States)

    Amorati, Riccardo; Pedulli, Gian Franco

    2008-03-21

    The chain-breaking antioxidant activities of two garlic-derived allyl sulfides, i.e. diallyl disulfide (1), the main component of steam-distilled garlic oil, and allyl methyl sulfide (3) were evaluated by studying the thermally initiated autoxidation of cumene or styrene in their presence. Although the rate of cumene oxidation was reduced by addition of both 1 and 3, the dependence on the concentration of the two sulfides could not be explained on the basis of the classic antioxidant mechanism as with phenolic antioxidants. The rate of oxidation of styrene, on the other hand, did not show significant changes upon addition of either 1 or 3. This unusual behaviour was explained in terms of the co-oxidant effect, consisting in the decrease of the autoxidation rate of a substrate forming tertiary peroxyl radicals (i.e. cumene) upon addition of little amounts of a second oxidizable substrate giving rise instead to secondary peroxyl radicals. The relevant rate constants for the reaction of ROO(.) with 1 and 3 were measured as 1.6 and 1.0 M(-1) s(-1), respectively, fully consistent with the H-atom abstraction from substituted sulfides. It is therefore concluded that sulfides 1 and 3 do not scavenge peroxyl radicals and therefore cannot be considered chain-breaking antioxidants.

  19. Solubility and permeation of hydrogen sulfide in lipid membranes.

    Directory of Open Access Journals (Sweden)

    Ernesto Cuevasanta

    Full Text Available Hydrogen sulfide (H(2S is mainly known for its toxicity but has recently been shown to be produced endogenously in mammalian tissues and to be associated with physiological regulatory functions. To better understand the role of biomembranes in modulating its biological distribution and effects; we measured the partition coefficient of H(2S in models of biological membranes. The partition coefficients were found to be 2.1±0.2, 1.9±0.5 and 2.0±0.6 in n-octanol, hexane and dilauroylphosphatidylcholine liposome membranes relative to water, respectively (25°C. This two-fold higher concentration of H(2S in the membrane translates into a rapid membrane permeability, P(m = 3 cm s(-1. We used a mathematical model in three dimensions to gain insight into the diffusion of total sulfide in tissues. This model shows that the sphere of action of sulfide produced by a single cell expands to involve more than 200 neighboring cells, and that the resistance imposed by lipid membranes has a significant effect on the diffusional spread of sulfide at pH 7.4, increasing local concentrations. These results support the role of hydrogen sulfide as a paracrine signaling molecule and reveal advantageous pharmacokinetic properties for its therapeutic applications.

  20. Solubility and permeation of hydrogen sulfide in lipid membranes.

    Science.gov (United States)

    Cuevasanta, Ernesto; Denicola, Ana; Alvarez, Beatriz; Möller, Matías N

    2012-01-01

    Hydrogen sulfide (H(2)S) is mainly known for its toxicity but has recently been shown to be produced endogenously in mammalian tissues and to be associated with physiological regulatory functions. To better understand the role of biomembranes in modulating its biological distribution and effects; we measured the partition coefficient of H(2)S in models of biological membranes. The partition coefficients were found to be 2.1±0.2, 1.9±0.5 and 2.0±0.6 in n-octanol, hexane and dilauroylphosphatidylcholine liposome membranes relative to water, respectively (25°C). This two-fold higher concentration of H(2)S in the membrane translates into a rapid membrane permeability, P(m) = 3 cm s(-1). We used a mathematical model in three dimensions to gain insight into the diffusion of total sulfide in tissues. This model shows that the sphere of action of sulfide produced by a single cell expands to involve more than 200 neighboring cells, and that the resistance imposed by lipid membranes has a significant effect on the diffusional spread of sulfide at pH 7.4, increasing local concentrations. These results support the role of hydrogen sulfide as a paracrine signaling molecule and reveal advantageous pharmacokinetic properties for its therapeutic applications.

  1. The cytotoxicity of organobismuth compounds with certain molecular structures can be diminished by replacing the bismuth atom with an antimony atom in the molecules.

    Science.gov (United States)

    Kohri, Kumiko; Yoshida, Eiko; Yasuike, Shuji; Fujie, Tomoya; Yamamoto, Chika; Kaji, Toshiyuki

    2015-06-01

    Organic-inorganic hybrid molecules, which are composed of an organic structure and metal(s), are indispensable for synthetic chemical reactions; however, their toxicity has been incompletely understood. In the present study, we discovered two cytotoxic organobismuth compounds whose cytotoxicity diminished upon replacement of the intramolecular bismuth atom with an antimony atom. The intracellular accumulation of the organobismuth compounds was much higher than that of the organoantimony compounds with the corresponding organic structures. We also showed that both the organic structure and bismuth atom are required for certain organobismuth compounds to exert their cytotoxic effect, suggesting that the cytotoxicity of such a compound is a result of an interaction between the organic structure and the bismuth atom. The present data suggest that organobismuth compounds with certain molecular structures exhibit cytotoxicity via an interaction between the molecular structure and the bismuth atom, and this cytotoxicity can be diminished by replacing the bismuth atom with an antimony atom, resulting in lower intracellular accumulation.

  2. Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xijun; Chen, Chuan; Wang, Aijie; Guo, Wanqian; Zhou, Xu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Chang, Jo-Shu [Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2014-01-15

    Graphical abstract: Model evaluation applied to case study 1: (A-G) S{sup 2−}, NO{sub 3}{sup −}-N, NO{sub 2}{sup −}-N, and Ac{sup −}-C profiles under initial sulfide concentrations of 156.2 (A), 539 (B), 964 (C), 1490 (D), 342.7 (E), 718 (F), and 1140.7 (G) mg L{sup −1}. The solid line represents simulated result and scatter represents experimental result. -- Highlights: • This work developed a mathematical model for DSR process. • Kinetics of sulfur–nitrogen–carbon and interactions between denitrifiers were studied. • Kinetic parameters of the model were estimated via data fitting. • The model described kinetic behaviors of DSR processes over wide parametric range. -- Abstract: Simultaneous removal of sulfide (S{sup 2−}), nitrate (NO{sub 3}{sup −}) and acetate (Ac{sup −}) under denitrifying sulfide removal process (DSR) is a novel biological wastewater treatment process. This work developed a mathematical model to describe the kinetic behavior of sulfur–nitrogen–carbon and interactions between autotrophic denitrifiers and heterotrophic denitrifiers. The kinetic parameters of the model were estimated via data fitting considering the effects of initial S{sup 2−} concentration, S{sup 2−}/NO{sub 3}{sup −}-N ratio and Ac{sup −}-C/NO{sub 3}{sup −}-N ratio. Simulation supported that the heterotrophic denitratation step (NO{sub 3}{sup −} reduction to NO{sub 2}{sup −}) was inhibited by S{sup 2−} compared with the denitritation step (NO{sub 2}{sup −} reduction to N{sub 2}). Also, the S{sup 2−} oxidation by autotrophic denitrifiers was shown two times lower in rate with NO{sub 2}{sup −} as electron acceptor than that with NO{sub 3}{sup −} as electron acceptor. NO{sub 3}{sup −} reduction by autotrophic denitrifiers occurs 3–10 times slower when S{sup 0} participates as final electron donor compared to the S{sup 2−}-driven pathway. Model simulation on continuous-flow DSR reactor suggested that the adjustment of

  3. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography

    Science.gov (United States)

    Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.

    2014-10-01

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.Reports of molecular and cellular imaging using

  4. Comparison of catalytic activity of bismuth substituted cobalt ferrite nanoparticles synthesized by combustion and co-precipitation method

    Science.gov (United States)

    Kiran, Venkat Savunthari; Sumathi, Shanmugam

    2017-01-01

    In this study, cobalt ferrite and bismuth substituted cobalt ferrite (CoFe2-xBixO4x=0, 0.1) nanoparticles were synthesized by two different methods viz combustion and co-precipitation. The nanoparticles were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), scanning electron microscopy-energy dispersive X-ray analyzer (SEM-EDX) and vibrating sample magnetometer (VSM). The results of powder XRD pattern showed an increase in lattice parameter and decrease in particle size of cobalt ferrite by the substitution of bismuth. Catalytic activity of cobalt ferrite and bismuth substituted cobalt ferrite nanoparticles synthesized by two different methods were compared for the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as a reducing agent.

  5. Hydrothermal synthesis and crystal structure of a new lithium copper bismuth oxide, LiCuBiO4

    Science.gov (United States)

    Kumada, Nobuhiro; Nakamura, Ayumi; Miura, Akira; Takei, Takahiro; Azuma, Masaki; Yamamoto, Hajime; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2017-01-01

    A new lithium copper bismuth oxide, LiCuBiO4 was prepared by hydrothermal reaction using NaBiO30.1*4H2O. The crystal structural model of this compound was refined by using synchrotron X-ray powder diffraction data. This bismuthate has the LiCuSbO4 related structure with the orthorhombic cell (Space group: Pnma) of a=10.9096(9), b=5.8113(5) and c=5.0073(4) Å, and the final R-factors were Rwp=4.84 and Rp=3.58%. This compound is the first example of a lithium copper bismuthate containing Bi5+. An antiferromagnetic ordering of Cu2+ moment was observed at 6 K.

  6. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    Science.gov (United States)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  7. Investigation of chemical suppressants for inactivation of sulfide ores

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the effective control method of spontaneous combustion in the mining of sulfide ore deposits, This paper presents the testing results of several selected chemicals (water glass, calcium chloride, calcium oxide, magnesium oxide and their composites) as oxidation suppressants for sulfide ores. A weight increment scaling method was used to measure suppressant performance, and this method proved to be accurate, simple and convenient. Based on a large number of experiments, the test results show that four types of chemical mixtures demonstrate a good performance in reducing the oxidation rate of seven active sulfide ore samples by up to 27% to 100% during an initial 76 d period. The mixtures of water glass mixed with calcium chloride and magnesium oxide mixed with calcium chloride can also act as fire suppressants when used with fire sprinkling systems.

  8. Altered Sulfide (H2S) Metabolism in Ethylmalonic Encephalopathy

    Science.gov (United States)

    Tiranti, Valeria; Zeviani, Massimo

    2013-01-01

    Hydrogen sulfide (sulfide, H2S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H2S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed “gasotransmitters.” This review will cover the physiological role and the pathogenic effects of H2S, focusing on ethylmalonic encephalopathy, a human mitochondrial disorder caused by genetic abnormalities of sulfide metabolism. We will also discuss the options that are now conceivable for preventing genetically driven chronic H2S toxicity, taking into account that a complete understanding of the physiopathology of H2S has still to be achieved. PMID:23284046

  9. Altered sulfide (H(2)S) metabolism in ethylmalonic encephalopathy.

    Science.gov (United States)

    Tiranti, Valeria; Zeviani, Massimo

    2013-01-01

    Hydrogen sulfide (sulfide, H(2)S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H(2)S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed "gasotransmitters." This review will cover the physiological role and the pathogenic effects of H(2)S, focusing on ethylmalonic encephalopathy, a human mitochondrial disorder caused by genetic abnormalities of sulfide metabolism. We will also discuss the options that are now conceivable for preventing genetically driven chronic H(2)S toxicity, taking into account that a complete understanding of the physiopathology of H(2)S has still to be achieved.

  10. Metal sulfide electrodes and energy storage devices thereof

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  11. Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael

    2002-01-01

    We describe the morphology and behavior of a hitherto unknown bacterial species that forms conspicuous veils (typical dimensions, 30 by 30 mm) on sulfidic marine sediment. The new bacteria were enriched on complex sulfidic medium within a benthic gradient chamber in oxygen-sulfide countergradients......, but the bacteria have so far not been isolated in pure culture, and a detailed characterization of their metabolism is still lacking. The bacteria are colorless, gram-negative, and vibrioid-shaped (1.3- to 2.5- by 4- to 10-µm) cells that multiply by binary division and contain several spherical inclusions of poly......, forming a cohesive whitish veil at the oxic-anoxic interface. Bacteria attached to the veil kept rotating and adapted their stalk lengths dynamically to changing oxygen concentrations. The joint action of rotating bacteria on the veil induced a homogeneous water flow from the oxic water region toward...

  12. Extraction of Nanosized Cobalt Sulfide from Spent Hydrocracking Catalyst

    Directory of Open Access Journals (Sweden)

    Samia A. Kosa

    2013-01-01

    Full Text Available The processes used for the extraction of metals (Co, Mo, and Al from spent hydrotreating catalysts were investigated in this study. A detailed mechanism of the metal extraction process is described. Additionally, a simulation study was performed to understand the sulfidizing mechanism. The suggested separation procedure was effective and achieved an extraction of approximately 80–90%. In addition, the sulfidization mechanism was identified. This sulfidizing process for Co was found to involve an intermediate, the structure of which was proposed. This proposed intermediate was confirmed through simulations. Moreover, the activities of the spent and the regenerated catalyst were examined in the cracking of toluene. The modification of the spent catalyst through the use of different iron oxide loadings improved the catalytic activity.

  13. Mechanism of sulfide effect on viscosity of HPAM polymer solution

    Institute of Scientific and Technical Information of China (English)

    康万利; 周阳; 王志伟; 孟令伟; 刘述忍; 白宝君

    2008-01-01

    The effect of sulfide on HPAM solution viscosity was studied using BROOKFIELD DV-II viscometer,and the interaction mechanism was discussed.The HPAM solution viscosity was investigated through fully reducing sulfide by the addition of hydrogen peroxide oxidation,and the mechanism of increasing polymer viscosity was investigated.The experimental results also show that there is a critical concentration of 15 mg/L.Below it,the loss rate of HPAM solution viscosity increases more rapidly,but becomes slowly above the critical concentration.A theoretical guidance for oilfields to prepare polymer solution using sewage-water by eliminating sulfide,and it is also importance to prepare polymer solution using sewage-water and save fresh water.

  14. NIR photoluminescence of bismuth-doped CsCdBr{sub 3} – The first ternary bromide phase with a univalent bismuth impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Alexey N., E-mail: alexey.romanov@list.ru [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Veber, Alexander A. [Universität Erlangen-Nürnberg, Lehrstuhl für Glas und Keramik, Martensstraße 5, 91058 Erlangen (Germany); Vtyurina, Daria N. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Kouznetsov, Mikhail S.; Zaramenskikh, Ksenia S.; Lisitsky, Igor S. [State Scientific-Research and Design Institute of Rare-Metal Industry “Giredmet” JSC, 5-1 B.Tolmachevsky Lane, 119017 Moscow (Russian Federation); Fattakhova, Zukhra T.; Haula, Elena V. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Loiko, Pavel A.; Yumashev, Konstantin V. [Center for Optical Materials and Technologies, Belarusian National Technical University, 65/17 Nezavisimosti Avenue, 220013 Minsk (Belarus); Korchak, Vladimir N. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation)

    2015-11-15

    Single crystals of ternary bromide phase CsCdBr{sub 3} doped with univalent bismuth cations are prepared for the first time by the Bridgman method. Bi{sup +} impurity center emits a broadband long-lived near-infrared photoluminescence with a maximum at ~1053 nm. The characteristics of this photoluminescence and its relations with the energy spectrum of Bi{sup +} impurity center are discussed. A comparison of Bi{sup +} photoluminescence in CsCdBr{sub 3} and ternary chlorides (studied previously) is performed. - Highlights: • Single crystals of Bi{sup +}-doped ternary bromide CsCdBr{sub 3} were prepared. • Broadband NIR photoluminescence was observed from Bi{sup +}-doped CsCdBr{sub 3}. • Single optical center is responsible for NIR emission in Bi{sup +}-doped CsCdBr{sub 3}.

  15. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    Energy Technology Data Exchange (ETDEWEB)

    Osuntokun, Jejenija; Ajibade, Peter A., E-mail: pajibade@ufh.ac.za

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato–κS,S’–bis (N,N-dimethylthiourea–κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33–7.21 nm for ZnS and 4.95–7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  16. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    Science.gov (United States)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  17. Carbonyl Sulfides as Possible Intermediates in the Photolysis of Oxathiiranes

    DEFF Research Database (Denmark)

    Carlsen, Lars; Snyder, J. P.; Holm, A.

    1981-01-01

    of sulfine to ketone via the oxathiirane and the subsequent blue intermediate implies the absence of triplet and biradical singlet transients. The unknown carbonyl sulfide functionality, R2C&z.dbnd;O&z.dbnd;S, thereby emerges as a strong candidate for producing the visible absorption. Comparison of the wave...... functions for CH2&z.dbnd;S&z.dbnd;O and CH2&z.dbnd;O&z.dbnd;S arising from MNDO limited CI geometry optimizations leads to the conclusion that the carbonyl sulfide structure is best described as a zwitterion rather than as a singlet biradical. The failure to observe cycloaddition products between the blue...

  18. High conducting oxide--sulfide composite lithium superionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  19. Altered Sulfide (H2S) Metabolism in Ethylmalonic Encephalopathy

    OpenAIRE

    2013-01-01

    Hydrogen sulfide (sulfide, H2S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H2S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed “gasotransmitters.” This review will cover th...

  20. Experimental constraints on gold and silver solubility in iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Pal' yanova, Galina [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Mikhlin, Yuri [Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Kokh, Konstantin, E-mail: k.a.kokh@gmail.com [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Siberian Physical–Technical Institute of Tomsk State University, 1, Novosobornaya, Tomsk, 634050 (Russian Federation); Karmanov, Nick [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Seryotkin, Yurii [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation)

    2015-11-15

    Experiments were performed to determine crystallization of Fe,S-melts (pyriti≿ and troilitic with molar ratio S/Fe ratios of 2 and 1, respectively) containing traces of gold and silver at (Ag/Au){sub wt} ratios varying from 10 to 0.1. The solid products were studied by optical microscopy, scanning electron microscopy, X-ray powder diffraction (XRD), microprobe analysis, and X-ray photoelectron spectroscopy (XPS) in order to reveal the concentration limits of “invisible” gold and silver in magmatic iron sulfides, and to determine the influence of sulfur on forms of precious metals in the Fe–S system with different Ag/Au ratios. Au–Ag phases do not form inclusions but instead concentrate on the grain boundaries in the synthetic pyrrhotite and troilite, while pyrite comprises micro- (1–5 μm) and macroinclusions of Au–Ag alloys and Au–Ag sulfides. In “pyriti≿” systems, the fineness of alloys increases from 650 to 970‰ and the composition of sulfides changes from acanthite (Ag{sub 2}S) to uytenbogaardtite (Ag{sub 3}AuS{sub 2}) and petrovskaite (AgAuS) as the Ag/Au ratio decreases. The concentrations of “invisible” precious metals revealed in troilite were 0.040 ± 0.013 wt.% Au and 0.079 ± 0.016 wt.% Ag. Measured concentrations in pyrite and pyrrhotite were <0.024 wt.% Au and <0.030 wt.% Ag. The surface layers of iron sulfides probed with XPS were enriched in the precious metals, and in silver relative to gold, especially in the systems with Fe/S = 1, probably, due to depletion of the metallic alloy surfaces with gold. Au- and Ag-bearing iron sulfides crystallized primarily from melts may be the source of redeposited phases in hydrothermal and hypergene processes. - Highlights: • The samples of Fe–S–Au–Ag system were synthesized. • Coupled solubility of gold and silver in iron sulfides was specified. • Ag–Au inclusions on surfaces of iron sulfides are likely to be enriched in silver. • Au–Ag sulfides can exist along with