WorldWideScience

Sample records for bismuth oxides

  1. Bismuth(V) oxide and silver bismuthate as oxidizing agents for gas-chromatographic elemental microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Shvykin, A.Y.; Platonov, V.V.; Proskuryakov, V.P.; Chilachava, K.B.; Khmarin, E.M.; Kovtun, I.V. [Tolstoy State Pedag University, Tula (Russian Federation)

    2004-07-01

    Bismuth(V) oxide, silver bismuthate, and a mixture of bismuth(V) oxide with fine silver powder were studied as oxidizing additives in gas-chromatographic elemental microanalysis of readily combustible organic substances and coal.

  2. Hydrothermal synthesis of bismuth germanium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.

    2016-12-13

    A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.

  3. Microwave-assisted synthesis of bismuth oxide

    Directory of Open Access Journals (Sweden)

    Eva Bartonickova

    2007-12-01

    Full Text Available Single phase and ultrafine bismuth oxide was synthesized via microwave-assisted hydrothermal synthesis. The effect of reaction parameters (temperature/pressure and pH on the product phase composition and morphology was discussed. The transformation of bismuth hydroxide into bismuth oxide was controlled by pH value and it was accelerated by time and temperature. The phase composition of reaction products was strongly dependent on pH value. The amorphous products were obtained at acidic pH conditions and the crystalline single phase product α-Bi2O3 phase was obtained at pH ≥12. The particle size was reduced from micrometric to nanometric size in the presence of a chelating agent. The bismuth hydroxides into bismuth oxides transformation mechanism, consisting in polycondensation ofBi–OH bounds to Bi–O–Bi bridges and crystallization of Bi2O3, was proposed.

  4. Nanometer bismuth oxide produced by resistance heating vapor oxidation

    Institute of Scientific and Technical Information of China (English)

    HU Han-xiang; QIU Ke-qiang

    2006-01-01

    Bismuth oxide has wide applications in superconductive material, photoelectric material, electronic ceramic, electrolyte, and catalysts. To produce ultrafine bismuth oxide powders, some costly heating sources, such as plasma, high frequency induction, electron beam or laser, have to be used in the conventional vapor oxidation methods. The vapor oxidation method was improved by adding a reducing agent in the reaction system, where heating source was resistance tubular oven, instead of special heat source requirement. Nanometer bismuth oxide was prepared at 1 000-1 140 ℃, and the particle characteristics were investigated by XRD, SEM, DTA, laser sedimentograph. With low oxygen concentration (less than 20%) in the carrier gas, the bismuth oxide particle was near-sphere β-Bi2O3 with uniform and fine particle size (d0.5=65 nm, GSD=1.42); while with higher oxygen content (more than 50%), the powders were mixture of Bi2O2CO3 and β-Bi2O3.

  5. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  6. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    Science.gov (United States)

    Sahin, Cuneyt

    The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained strontium titanate (STO) and a two-dimensional electron gas in STO (such as at the LAO/STO interface). Our results suggest robust spin coherence and spin transport properties in STO related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony (BISb) semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((h/e)O--1cm--1) for bismuth to 96((h/e)O--1cm --1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 e

  7. Oxygen semi-permeability of erbia-stabilized bismuth oxide

    NARCIS (Netherlands)

    Bouwmeester, H.J.M.; Kruidhof, H.; Burggraaf, A.J.; Gellings, P.J.

    1992-01-01

    The isothermal permeability of oxygen through sintered dense disks of bismuth oxide stabilized with 25 mol% erbia (BE25) has been studied at 610–810°C and oxygen pressures of 0.0001–1 atm. It is concluded that the permeating flux is rate limited both by solid state diffusion of electron holes and by

  8. Light-Induced Absorption in Nominally Pure Bismuth Silicon Oxide

    Institute of Scientific and Technical Information of China (English)

    李飞飞; 许京军; 孔勇发; 黄辉; 张光寅; 杨春晖; 徐玉恒

    2001-01-01

    Light-induced absorption in the nominally pure bismuth silicon oxide is investigated experimentally and the result shows that it consists of transient and persistent parts. The experimental evidence is analysed based on the model of three groups of trap (donor) centres.

  9. Bismuth-lead oxide, a new highly conductive oxygen materials

    NARCIS (Netherlands)

    Honnart, F.; Boivin, J.C.; Thomas, D.; Vries, de K.J.

    1983-01-01

    The transport properties of an oxygen-deficient solid solution containing lead and bismuth oxides have been investigated. The conductivity is larger than 1 (ω× cm)−1 at 600 °C. Thermogalvanic measurements confirm that no significant electronic contribution occurs in the range 1–10−3atm p O2. The hea

  10. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    Science.gov (United States)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  11. Formic Acid Oxidation at Platinum-Bismuth Clusters

    DEFF Research Database (Denmark)

    Lovic, J. D.; Stevanovic, S. I.; Tripkovic, D. V.

    2014-01-01

    Formic acid oxidation was studied on platinum-bismuth deposits on glassy carbon (GC) substrate. The catalysts of equimolar ratio were prepared by potentiostatic deposition using chronocoulometry. Bimetallic structures obtained by two-step process, comprising deposition of Bi followed by deposition...... of Pt, were characterized by AFM spectroscopy which indicated that Pt crystallizes preferentially onto previously formed Bi particles. The issue of Bi leaching (dissolution) from PtBi catalysts, and their catalytic effect alongside the HCOOH oxidation is rather unresolved. In order to control Bi...... dissolution, deposits were subjected to electrochemical oxidation, in the relevant potential range and supporting electrolyte, prior to use as catalysts for HCOOH oxidation. Anodic striping charges indicated that along oxidation procedure most of deposited Bi was oxidized. ICP mass spectroscopy analysis...

  12. Genotoxic effects of bismuth (III oxide nanoparticles by comet assay

    Directory of Open Access Journals (Sweden)

    Reecep Liman

    2015-06-01

    Full Text Available Bismuth oxide is one of the important transition metal oxides and it has been intensively studied due to their peculiar characteristics (semiconductor band gap, high refractive index, high dielectric permittivity, high oxygen conductivity, resistivity, photoconductivity and photoluminescence etc.. Therefore, it is used such as microelectronics, sensor technology, optical coatings, transparent ceramic glass manufacturing, nanoenergetic gas generator, biosensor for DNA hybridization, potential immobilizing platforms for glucose oxidase and polyphenol oxidase, fuel cells, a additive in paints, an astringent in a variety of medical creams and topical ointments, and for the determination of heavy metal ions in drinking water, mineral water and urine. In addition this, Bismuth (III oxide nanoparticles (BONPs are favorable for the biomolecules adsorption than regular sized particles because of their greater advantages and novel characteristics (much higher specific surface, greater surface free energy, and good electrochemical stability etc.. Genotoxic effects of BONPs were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of BONPs at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was also observed at all concentrations of BONPs except 12.5 ppm by Comet assay. The results were also analyzed statistically by using SPSS for Windows; Duncan’s multiple range test was performed. These result indicate that BONPs exhibit genotoxic activity in A. cepa root meristematic cells.

  13. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  14. Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts

    DEFF Research Database (Denmark)

    Duc, Duc Truong; Ha, Hanh Nguyen; Fehrmann, Rasmus

    2011-01-01

    Silica-supported bismuth molybdate catalysts have been prepared by impregnation, structurally characterized and examined as improved catalysts for the selective oxidation of propylene to acrolein. Catalysts with a wide range of loadings (from 10 to 90 wt%) of beta bismuth molybdate (β-Bi2Mo2O9...

  15. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  16. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanwen [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Hu Zhongai, E-mail: zhongai@nwnu.edu.c [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2010-12-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 {sup o}C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g{sup -1} (based on composite) is obtained at a specific current of 1 A g{sup -1} as compared with 71 F g{sup -1} for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g{sup -1} even at 10 A g{sup -1}. In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  17. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  18. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part II. Structural and mechanical properties

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, K.; Velde, van de G.M.H.; Vries, de K.J.; Burggraaf, A.J.

    1988-01-01

    Coprecipitation as a method of preparation for bismuth oxides based ceramics yields relatively strong and machineable materials in comparison with the solid state reaction. Compositions within the system (1−x)Bi2O3|xEr2O3 containing up to twenty five mole percent of erbium oxide show a slow transiti

  19. Investigation on bismuth-oxide photonic crystal fiber for optical parametric amplification

    Institute of Scientific and Technical Information of China (English)

    JIN Cang; RAO Lan; YUAN Jin-hui; SHEN Xiang-wei; YU Chong-xiu

    2011-01-01

    A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity. This simulation and calculation results show that the bismuth-oxide photonic crystal fiber (Bi-PCF) has near zero dispersion around 1550 nm. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model field distribution are obtained. Compared with the experimental results by SiO-PCF, it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification (OPA).

  20. Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Naha, Pratap C; Zaki, Ajlan Al; Hecht, Elizabeth; Chorny, Michael; Chhour, Peter; Blankemeyer, Eric; Yates, Douglas M; Witschey, Walter R T; Litt, Harold I; Tsourkas, Andrew; Cormode, David P

    2014-12-14

    Bismuth nanoparticles have been proposed as a novel CT contrast agent, however few syntheses of biocompatible bismuth nanoparticles have been achieved. We herein report the synthesis of composite bismuth-iron oxide nanoparticles (BION) that are based on a clinically approved, dextran-coated iron oxide formulation; the particles have the advantage of acting as contrast agents for both CT and MRI. BION were synthesized and characterized using various analytical methods. BION CT phantom images revealed that the X-ray attenuation of the different formulations was dependent upon the amount of bismuth present in the nanoparticle, while T2-weighted MRI contrast decreased with increasing bismuth content. No cytotoxicity was observed in Hep G2 and BJ5ta cells after 24 hours incubation with BION. The above properties, as well as the yield of synthesis and bismuth inclusion efficiency, led us to select the Bi-30 formulation for in vivo experiments, performed in mice using a micro-CT and a 9.4 T MRI system. X-ray contrast was observed in the heart and blood vessels over a 2 hour period, indicating that Bi-30 has a prolonged circulation half-life. Considerable signal loss in T2-weighted MR images was observed in the liver compared to pre-injection scans. Evaluation of the biodistribution of Bi-30 revealed that bismuth is excreted via the urine, with significant concentrations found in the kidneys and urine. In vitro experiments confirmed the degradability of Bi-30. In summary, dextran coated BION are biocompatible, biodegradable, possess strong X-ray attenuation properties and also can be used as T2-weighted MR contrast agents.

  1. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    Science.gov (United States)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  2. High ionic conductivity in confined bismuth oxide-based heterostructures

    DEFF Research Database (Denmark)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens

    2016-01-01

    Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure -Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made...

  3. Preparation of Bismuth Oxide Photocatalyst and Its Application in White-light LEDs

    Directory of Open Access Journals (Sweden)

    Yen-Chang Chu

    2013-01-01

    Full Text Available Bismuth oxide photocatalysts were synthesized and coated on the front surface of phosphor-converted white light-emitting diodes to produce a safe and environmentally benign lighting source. Bismuth oxide photocatalyst powders were synthesized with a spray pyrolysis method at 500°C, 600°C, 700°C, and 800°C. Using the absorption spectrum in the blue and UV regions of the bismuth oxide photocatalysts, the blue light and UV leakage problems of phosphor-converted white LEDs can be significantly reduced. The experimental results showed that bismuth oxide photocatalyst synthesized at 700°C exhibited the most superior spectrum inhibiting ability. The suppressed ratio reached 52.33% in the blue and UV regions from 360 to 420 nm. Related colorimetric parameters and the photocatalyst decomposition ability of fabricated white-light LEDs were tested. The CIE chromaticity coordinates (x,y were (0.349, 0.393, and the correlated color temperature was 4991 K. In addition, the coating layer of photocatalyst can act as an air purifier and diffuser to reduce glare. A value of 66.2±0.60 ppmv of molecular formaldehyde gas can be decomposed in 120 mins.

  4. Thickness dependence of oxygen permeation through erbia-stabilized bismuth oxide-silver composites

    NARCIS (Netherlands)

    Chen, C.S.; Kruidhof, H.; Bouwmeester, H.J.M.; Verweij, H.; Burggraaf, A.J.

    1997-01-01

    Oxygen permeation measurements were performed on erbia-stabilized bismuth oxide-silver (40 v/o) composite membranes in the range of thickness of 1.60–0.23 mm and temperature of 850–650 °C. Air was fed at one side of the membranes while permeated oxygen on the other side was swept away with helium. A

  5. Dynamic spatial structure of spontaneous beams in photorefractive bismuth sillicon oxide

    DEFF Research Database (Denmark)

    Buchhave, Preben; Lyuksyutov, S.; Vasnetsov, M.

    1996-01-01

    We report the domain structure of spontaneously occurring beams (subharmonics) in photorefractive bismuth silicon oxide with an applied electric field from 1 to 6 kV/cm and a running grating. The subharmonic beams are generated in a pattern of domains that evolve dynamically as they move through...

  6. Methylene blue photocatalysis in the presence of bismuth oxide under UV and solar light irradiation

    Directory of Open Access Journals (Sweden)

    Vanessa Rocha Liberatti

    2014-05-01

    Full Text Available Bismuth oxide (Bi2O3, an n-type semiconductor has been satisfactorily investigated for photocatalytic organic contaminant remediation. The Bi2O3 was prepared by solution combustion synthesis (SCS using as the oxidizing bismuth nitrate in acidic medium and urea as fuel. The influence of the type of synthesis on the photocatalytic properties of the oxide formed was investigated by XRD. From the diffractograms was verified that the materials obtained are predominantly of Bi2O3 crystals, it is possible to identify a sample with two crystalline phases, monoclinic (α-Bi2O3 and tetragonal (β-Bi2O3, and the other with only the monoclinic (α-Bi2O3. The two-phase oxide showed higher photocatalytic activity for discoloration of methylene blue under UV irradiation (60.59% and under sunlight (61.64% in 664 nm, followed kinetic law of pseudo-first order.

  7. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Robert N.; Stark, Wendelin J. [Institute for Chemical and Bioengineering, ETH Zuerich (Switzerland)], E-mail: wendelin.stark@chem.ethz.ch

    2006-10-15

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.

  8. Controlled oxidative synthesis of Bi nanoparticles and emission centers in bismuth glass nanocomposites for photonic application

    Science.gov (United States)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-09-01

    Here we demonstrate an oxidative process to control metallic bismuth (Bi 0) nanoparticles (NPs) creation in bismuth glass nanocomposites by using K 2S 2O 8 as oxidant and enhanced transparency of bismuth glasses. Formation of Bi 0 NPs has been monitored by their distinct surface plasmon resonance (SPR) band at 460 nm in the UV-visible absorption spectra. It is further confirmed by the transmission electron microscopy (TEM) images which disclose the formation of spherical Bi 0 NPs whereas the selected area electron diffraction (SAED) pattern reveals their crystalline rhombohedral phase. These glasses are found to exhibit visible and near infrared (NIR) luminescence bands at 630 and 843 nm respectively on excitation at 460 nm of the SPR band. It is realized that the luminescence center of bismuth species is an uncertain issue, however, it is reasonable to consider that the emission band at 630 nm is due to the combination of 2D 5/2 → 4S 3/2 of Bi 0 and 2P 3/2 (1) → 2P 1/2 of Bi 2+ transitions, and that of NIR emission band at 843 nm is attributed to the 2D 3/2 → 4S 3/2 of Bi 0 transition.

  9. Synthesis, crystal growth and mechanical properties of Bismuth Silicon Oxide (BSO) single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Riscob, B. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India); Shkir, Mohd. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Ganesh, V. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Vijayan, N.; Maurya, K.K. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Kishan Rao, K. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Bhagavannarayana, G., E-mail: bhagavan@mail.nplindia.ernet.in [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India)

    2014-03-05

    Highlights: • Synthesis of Bismuth Silicon Oxide (BSO). • Single crystal growth of BSO by Czochralski (Cz) method. • Complete mechanical analysis by device fabrication point of view. • Theoretical and experimental calculations of mechanical properties. -- Abstract: Bismuth Silicon Oxide (BSO) is an efficient material for piezo-electric and electro-optic applications. In this article, growth of BSO single crystal by high temperature Czochralski melt growth technique and its detailed mechanical characterization by Vickers microhardness, fracture toughness, crack propagation, brittleness index and yield strength have been reported. The raw material was synthesized by solid state reaction using the stoichiometric ratio of high purity bismuth tri-oxide and silicon di-oxide. The synthesized material was charged in the platinum crucible and then melted. The required rotation and pulling rate was optimized for BSO single crystal growth and good quality single crystal has been harvested after a time span of 5 days. Powder X-ray diffraction analysis confirms the parent crystallization phase of BSO. The experimentally studied mechanical behavior of the crystal is explained using various theoretical models. The anisotropic nature of the crystals is studied using Knoop indentation technique.

  10. High ionic conductivity in confined bismuth oxide-based heterostructures

    Science.gov (United States)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens; Pryds, Nini

    2016-12-01

    Bismuth trioxide in the cubic fluorite phase (δ -Bi2O3 ) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure δ -Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made of alternative layers of δ -Bi2O3 and Yttria Stabilized Zirconia (YSZ), deposited by pulsed laser deposition. The resulting [δ -Bi2O3 /YSZ ] heterostructures are found to be stable over a wide temperature range (500-750 °C) and exhibits stable high ionic conductivity over a long time comparable to the value of the pure δ -Bi2O3 , which is approximately two orders of magnitude higher than the conductivity of YSZ bulk.

  11. High ionic conductivity in confined bismuth oxide-based heterostructures

    Directory of Open Access Journals (Sweden)

    Simone Sanna

    2016-12-01

    Full Text Available Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3 exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure δ-Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made of alternative layers of δ-Bi2O3 and Yttria Stabilized Zirconia (YSZ, deposited by pulsed laser deposition. The resulting [δ-Bi2O3/YSZ] heterostructures are found to be stable over a wide temperature range (500-750 °C and exhibits stable high ionic conductivity over a long time comparable to the value of the pure δ-Bi2O3, which is approximately two orders of magnitude higher than the conductivity of YSZ bulk.

  12. Analysis of the color alteration and radiopacity promoted by bismuth oxide in calcium silicate cement

    Directory of Open Access Journals (Sweden)

    Marina Angelica Marciano

    2013-07-01

    Full Text Available The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO, determined by weight. Mineral trioxide aggregate (MTA was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/Tukey tests (p 3 mm equivalent of Al. The MTA group was statistically similar to the CSC / 30% BO group (p > 0.05. In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC / 50% BO group (p < 0.05. The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC / 15% BO and CSC / 50% BO groups (p < 0.05. After 30 days, CSC showed statistically higher ΔE values than CSC / 30% BO and CSC / 50% BO (p < 0.05. In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.

  13. Single crystals of bismuth silicon oxide grown by the Czochralski technique and their characterisation

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    1999-09-01

    Full Text Available Single crystals of Bi12SiO20 were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. X-Ray measurements were performed on powdered samples to obtain the lattice parameters. The optical properties of the bismuth silicon oxide single crystals were investigated. The obtained results are discussed and compared with published data.

  14. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  15. The fabrication and thermal properties of bismuth-aluminum oxide nanothermometers

    Science.gov (United States)

    Wang, Chiu-Yen; Chen, Shih-Hsun; Tsai, Ping-Hsin; Chiou, Chung-Han; Hsieh, Sheng-Jen

    2017-01-01

    Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al2O3) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al2O3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al2O3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al2O3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

  16. Role of Bismuth Oxide in Bi-MCo2O4(M=Co,Ni,Cu,Zn) Catalysts for Wet Air Oxidation of Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    JIANG Peng-bo; CHENG Tie-xin; ZHUANG Hong; CUI Xiang-hao; BI Ying-li; ZHEN Kai-ji

    2004-01-01

    Two series of cobalt(Ⅲ)-containing spinel catalysts were prepared by the decomposition of the corresponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation of acetic acid than those without dopant bismuth oxide. The catalysts were investigated by XRD, TEM, ESR, UV-DRS and XPS, and the interaction between Co and Bi was studied as well. It has been found that nano-sized bismuth oxide is paved on the surface of cobalt spinel crystal and the structures of cobalt(Ⅲ)-containing spinel are still maintained. The shift of the binding energy of Bi4f7/2 is related to the catalytic activity of these catalysts doped with bismuth oxide.

  17. Comparative study on solubilities of bismuth, bismuth oxide,and bismuth sulfide in hydrochloric acid-thiourea%铋、氧化铋、硫化铋在盐酸-硫脲中溶解性的比较研究

    Institute of Scientific and Technical Information of China (English)

    马哈亚·艾斯江; 巴哈尔古丽·别克吐尔逊

    2012-01-01

    在盐酸介质中及55℃加热条件下,铋与硫脲形成黄色络合物,从而建立了用分光光度法比较铋、氧化铋、硫化铋在盐酸-硫脲中溶解性的新方法.研究了反应介质、试剂浓度、加热时间、加热温度、震荡速率等因素的影响.在最佳实验条件下,溶液的质量浓度为0.04~0.24 mg/mL时符合比尔定律.相关系数R=0.999 9,检出限为1.05×10-2 μg/mL,标准偏差SD=0.003 5,相对标准偏差RSD=2.42%,摩尔吸收系数为1.515×105 L/(mol·cm),加标回收率为96.7%~98.8%.实验结果表明,铋、氧化铋、硫化铋的溶解性顺序大小为:铋>氧化铋>硫化铋.%A yellow complex is formed from bismuth and thiourea in hydrochloric acid under the heated condition of 55 °C. Thus a new method is set up to compare the solubilities of bismuth, bismuth oxide, and bismuth sulfide in hydrochloric acid-thiourea by using spectrophotometry.Effects of factors, such as reaction medium, reagent concentration, heating time, heating temperature, and oscillation speed,were studied respectively .Under the optimum experimental conditions, mass concentration of the solution is in line with Beer's law, when it is within the range of 0.04-0.24 mg/mL.The correlation coefficient (R) is 0.999 9.The detection limit is 1.05xl0-2μg/mL.The standard deviation is 0.003 5.The relative standard deviation (RSD) is 2.42%.The molar absorption coefficient is 1.515xl05 L/(mol-cm).The recovery rate of standard addition is at 96.7%~98.8%. Experimental result showed that the solubilities of bismuth,bismuth oxide,and bismuth sulfide in hydrochloric acid-thiourea is in order by size as following: Bi>Bi2O3>Bi2S3.

  18. Oxidative Dehydrogenation of n-Butenes to 1,3-Butadiene over Bismuth Molybdate and Ferrite Catalysts: A Review

    KAUST Repository

    Hong, Eunpyo

    2015-11-02

    1,3-Butadiene, an important raw material for a variety of chemical products, can be produced via the oxidative dehydrogenation (ODH) of n-butenes over multicomponent oxide catalysts based on bismuth molybdates and ferrites. In this review, the basic concept, reaction mechanism, and catalysts typically used in an ODH reaction are discussed. © 2015, Springer Science+Business Media New York.

  19. Effect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia.

    Science.gov (United States)

    Liu, Liwei; Zhou, Zheng; Tian, He; Li, Jixue

    2016-03-14

    Bismuth oxide (Bi2O3)-doped yttria-stabilized zirconia (YSZ) were prepared via the solid state reaction method. X-ray diffraction and electron diffraction spectroscopy results indicate that doping with 2 mol% Bi2O3 and adding 10 mol% yttria result in a stable zirconia cubic phase. Adding Bi2O3 as a dopant increases the density of zirconia to above 96%, while reducing its normal sintering temperature by approximately 250°C. Moreover, electrical impedance analyses show that adding Bi2O3 enhances the conductivity of zirconia, improving its capability as a solid electrolyte for intermediate or even lower temperatures.

  20. Microwave-assisted solid-state synthesis of oxide ion conducting stabilized bismuth vanadate phases

    Energy Technology Data Exchange (ETDEWEB)

    Vaidhyanathan, B.; Balaji, K.; Rao, K.J. [Indian Inst. of Science, Bangalore (India). Solid State and Structural Chemistry Unit

    1998-11-01

    A microwave-assisted method for the preparation of substituted bismuth vanadates has been described. The method consists of starting with the respective oxides mixed in stoichiometric proportions and exposing the mixture to microwaves. Substitution takes place at the vanadium sites and it has been possible to prepare Ag{sup +}-, Mn{sup 4+}-, Ga{sup 3+}-, Y{sup 3+}-, and Ce{sup 4+}-substituted compounds with up to 10% substitution. Mn{sup 4+}- and Ag{sup +}-substituted compounds are found to exhibit better oxygen ion conductivities than any reported so far in the literature.

  1. Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2014-01-01

    Hydrothermal synthesis has been used as a soft chemical method to prepare bismuth molybdate catalysts for the selective oxidation of propylene to acrolein. All obtained samples displayed a plate-like morphology, but their individual aspect ratios varied with the hydrothermal synthesis conditions...... of nitric acid during hydrothermal synthesis enhanced both propylene conversion and acrolein yield, possibly due to a change in morphology. Formation of β-Bi2Mo2O9 was not observed under the applied conditions. In general, the catalytic performance of all samples decreased notably after calcination at 550...

  2. Effect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia

    Directory of Open Access Journals (Sweden)

    Liwei Liu

    2016-03-01

    Full Text Available Bismuth oxide (Bi2O3-doped yttria-stabilized zirconia (YSZ were prepared via the solid state reaction method. X-ray diffraction and electron diffraction spectroscopy results indicate that doping with 2 mol% Bi2O3 and adding 10 mol% yttria result in a stable zirconia cubic phase. Adding Bi2O3 as a dopant increases the density of zirconia to above 96%, while reducing its normal sintering temperature by approximately 250 °C. Moreover, electrical impedance analyses show that adding Bi2O3 enhances the conductivity of zirconia, improving its capability as a solid electrolyte for intermediate or even lower temperatures.

  3. Enhanced Photocatalytic Properties of Silver Oxide Loaded Bismuth Vanadate

    Institute of Scientific and Technical Information of China (English)

    Lianwei Shan; Jinbo Mi; Limin Dong; Zhidong Han; Bo Liu

    2014-01-01

    In this work, BiVO4 powders were synthesized by a sol-gel method, and the BiVO4 gels with different calcination temperature were investigated by X-ray diffraction (XRD). Absorption range and band gap energy, which are respon-sible for the observed photocatalyst behavior, were investigated by UV/vis diffuse reflectance spectroscopy (DRS) for pure and silver oxide loaded BiVO4. Photocatalytic properties of the prepared samples were examined by studying the degradation of the methyl orange. When using NaClO2 as an electron acceptor, the possible photocatalytic mech-anism has been discussed by photocatalytic reactions. With the help of electron acceptor, the results show clearly that the BiVO4 loaded silver oxide exhibited superior photocatalytic activity in simulated dye wastewater treatment.

  4. Synthesis of yttria-doped bismuth oxide powder by carbonate coprecipitation for IT-SOFC electrolyte.

    Science.gov (United States)

    Lee, J G; Kim, S H; Yoon, H H

    2011-01-01

    Yttria-doped bismuth oxide (YBO) powders were synthesized by ammonium carbonate coprecipitation for the preparation of electrolytes of an intermediate temperature solid oxide fuel cell (IT-SOFC). The starting salts were yttrium and bismuth nitrate. The crystal structures and the morphological characteristics of the particles were analyzed by XRD and SEM, respectively. The ionic conductivity of the sintered pellet was measured by an electrochemical impedance analyzer. The size of the calcined YBO powders were in the range of 20-100 nm as measured by SEM images. The YBO pellets had a face-centered cubic structure, and their crystallite size was about 54-88 nm. The ionic conductivity of the YBO pellets sintered at 800 degrees C was observed to be 2.7 x 10(-1) Scm-(-1) at 700 degrees C. The ball-milling of the YBO powder before it was pelletized was found to have been unrequired probably because of a good sinterability of the YBO powders that was prepared via the ammonium carbonate coprecipitation method. The results showed that the ammonium carbonate coprecipitation process could be used as the cost-efficient method of producing YBO electrolytes for IT-SOFC.

  5. Elastic Behavior of Borate Glasses Containing Lead and Bismuth Oxides

    Directory of Open Access Journals (Sweden)

    Mehrdad Khanisanij

    2014-01-01

    Full Text Available PbO and Bi2O3 binary borate glasses with different compositions, (MOX(B2O31−X (M = Pb, Bi, have been characterized and ultrasonic velocity as well as density is taken into account. In addition, the results have been compared with those of Ag, K, and Li oxide borate glasses from others. The ultrasonic velocities (both longitudinal and transverse and density for (PbOX(B2O31−X and (Bi2O3X(B2O31−X have been measured accurately and elastic moduli as well as hardness and Poisson’s ratio was determined. It has been demonstrated that density and ultrasonic velocities are enhanced by increasing PbO and Bi2O3 molar fraction with different values for each borate glass composition. However, the enhancement of ultrasonic velocities did not carry on continuously and after reaching a maximum point, they fell down dramatically. Both PbO and Bi2O3 showed almost similar glass improvement in case of density, ultrasonic velocity, and elastic moduli.

  6. Bismuth molybdate catalysts prepared by mild hydrothermal synthesis: Influence of pH on the selective oxidation of propylene

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2015-01-01

    A series of bismuth molybdate catalysts with relatively high surface area was prepared via mild hydrothermal synthesis. Variation of the pH value and Bi/Mo ratio during the synthesis allowed tuning of the crystalline Bi-Mo oxide phases, as determined by X-ray diffraction (XRD) and Raman spectrosc...

  7. Influence of bismuth oxide concentration on the pH level and biocompatibility of white Portland cement

    Directory of Open Access Journals (Sweden)

    Marina Angélica MARCIANO

    2014-07-01

    Full Text Available Objectives: To investigate if there is a relation between the increase of bismuth oxide and the decrease of pH levels and an intensification of toxicity in the Portland cement. Material and Methods: White Portland cement (WPC was mixed with 0, 15, 20, 30 and 50% bismuth oxide, in weight. For the pH level test, polyethylene tubes were filled with the cements and immersed in Milli-Q water for 15, 30 and 60 days. After each period, the increase of the pH level was assessed. For the biocompatibility, two polyethylene tubes filled with the cements were implanted in ninety albino rats (n=6. The analysis of the intensity of the inflammatory infiltrate was performed after 15, 30 and 60 days. The statistical analysis was performed using the Kruskal-Wallis, Dunn and Friedman tests for the pH level and the Kruskal-Wallis and Dunn tests for the biological analysis (p0.05. For the inflammatory infiltrates, no significant statistical differences were found among the groups in each period (p>0.05. The 15% WPC showed a significant decrease of the inflammatory infiltrate from 15 to 30 and 60 days (p<0.05. Conclusions: The addition of bismuth oxide into Portland cement did not affect the pH level and the biological response. The concentration of 15% of bismuth oxide resulted in significant reduction in inflammatory response in comparison with the other concentrations evaluated.

  8. Hydrothermal synthesis and crystal structure of a new lithium copper bismuth oxide, LiCuBiO4

    Science.gov (United States)

    Kumada, Nobuhiro; Nakamura, Ayumi; Miura, Akira; Takei, Takahiro; Azuma, Masaki; Yamamoto, Hajime; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2017-01-01

    A new lithium copper bismuth oxide, LiCuBiO4 was prepared by hydrothermal reaction using NaBiO30.1*4H2O. The crystal structural model of this compound was refined by using synchrotron X-ray powder diffraction data. This bismuthate has the LiCuSbO4 related structure with the orthorhombic cell (Space group: Pnma) of a=10.9096(9), b=5.8113(5) and c=5.0073(4) Å, and the final R-factors were Rwp=4.84 and Rp=3.58%. This compound is the first example of a lithium copper bismuthate containing Bi5+. An antiferromagnetic ordering of Cu2+ moment was observed at 6 K.

  9. Enhanced Visible Light Photocatalytic Activity of Br-Doped Bismuth Oxide Formate Nanosheets

    Directory of Open Access Journals (Sweden)

    Xin Feng

    2015-10-01

    Full Text Available A facile method was developed to enhance the visible light photocatalytic activity of bismuth oxide formate (BiOCOOH nanosheets via Br-doping. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, the Brunauer–Emmett–Teller surface area, UV-vis diffuse reflectance spectroscopy, photoluminescence spectra, and N2 adsorption-desorption isotherms measurement. The Br− ions replaced the COOH− ions in the layers of BiOCOOH, result in a decreased layer distance. The photocatalytic activity of the as-prepared materials was evaluated by removal of NO in qir at ppb level. The results showed that the Br-doped BiOCOOH nanosheets showed enhanced visible light photocatalytic activtiy with a NO removal of 37.8%. The enhanced activity can be ascribed to the increased visible light absorption and the promoted charge separation.

  10. Preparation of nanometer δ-and β-bismuth trioxide by vacuum vapor-phase oxidation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A stable δ- and β-bismuth trioxide was prepared at room temperature by vacuum vapor-phase oxidation. The average crystal size of products was 14.6 nm (by XRD), the d(0.5) value was in the range from 62 nm to 69 nm, and geometric standard deviation(GSD)was from 1.42 to 1.64. The results show that δ-Bi2O3 is formed when quenching rates is rapid and β-Bi2O3 is formed when it is slow. The size of grains increases with rising reaction temperature, flow rate of carrier gas, residual pressure of system and longer growing time of grains.

  11. 含铋复合氧化物催化剂的研究进展%Research progress in bismuth-containing complex oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    王鹏; 陈晓晖; 魏可镁

    2011-01-01

    Bismuth-containing complex oxides is an research hotspot of selective oxidation and photocatalysis at present. Bismuth oxide can combine with titanium oxide, vanadium oxide, iron oxide, copper oxide,molybdenum oxide ,silicon oxide and tungsten oxide to form bismuth-containing complex oxide catalysts.The research advance on bismuth-containing complex oxide catalysts was reviewed. The research aspects of bismuth-containing complex oxide catalysts in the future were outlined.%含铋复合金属氧化物是当前选择性氧化和光催化方面的研究热点.主要介绍了近年来氧化铋与氧化钛、氧化钒、氧化铁、氧化铜、氧化钼、氧化硅和氧化钨等的复合氧化物催化剂的研究进展,并指出了含铋复合氧化物今后的研究方向.

  12. Crystal structure and electrical properties of gadolinia doped bismuth oxide nanoceramic powders

    Energy Technology Data Exchange (ETDEWEB)

    Ar Latin-Small-Letter-Dotless-I , M. [Physics Department, Faculty of Sciences, Erciyes University, Kayseri (Turkey); Tasc Latin-Small-Letter-Dotless-I oglu, I.; Alt Latin-Small-Letter-Dotless-I ndal, S. [Physics Department, Faculty of Arts and Sciences, Gazi University, Ankara (Turkey); Uslu, I.; Aytimur, A. [Department of Chemistry Education, Gazi University, Ankara (Turkey); Karaaslan, T. [Physics Department, Faculty of Sciences, Erciyes University, Kayseri (Turkey); Kocyigit, S., E-mail: sergas_29@hotmail.com [Department of Chemistry Education, Gazi University, Ankara (Turkey)

    2012-10-15

    A novel method of fabrication of gadolinia doped bismuth oxide nanoceramic via the sol-gel technique is reported. Their thermal, structural and morphological properties are described by measurements of Differential Thermal Analysis/Thermal Gravimetry, X-ray Powder Diffraction and Scanning Electron Microscopy. The samples have stable high ion conductive face centered cubic {delta}-phase nanocrystalline structure. The electrical measurements of the nanoceramic powders were carried out in the temperature range of (689-1091 K) using 4-point probe technique. There is a transition between two distinct regions at 720 Degree-Sign C, which can be attributed to the order-disorder transition. This observation is supported by the differential thermal analysis measurements. The experimental results show that the value of conductivity increases with increasing temperature over linear parts characterized by two different activation energies. The conductivity data over whole measured temperature range were fitted to the Arrhenius equations of conductivity and it shows two linear regions with different slopes which correspond to low-temperature range (689-975 K) and high-temperature range (999-1091 K). The values of E{sub a1} and E{sub a2} were obtained from the slopes of ln {sigma}{sub DC} versus q/kT plot as 1.25 eV and 2.81 eV for low-temperature range and high-temperature range, respectively. -- Highlights: Black-Right-Pointing-Pointer Gadolinia doped bismuth oxide nanoceramic were produced via the sol-gel technique. Black-Right-Pointing-Pointer Structural characterizations were carried out by XRD and SEM techniques. Black-Right-Pointing-Pointer Thermal and electrical properties were evaluated by DTA/TG and 4-point probe. Black-Right-Pointing-Pointer Crystallite size was calculated using Scherrer equation. Black-Right-Pointing-Pointer The dislocation density, the microstrain and unit cell volume were calculated.

  13. Visible light photooxidative performance of a high-nuclearity molecular bismuth vanadium oxide cluster

    Directory of Open Access Journals (Sweden)

    Johannes Tucher

    2014-05-01

    Full Text Available The visible light photooxidative performance of a new high-nuclearity molecular bismuth vanadium oxide cluster, H3[{Bi(dmso3}4V13O40], is reported. Photocatalytic activity studies show faster reaction kinetics under anaerobic conditions, suggesting an oxygen-dependent quenching of the photoexcited cluster species. Further mechanistic analysis shows that the reaction proceeds via the intermediate formation of hydroxyl radicals which act as oxidant. Trapping experiments using ethanol as a hydroxyl radical scavenger show significantly decreased photocatalytic substrate oxidation in the presence of EtOH. Photocatalytic performance analyses using monochromatic visible light irradiation show that the quantum efficiency Φ for indigo photooxidation is strongly dependent on the irradiation wavelength, with higher quantum efficiencies being observed at shorter wavelengths (Φ395nm ca. 15%. Recycling tests show that the compound can be employed as homogeneous photooxidation catalyst multiple times without loss of catalytic activity. High turnover numbers (TON ca. 1200 and turnover frequencies up to TOF ca. 3.44 min−1 are observed, illustrating the practical applicability of the cluster species.

  14. 氧化铋光催化剂改性研究%Study on modification of bismuth oxide photocatalyst

    Institute of Scientific and Technical Information of China (English)

    高红; 刘可新; 王学同

    2014-01-01

    Focusing on modification of bismuth oxide PrePared from lab. The test of methylene blue wastewater degradation simulated exPeriment shows that the bismuth oxide catalytic activity can be in-creased by reducing catalyst Particle size,surface chelating,metal ion doPing and catalyst immobilizing, etc.%通过对实验室制备的氧化铋光催化剂减小催化剂粒径、表面螯合、金属离子掺杂、催化剂固载等方法进行改性研究,表明均能提高氧化铋的催化活性。

  15. Real-time observation of bismuth silicon oxide crystal growth in silicon oxide-bismuth oxide system%氧化硅-氧化铋系统中硅酸铋晶体生长实时观测

    Institute of Scientific and Technical Information of China (English)

    王秀峰; 徐驰; 江红涛; 韩元亨

    2015-01-01

    高温熔体的实时观测与分析对于晶体生长及其影响因素分析具有十分重要的意义 .利用高温热台及偏光显微镜 ,对铋硅系统熔融及冷却过程进行实时观测 .观察到高温下与石英砂接触的氧化铋粉体先熔融 ,说明异质颗粒接触点处是反应开始的地方 .之后熔体与石英(二氧化硅)晶体反应 ,冷却过程中在石英晶体表面周围及坩埚壁附近生长出硅酸铋晶体 ,这说明晶体易在颗粒接触处析出 .实验中氧化铋与二氧化硅摩尔比为4:3,此时石英晶体并没有全部熔融 .对比分析系统熔体在降温时晶体析出长大的过程 ,计算出硅酸铋晶体的生长平均速率为15 .38 μm/min .通过线能谱扫描分析 ,认为熔体温度和硅元素的富集程度对晶体生长速度有重要影响.%Real time observation and analysis of high temperature melt is great of significance for crystal growth and the analysis of its influencing factors .The paper using high tempera-ture thermal units and polarizing optical microscope observed the melt and cooling process of bismuth silicon systems in real time .In high temperature the bismuth oxide powder which in contact with quartz sand is first melting ,it shows that the heterogeneity particles at the con-tact point is the place to reaction start .Then bismuth oxide melt reacted with the quartz (sil-icon dioxide) crystal .In cooling process the surface of quartz crystal and the crucible wall grown bismuth silicate crystals .This means at the contact point of particle is easy to crystal grow .The molar ratio of bismuth oxide and silicon dioxide was 4:3 in the experiment ,not all of the quartz crystal melted at this moment .Comparative analysis of the system melt crystallization process of growing up in cooling process ,the average grow th rate of crystals of bismuth silicate is calculated 15 .38 μm/min .According to the energy spectrum analysis of scanning ,melt temperature and the enrichment of

  16. Crystal structures of a pentavalent bismuthate, SrBi2O6 and a lead bismuth oxide (Pb1/3Bi2/3O1.4

    Directory of Open Access Journals (Sweden)

    Nobuhiro Kumada

    2014-06-01

    Full Text Available The crystal structures of a pentavalent bismuthate, SrBi2O6 with the PbSb2O6-type structure and a lead bismuth oxide, (Pb1/3Bi2/3O1.4 with the fluorite-type structure were refined by using neutron diffraction data. The final R-factors were Rwp = 4.49, Rp = 3.46, RI = 4.50 and RF = 1.70% for SrBi2O6 and Rwp = 5.04, Rp = 3.93, RI = 5.47 and RF = 4.26% for (Pb1/3Bi2/3O1.4. SrBi2O6 prepared from NaBiO3·1.4H2O is the first example of the bismuthate with the PbSb2O6-type structure. The fluorite-type lead bismuth oxide, (Pb1/3Bi2/3O1.4 was obtained by heating the PbSb2O6-type lead bismuthate, PbBi2O5.9·H2O which was prepared also from NaBiO3·1.4H2O.

  17. Sol-Gel Synthesis and Characterization of Cubic Bismuth Zinc Niobium Oxide Nanopowders

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei

    2014-01-01

    Full Text Available Bismuth zinc niobium oxide (BZN was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.

  18. Easy synthesis of bismuth iron oxide nanoparticles as photocatalyst for solar hydrogen generation from water

    Science.gov (United States)

    Deng, Jinyi

    In this study, high purity bismuth iron oxide (BiFeO3/BFO) nanoparticles of size 50-80 nm have been successfully synthesized by a simple sol-gel method using urea and polyvinyl alcohol at low temperature. X-ray diffraction (XRD) measurement is used to optimize the synthetic process to get highly crystalline and pure phase material. Diffuse reflectance ultraviolet-visible (DRUV-Vis) spectrum indicates that the absorption cut-off wavelength of the nanoparticles is about 620 nm, corresponding to an energy band gap of 2.1 eV. Compared to BaTiO3, BFO has a better degradation of methyl orange under light radiation. Also, photocatalytic tests prove this material to be efficient towards water splitting under simulated solar light to generate hydrogen. The simple synthetic methodology adopted in this paper will be useful in developing low-cost semiconductor materials as effective photocatalysts for hydrogen generation. Photocatalytic tests followed by gas chromatography (GC) analyses show that BiFeO3 generates three times more hydrogen than commercial titania P25 catalyst under the same experimental conditions.

  19. Progress in bismuth vanadate photoanodes for use in solar water oxidation.

    Science.gov (United States)

    Park, Yiseul; McDonald, Kenneth J; Choi, Kyoung-Shin

    2013-03-21

    Harvesting energy directly from sunlight as nature accomplishes through photosynthesis is a very attractive and desirable way to solve the energy challenge. Many efforts have been made to find appropriate materials and systems that can utilize solar energy to produce chemical fuels. One of the most viable options is the construction of a photoelectrochemical cell that can reduce water to H(2) or CO(2) to carbon-based molecules. Bismuth vanadate (BiVO(4)) has recently emerged as a promising material for use as a photoanode that oxidizes water to O(2) in these cells. Significant advancement in the understanding and construction of efficient BiVO(4)-based photoanode systems has been made within a short period of time owing to various newly developed ideas and approaches. In this review, the crystal and electronic structures that are closely related to the photoelectrochemical properties of BiVO(4) are described first, and the photoelectrochemical properties and limitations of BiVO(4) are examined. Subsequently, the latest efforts toward addressing these limitations in order to improve the performances of BiVO(4)-based photoanodes are discussed. These efforts include morphology control, formation of composite structures, composition tuning, and coupling oxygen evolution catalysts. The discussions and insights provided in this review reflect the most recent approaches and directions for general photoelectrode developments and they will be directly applicable for the understanding and improvement of other photoelectrode systems.

  20. Multifunctional rare earth or bismuth oxide materials for catalytic or electrical applications

    Directory of Open Access Journals (Sweden)

    Gavarri J.R.

    2013-09-01

    Full Text Available We present a review on catalytic or electrical properties of materials based on rare earth (RE oxides (CeO2, La2O3, Lu2O3 or bismuth based composite systems CeO2-Bi2O3, susceptible to be integrated into catalytic microsystems or gas sensors. The polycrystalline solids can be used as catalysts allowing conversion of CO or CH4 traces in air-gas flows. Fourier Transform infrared spectroscopy is used to determine the conversion rate of CO or CH4 into CO2 through the variations versus time and temperature of vibrational band intensities. The time dependent reactivities are interpreted in terms of an adapted Avrami model. In these catalytic analyses the nature of surfaces of polycrystalline solids seems to play a prominent role in catalytic efficiency. Electrical impedance spectroscopy allows analyzing the variation of conductivity of the system CeO2-Bi2O3. In this system, the specific high ionic conduction of a Bi2O3 tetragonal phase might be linked to the high catalytic activity.

  1. ELECTRONIC STRUCTURE OF BISMUTH MOLYBDENUM OXIDE SINGLE CRYSTAL Bi0.19MoO3

    Institute of Scientific and Technical Information of China (English)

    XIONG RUI; SHI JING; TANG WU-FENG; TIAN DE-CHENG

    2001-01-01

    Single crystal Bi0. 19MoO3 has been grown by fused salt electrolytic technique. X-ray powder diffraction shows that the unit cell parameters are: a=1.9985nm, b=0.4085nm and c=1.4437nm. The temperature dependence of resistivity demonstrates a semiconductor characteristic. X-ray photoemission spectroscopy studies provide that the valence band of Bi0.19MoO3 are made up of oxygen pπ and the r*, r and σ bonding bands formed by orbital combination. The shoulder at 0.4 eV near the top of valence band may be formed from the non-bonding dxy orbitals of some Mo atoms. The O1s core-electron spectrum reveals the presence of two inequivalent bonds of oxygen ions in Bi0.19MoO3. Bi4f core-level spectrum shows two bonding characters of Bi atoms in bismuth molybdenum oxide single crystals. Mo3d core-level spectrum could be decomposed into two kinds of valence states of molybdenum(Mo+5 and Mo+6).

  2. Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines.

    Science.gov (United States)

    Abudayyak, Mahmoud; Öztaş, Ezgi; Arici, Merve; Özhan, Gül

    2017-02-01

    Nanoparticles have been drawn attention in various fields ranging from medicine to industry because of their physicochemical properties and functions, which lead to extensive human exposure to nanoparticles. Bismuth (Bi)-based compounds have been commonly used in the industrial, cosmetic and medical applications. Although the toxicity of Bi-based compounds was studied for years, there is a serious lack of information concerning their toxicity and effects in the nanoscale on human health and environment. Therefore, we aimed to investigate the toxic effects of Bi (III) oxide (Bi2O3) nanoparticles in liver (HepG2 hepatocarcinoma cell), kidney (NRK-52E kidney epithelial cell), intestine (Caco-2 colorectal adenocarcinoma cell), and lung (A549 lung carcinoma cell) cell cultures. Bi2O3 nanoparticles (∼149.1 nm) were easily taken by all cells and showed cyto- and genotoxic effects. It was observed that the main cell death pathways were apoptosis in HepG2 and NRK-52E cells and necrosis in A549 and Caco-2 cells exposed to Bi2O3 nanoparticles. Also, the glutathione (GSH), malondialdehyde (MDA), and 8-hydroxy deoxyguanine (8-OHdG) levels were significantly changed in HepG2, NRK-52E, and Caco-2 cells, except A549 cell. The present study is the first to evaluate the toxicity of Bi2O3 nanoparticles in mammalian cells. Bi2O3 nanoparticles should be thoroughly assessed for their potential hazardous effects to human health and the results should be supported with in vivo studies to fully understand the mechanism of their toxicity.

  3. Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity

    OpenAIRE

    2016-01-01

    A novel Ag-reduced graphene oxide (rGO)-bismuth vanadate (BiVO4) (AgGB) ternary composite was successfully synthesized via a one-step method. The prepared composite was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET) surface area measurement, Raman scattering spectroscopy, and ultraviolet-visible diffuse-reflection spectroscopy (UV-vis DRS). The results showed that...

  4. Preparation of Bismuth Subcarbonate by Ball-milling Coversion Method Using Bismuth Oxide%球磨转化法由氧化铋制取次碳酸铋研究

    Institute of Scientific and Technical Information of China (English)

    蒋叶; 唐朝波; 唐谟堂; 杨声海; 何静; 陈永明; 杨建广

    2013-01-01

      针对次碳酸铋传统制备工艺存在试剂消耗大、产生大量氨氮废水等问题,提出了一种用氧化铋和碳酸氢铵机械球磨直接制备次碳酸铋新工艺,考察了碳酸氢铵浓度、液固体积质量比、球料质量比、反应时间对氧化铋转化率的影响。结果表明,在碳酸氢铵浓度为2.5 mol/L、液固体积质量比为7∶1、球料质量比为8∶1、反应时间为2 h、室温条件下,氧化铋转化率达93.23%。该工艺流程简短,成本低,转化母液可循环利用,解决了传统工艺试剂消耗大及产生大量氨氮废水等问题。%A new process for preparation of bismuth subcarbonate by ball-milling coversion method using bismuth oxide has been proposed .T he effects of ammonium bicarbonate concentrate ,liquid/solid ratio ,mass ratio of ball to bismuth oxide and milling time on conversion rate of bismuth oxide were ex-amined .The results showed that the direct conversion rate of bismuth oxide colud reach 93 .23% under the optimum conditions which the ammonium bicarbonate concentration was 2 .5 mol/L ,liquid/solid ratio was 7∶1 ,mass ratio of ball to bismuth oxide was 8∶1 ,and milling 2 hours at room temperature . The process has the advantage of short procedure ,cheap reactant ,low cost ,and mother liquid can be u-tilized circularly .

  5. Bismuth Molybdate Catalysts Prepared by Mild Hydrothermal Synthesis: Influence of pH on the Selective Oxidation of Propylene

    Directory of Open Access Journals (Sweden)

    Kirsten Schuh

    2015-09-01

    Full Text Available A series of bismuth molybdate catalysts with relatively high surface area was prepared via mild hydrothermal synthesis. Variation of the pH value and Bi/Mo ratio during the synthesis allowed tuning of the crystalline Bi-Mo oxide phases, as determined by X-ray diffraction (XRD and Raman spectroscopy. The pH value during synthesis had a strong influence on the catalytic performance. Synthesis using a Bi/Mo ratio of 1/1 at pH ≥ 6 resulted in γ-Bi2MoO6, which exhibited a better catalytic performance than phase mixtures obtained at lower pH values. However, a significantly lower catalytic activity was observed at pH = 9 due to the low specific surface area. γ-Bi2MoO6 synthesized with Bi/Mo = 1/1 at pH = 6 and 7 exhibited relatively high surface areas and the best catalytic performance. All samples prepared with Bi/Mo = 1/1, except samples synthesized at pH = 1 and 9, showed better catalytic performance than samples synthesized with Bi/Mo = 2/3 at pH = 4 and 9 and γ-Bi2MoO6 synthesized by co-precipitation at pH = 7. At temperatures above 440 °C, the catalytic activity of the hydrothermally synthesized bismuth molybdates started to decrease due to sintering and loss of surface area. These results support that a combination of the required bismuth molybdate phase and a high specific surface area is crucial for a good performance in the selective oxidation of propylene.

  6. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    Directory of Open Access Journals (Sweden)

    Dahuai Zheng

    2015-01-01

    Full Text Available Bismuth-doped lithium niobate (LN:Bi crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm2. An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals.

  7. Reduction smelting on bismuth oxide residue in FeO-SiO2-CaO ternary slag system

    Institute of Scientific and Technical Information of China (English)

    张杜超; 张新望; 杨天足; 剑锋; 刘伟锋; 陈霖; 饶帅; 肖庆凯; 郝占东

    2016-01-01

    Reduction smelting of the bismuth oxide residue from pressure leaching of bismuth sulfide was investigated in the FeO−SiO2−CaO ternary slag system. The results show that all the recovery ratios of Bi, Ag, Cu and Pb increase with the increase of reductive coal proportion, reaction temperature and time, while too much reductive coal would help Fe enter metal phase;CaO/SiO2 and FeO/SiO2 of the chosen slag system should be 0.5−0.75 and 1.25−1.75, respectively, for the reason that the slag system has the optimum mobility and is beneficial for the recovery of metals. The corresponding optimum conditions are determined as follows:the added coal proportion is 7%of the leaching residue, CaO/SiO2 mass ratio in the chosen slag system is 0.5 and FeO/SiO2 is 1.5, the reaction temperature is 1300 °C and the reaction time is 40 min. Under the above conditions, the recovery ratios of Bi, Ag, Cu and Pb are 99.6%, 99.8%, 97.0%and 97.3%, respectively.

  8. Evaluation of Radiation Dose Reduction during CT Scans Using Oxide Bismuth and Nano-Barium Sulfate Shields

    CERN Document Server

    Seoung, Youl-Hun

    2015-01-01

    The purpose of the present study was to evaluate radiation dose reduction and image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS were composed of nano-barium sulfate (BaSO4), filling the gaps left by the large oxide bismuth (Bi2O3) particle sizes. The radiation dose was measured five times at directionss of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom to calculate an average value using a CT ionization chamber. The image quality measured CT transverse images of the PMMA head phantom depending on X-ray tube voltages and the type of shielding. Two regions of interest in CT transverse images were chosen from the right and left areas under the surface of the PMMA head phantom and from ion chamber holes located at directions of 12 o'clock from the center of the PMMA head phantom. The results of this study showed that the new DRFS shields could reduce dosages to 15.61%, 23.05%, and 22.71% more in ...

  9. Progress in bismuth molybdenum composite oxide%铋钼复合氧化物的研究进展

    Institute of Scientific and Technical Information of China (English)

    程琳; 李榕; 甄强

    2013-01-01

    In this work,a variety of the preparation methods of bismuth molybdenum composite oxides have been summarized,such as solid state reaction,precipitation,sol-gel,hydrothermal method,spray-drying and so on.The advantages and disadvantages of these methods were also commented.Then,the application of bis-muth molybdenum composite oxides were introduced,including oxidation catalysts,photocatalysts and electro-lyte materials,as well as the effect of structure,morphology,composition on the properties of the material. The development direction of the preparation techniques,components,structure and morphology were pointed out,in view of its application field.%综述了多种铋钼复合氧化物的制备方法:固相反应法、沉淀法、溶胶-凝胶法、水热法以及喷雾干燥法等,分析了这些方法的优缺点。同时综述了铋钼复合氧化物在氧化反应催化、光催化、电解质材料等领域的应用以及材料的结构、形貌对于其性能的影响。针对铋钼复合氧化物不同的应用领域提出了制备技术、材料组分和结构与形貌的发展方向。

  10. Preparation of bismuth subcarbonate by liquid ball-milling transformation method from bismuth oxide%液相球磨法由氧化铋制备次碳酸铋的动力学

    Institute of Scientific and Technical Information of China (English)

    叶龙刚; 蒋叶; 唐朝波; 陈永明; 唐谟堂

    2014-01-01

    In order to solve the problems of environment pollution and high cost in traditional process of bismuth subcarbonate preparation, a new process using ball-milling transformation method from NH4HCO3 and Bi2O3 was proposed. Additionally, the kinetics of bismuth subcarbonate preparation was studied. Effects of reaction temperature, particle size of bismuth oxide, solid-to-liquid ratio and concentrations of ammonium bicarbonate on the conversion rate of bismuth oxide were studied. The results indicate that the conversion rate of bismuth oxide significantly increased under the conditions of higher temperature, smaller particle size, higher concentration of ammonium bicarbonate and smaller solid-to-liquid ratio. The XRD and ICP-AES analyses show that the purity of product is high. The reaction kinetics with activation energy of 9.783 kJ/mol was analyzed by shrinking core model, and the whole transformation process is controlled by solid product layer diffusion. A semi-empirical kinetics equation was obtained to describe the conversion process.%为解决传统次碳酸铋生产过程中成本高和环境污染问题,提出采用液相球磨法由氧化铋制备次碳酸铋的新工艺,研究用碳酸氢氨和氧化铋制备次碳酸铋反应过程的动力学,考察反应温度、氧化铋粒度、液固比以及碳酸氢氨浓度对氧化铋转化率的影响。结果表明,在9~30°C的范围内,升高反应温度、减小氧化铋粉末的粒度、扩大液固比以及提高碳酸氢氨浓度均有利于氧化铋转化率的提高。对反应产物的表征分析表明,产品的纯度较高、杂质少;SEM结果显示产品次碳酸铋主要呈针棒状形态。反应过程受产物层的扩散控制,可用未反应收缩核模型描述,反应的表观活化能为9.783 kJ/mol,同时获得了描述反应过程的半经验动力学方程。

  11. One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein.

    Science.gov (United States)

    Schuh, K; Kleist, W; Høj, M; Trouillet, V; Jensen, A D; Grunwaldt, J-D

    2014-12-18

    Flame spray pyrolysis (FSP) of Bi(III)- and Mo(VI)-2-ethylhexanoate dissolved in xylene resulted in various nanocrystalline bismuth molybdate phases depending on the Bi/Mo ratio. Besides α-Bi2Mo3O12 and γ-Bi2MoO6, FSP gave direct access to the metastable β-Bi2Mo2O9 phase with high surface area (19 m(2) g(-1)). This phase is normally only obtained at high calcination temperatures (>560 °C) resulting in lower surface areas. The β-phase was stable up to 400 °C and showed superior catalytic performance compared to α- and γ-phases in selective oxidation of propylene to acrolein at temperatures relevant for industrial applications (360 °C).

  12. Rational harmonic mode-locked laser using a bismuth-oxide-based highly nonlinear erbium-doped fiber

    Science.gov (United States)

    Fukuchi, Yutaka; Hirata, Kouji; Muraguchi, Masahiro; Maeda, Joji

    2017-01-01

    We report a rational harmonic mode-locked fiber laser employing a bismuth-oxide-based highly nonlinear erbium-doped fiber (Bi-HNL-EDF) with a length of 1.5 m. The Bi-HNL-EDF is used as a broadband gain medium and as a noise suppressor based on self-phase modulation. The amplitude of the rational harmonic mode-locked pulses can be regulated by properly tuning the modulation parameters of the intracavity modulator. The cavity length as short as 6 m enables generation of stable and clean short pulses with a repetition frequency up to 40 GHz over the wavelength range covering both the conventional and the longer bands.

  13. Cathodic electrophoretic deposition of bismuth oxide (Bi{sub 2}O{sub 3}) coatings and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaogang [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Li, Xueming, E-mail: xueminglicqu@126.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Lai, Chuan [School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000 (China); Li, Wulin [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Optoelectronic Technology and Systems (Education Ministry of China), Chongqing University, 400044 (China); Zhang, Daixiong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Xiong, Zhongshu [School of Foreign Languages and Literature, Chongqing Normal University, Chongqing 401331 (China)

    2015-03-15

    Graphical abstract: Bismuth oxide (Bi{sub 2}O{sub 3}) coating has been prepared by cathodic electrophoretic deposition method and exhibits high photocatalytic activities for the degradation of Rhodamine B. - Highlights: • The nano-Bi{sub 2}O{sub 3} coatings have been firstly successfully fabricated by EPD method. • The EPD deposition mechanism of Bi{sub 2}O{sub 3} coatings is firstly given. • Deposition dynamics are investigated by regulating different deposition times and applied field strengths in detail. • Obtained coating show great photocatalytic activities for the degradation of Rhodamine B. - Abstract: In this study, cathodic electrophoretic deposition (EPD), a low cost, one-step and flexible method, has been successfully developed to prepare bismuth oxide (Bi{sub 2}O{sub 3}) coatings. Stable suspensions consisted of isopropyl alcohol and trace additive-polyethyleneimine. Deposition was achieved on the cathode at applied field strengths of 5–25 V mm{sup −1} using a total solids loading of 0.5–2 g L{sup −1} at ambient temperature and pressure. The deposition mechanism of Bi{sub 2}O{sub 3} coatings was firstly given, and deposition kinetics were investigated in detail. The deposits were characterized qualitatively by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) observation, atomic force microscope (AFM), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis, respectively. Moreover, the photocatalytic activities of obtained coatings were evaluated through degradation of Rhodamine B under ultraviolet and visible light irradiation.

  14. Graphene-bismuth based oxide composite photocatalytic materials%石墨烯-铋系氧化物复合光催化材料

    Institute of Scientific and Technical Information of China (English)

    张小婧; 赵梓俨; 熊倬; 陈梦露; 王芳; 周莹

    2014-01-01

    当前环境和能源问题越来越突出,以 TiO2为代表的半导体光催化剂能够有效利用太阳能,为解决这方面问题提供了可能,其中铋系氧化物具有较高的可见光催化活性,近年来受到广泛关注。石墨烯是2004年发现的一种新型二维碳纳米材料,利用石墨烯优良的导电性能和较高的比表面积使之与铋系氧化物复合,从而提高铋系氧化物的光催化性能,是当前光催化研究领域的热点之一。相较于离子掺杂、半导体复合,它能够避免在铋系氧化物内部形成新的缺陷(光生电子空穴复合中心)。阐述了石墨烯在增强铋系氧化物光催化性能方面的最新研究进展和成果,综述了石墨烯复合对铋系氧化物的影响,即石墨烯的复合会使铋系氧化物吸光性增强,比表面积增加,光生电流增强,且光催化效率与石墨烯负载量之间存在极值关系;分析了石墨烯与铋系氧化物之间的化学键对其光催化性能的影响。最后,从石墨烯-铋系氧化物的制备、化学键合作用等方面展望了其发展趋势。%Currently,environmental and energy issues become increasingly prominent.TiO2 ,the representative semiconductor photocatalyst,can use solar energy efficiently and provide possibility to solve such problems in this area.Among the reported photocatalysts,bismuth-based oxide with high visible light driven photocatalytic activity attracted widespread attention in recent years.On the other hand,in 2004,graphene was found as a new type of two-dimensional carbon nanomaterials and has been attracted more and more attention owing to its unique physical and chemical properties.Utilizing its excellent conductivity and high specific surface area to in-crease the photocatalytic activities of bismuth-based oxide has been extensively studied.Compared to the ion do-ping and coupling with other semiconductors,it was possible to avoid the formation of new

  15. Synergy Effects of the Mixture of Bismuth Molybdate Catalysts with SnO2/ZrO2/MgO in Selective Propene Oxidation and the Connection between Conductivity and Catalytic Activity

    DEFF Research Database (Denmark)

    Le, Minh Thang; Do, Van Hung; Truong, Duc Duc

    2016-01-01

    Bismuth molybdate catalysts have been used for partial oxidation and ammoxidation of light hydrocarbons since the 1950s. In particular, there is the synergy effect (the enhancement of the catalytic activity in the catalysts mixed from different components) in different phases of bismuth molybdate...... for the question: does the electrical conductivity influence the catalytic activity (which has been previously proposed by some authors). In this work, highly conductive materials (SnO2, ZrO2) and nonconductive materials (MgO) are added to beta bismuth molybdates (beta-Bi2Mo2O9) using mechanical mixing...... of these mixtures showed that the addition of 10% mol SnO2 to beta bismuth molybdate resulted in the highest activity while the addition of nonconductive MgO could not increase the catalytic activity. This shows that there may be a connection between conductivity and catalytic activity in the mixtures of bismuth...

  16. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress

    Science.gov (United States)

    Huang, Zhen-Feng; Pan, Lun; Zou, Ji-Jun; Zhang, Xiangwen; Wang, Li

    2014-11-01

    Water oxidation is the key step for both photocatalytic water splitting and CO2 reduction, but its efficiency is very low compared with the photocatalytic reduction of water. Bismuth vanadate (BiVO4) is the most promising photocatalyst for water oxidation and has become a hot topic for current research. However, the efficiency achieved with this material to date is far away from the theoretical solar-to-hydrogen conversion efficiency, mainly due to the poor photo-induced electron transportation and the slow kinetics of oxygen evolution. Fortunately, great breakthroughs have been made in the past five years in both improving the efficiency and understanding the related mechanism. This review is aimed at summarizing the recent experimental and computational breakthroughs in single crystals modified by element doping, facet engineering, and morphology control, as well as macro/mesoporous structure construction, and composites fabricated by homo/hetero-junction construction and co-catalyst loading. We aim to provide guidelines for the rational design and fabrication of highly efficient BiVO4-based materials for water oxidation.

  17. Visible-light-induced water oxidation by a hybrid photocatalyst consisting of bismuth vanadate and copper(II) meso-tetra(4-carboxyphenyl)porphyrin.

    Science.gov (United States)

    Nakashima, Shu; Negishi, Ryo; Tada, Hiroaki

    2016-03-04

    Copper(II) meso-tetra(4-carboxyphenyl)porphyrin surface-modified monoclinic scheelite bismuth vanadate (CuTCPP/BiVO4) has been synthesized via a two-step route involving chemisorption of TCPP on BiVO4 and successive Cu(II) ion incorporation into the TCPP, and the surface modification drastically enhances the water oxidation to oxygen (O2) under visible-light irradiation (λ > 430 nm).

  18. Evaluating X-ray absorption of nano-bismuth oxide ointment for decreasing risks associated with X-ray exposure among operating room personnel and radiology experts

    Directory of Open Access Journals (Sweden)

    M. Rashidi

    2015-12-01

      Conclusion: It seems that due to higher atomic number and lower toxicity, Bi2O3 nanoparticles have better efficiency in X-ray absorbtion, comparing to the lead. Cream and ointment of bismuth oxide nanoparticles can be used as X-ray absorbant for different professions such as physicians, dentists, radiology experts, and operating room staff and consequently increase health and safety of these employees.

  19. Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive

    Science.gov (United States)

    Yao, Ya; Zhang, Xiaowen; Li, Mi; Yang, Rong; Jiang, Tianjiao; Lv, Junwen

    2016-10-01

    Concrete has a proven ability to attenuate gamma rays and neutrons without compromising structural property; therefore, it is widely used as the primary shielding material in many nuclear facilities. Recently, there is a tendency toward using various additives to enhance the shielding properties of these concrete mixtures. However, most of these additives being used either pose hygiene hazards or require special handling processes. It would be ideal if environmentally friendly additives were available for use. The bismuth oxide (Bi2O3) additive shows promise in various shielding applications due to its proven radiation attenuation ability and environmentally friendly nature. To the best of our knowledge, however, Bi2O3 has never been used in concrete mixtures. Therefore, for this research, we fabricated the Bi2O3-based concrete mixtures by adding Bi2O3 powder in the ordinary concrete mixture. Concrete mixtures with lead oxide (PbO) additives were used for comparison. Radiation shielding parameters like the linear attenuation coefficients (LAC) of all these concrete mixtures showing the effects of the Bi2O3 additions are presented. The mechanical performances of concrete mixtures incorporated with Bi2O3 additive were also investigated. It suggested that the concrete mixture containing 25% Bi2O3 powder (B5 in this study) provided the best shielding capacity and mechanical performance among other mixes. It has a significant potential for application as a structural concrete where radiological protection capability is required.

  20. Effect of welding thermal cycles on the oxidation resistance of 9 wt.% Cr heat resistant steels in 550 °C lead-bismuth eutectic

    Science.gov (United States)

    Wang, Jian; Rong, Lijian; Li, Dianzhong; Lu, Shanping

    2016-12-01

    The oxidation resistance for the heat affected zone (HAZ) and base metal of 9 wt.% Cr heat resistant steel in 550 °C lead-bismuth eutectic has been investigated. The oxide film presents a three-layer structure. The outer layer is Fe3O4 while the inner layer is mainly FeCr2O4. The oxide film thickness becomes thinner and thinner in turns of the coarse grained HAZ, fine grained HAZ, inter-critical HAZ and base metal. The oxygen diffusion is the rate determining step during the oxidation process. The Cr-enriched M23C6 plays a significant role on the oxidation rate at the initial stage of oxidation. Increasing the carbon content is a useful method to improve the oxidation resistance.

  1. New Bismuth Germanate Oxide Nanoparticle Material for Biolabel Applications in Medicine

    Directory of Open Access Journals (Sweden)

    M. J. Oviedo

    2016-01-01

    Full Text Available Bismuth germanate (Bi4Ge3O12, BGO has been the focus of several studies due to its scintillation properties. It has been employed as detector in scientific research and medicine, and herein we studied its possible biomedical applications. The photoluminescence properties of the uncoated and protein-coated nanoparticles were analyzed in different body fluids, at different pH. The nanoparticles yielded blueish-white luminescence with a maximum emission peak at 485 nm corresponding to the 3P1→1S0 electron transition of Bi3+. They showed luminescence properties at different pH values and in human fluids, such as urine and blood serum. Finally, the BGO nanoparticles were functionalized with the anti-HLA I W6/32 monoclonal antibody and the capacity of the antibody-loaded nanoparticles to recognize the cognate antigen (HLA I of the W6/32 mAb was assessed on the human promyelocytic leukemia cell line THP-1. The possibility of functionalizing BGO nanoparticles with W6/32 antibodies and their specificity to identify THP-1 cells make them promising candidates for biomedical applications as biolabels.

  2. Dechlorination of Zinc Sulfate Solution by Bismuth Oxide%氧化铋法从硫酸锌溶液中除氯的研究

    Institute of Scientific and Technical Information of China (English)

    封志敏; 宁顺明; 王文娟; 佘宗华; 万洪强; 吴江华

    2015-01-01

    Processing parameters for dechlorination of zinc sulfate solution by bismuth oxide were investigated, and the results show that dechlorination can be accomplished after 2 h reaction in a pulp with pH value of 2. 0 at 50 ℃ by bismuth oxide with weight 1. 5 times the theoretically calculated dosage. The chlorine concentration can be reduced to 0.28 g/L with the residue bismuth concentration at 0.96 mg/L. The conversion conditions of bismuth oxychloride were also studied and optimized as follows: initial alkali concentration at 1 mol/L, twofold calculated NaOH dosage, 4 h reaction at room temperature, with which, good conversion effect can be achieved as the conversion rate amounted to 93.97% with the residue bismuth concentration around 2.35 mg/L. A six⁃period commercial test was conducted, leading to results consistent with that from laboratory tests. This processing technique is easy to operate, with which chlorine concentration in zinc sulfate solution can be effectively reduced with less loss of bismuth.%以硫酸锌溶液为研究对象,研究了氧化铋脱除硫酸锌溶液中氯的工艺条件,结果表明,较佳的工艺条件为:pH值约2.0,50℃,氧化铋用量为理论计算值的1.5倍,反应时间2 h,此条件下除氯后溶液中Cl含量为0.28 g/L,Bi含量为0.96 mg/L。同时研究了氯氧铋转化的工艺参数条件,较佳的工艺条件为:NaOH用量为计算值2倍当量,初始碱浓度1 mol/L,反应时间4 h,常温,在此条件下可达到转化率93.97%、余铋浓度约2.35 mg/L的较好转化效果。进行了6周期工业实验,与模似实验结果重现性好。本工艺操作简单,能有效降低硫酸锌溶液中氯的浓度,且铋损失较小。

  3. Progress in Bismuth-Contained Mixed Conducting Oxide Membranes%铋基混合导体透氧陶瓷膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    邵宗平; 熊国兴; 等

    2001-01-01

    Mixed oxygen-ion and electronic conducting ceramic membranes have received increasing attention in the past decade. The progress in bismuth-contained mixed conducting oxide membranes was reviewed, considerable attention was paid to the progress made in our group during the past years. The problems associated with the bismuth-contained materials were discussed. The promising developing direction was also pointed out.%近十几年来, 混合导体透氧致密膜日益受到人们的重视. 本文主要对铋基混合导体膜的研究进展进行了较为全面的概述, 着重介绍了我组近年来在此领域的研究进展, 同时对其所可能存在的问题进行了分析并提出了展望.

  4. Microstructure and electrical properties of bismuth and bismuth oxide deposited by magnetron sputtering UBM; Microestructura y propiedades electricas de bismuto y oxido de bismuto depositados por magnetron sputtering UBM

    Energy Technology Data Exchange (ETDEWEB)

    Otalora B, D. M.; Dussan, A. [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Carrera 30 No. 45-03, 111321 Bogota (Colombia); Olaya F, J. J., E-mail: jjolayaf@unal.edu.co [Universidad Nacional de Colombia, Facultad de Ingenieria, Departamento de Ingenieria Mecanica y Mecatronica, Carrera 30 No. 45-03, 111321 Bogota (Colombia)

    2015-07-01

    In this work, bismuth (Bi) and bismuth oxide (Bi{sub 2}O{sub 3}) thin films were prepared, at room temperature, by Sputtering Unbalanced Magnetron (UBM - Unbalance Magnetron) technique under glass substrates. Microstructural and electrical properties of the samples were studied by X-ray diffraction (XRD) and System for Measuring Physical Properties - PPMS (Physical Property Measurement System). Dark resistivity of the material was measured for a temperature range between 100 and 400 K. From the XRD measurements it was observed a polycrystalline character of the Bi associated to the presence of phases above the main peak, 2θ = 26.42 grades and a growth governed by a rhombohedral structure. Crystal parameters were obtained for both compounds, Bi and Bi{sub 2}O{sub 3}. From the analysis of the spectra of the conductivity as a function of temperature, it was established that the transport mechanism that governs the region of high temperature (T>300 K) is thermally activated carriers. From conductivity measurements the activation energies were obtained of 0.0094 eV and 0.015 eV for Bi{sub 2}O{sub 3} and Bi, respectively. (Author)

  5. Q-switched fibre laser using 21 cm Bismuth-erbium doped fibre and graphene oxide as saturable absorber

    Science.gov (United States)

    Ahmad, Harith; Zulkifli, Ahmad Zarif; Kiat, Yap Yuen; Harun, Sulaiman Wadi

    2014-01-01

    A compact, Q-switched fibre laser is proposed and demonstrated using a compact Bismuth-based erbium doped fibre (Bi-EDF) together with a Graphene Oxide (GO) Saturable Absorber (SA). The 21 cm long Bi-EDF has an erbium dopant concentration of 6300 ppm with absorption rates of about 83 and 133 dB/m at 1480 and 1530 nm. The SA is fabricated from graphene flakes dissolved in water, forming a GO film that is sandwiched between two FC/PC connectors. The Q-switched Bi-EDF laser has an Amplified Spontaneous Emission (ASE) spectrum of 120 nm, stretching from 1490 to 1610 nm and a Q-switching threshold power of about 65 mW. At the maximum pump power of 118 mW, the pulses are generated with an average output power and pulse energy of 0.11 mW and 4.3 nJ, with a repetition rate and pulse width of 27.2 kHz and 7.7 μs. The output can be tuned over the amplified spontaneous emission spectrum with an average peak power of about -16.8 dBm, and observation under a radio frequency spectrum analyser shows a highly stable output at 21.8 kHz. The proposed Bi-EDF laser will have substantial uses in applications requiring short and stable pulses such as rangefinding and sensing.

  6. INFLUENCE OF ANNEALING TEMPERATURE ON CHARACTERISTICS OF BISMUTH DOPED ZINC OXIDE FILMS

    Directory of Open Access Journals (Sweden)

    Sirirat Tubsungnoen Rattanachan

    2013-01-01

    Full Text Available In this study, Bismuth (Bi doped ZnO thin films were deposited on quartz substrates by a sol-gel spin coating method and annealed at different annealing temperatures of 200, 300, 400, 500, 600 and 700°C, respectively. Structural and optical properties of nanocrystalline Bi-doped ZnO film on quartz were investigated by using X-Ray Diffraction (XRD, Scanning Electron Microscope (SEM and UV-VIS spectrophotometer. The high annealing temperature of 700°C as a critical temperature causes the crystallographic reorientation plane in ZnO:Bi nanostructure mostly due to the initial formation of the polycrystalline phase with the inter-grain segregation of Bi dopant atoms. Bi-incorporating ZnO films with an increase in annealing temperature resulted in a blue wavelength shift of the photon absorption edge. The optical band gap of the films was increased from 3.27 eV to 3.34 eV. By decreasing the annealing temperatures from 700 to 200°C, the grain size of Bi-doped ZnO decreased from 18 nm to 8 nm. The effect of the annealing temperature on the electrical conductivity had been considered. The low electrical conductivity of 0.9 (Ω.cm-1 was obtained for ZnO:0.2 film annealed at 600°C with good nano-crystallization. However, the Bi-doped ZnO films prepared by cost-effective spin coating technique provided to have a very high photon absorption coefficient (104-105 cm-1 and did not appreciably affect the optical transparency. ZnO films doped with 0.2% at. Bi can be used as a high resistive buffer layer for solar cell application.

  7. Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk.

    Science.gov (United States)

    Ping, Jianfeng; Wang, Yixian; Wu, Jian; Ying, Yibin

    2014-05-15

    A novel electrochemical sensing platform based on electrochemically reduced graphene oxide film modified screen-printed electrode was developed. This disposable electrode shows excellent conductivity and fast electron transfer kinetics. By in situ plating bismuth film, the developed electrode exhibited well-defined and separate stripping peaks for cadmium and lead. Several parameters, including electrolytes environment and electrodeposition conditions, were carefully optimized to achieve best stripping performance. The linear range for both metal ions at the disposable bismuth film electrode was from 1.0 μg L(-1) to 60.0 μg L(-1). The detection limit was 0.5 μg L(-1) for cadmium ion and 0.8 μg L(-1) for lead ion. Milk sample analysis demonstrates that the developed electrode could be effectively used to detect low levels (μg L(-1)) of cadmium ion and lead ion. Graphene based disposable bismuth film electrode is a sensitive, stable, and reliable sensing platform for heavy metals determination.

  8. Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Mao Du

    2016-03-01

    Full Text Available A novel Ag-reduced graphene oxide (rGO-bismuth vanadate (BiVO4 (AgGB ternary composite was successfully synthesized via a one-step method. The prepared composite was characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, Brunauer-Emmett-Teller (BET surface area measurement, Raman scattering spectroscopy, and ultraviolet-visible diffuse-reflection spectroscopy (UV-vis DRS. The results showed that bulk monoclinic needle-like BiVO4 and Ag nanoparticles with a diameter of approximately 40 nm formed microspheres (diameter, 5–8 μm with a uniform size distribution that could be loaded on rGO sheets to facilitate the transport of electrons photogenerated in BiVO4, thereby reducing the rate of recombination of photogenerated charge carriers in the coupled AgGB composite system. Ag nanoparticles were dispersed on the surface of the rGO sheets, which exhibited a localized surface plasmon resonance phenomenon and enhanced visible light absorption. The removal efficiency of rhodamine B dye by AgGB (80.2% was much higher than that of pure BiVO4 (51.6% and rGO-BiVO4 (58.3% under visible light irradiation. Recycle experiments showed that the AgGB composite still presented significant photocatalytic activity after five successive cycles. Finally, we propose a possible pathway and mechanism for the photocatalytic degradation of rhodamine B dye using the composite photocatalyst under visible light irradiation.

  9. Investigation of phase stability and oxide ion performance in new perovskite-type bismuth vanadate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Alas, Ahlam [Department of Chemistry, Faculty of Applied Sciences, Taiz University, Taiz, Republic of Yemen (Yemen); Beg, Saba [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Al-Areqi, Niyazi A.S., E-mail: niyazi.alareqi@gmail.com [Department of Chemistry, Faculty of Applied Sciences, Taiz University, Taiz, Republic of Yemen (Yemen)

    2012-09-14

    Samples of the BICDVOX system, formulated as Bi{sub 4}Cd{sub x}V{sub 2-x}O{sub 11-(3x/2)-{delta}} in the Cd substitution range 0 {<=} x {<=} 0.25 were synthesized using the standard solid state reaction.The correlation between phase stability and oxide ion performance were investigated by variable temperature XRPD, DSC and AC impedance spectroscopy. The substitution of V{sup 5+} by Cd{sup 2+} exhibited different phase transitions upon varying composition. For compositions with x {<=} 0.05, two successive transitions; {alpha}{r_reversible}{beta}{r_reversible}{gamma} are evident, while the {beta}{r_reversible}{gamma} transition exists in the composition range 0.05 < x < 0.175. However, some temperature dependent phenomena confirmed the exixtence of the {gamma} Prime {r_reversible}{gamma} transition, coupled with the tetragonal symmetry stabilization for x {>=} 0.175. The maximum oxide ion conductivity at lower temperatures was observed for x = 0.20. It has also been found that the slow V{sup 4+} {yields} V{sup 5+} re-oxidation results in increased defect trapping effects in the system at higher temperatures. -- Highlights: Black-Right-Pointing-Pointer {gamma}-Stabilized BICDVOX at lower dopant concentrations. Black-Right-Pointing-Pointer Good oxide-ion conductivity at lower temperatures. Black-Right-Pointing-Pointer High temperature-vanadium reduction with lower dopant concentrations.

  10. Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber.

    Science.gov (United States)

    Chow, K K; Kikuchi, K; Nagashima, T; Hasegawa, T; Ohara, S; Sugimoto, N

    2007-11-12

    We demonstrate widely tunable wavelength conversion based on four-wave mixing using a dispersion-shifted bismuth-oxide photonic crystal fiber (Bi-PCF). A 1-meter-long Bi-PCF is used as the nonlinear medium for wavelength conversion of a 10 Gb/s non-return-to-zero (NRZ) signal. A 3- dB working range of the converted signal over 35 nm is obtained with around 1-dB power penalty in the bit-error-rate measurements.

  11. Optical, structural, and mechanical properties of different valence-cation-doped bismuth vanadate oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, G.; Pandey, O.P.; Singh, K. [School of Physics and Materials Science, Thapar University, Patiala-147004, Punjab (India)

    2012-07-15

    The optical, structural, and mechanical properties of Bi{sub 4}V{sub 2-x}M{sub x}O{sub 11-{delta}} (0{<=}x{<=}0.4 in the steps of 0.1, M = Mn, Ga, As) oxides have been investigated. The parameters like band gap (E{sub g}), Urbach energy (E{sub u}), grain size, hardness (H), and fracture strength (K) have been calculated as a function of dopant concentration, i.e., 0{<=}x{<=}0.4. In addition to this, the infrared spectra have been obtained for all the dopant oxides with different dopant concentrations. The results are discussed in light of correlation of these optical and mechanical parameters to their electrical properties. The fractured surface is analyzed by X-ray dot mapping to check the segregation of elements and their effect on mechanical properties. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide.

    Science.gov (United States)

    Eisenberg, David; Ahn, Hyun S; Bard, Allen J

    2014-10-08

    n-BiVO4 is a promising semiconductor material for photoelectrochemical water oxidation. Although most thin-film syntheses yield discontinuous BiVO4 layers, back reduction of photo-oxidized products on the conductive substrate has never been considered as a possible energy loss mechanism in the material. We report that a 15 s electrodeposition of amorphous TiO2 (a-TiO2) on W:BiVO4/F:SnO2 blocks this undesired back reduction and dramatically improves the photoelectrochemical performance of the electrode. Water oxidation photocurrent increases by up to 5.5 times, and its onset potential shifts negatively by ∼500 mV. In addition to blocking solution-mediated recombination at the substrate, the a-TiO2 film-which is found to lack any photocatalytic activity in itself-is hypothesized to react with surface defects and deactivate them toward surface recombination. The proposed treatment is simple and effective, and it may easily be extended to a wide variety of thin-film photoelectrodes.

  13. Efficient Photoelectrochemical Water Oxidation by Metal-Doped Bismuth Vanadate Photoanode with Iron Oxyhydroxide Electrocatalyst

    Directory of Open Access Journals (Sweden)

    Eun Jin Joo

    2016-01-01

    Full Text Available Intensive attention has been currently focused on the discovery of semiconductor and proficient cocatalysts for eventual applications to the photoelectrochemical water splitting system. A W-Mo-doped BiVO4 semiconductor was prepared by the surfactant-assisted thermal decomposition method on a fluorine-doped tin oxide conductive film. The W-Mo-doped BiVO4 films showed a porous morphology with the grain sizes of about 270 nm. Because the hole diffusion length of BiVO4 is about 100 nm, the W-Mo-doped BiVO4 film in this study is an ideal candidate for the photoelectrochemical water oxidation. Iron oxyhydroxide (FeOOH electrocatalyst was chemically deposited on the W-Mo-doped BiVO4 to investigate the effect of the electrocatalyst on the semiconductor. The W-Mo-doped BiVO4/FeOOH composite electrode showed enhanced activity compared to the pristine W-Mo-doped BiVO4 electrode for water oxidation reaction. The chemical deposition is a promising method for the deposition of FeOOH on semiconductor.

  14. A New 3D Coordination Polymer of Bismuth with Nicotinic Acid N-Oxide

    Directory of Open Access Journals (Sweden)

    Farzin Marandi

    2013-01-01

    Full Text Available The new three-dimensional coordination polymer {[Bi(NNO2(NO3]·1.5H2O}n (1, NNO− = nicotinate N-oxide was synthesized and characterized by elemental analysis, IR and 1H-NMR spectroscopy, as well as single-crystal X-ray diffraction analysis. 1 crystallizes in the monoclinic space group C2/c. The crystal structure consists of a rectangular-shaped grid constructed with NNO linkers. Cavities of a diameter of 7.9–8.3 Å2 are filled with disordered water molecules. The thermal stability of the compound was evaluated by thermogravimetric analysis.

  15. Physical and electrical properties of copper oxide doped bismuth borate glasses

    Science.gov (United States)

    Dhiman, R. L.; Kundu, Virender Singh; Arora, Susheel; Maan, A. S.

    2013-06-01

    The role of CuO on the physical and electrical properties in x CuO.(25-x)Bi2O3.75B2O3;(5≤x≤20) glass system has been investigated. The glasses were prepared by normal melt quench technique. The density and molar volume of the glasses decreases with increase in CuO (mol %). The dc conductivity was measured in the temperature range 413-513 K. The conduction mechanism in these glasses was discussed in terms of small polaron hopping (SPH) theory proposed by Mott. The activation energy is found to decrease with increasing copper oxide content. The dc conductivity increases with increase in CuO content and ranging from 6.02×10-12 (Ωm)-1 to 1.096×10-10 (Ωm)-1 at 450K.

  16. Review on bismuth-containing heterometallic functional oxides%含铋多元金属氧化物的研究现状

    Institute of Scientific and Technical Information of China (English)

    房国丽

    2011-01-01

    含铋多元金属氧化物具有优异的铁电性、催化性、光催化性、离子传导性、高温超导性等,在数字存储、催化剂、固态电解液、气敏传感器、高温超导材料等方面具有潜在的广阔的应用前景.主要对含铋多元金属氧化物的制备方法、结构、性能和应用的研究现状进行了综述,并对含铋多元金属氧化物今后的研究方向进行了展望.%Bismuth containing heterometallic functional oxides has excellent ferroelectric,catalytic,optical catalytic,ion conductivity and high temperature superconductivity,etc.,thereby it is widely used in data storage media,catalyst,solid electrolyte,gas sensor,high-temperature superconducting materials and so on.In this paper,main preparation methods,structures,properties and potential applications of bismuth-containing heterometallic functional oxides have been reviewed,the trend of the research directions is prospected.

  17. The crystal structure of baliczunicite, Bi2O(SO4)2, a new natural bismuth oxide sulfate

    DEFF Research Database (Denmark)

    Pinto, Daniela; Garavelli, Anna; Balic Zunic, Tonci

    2015-01-01

    = 14.1754(7)Å , α = 80.082(2)o, β = 88.462(2)º, γ = 89.517(2)º, V = 1052.01(8)Å3 and Z = 6. The crystal structure consists of six independent Bi sites, six S sites and 27 O sites of which three are oxo oxygen atoms not bonded to sulfur. Bismuth and S atoms are arranged close to a eutectic pattern....... The trapezoidal Bi5O39+ ions are joined along [100] with SO42- groups by means of strong bismuth-sulphate oxygen bonds, forming infinite [100] rods with composition Bi5O3(SO4)5-. One sixth of the Bi atoms do not participate in trapezoids, but form, with additional SO42- groups, rows of composition BiSO4+, also...

  18. One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein

    DEFF Research Database (Denmark)

    Schuh, K.; Kleist, W.; Høj, Martin

    2014-01-01

    Flame spray pyrolysis (FSP) of Bi(III)-and Mo(VI)-2-ethylhexanoate dissolved in xylene resulted in various nanocrystalline bismuth molybdate phases depending on the Bi/Mo ratio. Besides alpha-Bi2Mo3O12 and gamma-Bi2MoO6, FSP gave direct access to the metastable beta-Bi2Mo2O9 phase with high surfa...... to acrolein at temperatures relevant for industrial applications (360 degrees C)....

  19. Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method.

    Science.gov (United States)

    Liu, Xinjuan; Pan, Likun; Lv, Tian; Sun, Zhuo; Sun, Chang Q

    2013-10-15

    Bi2O3-reduced graphene oxide (RGO) composites were successfully synthesized via microwave-assisted reduction of graphite oxide in Bi2O3 precursor solution using a microwave system. Their morphologies, structures, and photocatalytic performance in the degradation of methylene blue (MB) and methyl orange (MO) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, UV-vis absorption spectroscopy, and electrochemical impedance spectroscopy, respectively. The results show that the RGO addition can enhance the photocatalytic performance of Bi2O3-RGO composites. Bi2O3-RGO composite with 2 wt.% RGO achieves maximum MO and MB degradation rates of 93% and 96% at 240min under visible light irradiation, respectively, much higher than those for the pure Bi2O3 (78% and 76%). The enhanced photocatalytic performance is ascribed to the increased light adsorption and the reduction in electron-hole pair recombination in Bi2O3 with the introduction of RGO.

  20. Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode.

    Science.gov (United States)

    Lee, Gyoung-Ja; Kim, Chang Kyu; Lee, Min Ku; Rhee, Chang Kyu

    2010-12-15

    Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode has been investigated using square-wave anodic stripping voltammetry technique, scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectroscopy. From the analyses of square-wave anodic stripping voltammograms (SWASV) repetitively measured on the nano-bismuth fixed electrode, it was found that the oxidation peak currents dropped by 81%, 68% and 59% for zinc, cadmium and lead, respectively, after the 100th measurement (about 400 min of operation time). The sphere bismuth nanoparticles gradually changed to the agglomerates with petal shape as the operation time increased. From the analyses of SEM images and XRD patterns, it is confirmed that the oxidation of Bi into BiOCl/Bi(2)O(2)CO(3) and the agglomeration of bismuth nanoparticles caused by the phase change decrease a reproducibility of the stripping voltammetric response. Moreover, most of the bismuth becomes BiOCl at pH 3.0 and bismuth hydroxide, Bi(OH)(3) at pH 7.0, which results in a significant decrease in sensitivity of the nano-bismuth fixed electrode.

  1. Thermoelectric properties of pressed bismuth nanoparticles

    Science.gov (United States)

    Hostler, Stephen R.; Qu, Yu Qiao; Demko, Michael T.; Abramson, Alexis R.; Qiu, Xiaofeng; Burda, Clemens

    2008-03-01

    Theory predicts a substantial increase in the dimensionless figure of merit as the dimensionality and characteristic size of a material are decreased. We explore the use of bismuth nanoparticles pressed into pellets as potential increased efficiency thermoelectric materials. The figure of merit of these pellets is determined by independently measuring the electrical conductivity, thermal conductivity and Seebeck coefficient. The results from the nanoparticle sample are compared to microparticle-based samples. Both sample types show a slight reduction in thermal conductivity relative to bulk bismuth and a Seebeck coefficient near or slightly larger in magnitude than bulk bismuth. These changes are dwarfed by a hundred-fold decrease in the electrical conductivity due to porosity and an oxide layer on the particles. The low conductivity leads to figures of merit at least two orders of magnitude smaller than bulk bismuth. Oxide layer removal and reduced pellet porosity will be required to increase the figure of merit.

  2. Novel Bismuth Nanotubes

    Institute of Scientific and Technical Information of China (English)

    苏长荣; 李家明

    2002-01-01

    Theoretical investigations show that bismuth nanotubes are semiconductors for all diameters. For smalldiameter bismuth nanotubes, the band structures and bandgaps vary strongly with the strong hybridization effect. When the diameters are larger than 18 A, the bandgaps ofBi (n, n) and (n, 0) nanotubes approach 0.63 e V, corresponding to the bandgap of bismuth sheet at the Γ point. Thus, bismuth nanotubes are expected to be a potential semiconductor nanomaterial in future nanoelectronics.

  3. 铋蒸气氧化制备氧化铋粉体过程模拟%Simulation of the process of bismuth oxide powders produced by vapor-phase oxidation

    Institute of Scientific and Technical Information of China (English)

    胡汉祥; 丘克强

    2012-01-01

    粒子谱演变过程的数值模拟应用于粉体材料的制备过程,对于认识粒子的生成规律、优化生产条件、辅助设计制备设备具有一定的帮助作用.本文在分析制备过程特点的基础上,建立了粒子形成过程的控制方程,并利用Fluent软件对流体流动的控制方程、粒子谱演变方程及粒子的体积浓度方程构成的方程组进行了求解.模拟结果表明,氧化铋粒子的成核与凝并过程都发生在很短的时间内,较小的空间范围内,因此,所得粒子的大小受流体下游冷却系统的影响较小.在这个制备系统中,氧化铋粒子的数值浓度较低,易生成粒度较小的粒子.在反应舟区流体的径向速度较大,在炉子出口处,热迁移速度较大,氧化铋有可能在这2个地方向反应器壁沉积,造成产品产率降低.数值模拟不同制备温度下氧化铋粒度大小与实验结果基本一致.%Growth mechanisms of particles in the process of the powder preparation can well be realized and the manufacturing conditions can be optimized with the help of simulation of particle-size evolution. In this paper, the equations of controlling size growth were based on characteristics of the process and were solved by Fluent software. Numerical simulation on preparation of bismuth oxide by bismuth vapor oxidation showed that nuleation and coagulation of bismuth oxide was instantaneously complete in small spatial scope. Therefore particle size of obtained bismuth oxide was less affected by the cooling system in the downstream fluids. The ultra fine grain was easy to be prepared in this preparation system due to low concentration. The particle of bismuth oxide may be deposited on the wall at the exit of the furnace due to high velocity of thermal exchange and on the wall above the reaction boat due to high radial velocity of fluid, which resulted in a decrease in the product yield. The grain size of bismuth oxide at different temperature predicted by

  4. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    Science.gov (United States)

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content.

  5. Optical and electrical properties of thin films of bismuth ferric oxide; Propiedades opticas y electricas de peliculas delgadas de oxido de bismuto ferrico

    Energy Technology Data Exchange (ETDEWEB)

    Cardona R, D.

    2014-07-01

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe{sub 2}O{sub 3}) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO{sub 3} in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO{sub 3} composition. These samples showed a secondary phase (Bi{sub 2}5FeO{sub 4}0 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe{sub 2}O{sub 3}) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  6. Energetics of bismuth vanadate

    Energy Technology Data Exchange (ETDEWEB)

    Nagabhushana, G.P.; Tavakoli, A.H.; Navrotsky, A., E-mail: anavrotsky@ucdavis.edu

    2015-05-15

    Bismuth vanadate has gained considerable interest as a photoanode for water splitting reactions under visible light. It exists in four different polymorphs, out of which three of them have been synthesized. Thermodynamic properties of these three polymorphs are investigated using high temperature oxide melt solution calorimetry. The monoclinic scheelite phase which exhibits photocatalytic activity under visible light is found to be the most stable polymorph, followed by tetragonal scheelite which exhibits activity under UV light. The photocatalytically inactive tetragonal zircon form is found to be the least stable polymorph. The small difference in enthalpy of formation between the two scheelite structures (−8 kJ/mol) is in accord with the reversibility of the transformation between them and the larger difference between the most stable monoclinic phase and the least stable tetragonal zircon phase (−23 kJ/mol) is in accord with the irreversible (monoclinic→tetragonal zircon) phase transformation. - Graphical abstract: Schematic representation of polymorphic transitions in BiVO{sub 4} along with their formation enthalpies. - Highlights: • Bismuth vanadate crystallizes in three different polymorphs. • High temperature calorimetric measurements were made to determine their formation enthalpies. • Enthalpy of formation decreases in the order BV-ms→BV-ts→BV-tz. • Photocatalytically active monoclinic-BiVO{sub 4} was found to be the most stable polymorph.

  7. 铋粉低温氧化制备三氧化二铋的基础理论及工艺研究%Theoretical and Technical Studies on Bismuth Trioxide Preparation by Low-temperature Oxidation Method

    Institute of Scientific and Technical Information of China (English)

    夏纪勇; 唐谟堂; 陈萃; 陈永明; 卢阶主

    2012-01-01

    对铋粉氧化成Bi2O3的过程进行了热力学分析,结果表明,在300~1600 K范围内氧化反应在热力学上是可行的.采用DSC-TGA热分析方法研究了铋粉低温氧化过程的动力学,发现铋粉低温氧化过程符合未反应收缩核模型.氧化初期为化学反应控制,末期则为固体产物层内扩散控制,表观活化能为55.19 kJ/mol.在理论分析及实验室工艺研究的基础上,进行了半工业试验,金属铋的氧化率接近100%,可直接制备出电子级氧化铋.%A thermodynamic analysis is made on the oxidation of bismuth meal into Bi2O3.The results show that bismuth oxidation is feasible in the range of 300~l 600 K.1'IIe kinetics of low-temperature oxidation bismuth has been studied with DSC.TGA thermal method.It iS demonstrated that the process of low-temperature oxidation of bismuth meal is in line with the unreacted shrinking core model.During the early period.the oxidation rate is controlled by chemical reac-tion,but by the diffusion of oxygen molecule in the solid product layer during the final period.The apparent activation energy is 55.19 kJ/mol.On the basis of theoretical analyses and laboratory investigation,pilot tests are carried out.The oxidation ratio of bismuth is approaching to 100%.indicating that electronic grade bismuth trioxide can be obtained directly.

  8. Energetics of bismuth vanadate

    Science.gov (United States)

    Nagabhushana, G. P.; Tavakoli, A. H.; Navrotsky, A.

    2015-05-01

    Bismuth vanadate has gained considerable interest as a photoanode for water splitting reactions under visible light. It exists in four different polymorphs, out of which three of them have been synthesized. Thermodynamic properties of these three polymorphs are investigated using high temperature oxide melt solution calorimetry. The monoclinic scheelite phase which exhibits photocatalytic activity under visible light is found to be the most stable polymorph, followed by tetragonal scheelite which exhibits activity under UV light. The photocatalytically inactive tetragonal zircon form is found to be the least stable polymorph. The small difference in enthalpy of formation between the two scheelite structures (-8 kJ/mol) is in accord with the reversibility of the transformation between them and the larger difference between the most stable monoclinic phase and the least stable tetragonal zircon phase (-23 kJ/mol) is in accord with the irreversible (monoclinic→tetragonal zircon) phase transformation.

  9. 氧化铋光催化剂降解亚甲基兰反应条件研究%Study on Degradation Reaction Conditions of Methylene Blue by Bismuth Oxide

    Institute of Scientific and Technical Information of China (English)

    高红; 王学同

    2014-01-01

    氧化铋作为一种光催化剂,可应用于水中有机污染物的降解,并且氧化铋可实现对太阳光的有效利用,节约水处理成本。在氧化铋降解亚甲基兰模拟废水的实验中,影响其反应效果的因素包括催化剂用量、模拟废水浓度、pH值等。通过单因素和正交实验,确定了氧化铋降解亚甲基兰反应过程中的最佳实验条件。%As a photocatalyst, bismuth oxide could be applied to degrade organic pollutants in water, achieved the effective utilization of solar energy, and saved the cost of water treatment. In the degradation of methylene blue wastewater by bismuth oxide, influence factors included catalyst dosage, wastewater concentration and pH. Through single factor and orthogonal experiments, the optimal experimental conditions of degradation of methylene blue by bismuth oxide were obtained.

  10. 含铋复合氧化物可见光催化材料研究进展%Recent Progress on the Bismuth Containing Complex Oxide Photocatalysts

    Institute of Scientific and Technical Information of China (English)

    王文中; 尚萌; 尹文宗; 任佳; 周林

    2012-01-01

    Photocatalysts could utilize solar energy to remedy environmental pollutions thus attract world wide attention. Some bismuth-containing complex oxides could be activated by visible light and mineralize organic pollutants. In this paper we reviewed recent progresses on the development of Bi2WO6, BiVO4 and Bi2MoO6 photocatalysts. By controlling the particle size, morphology, crystaUinity and other microstructures via different methods, the photocata-lytic activities in the degradation of organic dyes, colorless model pollutants such as phenol and acetaldehyde, and disinfection of these visible light induced photocatalysts were greatly enhanced. Through further development, bismuth-containing complex oxides are hopeful to be applied in the field of environmental remediation.%光催化材料因可以利用太阳能净化环境,受到广泛关注.一些含铋复合氧化物半导体可直接被可见光激发,更有效地利用太阳能,实现有机污染物的矿化,成为近期光催化材料研究领域的热点之一.本文概述了Bi2WO6、BiVO4和Bi2MoO6三种常见的含铋复合氧化物可见光催化材料体系的近期研究进展.通过合成方法的优选、晶粒成核和生长的调节,实现晶粒尺寸、形貌、结晶度等微结构的控制,从而获得小尺寸、高表面积的光催化材料,无论是在有机染料、苯酚和乙醛等多种模拟污染物的矿化,还是抗菌等方面,它们皆呈现出优秀的可见光催化性能.通过进一步发展,含铋复合氧化物有望实现在环境净化领域的应用.

  11. 金银冶炼氧化渣中铋的综合回收实验%Comprehensive Recovery Experiment of Bismuth in The Oxidation Slag of Gold and Silver Smelting

    Institute of Scientific and Technical Information of China (English)

    赵锦琪; 何旺才; 唐庆丰; 覃策壮

    2012-01-01

    论述了自金银冶炼产生的氧化渣中,采用小型鼓风炉进行还原熔炼、熔析炉除铜后制成高铋粗铅阳极板,在低电流密度下高铋粗铅合金电解精炼回收Bi工艺的特点及技术条件的控制,并取得了预期的效果。%This paper discusses the Oxide residue which produced from smelting of gold and silver ,by reducing smelting in a small blast furnace and removing copper in liquating furnace , and get the anode plate with high Bismuth, states the characteristics and technical conditions of Bismuth recovery from the crude lead alloy at low current densities

  12. Promotional Effect of Bismuth as Dopant in Bi-Doped Vanadyl Pyrophosphate Catalysts for Selective Oxidation of n-Butane to Maleic Anhydride

    Institute of Scientific and Technical Information of China (English)

    Y.H.Taufiq-Yap; Y.Kamiya; K.P.Tan

    2006-01-01

    Bismuth-promoted (1% and 3%) vanadyl pyrophosphate catalysts were prepared by refluxing creased the surface area and lowered the overall V oxidation state. Profiles of temperature programmed reduction (TPR) in H2 show a significant shift of the maxima of major reduction peaks to lower temperatures for the Bi-promoted catalysts. A new peak was also observed at the low temperature region for the catalyst with 3% of Bi dopant. The addition of Bi also increased the total amount of oxygen removed from the catalysts. The reduction pattern and reactivity information provide fundamental insight into the catalytic properties of the catalysts. Bi-promoted catalysts were found to be highly active (71% and 81%conversion for 1% and 3% Bi promoted catalysts, respectively, at 703 K), as compared to the unpromoted material (47% conversion). The higher activity of the Bi-promoted catalysts is due to that these catalysts possess highly active and labile lattice oxygen. The better catalytic performance can also be attributed to the larger surface area.

  13. TiO2/Ag modified penta-bismuth hepta-oxide nitrate and its adsorption performance for azo dye removal

    Institute of Scientific and Technical Information of China (English)

    Eshraq Ahmed Abdullah; Abdul Halim Abdullah; Zulkarnain Zainal; Mohd Zobir Hussein; Tan Kar Ban

    2012-01-01

    A modified hydrophilic penta-bismuth hepta-oxide nitrate (Bi5O7NO3) surface was synthesized via a precipitation method using TiO2 and Ag as modified agents.The synthesized product was characterized by different analytical techniques.The removal efficiency was evaluated using mono- and di-sulphonated azo dyes as model pollutants.Different kinetic,isotherm and diffusion models were chosen to describe the adsorption process.X-ray photoelectron spectroscopy (XPS) results revealed no noticeable differences in the chemical states of modified adsorbent when compared to pure Bi5O7NO3; however,the presence of hydrophilic centres such as TiO2 and Ag developed positively charged surface groups and improved its adsorption performance to a wide range of azo dyes.Dyes removal was found to be a function of adsorbent dosage,initial dye concentration,solution pH and temperature.The reduction of Langrnuir 1,2-mixed order kinetics to the second or first-order kinetics could be successfully used to describe the adsorption of dyes onto the modified adsorbent.Mass transfer can be described by intra-particle diffusion at a certain stage,but it was not the rate limiting step that controlled the adsorption process.Homogenous behavior of adsorbent surface can be explored by applying Langmuir isotherm to fit the adsorption data.

  14. Preparation and Performance of Bismuth and Iron Compound Oxides Photocatalysis Materials%铋铁复合氧化物光催化材料的制备及其性能研究

    Institute of Scientific and Technical Information of China (English)

    郝敏

    2016-01-01

    采用共沉淀法制备了一系列铋铁复合氧化物光催化剂,并以可见光降解甲基橙为模型反应,研究其在可见光照射下降解甲基橙的光催化性能。详细考察了 pH 值、铋铁摩尔比、煅烧温度等对其光催化性能的影响。在优化条件下,铋铁摩尔比为2∶1、pH=3~4时制备出的样品具有较好的光催化性能,甲基橙的降解率可达到91.95%。%This paper introduced a series of Bismuth and iron compound oxides photocatalysts were prepared by coprecipitation method, and the visible light degradation of methyl orange as a model reaction, photocatalytic performance of the degradation under visible light irradiation of methyl orange. Effects of pH value, bismuth and iron molar ratio, calcination temperature on the photocatalytic properties were investigated in detail. Under the optimized conditions, bismuth and iron molar ratio was 2∶1, the prepared samples in pH=3~4 had better photo catalytic degradation of methyl orange, the degradation rate could reach 91.95%.

  15. Nanocalorimetry of bismuth nanoparticles

    Science.gov (United States)

    Olson, Eric Ashley

    The properties of nanosized bismuth particles are investigated using a nanocalorimetric technique. A brief description of the experimental method and data analysis procedures is reported. Bismuth nanoparticles are found to melt at a temperature below that of bulk material, but higher than expected using the standard model. Also included is the results of a finite element analysis and simulated melting of bismuth films on various kinds of sensors. Temperature distributions are found to be nonuniform for calorimetric sensors with Al metallizations, but much more uniform for Pt metallized sensors. The consequences of this nonuniformity on caloric data are discussed.

  16. 锡掺杂Bi2O3可见光响应光催化剂的制备及性能%Preparation and Properties of Tin-Doped Visible-Light-Responsive Bismuth Oxide Photocatalysts

    Institute of Scientific and Technical Information of China (English)

    卢远刚; 杨迎春; 刘盛余; 叶芝祥; 胡蕾

    2013-01-01

    以硝酸铋和四氯化锡为原料,采用浸渍法制备了纯Bi2O3和Sn掺杂Bi2O3光催化剂.利用X射线光电子能谱、X射线荧光光谱、X射线衍射、扫描电子显微镜、紫外-可见吸收光谱和光致发光光谱对样品进行了表征.在可见光下,利用2,4-二氯苯酚水溶液的光催化降解作为探针反应,考察了样品的可见光催化活性.结果表明,浸渍法能较好地实现Sn的掺杂,催化剂中掺杂剂Sn的价态为+4价,以锡的氧化物形式存在于Bi2O3晶格间隙或晶粒表面.并且掺杂适量的Sn,可有效抑制Bi2O3晶相由四方相向单斜相的转变,拓宽了Bi2O3的可见光响应范围,有效阻止了光生电子和空穴的复合,从而提高了Bi2O3的可见光催化活性.当Sn的掺杂量为2%时(物质的量的分数),Bi2O3具有最好的可见光催化活性.%Undoped and tin-doped bismuth oxide (Sn-Bi2O3) photocatalysts were prepared through impregnation method with bismuth nitrate and tin tetrachloride. The as-prepared samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectrum (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectrophotometry (UV-Vis) and photoluminescence spectroscopy (PL). Under the irradiation of visible light, the photocatalytic properties of various samples were investigated by using degradation of 2, 4-Dichlorophenol solution (2, 4-DCP) as the probe reaction. The results show that the impregnation is a good doping method for the preparation of Sn-Bi2O3. And the valence state of doped Sn is +4, it presents in the form of tin oxide which disperses in the lattice gap or on the surface of bismuth oxide. The phase transformation of bismuth oxide from tetragonal to monoclinic can be effectively inhibited by an appropriate tin doping. Therefore, the photocatalytic activities of tin-doped bismuth oxide are improved as a result of the expanded visible-light region response and a lower

  17. Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses

    Science.gov (United States)

    Zhou, Bo; Pun, Edwin Yue-Bun; Lin, Hai; Yang, Dianlai; Huang, Lihui

    2009-11-01

    Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate (PBG) oxide glasses were prepared and their spectroscopic properties were investigated. The derived Judd-Ofelt intensity parameters (Ω2=6.81×10-20 cm2, Ω4=2.31×10-20 cm2, and Ω6=0.67×10-20 cm2) indicate a higher asymmetry and stronger covalent environment for Ho3+ sites in PBG glass compared with those in tellurite, fluoride (ZBLAN), and some other lead-contained glasses. Intense frequency upconversion emissions peaking at 547, 662, and 756 nm as well as infrared emissions at 1.20 and 2.05 μm in Ho3+/Yb3+-codoped PBG glass were observed, confirming that energy transfer between Yb3+ and Ho3+ takes place, and a two-phonon-assisted energy transfer from Yb3+ to Ho3+ ions was determined by the calculation using phonon sideband theory. The 1.20 μm emission observed was primarily due to the weak multiphonon deexcitation originated from the small phonon energy of PBG glass (˜535 cm-1). A large product of emission cross-section and measured lifetime (9.93×10-25 cm2 s) was obtained for the 1.20 μm emission and the gain coefficient dependence on wavelength with population inversion rate (P) was performed. The peak emission cross-section for 2.05 μm emission was calculated to be 4.75×10-21 cm2. The relative mechanism of Ho3+-doped and Ho3+/Yb3+-codoped PBG glasses on their spectroscopic properties was also discussed. Our results suggest that Ho3+/Yb3+-doped PBG glasses are a good potential candidate for the frequency upconversion devices and infrared amplifiers/lasers.

  18. 铋银氧化物降解孔雀石绿研究%Degradation of Malachite Green by Bismuth Silver Oxide

    Institute of Scientific and Technical Information of China (English)

    喻恺

    2013-01-01

    The oxidative powder bismuth silver oxide(BSO)was prepared by one step coprecipitation method.A simple and efficient approach based on BSO for degrading organic dye was developed and it was evaluated for the oxidation of malachite green (MG).35 mg/L of MG was rapidly decolorized with a pseudo-first-order kinetic constant 0.507 min-1 by mixing with BSO and the reaction can be repeated at least 23 times with the same BSO particles.Characterizations by XRD,SEM,EDX and XPS indicated that perovskite-like structure was transformed into Bi2O2CO3 structure during the cyclic BSO/MG reaction process.Singlet oxygen was identified as the major reactive species for MG degradation.Dissolved oxygen has little influence on the degradation reaction.The reaction mechanism was proposed.The study would provide theoretical basis and experimental reference for practical application of BSO on dye wastewater treatment.%采用一步共沉淀法合成氧化性铋银氧化物(BSO),并基于BSO开发了一种简单高效的有机染料降解方法.以孔雀石绿(MG)为目标污染物考察该方法的降解效率,结果表明,通过搅拌混合BSO,35 mg/L的MG溶液快速降解,一级反应速率常数k=0.507 min-1.BSO可以重复使用,连续降解MG溶液至少23次.XRD、SEM、EDX和XPS等表征结果显示BSO在循环使用过程中初始钙钛矿结构逐渐转变为Bi2O2CO3结构.单重态氧是反应主要活性自由基直接导致了MG降解,反应过程受溶解氧影响很小.提出了BSO降解MG的作用机理,为BSO在降解染料废水的应用提供理论依据和实验方法参考.

  19. Synergy effects between bismuth molybdate catalyst phases (Bi/Mo from 0.57 to 2) for the selective oxidation of propylene to arcrolein

    DEFF Research Database (Denmark)

    Le, Minh Thang; Well, Willy van; Stoltze, Per

    2005-01-01

    In this work, the synergy effect between different phases of bismuth molybdate catalysts was investigated systematically. The catalysts were prepared by spray drying and had a Bi/Mo atomic between 0.57 and 2. It is found that the synergy effect is only observed in mixtures containing γ-phase. A m......In this work, the synergy effect between different phases of bismuth molybdate catalysts was investigated systematically. The catalysts were prepared by spray drying and had a Bi/Mo atomic between 0.57 and 2. It is found that the synergy effect is only observed in mixtures containing γ...

  20. Synthesis, phase stability and oxide ion conductivity of Ce(IV)-Cd(II) double substituted bismuth vanadate

    Science.gov (United States)

    Beg, Saba; Haneef, Sadaf

    2015-11-01

    Bi4V2O11-δ has been doped with Ce and Cd to study double substitution. The system with various dopant concentrations (0.07 ≤ x ≤ 0.30) was prepared by the standard solid-state reaction method. The correlation between the polymorphism and oxide ion performance was well investigated as a function of temperature and composition with the help of thermal analysis, X-ray diffraction (XRD) and AC impedance spectroscopy. From XRD results it is seen that the high oxide ion conducting tetragonal γ-phase is stabilized for x = 0.17. For the compositions x ≤ 0.10, monoclinic α-phase is retained at room temperature with clear evidence for two successive phase transitions α ↔ β and β ↔ γ. For x = 0.13, β ↔ γ phase transition is seen. However, the existence of order-disorder, γ' ↔ γ transition was confirmed for x = 0.17. It is seen that the highest low-temperature ionic conductivity at 320 °C is 3.19 × 10-4 S cm-1 which was observed for x = 0.17.

  1. Diffused phase transition in fine-grained bismuth vanadate ceramics

    OpenAIRE

    Shantha, K; Varma, KBR

    1999-01-01

    Nanocrystalline powders of ferroelectric bismuth vanadate, Bi4V2O11 (n-BiV), with crystallite size less than 50 nm, were obtained by mechanical milling of a stoichiometric mixture of bismuth oxide and vanadium pentoxide. The n-BiV powders on sintering yielded high-density, fine-grained ceramics with improved dielectric and polar characteristics. Dielectric studies on samples obtained from milled powders indicated that the ferroelectric-to-paraelectric phase transition temperature is strongly ...

  2. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode.

    Science.gov (United States)

    Fuku, Kojiro; Sayama, Kazuhiro

    2016-04-07

    An aqueous solution of hydrogen carbonate (HCO3(-)) facilitated oxidative hydrogen peroxide (H2O2) production from water on a WO3/BiVO4 photoanode with the simultaneous production of hydrogen (H2) on a Pt cathode even at an applied voltage far lower than the theoretical electrolysis voltage (+1.77 V vs. RHE) under simulated solar light. The unprecedentedly efficient simultaneous production and accumulation of H2O2 and H2 was achieved in 2.0 M KHCO3 at low temperature, and the maximum selectivity, accumulated concentration and turnover number (TON) of H2O2 generated reached ca. 54%, more than 2 mM and 108, respectively.

  3. Synthesis and Characterisation of Penta-Bismuth Hepta-Oxide Nitrate, Bi5O7NO3, as a New Adsorbent for Methyl Orange Removal from an Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Eshraq Ahmed Abdullah

    2012-01-01

    Full Text Available This paper presents the synthesis of penta-bismuth hepta-oxide nitrate, Bi5O7NO3, via the chemical precipitation method. After calcination, the precipitate was characterised by several methods, which included X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, Fourier transform infrared, thermogravimetric analysis, BET surface area and pH drift method to determine the pH of point of zero charge (pHpzc. The study results revealed that Bi5O7NO3 had an orthorhombic crystal structure, a surface area of 1.6 m2 g-1 and a point of zero charge at pH 9.7. The chemical state of Bi5O7NO3 indicated the presence of three oxidation states of bismuth centre. Furthermore, the decolourization ability of Bi5O7NO3 to remove the azo dye was also evaluated. Although it had lower surface area, the removal efficiency was extremely good. This finding suggests that Bi5O7NO3 could be used as a promising adsorbent for azo dye removal. The XPS spectra showed that the accumulation of dye onto Bi5O7NO3 could be due to the anion exchange process, suggesting the birth of a new anion exchanger for azo dye removal.

  4. Formation of bismuth oxide nanowires by simultaneous templating and electrochemical adhesion of DNA on Si/SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Michael G. [School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Little, Ross; Salem, Mohamed Ali [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Hedley, Joseph H.; Horrocks, Benjamin R. [School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Siller, Lidija, E-mail: Lidija.Siller@ncl.ac.uk [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2012-10-01

    Deoxyribonucleic acid (DNA)-templated growth of Bi/Bi{sub 2}O{sub 3} nanowires attached to the Si surface was obtained by electrochemical reduction of Bi(III) at an n-type Si electrode in aqueous Bi(NO{sub 3}){sub 3}/HNO{sub 3} at pH 2.5 with calf thymus DNA. The nanowires had a mean diameter of 5 nm and a range of lengths from 1.4 {mu}m to 6.1 {mu}m. The composition and structure of the wires were determined by atomic force microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoemission spectroscopy. The dominant component of the material is Bi{sub 2}O{sub 3} owing to the rapid re-oxidation of nanoscale Bi in the presence of air and water. Our method has the potential to construct complex architectures of Bi/Bi{sub 2}O{sub 3} nanostrucures on high quality Si substrates. - Highlights: Black-Right-Pointing-Pointer We have developed an electrochemical method to grow Bi/Bi{sub 2}O{sub 3} nanowires on silicon. Black-Right-Pointing-Pointer Bi/Bi{sub 2}O{sub 3} nanowires are templated by deoxyribonucleic acid molecules. Black-Right-Pointing-Pointer The procedure also adheres the nanowires to the electrode for characterization.

  5. Synthesis of bismuth (III oxide films based anodes for electrochemical degradation of reactive blue 19 and crystal violet

    Directory of Open Access Journals (Sweden)

    Petrović Milica M.

    2014-01-01

    Full Text Available The Bi2O3 films-based anodes were synthesized by electrodeposition of Bi on stainless steel substrate at constant current density and during different deposition times, fallowed by calcination, forming Bi2O3. The thickness of the films was determined by two methods: the observation under the microscope and by calculation from mass difference. Electrochemical proceses at the anodes were ivestigated by linear sweep voltammetry. At the anodes obtained within 2, 5, 10 and 15 minutes of deposition, two dyes, namely: Reactive Blue 19 and Crystal Violet, were decolorized by oxidation with •OH radical, generated from H2O2 decomposition at the anodes. Decoloration times of the anodes varied, and the shortest one was achieved with the anode obtained during 5 minutes of deposition, with the film thickness of 2.5±0.3 μm. The optimal H2O2 concentration for the dyes degradation was found to be 10 mmol dm-3. [Projekat Ministarstva nauke Republike Srbije, br. ТR 34008

  6. Enhanced Lithium-Ion Storage Capability of a Bismuth Sulfide/Graphene Oxide/Poly(3,4-ethylenedioxythiophene) Composite.

    Science.gov (United States)

    Mukkabla, Radha; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-10-26

    A Bi2 S3 /graphene oxide (GO) composite enwrapped by a poly(3,4-ethylenedioxythiophene) (PEDOT) coating was prepared for the first time for use as an anode in Li-ion batteries. Pristine Bi2 S3 nanoflowers and composites of Bi2 S3 /GO and Bi2 S3 /GO/PEDOT were assembled into half cells with Li metal as the counter electrode, and initial discharge capacities of 833, 1020, and 1300 mAh g(-1) , respectively, were obtained. Composites of Bi2 S3 /GO/PEDOT and Bi2 S3 /GO showed superior cycling stability and better rate capability than pristine Bi2 S3 . GO provides highly conducting interconnections, which allow facile propagation of electrons during charge/discharge, and this improves the ion-uptake capability of the Bi2 S3 nanoflowers and also increases the rate capability. PEDOT furnishes a protective coating that prevents detachment of the material from the current collector during cycling, and it also imparts better cycling stability to the Bi2 S3 /GO/PEDOT composite.

  7. Preparation of α-Bi2O3 from bismuth powders through low-temperature oxidation%铋粉低温氧化制备α-Bi2O3

    Institute of Scientific and Technical Information of China (English)

    夏纪勇; 唐谟堂; 陈萃; 金胜明; 陈永明

    2012-01-01

    纳米金属铋粉在低于873.15 K的温度下被氧化而制备成α-Bi2O3粉体,采用XRD、SEM、TEM和HRTEM等技术表征α-Bi2O3粉体的晶体结构和形貌,通过TGA技术研究铋粉的低温氧化动力学行为.结果表明,纳米铋粉在较低的温度下熔融成铋珠,铋珠结合长大并氧化生成不规则的Bi2O3粉体,铋珠氧化机理符合核收缩模型;动力学控制步骤随着氧化时间的变化而变化,在0~10 min内,铋珠氧化动力学表现为化学反应控制,然后转化为O2内扩散控制,低温氧化表观反应活化能为55.19 kJ/mol.%α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K.XRD,SEM,TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles.Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method.The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders.The bismuth oxidation follows shrinking core model,and its controlling mechanism varies at different reaction time.Within 0-10 min,the kinetics is controlled by chemical reaction,after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer.The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.

  8. Bismuth vanadate process

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M.

    1990-06-26

    This patent describes the process for the preparation of bismuth vanadate and bismuth vanadate-containing compounds wherein the precursor materials are calcined in the solid state at temperatures sufficient to react the precursor materials to prepare the vanadate compounds. It comprises: wet grinding the calcined product, contacting the calcined product with sufficient alkaline material to provide a pH level of 7.0-13.0 and recovering the treated product, the wet grinding of the calcined product being conducted either in the presence of the alkaline material or prior to the contacting with the alkaline material.

  9. Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution.

    Science.gov (United States)

    Berglund, Sean P; Lee, Heung Chan; Núñez, Paul D; Bard, Allen J; Mullins, C Buddie

    2013-04-07

    A new dispenser and scanner system is used to create and screen Bi-M-Cu oxide arrays for cathodic photoactivity, where M represents 1 of 22 different transition and post-transition metals. Over 3000 unique Bi : M : Cu atomic ratios are screened. Of the 22 metals tested, 10 show a M-Cu oxide with higher photoactivity than CuO and 10 show a Bi-M-Cu oxide with higher photoactivity than CuBi2O4. Cd, Zn, Sn, and Co produce the most photoactive M-Cu oxides, all showing a 200-300% improvement in photocurrent over CuO. Ag, Cd, and Zn produce the highest photoactivity Bi-M-Cu oxides with a 200-400% improvement over CuBi2O4. Most notable is a Bi-Ag-Cu oxide (Bi : Ag : Cu atomic ratio of 22 : 3 : 11) which shows 4 times higher photocurrent than CuBi2O4. This material is capable of evolving hydrogen under illumination in neutral electrolyte solutions at 0.6 V vs. RHE when Pt is added to the surface as an electrocatalyst.

  10. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  11. Study on the Influencing Factors of Preparing Bismuth-doped Zinc Oxide Nano-powders by Hydrothermal Method%水热法制备纳米铋掺杂氧化锌的影响因素研究

    Institute of Scientific and Technical Information of China (English)

    乐小芳; 谭艳; 陈燕梅; 万谦; 马粉波; 吕维忠

    2012-01-01

    以氯化锌、硝酸铋为主要原料,氢氧化钠为沉淀剂,采用水热法制备了纳米铋掺杂氧化锌粉体。研究了pH值对产物成分的影响,分析了水热时间和水热温度对产物形貌的影响。结果表明pH为9,水热温度为240℃,水热时间为25 h时可以得到微观形貌良好的纳米铋掺杂氧化锌粉体。%Bismuth-doped zinc oxide(BZO) nano-particles were prepared by hydrothermal method using ZnCl2 and Bi(NO3)3·5H2O as precursors and NaOH as precipitant.The effects of hydrothermal temperature,hydrothermal time,and pH value were mainly studied.The results showed that hydrothermal time of 25 h,hydrothermal temperature of 240 ℃ and terminal pH of 7 can produce bismuth doped zinc oxide as nearly as expected.

  12. Ultrasonic enhanced degradation of AZO dye wastewater by bismuth doped indium oxide%超声强化铋掺杂氧化铟降解偶氮染料废水

    Institute of Scientific and Technical Information of China (English)

    张格红; 赵平歌; 廖志鹏; 关卫省; 白波

    2016-01-01

    本实验利用溶剂热法合成了铋掺杂氧化铟催化剂,利用XRD、EDS和SEM对催化剂的结构和形貌进行了表征.研究表明,铋离子已经掺杂进氧化铟的晶格中.掺杂后的催化剂粒径为纳米级,且具有良好的球形形貌.本文以偶氮染料直接大红废水为目标降解物,分别考察了不同催化剂对该染料废水的降解性能以及铋掺杂氧化铟催化剂的投加量、染料的浓度、溶液的pH、超声频率和超声功率对该染料的降解性能.在本实验条件下,催化剂投加量为7.5 mg、染料浓度为10 mg·L-1、pH值为6、超声频率为45 kHz、功率为100 W时,对染料废水的去除效果最优,总去除率可达83.7%,比空白实验的去除率提高将近5倍.%In this study, a novel catalyst, bismuth doped indium oxide, was synthesized via a solvothermal method, and its structure and morphology were characterized by XRD, EDS and SEM. The results indicate that bismuth ions were well doped into the lattice of indium oxide, and the particle size of catalyst with good spherical shape was on the nanoscale. In the experiment, Congo red was applied to validate the degradation property of different catalysts. The effects of the operating parameters, such as the dosage of bismuth doped indium oxide, initial dye concentration, pH value, medium ultrasonic frequency and ultrasonic power on the degradation were evaluated. Under the experimental condition, the removal rate was up to 83. 71% with the optimum parameters, i. e. a catalyst dosage of 7.5 mg, an initial concentration of 10 mg·L-1 , an ultrasonic frequency of 45 kHz and an ultrasonic power of 100W in just 60 minutes. The total removal rate increased nearly five times than the blank experiment.

  13. Recent Progress in the Preparation and Applications of Bismuth Based Oxide-graphene Composite Photocatalysts%铋系氧化物-石墨烯复合光催化剂的制备及应用进展

    Institute of Scientific and Technical Information of China (English)

    董玉玉; 孙毅男; 郭亚杰; 王广健

    2016-01-01

    Recent progress on the preparation and applications of grapheme/bismuth-based oxide photocatalyt⁃ic.Their preparation and applications focus on photocatalytic degradation of organic pollutants ,and photocata⁃lytic degradation of dye.The future development was prospected.%综述铋系氧化物-石墨烯复合光催化剂的制备,并介绍复合材料在光催化降解有机污染物、光催化降解有机染料、光催化净化污水、电极材料等方面的应用,并对其未来发展方向进行展望。

  14. Mechanosynthesis and mechanochemical treatment of bismuth doped vanadium phosphorus oxide catalysts for the partial oxidation of n-butane to maleic anhydride

    Institute of Scientific and Technical Information of China (English)

    Y H.Taufiq-Yap; Y C.Wong; Y Kamiya; W.J.Tang

    2008-01-01

    Three Bi-doped vanadyl pyrophosphate catalysts were prepared via dihydrate route(VPD method),which consisted of different preparation methods including mechanosvnthesis,mechanochemical treatment,and the conventional reflux method.The catalysts produced by the above three methods were characterized by x-ray diffraction(XRD),scanning electron microscopy(SEM),and temperature programmed reduction(TPR).Catalytic evaluation for the partial oxidation of n-butane to maleic anhydride (MA) was also carried out.The XRD patterns of all the Bi-doped catalysts showed the main peaks of pyrophosphate phase.Lower intensity peaks were observed for the mechanochemically treated Bi-doped catalyst(VPDBiMill)with two additional small DeakS corresponding to the presence of a small amount of V5+ phase.The TPR profiles showed that the highest amount of active oxygen species.i.e.V4+-O- pair,responsible for n-butane activation,was removed from VPDBiMill.Furthermore.from the catalytic test results.the graph of selectivity to MA as a function of the conversion of n-butane demonstrated that VPDBiMill was the most selective catalyst.This suggests that the mechanochemical treatment of vanadium phosphate catalyst(VPDBiMill)is a potential method to improve the catalytic properties for the partial oxidation of n-butane to maleic anhydride.

  15. THORIUM DISPERSION IN BISMUTH

    Science.gov (United States)

    Bryner, J.S.

    1961-07-01

    The growth of thorium bismutaide particles, which are formed when thorium is suspended in liquid bismuth, is inhibited when the liquid metal suspension is being flowed through a reactor and through a heat exchanger in sequence. It involves the addition of as little as 1 part by weight of tellurium to 100 parts of thorium. This addition is sufficient to inhibit particle growth and agglomeration.

  16. Layered bismuth vanadate ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Osipyan, V.G.; Savchenko, L.M.; Elbakyan, V.L.; Avakyan, P.B.

    1987-08-01

    The authors synthesize new layered bismuth vanadate ferroelectrics. The x-ray diffraction characteristics of Bi/sub 2/VO/sub 5.5/ are shown. Thermal expansion of ceramics with various compositions are presented, as are the temperature dependences of the dielectric constant of the ceramic with various compositions. Unit-cell parameters, Curie temperature, electrical conductivity and the dielectric characteristics of the compositions studied are shown.

  17. Bismuth toxicity in patients treated with bismuth iodoform paraffin packs.

    Science.gov (United States)

    Atwal, A; Cousin, G C S

    2016-01-01

    Bismuth is a heavy metal used in bismuth iodoform paraffin paste (BIPP) antiseptic dressings and in a number of other medical preparations. It can be absorbed systemically and cause toxicity. We report 2 cases of such neurotoxicity after it was used in operations on the jaws.

  18. Tribochemistry of Bismuth and Bismuth Salts for Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Nieuwenhuijzen, van den K.J.H.; Lette, W.; Schipper, D.J.; Elshof, ten J.E.

    2016-01-01

    One of the main trends in the past decades is the reduction of wastage and the replacement of toxic compounds in industrial processes. Some soft metallic particles can be used as nontoxic solid lubricants in high-temperature processes. The behavior of bismuth metal particles, bismuth sulfide (Bi2S3)

  19. The Synergistic Effect of Bismuth Oxide on Flame Retardancy and Smoke Suppression of the Cotton Fabric Flame-retarded with Cyclic Phosphonate%氧化铋对环状膦酸酯阻燃棉织物的协效阻燃抑烟作用

    Institute of Scientific and Technical Information of China (English)

    孙才英; 王红; 董春梅

    2011-01-01

    The synergistic effect of bismuth oxide on flame retardancy and smoke suppression of the cotton fabric flame-retarded with cyclic phosphonate ester MCPPE was discussed in this paper. The results show that the LOI of the cotton fabric flame-retarded with MCPPE increased from 43% to 52% when 0.4 g/L bismuth oxide was added in MCPPE flame retardant finishing agent. Damaged carbon length shortened to 5 cm,and vertical flame reached B, level. Yet for breaking strength the influence was not so significant. Thermogravimetrie analysis shows that bismuth oxide further reduced the initial decomposition temperature and maximum pyrolysis temperature. SEM shows that the char of the burned cotton was denser after adding bismuth oxide and bismuth oxide had obvious resistance to deformation. Cone test shows that bismuth oxide not only reduced the total heat release rate of flame retarded cotton fabrics but also lowered the total smoke yield by 60%.%通过阻燃性能测试、热重分析、锥形量热分析等研究手段,考察了氧化铋对环状膦酸酯阻燃棉织物的阻燃抑烟协效作用.结果发现,在阻燃整理剂中添加0.4 g/L的氧化铋,可以使阻燃棉布的极限氧指数从43%提高到52%;损毁炭长缩短到5 cm,垂直燃烧达到B1级;而对断裂强度影响不大.热重分析表明,氧化铋的加入进一步降低了阻燃棉织物的初始分解温度和最大热解速率,500℃时的成炭量有所增加;扫描电镜显示,添加氧化铋后,棉织物燃烧成炭更致密;氧化铋具有明显的抗燃烧变形能力;锥形量热测试表明,氧化铋的添加不仅降低了阻燃棉织物的总热释放速率,而且使阻燃棉织物的总烟释放量降低了60%.

  20. Bismuth ochers from San Diego Co., California

    Science.gov (United States)

    Schaller, W.T.

    1911-01-01

    The chief points brought out in this paper may be briefly summarized as follows: (1) The existence of natural Bi2O3 has not been established. (2) Natural bismite or bismuth ocher, when pure, is more probably a bismuth hydroxide. (3) The bismuth ochers from San Diego County, California, are either a bismuth hydroxide or bismuth vanadate, pucherite, or mixtures of these two. (4) Pucherite has been found noncrystallin and determined for the first time in the United States.

  1. 酒石酸对直接沉淀法制备纳米Bi2O3晶体结构的影响%Effect of Tartaric Acid on Crystal Type of Bismuth Oxide Nano-particles Prepared by Direct Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    刘芳芳; 戴亚堂; 张欢; 赵文

    2011-01-01

    以高氯酸铋和氢氧化钠为原料,采用一步直接沉淀法,通过添加和控制酒石酸的用量,制备出纺锤形的纳米氧化铋粒子,采用X射线衍射、扫描电镜和差热分析等手段对产品进行分析与表征,并且对反应机理进行初步分析.结果表明;当酒石酸盐的质量分数为8%左右时,合成的纳米氧化铋为纺锤形,粒子分布均匀,粒度较小,平均粒度约为90 nm.%Using Bi(ClO3)]3and NaOH as raw materials, adding and controlling the concentration of tartaric acid, the spindle bismuth oxide nano-particles were synthesized by direct precipitation method. The particles characterized by X ray diffraction (XRD), scan electron microscopy(SEM) and thermogravimetry-differential scanning calorimetry(TGDSC). The reaction mechanism of bismuth oxide nano-particles was discussed. The results showed that the as-prepared bismuth oxide nano-particles had uniform size distribution and smaller granularity, when the mass fraction of taitaric acid was 8%, the mean particle size was about 90 nm.

  2. Exhaustive removal of chloride ions from water with the aid of a bismuth-based metallic sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, L.N.; Ushenko, V.G.

    1988-04-20

    The authors discuss the sorption properties of sorbents based on metallic bismuth, in relation to a solution of the problem of exhaustive removal of chloride ions from water. Metallic sorbents with bismuth contents of 10 mass % on polytetrafluoroethylene were used. The sorption properties of sorbents based on metallic bismuth and on Bi/sub 2/O/sub 3/ were studied under dynamic conditions. Their results show that bismuth-based metal sorbents and sorbents based on bismuth oxide can be used as inorganic anion-exchangers. In order to demonstrate the possibility of selective separation of chloride ions from solutions they determined the dynamic exchange capacity for chloride ions at various nitrate-ion concentrations. The use of the proposed sorbents based on metallic bismuth for exhaustive purification of water lowers the chloride-ion concentration in the water sharply in comparison with the level achieved by ion-exchange purification with the aid of organic anion-exchangers.

  3. A Study on the Influencing Factors in the Preparation of Bismuth-doped Tin Oxide Nano-powders by Co-Precipitation%化学共沉淀法制备纳米铋掺杂氧化锡

    Institute of Scientific and Technical Information of China (English)

    黄旭珊; 吕维忠; 罗仲宽; 宋力昕

    2011-01-01

    以SnCl4·5H2O和Bi( NO3)3·5H2O为原料,氨水为沉淀剂,采用化学共沉淀法制备了铋掺杂氧化锡(BTO)纳米粉体,考察了反应温度、滴定终点pH、铋掺杂量、煅烧温度和分散剂PEG - 600对所得的纳米BTO粉体物相、晶粒度和形貌的影响,对粉末的前驱体进行综合热分析(TG-DTA),用X射线衍射(XRD)、扫描电镜(SEM)对产物的结构和形貌进行表征,得到共沉淀法制备纳米BTO粉体的最佳条件:反应温度60℃,滴定终点pH =3,煅烧温度600℃;该条件下制得BTO粉体的电阻率最小为3.48 Ω·cm.%Bismuth-doped tin oxide ( BTO) nano-particles were prepared by chemical co-precipitation method using SnCl4 ? 5H2O and Bi(NO3)3 ? 5H2O as precursors and NH3 ? H2O as precipitant. The effect of processing parameters on the particles was investigated. These parameters include reaction temperature, terminal pH, doping bismuth content, calcine temperature, and PEG - 600 dispersant. The BTO precursors were studied by means of TG - DTA. The product particles were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy ( SEM). The optimized conditions for preparing nanometer BTO powders were proposed: reaction temperature of 60℃, terminal pH of 3, and the calcine temperature of 600℃ , the minimum resistivity of BTO powders is 3. 48 Ω· cm under the optimized conditions.

  4. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [Los Alamos National Laboratory

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  5. Effects of bismuth vandate and anthraquinone dye on the photodegradation of polycarbonate

    OpenAIRE

    Saron,Clodoaldo; Felisberti, Maria Isabel; Zulli, Fabio; Giordano, Marco

    2007-01-01

    Both inorganic and organic compounds, such as oxides or salts of metals and polycyclic and azo compounds, are frequently used as colorants in polymeric systems. Bismuth vanadate pigment has been used as an environmentally friendly alternative for cadmium containing pigments and anthraquinone dyes represent a polycyclic colorant class of wide use in polymers. Besides their coloring properties, both bismuth vanadate and anthraquinone present photocatalytic activity or photochemical properties t...

  6. Mineral resource of the month: bismuth

    Science.gov (United States)

    Carlin, James F.

    2006-01-01

    Bismuth compounds are most known for their soothing effects on the stomach, wounds and sores. These properties make the compounds an essential part of many medicinal and cosmetic preparations, which until 1930 accounted for about 90 percent of the bismuth used. The subsequent development of low-melting alloys and chemical catalysts containing bismuth, as well as its use as an additive to casting alloys, has resulted in a wider variety of industrial applications for bismuth.

  7. 采用碱性加压氧化浸出从高铋铅阳极泥中脱除砷锑%Arsenic and antimony removal from bismuth-rich lead anode slime by alkaline pressure oxidation leaching

    Institute of Scientific and Technical Information of China (English)

    李阔; 徐瑞东; 何世伟; 陈汉森; 朱云; 华宏全; 舒波

    2015-01-01

    在碱性溶液中釆用加压氧化浸出对高铋铅阳极泥进行脱除砷锑的研究。考察氧化剂用量、氢氧化钠浓度、液固比、碱浸温度及反应时间对铅阳极泥脱砷、锑效果的影响,优选得到较佳的工艺条件,砷、锑的浸出率分别达到95%和80%以上。碱浸液冷却过滤结晶砷酸钠和锑酸铅后,采用过氧化氢进行沉锑处理,沉锑后的溶液再补加定量的氢氧化钠后能够返回浸出工艺,实现碱浸液的循环利用,并保证砷、锑的有效脱除。%The arsenic and antimony were removed from bismuth-rich lead anode slime by alkaline pressure oxidation leaching. The effects of factors including oxidant dosage, NaOH concentration, ratio of liquid to solid, leaching temperature and leaching time on the arsenic and antimony removal were investigated, and the optimal process conditions were determined by experiments. The results show that the leaching rate of arsenic and antimony can reach over 95% and 80%, respectively. The removal of antimony can be realized by adding hydrogen peroxide after the removal of crystal sodium arsenate and lead antimonate by cooling and filtration. The alkaline leaching solution is returned to the leaching process after adding quantitative sodium hydroxide, which achieves the recycling of alkaline solution and the effective separation of arsenic and antimony from other metals.

  8. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.

    Science.gov (United States)

    Seabold, Jason A; Choi, Kyoung-Shin

    2012-02-01

    BiVO(4) films were prepared by a simple electrodeposition and annealing procedure and studied as oxygen evolving photoanodes for application in a water splitting photoelectrochemical cell. The resulting BiVO(4) electrodes maintained considerable photocurrent for photo-oxidation of sulfite, but generated significantly reduced photocurrent for photo-oxidation of water to oxygen, also decaying over time, suggesting that the photoelectrochemical performance of BiVO(4) for water oxidation is mainly limited by its poor catalytic ablity to oxidize water. In order to improve the water oxidation kinetics of the BiVO(4) electrode, a layer of FeOOH was placed on the BiVO(4) surface as an oxygen evolution catalyst using a new photodeposition route. The resulting BiVO(4)/FeOOH photoanode exhibitied significantly improved photocurrent and stability for photo-oxidation of water, which is one of the best among all oxide-based phoatoanode systems reported to date. In particular, the BiVO(4)/FeOOH photoanode showed an outstanding performance in the low bias region (i.e., E < 0.8 V vs RHE), which is critical in determining the overall operating current density when assembling a complete p-n photoelectrochemical diode cell. The photocurrent-to-O(2) conversion efficiency of the BiVO(4)/FeOOH photoanode is ca. 96%, confirming that the photogenerated holes in the BiVO(4)/FeOOH photoanode are indeed excusively used for O(2) evolution.

  9. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  10. Optical, mechanical and TEM assessment of titania-doped Bi2V1−TiO$_{5.5−\\delta}$ bismuth vanadate oxides

    Indian Academy of Sciences (India)

    Gurbinder Kaur; Gary Pickrell; Vishal Kumar; Om Prakash Pandey; Kulvir Singh; Daniel Homa

    2014-12-01

    Optical, mechanical and structural behaviors have been studied for titania-doped Bi2V1−TiO$_{5.5−\\delta}$ which are used as electrolytes for intermediate temperature fuel cells. Parameters like band gap ($E_{g}$), Urbach energy ($E_{u}$), refractive index, hardness () and fracture strength () have been calculated as a function of dopant concentration, i.e. 0.05 ≤ ≤ 0.2. Furthermore, analysis of transmission electron microscopy (TEM) images for all the oxides was conducted along with line spectra of planes. Results are discussed in light of correlation of these optical and mechanical parameters to their structural properties. Band gap has also been correlated to the conductivity of these oxides. Good correlation has been obtained between them.

  11. Comparative Study of Semiconductors Bismuth Iodate, Bismuth Triiodide and Bismuth Trisulphide Crystals

    Directory of Open Access Journals (Sweden)

    T.K. Patil

    2012-12-01

    Full Text Available In the present investigation, crystals of Bismuth Iodate[Bi(IO33], Bismuth Iodide[BiI3] and Bismuth- Tri Sulphide [Bi2S3] were grown by a simple gel technique using single diffusion method. The optimum growth conditions were established by varying various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of reactant etc. Gel was prepared by mixing sodium meta silicate (Na2SiO35H2O, glacial acetic acid (CH3COOH and supernant bismuth chloride (BiCl3 at pH value 4.4 and transferred in glass tube of diameter 2.5 cm and 25 cm in length. The mouth of test tube was covered by cotton plug and kept it for the setting. After setting the gel, it was left for aging. After 13 days duration the second supernant K(IO3, KI3 and H2S water gas solution was poured over the set gel by using pipette then it was kept undisturbed. After 72 hours of pouring the second supernatant, the small nucleation growth was observed at below the interface of gel. The good quality crystals of [Bi(IO33], [BiI3] and [Bi2S3] were grown. These grown crystals were characterized by XRD, FTIR, Chemical Analysis and Electrical Conductivity.

  12. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use.

    Science.gov (United States)

    Martirosyan, K S; Wang, L; Vicent, A; Luss, D

    2009-10-01

    Our experiments showed that the combustion of an Al-Bi2O3 nanoparticle mixture generated the highest pressure pulse among common nanothermite reactions and can potentially be used as a nanoenergetic gas generator. The combustion front propagation velocity and rate of energy release increased by up to three orders of magnitude when the particle size was reduced to a nanosize range for both the aluminum and the oxidizer. We developed a novel one-step (metal nitrate-glycine) combustion synthesis of nanostructured amorphous-like and highly crystalline bismuth trioxide nanoparticles. The combustion synthesis was conducted using a solution of molten bismuth nitrate as an oxidizer and glycine as a fuel. The glycine was completely combusted during the thermal decomposition of the bismuth nitrate pentahydrate and generated a temperature front that propagated through the sample. Increasing the fuel concentration increased the maximum combustion temperature from 280 to 1200 degrees C and the Bi2O3 particle size from 20 to 100 nm. The oxidizer/fuel ratio had a strong impact on the bismuth trioxide particle crystallinity. At low temperature (280 degrees C), amorphous-like bismuth trioxide nanoparticles formed, while at T > or =370 degrees C the structures were crystalline. A peak pressure of approximately 12 MPa and a thermal front propagating velocity of approximately 2500 m s(-1) were achieved during the combustion of an Al-Bi2O3 mixture containing 80 wt% of the synthesized Bi2O3 crystalline nanoparticles (size: 40-50 nm).

  13. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    Science.gov (United States)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  14. Bismuth absorption from sup 205 Bi-labelled pharmaceutical bismuth compounds used in the treatment of peptic ulcer disease

    Energy Technology Data Exchange (ETDEWEB)

    Dresow, B.; Fischer, R.; Gabbe, E.E.; Wendel, J.; Heinrich, H.C. (Eppendorf University Hospital, Hamburg (Germany))

    1992-04-01

    The absorption of bismuth from five {sup 205}Bi-labelled pharmaceutically used bismuth compounds was studied in man. From single oral doses of all compounds under investigation only <0.1% bismuth was absorbed and excreted with the urine. A significantly higher absorption was observed from the colloidal bismuth subcitrate and the basic bismuth gallate than from the basic bismuth salicylate, nitrate and aluminate. No retention of bismuth in the whole body was found from the single dose experiment. The biologic fast-term half-lives of absorbed bismuth were calculated to be 0.12 and 1.5 days. 14 refs., 2 figs., 1 tab.

  15. Photoreductive generation of amorphous bismuth nanoparticles using polysaccharides--bismuth-cellulose nanocomposites.

    Science.gov (United States)

    Breitwieser, Doris; Kriechbaum, Margit; Ehmann, Heike M A; Monkowius, Uwe; Coseri, Sergiu; Sacarescu, Liviu; Spirk, Stefan

    2015-02-13

    A simple and highly reproducible synthesis of amorphous bismuth nanoparticles incorporated into a polysaccharide matrix using a photoreduction process is presented. As precursor for the generation of the Bi nanoparticles, organosoluble triphenylbismuth is used. The precursor is dissolved in toluene and mixed with a hydrophobic organosoluble polysaccharide, namely trimethylsilyl cellulose (TMSC) with high DSSi. The solution is subjected to UV exposure, which induces the homolytic cleavage of the bismuth-carbon bond in BiPh3 resulting in the formation of Bi(0) and phenyl radicals. The aggregation of the Bi atoms can be controlled in the TMSC matrix and yields nanoparticles of around 20 nm size as proven by TEM. The phenyl radicals undergo recombination to form small organic molecules like benzene and biphenyl, which can be removed from the nanocomposite after lyophilization and exposure to high vacuum. Finally, the TMSC matrix is converted to cellulose after exposure to HCl vapors, which remove the trimethylsilyl groups from the TMSC derivative. Although TMSC is converted to cellulose, the formed TMS-OH is not leaving the nanocomposite but reacts instead with surface oxide layer of the Bi nanoparticles to form silylated Bi nanoparticles as proven by TEM/EDX.

  16. Structure of unsupported bismuth nanoparticles

    Science.gov (United States)

    Wurl, A.; Hyslop, M.; Brown, S. A.; Hall, B. D.; Monot, R.

    We present new results of electron diffraction experiments on unsupported nanometer-sized bismuth clusters. The high intensity cluster beam, necessary for electron diffraction, is provided by an inert-gas aggregation source. The cluster beam contains particles with average cluster sizes between 4.5 and 10 nm. When using Helium as a carrier gas we are able to observe a transition from crystalline clusters to a new structure, which we identify with that of amorphous or liquid clusters.

  17. Ranitidine bismuth citrate: A review

    Directory of Open Access Journals (Sweden)

    N Chiba

    2001-01-01

    Full Text Available Recognition of the relationship between Helicobacter pylori infection and the development of gastroduodenal disease has increased greatly in recent years. To avoid complications of H pylori infection, such as the development of recurrent duodenal and gastric ulcers, effective therapies are required for eradication of the infection. This article reviews ranitidine bismuth citrate (RBC, a novel complex of ranitidine, bismuth and citrate, which was developed specifically for the purpose of eradicating H pylori. Dual therapy with RBC in combination with clarithromycin for 14 days yields eradication rates of 76%. Triple therapy bid for one week with a proton pump inhibitor, clarithromycin and either amoxicillin or a nitroimidazole (tinidazole or metronidazole is advocated as the treatment of choice for H pylori eradication. Analogous regimens with RBC in place of proton pump inhibitors show effective eradication rates in comparative studies and with pooled data. RBC, used alone or in combination with other antibiotics, appears to be a safe and effective drug for the treatment of H pylori infection. Bismuth levels do not appear to rise to toxic levels.

  18. In vitro cytotoxicity of surface modified bismuth nanoparticles.

    Science.gov (United States)

    Luo, Yang; Wang, Chaoming; Qiao, Yong; Hossain, Mainul; Ma, Liyuan; Su, Ming

    2012-10-01

    This paper describes in vitro cytotoxicity of bismuth nanoparticles revealed by three complementary assays (MTT, G6PD, and calcein AM/EthD-1). The results show that bismuth nanoparticles are more toxic than most previously reported bismuth compounds. Concentration dependent cytotoxicities have been observed for bismuth nanoparticles and surface modified bismuth nanoparticles. The bismuth nanoparticles are non-toxic at concentration of 0.5 nM. Nanoparticles at high concentration (50 nM) kill 45, 52, 41, 34 % HeLa cells for bare nanoparticles, amine terminated bismuth nanoparticles, silica coated bismuth nanoparticles, and polyethylene glycol (PEG) modified bismuth nanoparticles, respectively; which indicates cytotoxicity in terms of cell viability is in the descending order of amine terminated bismuth nanoparticles, bare bismuth nanoparticles, silica coated bismuth nanoparticles, and PEG modified bismuth nanoparticles. HeLa cells are more susceptible to toxicity from bismuth nanoparticles than MG-63 cells. The simultaneous use of three toxicity assays provides information on how nanoparticles interact with cells. Silica coated bismuth nanoparticles can damage cellular membrane yet keep mitochondria less influenced; while amine terminated bismuth nanoparticles can affect the metabolic functions of cells. The findings have important implications for caution of nanoparticle exposure and evaluating toxicity of bismuth nanoparticles.

  19. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-07

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  20. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated.

  1. 锌铋复杂氧化物Bi2Zn5O8的合成及其晶体生长特性%Synthesis and Crystal Growth Characteristic of Zinc Bismuth Complex Oxide Bi2Zn5O8

    Institute of Scientific and Technical Information of China (English)

    武志富

    2011-01-01

    The zinc bismuth complex oxides were prepared from zinc sulfate, bismuth nitrate and sodium hydroxide under ultrasonic irradiation.The effects of feed order and feed molar ratio on the final product were studied.The properties of the product were characterized by TG-DTA, SEM and TEM.The chemical composition was defined by means of X-ray fluorescence and continuous titration.The TEM and SEM images showed the dendrite crystal was formed.%利用硫酸锌、硝酸铋、氢氧化钠为原料在超声体系中反应合成锌铋复杂氧化物,考察了反应物料比和加料顺序对产物组成的影响.经X射线荧光及化学滴定确定了产物的分子式为Bi2Zn5O8,并由TEM、SEM和TG-DTA等方法对所得产物进行表征.TEM和SEM结果显示晶体呈枝蔓晶生长.

  2. Bismuth pyrochlore-based thin films for dielectric energy storage

    Science.gov (United States)

    Michael, Elizabeth K.

    end member increased the dielectric breakdown strength. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 +/- 2.0 J/cm 3, while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 +/- 2.0 J/cm3. Intermediate compositions of bismuth zinc niobate tantalate were explored to maximize the energy storage density of the substitutional solid solution. At an optimized concentration of ten mole percent tantalum, the maximum recoverable 10 kHz energy storage density was ˜66.9 +/- 2.4 J/cm3. These films of bismuth zinc niobate tantalate (Bi1.5Zn0.9Nb1.35Ta0.15O 6.9) sustained a maximum field of 5.5 MV/cm at 10 kHz, and demonstrated a relative permittivity of 122 +/- 4. The films maintained a high energy storage density above 20 J/cm3 though temperatures of 200°C. The second major objective of this work was to integrate complex oxides processed at temperatures below 350°C onto flexible polyimide substrates for potential use in flexible energy storage applications. Nanocomposite films consisting of a nanocrystalline fluorite related to delta-bismuth oxide in an amorphous matrix were prepared by reducing the citric acid concentration of the precursor solution, relative to the crystalline films. These solutions were batched with the composition Bi1.5Zn0.9Nb 1.35Ta0.15O6.9. The nanocomposite had a relative permittivity of 50 +/- 2 and dielectric losses on the order of 0.03 +/- 0.01. For measurement frequencies of 1 kHz and 10 kHz, the nanocomposite demonstrated a breakdown strength of 3.8 MV/cm, and a room-temperature energy storage density of approximately 40.2 +/- 1.7 J/cm3. To determine the suitability of the nanocomposite films for use in flexible applications, free-standing flexible nanocomposite films underwent

  3. Structural investigations of bismuth lead borosilicate glasses under the influence of gamma irradiation through ultrasonic studies

    Science.gov (United States)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Laopaiboon, Raewat

    2012-04-01

    The ultrasonic velocity measurements for different compositions of irradiated bismuth lead borosilicate glasses xBi2O3-(50-x)PbO-20B2O3-30SiO2 (x=2, 4, 6, 8, and 10 mol.%) were performed at room temperature using pulse-echo technique. Densities of glass samples were measured by Archimedes' principle using n-hexane as the immersion liquid. The results from the studies show that ultrasonic velocity, elastic moduli, Poisson's ratio, microhardness, and the Debye temperature increase with increasing bismuth oxide content and increasing gamma-radiation dose (3-12 Gy).

  4. Bismuth ions are metabolized into autometallographic traceable bismuth-sulphur quantum dots

    Directory of Open Access Journals (Sweden)

    M Stoltenberg

    2009-06-01

    Full Text Available Bismuth – sulphur quantum dots can be silver enhanced by autometallography (AMG. In the present study, autometallographic silver enhanced bismuth-sulphur nanocrystals were isolated from unfixed cryo-sections of kidneys and livers of rats exposed to bismuth (Bi207 subnitrate. After being subjected to AMG all the organic material was removed by sonication and enzymatic digestion and the silver enhanced Bi- S quantum dots spun down by an ultracentrifuge and analyzed by scintillation. The analysis showed that the autometallographic technique traces approximately 94% of the total bismuth. This implies that the injected bismuth is ultimately captured in bismuthsulphur quantum dots, i.e., that Bi-S nanocrystals are the end product of bismuth metabolism

  5. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    , but also concerning the metal particle formation, and the broadband near infrared luminescence. Both the inward diffusion and the infrared luminescence depend on the bismuth oxidation state. The latter can be varied by adjusting the parameters of the heat-treatment, e.g., time, temperature, and partial......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses....

  6. Recent progress of bismuth-containing photocatalysts%含铋光催化材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    王伟华; 叶红齐; 覃涛; 刘宣业; 黄辉; 赵炜康; 朱坤杰

    2014-01-01

    Bismuth-containing photocatalysts can be used in many fields because of narrow band gap and ability of adsorbing visible light. In this paper , the latest research status and progress of bismuth-containing photocatalysts are reviewed. Bismuth oxide , halide bismuth oxide , bismuth titanate,bismuth tungstate,bismuth vanadate,bismuth molybdate and bismuth ferrite are introduced and the methods of improving photocatalytic performance are highlighted,including improvement of synthesis methods,photocatalysts doping and preparation of photocatalyst composites. Finally,the research directions of bismuth-containing photocatalysts are presented,aimed at improving overall performance and realizing industrial application of bismuth-containing photocatalysts , such as preparing multi-doped photocatalysts,multiple photocatalyst composites and supported catalysts.%含铋光催化材料因其能吸收可见光、催化活性高而具有广阔的应用前景。本文主要回顾了含铋光催化材料近年来的研究概况,详细介绍了铋氧化物、卤氧化铋及钛酸铋、钨酸铋、钒酸铋、钼酸铋、铁酸铋等光催化剂的结构、制备和光催化性能,重点对光催化性能的改进方法进行了综述,包括制备方法的改良、催化剂的掺杂改性及复合催化剂的制备等;最后针对进一步提高光催化剂整体性能、实现工业化应用两点,提出了未来可以利用多元元素掺杂、多元半导体复合进行改性和负载于某些载体制备整体催化剂进行改良的观点。

  7. Preparation of Strontium Bismuth Tantalum (SBT) Fine Powder by Sol-Gel Process Using Bismuth Subnitrate as Bismuth Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Strontium bismuth tantalum (SBT) fine power was prepared by Sol-Gel method. Pentaethoxy tantalum, strontium acetate and bismuth subnitrate were used as raw materials, and were dissolved in proper order in ethylene glycol to form transparent sol. The mixed precursor was dried at 80°C and annealed at 800°C for 1 h. Crystallized nanometer sized SBT fine powder was obtained and characterized by XRD.

  8. Compatibility tests on steels in molten lead and lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, C. E-mail: concetta@netbra.brasimone.enea.it; Benamati, G.; Martini, C.; Palombarini, G

    2001-07-01

    The compatibility of steels with liquid lead and liquid lead-bismuth is a critical issue for the development of accelerator-driven system (ADS). In this work the results of a set of preliminary tests carried out in stagnant molten lead at 737 K and in lead-bismuth at 573, 673 and 749 K are summarised. The tests were conducted for 700, 1200, 1500 and 5000 h. Three steels were tested: two martensitic steels (mod. F82H and MANET II) and one austenitic steel (AISI 316L). The martensitic steels underwent oxidation phenomena at the higher testing temperature, due to oxygen dissolved in the melts. At a lower test temperature (573 K) and higher exposure time (5000 h) the oxidation rate of the martensitic steel seems to be lower and the developed oxide layer protective against liquid metal corrosion. The austenitic steel, in turn, exhibited an acceptable resistance to corrosion-oxidation under the test conditions.

  9. Electrochemical properties of porous bismuth electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Romann, T., E-mail: tavo.romann@ut.e [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Lust, E. [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-08-01

    The properties of Bi surfaces with different roughnesses were characterized by electron microscopy, cyclic voltammetry, and impedance spectroscopy. Two different strategies were used for preparation of porous bismuth layers onto Bi microelectrode surface in aqueous 0.1 M LiClO{sub 4} solution. Firstly, treatment at potential E < -2 V (vs. Ag|AgCl in sat. KCl) has been applied, resulting in bismuth hydride formation and decomposition into Bi nanoparticles which deposit at the electrode surface. Secondly, porous Bi layer was prepared by anodic dissolution (E = 1 V) of bismuth electrode followed by fast electroreduction of formed Bi{sup 3+} ions at cathodic potentials E = -2 V. The nanostructured porous bismuth electrode, with surface roughness factor up to 220, has negligible frequency dispersion of capacitance and higher hydrogen evolution overvoltage than observed for smooth Bi electrodes.

  10. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    OpenAIRE

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.

    2016-01-01

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and compo...

  11. 可见光响应的铋系光催化剂研究进展%Recent advances in bismuth-based visible light photocatalysts

    Institute of Scientific and Technical Information of China (English)

    陈超; 宋立民

    2011-01-01

    可见光响应的铋系光催化剂在降解和矿化难降解有机物方面具有良好的可见光光催化活性,介绍了卤氧化铋、钨酸铋、钛酸铋、钒酸铋、钼酸铋、复合型铋系可见光光催化剂的研究动态和主要成果,并从机理上作了解释,同时指出未来研究将集中在新型可见光光催化剂的开发和催化机理的研究方面.%Bismuth-based visible light photocatalysts has attracted much attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds utilizing the solar visible light spectrum. The recently published works of bismuth oxyhalides, bismuth tungstate, bismuth titanate, bismuth vanadates, bismuth molybdates, composite bismuth-based catalysts and so on are reviewed and summarized, and their photocata wtic oxidation mechanism are discussed. Extensive future research will be focused on the development of new kind of visible light photocatalyst and mechanism of photocatalytic oxidation.

  12. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    Science.gov (United States)

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  13. Conduction mechanism in bismuth silicate glasses containing titanium

    Science.gov (United States)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  14. Liquid Bismuth Propellant Flow Sensor

    Science.gov (United States)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  15. Bismuth centred magnetic perovskite: A projected multiferroic

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Asish K., E-mail: asish.k@gmail.com [Discipline of Physics, Indian Institute of Information Technology, Design and Manufacturing, Dumna Airport Road, Jabalpur 482005 (India); Seikh, Md. Motin [Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal 731235 (India); Nautiyal, Pranjal [Discipline of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Dumna Airport Road, Jabalpur 482005 (India)

    2015-03-15

    In recent time substantial attention has been initiated to understand the physics behind multiferroism and to design new multiferroic materials. BiMnO{sub 3} and BiFeO{sub 3} are the well-studied Bi-centred multiferroic oxides. BiMnO{sub 3} is a ferromagnetic–ferroelectric (metastable) phase and require drastic conditions to synthesize. However, lanthanum substituted BiMnO{sub 3} phases stabilized at ambient pressure. It is thus of major importance to increase the number of ferromagnetic perovskites with Bi cations that could be designed under ambient conditions. In this article, we have presented an up to date report of investigations on Bi-centred magnetic perovskites, a prospective material for multiferroic application. Central focus is concentrated on La{sub 0.5}Bi{sub 0.5}MnO{sub 3} perovskite with various substitutions at different levels. A few of these perovskites are found to be of practical importance e.g. La{sub 0.5}Bi{sub 0.5}Mn{sub 0.67}Co{sub 0.33}O{sub 3} with high dielectric permittivity coupled with ferromagnetism. A comprehensive analysis of different physical functionalities and their interrelation for a wide range of compositions of these Bi-centred perovskites is presented. It has been found that the complex magnetic behaviour originates from mixed valence metal ions. The ferroelectricity is associated with the 6s{sup 2} lone pair of Bi{sup 3+} cations. The magnetic ground state influences the dielectric properties reflecting the multiferroism in a single material. - Highlights: • Multiferroics have attracted increasing attention due to their possible device applications. • Bismuth centred magnetic perovskite is one kind of such promising multiferroic materials. • Ferromagnetic Bi-perovskites, which are synthesized at ambient conditions, have been discussed.

  16. 中国铋供需形势分析及对策建议%The analysis and suggestions of the bismuth' s supply and demand in China

    Institute of Scientific and Technical Information of China (English)

    龙涛; 陈其慎; 于汶加; 余倩; 张艳松

    2016-01-01

    Bismuth is a kind of "green metal"which can be used safely .This fact is now acknowledged widely in the world . At present , bismuth is widely applied in bismuth oxide industry , pharmaceutical industry ,bismuth alloy ,solder and metallurgical additive ,etc .Although China is now the largest bismuth resources keeper , producer , consumer and exporter , it is not a powerful bismuth industry country . Therefore ,recognizing timely the supply and demand situation of bismuth is the basement of the country and the enterprises to develop strategies . This paper which is based on the global view firstly took a comprehensive analysis about bismuth resources ,production ,supply ,demand ,trade and other status .And then by combining with the development trend of bismuth in China ,it made a judgment that is the demand of bismuth in China will peak to 18000t around 2030 .Considering the prominent problems bismuth industry faced ,this paper finally putted forward several measures and advices respectively from resource development ,resource recovery ,technology improvement and reducing international market risks to ensure the healthy development of bismuth industry in China .%铋(Bismuth)是全球公认的一种可安全使用的"绿色金属".目前,铋广泛应用于氧化铋行业、医药行业、铋合金及焊料和冶金添加剂等领域.中国是全球最大的铋资源国、生产国、消费国和出口国,但不是铋产业强国,因此及时认清当前中国铋的供需形势,是国家和企业制定发展战略的基础.本文在全球视野下,首先对中国铋的资源状况、生产供应、需求现状、贸易等进行综合分析,然后结合中国铋未来发展趋势,作出了2030年左右中国铋的需求量将达到峰值18000 t的判断.文章最后针对中国铋产业面临的突出问题,分别从资源开发、资源回收、技术提高和降低国际市场风险等方面提出了中国铋产业健康发展的对策建议.

  17. Preparation and characterization of nanocrystalline powders of bismuth vanadate

    Energy Technology Data Exchange (ETDEWEB)

    Shantha, K.; Varma, K.B.R. [Indian Inst. of Science, Bangalore (India). Materials Research Centre

    1999-05-31

    The influence of mechanical activation on the formation of Bi{sub 2}VO{sub 5.5}, bismuth vanadate (BiV) phase, was investigated by ball-milling a stoichiometric mixture of bismuth oxide and vanadium pentoxide. The structural evolution of the desired BiV phase, via an intermediate BiVO{sub 4} phase, was investigated using X-ray powder diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). Milling for 54h yielded monophasic {gamma}-BiV powders with an average crystallite size of 30 nm. The electron paramagnetic resonance (EPR) peaks associated with the V{sup 4+} ions are stronger and broader in nanocrystalline (n) BiV than in the conventionally prepared microcrystalline (m) BiV, suggesting that a significant portion of V{sup 5+} has been transformed to V{sup 4+} during milling. The optical bandgap of n-BiV was found to be higher than that of m-BiV. High density (97% of the theoretical density), fine-grained (average grain-size of 2 {mu}m) ceramics with uniform grain-size distribution could be fabricated using n-BiV powders. These fine-grained ceramics exhibit improved dielectric, pyro and ferroelectric properties. (orig.) 29 refs.

  18. Synthesis and characterization of bismuth alkaline titanate powders

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.mx [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Dominguez-Crespo, M.A. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Hernandez-Perez, M.A. [ESIQIE, Metalurgia, Instituto Politecnico Nacional, Mexico, D. F (Mexico); Garcia-Zaleta, D.S. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Brachetti-Sibaja, S.B. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo esq. Sor Juana Ines de la Cruz s/n Col. Los Mangos C.P.89440 Cd. Madero Tamaulipas (Mexico)

    2011-06-15

    In this work, samples of bismuth alkaline titanate, (K{sub 0.5}Na{sub 0.5}){sub (2-x/2)}Bi{sub (x/6)}TiO{sub 3}, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and {alpha} = 59.48{sup o}. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  19. Photobleaching effect in bismuth-doped germanosilicate fibers.

    Science.gov (United States)

    Firstov, Sergei; Alyshev, Sergey; Khopin, Vladimir; Melkumov, Mikhail; Guryanov, Alexey; Dianov, Evgeny

    2015-07-27

    Photoinduced reduction of absorption (photobleaching) in bismuth-doped germanosilicate fibers irradiated with 532-nm laser has been observed for the first time. It was demonstrated that bismuth-related active centers having the absorption bands at wavelengths of 1400 and 1700 nm degrade under photoexcitation at 532 nm. The photobleaching process rate was estimated using conventional stretched exponential technique. It was found that the photobleaching rate in bismuth-doped germanosilicate fibers does not depend on type of bismuth-related active center. The possible underlying mechanism of photobleaching process in bismuth-doped fibers is discussed.

  20. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)

    2013-07-01

    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  1. Burnout current density of bismuth nanowires

    Science.gov (United States)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  2. Bismuth titanate nanorods and their visible light photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-02-15

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi{sub 2}Ti{sub 2}O{sub 7} phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi{sub 2}Ti{sub 2}O{sub 7} phase are a promising candidate as a visible light photocatalyst.

  3. 氧化铋薄膜的制备及退火温度对其物相和表面形貌的影响%Preparation of Bismuth Oxide Films and Effects of Annealing Temperature on Phase and Surface Morphology

    Institute of Scientific and Technical Information of China (English)

    陈瑞芳; 徐瑞丽; 刘海霞; 花银群; 崔晓

    2013-01-01

    采用传统陶瓷烧结工艺,制备了直径为50 mm、厚度为3 mm的Bi2O3陶瓷靶,利用该陶瓷靶和射频磁控溅射技术在Si(111)基体上制备了氧化铋薄膜,研究了溅射压力为0.8 Pa时的氧分压对薄膜物相的影响,并探讨了退火温度(350~550 C)对薄膜的物相和表面形貌的影响.结果表明:随着氧分压从0增大到0.36 Pa,薄膜由BiO相逐渐变成α-Bi2O3相;随着退火温度的升高,薄膜中出现了新的物相,仍为多相结构,不同相的衍射峰半高宽变化有增有减;薄膜的晶粒尺寸随退火温度的升高而增大.%Bi2O3 ceramic targets with 50 rnm in diameter and 3 mm in thickness were prepared by the traditional solid-state sintering process. Bismuth Oxide films were deposited on Si (111) substrate by R F. magnetron sputtering using Bi2O3 ceramic targets. The effect of partial pressure of oxygen on the phase composition when total sputtering pressure was 0. 8 Pa, and the effect of annealing temperature (350 - 550 C) on the phase composition and surface morphology of bismuth oxide films were investigated. The results indicate that with the increase of oxygen partial pressure from 0 to 0. 36 Pa, the phase composition changed from BiO structure to α-Bi2O3 structure gradually. New phases appeared in films with the annealing temperature rising, but it was still multiphase structure. The full-width of the diffraction peak at half-height of different phases displayed various change. The grain size of films tended to increase with annealing temperature going up.

  4. Improving the photoactivity of bismuth vanadate thin film photoanodes through doping and surface modification strategies

    OpenAIRE

    Quiñonero, Javier; Lana Villarreal, Teresa; Gómez, Roberto

    2016-01-01

    Currently, one of the most attractive and desirable ways to solve the energy challenge is harvesting energy directly from the sunlight through the so-called artificial photosynthesis. Among the ternary oxides based on earth–abundant metals, bismuth vanadate has recently emerged as a promising photoanode. Herein, BiVO4 thin film photoanodes have been successfully synthesized by a modified metal-organic precursor decomposition method, followed by an annealing treatment. In an attempt to improve...

  5. Synthesis and Characterization of Bismuth-doped Zinc Oxide Nano-powders by Hydrothermal Method%铋掺杂氧化锌纳米粉体水热法制备及其表征

    Institute of Scientific and Technical Information of China (English)

    乐小芳; 谭艳; 陈燕梅; 万谦; 马粉波,; 吕维忠

    2012-01-01

    以氯化锌、硝酸铋为卡要原料,氢氧化钠为沉淀剂,采用水热法在水热温度为240℃,水热时间25h,pH为9的条件下制备了BZO粉体。刘粉末的前驱体进行了综合热分析,通过XRD物相分析和SEM分析可知,粉体成份为ZnO和Bi203的混合物,为颗粒状微粒.犬小均匀,微粒直径在100-200nm。%Bismuth-doped zinc oxide(BZO) nano-particles were prepared by hydrothermal method using ZnCI2 and Bi(NO3)3-5H2O as precursors and NaOH as precipitant, with the condition of 25 h hydrothermal time, 240℃ hydrothermal temperature, terminal pH of 7. The BZO precursors were studied by means of TG-DTA. The product particles were analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy(SEM). The particles are tiny granular mixtures of ZnO and Bi203, and show well-defined crystallographic faces. The length is about 100-200 nm.

  6. Single- and double energy N{sup +} ion irradiated planar optical waveguides in Er: Tungsten–tellurite oxide glass and sillenite type Bismuth Germanate crystals working up to telecommunications wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M.; Lohner, T. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Righini, G.C. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2013-07-15

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N{sup +} ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N{sup +} ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  7. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha, E-mail: s.kulkarni@iiserpune.ac.in [Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India); Sarkar, Indranil [DESY Photon Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg (Germany); Shirolkar, Mandar M. [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jeng, U-Ser; Yeh, Yi-Qi [National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Science Park, Hsinchu 3007-6, Taiwan (China)

    2014-09-08

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  8. Bismuth phosphates as intermediate temperature proton conductors

    DEFF Research Database (Denmark)

    Huang, Yunjie; Christensen, Erik; Shuai, Qin

    2016-01-01

    Proton conducting electrolyte materials operational in the intermediate temperature range of 200-400 °C are of special interest for applications in fuel cells and water electrolysers. Bismuth phosphates in forms of polycrystalline powders and amorphous glasses are synthesized and investigated...

  9. Development and Investigation of Bismuth Nanowires

    Science.gov (United States)

    2008-06-05

    To: technicalreports@afosr.af.mil Subject: Final Statement to Dr. Donald Silversmith Contract/Grant Title: Development and Investigation of...Report Development and Investigation of Bismuth Nanowires – Start up phase FA9550-07-1-0472 To Dr. Donald Silversmith AFOSR PI: Jimmy Xu

  10. Effect of Lipophilic Bismuth Nanoparticles on Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rene Hernandez-Delgadillo

    2015-01-01

    Full Text Available Lipophilic bismuth dimercaptopropanol nanoparticles (BisBAL NPs have a very important antimicrobial activity; however their effect on human cells or tissues has not been completely studied. Undesirable effects of bismuth include anemia which could result from suicidal erythrocyte death or eryptosis. The objective of this research was to determine the effect of bismuth dimercaptopropanol nanoparticles on blood cells. The nanoparticles are composed of 53 nm crystallites on average and have a spherical structure, agglomerating into clusters of small nanoparticles. Based on cell viability assays and optical microscopy, cytotoxicity on erythrocytes was observed after growing with 500 and 1000 µM of BisBAL NPs for 24 h. AM Calcein was retained inside erythrocytes when they were exposed to 100 µM (or lower concentrations of BisBAL NPs for 24 h, suggesting the absence of damage in plasmatic membrane. Genotoxic assays revealed no damage to genomic DNA of blood cells after 24 h of exposition to BisBAL NPs. Finally, 100–1000 µM of bismuth nanoparticles promotes apoptosis between blood cells after 24 h of incubation. Hence BisBAL NPs at concentrations lower than 100 µM do not cause damage on blood cells; they could potentially be used by humans without affecting erythrocytes and leukocytes.

  11. Structural investigation of Zn doped sodium bismuth borate glasses

    Science.gov (United States)

    Bhatia, V.; Kumar, D.; Singh, D.; Singh, S. P.

    2016-05-01

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na2O:15Bi2O3:70B2O3 (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO3 & BO4 structural units) have been observed.

  12. PEG-400 promoted oxidation reaction of 2-hydroxyl-1,2-diaryl-ethanone to 1,2-diaryl-1,2-ethanedione by bismuth nitrate%PEG-400促进的硝酸铋氧化二芳基乙醇酮合成二芳基乙二酮

    Institute of Scientific and Technical Information of China (English)

    刘逸; 曾鸿耀; 仲煜洁; 王嘉骝; 彭广明

    2015-01-01

    Polyethylene glycol 400(PEG 400)had been demonstrated as an efficient and eco-friendly reaction medium for the oxida-tion of 2-hydroxyl-1,2-diaryl-ethanone to 1,2-diaryl-1,2-ethanedione catalyzed by bismuth nitrate. The structure of the 1,2-diaryl-1,2-ethanedione was characterized by IR and 1 H NMR spectroscoroy. The method had advantages of short reaction time,high yield, simple work-up,and environmental friendliness.%PEG-400作为绿色反应溶剂能有效地促进硝酸铋氧化二芳基乙醇酮为二芳基乙二酮。产物结构用IR和1 H NMR光谱进行了表征。该方法具有反应时间短,产率较高,操作简便,环境友好等优点。

  13. Bismuth( Ⅲ ) Salts: Green Catalysts for Organic Transformations

    Institute of Scientific and Technical Information of China (English)

    C. Le Roux

    2005-01-01

    @@ 1Introduction Bismuth, the heaviest stable element in the periodic table, stands out from other heavy elements (such as mercury, thallium and lead) due to its relatively non-toxic character which confers on bismuth the enviable status of being an eco-friendly element. Therefore, bismuth and its compounds hold considerable promise as useful catalysts for green chemistry. The research presented in this communication is devoted to the applications of bismuth( Ⅲ ) salts as catalysts for organic transformations.After some general comments about bismuth and a short presentation of the various applications of bismuth( Ⅲ ) salts in organic synthesis, this communication will focus on the works done in our research group during the last several years which deals mainly with electrophilic substitutions. When appropriate, some mechanistic details will be given.

  14. Sandwich heterostructures of antimony trioxide and bismuth trioxide films: Structural, morphological and optical analysis

    Science.gov (United States)

    Condurache-Bota, Simona; Praisler, Mirela; Gavrila, Raluca; Tigau, Nicolae

    2017-01-01

    Thin film heterostructures can be advantageous since they either exhibit novel or a combination of the properties of their components. Here we propose sandwich-type of heterostructures made of antimony trioxide and bismuth trioxide thin films, which were deposited on glass substrates by thermal vacuum deposition at three substrate temperatures, 50° Celsius apart. Their morphology and optical properties are studied as compared to the corresponding monolayers. It was found that even small substrate temperature changes strongly influence their morphology, increasing their roughness, while the optical transmittance shows a slight decrease as compared with the individual layers. The corresponding absorption coefficient exhibits intermediate values as compared to the component oxides, while the energy bandgaps for the indirect allowed transitions move towards the Infrared when overlapping the antimony and bismuth trioxides.

  15. A novel antifuse structure based on amorphous bismuth zinc niobate thin films

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Li Wei; Li Ping; Li Zuxiong; Fan Xue; Jiang Jing

    2012-01-01

    A novel antifuse structure with amorphous bismuth zinc niobate (a-BZN) dielectrics was proposed.The characteristics of the a-BZN antifuse were investigated.Programming direction of up to down was chosen to rupture the a-BZN antifuse.The breakdown voltage of the a-BZN antifuse was obtained at a magnitude of 6.56 V.A large off-state resistance of more than 1 GΩ for the a-BZN antifuse was demonstrated.The surface micrograph of the ruptured a-BZN antifuses was illustrated.Programming characteristics with the programming time of 0.46 ms and on-state properties with the average resistance value of 26.1 Ω of the a-BZN antifuse were exhibited.The difference of characteristics of the a-BZN antifuse from that of a cubic pyrochlore bismuth zinc niobate (cp-BZN) antifuse and gate oxide antifuse was compared and analyzed.

  16. 一维棒状氧化铋的控制合成与生长机制%Controlled fabrication and growth mechanism of 1D rod-like bismuth oxide

    Institute of Scientific and Technical Information of China (English)

    王轶

    2014-01-01

    1D rod-like Bi2 O3 was synthesized by precipitating bismuth nitrate with sodium hydroxide under a mild one-step aqueous process in the presence of DESB (dodecyl ethoxy sulfobetaine) .The rod-like Bi2 O3 have better distribution with an average diameter of 4μm and length of up to tens of micrometers .X-ray diffraction and energy-dispersive X-ray analysis (EDX) indicate that rod-like Bi2 O3 with sharp end is monoclinic phase with high purity and crystallinity .A combined growth mechanism of oriented attachment followed by Ostwald ripening is speculated for the formation of rod-like Bi2 O3 based on experimental results .%以Bi(NO3)3·5H2 O为原料,NaOH为沉淀剂,DESB(十二烷基乙氧基磺基甜菜碱)为控制剂,采用一步水相沉淀法,在温和条件下(70℃)制备了直径约为4μm、长度为几十微米的棒状一维氧化铋。通过X射线衍射(XRD)、扫描电镜(SEM )、能量色散X射线(EDX)对其晶体结构、相组成、微观形貌及可能的生长机制进行了表征和分析。结果表明,所得两端呈尖角的棒状结构为高纯度的单斜相氧化铋,并且具有较好的结晶度。根据实验结果,推测定向附着(oriented attachment)与奥斯特瓦尔德熟化(Ostwald ripening)共同作用为其可能的生长机制。

  17. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    Science.gov (United States)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-05-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg.

  18. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

  19. Improved photoelectrochemical performance of bismuth vanadate by partial O/F-substitution

    Science.gov (United States)

    Anke, B.; Rohloff, M.; Willinger, M. G.; Hetaba, W.; Fischer, A.; Lerch, M.

    2017-01-01

    Fluorine-containing bismuth vanadate (F:BiVO4) powder was synthesized using a new, clean, and simple solid-vapor reaction. Incorporation of fluorine mainly leads to the formation of cation vacancies. Electrodes were fabricated from the pre-synthesized powder samples by electrophoretic deposition onto fluorine-doped tin oxide coated glass slides and subsequent calcination. The photoelectrochemical performance concerning the water oxidation reaction was investigated and compared to pristine BiVO4 revealing strongly enhanced photoelectrochemical behavior for the F-containing BiVO4.

  20. Electrical resistivity of thin bismuth films

    Science.gov (United States)

    Kumar, A.; Katyal, O. P.

    1990-05-01

    The effect of the film thickness of a bismuth film deposited on glass substrate on its electrical resistivity was investigated for films from 41 to 225 nm thickness, in the temperature range 77-350 K. Results show that the electrical resistivity decreases with increasing temperature and that, for films 98.3 and 225.9 nm thick there exists a minimum (between 260 and 350 K) in resistivity at some temperature, Tc. This minimum shifts toward higher temperature for thinner samples, and lies above 350 K. The thickness dependence of the bismuth film resistivity, obtained at 77, 150, and 300 K, can be explained by a modified Fuchs model, which takes into account the thickness dependence of carrier density.

  1. Factors affecting bismuth vanadate photoelectrochemical performance

    OpenAIRE

    Sinclair, Timothy S.; Hunter, Bryan M.; Winkler, Jay R.; Gray, Harry B.; Müller, Astrid M.

    2015-01-01

    Bismuth vanadate is a promising photoanode material, but recent reports on undoped BiVO_4 without sublayers and co-catalysts showed large variations in photocurrent generation. We addressed this issue by correlating photoelectrochemical performance with physical properties. We devised a novel anodic electrodeposition procedure with iodide added to the aqueous plating bath, which allowed us to prepare BiVO_4 photoanodes with virtually identical thicknesses but different morphologies, and we co...

  2. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth doped germanate laser glass

    DEFF Research Database (Denmark)

    Wang, L.P.; Tan, L.L.; Yue, Yuanzheng

    2016-01-01

    on how to improve the luminescence efficiency. Here, we demonstrate that addition of aluminum can enhance the bismuth near-infrared luminescence by more than 10 000 times, which is right followed by the discussion on the mechanism on why this can happen. We believe this work can be helpful for designing...... bismuth-doped multiple component laser glasses with high efficiency. In addition, because of high susceptibility of bismuth to local field change, it can be used as probe ion to envision glass structures. Using bismuth as a luminescent structural probe, we can see the modifier ions of Bi...

  3. Heat-Pipe Bismuth Laser; Examination of Laser Action at 4722A in Bismuth Vapor

    Science.gov (United States)

    1976-11-01

    transitions in other atomic vapors. 13. MODELING OF THE INITIAL BREAKDOWN PROCESS During the initial nanosecond after the fast thyratron switch closes suddenly...lasers computer modeling , laser kin etics bismuth vapor pressure and composition excitation cross sections bismuth dim ers e8ifn.eividienibbek 2Q...P3 / 2 " p $3/4 transi- 3/4 3/2 tion probability is at least a factor of 20 too low. Continuation of the computer modeling begun in this study could

  4. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures

    Science.gov (United States)

    Shi, Xinjian; Choi, Il Yong; Zhang, Kan; Kwon, Jeong; Kim, Dong Yeong; Lee, Ja Kyung; Oh, Sang Ho; Kim, Jong Kyu; Park, Jong Hyeok

    2014-09-01

    Tungsten trioxide/bismuth vanadate heterojunction is one of the best pairs for solar water splitting, but its photocurrent densities are insufficient. Here we investigate the advantages of using helical nanostructures in photoelectrochemical solar water splitting. A helical tungsten trioxide array is fabricated on a fluorine-doped tin oxide substrate, followed by subsequent coating with bismuth vanadate/catalyst. A maximum photocurrent density of ~5.35±0.15 mA cm-2 is achieved at 1.23 V versus the reversible hydrogen electrode, and related hydrogen and oxygen evolution is also observed from this heterojunction. Theoretical simulations and analyses are performed to verify the advantages of this helical structure. The combination of effective light scattering, improved charge separation and transportation, and an enlarged contact surface area with electrolytes due to the use of the bismuth vanadate-decorated tungsten trioxide helical nanostructures leads to the highest reported photocurrent density to date at 1.23 V versus the reversible hydrogen electrode, to the best of our knowledge.

  5. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting

    Science.gov (United States)

    Kim, Tae Woo; Ping, Yuan; Galli, Giulia A.; Choi, Kyoung-Shin

    2015-10-01

    n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO4 is its relatively wide bandgap (~2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ~0.2 eV but also increases the majority carrier density and mobility, enhancing electron-hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by ab initio calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO4 for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge.

  6. Structural relaxation in bismuth and lead borate glasses

    Science.gov (United States)

    Bajaj, Anu; Khanna, Atul

    2012-06-01

    Bismuth and lead borate glasses were prepared by melt quench technique. Effects of heat treatment on the density and thermal properties of bismuth and lead borate glasses was studied by annealing the glasses at 350°C for 500 h. Density of all bismuth borate glasses increases by about 0.5-0.7% with annealing and the effect is more in glasses with higher Bi2O3 concentration. In bismuth borate glasses with 50 and 55 mol % Bi2O3 we found an extraordinary large increase of Tg by 15°C after thermal annealing. All bismuth borate glasses remained completely clear and transparent on annealing. Lead borate glasses become cloudy on thermal annealing indicating occurrence of phase separation in these glasses.

  7. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jasmine B. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Garje, Shivram S., E-mail: ssgarje@chem.mu.ac.in [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Nuwad, Jitendra; Pillai, C.G.S. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-08-15

    Two different phase pure materials (Bi{sub 2}S{sub 3} and Bi{sub 2}P{sub 4}O{sub 13}) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi(S{sub 2}P(OR){sub 2}){sub 3} [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr{sup n}) (3) and iso-Propyl (Pr{sup i}) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi{sub 2}P{sub 4}O{sub 13}) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi{sub 2}P{sub 4}O{sub 13} thin films were also carried out. - Graphical abstract: Solvothermal decomposition of bismuth(III) dialkyldithiophosphates in ethylene glycol gave Bi{sub 2}S{sub 3} nanoparticles, whereas aerosol assisted chemical vapor deposition of these single source precursors deposited Bi{sub 2}P{sub 4}O{sub 13} thin films. Display Omitted - Highlights: • Preparation of phase pure orthorhombic Bi{sub 2}S{sub 3} nanorods and monoclinic Bi{sub 2}P{sub 4}O{sub 13} thin films. • Use of single source precursors for deposition of bismuth phosphate thin films. • Use of solvothermal decomposition and AACVD methods. • Morphology controlled synthesis of Bi{sub 2}P{sub 4}O{sub 13} thin films. • Bi{sub 2}S{sub 3} nanorods and Bi{sub 2}P{sub 4}O{sub 13} thin films using same single source precursors.

  8. Bismuth-Based Quadruple Therapy with Bismuth Subcitrate, Metronidazole, Tetracycline and Omeprazole in the Eradication of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Raymond Lahaie

    2001-01-01

    Full Text Available BACKGROUND: A previous study showed that 14 days of qid bismuth-based triple therapy with tetracycline 500 mg, metronidazole 250 mg and colloidal bismuth subcitrate 120 mg resulted in excellent Helicobacter pylori eradication rates (89.5%. The present study looked at a shorter treatment period by adding omeprazole and by reducing the dose of tetracycline.

  9. Influence of bismuth on the age-hardening and corrosion behaviour of low-antimony lead alloys in lead/acid battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Lam, L.T. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Huynh, T.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Haigh, N.P. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Douglas, J.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Rand, D.A.J. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Lakshmi, C.S. [Pasminco Research Centre, Boolaroo, NSW (Australia); Hollingsworth, P.A. [Pasminco Research Centre, Boolaroo, NSW (Australia); See, J.B. [Pasminco Research Centre, Boolaroo, NSW (Australia); Manders, J. [Pasminco Ltd., Melbourne, VIC (Australia); Rice, D.M. [Pasminco Ltd., Melbourne, VIC (Australia)

    1995-01-01

    The effects of bismuth additions in the range 0.006-0.086 wt.% on the metallurgical and electrochemical properties of Pb-1.5 wt.% Sb alloy are investigated. The self-discharge behaviour of batteries produced with grids of the doped alloys is also evaluated. Addition of bismuth is found to exert no significant effects on the age-hardening behaviour, general microstructure or grain size of the alloy. It does, however, influence the morphology of the eutectic in the inter-dendritic regions. The latter changes from a mainly lamellar to an irregular type with increasing bismuth content. The corrosion rate of the grid decreases with increase of the bismuth content. Attack occurs preferentially in the inter-dendritic regions where there is an enrichment of both antimony and bismuth. Electron-probe microanalysis shows that the corrosion zone consists of a tri-layered structure, namely: a dense, continuous, inner layer (PbO{sub 1.1}); a central layer (PbO{sub 1.8}.PbSO{sub 4}); a porous outer layer n(PbO{sub 1.8}).PbSO{sub 4}, with n=2-8. In the latter, the value of n increases in the direction of corrosive penetration into the grid. Data from atomic absorption spectrometric analysis reveal that bismuth, after oxidative leaching from the grid substrate, is retained mainly in the corrosion layer. A key observation is that bismuth (i.e., up to {approx}0.09 wt.%) does not affect the self-discharge behaviour of batteries. (orig.)

  10. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  11. Optical properties of bismuth tellurite based glass.

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi(2)O(3))(x) (TeO(2))(100-) (x) was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi(3+) increase, this is due to the increased polarization of the ions Bi(3+) and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, E(opt) decreases while the refractive index increases when the ion Bi(3+) content increases.

  12. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    Science.gov (United States)

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.

    2016-07-01

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.

  13. Effect of oxygen on fouling behavior in lead bismuth coolant systems

    Science.gov (United States)

    Niu, Fenglei; Candalino, Robert; Li, Ning

    2007-06-01

    This experimental research investigates the effects of the oxygen in lead-bismuth eutectic on fouling. The analysis was carried out by performing three tests with different oxygen concentration on the recuperator where the heat transfer rate is susceptible to fouling, and introducing a correlation for the fouling factor. The comparison of fouling factors obtained with each oxygen level is presented, the relationship between fouling factors and oxygen concentrations is correlated, and the effects of oxidation on heat transfer are demonstrated qualitatively by wetting conditions of the samples.

  14. Determining the background levels of bismuth in tissues of wild game birds: a first step in addressing the environmental consequences of using bismuth shotshells.

    Science.gov (United States)

    Jayasinghe, R; Tsuji, L J S; Gough, W A; Karagatzides, J D; Perera, D; Nieboer, E

    2004-11-01

    Bismuth shotshells have been approved as a "nontoxic" alternative to lead in North America. Approval was based on a limited number of studies; even background levels of bismuth in wildfowl were unknown. We report on the concentration of bismuth (and lead) in muscle and liver tissues of wildfowl (Anas platyrhynchos, Anas acuta, Anas crecca, Branta canadensis, Chen caerulescens) harvested with lead shotshell. Average liver-bismuth levels detected in the present study (e.g., teal, 0.05 microg/g dw; mallard, 0.09 microg/g dw) suggest analytical error in other studies examining the effects of bismuth in birds. Significant positive relationships between bismuth- and lead-tissue levels for muscle when all species were combined (and for B. canadensis and C. caerulescens separately) can be explained by noting that bismuth is a contaminant of lead. Thus, more research is recommended to confirm the appropriateness of bismuth as a "nontoxic" shot alternative.

  15. New bismuth borophosphate Bi{sub 4}BPO{sub 10}: Synthesis, crystal structure, optical and band structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Babitsky, Nicolay A.; Leshok, Darya Y.; Mikhaleva, Natalia S. [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Kuzubov, Aleksandr A., E-mail: alexkuzubov@gmail.com [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Zhereb, Vladimir P. [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation)

    2015-08-01

    New bismuth borophosphate Bi{sub 4}BPO{sub 10} was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi{sub 2}O{sub 2}]{sup 2+} -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi{sub 4}BPO{sub 10}. The strips combining stacks are separated by flat triangle [BO{sub 3}]{sup 3−} -anions within stacks. Neighboring stacks are separated by tetrahedral [PO{sub 4}]{sup 3−}-anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi{sub 4}BPO{sub 10} is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi{sub 4}BPO{sub 10} was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi{sub 4}BPO{sub 10} was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi{sub 4}O{sub 3}]{sup 6+} forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  16. Inhibition of urease by bismuth(III): implications for the mechanism of action of bismuth drugs.

    Science.gov (United States)

    Zhang, Li; Mulrooney, Scott B; Leung, Andy F K; Zeng, Yibo; Ko, Ben B C; Hausinger, Robert P; Sun, Hongzhe

    2006-10-01

    Bismuth compounds are widely used for the treatment of peptic ulcers and Helicobacter pylori infections. It has been suggested that enzyme inhibition plays an important role in the antibacterial activity of bismuth towards this bacterium. Urease, an enzyme that converts urea into ammonia and carbonic acid, is crucial for colonization of the acidic environment of the stomach by H. pylori. Here, we show that three bismuth complexes exhibit distinct mechanisms of urease inhibition, with some differences dependent on the source of the enzyme. Bi(EDTA) and Bi(Cys)(3) are competitive inhibitors of jack bean urease with K(i) values of 1.74 +/- 0.14 and 1.84 +/- 0.15 mM, while the anti-ulcer drug, ranitidine bismuth citrate (RBC) is a non-competitive inhibitor with a K (i) value of 1.17 +/- 0.09 mM. A (13)C NMR study showed that Bi(Cys)(3) reacts with jack bean urease during a 30 min incubation, releasing free cysteines from the metal complex. Upon incubation with Bi(EDTA) and RBC, the number of accessible cysteine residues in the homohexameric plant enzyme decreased by 5.80 +/- 0.17 and 11.94 +/- 0.13, respectively, after 3 h of reaction with dithiobis(2-nitrobenzoic acid). Kinetic analysis showed that Bi(EDTA) is both a competitive inhibitor and a time-dependent inactivator of the recombinant Klebsiella aerogenes urease. The active C319A mutant of the bacterial enzyme displays a significantly reduced sensitivity toward inactivation by Bi(EDTA) compared with the wild-type enzyme, consistent with binding of Bi(3+) to the active site cysteine (Cys(319)) as the mechanism of enzyme inactivation.

  17. Square wave anodic stripping voltammetric determination of Cd²⁺ and Pb²⁺ at bismuth-film electrode modified with electroreduced graphene oxide-supported thiolated thionine.

    Science.gov (United States)

    Li, Zou; Chen, Li; He, Fang; Bu, Lijuan; Qin, Xiaoli; Xie, Qingji; Yao, Shouzhuo; Tu, Xinman; Luo, Xubiao; Luo, Shenglian

    2014-05-01

    Graphene oxide (GO)-thionine (TH) nanocomposite was prepared by π-π stacking. The nanocomposite was cast-coated on a glassy carbon electrode (GCE) to prepare an electroreduced GO (ERGO)-TH/GCE, then 2-mercaptoethanesulfonate (MES) was covalently tethered to ERGO-TH by potentiostatic anodization to form an ERGO-TH-MES/GCE. The thiolation reaction was monitored by electrochemical quartz crystal microbalance (EQCM). Square wave anodic stripping voltammetry (SWASV) was used to determine Cd(2+) and Pb(2+) at the ERGO-TH-MES/GCE further modified with Nafion and Bi. Under the optimal conditions, the linear calibration curves for Cd(2+) and Pb(2+) are from 1 to 40 μg L(-1), with limits of detection (S/N=3) of 0.1 μg L(-1) for Cd(2+) and 0.05 μg L(-1) for Pb(2+), respectively. The electrode was used for the simultaneous analysis of Cd(2+) and Pb(2+) in water samples with satisfactory recovery.

  18. Preparation of Carbon Nanotubes Supporting Bismuth Oxide Nanometer Particle and Its Catalysis on Thermal Decomposition of Ammonium Dinitramide%碳纳米管负载氧化铋的制备及催化二硝酰胺铵热分解的研究

    Institute of Scientific and Technical Information of China (English)

    李晓东; 杨燕; 杨荣杰

    2007-01-01

    采用微波辐射法制备了沉积于碳纳米管(CNTs)表面的氧化铋(Ri2O3)纳米粒子(Bi2O3/CNTs),用扫描电子显微镜(SEM)、光电子能谱(XPS)和X射线衍射(XRD)对制备的Bi2OO3CNTs纳米粒子进行了表征.研究了Bi2O3/CNTs纳米粒子对二硝酰胺铵(ADN)的催化热分解.结果表明,纳米Bi2O3均匀沉积在CNTs表面,平均粒径为8nm;添加3%Bi2O3/CNTs纳米粒子的ADN的初始热分解温度降低了12.8℃,热分解终止温度降低了29.3℃;NH4N(NO2)2→NH4NO3+N2O为ADN初始热分解的主导反应.%Carbon nanotubes (CNTs) supporting bismuth oxide ( Bi2O3 ) nanometer particle ( Bi2O3/CNTs) was prepared by the microwave radiation method. Bi2O3/CNTs nanometer particle was determined by means of scan electron microscopy ( SEM ), X-ray photoelectron spectroscopy ( XPS ) and X-ray diffraction (XRD). The catalytic property of Bi2O3/CNTs nanometer particle on thermal decomposition of ammonium dinitramide (AND) was investigated by TG and DSC. The results show that nanometer Bi2O3 was coated uniformly on the surface of CNTs. Average size of nanometer Bi2O3 is 8nm. Initial thermal decomposition temperature and ending thermal decomposition temperature of AND decrease 12.8℃ and 29.3℃, respectively when addition amount of Bi2O3/CNTs nanometer particle is 3%. NwH4N(NO2 )2→ NH4NO3 + N2O is dominant reaction of initial thermal decomposition of AND.

  19. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar [Lehrstuhl fuer Glas und Keramik, WW3, Friedrich Alexander Universitaet Erlangen-Nuernberg, Martensstrasse 5, D-91058 Erlangen (Germany)], E-mail: mingying.peng@ww.uni-erlangen.de, E-mail: lothar.wondraczek@ww.uni-erlangen.de

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi{sub 2}O{sub 3} into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi{sup 3+} is formed. By comparing with atomic spectral data, absorption bands at {approx}320 , {approx}500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi{sup 0} transitions {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 3/2}, {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 1/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 5/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(2) and {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(1), respectively, and broadband NIR emission is assigned to the transition {sup 2}D{sub 3/2}(1){yields}{sup 4}S{sub 3/2}.

  20. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Science.gov (United States)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar

    2009-07-01

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi2O3 into elementary Bi. Darkening of bismuthate glass melted at 1300 °C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi3+ is formed. By comparing with atomic spectral data, absorption bands at ~320 , ~500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi0 transitions {}^{4}\\mathrm {S_{3/2}} \\to {}^{2}\\mathrm {P_{3/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {P_{1/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{5/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2}}(2) and {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2 }}(1) , respectively, and broadband NIR emission is assigned to the transition {}^{2}\\mathrm {D_{3/2}(1)}\\to {}^{4}\\mathrm {S_{3/2}} .

  1. Hierarchical bismuth phosphate microspheres with high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Lizhai; Wei, Tian; Lin, Nan; Yu, Haiyun [Anhui University of Technology, Ma' anshan (China). Key Laboratory of Materials Science and Processing of Anhui Province

    2016-05-15

    Hierarchical bismuth phosphate microspheres have been prepared by a simple hydrothermal process with polyvinyl pyrrolidone. Scanning electron microscopy observations show that the hierarchical bismuth phosphate microspheres consist of nanosheets with a thickness of about 30 nm. The diameter of the microspheres is about 1 - 3 μm. X-ray diffraction analysis shows that the microspheres are comprised of triclinic Bi{sub 23}P{sub 4}O{sub 44.5} phase. The formation of the hierarchical microspheres depends on polyvinyl pyrrolidone concentration, hydrothermal temperature and reaction time. Gentian violet acts as the pollutant model for investigating the photocatalytic activity of the hierarchical bismuth phosphate microspheres under ultraviolet-visible light irradiation. Irradiation time, dosage of the hierarchical microspheres and initial gentian violet concentration on the photocatalytic efficiency are also discussed. The hierarchical bismuth phosphate microspheres show good photocatalytic performance for gentian violet removal in aqueous solution.

  2. Melting and solidification of bismuth inclusions in aluminium

    DEFF Research Database (Denmark)

    Thoft, N.B.; Bohr, J.; Buras, B.

    1995-01-01

    Supercooling of crystalline bismuth inclusions in aluminium crystals has been observed and studied with different techniques: x-ray diffraction, in situ Rutherford backscattering/channelling spectrometry and transmission electron microscopy. The results of the measurements with different experime......Supercooling of crystalline bismuth inclusions in aluminium crystals has been observed and studied with different techniques: x-ray diffraction, in situ Rutherford backscattering/channelling spectrometry and transmission electron microscopy. The results of the measurements with different...

  3. Preparation and Structure Alternatives of Bismuth Cobalt Oxide Thermoelectric Materials%Bi系Co基氧化物热电材料制备及结构替代研究

    Institute of Scientific and Technical Information of China (English)

    陈平宇; 李智东; 郭捷; 赵昆渝; 段云彪; 黄航

    2011-01-01

    Bi2SrCaCo2Oδand Bi2Ca2Co2O8 oxide thermoelectric materials were prepared by solid- state reactions. The effect of substitution Ca for Sr on ceramic preparation condition, electrical properties and crystal structure anisotropie were studied. Influence of sintering temperatures and doping content on microstructure as well as electrical properties of ceramics were investigated by XRD, SEM and a standard four probes method. The results indicate that the crystal structure of Bi2Sr2Co2O8 is not destroyed by Ca substitution on the Sr, and also shows layered grown obviously, e -axis preferred orientation obviously.The c - axis size decreased due to the replacement of Sr with Ca. The sintering temperatures increase with the substitution Ca for Sr. Temperature dependence of electric resistivity showed obviously semiconductive behaviors.%采用常压固相烧结法制备Bi2SrCaCo2Oδ和Bi2Ca2Co2Oδ氧化物热电材料,研究Sr、Ca位替代或掺杂对陶瓷材料制备条件、晶体结构和电学性能的影响.通过XRD、SEM、EDS等表征技术及标准四探针法研究了烧结温度和晶体结构参数对陶瓷物相、显微组织形貌和电学性能的影响.结果表明同族元素Ca、Sr的互相替代,Bi系Co基氧化物仍然呈现岩盐型层片状晶体结构,且一定程度上表现出插层替代的特性,仍具有明显的c轴择优取向.由于Ca元素替代Sr元素,c轴尺寸减小,同时烧结温度上升;电阻率-温度关系图显示,样品呈现出明显的半导体特性.

  4. Studies on bismuth carboxylates—synthesis and characterization of a new structural form of bismuth(III) dipicolinate

    Indian Academy of Sciences (India)

    O Anjaneyulu; K C Kumara Swamy

    2011-03-01

    Synthesis and X-ray structure of a new bismuth dipicolinate cooordination polymer, {[Bi((2,6-O2C)2C5H3N)((2-HO2C-6-O2C)C5H3N)(H2O)]2.5H2O} (7) are presented. Compound 7 has dimeric units with a Bi2O2 skeleton that are linked by additional weak Bi-O interactions leading to a polymeric structure. The overall coordination number at bismuth is 9 [two Bi-N and seven Bi-O bonds]. New routes to a second crystalline modification (4′) of the previously reported coordination polymer, bismuth tris(picolinate), [Bi(2-O2C-C5H4N)3] (4), are described; bond parameters in the two crystalline forms (4 and 4′) are compared. In both the compounds 4′ and 7, bismuth has a distorted tricapped trigonal prismatic geometry.

  5. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shiv Prakash; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Central Glass and Ceramic Research Institute (CSIR, India), Glass Science and Technology Section, Glass Division (India)

    2011-09-15

    In this study, in situ control growth of bismuth nanoparticles (Bi{sup 0} NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2-8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4-9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 Degree-Sign C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  6. New complex bismuth oxides in the Bi{sub 2}O{sub 3}–NiO–Sb{sub 2}O{sub 5} system and their properties

    Energy Technology Data Exchange (ETDEWEB)

    Egorysheva, A.V., E-mail: anna_egorysheva@rambler.ru [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Ellert, O.G. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Zubavichus, Y.V. [National Research Center “Kurchatov Institute”, Acad. Kurchatov sq., 1, Moscow 123182 (Russian Federation); Gajtko, O.M.; Efimov, N.N. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Svetogorov, R.D.; Murzin, V.Yu. [National Research Center “Kurchatov Institute”, Acad. Kurchatov sq., 1, Moscow 123182 (Russian Federation)

    2015-05-15

    Phase equilibria in the Bi{sub 2}O{sub 3}–NiO–Sb{sub 2}O{sub 5} system have been investigated. The isothermal section of the system (650°) has been constructed. For the first time the existence of the pyrochlore structure solid solution, (Bi{sub 2−x}Ni{sub x})Ni{sub 2/3−y}Sb{sub 4/3+y}O{sub 7±δ}, x=0.1−0.35, y=0−0.1, and a new compound Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} of KSbO{sub 3} structure type have been discovered. The structures and properties of these compounds were studied by XRD, XAFS, diffuse reflection spectroscopy and magnetic methods. Rietveld refinement of synchrotron radiation-based powder XRD data for pyrochlore sample of 38.43Bi{sub 2}O{sub 3}–33.0NiO–28.57Sb{sub 2}O{sub 5} composition and Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} compound was performed. The best possible refinement of the positional parameters for both pyrochlore and Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} structures was achieved for disordered models. Magnetic, diffuse reflection and an X-ray absorption spectroscopy study confirmed that in both compounds nickel ions are mainly in a 2+ oxidation state. According to magnetic data, Bi{sub 1.84}Ni{sub 0.16}(Ni{sub 0.63}Sb{sub 1.37})O{sub 7} pyrochlore and Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} are overall paramagnetic in nature. - Graphical abstract: Isothermal section of the Bi{sub 2}O{sub 3}–NiO–Sb{sub 2}O{sub 5} system at 650 °C in air and variation of magnetic susceptibility and inverse susceptibility with temperature for Bi{sub 1.84}Ni{sub 0.79}Sb{sub 1.37}O{sub 7} pyrochlore. - Highlights: • We have constructed the isothermal section of the system Bi{sub 2}O{sub 3}–NiO–Sb{sub 2}O{sub 5}. • The boundaries of pyrochlore structure solid solution have been determined. • New Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} compound of KSbO{sub 3} structure type have been discovered. • The structures were studied by means of synchrotron X-ray diffraction and XAFS. • Magnetic measurements

  7. 镧铋复合掺杂PLZT压电驱动材料的研制%Preparation of Bismuth Lanthanum Doped PLZT Drive Compositepiezoelectric

    Institute of Scientific and Technical Information of China (English)

    文理

    2015-01-01

    本文研究氧化铋、氧化镧对锆钛酸铅改性合成PLZT压电驱动材料,研究了氧化铋、氧化镧掺杂PZT对其介电常数、压电常数、机电耦合系数及晶相的影响。实验结果表明:当氧化铋为2wt%、氧化镧掺杂量为4.0mol%,制得的压电陶瓷材料具有最佳的压电性能:εr=4200, D33=710pC/N,Kp=0.81,tanδ=1.5%,满足压电驱动元件的高性能要求。%In this paper, we studied bismuth oxide, lanthanum oxide of lead zirconate titanate modified synthesis of PLZT piezoelectric drive materials, bismuth oxide, lanthanum oxide doped PZT the dielectric constants, piezoelectric constant and electromechanical coupling coefficient, and the influence of the phase. The experimental results show that,when the bismuth oxide 2wt%,lanthanum oxide 4wt% doped ,the prepared piezoelectric ceramic material has the best piezoelectric properties,εr=4200, D33=710pC/N, Kp=0.81, tanδ=1.5%, can meet the requirements of high performance piezoelectric driving element.

  8. Development and Testing of an Americium/Lanthanide Separation Flowsheet Using Sodium Bismuthate

    Energy Technology Data Exchange (ETDEWEB)

    Jack Law; Bruce Mincher; Troy Garn; Mitchell Greenhalgh; Nicholas Schmitt; Veronica Rutledge

    2014-04-01

    The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term heat load of material interred in a future high-level waste repository. A separation process amenable to process scale-up remains elusive. Given only subtle chemistry differences within and between the ions of the trivalent actinide and lanthanide series this separation is challenging ; however, higher oxidation states of americium can be prepared using sodium bismuthate and separated via solvent extraction using diamylamylphosphonate (DAAP) extraction. Among the other trivalent metals only Ce is also oxidized and extracted. Due to the long-term instability of Am(VI) , the loaded organic phase is readily selectively stripped to partition the actinide to a new acidic aqueous phase. Batch extraction distribution ratio measurements were used to design a flowsheet to accomplish this separation. Additionally, crossflow filtration was investigated as a method to filter the bismuthate solids from the feed solution prior to extraction. Results of the filtration studies, flowsheet development work and flowsheet performance testing using a centrifugal contactor are detailed.

  9. China Plays an Important Role in the World Bismuth Market Place

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Available statistics shows that China not only has the world largest bismuth deposit but also is the world largest producer, exporter and consumer country. Particularly in the recent three years, China’s production and supply as well as the related policy changes has become a major factor in the bismuth market price fluctuations. China’s bismuth ore production in the recent two years has been kept stable and China’s output of bismuth ore concentrates accounts for

  10. Prognostic Value of Bismuth Typing and Modified T-stage in Hilar Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Shengen Yi

    2015-01-01

    Conclusion: The majority of our patients with HCC were characterized as Subtype IV in Bismuth typing and Stage T3 in modified T-stage. Both Bismuth typing and modified T-stage showed prognostic value in HCC. Compared with Bismuth typing, modified T-stage is a better indicator of the resectability of HCC.

  11. Mixed conductivity in terbia-stabilized bismuth oxide

    NARCIS (Netherlands)

    Vinke, I.C.; Boukamp, B.A.; Vries, de K.J.; Burggraaf, A.J.

    1992-01-01

    The mixed conducting solid solution 0.75Bi2O3−0.25Tb4O7 (BT40) was studied by impedance techniques using ionically blocking electrodes. These measurements confirmed the p-type electronic conductivity suggested in literature. In air at temperatures between 600 and 900 K the ionic transference number

  12. Thin film bismuth iron oxides useful for piezoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  13. The optical properties of bismuth germanium oxide single crystals

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    2000-09-01

    Full Text Available Bi12GeO20 single crystals were grown by the Czochralski technique. Suitable polishing and etching solutions were determined. Reflection spectra were recorded in the wave numbers range 20–5000 cm–1, and compared with the spectra of Bi12SiO20 single crystals to study the position of the phonon modes. The optical constants of the Bi12GeO20 single crystals were obtained using Kramers-Kronig analysis. The obtained results are dicussed and compared with published data.

  14. Thermodynamic Analysis and Reduction of Bismuth Oxide by Ethanol

    Science.gov (United States)

    Korkmaz, Fatih; Cetinkaya, Senol; Eroglu, Serafettin

    2016-08-01

    In this study, ethanol (C2H5OH) was used as an alternative reducing agent for Bi2O3 because ethanol is renewable, increasingly available, and low in toxicity. Thermodynamic analysis was performed to predict experimental conditions for Bi formation in the Bi2O3-C2H5OH-Ar system at Ar/C2H5OH molar ratio of 10.5. Ar was used as a carrier gas for ethanol. Bi2O3 reduction kinetics was investigated at 600 K to 800 K (327 °C to 527 °C) at Ar flow rate 85 sccm. Ar flow rate was also varied at 600 K and 800 K (327 °C and 527 °C) in order to clarify the mechanism controlling the process. Mass measurements and XRD analyses were carried out to determine the extent of reduction. Fractional conversion increased with time and temperature. Full reduction time decreased from ~180 minutes at 600 K (327 °C) to ~30 minutes at 700 K and 800 K (427 °C and 527 °C). The reduction process was external mass transfer limited ( Q a = 7.2 kJ/mole) above 700 K (427 °C). It was controlled by intrinsic chemical kinetics ( Q a = 54.7 kJ/mole) below 700 K (427 °C). In the mass-transport-controlled regime, the extent of reduction increased with flow rate as predicted by a mass-transport theory. Possible reaction pathways were discussed using the thermodynamic and experimental results.

  15. Bismuth X-ray absorber studies for TES microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Sadleir, J.E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States) and University of Illinois Physics Department, Urbana, IL 61801 (United States)]. E-mail: sadleir@milkyway.gsfc.nasa.gov; Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brekosky, R.P. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Chervenak, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkbeiner, F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R.L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); King, J.M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Robinson, I.K. [University of Illinois Physics Department, Urbana, IL 61801 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Talley, D.J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2006-04-15

    Bismuth's large atomic number and low carrier density makes it an attractive X-ray absorber material for microcalorimeters. Bismuth's long Fermi wavelength and long mean free paths have motivated much interest in the fabrication of high quality bismuth films to study quantum size effects. Despite such incentives, fabrication of high quality bismuth films has proven difficult, and measured properties of such films are highly variable in the literature. Implementing a bismuth deposition process for TES (superconducting Transition Edge Sensor) device fabrication presents additional challenges particularly at interfaces due to the inherent granularity and surface roughness of its films, its low melting point, and its tendency to diffuse and form undesired intermetallic phases. We report observations of Bi-Cu and Bi-Au diffusion in our devices correlating with large shifts in T{sub c} (superconducting transition temperature). Using SEM and in situ R vs T annealing experiments we have been able to study these diffusion processes and identify their activation temperatures.

  16. Bismuth nanoparticles for phenolic compounds biosensing application.

    Science.gov (United States)

    Mayorga-Martinez, Carmen C; Cadevall, Miquel; Guix, Maria; Ros, Josep; Merkoçi, Arben

    2013-02-15

    The rapid determination of trace phenolic compounds is of great importance for evaluating the total toxicity of contaminated water samples. Nowadays, electrochemical tyrosinase (Tyr) based biosensors constitute a promising technology for the in situ monitoring of phenolic compounds because of their advantages such as high selectivity, low production cost, promising response speed, potential for miniaturization, simple instrumentation and easy automatization. A mediator-free amperometric biosensor for phenolic compounds detection based on the combination of bismuth nanoparticles (BiNPs) and Tyr for phenol detections will be hereby reported. This is achieved through the integration of BiNPs/Tyr onto the working electrode of a screen printed electrode (SPE) by using glutaraldehyde as a cross-linking agent. BiNPs/Tyr biosensor is evaluated by amperometric measurements at -200 mV DC and a linear range of up to 71 μM and 100 μM and a correlation coefficient of 0.995 and 0.996 for phenol and catechol, respectively. The very low DC working potential ensures the avoidance of interferences making this biosensor an advantageous device for real sample applications. In addition, the response mechanism including the effect of BiNPs based on electrochemical studies and optical characterizations will be also discussed. The obtained results may open the way to many other BiNPs applications in the biosensing field.

  17. Laser Spectroscopy of Neutron Rich Bismuth Isotopes

    CERN Multimedia

    2002-01-01

    %IS344 :\\\\ \\\\ The aim of the experiment is to measure the optical isotope shifts and hyperfine structures of bismuth isotopes across the N=126 shell closure in order to extract the change in mean square charge radii ($\\delta\\langle r^{2}\\rangle$) and static moments. These include the first isotones of lead to be measured directly above the shell closure and will provide new information on the systematics of the kink ($\\delta\\langle r^{2}\\rangle)$ seen in the lead isotopic chain. After two very successful runs the programme has been extended to include the neutron deficient isotopes below $^{201}$Bi to study the systematics across the $i_{13/2}$ neutron sub-shell closure at N=118.\\\\ \\\\ During the initial 2 runs (9 shifts) the isotope shifts and hyperfine structures of three new isotopes, $ ^{210,212,213}$Bi and the 9$^{-}$ isomer of $^{210}$Bi have been measured. The accuracy of the previous measurements of $^{205,206,208}$Bi have been greatly improved. The samples of $ ^{208,210,210^{m}}$Bi were prepared by c...

  18. LMO dielectronic resonances in highly charged bismuth

    Science.gov (United States)

    Smiga, Joseph; Gillaspy, John; Podpaly, Yuri; Ralchenko, Yuri

    2016-05-01

    Dielectronic resonances from high-Z elements are important for the analysis of high temperature plasmas. Thus, the extreme ultraviolet spectra of highly charged bismuth were measured using the NIST electron beam ion trap (EBIT) at beam energies ranging from 8.7 keV to 9.2 keV. The measured intensity ratios between forbidden magnetic-dipole lines in Bi64+ and Bi63+ show strong resonance features. The experimental data were compared to theoretical predictions from a large-scale collisional-radiative model with the code NOMAD, and good agreement was found that allowed the identification of observed resonance features as the LMO inner-shell dielectronic resonances. It is common practice in EBIT experiments that ions are periodically dumped from the trap and replaced. However, in this particular experiment, the contents of the trap were not dumped for the duration of each 10 minute sampling. The effects of trap stability were studied and a small but noticeable shift in beam energy over time was observed. Potential explanations for this are considered.

  19. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Marina Ratova

    2016-01-01

    Full Text Available Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD. Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS. Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating.

  20. Interaction study between MOX fuel and eutectic lead-bismuth coolant

    Science.gov (United States)

    Vigier, Jean-François; Popa, Karin; Tyrpekl, Vaclav; Gardeur, Sébastien; Freis, Daniel; Somers, Joseph

    2015-12-01

    In the frame of the MYRRHA reactor project, the interaction between fuel pellets and the reactor coolant is essential for safety evaluations, e.g. in case of a pin breach. Therefore, interaction tests between uranium-plutonium mixed oxide (MOX) pellets and molten lead bismuth eutectic (LBE) have been performed and three parameters were studied, namely the interaction temperature (500 °C and 800 °C), the oxygen content in LBE and the stoichiometry of the MOX (U0.7Pu0.3O2-x and U0.7Pu0.3O2.00). After 50 h of interaction in closed containers, the pellet integrity was preserved in all cases. Whatever the conditions, neither interaction compounds (crystalline or amorphous) nor lead and bismuth diffusion into the surface regions of the MOX pellets has been detected. In most of the conditions, actinide releases into LBE were very limited (in the range of 0.01-0.15 mg), with a homogeneous release of the different actinides present in the MOX. Detected values were significantly higher in the 800 °C and low LBE oxygen content tests for both U0.7Pu0.3O2-x and U0.7Pu0.3O2.00, with 1-2 mg of actinide released in these conditions.

  1. Characterization of bismuth nanospheres deposited by plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: cscientific2@aec.org.sy [IBA Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Mrad, O. [Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  2. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  3. Dependence of optical properties of calcium bismuthates on synthesis conditions

    Science.gov (United States)

    Shtarev, D. S.; Shtareva, A. V.

    2016-08-01

    The article studies optical properties of calcium bismuthate nanoparticles of different composition. For the first time the synthesis of these compounds was produced by the pyrolysis of organic precursors using an organic solvent. Characterization of particles was made by scanning electron microscopy and X-ray analysis. The optical properties were investigated by diffuse reflectance spectroscopy (DRS). It is shown that the type of crystal lattice of the particles of calcium bismuthate determines the possibility to control the optical properties of nanoparticles by varying their composition. The conclusions about the production process and the composition of calcium bismuthate, the most promising for use as a photocatalyst of visible light and solar cells, were made.

  4. Using nanostructured conductive carbon tape modified with bismuth as the disposable working electrode for stripping analysis in paper-based analytical devices.

    Science.gov (United States)

    Feng, Qiu-Mei; Zhang, Qing; Shi, Chuan-Guo; Xu, Jing-Juan; Bao, Ning; Gu, Hai-Ying

    2013-10-15

    Low cost disposable working electrodes are specifically desired for practical applications of electrochemical detection considering maturity of electrochemical stations and data collection protocols. In this paper double-sided conductive adhesive carbon tape with nanostructure was applied to fabricate disposable working electrodes. Being supported by indium tin oxide glass, the prepared carbon tape electrodes were coated with bismuth film for stripping analysis of heavy metal ions. By integrating the bismuth modified electrodes with paper-based analytical devices, we were able to differentiate Zn, Cd and Pb ions with the sample volume of around 15 μL. After the optimization of parameters, including modification of bismuth film and the area of the electrodes, etc., Pb ions could be measured in the linear range from 10 to 500 μg/L with the detection limit of 2 μg/L. Our experimental results revealed that the disposable modified electrodes could be used to quantify migrated lead from toys with the results agreed well with that using atomic absorption spectrometry. Although bismuth modification and stripping analysis could be influenced by the low conductivity of the carbon tape, the low cost disposable carbon tape electrodes take the advantages of large-scaled produced double-sided carbon tape, including its reproducible nanostructure and scaled-up fabrication process. In addition, the preparation of disposable electrodes avoids time-consuming pretreatment and experienced operation. This study implied that the carbon tape might be an alternative candidate for practical applications of electrochemical detection.

  5. Compact and Integrated Liquid Bismuth Propellant Feed System

    Science.gov (United States)

    Polzin, Kurt A.; Stanojev, Boris; Korman, Valentin; Gross, Jeffrey T.

    2007-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions [1]. There has been considerable effort in the past three years aimed at resuscitating this promising technology and validating earlier experimental results indicating the advantages of a bismuth-fed Hall thruster. A critical element of the present effort is the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre./post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work is to develop a precision liquid bismuth Propellant Management System (PMS) that provides hot, molten bismuth to the thruster while simultaneously monitoring in real-time the propellant mass flow rate. The system is a derivative of our previous propellant feed system [2], but the present system represents a more compact design. In addition, all control electronics are integrated into a single unit and designed to reside on a thrust stand and operate in the relevant vacuum environment where the thruster is operating, significantly increasing the present technology readiness level of liquid metal propellant feed systems. The design of various critical components in a bismuth PMS are described. These include the bismuth reservoir and pressurization system, 'hotspot' flow sensor, power system and integrated control system. Particular emphasis is given to selection of the electronics employed in this system and the methods that were used to isolate the power and control systems from the high-temperature portions of the feed system and thruster. Open loop calibration test results from the 'hotspot' flow sensor are reported, and results of

  6. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A., E-mail: soumen.basu@phy.nitdgp.ac.in; Banerjee, M., E-mail: soumen.basu@phy.nitdgp.ac.in; Basu, S., E-mail: soumen.basu@phy.nitdgp.ac.in [Department of Physics, National Institute of Technology, Durgapur-713209 (India); Pal, M. [CSIR-Central Mechanical Engineering Research Institute, Durgapur-713209 (India)

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  7. Microscopic and voltammetric properties of lustrous bismuth deposits

    OpenAIRE

    Krolicka, Agnieszka; Bobrowski, Andrzej; Pamuła, Elżbieta

    2010-01-01

    A comparison of lustrous bismuth films, plated at glassy carbon, platinum and gold supports, is presented. The voltammetric performance of preplated bismuth film electrodes was tested using 50 μg/L In(III) and 50 μg/L Pb(II) solutions in 0.1 M acetic buffer in square wave and differential pulse modes. The influence of support material, plating solution concentration and storing conditions on the voltammetric response of BiFEs is discussed. The results of microscopic examination...

  8. Selective propene oxidation on mixed metal oxide catalysts

    CERN Document Server

    James, D W

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including coba...

  9. Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates.

    Science.gov (United States)

    Miersch, L; Rüffer, T; Schlesinger, M; Lang, H; Mehring, M

    2012-09-03

    Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) Å, b = 13.4298(9) Å, c = 17.8471(14) Å, β = 94.531(6)°, V = 2210.5(3) Å(3); 2, a = 9.0149(3) Å, b = 16.9298(4) Å, c = 15.6864(4) Å, β = 90.129(3)°, V = 2394.06(12) Å(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1 both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) Å, b = 20.3871(9) Å, c = 34.9715(15) Å, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) Å(3); 5, a = 20.0329(4) Å, b = 20.0601(4) Å, c = 34.3532(6) Å, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) Å(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.

  10. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    Directory of Open Access Journals (Sweden)

    Chekalin S.

    2013-03-01

    Full Text Available Femtosecond spectroscopy was applied to capture complex dynamics of non equilibrium electrons in bismuth. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along the Γ-T direction of the Brillouin zone

  11. REMOVAL OF CERTAIN FISSION PRODUCT METALS FROM LIQUID BISMUTH COMPOSITIONS

    Science.gov (United States)

    Dwyer, O.E.; Howe, H.E.; Avrutik, E.R.

    1959-11-24

    A method is described for purifying a solution of urarium in liquid bismuth containing at least one metal from the group consisting of selenium, tellurium, palladium, ruthenium, rhodium, niobium, and zirconium. The solution is contacted with zinc in an inert atmosphere to form a homogeneous melt, a solid zinc phase is formed, and the zinc phase containing the metal is separated from the melt.

  12. Polymeric architectures of bismuth citrate based on dimeric building blocks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Four bismuth complexes, (H2En)[Bi2(cit)2(H2O)4/3]·(H2O)x (1), (H2En)3[Bi2(cit)2Cl4]·(H2O)x (2), (HPy)2[Bi2(cit)2(H2O)8/5]·(H2O)x (3) and (H2En)[Bi2(cit)2](H2O)x (4) [cit = citrate4-; En = ethylenediamine; Py = pyridine] have been synthesized and crystallized. The crystal structures reveal that the basic building blocks in all of these complexes are bismuth citrate dimeric units which combine to form polymeric architectures. The embedded protonated ethylenediamine and pyridine moieties in the polymeric frameworks have been identified by X-ray crystallography and solid-state cross polarization/magic angle spinning (CP/MAS) 13C NMR. Based on the framework of complex 1, a structural model of a clinically used antiulcer drug, ranitidine bismuth citrate (RBC) was generated. The behavior of the protonated amine-bismuth citrate complexes in acidic aqueous solution has been studied by electrospray ionization-mass spectrometry (ESI-MS).

  13. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.

    Science.gov (United States)

    Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang

    2010-11-01

    A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.

  14. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  15. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  16. A Biological Approach for the Synthesis of Bismuth Nanoparticles: Using Thiolated M13 Phage as Scaffold.

    Science.gov (United States)

    Vera-Robles, L Irais; Escobar-Alarcón, Luis; Picquart, Michel; Hernández-Pozos, J Luis; Haro-Poniatowski, Emmanuel

    2016-04-01

    We report the synthesis of Bi nanoparticles (Bi NPs) using the M13 phage as scaffold. The p8 protein of the phage is functionalized with thiol groups of different lengths, and these thiolated regions act as nucleation centers for Bi(3+) ions. The size distribution, shape, and resilience to oxidation of the Bi NPs depend on the length of the thiol group used. The NPs are characterized by high resolution transmission electron microscopy, Raman, and IR spectroscopies, matrix assisted laser desorption/ionization, and optical absorption. These results show that the nanoparticles are crystalline and have a typical diameter of ∼3.0 nm. The method of preparation presented here is reproducible and implies "greener" conditions than those reported elsewhere. To the best of our knowledge, this is the first report of bismuth nanoparticles synthesized by a biomineralization method.

  17. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  18. Bismuth tri-iodide radiation detector development

    Science.gov (United States)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  19. Determining the background levels of bismuth in tissues of wild game birds: a first step in addressing the environmental consequences of using bismuth shotshells

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, R.; Tsuji, L.J.S.; Gough, W.A.; Karagatzides, J.D.; Perera, D.; Nieboer, E

    2004-11-01

    Bismuth shotshells have been approved as a 'nontoxic' alternative to lead in North America. Approval was based on a limited number of studies; even background levels of bismuth in wildfowl were unknown. We report on the concentration of bismuth (and lead) in muscle and liver tissues of wildfowl (Anas platyrhynchos, Anas acuta, Anas crecca, Branta canadensis, Chen caerulescens) harvested with lead shotshell. Average liver-bismuth levels detected in the present study (e.g., teal, 0.05 {mu}g/g dw; mallard, 0.09 {mu}g/g dw) suggest analytical error in other studies examining the effects of bismuth in birds. Significant positive relationships between bismuth- and lead-tissue levels for muscle when all species were combined (and for B. canadensis and C. caerulescens separately) can be explained by noting that bismuth is a contaminant of lead. Thus, more research is recommended to confirm the appropriateness of bismuth as a 'nontoxic' shot alternative.

  20. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode

    Science.gov (United States)

    Abdi, Fatwa F.; Han, Lihao; Smets, Arno H. M.; Zeman, Miro; Dam, Bernard; van de Krol, Roel

    2013-07-01

    Metal oxides are generally very stable in aqueous solutions and cheap, but their photochemical activity is usually limited by poor charge carrier separation. Here we show that this problem can be solved by introducing a gradient dopant concentration in the metal oxide film, thereby creating a distributed n+-n homojunction. This concept is demonstrated with a low-cost, spray-deposited and non-porous tungsten-doped bismuth vanadate photoanode in which carrier-separation efficiencies of up to 80% are achieved. By combining this state-of-the-art photoanode with an earth-abundant cobalt phosphate water-oxidation catalyst and a double- or single-junction amorphous Si solar cell in a tandem configuration, stable short-circuit water-splitting photocurrents of ~4 and 3 mA cm-2, respectively, are achieved under 1 sun illumination. The 4 mA cm-2 photocurrent corresponds to a solar-to-hydrogen efficiency of 4.9%, which is the highest efficiency yet reported for a stand-alone water-splitting device based on a metal oxide photoanode.

  1. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode.

    Science.gov (United States)

    Abdi, Fatwa F; Han, Lihao; Smets, Arno H M; Zeman, Miro; Dam, Bernard; van de Krol, Roel

    2013-01-01

    Metal oxides are generally very stable in aqueous solutions and cheap, but their photochemical activity is usually limited by poor charge carrier separation. Here we show that this problem can be solved by introducing a gradient dopant concentration in the metal oxide film, thereby creating a distributed n(+)-n homojunction. This concept is demonstrated with a low-cost, spray-deposited and non-porous tungsten-doped bismuth vanadate photoanode in which carrier-separation efficiencies of up to 80% are achieved. By combining this state-of-the-art photoanode with an earth-abundant cobalt phosphate water-oxidation catalyst and a double- or single-junction amorphous Si solar cell in a tandem configuration, stable short-circuit water-splitting photocurrents of ~4 and 3 mA cm(-2), respectively, are achieved under 1 sun illumination. The 4 mA cm(-2) photocurrent corresponds to a solar-to-hydrogen efficiency of 4.9%, which is the highest efficiency yet reported for a stand-alone water-splitting device based on a metal oxide photoanode.

  2. Operating Practice for Recovering Bismuth from Bismuth Dross%从铋渣中回收铋的生产实践

    Institute of Scientific and Technical Information of China (English)

    刘金铭

    2015-01-01

    阐述了从处理铅阳极泥时产生的铋渣中回收铋的生产实践,采用湿法浸出→氯氧铋→热浓碱转型→氧化铋→还原熔炼→火法精炼的生产工艺,为铋渣的处理提供了新的途径。%This paper expounds operating practice for recovering bismuth from bismuth dross that were outputed during dealing with the lead anode mud in pyrometallurgical process,which uesd production process of leaching—bismuth oxychloride—transformation—bismuth oxide—reduction smelting—pyrometallurgical refining.The operating practice provided a new technology to process the bismuth dross.

  3. Dielectric spectra of bismuth vanadate Bi4V2O11

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, V.N.; Pashkov, V.M.; Poplavko, IU.M.; Avakian, P.B.; Osipian, V.G. (Kievskii Politekhnicheskii Institut, Kiev (Ukrainian SSR))

    1990-06-01

    Results of a study of the temperature-frequency dependence of the behavior of the dielectric parameters of bismuth vanadate, Bi4V2O11, in the frequency range 1-100 GHz are reported. It is shown that bismuth vanadate is characterized by a large number of phase transitions. Yet another, previously unknown, phase transition in bismuth vanadate, masked by a relaxation process, has been observed in the temperature range 410-420 K. 12 refs.

  4. Dielectric spectra of bismuth vanadate Bi4V2O11

    Science.gov (United States)

    Borisov, V. N.; Pashkov, V. M.; Poplavko, Iu. M.; Avakian, P. B.; Osipian, V. G.

    1990-06-01

    Results of a study of the temperature-frequency dependence of the behavior of the dielectric parameters of bismuth vanadate, Bi4V2O11, in the frequency range 1-100 GHz are reported. It is shown that bismuth vanadate is characterized by a large number of phase transitions. Yet another, previously unknown, phase transition in bismuth vanadate, masked by a relaxation process, has been observed in the temperature range 410-420 K.

  5. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements

    OpenAIRE

    Murata, Masayuki; Hasegawa, Yasuhiro

    2013-01-01

    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the ...

  6. Standard triple, bismuth pectin quadruple and sequential therapies for Helicobacter pylori eradication

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To compare the effectiveness of standard triple, bismuth pectin quadruple and sequential therapies for Helicobacter pylori (H. pylori ) eradication in a randomized, double-blinded, comparative clinical trial in China. METHODS: A total of 215 H. pylori -positive patients were enrolled in the study and randomly allocated into three groups: group A (n = 72) received a 10-d bismuth pectin quadruple therapy (20 mg rabeprazole bid , 1000 mg amoxicillin bid , 100 mg bismuth pectin qid , and 500 mg levofloxaci...

  7. A study of early corrosion behaviors of FeCrAl alloys in liquid lead-bismuth eutectic environments

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jun [Nuclear Transmutation Energy Research Center of Korea (NUTRECK), Seoul National University, San 56-1 Shinlim-dong, Gwanak-ku, Seoul 151-742 (Korea, Republic of); Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Nam, Hyo On; Hwang, Il Soon [Nuclear Transmutation Energy Research Center of Korea (NUTRECK), Seoul National University, San 56-1 Shinlim-dong, Gwanak-ku, Seoul 151-742 (Korea, Republic of); Kim, Ji Hyun, E-mail: kimjh@unist.ac.k [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2010-12-31

    Lead and lead-bismuth eutectic (LBE) alloy have been increasingly receiving attention as heavy liquid metal coolants (HLMC) for future nuclear energy systems. The compatibility of structural materials and components with lead-bismuth eutectic liquid at high temperature is one of key issues for the commercialization of lead fast reactors. In the present study, the corrosion behaviors of iron-based alumina-forming alloys (Kanthal-AF (registered) , PM2000, MA956) were investigated by exposing to stagnant LBE environments at 500 {sup o}C and 550 {sup o}C for up to 500 h. After exposures, the thickness and chemistry of the oxide layer on the specimens were analyzed by scanning electron microscopy, scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. As a result, the oxide characteristics and the corrosion resistance were compared. In this study, it was shown that the corrosion resistance of FeCrAl ODS steels (PM2000, MA956) are superior to that of FeCrAl ferritic steel (Kanthal-AF (registered)) in higher temperature LBE.

  8. Bismuth-Induced Raman Modes in GaP1-xBix

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; Alberi, Kirstin; Mascarenhas, Angelo

    2016-10-01

    Dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- x Bi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  9. Antibacterial effects of Bismuth compounds and it synergy with Tetracycline and Metronidazole on Helicobacter Pylori

    Directory of Open Access Journals (Sweden)

    Rajabie A

    1997-04-01

    Full Text Available Bismuth salts and different antimicrobials including Metonidazole & Tetracyclines were used in the assessment of inhibition zone of Helicobacter pylori cultures on solid media. Antibiotics were used or in combined in order to find out their possible synergistic effects. It was showed that: only Bismuth substrate and not then salts have antibacterial effects on Helicobacter pylori and also on the other bacteria such as staphylococci; salmonella and brulla. In addition, only Bismuth substrances showed remarkable synergistic effects with antimicrobial drugs against Helicobacter pylori. Therefore the data obtained from this investigation confirm previously known effect of combination antibiotic therapy including Bismuth compounds in eradicating Helicobacter pylori.

  10. Elimination of the beam effect on channeling dips of bismuth implanted in silicon

    Science.gov (United States)

    Wagh, A. G.; Radhakrishnan, S.; Gaonkar, S. G.; Kansara, M. J.

    1980-01-01

    The effect of the analysing He + ion beam has been eliminated from channeling measurements on Si(Bi) by extrapolating the plot of normalised yield against He + dose to zero ion dose. The magnitude of the beam effect varies with the angle of incidence, being minimum for beam incidence along the crystallographic axis. The axial channeling dips thus obtained exhibit similar minimum yields for bismuth and silicon. The bismuth dips are, however, narrower than for silicon. The planar channeling experiments, on the other hand, yield nearly identical bismuth and silicon dips. The results indicate that the bismuth atom occupies the substitutional site in silicon, but the lattice is strained in its vicinity.

  11. Preparation of high-purity bismuth by sulphur deleadization in vacuum distillation

    Institute of Scientific and Technical Information of China (English)

    熊利芝; 何则强; 刘文萍; 麻成金; 戴永年

    2004-01-01

    The feasibility of separation of impurities in refined bismuth and sulphur deleadization with vacuum distillation was studied theoretically. Experimental studies on sulphur deleadization were carried out under vacuum.The influences of amount of sulphur, distillation temperature, vacuum degree and distillation time on deleadization were investigated and an optimal technical condition was achieved. The content of lead in refined bismuth can be decreased from 30 μg/g to 0.21 μg/g, which has reached the level of "5N" high-purity bismuth. Other impurities in refined bismuth can be also removed effectively under certain conditions.

  12. Nanophotonic Modulator with Bismuth Ferrite as Low-loss Switchable Material

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2015-01-01

    We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved.......We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved....

  13. Bismuth-induced Raman modes in GaP1- x Bi x

    Science.gov (United States)

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; Alberi, Kirstin; Mascarenhas, Angelo

    2016-10-01

    Dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- x Bi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  14. Optimal biliary drainage for inoperable Klatskin's tumor based on Bismuth type

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate differences in the effects of biliary drainage procedures in patients with inoperable Klatskin's tumor based on Bismuth type, considering endoscopic retrograde biliary drainage (ERBD), external percutaneous transhepatic biliary drainage (EPTBD) and internal biliary stenting via the PTBD tract (IPTBD).METHODS: The initial success rate, cumulative patency rate, and complication rate were compared retrospectively, according to the Bismuth type and ERBD,EPTBD, and IPTBD. Patency was defined as the duration for adequate initial bile drainage or to the point of the patient's death associated with inadequate drainage.RESULTS: One hundred thirty-four patients (93 men,41 women; 21 Bismuth type Ⅱ, 47 Ⅲ, 66 Ⅳ; 34 ERBD,66 EPTBD, 34 IPTBD) were recruited. There were no differences in demographics among the groups.Adequate initial relief of jaundice was achieved in 91% of patients without a significant difference in the results among different procedures or Bismuth types. The cumulative patency rates for ERBD and IPTBD were better than those for EPTBD with Bismuth type Ⅲ.IPTBD provided an excellent response for Bismuth type Ⅳ. However, there was no difference in the patency rate among drainage procedures for Bismuth type Ⅱ.Procedure-related cholangitis occurred less frequently with EPTBD than with ERBD and IPTBD.CONCLUSION: ERBD is recommended as the firstline drainage procedure for the palliation of jaundice in patients with inoperable Klatskin's tumor of Bismuth type Ⅱ or Ⅲ, but IPTBD is the best option for Bismuth type Ⅳ.

  15. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through ...... partial switching of ferroelectric domain orientati on under applied voltage. Both phase and amplitude modulations are envisaged.......We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  16. Large area bismuth absorbers for X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, J.E. E-mail: vaillancourt@wisp.physics.wisc.edu; Allen, C.A.; Brekosky, R.; Dosaj, A.; Galeazzi, M.; Kelley, R.; Liu, D.; McCammon, D.; Porter, F.S.; Rocks, L.E.; Sanders, W.T.; Stahle, C.K

    2004-03-11

    Two challenges facing the use of large area (2 mmx2 mm) bismuth absorbers for microcalorimetry are uncertainties in the heat capacity of bismuth and the effects of lateral heat conduction and position dependence due to the absorber's large size. We have measured the heat capacity of three Bi samples to be 0.3-0.6 J K{sup -1} m{sup -3} at 100 mK. These absorbers also exhibit response variations as phonons created by an X-ray event at an absorber edge will take longer to propagate to the thermometer attachment point than those at the absorber center. This effect may degrade the detector's energy resolution if the propagation time is not very short compared to the thermometer time constant. We show that the response of the largest absorber varies by {approx}4% across its area.

  17. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    CERN Document Server

    Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens

    2016-01-01

    We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  18. Optical and other spectroscopic studies of lead, zinc bismuth borate glasses doped with CuO

    Science.gov (United States)

    Rajyasree, Ch.; Vinaya Teja, P. Michael; Murthy, K. V. R.; Krishna Rao, D.

    2011-12-01

    10MO·20Bi2O3·(70-x)B2O3·xCuO [M=Pb, Zn] with x=0, 0.4 and 0.8 (wt%) glasses were synthesized by the melt-quenching technique and were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Physical parameters, like density, and spectroscopic studies (optical absorption, EPR, FTIR and photoluminescence) were used to understand the role of modifier oxide and CuO in the glass matrix. A red shift of the absorption band corresponds to 2B1g→2B2g transition of Cu2+ ions from P2 to Z4 samples and the increase of hyperfine splitting factor (A‖) from P2 to Z2 shows that with the integration of PbO by ZnO the electron density around copper ion is increased. It is also supported by the gradual increase in theoretical optical basicity values of ZnO mixed glasses, as compared to that of PbO mixed glass matrix. Reduced bismuth radicals are found in undoped and 0.4% CuO doped glasses of both the series. Analysis of the absorption and emission studies indicates that the concentration of luminescence centers of bismuth ions (Bi3+ ions in UV region) is decreased by the integration of ZnO as well as by increasing the dopant concentration. In lead series PbO4 and BiO3 units are increased from P2 to P4 and in zinc series BiO3 units are decreased from Z0 to Z4. The conductivity of the glass matrices is increased in both the series with the dopant of CuO.

  19. Low temperature Hall effect in bismuth chalcogenides thin films

    OpenAIRE

    Kuntsevich, A. Yu.; Gabdullin, A. A.; Prudkogliad, V. A.; Selivanov, Yu. G.; Chizhevskii, E. G.; Pudalov, V. M.

    2016-01-01

    Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures thin films of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization should lead to resistivity decrease at low temperatures; in experiments, however, resistivity grows as temperature decreases. From transport measurements for several thin films (with various carrier density, thickness, and carrier mobility), and by using purely phenomenologi...

  20. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Vladimir Petrochenko; Georgy Toshinsky

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  1. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  2. Resistivity and Seebeck coefficient measurements of a bismuth microwire array

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y. [Graduate School of Science and Engineering, Saitama University, 338-8570 (Japan)]. E-mail: ishikawa@kan.env.gse.saitama-u.ac.jp; Hasegawa, Y. [Graduate School of Science and Engineering, Saitama University, 338-8570 (Japan); Morita, H. [Saitama Industrial Technology Center, Saitama Prefecture, 333-0844 (Japan); Kurokouchi, A. [Saitama Industrial Technology Center, Saitama Prefecture, 333-0844 (Japan); Wada, K. [Saitama Industrial Technology Center, Saitama Prefecture, 333-0844 (Japan); Komine, T. [Department of Media and Telecommunications Engineering, Ibaraki University, 316-8511 (Japan); Nakamura, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5252 (Japan)

    2005-11-01

    The resistivity and Seebeck coefficient of a bismuth microwire array (wire diameter: 25 {mu}m) were successfully measured from 25 to 300 K. To eliminate the influence of the contact resistance between the wire edges of the microwire array and copper electrodes, the titanium (100 nm)/copper (500 nm) film layers were deposited as interlayer on the wire edge by ion plating method. Copper electrodes were glued by using Pb-Sn solder. The resistivity and the Seebeck coefficient at 300 K were approximately 1.8x10{sup -6} {omega}m and -54x10{sup -6} V/K, respectively. The value of the resistivity and the Seebeck coefficient were in good agreement with those of bulk polycrystalline bismuth reported previously. Thus, the effects of the contact resistance for the microwire array were almost resolved, and the chemical reaction of the Pb-Sn solder and bismuth was prevented by using the thin-film layer. The technique is expected to be applicable to nanowire arrays as well.

  3. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India); Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India)

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  4. Effect of O-vacancies on magnetic properties of bismuth ferrite nanoparticles by solution evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, A.M., E-mail: Amirafzal461@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Umair, M., E-mail: umairranwerr@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Dastgeer, G., E-mail: dtedastgeer@gmail.com [Department of Physics, University of Agriculture, Faisalabad 38000 (Pakistan); Rizwan, M., E-mail: h.rizwan70@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Yaqoob, M.Z., E-mail: zeeshaan32@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Rashid, R., E-mail: rashid.kanwar22@gmail.com [Department of Physics, University of Agriculture, Faisalabad 38000 (Pakistan); Munir, H.S., E-mail: sadiamunir.cute@gmail.com [Department of Physics, GC University, Faisalabad 38000 (Pakistan)

    2016-02-01

    Bismuth ferrite is a multiferroic material which shows high magnetization and polarization at room temperature. In present work, the effect of Oxygen (O) vacancies on magnetic properties of bismuth ferrite nanoparticles is studied. Bismuth ferrite nanoparticles (BiFeO{sub 3}) were synthesized by solution evaporation method (SEM) at room temperature. The sample was annealed under two different atmospheres such as in air and oxygen, to check the effect of O-vacancies on magnetic properties. The average crystallite size of Bismuth ferrite nanoparticles (NPs) as calculated by X-ray diffraction (XRD) falls in the range of 23–32 nm and 26–39 nm for the case of air and oxygen respectively. The crystallite size of bismuth ferrite nanoparticles increases as the temperature was varied from 450 °C to 650 °C. Further the influence of annealing temperature on the magnetic properties of the bismuth ferrite nanoparticles was also observed. It was concluded that the magnetic properties of Bismuth ferrite nanoparticles are directly interconnected to annealing atmosphere and annealing temperature. The magnetic properties were increased in the case of oxygen annealing, which actually leads in our case to an improvement of the crystallinity. - Highlights: • Bismuth ferrite was synthesized by solution evaporation method. • The effect of different annealing atmosphere on magnetic properties was studied. • The magnetic properties dramatically increased in case of Oxygen annealing. • The influence of crystalline size on magnetic properties was studied. • The magnetization was decreased as the temperature and crystallite size increased.

  5. Electronic Properties of Tin and Bismuth from Angular Correlation of Annihilation Photons

    DEFF Research Database (Denmark)

    Mogensen, O.E.; Trumpy, Georg

    1969-01-01

    A linear slit setup has been used to obtain results of angular-correlation measurements in (a) tin single crystals in three orientations: [001], [100], and [110], (b) bismuth single crystals in four orientations: [111], [100], [1¯10], and [2¯1¯1], (c) solid and liquid tin and bismuth, and (d) def...

  6. Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterisation.

    Science.gov (United States)

    Nazari, P; Faramarzi, M A; Sepehrizadeh, Z; Mofid, M R; Bazaz, R D; Shahverdi, A R

    2012-06-01

    Today, synthesis of nanoparticles (NPs) using micro-organisms has been receiving increasing attention. In this investigation, a bismuth-reducing bacterium was isolated from the Caspian Sea in Northern Iran and was used for intracellular biosynthesis of elemental bismuth NPs. This isolate was identified as non-pigmented Serratia marcescens using conventional identification assays and the 16s rDNA fragment amplification method and used to prepare bismuth NPs. The biogenic bismuth NPs were released by liquid nitrogen and highly purified using an n-octanol water two-phase extraction system. Different characterisations of the purified NPs such as particle shapes, size and purity were carried out with different instruments. The energy-dispersive X-ray and X-ray diffraction (XRD) patterns demonstrated that the purified NPs consisted of only bismuth and are amorphous. In addition, the transmission electron micrograph showed that the small NPs formed larger aggregated NPs around <150 nm. Although the chemical syntheses of elemental bismuth NPs have been reported in the literature, the biological synthesis of elemental bismuth NPs has not been published yet. This is the first report to demonstrate a biological method for synthesising bismuth NPs and their purification with a simple solvent partitioning method.

  7. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  8. Effects of In Vitro Antibiotic Resistance on Treatment: Bismuth-Containing Regimens

    Directory of Open Access Journals (Sweden)

    Naoki Chiba

    2000-01-01

    Full Text Available Bismuth compounds remain useful for Helicobacter pylori eradication therapy. These include colloidal bismuth subcitrate (CBS, bismuth subsalicylate (BSS and, most recently, ranitidine bismuth citrate (RBC. CBS appears to prevent the development of imidazole resistance when coadministered with nitroimidazoles. Traditional triple therapy with bismuth, metronidazole and tetracycline or amoxicillin (BMT/A only partially overcomes metronidazole resistance. However, the addition of a PPI to bismuth triple therapy largely overcomes established metronidazole resistance if treatment is given for at least one week or more. When RBC rather than PPI is used with clarithromycin, this dual regimen appears to be more effective in preventing the development of secondary clarithromycin resistance. The triple combination of RBC, metronidazole and clarithromycin appears to be effective against metronidazole resistant strains of H pylori. Thus, overall, there is some evidence that bismuth compounds may prevent the development of antibiotic resistance and that existing antibiotic resistance may at least be partially overcome in vitro and in vivo. With the growing emergence of H pylori resistance to metronidazole and clarithromycin, further research to clarify the role of bismuth compounds is required.

  9. Local Structural Distortion Induced Uniaxial Negative Thermal Expansion in Nanosized Semimetal Bismuth.

    Science.gov (United States)

    Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-11-01

    The corrugated layer structure bismuth has been successfully tailored into negative thermal expansion along c axis by size effect. Pair distribution function and extended X-ray absorption fine structure are combined to reveal the local structural distortion for nanosized bismuth. The comprehensive method to identify the local structure of nanomaterials can benefit the regulating and controlling of thermal expansion in nanodivices.

  10. An atomic absorption spectrometric method for the determination of phosphorus in foodstuffs using the bismuth phosphomolybdate complex

    Directory of Open Access Journals (Sweden)

    LJILJANA V. MIHAJLOVIC

    2000-06-01

    Full Text Available A new indirect AAS method using the bismuth phosphomolybdate complex for the determination of phosphorus in foodstuffs is suggested. The bismuth phosphomolybdate complex in acid medium was extacted with isobutyl methylketone and the phosphorus was determined through bismuth in an air/acetylene flame by utilising the 223.06 nm resonance line of bismuth. The interference caused by antimony and titanium can be neglected in the presence of excess of bismuth. The detection limit of the method is 0.008 mg/mL of phosphorus.

  11. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  12. Coherent phonon coupling to individual Bloch states in photoexcited bismuth.

    Science.gov (United States)

    Papalazarou, E; Faure, J; Mauchain, J; Marsi, M; Taleb-Ibrahimi, A; Reshetnyak, I; van Roekeghem, A; Timrov, I; Vast, N; Arnaud, B; Perfetti, L

    2012-06-22

    We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time- and angle-resolved photoelectron spectroscopy. The binding energy of bulklike bands oscillates with the frequency of the A(1g) phonon mode, whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wave vector is correctly reproduced by ab initio calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.

  13. Low-temperature Hall effect in bismuth chalcogenides thin films

    Science.gov (United States)

    Kuntsevich, A. Yu.; Gabdullin, A. A.; Prudkogliad, V. A.; Selivanov, Yu. G.; Chizhevskii, E. G.; Pudalov, V. M.

    2016-12-01

    Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures, thin films of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization should lead to resistivity decrease at low temperatures; in experiments, however, resistivity grows as temperature decreases. From transport measurements for several thin films (with various carrier density, thickness, and carrier mobility), and by using a purely phenomenological approach, with no microscopic theory, we show that the low-temperature growth of the resistivity is accompanied by growth of the Hall coefficient, in agreement with the diffusive electron-electron interaction correction mechanism. Our data reasonably explain the low-temperature resistivity upturn.

  14. Concentration Quenching in Erbium Doped Bismuth Silicate Glasses

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; XU Tie-Feng; NIE Qiu-Hua; SHEN Xiang; WANG Xun-Si

    2006-01-01

    @@ Er2 O3-doped bismuth silicate glasses are prepared by the conventional melt-quenching method, and the Er3+ : 4 I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. Infrared spectra are measured to estimate the exact content of OH- groups in the samples. Based on the electric dipole-dipole interaction theory,the interaction parameter CEr,Er for the migration rate of Er3+ :4 I13/2 → 4 I13/2 in proposed glasses is calculated.

  15. Kinetics of Propagating Phase Transformation in Compressed Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, M; Bastea, S; Emig, J; Springer, P; Reisman, D

    2004-08-18

    The authors observed dynamically driven phase transitions in isentropically compressed bismuth. By changing the stress loading conditions they explored two distinct cases one in which the experimental signature of the phase transformation corresponds to phase-boundary crossings initiated at both sample interfaces, and another in which the experimental trace is due to a single advancing transformation front in the bulk of the material. They introduce a coupled kinetics-hydrodynamics model that for this second case enables them, under suitable simplifying assumptions, to directly extract characteristic transition times from the experimental measurements.

  16. Bismuth centred magnetic perovskite: A projected multiferroic

    Science.gov (United States)

    Kundu, Asish K.; Seikh, Md. Motin; Nautiyal, Pranjal

    2015-03-01

    In recent time substantial attention has been initiated to understand the physics behind multiferroism and to design new multiferroic materials. BiMnO3 and BiFeO3 are the well-studied Bi-centred multiferroic oxides. BiMnO3 is a ferromagnetic-ferroelectric (metastable) phase and require drastic conditions to synthesize. However, lanthanum substituted BiMnO3 phases stabilized at ambient pressure. It is thus of major importance to increase the number of ferromagnetic perovskites with Bi cations that could be designed under ambient conditions. In this article, we have presented an up to date report of investigations on Bi-centred magnetic perovskites, a prospective material for multiferroic application. Central focus is concentrated on La0.5Bi0.5MnO3 perovskite with various substitutions at different levels. A few of these perovskites are found to be of practical importance e.g. La0.5Bi0.5Mn0.67Co0.33O3 with high dielectric permittivity coupled with ferromagnetism. A comprehensive analysis of different physical functionalities and their interrelation for a wide range of compositions of these Bi-centred perovskites is presented. It has been found that the complex magnetic behaviour originates from mixed valence metal ions. The ferroelectricity is associated with the 6s2 lone pair of Bi3+ cations. The magnetic ground state influences the dielectric properties reflecting the multiferroism in a single material.

  17. Effect of oxidation state on Bi mineral speciation in oxidized and reduced granitoids from the Uetsu region, NE Japan

    Science.gov (United States)

    Izumino, Yuya; Maruoka, Teruyuki; Nakashima, Kazuo

    2016-06-01

    The relationship between bismuth (Bi) mineral speciation and redox state in three types of granitoids from the Uetsu region, northeast Japan is investigated. Electron microprobe analysis of Bi minerals, sphalerite, Mg-Fe-bearing carbonate minerals, and muscovite, as well as sulfur isotope analysis of sulfide minerals and microthermometric study of fluid inclusions reveal that Bi mineral speciation varies according to the redox state of the granitoids. For example, native bismuth and bismuthinite are abundant and Bi sulfosalts are rare in the lowest fS2 and fO2 mineralized zones of the reduced Iwafune granite (S-type, ilmenite-series) while Bi sulfosalts (Bi3+) are abundant and trace amounts of native bismuth (Bi0) and bismuthinite are found in the highest fS2 and fO2 mineralized zones of the oxidized Wasada granodiorite (I-type, magnetite-series). Bismuthinite is a major Bi mineral, and native bismuth and Bi sulfosalts occur in only minor amounts in the mineralized zones of the Nishitagawa granodiorite (I-type, ilmenite-series), which has intermediate fS2 and fO2 to that of the Iwafune and Wasada samples. Our study indicates that Bi mineral speciation related to granitic intrusive activity is controlled by the redox state of the magmatism, such that native bismuth is typical of reducing conditions, whereas Bi sulfosalts are typical of oxidizing conditions.

  18. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements.

    Science.gov (United States)

    Murata, Masayuki; Hasegawa, Yasuhiro

    2013-09-26

    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the bismuth nanowire, and a difference between the resistivities of the two-wire and four-wire methods was observed. It was concluded that the two-wire method was unsuitable for estimation of the resistivity due to the influence of contact resistance, even if the magnitude of the bismuth nanowire resistance was greater than the kilo-ohm order. Furthermore, Hall measurement of a 4-μm-diameter bismuth microwire was also performed as a trial, and the evaluated temperature dependence of the carrier mobility was in agreement with that for bulk bismuth, which indicates that the carrier mobility was successfully measured using this technique. PACS: 81.07.Gf.

  19. Investigation of corrosion, water reaction, polonium evaporation and bismuth resource in liquid metal lead-bismuth technology

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki; Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kitano, Teruaki [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    2000-10-01

    Lead-bismuth is the first candidate material for liquid metal target find coolant of fueled blanket system in accelerator-driven system (ADS) studied at JAERI. Advantages of the lead-bismuth utilization are non-active material, very low capture cross section, low melting point of 125degC and high boiling point of 1670degC, and beside coolant void reactivity become negative. But problems are due to the high corrosivity to most of the structural materials and the corrosive data are scarcity. In this report, corrosivity, reaction with water, thermal-hydraulics, chemical toxicity etc. are studied by investigating some facilities utilized and researched really for lead or lead-bismuth. And, furthermore, polonium evaporation rate and bismuth resource are investigated. Main results obtained are as follows: (1) In a refinery, there are enough employment experience for liquid Pb-Bi in period of about 17 years and not corrosion for the thermal conductive materials (1Cr-0.5Mo steel) used under the condition of natural convection with temperature around 400degC. (2) In Russia, extensive experience in the use as Russian submarines and in R and D during about 50 years are available. And as a result, it will be able to lead approximately zero corrosion for Cr-Si materials by adjusting oxygen film with oxygen concentration control between 10{sup -7} to 10{sup -5}% mass. However, the corrosion data are not enough systematically collected involving them in radiation dose field. (3) In liquid-dropping experiment, it is shown that interaction between water and high temperature liquid Pb-Bi is reduced steeply with rising of atmosphere pressure. But, in order to design the second circuit removal model of ADS, the interaction should be evaluated by water continuous injection experiment. (4) Polonium forms PbPo in Pb-Bi, and the evaporation rate become less three factor than that of Po, and furthermore, the rate decreases in the atmosphere. The effects of Po on employee and environment

  20. Magnetic anisotropies in ultrathin bismuth iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Elena, E-mail: popova@physique.uvsq.fr [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Franco Galeano, Andres Felipe [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Deb, Marwan [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Warot-Fonrose, Bénédicte [Centre d' Elaboration de Matériaux et d' Etudes Structurales (CEMES), CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS–Universidad de Zaragoza (Spain); Kachkachi, Hamid [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Gendron, François [Institut des NanoSciences de Paris (INSP), CNRS/Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Boîte courrier 840, 75252 Paris Cedex 05 (France); Ott, Frédéric [Laboratoire Léon Brillouin (LLB), CNRS/CEA, Bâtiment 563, CEA Saclay, 91191 Gif sur Yvette Cedex (France); and others

    2013-06-15

    Ultrathin bismuth iron garnet Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi{sub 3}Fe{sub 5}O{sub 12} films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi{sub 3}Fe{sub 5}O{sub 12} were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed.

  1. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Science.gov (United States)

    Ciobanu, Gabriela; Bargan, Ana Maria; Luca, Constantin

    2015-11-01

    New bismuth-substituted hydroxyapatite [Ca10- x Bi x (PO4)6(OH)2 where x = 0-2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12-25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

  2. Superconductivity in Bismuth. A New Look at an Old Problem

    Science.gov (United States)

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan’s formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy. PMID:26815431

  3. Nonproportionality in the scintillation light yield of bismuth germanate

    CERN Document Server

    Gentile, T R; Breuer, H; Chupp, T E; Coakley, K J; Cooper, R L; Nico, J S; O'Neill, B

    2015-01-01

    We present measurements of nonproportionality in the scintillation light yield of bismuth germanate (BGO) for gamma-rays with energies between 6 keV and 662 keV. The scintillation light was read out by avalanche photodiodes (APDs) with both the BGO crystals and APDs operated at a temperature of approximately 90 K. Data were obtained using radioisotope sources to illuminate both a single BGO crystal in a small test cryostat and a 12-element detector in a neutron radiative beta-decay experiment. In addition one datum was obtained in a 4.6 T magnetic field based on the bismuth K x-ray escape peak produced by a continuum of background gamma rays in this apparatus. These measurements and comparison to prior results were motivated by an experiment to study the radiative decay mode of the free neutron. The combination of data taken under different conditions yields a reasonably consistent picture for BGO nonproportionality that should be useful for researchers employing BGO detectors at low gamma ray energies.

  4. Phase transition of solid bismuth under high pressure

    Science.gov (United States)

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan

    2016-10-01

    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  5. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    Science.gov (United States)

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling

  6. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose new designs of plasmonic modulators, which can beused for dynamic signal switching in photonic integrated circuits. We studyperformance of a plasmonic waveguide modulator with bismuth ferrite as atunable material. The bismuth ferrite core is sandwiched between metalplates (metal...... modulation in both phase andamplitude control schemes. Due to high field confinement between themetal layers, existence of mode cut-offs for certain values of the corethickness, and near-zero material losses in bismuth ferrite, efficientmodulation performance is achieved. For the phase control scheme...

  7. Is the ultra-fast transformation of bismuth non-thermal?

    CERN Document Server

    Gamaly, E G

    2009-01-01

    Transient state of femtosecond laser excited bismuth has been studied by various groups with time-resolved optical, x-ray, and electron probes at the deposited energy density from below through up to several times the equilibrium enthalpy of melting. However, the interpretations of the experimental results are controversial: the optical probes reveal the absence of transition to the melting phase while the authors of x-ray and electron diffraction experiments claim the observation of ultrafast non-thermal melting. The presented analysis, based on temperature dependence of bismuth optical properties, unequivocally shows a purely thermal nature of all the observed fs-laser induced transformations in bismuth.

  8. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE)

    Science.gov (United States)

    Dossi, Carlo; Monticelli, Damiano; Pozzi, Andrea; Recchia, Sandro

    2016-01-01

    Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors) will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance. PMID:27455338

  9. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE

    Directory of Open Access Journals (Sweden)

    Carlo Dossi

    2016-07-01

    Full Text Available Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance.

  10. Fast synthesis of rare-earth (Pr{sup 3+}, Sm{sup 3+}, Eu{sup 3+} and Gd{sup 3+}) doped bismuth ferrite powders with enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Iorgu, A.I. [Department of Chemical Thermodynamics, “Ilie Murgulescu” Institute of Physical Chemistry, 060021 Bucharest (Romania); Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University “Politehnica” of Bucharest, 011061 Bucharest (Romania); Maxim, F., E-mail: fmaxim@icf.ro [Department of Chemical Thermodynamics, “Ilie Murgulescu” Institute of Physical Chemistry, 060021 Bucharest (Romania); Matei, C. [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University “Politehnica” of Bucharest, 011061 Bucharest (Romania); Ferreira, Liliana Pires [Centro de Física da Matéria Condensada, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Ferreira, P. [Department of Materials and Ceramics Engineering, CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Cruz, M.M. [Centro de Física da Matéria Condensada, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Berger, D., E-mail: danaberger01@yahoo.com [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University “Politehnica” of Bucharest, 011061 Bucharest (Romania)

    2015-04-25

    Highlights: • Synthesis of rare earth doped bismuth ferrite powders by combustion method. • SEM and TEM were used to investigate the morphology and size of particles. • Effect of Bi substitution with Pr, Sm, Eu and Gd on magnetic properties of powders. - Abstract: Rare-earth (Pr{sup 3+}, Sm{sup 3+}, Eu{sup 3+} and Gd{sup 3+}) doped bismuth ferrite powders were synthesized for the first time by solution combustion method, which is a fast soft chemistry route for obtaining oxide powders. The materials were investigated by X-ray diffraction, Raman spectroscopy, as well as scanning and transmission electron microscopy. A distortion from rhombohedral R3c symmetry, specific to pure bismuth ferrite, to orthorhombic symmetry was observed for all doped samples. The SEM analysis of pure and doped bismuth ferrite powders showed the formation of sintered grains, with faceted cuboids-shaped particles with different size and lower average dimension in the case of doped samples. Magnetic properties were analyzed using SQUID magnetometry, M–H hysteresis loops being measured at 10 K and 300 K. All studied pure and doped bismuth ferrite samples presented high susceptibility values for high magnetic fields indicating strong antiferromagnetic interactions, whereas the behavior at low magnetic field demonstrates the existence of ferromagnetic coupling. Compared to BiFeO{sub 3}, Bi{sub 0.9}RE{sub 0.1}FeO{sub 3} (RE = Pr, Sm, Eu and Gd) powders exhibit higher susceptibility, remanence and coercivity values, Bi{sub 0.9}Eu{sub 0.1}FeO{sub 3} sample displaying the highest remanence and coercivity at room temperature.

  11. Tunable band gap of iron-doped lanthanum-modified bismuth titanate synthesized by using the thermal decomposition of a secondary phase

    Science.gov (United States)

    Han, Jun Young; Bark, Chung Wung

    2015-05-01

    The photoelectric properties of complex oxides have prompted interest in materials with a tunable band gap because of the absorption. The substitution of iron atoms in La-modified bismuth titanate (BLT) can lead to dramatic improvements in the band gap; however, the substitution of iron atoms while maintaining the original bismuth layer structure without forming a BiFeO3 secondary phase is quite challenging. Therefore, a series of Fe-doped BLT (Fe-BLT) samples were synthesized using a solid reaction at various calcination temperatures (300 ˜ 900°C) to remove the secondary phase. The structural and the optical properties were analyzed by using X-ray diffraction and ultraviolet-visible absorption spectroscopy. This paper reports a new route by using high-temperature calcination, to synthesize the Aurivillius phase with a reduced optical band gap due to the thermal decomposition of BiFeO3 during high-temperature calcination. This simple route to reduce the second phase can be adapted to other complex oxides for use in emerging oxide optoelectronic devices.

  12. Understanding the Chemistry of Uncommon Americium Oxidation States for Application to Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Leigh Martin; Bruce J. Mincher; Nicholas C. Schmitt

    2007-09-01

    A spectroscopic study of the stability of Am(V) and Am(VI) produced by oxidizing Am(III) with sodium bismuthate is presented, varying the initial americium concentration, temperature and length of the oxidation was seen to have profound effects on the resultant solutions.

  13. Hybrid density functional study of the structural, bonding, and electronic properties of bismuth vanadate

    Science.gov (United States)

    Kweon, Kyoung E.; Hwang, Gyeong S.

    2012-10-01

    The structure and property prediction of metal oxides can significantly be improved by incorporating exact Hartree-Fock (HF) exchange into density functional theory (DFT), which is the so-called hybrid DFT. We explored the impact of HF exchange inclusion on the predicted structural, bonding, and electronic properties of bismuth vanadate (BiVO4), with particular attention to the difference between its monoclinic and tetragonal scheelite phases. The applied exchange-correlation (xc) functionals include the gradient corrected Perdew-Burke-Ernzerhof (PBE) and the PBE-HF hybrid functionals with HF exchange amounts of 10%, 25%, and 50%. We find that the PBE-HF25% yields a monoclinic structure in very close agreement with the experimentally determined structure, while the PBE-HF50% tends to overestimate the monoclinic distortion and the PBE/PBE-HF10% can hardly identify a distinct monoclinic configuration at ambient conditions. Electronic structure analysis reveals that the increasing monoclinic distortion with the amount of HF exchange is related to the enhancement of hybridization between Bi 6s-O 2p antibonding states and unoccupied Bi 6p states. The bonding mechanisms and band structures of the monoclinic and tetragonal phases of BiVO4 were also investigated, and we discuss how the predictions are sensitive to the xc functional choice.

  14. Structural phase-dependent hole localization and transport in bismuth vanadate

    Science.gov (United States)

    Kweon, Kyoung E.; Hwang, Gyeong S.

    2013-05-01

    We present theoretical evidence for the phase dependence of hole localization and transport in bismuth vanadate (BiVO4). Our hybrid density-functional theory calculations predict that, in the tetragonal phase [tetragonal scheelite BiVO4 (ts-BiVO4)], an excess hole tends to localize around a BiO8 polyhedron with strong lattice distortion, whereas, in the monoclinic phase [monoclinic scheelite BiVO4 (ms-BiVO4)], it spreads over many lattice sites. The phase-dependent behavior is likely related to the higher structural stability of ms-BiVO4 than ts-BiVO4, which may suppress hole-induced lattice distortions. Our study also demonstrates that the relatively weakly localized hole in ms-BiVO4 undergoes faster diffusion compared to the case of ts-BiVO4, irrespective of the fact that the degrees of localization and mobility vary depending on the choice of exchange-correlation functional. The mobility difference may provide an explanation for the enhanced photocatalytic activity of ms-BiVO4 over ts-BiVO4 for water oxidation, considering that the increased mobility would lead to an increase in the hole current to the catalyst surface.

  15. Nanotextured pillars of electrosprayed bismuth vanadate for efficient photoelectrochemical water splitting.

    Science.gov (United States)

    Yoon, Hyun; Mali, Mukund G; Choi, Jae Young; Kim, Min-woo; Choi, Sung Kyu; Park, Hyunwoong; Al-Deyab, Salem S; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S

    2015-03-31

    We demonstrate, for the first time, electrostatically sprayed bismuth vanadate (BiVO4) thin films for photoelectrochemical water splitting. Characterization of these films by X-ray diffraction, Raman scattering, and high-resolution scanning electron microscopy analyses revealed the formation of nanotextured pillar-like structures of highly photoactive monoclinic scheelite BiVO4. Electrosprayed BiVO4 nanostructured films yielded a photocurrent density of 1.30 and 1.95 mA/cm(2) for water and sulfite oxidation, respectively, under 100 mW/cm(2) illumination. The optimal film thickness was 3 μm, with an optimal postannealing temperature of 550 °C. The enhanced photocurrent is facilitated by formation of pillar-like structures in the deposit. We show through modeling that these structures result from the electrically-driven motion of submicron particles in the direction parallel to the substrate, as they approach the substrate, along with Brownian diffusion. At the same time, opposing thermophoretic forces slow their approach to the surface. The model of these processes proposed here is in good agreement with the experimental observations.

  16. Synthesis, structural characterization and formation mechanism of ferroelectric bismuth vanadate nanotubes.

    Science.gov (United States)

    Singh, Satyendra; Kumari, Neelam; Varma, K B R; Krupanidhi, S B

    2009-11-01

    We report the synthesis and structural characterization of ferroelectric bismuth vanadate (Bi2VO5.5) (BVO) nanotubes within the nanoporous anodic aluminum oxide (AAO) templates via sol-gel method. The as-prepared BVO nanotubes were characterized by X-ray powder diffraction (XRD), Scanning Electron Microscope (SEM), High-Resolution Transmission Electron Microscope (HRTEM) and the stoichiometry of the nanotubes was established by energy-dispersive X-ray spectroscopy (EDX). Postannealed (675 degrees C for 1 h), BVO nanotubes were a polycrystalline and the XRD studies confirmed the crystal structure to be orthorhombic. The uniformity in diameter and length of the nanotubes as reveled by the TEM and SEM suggested that these were influenced to a guest extent by the thickness and pore diameter of the nanoporous AAO template. EDX analysis demonstrated the formation of stoichiometric Bi2VO5.5 phase. HRTEM confirmed that the obtained BVO nanotubes were made up of nanoparticles of 5-9 nm range. The possible formation mechanism of nanotubes was elucidated.

  17. Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition.

    Science.gov (United States)

    Jeong, Sang Yun; Choi, Kyoung Soon; Shin, Hye-Min; Kim, Taemin Ludvic; Song, Jaesun; Yoon, Sejun; Jang, Ho Won; Yoon, Myung-Han; Jeon, Cheolho; Lee, Jouhahn; Lee, Sanghan

    2017-01-11

    We have fabricated high quality bismuth vanadate (BiVO4) polycrystalline thin films as photoanodes by pulsed laser deposition (PLD) without a postannealing process. The structure of the grown films is the photocatalytically active phase of scheelite-monoclinic BiVO4 which was obtained by X-ray diffraction (XRD) analysis. The change of surface morphology for the BIVO4 thin films depending on growth temperature during synthesis has been observed by scanning electron microscopy (SEM), and its influence on water splitting performance was investigated. The current density of the BiVO4 film grown on a glass substrate covered with fluorine-doped tin oxide (FTO) at 230 °C was as high as 3.0 mA/cm(2) at 1.23 V versus the potential of the reversible hydrogen electrode (VRHE) under AM 1.5G illumination, which is the highest value so far in previously reported BiVO4 films grown by physical vapor deposition (PVD) methods. We expect that doping of transition metal or decoration of oxygen evolution catalyst (OEC) in our BiVO4 film might further enhance the performance.

  18. Crystal-chemical features and properties of layered bismuth vanadate-titanate

    Energy Technology Data Exchange (ETDEWEB)

    Osipyan, V.G.; Kostanyan, K.A.; Savchenko, L.M.

    1986-04-01

    It has been established that Bi/sub 13/V/sub 5/TiO/sub 34/ belongs to the ferroelectric family of bismuth-containing compounds with a layered compound. The formula unit Bi/sub 2/1//sub 6/ + V/sub 5///sub 6/ Ti1//sub 6/ O/sub 5/2/3 corresponds to a layered structure of (Bi/sub 2/O/sub 2/) (Bi/sub 1///sub 6/ V/sub 5///sub 6/ Ti/sub 1///sub 6/ O/sub 3/2/3)/sup 2 -/ with one perovskite-like layer between ions of bismuthyl (Bi/sub 2/O/sub 2/)/sup 2 +/. The dielectric properties indicate that Bi/sub 13/V/sub 5/TiO/sub 34/ has ferroelectric properties. The solid-phase process of formation of the compound from a mixture of the initial oxides takes place in one stage in the temperature range 600-800 C.

  19. Structural and ferroelectrical properties of bismuth titanate ceramic powders prepared by mechanically assisted synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2007-01-01

    Full Text Available Nanosized bismuth titanate, Bi4Ti3O12, was prepared via a high-energy ball milling process through mechanically assisted synthesis directly from the oxide mixture of Bi2O3 and TiO2. The Bi4Ti3O12 phase started to form after 1 h of milling. With increasing the milling time from 3 to 12 h, the particle size of formed Bi4Ti3O12 did not reduce significantly. The grain size was less than 16 nm and showed a strong tendency to agglomeration. The nucleation and phase formation of Bi4Ti3O12, crystal structure, microstructure, powder grain size and specific surface area were followed by XRD, Rietveld refinement analysis, SEM and the BET specific surface area measurements. Raman spectroscopy was used to explain the structural properties of Bi4Ti3O12 powder, prepared by mechanically assisted synthesis. Reduction in grain size with the increase of milling time was also noted (change in the position and relative intensity, which indicated changes in the structure, caused by nanodimension grains. The sample milled for 12 h and subsequently sintered at 1000°C for 24 h exhibited a hysteresis loop, confirming that the synthesized material possesses ferroelectric properties. .

  20. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Ryszard Buczynski

    2014-06-01

    Full Text Available In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700–3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950–2500 nm range.

  1. Crystal structure and electrical properties of bismuth sodium titanate zirconate ceramics.

    Science.gov (United States)

    Rachakom, Ampika; Jaiban, Panupong; Jiansirisomboon, Sukanda; Watcharapasorn, Anucha

    2012-01-05

    Lead-free bismuth sodium titanate zirconate (Bi0.5Na0.5Ti1-xZrxO3 where x = 0.20, 0.35, 0.40, 0.45, 0.60, and 0.80 mole fraction) [BNTZ] ceramics were successfully prepared using the conventional mixed-oxide method. The samples were sintered for 2 h at temperatures lower than 1,000°C. The density of the BNTZ samples was at least 95% of the theoretical values. The scanning electron microscopy micrographs showed that small grains were embedded between large grains, causing a relatively wide grain size distribution. The density and grain size increased with increasing Zr concentration. A peak shift in X-ray diffraction patterns as well as the disappearance of several hkl reflections indicated some significant crystal-structure changes in these materials. Preliminary crystal-structure analysis indicated the existence of phase transition from a rhombohedral to an orthorhombic structure. The dielectric and ferroelectric properties were also found to correlate well with the observed phase transition.

  2. Bismuth oxyiodide-graphene nanocomposites with high visible light photocatalytic activity.

    Science.gov (United States)

    Liu, Hong; Cao, Wei-Ran; Su, Yun; Chen, Zhen; Wang, Yong

    2013-05-15

    A series of chemically bonded Bismuth oxyiodide (BiOI)-graphene (GR) nanocomposites have been synthesized by a facile one-step hydrothermal method. Both the reduction in graphene oxide (GO) and the formation of BiOI nanocrystals were achieved simultaneously during the hydrothermal reaction. The prepared materials were characterized by means of powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectra, high-resolution transmission electron micrographs (HRTEM), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. The photocatalytic activities of these BiOI-GR nanocomposites were evaluated by the degradation of methyl orange. Under visible irradiation (λ>420 nm), the BiOI-GR photocatalysts were found to exhibit higher photocatalytic activities than pure BiOI, and the activity was increased by almost 6 times when loaded with 2.0 wt% graphene. The enhanced photocatalytic activity can be attributed to more effective charge transportations and separations arisen from the strong chemical bonding between BiOI and graphene, the high dye adsorption performance, and the increased light absorption.

  3. Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, R.S.; Dhankhar, Sunil; Punia, R., E-mail: rajeshpoonia13@gmail.com; Nanda, Kirti; Kishore, N.

    2014-02-25

    Highlights: • Novel materials transmitting in mid-infrared spectral region. • Studied glasses may be good candidates for military and non-linear applications. • Hydrogenic excitonic model is applicable. • Transformation of TeO{sub 4} structural units into TeO{sub 3} units with increase in bismuth content. • B{sub 2}O{sub 3} exists in the both BO{sub 3} trigonal and BO{sub 4} tetrahedral structural units. -- Abstract: Tellurium oxide based quaternary glasses in the system TeO{sub 2}⋅B{sub 2}O{sub 3}⋅Bi{sub 2}O{sub 3}⋅ZnO have been prepared by melt quenching technique. Amorphous nature of the samples has been ascertained by X-ray Diffractogram. The values of density and molar volume increase with increase in Bi{sub 2}O{sub 3} content. Theoretical calculations of crystalline volume (V{sub c}) have also been made. The glass transition temperature (T{sub g}) has been determined using differential scanning calorimetry (DSC) and its value is observed to decrease with increase in Bi{sub 2}O{sub 3} content. IR and Raman spectra of the present glass system indicate that ZnO acts as network modifier and exists in ZnO{sub 4} units. TeO{sub 2} exists as TeO{sub 3}, TeO{sub 4}, and TeO{sub 6} structural units and the number of TeO{sub 4} groups decreases with increase in bismuth content except for the glass sample with x = 5, which shows maximum number of TeO{sub 4} structural units among all other studied glass samples and transformation of some of TeO{sub 4} structural units into TeO{sub 3} structural units is observed with increase in bismuth content. Bismuth plays the role of network modifier with BiO{sub 6} octahedral structural units for glass samples with x = 5, 10, and 15, whereas, exists in network forming BiO{sub 3} pyramidal structural units for glass sample with x = 20. B{sub 2}O{sub 3} exists in the form of BO{sub 3} trigonal and BO{sub 4} tetrahedral structural units. The transmittance of the present glasses is observed to be very high (up to 95

  4. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    Science.gov (United States)

    Sepulveda-Guzman, S.; Elizondo-Villarreal, N.; Ferrer, D.; Torres-Castro, A.; Gao, X.; Zhou, J. P.; Jose-Yacaman, M.

    2007-08-01

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  5. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S; Elizondo-Villarreal, N; Ferrer, D; Torres-Castro, A; Gao, X; Zhou, J P; Jose-Yacaman, M [Chemical Engineering Department and Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-08-22

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  6. Potentiation of the action of metronidazole on Helicobacter pylori by omeprazole and bismuth subcitrate

    DEFF Research Database (Denmark)

    Andersen, L P; Colding, H; Kristiansen, J E

    2000-01-01

    Treatment failures using triple therapy that include metronidazole, are common in patients infected with metronidazole-resistant Helicobacter pylori in the gastric mucosa. Higher eradication rates in such patients have been described when treatment regimens include bismuth salts compared...

  7. Three-component synthesis of amidoalkyl naphthols catalyzed by bismuth(Ⅲ) nitrate pentahydrate

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Yan Liang; Ting Ting Zhang; Jing Jing Gao

    2012-01-01

    Bismuth(Ⅲ) nitrate pentahydrate catalyzed the three-component condensation of β-naphthol,aldehydes and amines/urea under solvent-free conditions to afford the corresponding amidoalkyl naphthols in excellent yields.

  8. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Science.gov (United States)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  9. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator

    OpenAIRE

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose new designs of plasmonic modulators, which can be utilized for dynamic signal switching in photonic integrated circuits. We study performance of plasmonic waveguide modulator with bismuth ferrite as an active material. The bismuth ferrite core is sandwiched between metal plates (metal-insulator-metal configuration), which also serve as electrodes so that the core changes its refractive index under applied voltage by means of partial in-plane to out-of-plane reorientation of ferroel...

  10. Fabrication and characterization of grain-oriented bismuth vanadate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shantha, K.; Varma, K.B.R. [Indian Inst. of Science, Bangalore (India). Materials Research Centre

    1997-11-01

    Grain-oriented (GO; 79%), high density (96% of the theoretical value) ceramics of bismuth vanadate, Bi{sub 2}VO{sub 5.5}, have been fabricated via a liquid-phase-aided two-stage sintering process. Scanning electron microscopy (SEM) was employed to monitor the crystallite size and the morphology of the starting powders and the microstructure of the sintered ceramics. X-ray diffraction (XRD) studies were carried out to verify the grain-orientation in the ceramics. The dielectric constant and the conductivity studies carried out along the directions perpendicular and parallel to the pressing axis show significant anisotropies (1.7 and 5.3, respectively, at 300 K). The grain-oriented ceramics were found to exhibit improved ferroelectric properties, with higher remnant polarization (P{sub r}) and lower coercive field (E{sub c}) than those of the randomly oriented (RO) ceramics.

  11. High thermoelectric performance of the distorted bismuth(110) layer.

    Science.gov (United States)

    Cheng, L; Liu, H J; Zhang, J; Wei, J; Liang, J H; Jiang, P H; Fan, D D; Sun, L; Shi, J

    2016-07-14

    The thermoelectric properties of the distorted bismuth(110) layer are investigated using first-principles calculations combined with the Boltzmann transport equation for both electrons and phonons. To accurately predict the electronic and transport properties, the quasiparticle corrections with the GW approximation of many-body effects have been explicitly included. It is found that a maximum ZT value of 6.4 can be achieved for n-type systems, which essentially stemmed from the weak scattering of electrons. Moreover, we demonstrate that the distorted Bi layer retains high ZT values in relatively broad regions of both temperature and carrier concentration. Our theoretical work emphasizes that the deformation potential constant characterizing the electron-phonon scattering strength is an important paradigm for searching high thermoelectric performance materials.

  12. Compatibility of structural materials with liquid bismuth, lead, and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, J.R. [Brookhaven National Lab., Upton, NY (United States)

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies, the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.

  13. Spark plasma sintering of hydrothermally synthesized bismuth ferrite

    Directory of Open Access Journals (Sweden)

    Zorica Branković

    2016-12-01

    Full Text Available Bismuth ferrite, BiFeO3 (BFO, powder was synthesized by hydrothermal method from Bi(NO33·5 H2O and Fe(NO33·9 H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS. The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric and magnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630 °C for 20 min, under uniaxial pressure of 90 MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

  14. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Klaus Reichmann

    2015-12-01

    Full Text Available The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  15. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    Science.gov (United States)

    Kulsi, Chiranjit; Kargupta, Kajari; Banerjee, Dipali

    2016-04-01

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S1) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S2). But due to a substantial increase in the electrical conductivity (σ) of the film (S2) over the pellet (S1), the power factor and the figure of merit is higher for sample S2 than the sample S1 at room temperature.

  16. Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders

    Science.gov (United States)

    Beck, Jan; Alvarado, Manuel; Nemir, David; Nowell, Mathew; Murr, Lawrence; Prasad, Narasimha

    2012-06-01

    Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results.

  17. A novel synthesis of perovskite bismuth ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Alexandre Z. Simões

    2011-09-01

    Full Text Available Microwave assisted hydrothermal (MAH method was used to synthesize crystalline bismuth ferrite (BiFeO3 nanoparticles (BFO at temperature of 180°C with times ranging from 5 min to 1 h. For comparison, BFO powders were also crystallized by the soft chemistry route in a conventional furnace at a temperature of 850°C for 4 h. X-ray diffraction (XRD results verified the formation of perovskite BFO crystallites while infrared data showed no traces of carbonate. Field emission scanning microcopy (FE/SEM revealed a homogeneous size distribution of nanometric BFO powders. MAH method produced nanoparticles of 96% pure perovskite, with a size of 130 nm. These results are in agreement with Raman scattering values which show that the MAH synthesis route is rapid and cost effective. This method could be used as an alternative to other chemical methods in order to obtain BFO nanoparticles.

  18. Bismuth coatings deposited by the pulsed dc sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M. F.; Olaya, J. J.; Alfonso, J. E., E-mail: jealfonsoo@unal.edu.co [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Ciencia de Materiales y Superficies, Carrera 45 No. 26-85, Edif. Uriel Gutierrez, Bogota D. C. (Colombia)

    2013-08-01

    In this work we present the results obtained from the deposition of nano-structured bismuth coatings through Dc pulsed unbalanced magnetron sputtering. The coatings were grown on two substrates: silicon and AISI steel 316 L. The microstructure of the Bi coatings grown on silicon and the corrosion resistance of the Bi coatings grown on AISI steel were evaluated. The microstructure was evaluated by X-ray diffraction and the corrosion resistance was characterized by means of polarization potentiodynamic and electrochemical impedance spectroscopy. Finally the morphology of the coatings was evaluated through scanning electronic microscopy. The X-ray diffraction analysis indicates that the coatings are polycrystalline; the corrosion resistance tests indicate that the films with better corrosion resistance were deposited at 40 khz. Scanning electron microscopy micrographs show that the coatings are grown as granular form. (Author)

  19. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  20. Adverse events with bismuth salts for Helicobacter pylori eradication:Systematic review and meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Alexander C Ford; Peter Malfertheiner; Monique Giguére; José Santana; Mostafizur Khan; Paul Moayyedi

    2008-01-01

    AIM:To assess the safety of bismuth used in Helicobacter pylori (H pylori) eradication therapy regimens.METHODS:We conducted a systematic review and meta-analysis.MEDLINE and EMBASE were searched (up to October 2007) to identify randomised controlled trials comparing bismuth with placebo or no treatment,or bismuth salts in combination with antibiotics as part of eradication therapy with the same dose and duration of antibiotics alone or,in combination,with acid suppression.Total numbers of adverse events were recorded.Data were pooled and expressed as relative risks with 95% confidence intervals (CI).RESULTS:We identified 35 randomised controlled trials containing 4763 patients.There were no serious adverse events occurring with bismuth therapy.There was no statistically significant difference detected in total adverse events with bismuth [relative risk (RR)=1.01;95% CI:0.87-1.16],specific individual adverse events,with the exception of dark stools (RR = 5.06;95% CI:1.59-16.12),or adverse events leading to withdrawal of therapy (RR = 0.86;95% CI:0.54-1.37).CONCLUSION:Bismuth for the treatment of H pylori is safe and well-tolerated.The only adverse event occurring significantly more commonly was dark stools.

  1. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Science.gov (United States)

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Diaz, David; Arevalo-Niño, Katiushka; Garza-Enriquez, Marianela; De la Garza-Ramos, Myriam A; Cabral-Romero, Claudio

    2012-01-01

    Background and methods Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities. Results Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM. Conclusion These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation. PMID:22619547

  2. Wine as a digestive aid: comparative antimicrobial effects of bismuth salicylate and red and white wine.

    Science.gov (United States)

    Weisse, M. E.; Eberly, B.; Person, D. A.

    1995-01-01

    OBJECTIVE--To test whether red and white wines are as potent as bismuth salicylate against the bacteria responsible for traveller's diarrhoea to try to explain wine's legendary reputation as a digestive aid. DESIGN--Red and white wine, bismuth salicylate, two solutions containing ethanol (diluted absolute ethanol and tequila), and sterilised water were tested against suspensions of salmonella, shigella, and Escherichia coli to determine relative antibacterial activity. Suspensions of 10(7) colony forming units of shigella, salmonella, and E coli were added to the test solutions and plated on standard nutrient agar at 0, 10, 20, 30, 60, and 120 minutes and 24 hours. Dilutions of wine and bismuth salicylate were then tested with E coli as the test bacterium, and the experiment repeated. MAIN OUTCOME MEASURES--Exposure times necessary for eradication of organisms for the different solutions; decreases in colony counts at the different exposure times for dilutions of wine and bismuth salicylates. RESULTS--Undiluted wine and bismuth salicylate were both effective in reducing the number of viable organisms (by 10(5)-10(6) colony forming units) after 20-30 minutes. Dilutions of wine were much more effective in decreasing colony counts than were similar dilutions of bismuth salicylate. CONCLUSION--The antibacterial property of wine is largely responsible for wine's reputation as a digestive aid. Images p1659-a PMID:8541747

  3. Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films.

    Science.gov (United States)

    Walker, Emily S; Na, Seung Ryul; Jung, Daehwan; March, Stephen D; Kim, Joon-Seok; Trivedi, Tanuj; Li, Wei; Tao, Li; Lee, Minjoo L; Liechti, Kenneth M; Akinwande, Deji; Bank, Seth R

    2016-11-09

    We report the first direct dry transfer of a single-crystalline thin film grown by molecular beam epitaxy. A double cantilever beam fracture technique was used to transfer epitaxial bismuth thin films grown on silicon (111) to silicon strips coated with epoxy. The transferred bismuth films retained electrical, optical, and structural properties comparable to the as-grown epitaxial films. Additionally, we isolated the bismuth thin films on freestanding flexible cured-epoxy post-transfer. The adhesion energy at the bismuth/silicon interface was measured to be ∼1 J/m(2), comparable to that of exfoliated and wet transferred graphene. This low adhesion energy and ease of transfer is unexpected for an epitaxially grown film and may enable the study of bismuth's unique electronic and spintronic properties on arbitrary substrates. Moreover, this method suggests a route to integrate other group-V epitaxial films (i.e., phosphorus) with arbitrary substrates, as well as potentially to isolate bismuthene, the atomic thin-film limit of bismuth.

  4. Polonium problem in lead-bismuth flow target

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, D.V.; Yefimov, E.I.; Bugreev, M.I. [State Scientific Centre of Russian Federation-Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-06-01

    Alpha-active polonium nuclides Po198 - Po210 are formed in a lead-bismuth target as results of reactions Bi{sup 209}(n,{gamma})Bi{sup 210} {yields} Po{sup 210}, Bi{sup 209}(p,xn)Po{sup 210} {yields} Po{sup 210 {minus} x} (x = 1-12), Pb{sup 208}({alpha},xn) {yields} Po{sup 210 {minus} x + 2} (x = 2-14). The most important nuclides are Po-210 (T{sub {1/2}}=138.4 day), Po-209 (T{sub {1/2}}=102 years) and Po-208 (T{sub {1/2}}=2.9 years). Polonium activity of the circuit for SINQ - conditions is about 15,000 Ci after 1-year operation. Polonium radiation hazard is connected with its output from the coolant and formation of aerosol and surface alpha-activity after the circuit break-down for repair works or in accidents. One of the important issues of polonium removal system creation is containing and storing polonium removed. Its storage in solidified alkaline is not expedient because of secondary neutron formation as a result of ({alpha},n) - reaction on oxygen and sodium nucleus. The estimations carried out demonstrated that by polonium concentration {approx} 100 Ci/l neutron current on the container surface can reach {approx} 10{sup 4}n/(cm{sup 2}s). Concentration and storage of polonium in solidified lead-bisumth seems the most convenient. The calculations demonstrated that in a 100 l container 50,000 Ci of polonium can be stored (as much as 3 times more than 1-year polonium product in SINQ-conditions) under temperature in the container less than melting point of lead bismuth (the wall temperature is about 100{degrees}C).

  5. 掺杂硒碳糊电极阳极溶出法测定铋%Determination of bismuth at carbon paste electrodes doped with selenium by anodic stripping voltammetry

    Institute of Scientific and Technical Information of China (English)

    韦革; 魏小平; 李建平

    2011-01-01

    A new anodic stripping voltammetric method for the determination trace bismuth of was developed by using carbon paste electrodes doped with selenium as a working electrode. In 0.1 mol/L HC1, a sensitive oxidation peak of the Bi3+ were obtained with the peak potential of + 0.05 V (vs. Ag/AgCl). The oxidation peak current linearly changed with the logarithmic value of bismuth ion concentration in the range of 1.0 × 10-9 ~ 1. 0 × 10-5 mol/L. The detection limit was 1. 0 × 10 -10 mol/L. The method has been applied to the determination of the content of bismuth in water samples and the drugs of Bismuth Potassium Citrate Granules. The recoveries were found to be in the range of 93.3% ~ 105.4%. The proposed electrode is simple in fabrication, and cheap renewal in use. It is valuable in practical application.%建立了一种测定痕量铋的新方法,即利用掺杂硒碳糊电极作为工作电极的阳极溶出法.在0.1 mol/L的HCl底液中,Bi3+于+0.05V(vs.Ag/AgCl)出现灵敏的氧化溶出峰,铋离子的浓度在1.0×10-5~1.0×10-9 mol/L范围内其对数值lgc与铋的氧化峰电流值呈线性关系,检出限达1.0×10 -10 mol/L.本法已用于药物枸橼铋钾颗粒中铋含量的测定,回收率为95.5%~104.9%.

  6. Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode.

    Science.gov (United States)

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming

    2014-06-01

    A highly selective amperometric sensor was developed for the trace level determination of hydrazine at bismuth nanoparticles (Bi) decorated graphene nanosheets (GR) composite film modified glassy carbon electrode (GCE). GR-Bi nanocomposite has been successfully prepared via simple and facile chemical reduction approach and its structure was characterized by various techniques. Surface morphological and X-ray diffraction studies revealed the formation and high loading of Bi nanoparticles on graphene sheets. GR-Bi nanocomposite modified GCE exhibited greatly enhanced electrocatalytic performance towards electro-oxidation of hydrazine in terms of decrease in overpotential and increase in oxidation peak current (Ip). The kinetic parameters such as electron transfer coefficient (α) and diffusion coefficient (Do) of the hydrazine oxidation were determined to be 0.70 and 2.65×10(-5) cm(2) s(-1), respectively. An amperometric sensor has been fabricated which detects trace level concentration of hydrazine. The sensor exhibited a wide linear range from 20 nM to 0.28 mM and a very low detection limit (LOD) of 5 nM. Remarkably, this is the lowest LOD achieved for the determination of hydrazine in neutral pH among other reported electrochemical hydrazine sensors. In addition, the sensor selectively detects hydrazine even in the presence of 1000 fold excess quantity of common interferrants. The practical feasibility of the sensor has been assessed in water and urine samples with good recoveries. Furthermore, the sensor exhibited appreciable stability, repeatability and reproducibility results.

  7. Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation.

    Science.gov (United States)

    Menke, E J; Brown, M A; Li, Q; Hemminger, J C; Penner, R M

    2006-12-01

    Nanowires composed of the thermoelectric material Bi2Te3 were synthesized on highly oriented pyrolytic graphite (HOPG) electrodes using the electrochemical step edge decoration (ESED) method. Nanowire synthesis was initiated by applying a voltage pulse of -0.75 V versus SCE for 5 ms to an HOPG electrode in an aqueous solution containing both Bi3+ and TeO22-, thereby producing nuclei at the step edges. Bi2Te3 was electrodeposited onto these nuclei using a cyclic electrodeposition-stripping scheme that involved the electrodeposition of bismuth-rich Bi2Te3 on a negative-going voltammetric scan (to -0.05 V) and the subsequent anodic stripping of excess bismuth from these nanowires during a positive-going scan (to +0.35 V). When this cycle was repeated 10-50 times, Bi2Te3 nanowires in the 100-300-nm-diameter range were obtained. These nanowires were narrowly dispersed in diameter (RSDdia = 10-20%), were more than 100 microm in length, and were organized into parallel arrays containing hundreds of wires. Smaller nanowires, with diameters down to 30 nm, were obtained by electrooxidizing 150-nm-diameter Bi2Te3 nanowires at +0.37 V under conditions of kinetic control. This oxidation process unexpectedly improved the uniformity of Bi2Te3 nanowires, and X-ray photoelectron spectroscopy (XPS) shows that these nanowires retain a Bi2Te3 core but also have a thin surface layer composed of Bi and Te oxides. The ability of Bi2Te3 nanowires to generate electrical power was assessed by transferring ensembles of these nanowires onto cyanoacrylate-coated glass surfaces and evaporating 4-point nickel contacts. A dimensionless figure of merit, ZT, ranging from 0 to 0.85 was measured for fresh samples that were less than 1 day old. XPS reveals that Bi2Te3 nanowires are oxidized within a week to Bi2O3 and TeO2. These oxides may interfere with the application by evaporation of electrical contacts to these nanowires.

  8. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman; Gassman, Paul L.; Engelhard, Mark H.; Lea, Alan S.; Rosso, Kevin M.

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Second derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.

  9. Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Mario; Baranton, Steve [Laboratoire de Catalyse en Chimie Organique, Equipe Electrocatalyse, UMR 6503 CNRS, 40 avenue du recteur Pineau, F-86022 Poitiers Cedex (France); Coutanceau, Christophe, E-mail: christophe.coutanceau@univ-poitiers.f [Laboratoire de Catalyse en Chimie Organique, Equipe Electrocatalyse, UMR 6503 CNRS, 40 avenue du recteur Pineau, F-86022 Poitiers Cedex (France)

    2010-12-15

    In the past few years, borohydrides have gathered a lot of attention as an energy carrier for fuel cell application. Numerous investigations on both hydrogen generation and direct oxidation of NaBH{sub 4} have been published. Nonetheless, in our knowledge, only a few catalysts are capable to completely perform the direct oxidation of NaBH{sub 4} at low potentials without hydrogen evolution. In this work, carbon supported Pd{sub 1-x}Bi{sub x}/C and Pt{sub 1-x}Bi{sub x}/C nanocatalysts were synthesized by a 'water in oil' microemulsion method. The influence of surface modifications of Pt and Pd by Bi on the electrooxidation of sodium borohydride in alkaline media was evaluated. Physical and electrochemical methods were applied to characterize the structure and surface of the synthesized catalysts. It was verified that bismuth is present at the surface of the bimetallic catalysts and that hydrogen adsorption/desorption reactions are strongly limited on Pt and Pd surfaces with high bismuth coverage. Although the onset potential for NaBH{sub 4} oxidation on Pd{sub x}Bi{sub 1-x}/C catalysts is ca. 0.2 V higher than that for Pd/C, the presence of bismuth on palladium surface influences the reaction mechanism, limiting hydrogen evolution and oxidation in the case of Pd{sub 0.8}Bi{sub 0.2} catalyst. On Pt{sub 0.9}Bi{sub 0.1} catalyst the onset potential remains unchanged comparing to Pt/C and negligible hydrogen evolution was observed in the whole potential range where the catalyst is active. The number of exchanged electrons was calculated using the Koutecky-Levich equation and it was found that for Pt{sub 0.9}Bi{sub 0.1} catalyst, ca. 8 electrons are exchanged per BH{sub 4}{sup -} ion at low potentials. The presented results are remarkable evidencing that NaBH{sub 4} can be directly oxidized at low potentials with high energy efficiency.

  10. Analysis of single and binary phases in cerium doped sodium bismuth titanate -inorganic materials Na{sub 0}.5Bi{sub (}0.5-x)Ce{sub x}TiO{sub 3}; Estudio de fases simples y binarias en BNT puro y dopado con cerio Na{sub 0},5Bi{sub (}0,5-x)Ce{sub x}TiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Supriya, S.; Dos Santos-Garcia, A. J.; Frutos, J. de; Fernandez-Martinez, F.

    2015-07-01

    The pure and cerium doped sodium bismuth titanate (NBT) inorganic powders were synthesized by solid-state reaction method. The presence of rhombohedral phase was observed in cerium doped NBT compounds. When x= 0.05 of cerium doped NBT is heat treated at 1200 degree centigrade, the compound forms single perovskite phase. The samples of x = 0.10 and 0.15 were heat treated up to 1350 degree centigrade, the binary phases with cerium and bismuth oxides were observed. The X-ray diffraction, Fourier transform infrared spectroscopy, reflectance spectra, differential thermal analysis and thermogravimetric analysis were used to analyze the various properties of samples. Moreover, the effects of cerium doping and calcining temperature on NBT samples were investigated. In this work, we present our recent results on the synthesis and characterization of cerium doped sodium bismuth titanate materials. (Author)

  11. Synthesis, X-ray Opacity, and Biological Compatibility of Ultra-High Payload Elemental Bismuth Nanoparticle X-ray Contrast Agents.

    Science.gov (United States)

    Brown, Anna L; Naha, Pratap C; Benavides-Montes, Victor; Litt, Harold I; Goforth, Andrea M; Cormode, David P

    2014-04-01

    Inorganic nanoscale X-ray contrast agents (XCAs) offer many potential advantages over currently used intravascular molecular contrast agents, including longer circulation and retention times, lower administration volumes, and greater potential for site directed imaging. Elemental bismuth nanoparticles (BiNPs) are particularly attractive candidate XCAs due to the low cost, the high atomic number and high density of bismuth, and the likelihood that BiNPs will oxidatively decompose to biocompatible bismuth(III) ions at controlled rates for renal excretion. Herein we describe the synthesis of ultrahigh payload BiNPs in 1,2-propanediol using a borane reducing agent and glucose as a biocompatible surface stabilizer. Both synthetic solvent (1,2-propanediol) and surfactant (glucose) are evident on the BiNP surfaces when analyzed by (1)H NMR and FT-IR spectroscopies. These particles contain ∼6 million Bi atoms per NP and have large inorganic cores (74 nm by TEM) compared to their hydrodynamic size (86 nm by DLS). Thus, the dense BiNP core constitutes the majority (∼60%) of each particle's volume, a necessary property to realize the full potential of nanoscale XCAs. Using quantitative computed tomography in phantom and in vitro imaging studies, we demonstrate that these BiNPs have greater X-ray opacity than clinical small molecule iodinated contrast agents at the same concentrations. We furthermore demonstrate a favorable biocompatibility profile for these BiNPs in vitro. Altogether, these studies indicate that these ultrahigh payload BiNPs, synthesized from known biocompatible components, have promising physical and cytotoxicological properties for use as XCAs.

  12. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2012-04-01

    Full Text Available Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities.Results: Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM.Conclusion: These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation.Keywords: zerovalent bismuth nanoparticles, antimicrobial agent, biofilm, Streptococcus mutans

  13. A binary palladium-bismuth nanocatalyst with high activity and stability for alkaline glucose electrooxidation

    Science.gov (United States)

    Chen, Cheng-Chuan; Lin, Cheng-Lan; Chen, Lin-Chi

    2015-08-01

    Binary palladium-bismuth nanocatalysts supported on functionalized multi-walled carbon nanotubes (Pd-Bi/C) are synthesized using a one-pot polyol method. The prepared Pd-Bi/C catalysts have a metal particle range from 5.25 to 12.98 nm and are investigated for alkaline electrocatalytic glucose oxidation reaction (GOR). The physical properties of the catalysts are characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical activities are determined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis and chronoamperomtry (CA) for comparing the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate and cycling stability of the Pd-Bi/C catalysts. It is found that Pd-Bi/C (1:0.14) can significantly enhance the electrocatalytic activity on GOR about 40% times higher than Pd/C and as well as has a 3.7-fold lower poisoning rate. The in-use stability of Pd-Bi/C (1:0.14) is also remarkably improved, according to the results of the 200 cycling CV test. The effects of the operating temperature and the concentration of glucose and NaOH electrolyte on Pd-Bi/C (1:0.14) are further studied in this work. The highest Pd-Bi/C catalyzed GOR current density of 29.5 mA cm-2 is attained in alkaline medium.

  14. Solid electrolytes for use in lead-bismuth eutectic cooled nuclear reactors

    Science.gov (United States)

    Mariën, A.; Lim, J.; Rosseel, K.; Vandermeulen, W.; Van den Bosch, J.

    2012-08-01

    The operating temperature of electrochemical oxygen sensors can likely be lowered by reducing the solid electrolyte resistance. Most often, these sensors use yttria partially stabilized zirconia (e.g. (Y2O3)0.05(ZrO2)0.95, (5-YSZ)) as solid electrolyte. In this paper, we discuss the use of better conducting ceramics than yttria partially stabilized zirconia, as solid electrolytes for oxygen sensors that can be applied in lead-bismuth eutectic (LBE) cooled nuclear reactors. Two stabilized zirconia ceramics ((Y2O3)0.08(ZrO2)0.92, (8-YSZ); (Sc2O3)0.1(CeO2)0.01(ZrO2)0.89) are investigated as well as a hypostoichiometric perovskite-type La0.8Sr0.2Ga0.8Mg0.2O3-δ. The results of microstructural analyses, thermochemical stability tests in LBE (at 360 °C), as well as mechanical tests and four-probe d.c. conductivity measurements (at 300-800 °C) are discussed and compared with the results that were obtained for a commercially available 5-YSZ (Friatec AG, Germany). Of the three studied ceramics, 8-YSZ was identified as the most promising solid electrolyte to reduce the operating temperature of electrochemical oxygen sensors. http://www.friatec.de/content/friatec/en/Ceramics/FRIALIT-DEGUSSIT-Oxide-Ceramics/downloads/Materials.pdf (this URL was last accessed on February 7th, 2012).

  15. Development of oxygen meters for the use in lead-bismuth

    Science.gov (United States)

    Konys, J.; Muscher, H.; Voß, Z.; Wedemeyer, O.

    2001-07-01

    Liquid lead and the eutectic lead-bismuth alloy (PbBi) are considered both as a spallation target and coolant of an accelerator driven system (ADS) for the transmutation of long-lived actinides from nuclear waste into shorter living isotopes. It is known that both, pure lead and PbBi, exhibit a high corrosivity against austenitic and ferritic steels, because of the high solubility of nickel and iron in PbBi. One way of reducing the strong corrosion is the in situ formation of stable oxide scales on the steel surfaces. Thermodynamic calculations and experimental results have confirmed, that the control of oxygen in lead or PbBi within a defined activity range can lead to acceptable corrosion rates. To control the level of oxygen dissolved in lead or PbBi, a sensor for measuring the oxygen activity is required. Within the sodium fast breeder reactor development, an adequate technique was established for estimating oxygen in liquid sodium. This knowledge can be used for other metal/oxygen systems like oxygen in PbBi. For measuring the oxygen activity and calculating its concentration, the relevant thermodynamic and solubility data have to be considered. Two reference electrode systems: Pt/air and In/In 2O 3 (both based on yttria-stabilized zirconia as solid electrolyte) are investigated to evaluate their electromotive force (EMF)-temperature dependency in saturated and unsaturated oxygen solutions. Results with both types of oxygen meters in PbBi at different oxygen levels were compared with theoretical calculations. The experimental data indicate that the design, construction and integration of an oxygen control unit in a large scale PbBi-loop seems to be very feasible.

  16. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, M., E-mail: mar.floc@hotmail.com [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camps, E. [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camacho-López, M. [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Muhl, S. [Instituto de Investigación en Materiales (UNAM), Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, D.F., México (Mexico); and others

    2015-09-15

    Highlights: • Bismuth nanoparticles have been obtained by laser ablation of solids in liquids. • The technique allows controlling the size and concentration of the samples. • Bi np’s in base oils can improve the tribological characteristics of the lubricant. - Abstract: The improvement of the tribological properties of mineral base oils through the addition of bismuth nanoparticles as an additive, together with the idea of obtaining lubricants free of heavy metals, was evaluated. Bismuth nanoparticles were produced directly in the heavy and light viscosity mineral base oils (BS900 and BS6500) using the technique of laser ablation of solids immersed in liquids. Transmission electron microscopy measurements showed the presence of pure bismuth nanoparticles. Small Angle X-ray Scattering (SAXS) measurements showed that the average size of the nanoparticles was between 7 and 65 nm depending on the experimental conditions used. The tribological properties of the base oil with the bismuth nanoparticles additives were evaluated using a four-ball tester. Tests were performed using the base oil with and without Bi nanoparticles. It was observed that the coefficient of friction of the oil decrease with an increasing concentration of the nanoparticles. The results also showed that the wear rate was reduced when the Bi nanoparticle additives were used.

  17. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  18. Electrochemical study on determination of diffusivity, activity and solubility of oxygen in liquid bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Rajesh [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gnanasekaran, T. [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: gnani@igcar.ernet.in; Srinivasa, Raman S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2006-06-15

    Diffusivity of oxygen in liquid bismuth was measured by potentiostatic method and is given bylg(D{sub O}{sup Bi}/cm{sup 2}.s{sup -1})(+/-0.042)=-3.706-1377/(TK{sup -1})(804bismuth was determined by coulometric titrations and using the measured data standard free energy of dissolution of oxygen in liquid bismuth was derived for the reaction:1/2O{sub 2}(g)=[O]{sub Bi}(at.%)and is given by{delta}G{sub O(Bi)}{sup o}/(J.g-atomO{sup -1})(+/-720)=-108784+20.356TK{sup -1}(753bismuth was derived as a function of temperature and is given by the following expressions:lg(S/at%O)(+/-0.05)=-4476/TK{sup -1}+4.05(753bismuth is compared with the literature data.

  19. How reliable are environmental data on 'orphan' elements? The case of bismuth concentrations in surface waters.

    Science.gov (United States)

    Filella, Montserrat

    2010-01-01

    Like all elements of the periodic table, bismuth is ubiquitously distributed throughout the environment as a result of natural processes and human activities. It is present as Bi(III) in environmental, biological and geochemical samples. Although bismuth and its compounds are considered to be non-toxic to humans, its increasing use as a replacement for lead has highlighted how little is known about its environmental and ecotoxicological behaviour. In this first critical review paper on the existing information on bismuth occurrence in natural waters, 125 papers on fresh and marine waters have been collated. Although the initial objective of this study was to establish the range of the typical concentrations of total dissolved bismuth in natural waters, this proved impossible to achieve due to the wide, and hitherto unexplained, dispersion of published data. Since analytical limitations might be one of the reasons underlying value dispersion, new analytical methods published since 2000--intended to be applied to natural waters--have also been reviewed. Disappointingly, the detection limits of the bulk of them are well above those required; they are thus of limited usefulness. Analysis of the existing information on bismuth in secondary references (i.e., books, review chapters) and on its chemical speciation in seawater revealed that the uncritical reproduction of old data is a widespread practice.

  20. Computational chemistry calculations of stability for bismuth nanotubes, fullerene-like structures and hydrogen-containing nanostructures.

    Science.gov (United States)

    Kharissova, Oxana V; Osorio, Mario; Vázquez, Mario Sánchez; Kharisov, Boris I

    2012-08-01

    Using molecular mechanics (MM+), semi-empirical (PM6) and density functional theory (DFT) (B3LYP) methods we characterized bismuth nanotubes. In addition, we predicted the bismuth clusters {Bi(20)(C(5V)), Bi(24)(C(6v)), Bi(28)(C(1)), B(32)(D(3H)), Bi(60)(C(I))} and calculated their conductor properties.

  1. Magnetic and Electrical Characteristics of Bismuth Ferrite, Depending on the Impurities, Method of Preparation and Size of the Nanoparticles

    Directory of Open Access Journals (Sweden)

    V.M. Sarnatsky

    2016-10-01

    Full Text Available The prospect of application of the multiferroics in devices and spintronics devices is shown. A comparative analysis of magnetic and dielectric properties of nanostructures based on bismuth ferrite which were synthesized by various ways was made. The results of studies of the structure and properties of the nanostructured bismuth ferrite powder, synthesized by combustion of nitrate - organic precursors, are presented.

  2. A novel layered bismuth-based photocatalytic material LiBi3O4Cl2 with rad OH and h+ as the active species for efficient photodegradation applications

    Science.gov (United States)

    Wang, Shuobo; Huang, Hongwei; Zhang, Yihe

    2016-12-01

    Developing new photocatalysts is of significant importance for their potential environmental and energetic applications. Herein, a novel layered bismuth-based photocatalytic material LiBi3O4Cl2 was developed by a simple solid-state reaction. The morphology, microstructures and optical properties were investigated by XRD, SEM, TEM and DRS. The band gap of LiBi3O4Cl2 has been determined to be 3.35 eV, and its ECB and EVB were also estimated. The photocatalytic property of LiBi3O4Cl2 is surveyed by oxidative decomposition of rhodamine B (RhB), methyl orange (MO), methylene blue (MB) and phenol in aqueous solution. The results demonstrated that LiBi3O4Cl2 is an efficient UV light active photocatalyst, which can destroy the contaminants with irradiation. It is also more effective in degrading pollutants than the related layered bismuth-based photocatalyst Bi4NbO8Br. The photocatalysis mechanism is detailedly investigated by active species trapping measurement and terephthalic acid photoluminescence probing technique (TA-PL). It revealed that powerful hydroxyl radicals (rad OH) and photogenerated holes (h+) are the two main active species and are responsible for the efficient degradation process. This study provides a new layered bismuth-based photocatalytic material for environmental and energetic applications.

  3. Infrared spectra of U.S. automobile original finishes (post - 1989). VIII: In situ identification of bismuth vanadate using extended range FT-IR spectroscopy, Raman spectroscopy, and X-ray fluorescence spectrometry.

    Science.gov (United States)

    Suzuki, Edward M

    2014-03-01

    Chrome Yellow (PbCrO4 ·xPbSO4 ) was a common pigment in U.S. automobile OEM finishes for more than three decades, but in the early 1990s its use was discontinued. One of its main replacements was Bismuth Vanadate (BiVO4 ·nBi2 MoO6 , n = 0-2), which was commercially introduced in 1985, as this inorganic pigment also produces a very bright hue and has excellent outdoor durability. This paper describes the in situ identification of Bismuth Vanadate in automotive finishes using FT-IR and dispersive Raman spectroscopy and XRF spectrometry. Some differentiation of commercial formulations of this pigment is possible based on far-infrared absorptions, Raman data, and elemental analysis. The spectral differences arise from the presence or absence of molybdenum, the use of two crystal polymorphs of BiVO4 , and differences in pigment stabilizers. Bismuth Vanadate is usually not used alone, and it is typically found with Isoindoline Yellow, hydrous ferric oxide, rutile, Isoindolinone Yellow 3R, or various combinations of these.

  4. Leaching process of anode slime with high silver and bismuth%高银铋阳极泥浸出工艺研究

    Institute of Scientific and Technical Information of China (English)

    何静; 郭瑞; 蓝明艳; 王灿; 鲁君乐

    2013-01-01

      某厂高银铋阳极泥产粗铋及综合回收有价金属,工艺采用两段浸出法处理此阳极泥,第1段硫酸浸出铜,第2段盐酸浸出铋.分别考察了浸出温度、时间、液固比(质量比)、酸量及氧化剂用量对浸出率的影响.铜的浸出率(液计)96%以上,铋、锑的浸出率(渣计)均在99%以上,铅、银富集于第2段浸出渣中,铅、银渣含Pb 26.63%左右,含Ag 36.77%左右,铅和银的直收率高,分别为97.82%及98.93%.浸出过程为串级联动循环浸出,洗酸洗水均返回下一次浸出,大大地减少了废水量,环境友好.%In order to produce crude bismuth and comprehensively recovery of valuable metals from anode slime with high silver and bismuth ,The process is Two-stage leaching. The first stage is leaching of copper with sulfuric acid and the second stage is leaching of bismuth with hydrochloric acid. Studied on the relationship between the Leaching rate and the leaching temperature, time, ratio of liquid to solid(Quality), dosage of acid and oxidant.The leaching rate (Liquid) of copper is above 96%,and The leaching rate (Slag) of bismuth and antimony are all above 99 %.The lead and silver are enriched in the second stage leaching slag, which containing Pb about 26.63%,Ag about 36.77 %,the direct yield of Pb and Ag are 97.82 % and 98.93 %respectively.The process is cycle leaching, washing water and washing acid are returned to the next leaching, which greatly reduced the amount of wastewater, and good for environmental protection.

  5. 由氯氧化铋直接制备纳米氧化铋%Preparation of Nanometer Bismuth Oxide from Bismuth Oxide Chloride

    Institute of Scientific and Technical Information of China (English)

    吴文伟; 赖水彬; 姜求宇; 廖森; 苏云峰; 伍朝广

    2006-01-01

    研究由氯氧化铋直接制备纳米氧化铋新工艺.氯氧化铋经碳酸氢铵-氨水二次脱氯转型后得到氧化铋前驱体碳酸氧铋,烘干后热解得氧化铋产品,平均粒径约40m,含氯仅为0.62%.增大碳酸氢铵浓度、适当提高溶液的pH值及转化液的温度均有利于氯的脱除,在pH=9,温度为50℃下进行二次脱氯效果最佳,而530℃下煅烧2.5h则有利于得到细颗粒的产品.与传统的硝酸盐体系比较,新工艺不仅消除了NOx的污染,而且易获得纯度高的产品,具有良好的推广应用前景.

  6. One-dimensional Topological Edge States of Bismuth Bilayers

    Science.gov (United States)

    Drozdov, Ilya; Alexandradinata, Aris; Jeon, Sangjun; Nadj-Perge, Stevan; Ji, Huiwen; Cava, Robert; Bernevig, B. Andrei; Yazdani, Ali

    2014-03-01

    The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the sample. Bilayers of bismuth (Bi), an elemental system theoretically predicted to be a Quantum Spin Hall (QSH) insulator1, has been studied with Scanning Tunneling Microscopy (STM) and the electronic structure of its bulk and edge modes has been experimentally investigated. Spectroscopic mapping with STM reveals the presence of the state bound to the edges of the Bi-bilayer. By visualizing quantum interference of the edge state quasi-particles in confined geometries we characterize their dispersion and demonstrate that their properties are consistent with the absence of backscattering. Hybridization of the edge modes to the underlying substrate will be discussed. [1] Shuichi Murakami, Phys. Rev. Lett. 97, 236805 (2006). The work at Princeton and the Princeton Nanoscale Microscopy Laboratory was supported by ARO MURI program W911NF-12-1-0461, DARPA-SPWAR Meso program N6601-11-1-4110, NSF-DMR1104612, and NSF-MRSEC programs through the Princeton Center for Complex Materials (DMR-0819860)

  7. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, Mariela [Instituto Nacional de Investigaciones Nucleares (Mexico); Vega-Jiménez, Alejandro L., E-mail: argelia.almaguer@mac.com; Almaguer-Flores, Argelia [Universidad Nacional Autónoma de México, Facultad de Odontología, DEPeI, I (Mexico); Camps, Enrique; Pérez, Mario [Instituto Nacional de Investigaciones Nucleares (Mexico); Silva-Bermudez, Phaedra [Instituto Nacional de Rehabilitación, Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa (Mexico); Berea, Edgardo [FarmaQuimia SA de CV. (Mexico); Rodil, Sandra E. [Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales (Mexico)

    2015-11-15

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  8. Shape-dependent photocatalytic activities of bismuth subcarbonate nanostructures.

    Science.gov (United States)

    Tang, Jiale; Cheng, Gang; Zhou, Huamin; Yang, Hao; Lu, Zhong; Chen, Rong

    2012-05-01

    Different shaped bismuth subcarbonate ((BiO)2CO3) nanostructures including irregular nanoplates, relatively uniform nanoplates and nanocubes were prepared and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflection spectroscopy (DRS) and nitrogen adsorption. The photocatalytic performance of the as-synthesized (BiO)2CO3 nanostructures on the degradation of Rhodamine B (RhB), methyl orange (MO) and methyl blue (MB) were evaluated under UV-vis light irradiation (modeling sunlight). The photocatalysis tests showed that all the different (BiO)2CO3 nanostructures displayed enhanced photodegradation performance compared with commercial (BiO)2CO3. The irregular (BiO)2CO3 nanoplates exhibited the highest photocatalytic activity on the degradation of different organic dyes. (BiO)2CO3 nanosturctures exhibited the different capacity to bleach the three organic dyes, which might be attributed to their different molecular structures. This work may provide a potential photocatalyst for the environmental pollutants treatments.

  9. Dielectric and Impedance Spectroscopy of Barium Bismuth Vanadate Ferroelectrics

    Science.gov (United States)

    Sutar, B. C.; Choudhary, R. N. P.; Das, Piyush R.

    2014-07-01

    Structural, micro-structural and electrical properties of barium bismuth vanadate Ba(Bi0.5V0.5)O3 ceramics were investigated. X-ray diffraction (XRD) analysis of the prepared material confirmed the formation of the compound with monoclinic crystal system. Scanning electron microscopy (SEM) of the compound exhibits well-defined grains that are uniformly distributed throughout the surface of the sample. Dielectric properties of the compound were studied as a function of temperature at different frequencies. An observation of dielectric anomaly at 295 °C is due to ferroelectric phase transition that was later confirmed by the appearance of hysteresis loop. Detailed studies of complex impedance spectroscopy have provided a better understanding of the relaxation process and correlations between the microstructure-electrical properties of the materials. The nature of frequency dependence of ac conductivity obeys the Debye power law. The dc conductivity, calculated from the ac conductivity spectrum, shows the negative temperature coefficient of resistance behavior similar to that of a semiconductor.

  10. Mechanically Activated Synthesis of Nanocrystalline Powders of Ferroelectric Bismuth Vanadate

    Science.gov (United States)

    Shantha, K.; Subbanna, G. N.; Varma, K. B. R.

    1999-01-01

    Mechanical milling of a stoichiometric mixture of Bi2O3and V2O5yielded nanosized powders of bismuth vanadate, Bi2VO5.5(BiV). Structural evolution of the desired BiV phase, through an intermediate product (BiVO4), was monitored by subjecting the powders, ball milled for various durations to X-ray powder diffraction (XRD), differential thermal analysis (DTA), and transmission electron microscopic (TEM) studies. XRD studies indicate that the relative amount of the BiV phase present in the ball-milled mixture increases with increase in milling time and its formation reaches completion within 54 h of milling. Assynthesized powders were found to stabilize in the high-temperature tetragonal (γ) phase. DTA analyses of the powders milled for various durations suggest that the BiV phase-formation temperature decreases with increase in milling time. The nanometric size (30 nm) of the crystallites in the final product was confirmed by TEM and XRD studies. TEM studies clearly demonstrate the growth of BiV onBi2O3crystallites.

  11. Aromatic amino acids in high selectivity bismuth(III) recognition.

    Science.gov (United States)

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan phenylalanine amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  12. Optical analysis of samarium doped sodium bismuth silicate glass

    Science.gov (United States)

    Thomas, V.; Sofin, R. G. S.; Allen, M.; Thomas, H.; Biju, P. R.; Jose, G.; Unnikrishnan, N. V.

    2017-01-01

    Samarium doped sodium bismuth silicate glass was synthesized using the melt quenching method. Detailed optical spectroscopic studies of the glassy material were carried out in the UV-Vis-NIR spectral range. Using the optical absorption spectra Judd-Ofelt (JO) parameters are derived. The calculated values of the JO parameters are utilized in evaluating the various radiative parameters such as electric dipole line strengths (Sed), radiative transition probabilities (Arad), radiative lifetimes (τrad), fluorescence branching ratios (β) and the integrated absorption cross- sections (σa) for stimulated emission from various excited states of Sm3 +‡ ion. The principal fluorescence transitions are identified by recording the fluorescence spectrum. Our analysis revealed that the novel glassy system has the optimum values for the key parameters viz. spectroscopic quality factor, optical gain, stimulated emission cross section and quantum efficiency, which are required for a high performance optical amplifier. Calculated chromaticity co-ordinates (0.61, 0.38) also confirm its application potential in display devices.

  13. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    Science.gov (United States)

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  14. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  15. On the use of bismuth as a neutron filter

    CERN Document Server

    Adib, M

    2003-01-01

    A formula is given which, for neutron energies in the range 10 sup - sup 4 bismuth temperature and crystalline form. Computer programs have been developed which allow calculations for the Bi rhombohedral structure in its poly-crystalline form and its equivalent hexagonal close-packed structure. The calculated total neutron cross-sections for poly-crystalline Bi at different temperatures were compared with the measured values. An overall agreement is indicated between the formula fits and experimental data. Agreement was also obtained for values of Bi-single crystals, at room and liquid nitrogen temperatures. A feasibility study for use of Bi in powdered form, as a cold neutron filter, is detailed in terms of the optimum Bi-single crystal thickness, mosaic spread, temperature and cutting plane for efficient transmission of thermal-reactor neutrons, and also for rejection of the accom...

  16. Synthesis and characterization of bismuth zinc niobate pyrochlore nanopowders

    Directory of Open Access Journals (Sweden)

    Sonia Maria Zanetti

    2007-09-01

    Full Text Available Bismuth zinc niobate pyrochlores Bi1.5ZnNb1.5O7 (alpha-BZN, and Bi2(Zn1/3Nb2/32O 7 (beta-BZN have been synthesized by chemical method based on the polymeric precursors. The pyrochlore phase was investigated by differential scanning calorimetry, infrared spectroscopy, and X ray diffraction. Powder and sintered pellets morphology was examined by scanning electron microscopy. The study of alpha-BZN phase formation reveals that, at 500 °C, the pyrochlore phase was already present while a single-phased nanopowder was obtained after calcination at 700 °C. The crystallization mechanism of the beta-BZN is quite different, occurring through the crystallization of alpha-BZN and BiNbO4 intermediary phases. Both compositions yielded soft agglomerated powders. alpha-BZN pellets, sintered at 800 °C for 2 hours, presented a relative density of 97.3% while those of beta-BZN, sintered at 900 °C for 2 hours, reached only 91.8%. Dielectric constant and dielectric loss, measured at 1 MHz, were 150 and 4 x/10-4 for a-BZN, and 97 and 8 x 10-4 for beta-BZN.

  17. Pressure effects on crystal and electronic structure of bismuth tellurohalides

    Science.gov (United States)

    Rusinov, I. P.; Menshchikova, T. V.; Sklyadneva, I. Yu; Heid, R.; Bohnen, K.-P.; Chulkov, E. V.

    2016-11-01

    We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal-TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.

  18. Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons

    Science.gov (United States)

    Tang, Hao; Wang, Xiaomeng; Xiong, Yucheng; Zhao, Yang; Zhang, Yin; Zhang, Yan; Yang, Juekuan; Xu, Dongyan

    2015-04-01

    Bismuth selenide (Bi2Se3) nanoribbons have attracted tremendous research interest recently to study the properties of topologically protected surface states that enable new opportunities to enhance the thermoelectric performance. However, the thermoelectric characterization of individual Bi2Se3 nanoribbons is rare due to the technological challenges in the measurements. One challenge is to ensure good contacts between the nanoribbon and electrodes in order to determine the thermal and electrical properties accurately. In this work, we report the thermoelectric characterization of individual Bi2Se3 nanoribbons via a suspended microdevice method. Through careful measurements, we have demonstrated that contact thermal resistance is negligible after the electron-beam-induced deposition (EBID) of platinum/carbon (Pt/C) composites at the contacts between the nanoribbon and electrodes. It is shown that the thermal conductivity of the Bi2Se3 nanoribbons is less than 50% of the bulk value over the whole measurement temperature range, which can be attributed to enhanced phonon boundary scattering. Our results indicate that intrinsic Bi2Se3 nanoribbons prepared in this work are highly doped n-type semiconductors, and therefore the Fermi level should be in the conduction band and no topological transport behavior can be observed in the intrinsic system.

  19. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    Energy Technology Data Exchange (ETDEWEB)

    Andreici, Emiliana-Laura, E-mail: andreicilaura@yahoo.com [Department of Physics, West University of Timisoara, Bd. V. Parvan 4,300223 Timisoara (Romania); Petkova, Petya [Shumen University “Konstantin Preslavsky”, 115 Universitetska street, 9712 Shumen (Bulgaria); Avram, Nicolae M. [Department of Physics, West University of Timisoara, Bd. V. Parvan 4,300223 Timisoara (Romania); Academy of Romanian Scientists, Independentei 54, 050094-Bucharest (Romania)

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  20. Bismuth alloying properties in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lu [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Cao, Huawei; Cai, Ningning; Yu, Zhongyuan [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2013-09-15

    First-principles calculations have been performed to investigate the structural, electronic and optical properties of bismuth alloying in GaAs nanowires. A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration and the band edge shifts when spin–orbit coupling (SOC) is considered. The insertion of Bi atom leads to hybridization of Ga/As/Bi p states which contributes a lot around Fermi level. Scissor effect is involved. The optical properties are presented, including dielectric function, optical absorption spectra and reflectivity, which are also varied with the increasing of Bi concentrations. - Graphical abstract: Top view of Bi-doped GaAs nanowires. Ga, As, and Bi atoms are denoted with grey, purple and red balls, respectively. Display Omitted - Highlights: • A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. • The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration. • The band edge shifts when spin–orbit coupling (SOC) is considered. • The insertion of Bi atom leads to hybridization of Ga/As/Bi p states.

  1. Insights into the growth of bismuth nanoparticles on 2D structured BiOCl photocatalysts: an in situ TEM investigation.

    Science.gov (United States)

    Chang, Xiaofeng; Wang, Shuangbao; Qi, Qi; Gondal, Mohammed A; Rashid, Siddique G; Gao, Si; Yang, Deyuan; Shen, Kai; Xu, Qingyu; Wang, Peng

    2015-09-28

    The synthetic techniques for novel photocatalytic crystals had evolved by a trial-and-error process that spanned more than two decades, and an insight into the photocatalytic crystal growth process is a challenging area and prerequisite for achieving an excellent photoactivity. Bismuth nanoparticle based hybrids, such as Bi/BiOCl composites, have recently been investigated as highly efficient photocatalytic systems because of the localized surface plasmon resonance (LSPR) of nanostructured bismuth. In this work, the observation towards the formation and growth of bismuth nanoparticles onto 2D structured BiOCl photocatalysts has been performed using a transmission electron microscope (TEM) directly in real time. The growth of bismuth nanoparticles on BiOCl nanosheets can be emulated and speeded up driven by the electron beam (e(-) beam) in TEM. The crystallinity, growth and the elemental evolution during the formation of bismuth nanoparticles have also been probed in this work.

  2. Review - Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering

    Directory of Open Access Journals (Sweden)

    Satoshi Tanaka, Yusuke Tomita, Ryoichi Furushima, Hiroyuki Shimizu, Yutaka Doshida and Keizo Uematsu

    2009-01-01

    Full Text Available High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a- and b-axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 ° C.

  3. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis; A. S. Shieh

    2000-04-02

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  4. Overview of the Use of ATHENA for Thermal-Hydraulic Analysis of Systems with Lead-Bismuth Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee; Shieh, Arthur Shan Luk

    2000-04-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  5. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates.

    Science.gov (United States)

    Reim, Natalia; Littig, Alexander; Behn, Dino; Mews, Alf

    2013-12-11

    Semiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters. Since the NW diameter is governed by the dimension of the Bi catalyst, the electrodeposition is a reliable method to synthesize nanowires directly on substrates with a desired size and density. We show that the density can be adjusted from individual NWs on several square micrometer to very dense NW networks. The diameter can be controlled between thick nanowires above 100 nm to very thin NW of 7 nm in diameter, which is well below the respective exciton dimension. Hence, especially the thinnest NWs exhibit diameter-dependent photoluminescence energies as a result of quantum confinement effects in the radial dimension.

  6. Performance improvement of LiMn{sub 2}O{sub 4} as cathode material for lithium ion battery with bismuth modification

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.L.; Zhou, H.J.; Li, W.S.; Lue, D.S.; Xu, M.Q.; Huang, Q.M. [Department of Chemistry, South China Normal University, Guangzhou 510006 (China); Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China); Hou, X.H. [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2008-10-01

    Spinel lithium manganese oxides (LiMn{sub 2}O{sub 4}) modified with and without bismuth by sol-gel method were investigated by theoretical calculation and experimental techniques, including galvanostatic charge/discharge test (GC), cyclic voltammetry (CV), chronopotentiometry (CP), electrochemical impedance spectroscopy (EIS), inductively coupled plasma (ICP), powder X-ray diffraction (XRD), BET measurement, and infrared spectroscopy (IR). It is found that the performance of LiMn{sub 2}O{sub 4} can be improved by the bismuth modification. The modified and the unmodified samples have almost the same initial discharge capacity, 118 and 120 mAh g{sup -1}, respectively. However, the modified sample has better cyclic stability than the unmodified sample. After 100 cycles, the capacity remains 100 and 89 mAh g{sup -1} for the modified and the unmodified samples, respectively. Moreover, the results from EIS show that the modified sample has a quicker kinetic process for Li ion intercalation/de-intercalation than the unmodified one; the charge-transfer resistance of the former is less than one-sixth of that of the latter. After immersion in electrolyte (DMC:EC:EMC=1:1:1, 1 mol L{sup -1} LiPF{sub 6}) for 10 h at room temperature, the modified sample has less change in open circuit potential, crystal volume, and vibration absorption of Mn-O bond, and has less dissolution of manganese into solution than the unmodified sample. (author)

  7. Heterocyclic Bismuth(III) Dithiocarbamato Complexes as Single-Source Precursors for the Synthesis of Anisotropic Bi2 S3 Nanoparticles.

    Science.gov (United States)

    Kun, Walter N; Mlowe, Sixberth; Nyamen, Linda D; Ndifon, Peter T; Malik, Mohammad A; Munro, Orde Q; Revaprasadu, Neerish

    2016-09-05

    New complexes catena-(μ2 -nitrato-O,O')bis(piperidinedithiocarbamato)bismuth(III) (1) and tetrakis(μ-nitrato)tetrakis[bis(tetrahydroquinolinedithiocarbamato)bismuth(III)] (2) were synthesised and characterised by elemental analysis, FTIR spectroscopy and thermogravimetric analysis. The single-crystal X-ray structures of 1 and 2 were determined. The coordination numbers of the Bi(III) ion are 8 for 1 and ≥6 for 2 when the experimental electron density for the nominal 6s(2) lone pair of electrons is included. Both complexes were used as single-source precursors for the synthesis of dodecylamine-, hexadecylamine-, oleylamine and tri-n-octylphosphine oxide-capped Bi2 S3 nanoparticles at different temperatures. UV/Vis spectra showed a blueshift in the absorbance band edge characteristic of a quantum size effect. High-quality, crystalline, long and short Bi2 S3 nanorods were obtained depending on the thermolysis temperature, which was varied from 190 to 270 °C. A general trend of increasing particle breadth with increasing reaction temperature and increasing length of the carbon chain of the amine (capping agent) was observed. Powder XRD patterns revealed the orthorhombic crystal structure of Bi2 S3 .

  8. Experimental investigation of the shock response of bismuth under one-dimensional shock-loading

    Science.gov (United States)

    Whiteman, Glenn; Millett, Jeremy; Appleby-Thomas, Gareth; Wood, David; Hameed, Amer

    2017-01-01

    Interest in the dynamic response of bismuth is largely derived from the existence of multiple phase transitions attainable with increasing pressure. In addition, its industrial use has grown in recent years (e.g. in solder as a replacement for lead), in part due to its relatively low toxicity. While some shock experiments have been conducted on bismuth they have largely concentrated on equation of state research at relatively low stresses. To the authors' knowledge the strength behaviour under shock is not prevalent in the literature. To this end, the low pressure response of bismuth targets has been experimentally investigated here using commercial stress gauges mounted in both longitudinal and lateral orientation with respect to the loading axis. Of particular note was the potential to observe the relatively low pressure phase transitions in the lateral stress response.

  9. Radioactive Iodine (I-129) Gas Adsorption by Using Bismuth-Embedded SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan; Cho, Yong-Jun; Park, Jang Jin; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    The efficient capture of the long-lived I-129, released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi{sub 2}S{sub 3} within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities with 540 mg-I/g-sorbent maximally, which benefitted from the high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI{sub 3} compound. Iodine physisorption could effectively be suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement.

  10. Poisoning effect of bismuth on modification behaviour of strontium in LM25 alloy

    Indian Academy of Sciences (India)

    S Farahany; A Ourdjini; M H Idris; L T Thai

    2011-10-01

    Nucleation and growth, temperature measurements andmicrostructure observations of silicon phase are presented for strontium modified Al–7%Si (LM25) cast alloy treated with bismuth. The results show that addition of bismuth in strontium modified alloys may have a poisoning effect resulting in lost modification of the silicon phase. With increasing Bi/Sr ratio, thermal analysis measurements showed that the eutectic growth temperature increased remarkably to 573°C and recalescence decreased to 0.2°C and the morphology of silicon displayed the same flakelike structure as in the unmodified alloys. Microstructural observation showed that a minimum Bi/Sr ratio of 1.2 which is equivalent to a Sr/Bi ratio of 0.43 is required for effective strontium modification and neutralization of the poisoning effect of bismuth.

  11. Facile preparation of Bi nanoparticles by novel cathodic dispersion of bulk bismuth electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xin [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Chen Shu; Huang Wei [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Lushan Road, Changsha 410081 (China); Zheng Jufang [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Li Zelin, E-mail: lizelin@zjnu.c [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Lushan Road, Changsha 410081 (China)

    2009-12-01

    A novel electrochemical approach has been developed to prepare clean bismuth nanoparticles (NPs) with a bulk Bi electrode in a 0.5 mol dm{sup -3} NaOH solution under highly cathodic polarization of -8 V versus a saturated mercurous sulfate electrode, requiring no any precursor ions and organic protective agents. The bulk Bi electrode can be facilely dispersed into Bi NPs at the condition of intensive hydrogen evolution. This cathodic dispersion of the bulk Bi electrode involves the formation and decomposition of unstable bismuth hydrides and the aggregation of atomic bismuth from the decomposition. Moreover, Bi{sub 2}O{sub 3} NPs have also been achieved by heating the precursor Bi NPs. Field-emission scanning electron microscopy, transmission electron microscope and X-ray diffraction were used to characterize these NPs. The as-prepared Bi NPs mainly existed in rhombohedral phase.

  12. Application of Thermodynamic Calculations to the Pyro-refining Process for Production of High Purity Bismuth

    Science.gov (United States)

    Mezbahul-Islam, Mohammad; Belanger, Frederic; Chartrand, Patrice; Jung, In-Ho; Coursol, Pascal

    2017-02-01

    The present work has been performed with the aim to optimize the existing process for the production of high purity bismuth (99.999 pct). A thermo-chemical database including most of the probable impurities of bismuth (Bi-X, X = Ag, Au, Al, Ca, Cu, Fe, Mg, Mn, Na, Ni, Pb, S, Sb, Sn, Si, Te, Zn) has been constructed to perform different thermodynamic calculations required for the refining process. Thermodynamic description for eight of the selected binaries, Bi-Ca, Cu, Mn, Ni, Pb, S, Sb, and Sn, has been given in the current paper. Using the current database, different thermodynamic calculations have been performed to explain the steps involved in the bismuth refining process.

  13. Melting behaviour of lead and bismuth nano-particles in quasicrystalline matrix - The role of interfaces

    Indian Academy of Sciences (India)

    Alok Singh; A P Tsai

    2003-02-01

    Nanomaterials are playing an increasingly important role in modern technologies. Interfaces are crucial in nanotechnology. In this study, we have examined the stability of nanoparticles. Major emphasis is on understanding the effect of interfaces on melting. Melting behaviour of nanocrystalline interfaces, created by embedding lead and bismuth nanoparticles in quasicrystalline matrices, was studied. Sharply faceted and coherent interfaces can be related to sharper melting transitions, while irregularly shaped and incoherent interfaces can be directly correlated with lowering of melting temperatures. It is shown here that solid lead forms a high energy interface with phason strain-free quasicrystal (resulting in a lowering of the melting temperature) while bismuth forms a low energy interface with the quasicrystal (resulting in superheating, unusual for bismuth).

  14. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver (INEEL); J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas (MIT)

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  15. Fluorescence Emission Centres and the Corresponding Infrared Fluorescence Saturation in a Bismuth-Doped Silica Fibre

    Institute of Scientific and Technical Information of China (English)

    QIU Yan-Qing; SHEN Yong-Hang

    2008-01-01

    We investigate the fluorescence characteristics of bismuth doped silica fibres with and without Al co-dopant which are fabricated by means of modified chemical vapour deposition (MCVD) technique, and find that the fluorescences in the red region (centred around 750nm) and in the infrared region (centred around 1100nm) may originate from different emission sites in the fibre. Strong upconversion phenomena are observed in both Al-codoped and non Al codoped bismuth fibres when the fibres are excited by an acoustic-optic Q-switched Nd: YVO4 laser. Both the aspects indicate that the upper energy level absorption reported in the work of the bismuth doped silica fibre lasers may result from the fluorescence emission sites that are not responsible for the infrared emission. It is thus expected that optimizing the compositions and the fabrication conditions of the fibre and then transferring more fluorescence emission centres are helpful for the infrared emission.

  16. Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion?

    Directory of Open Access Journals (Sweden)

    Jadranka Milikić

    2016-06-01

    Full Text Available Different carbon electrodes were explored for application in electroanalysis, namely for sensing of bismuth ion as model analyte. Carbon materials tested included glassy carbon, basal and edge plane pyrolytic graphite, as well as nanostructured carbonized polyaniline prepared in the presence of 3,5-dinitrosalicylic acid. Bismuth ion was chosen as model analyte as protocol for its detection and quantifications is still to be determined. Herein, anodic stripping voltammetry was used with study of effect of several parameters such as scan rate and deposition time. Electrode based on carbonized polyaniline showed the highest activity for bismuth ion sensing in terms of the highest current densities recorded both in a laboratory and in real sample, while basal plane pyrolytic graphite electrode gave the lowest limit of detection.

  17. Bismuth subcarbonate as filler particle for an Epoxy-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Eduardo Schwartzer

    2013-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the addition of bismuth subcarbonate with different concentrations regarding the rheological properties of an experimental epoxy-based root canal sealer. Materials and Methods: Endodontic sealers were prepared with epoxy resin-based sealer with bismuth subcarbonate additions of 20%, 40%, 60%, 80%, 100%, and 120%. Flow, film thickness, working time, setting time, dimensional change, sorption, solubility, and cytotoxicity were studied according to the ISO standards. Data were statistically analyzed by one-way ANOVA, and Tukey multiple comparisons were used, with a significance level of 5%. Results: The flow, working time, water sorption, and solubility significantly decreased and the film thickness and dimensional change increased with higher filler particle addition. There were no statistically significant differences for setting time and cytotoxicity between the filler particle proportions. Conclusion: Experimental resin-based sealer with bismuth subcarbonate addition up to 40% can be an alternative for root canal sealer.

  18. Synthesis, characterization and oxide ionic conductivity of -type solid solution in bismuth oxide doped with ytterbium oxide binary system

    Indian Academy of Sciences (India)

    Esra Öztürk; Nilgun Ozpozan Kalaycioglu; Serkan Dayan; Handan Ozlu

    2013-06-01

    In this study, after doping Yb2O3 substance to -Bi2O3 substance in the range of 1% ≤ ≤ 8% in a series of different mole ratios, heat treatment was performed by applying a cascade temperature rise in the range of 700–790 °C for 48 and 120 h and new phases were obtained in the (Bi2O3)1− (Yb2O3) system. After 48 h of heat treatment at 750 °C and 120 h of heat treatment at 790 °C, mixtures containing 1–8% mole Yb2O3 formed a tetragonal phase. With the help of XRD, crystal systems and lattice parameters of the solid solutions were obtained and their characterization was carried out. Thermal measurements were made by using a simultaneous DTA/TG system. The total conductivity (T) in the -Bi2O3 doped with Yb2O3 system was measured using four-probe d.c. method.

  19. Spin-Polarized Tunneling Study on Spin-Momentum Locking in the Topological Insulator Bismuth Selenide

    Science.gov (United States)

    Chen, Ching-Tzu; Liu, Luqiao; Richardella, Anthony; Garate, Ion; Zhu, Yu; Samarth, Nitin

    2015-03-01

    In this talk, we will demonstrate that the helical spin texture on topological insulator (TI) surfaces can be electrically detected using four-terminal tunnel junction devices with ferromagnetic top electrodes. Consistent results are obtained in both the Edelstein and spin-galvanic effect configurations, allowing a quantitative determination of the charge-spin conversion efficiency in bismuth selenide. By applying finite DC biases at the junction, we further extract the energy dependence of the effective spin polarization in bismuth selenide. The observed temperature stability up to 200K suggests that TIs can be highly promising for room-temperature spintronics applications

  20. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting

    OpenAIRE

    Kim, Tae Woo; Ping, Yuan; Galli, Giulia A.; Choi, Kyoung-Shin

    2015-01-01

    n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effective...

  1. Simultaneous Determination of Bismuth and Copper by Square Wave Voltammetry in The Presence of Ethylenediaminetetraacedic Acid

    OpenAIRE

    HASDEMİR, Erdoğan; KARABODUK, Kuddusi

    2010-01-01

    A sensitive and selective method for the simultaneous determination of copper and bismuth by square wave voltammetry (SWV) was developed using ethylenediaminetetraacedic acid (EDTA) as complexing agent. Factors affecting the pH and concentrations ratios of copper and bismuth were investigated. Optimal analytical conditions were  found to be: pH of 8.0, the ratio of [Cu2+]/[Bi3+] was 0.13-2.5. The limit of detection (3δ) was 1.26 × 10-7 mol dm-3 for copper,  1.30×10...

  2. Growth morphology and structure of bismuth thin films on GaSb(110)

    DEFF Research Database (Denmark)

    Gemmeren, T. van; Lottermoser, L.; Falkenberg, G.

    1998-01-01

    Photoelectron spectroscopy, low-energy electron diffraction, scanning tunneling microscopy and surface X-ray diffraction were used to investigate the growth of thin layers of bismuth on GaSb(110). At submonolayer coverages, growth of two-dimensional islands occurs. A uniform (1 x I)-reconstructio...... that the (1 x 1)-phases formed by antimony and bismuth adsorbates on (110) surfaces of other III-V compound semiconductors are also described by the epitaxial continued layer model. (C) 1998 Elsevier Science B.V. All rights reserved....

  3. Higher Americium Oxidation State Research Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Goff, George S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shehee, Thomas C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hobbs, David T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-18

    The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained under the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non

  4. Microwave-hydrothermal synthesis of perovskite bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Biasotto, G. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil); Simoes, A.Z., E-mail: alezipo@yahoo.com [Universidade Estadual Paulista-Unesp, Faculdade de Engenharia de Guaratingueta, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Pedregulho, CEP 12516-410, Guaratingueta, SP (Brazil); Foschini, C.R.; Zaghete, M.A.; Varela, J.A.; Longo, E. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer BiFeO{sub 3} (BFO) nanoparticles were grown by hydrothermal microwave method (HTMW). Black-Right-Pointing-Pointer The soaking time is effective in improving phase formation. Black-Right-Pointing-Pointer Rietveld refinement reveals an orthorhombic structure. Black-Right-Pointing-Pointer The observed magnetism of the BFO crystallites is a consequence of particle size. Black-Right-Pointing-Pointer The HTMW is a genuine technique for low temperatures and short times of synthesis. -- Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline bismuth ferrite (BiFeO{sub 3}) nanoparticles (BFO) in the temperature of 180 Degree-Sign C with times ranging from 5 min to 1 h. BFO nanoparticles were characterized by means of X-ray analyses, FT-IR, Raman spectroscopy, TG-DTA and FE-SEM. X-ray diffraction results indicated that longer soaking time was benefit to refraining the formation of any impurity phases and growing BFO crystallites into almost single-phase perovskites. Typical FT-IR spectra for BFO nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH{sup -} groups, commonly found in materials obtained by HTMW process. Compared with the conventional solid-state reaction process, submicron BFO crystallites with better homogeneity could be produced at the temperature as low as 180 Degree-Sign C. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain BFO nanoparticles in the temperature of 180 Degree-Sign C for 1 h.

  5. Stripping analysis of trace cadmium and lead in edible salts by using the over-oxidized poly-(N-acetylaniline) modified electrode with in-situ deposited bismuth film%同位镀铋/过氧化聚乙酰苯胺/玻碳电极溶出伏安法测定食用盐中痕量镉和铅

    Institute of Scientific and Technical Information of China (English)

    王雪梅; 吴守国; 周磊; 刘皓; 张志鑫

    2013-01-01

    提出了一种新颖的同位镀铋膜过氧化聚乙酰苯胺修饰的玻碳电极(Bi/over-oxidized PNAANI/GCE)方波溶出伏安法(SWASV)同时检测食用盐中Cd(Ⅱ)和Pb(Ⅱ)的方法.过氧化聚乙酰苯胺膜具有良好的阳离子选择通透性,大大改善了修饰电极检测重金属时的灵敏度和选择性.同位镀铋膜可以作为汞膜的替代物,用于提高修饰电极对Cd(Ⅱ)和Pb(Ⅱ)的富集能力.Cd(Ⅱ)和Pb(Ⅱ)的分析曲线均覆盖了两个线性范围:0.2~3.0μg·L-1和3.0~33 μg·L-1,在富集时间为300 s时,Cd(Ⅱ)和Pb(Ⅱ)检测限分别为0.015μg·L-1和0.029 μg·L-1.此外,这种修饰电极还具有很高的稳定性和抗干扰性能.最后,该修饰电极被成功地应用于食用盐样品中Cd(Ⅱ)和Pb(Ⅱ)的同时测定.

  6. 从铅阳极泥中湿法提取铋、锑试验研究%Extraction of Bismuth and Antimony by Wet-process From Lead Anode Mud

    Institute of Scientific and Technical Information of China (English)

    贾辉; 王兴; 崔家友; 侯绍彬; 林浩

    2014-01-01

    Leaching of bismuth and antimony from lead anode mud oxidized at high temperature using hydrochloric acid as leaching agent ,ferric chloride as oxidant ,sodium chloride to provide more chloride ions was investigated .The effects of oxidizing temperature of lead anode mud ,hydrochloric acid concentration ,leaching temperature ,reaction time ,ratio between liquid volume and solid mass ,the amount of ferric chloride and sodium chloride on leaching of bismuth and antimony were examined . The experimental results show that the pretreatment for lead anode slime has a greater influence on the leaching of bismuth and antimony .Under the conditions of hydrochloric acid concentration of 5 mol/L ,ratio betw een liquid volume and solid mass of 5∶1 ,leaching temperature of 80 ℃ ,reaction time of 3 h ,ferric chloride concentration of 10 g/L ,sodium chloride concentration of 45 g/L ,the leaching of bismuth and antimony reach 99 .44% and 99 .69% respectively for the lead anode mud oxidized at 200 ℃ and through 200 mesh sieve .%介绍了以三氯化铁作氧化剂,氯化钠提供氯离子,用盐酸从高温氧化后的铅阳极泥中浸出铋、锑,考察了氧化温度、盐酸浓度、浸出温度、反应时间、液固体积质量比、三氯化铁和氯化钠用量对铋、锑浸出率的影响。试验结果表明:铅阳极泥预处理对铋、锑浸出率影响较大;铅阳极泥粉磨过200目筛,在氧化温度220℃、盐酸浓度5 mol/L、液固体积质量比5∶1、反应温度80℃、反应时间3 h、三氯化铁质量浓度10 g/L、氯化钠质量浓度45 g/L条件下,铋、锑浸出率分别为99.44%和99.69%,浸出效果较好。

  7. Extractive Spectrophotometric Determination of Bismuth(III in Water Using Some Ion Pairing Reagents

    Directory of Open Access Journals (Sweden)

    Abdulaziz S. Bashammakh

    2011-01-01

    Full Text Available Two novel and low cost liquid-liquid extraction methods for the separation of bismuth(III at trace level from aqueous medium have been developed. The two methods were based upon the formation of yellow colored ternary complex ion associates of tetraiodobismuth(III complex anion, BiI4- with the ion-pairing reagent 2,3,5-tetraphenyltetrazoliumchloride (Tz+.Cl– and 1, 10 phenanthroline (Phen in sulfuric acid medium. The effect of various parameters e.g. pH, organic solvent, shaking time, etc. on the preconcentration of bismuth(III from the aqueous media by the reagent was investigated. The developed colored complex ion associates [Tz+.BiI4-] and [Phen+.BiI4-] were extracted quantitatively into acetone-chloroform (1:1v/v and methyliso- butylketone (MIBK, respectively. The compositions of the formed complex ion associates [Tz+.BiI4-] and [Phen+.BiI4-] were determined by the Job's method at 500 and 490 nm, respectively. The plots of bismuth(III concentration (0-17 μg mL-1 versus absorbance of the associates at 500 and 490 nm were linear with good correlation coefficient (R2=0.998. The developed method of the ion associate [Tz+.BiI4-] two methods was applied successfully for the analysis of bismuth in water.

  8. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the form

  9. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage

    Science.gov (United States)

    Yang, Jae Hwan; Cho, Yong-Jun; Shin, Jin Myeong; Yim, Man-Sung

    2015-10-01

    Efficient capture and stable storage of the long-lived iodine-129 (129I), released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi2S3 within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities (up to 540 mg-I/g-sorbent), which benefitted from high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI3 compound. Iodine physisorption was effectively suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement. Furthermore, a chemically durable iodine-bearing material was made with a facile post-sorption process, during which the iodine-incorporated phase was changed from BiI3 to chemically durable Bi5O7I. Thus, our results showed that both efficient capture and stabilization of 129I would be possible with the bismuth-embedded SBA-15, in contrast to other sorbents mainly focused on iodine capture.

  10. A sensitive fluorescence quenching method for determination of bismuth with tiron

    Energy Technology Data Exchange (ETDEWEB)

    Taher, Mohammad Ali; Rahimi, Mina [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Fazelirad, Hamid, E-mail: hamidfazelirad@gmail.com [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Department of Chemistry, Science and Research Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of); Young Researchers Society, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman (Iran, Islamic Republic of)

    2014-01-15

    We describe a fluorescence quenching method for determination of bismuth with tiron. The method is based on the reaction of tiron by bismuth(III) in acidic media. The influence of variables such as the pH, type of buffer, tiron concentration, reaction time and temperature were investigated. Under optimized conditions, the fluorescence quenching extent is proportional to the concentration of bismuth for Bi–tiron system at the range 0.13–2.09 μg mL{sup −1} and the detection limit is 0.05 μg mL{sup −1}. The proposed sensor presented good repeatability, evaluated in terms of relative standard deviation (R.S.D.=±0.498%) for 11 replicates. This sensitive, rapid and accurate method has been successfully applied to the determination of trace bismuth(III) in water and hair samples and certified reference materials. -- Highlights: • No previous paper report on use of fluorescence quenching for determination of Bi. • Fluorescence quenching of trion is a sensitive method for determination of Bi(III). • Under the optimum conditions the detection limit is very low (0.05 μg mL{sup −1}). • The procedure is simple and safe and has high tolerance limit to interferences.

  11. Dismantling and chemical characterization of spent Peltier thermoelectric devices for antimony, bismuth and tellurium recovery.

    Science.gov (United States)

    Balva, Maxime; Legeai, Sophie; Garoux, Laetitia; Leclerc, Nathalie; Meux, Eric

    2017-04-01

    Major uses of thermoelectricity concern refrigeration purposes, using Peltier devices, mainly composed of antimony, bismuth and tellurium. Antimony was identified as a critical raw material by EU and resources of bismuth and tellurium are not inexhaustible, so it is necessary to imagine the recycling of thermoelectric devices. That for, a complete characterization is needed, which is the aim of this work. Peltier devices were manually dismantled in three parts: the thermoelectric legs, the alumina plates on which remain the electrical contacts and the silicone paste used to connect the plates. The characterization was performed using five Peltier devices. It includes mass balances of the components, X-ray diffraction analysis of the thermoelectric legs and elemental analysis of each part of the device. It appears that alumina represents 45% of a Peltier device in weight. The electrical contacts are mainly composed of copper and tin, and the thermoelectric legs of bismuth, tellurium and antimony. Thermoelectric legs appear to be Se-doped Bi2Te3 and (Bi0,5Sb1,5)Te3 for n type and p type semiconductors, respectively. This work shows that Peltier devices can be considered as a copper ore and that thermoelectric legs contain high amounts of bismuth, tellurium and antimony compared to their traditional resources.

  12. Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Ho [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Choi, Young-Suk [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kang, Kyongha [Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)]. E-mail: kkang@bnl.gov; Yang, Sung Ik [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of)]. E-mail: siyang@khu.ac.kr

    2007-01-16

    In situ nanometer-sized bismuth particles were synthesized by irradiation of the electron beam in the TEM. The size of the crystalline Bi nanoparticles could be controlled by adjusting the irradiation time of the electron beam. Characterization of TEM reveals that the Bi nanoparticles exist in rhombic structure, same as to bulk Bi.

  13. The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori.

    Science.gov (United States)

    Nazari, P; Dowlatabadi-Bazaz, R; Mofid, M R; Pourmand, M R; Daryani, N E; Faramarzi, M A; Sepehrizadeh, Z; Shahverdi, A R

    2014-01-01

    Organic salts of bismuth are currently used as antimicrobial agents against Helicobacter pylori. This study evaluated the antibacterial effect of elemental bismuth nanoparticles (Bi NPs) using a serial agar dilution method for the first time against different clinical isolates and a standard strain of H. pylori. The Bi NPs were biologically prepared and purified by a recently described method and subjected to further characterization by infrared spectroscopy and anti-H. pylori evaluation. Infrared spectroscopy results showed the presence of carboxyl functional groups on the surface of biogenic Bi NPs. These biogenic nanoparticles showed good antibacterial activity against all tested H. pylori strains. The resulting MICs varied between 60 and 100 μg/ml for clinical isolates of H. pylori and H. pylori (ATCC 26695). The antibacterial effect of bismuth ions was also tested against all test strains. The antimicrobial effect of Bi ions was lower than antimicrobial effect of bismuth in the form of elemental NPs. The effect of Bi NPs on metabolomic footprinting of H. pylori was further evaluated by (1)H NMR spectroscopy. Exposure of H. pylori to an inhibitory concentration of Bi NPs (100 μg/ml) led to release of some metabolites such as acetate, formic acid, glutamate, valine, glycine, and uracil from bacteria into their supernatant. These findings confirm that these nanoparticles interfere with Krebs cycle, nucleotide, and amino acid metabolism and shows anti-H. pylori activity.

  14. Microwave-assisted facile and rapid Friedel-Crafts benzoylation of arenes catalysed by bismuth trifluoromethanesulfonate

    DEFF Research Database (Denmark)

    Tran, Phoung Hoang; Hansen, Poul Erik; Pham, Thuy Than;

    2014-01-01

    The catalytic activity of metal triflates was investigated in Friedel–Crafts benzoylation under microwave irradiation. Friedel–Crafts benzoylation with benzoyl chloride of a variety of arenes containing electron-rich and electron-poor rings using bismuth triflate under microwave irradiation is de...

  15. Effect of bismuth citrate, lactose, and organic acid on necrotic enteritis in broilers

    Science.gov (United States)

    Clostridium perfringens – associated necrotic enteritis causes significant losses and increased morbidity in poultry. The objective of this study was to evaluate the effect of bismuth citrate and acidifiers on the development of necrotic enteritis in broilers. The first study was a dose response t...

  16. 1.3 µm Raman-bismuth fiber amplifier pumped by semiconductor disk laser.

    Science.gov (United States)

    Chamorovskiy, A; Rautiainen, J; Rantamäki, A; Golant, K M; Okhotnikov, O G

    2011-03-28

    A hybrid Raman-bismuth fiber amplifier pumped in co-propagation configuration by a single 1.22 µm semiconductor disk laser is presented. The unique attribute of this dual-gain system is that both amplifiers require the pump source with the same wavelength because pump-Stokes spectral shift in 1.3 µm Raman amplifier and pump-gain bandwidth separation in 1.3 µm bismuth fiber amplifier have the same value. Residual pump power at the output of Raman amplifier in this scheme is efficiently consumed by bismuth-doped fiber thus increasing the overall conversion efficiency. The small-signal gain of 18 dB at 1.3 W of pump power has been achieved for hybrid scheme which is by 9 dB higher as compared with isolated Raman amplifier without bismuth fiber. Low noise performance of pump semiconductor disk laser with RIN of -150 dB/Hz combined with nearly diffraction-limited beam quality and Watt-level output powers allows for efficient core-pumping of a single-mode fiber amplifier systems and opens up new opportunities for amplification in O-band spectral range.

  17. Group III-nitride thin films grown using MBE and bismuth

    Science.gov (United States)

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  18. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Science.gov (United States)

    Termentzidis, K.; Pokropivny, A.; Xiong, S.-Y.; Chumakov, Y.; Cortona, P.; Volz, S.

    2012-10-01

    Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  19. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator.

    Science.gov (United States)

    Babicheva, Viktoriia E; Zhukovsky, Sergei V; Lavrinenko, Andrei V

    2014-11-17

    We propose new designs of plasmonic modulators, which can be used for dynamic signal switching in photonic integrated circuits. We study performance of a plasmonic waveguide modulator with bismuth ferrite as a tunable material. The bismuth ferrite core is sandwiched between metal plates (metal-insulator-metal configuration), which also serve as electrodes. The core changes its refractive index by means of partial in-plane to out-of-plane reorientation of ferroelectric domains in bismuth ferrite under applied voltage. As a result, guided modes change their propagation constant and absorption coefficient, allowing light modulation in both phase and amplitude control schemes. Due to high field confinement between the metal layers, existence of mode cut-offs for certain values of the core thickness, and near-zero material losses in bismuth ferrite, efficient modulation performance is achieved. For the phase control scheme, the π phase shift is provided by a 0.8-μm long device with propagation losses 0.29 dB/μm. For the amplitude control scheme, up to 38 dB/μm extinction ratio with 1.2 dB/μm propagation loss is predicted.

  20. Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Purkayastha, A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Lupo, F. [Max Planck Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Kim, S.; Borca-Tasciuc, T. [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Ramanath, G. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2006-02-17

    Synthesis of single-crystal bismuth telluride nanorods is reported by using a low-temperature, template-free approach. Films of thioglycolic acid functionalized nanorods doped with sulfur exhibit n-type behavior with a high Seebeck coefficient, holding promise for thermoelectric device applications. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the lead-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL...

  2. Response of Ag Thick Film Microstripline due to Superstrate Strontium Substituted Bismuth Manganites

    Directory of Open Access Journals (Sweden)

    S.N. Mathad

    2014-06-01

    Full Text Available The purpose of this paper is to describe the use of strontium-substituted bismuth manganites bulk ceramic superstrate on Ag thick film microstripline, to modify its response and measure complex permittivity as a function of strontium. Bismuth strontium manganites (Bi1 − xSrxMnO3 have been synthesized by solid state sintering technique. The perturbation obtained in the transmittance and reflectance of thick film microstripline due to the Bi1 − xSrxMnO3 (0.20  x  0.50 overlay has been used to obtain the permittivity at microwave frequencies in X and Ku band range. Due to the overlay of Bismuth strontium manganites (BSM pellets a substantial increase in the effective dielectric constant was observed in X band more compared to Ku band. The in-touch overlay method provides ease loading and unloading. The perturbation obtained in the transmittance and reflectance of thick film microstripline due to the bismuth strontium manganites overlay has been used to obtain the permittivity.

  3. 75 FR 34360 - Listing of Color Additives Exempt From Certification; Bismuth Citrate; Confirmation of Effective...

    Science.gov (United States)

    2010-06-17

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 73 Listing of Color Additives Exempt From... March 26, 2010. The final rule amended the color additive regulations by increasing the permitted use level of bismuth citrate as a color additive in cosmetics intended for coloring hair on the scalp....

  4. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  5. Synthesis and characterization of UV-treated Fe-doped bismuth lanthanum titanate-doped TiO2 layers in dye-sensitized solar cells

    Science.gov (United States)

    Song, Myoung Geun; Bark, Chung Wung

    2016-06-01

    Dye-sensitized solar cells (DSSCs) based on titanium dioxide (TiO2) have been extensively studied because they constitute promising low-cost alternatives to their conventional semiconductor-based counterparts. However, much of the effort aimed at achieving high conversion efficiencies has focused on dye and liquid electrolytes. In this work, we report the photovoltaic characteristics of DSSCs fabricated by mixing TiO2 with Fe-doped bismuth lanthanum titanate (Fe-BLT). These nanosized Fe-BLT powders were prepared by using a high-energy ball-milling process. In addition, we used a UV radiation-ozone (UV-O3) treatment to change the surface wettability of TiO2 from hydrophobic to hydrophilic and thereby prevented the easy separation of the Fe-BLT-mixed TiO2 from the fluorine-doped tin-oxide (FTO) coating glass.

  6. Bismuth-doped ordered mesoporous TiO2: visible-light catalyst for simultaneous degradation of phenol and chromium.

    Science.gov (United States)

    Sajjad, Shamaila; Leghari, Sajjad A K; Chen, Feng; Zhang, Jinlong

    2010-12-10

    A controllable and reproducible synthesis of highly ordered two-dimensional hexagonal mesoporous, crystalline bismuth-doped TiO(2) nanocomposites with variable Bi ratios is reported here. Analyses by transmission electron microscopy, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy reveal that the well-ordered mesostructure is doped with Bi, which exists as Bi(3+) and Bi((3+x+)). The Bi-doped mesoporous TiO(2) (ms-TiO(2)) samples exhibit improved photocatalytic activities for simultaneous phenol oxidation and chromium reduction in aqueous suspension under visible and UV light over the pure ms-TiO(2), P-25, and conventional Bi-doped titania. The high catalytic activity is due to both the unique structural characteristics and the Bi doping. This new material extends the spectral response from UV to the visible region, and reduces electron-hole recombination, which renders the 2.0% Bi-doped ms-TiO(2) photocatalyst highly responsive to visible light.

  7. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.

    Science.gov (United States)

    Han, Lihao; Abdi, Fatwa F; van de Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Smets, Arno H M

    2014-10-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten-bismuth vanadate (W:BiVO4 ) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO4 and the nc-Si:H cell.

  8. C- V studies on metal-ferroelectric bismuth vanadate (Bi 2VO 5.5)-semiconductor structure

    Science.gov (United States)

    Kumari, Neelam; Parui, Jayanta; Varma, K. B. R.; Krupanidhi, S. B.

    2006-03-01

    Ferroelectric bismuth vanadate Bi 2VO 5.5 (BVO) thin films have been successfully grown on p-type Si(100) substrate by using chemical solution decomposition (CSD) technique followed by rapid thermal annealing (RTA). The crystalline nature of the films has been studied by X-ray diffraction (XRD). Atomic force microscopy (AFM) was used to study the microstructure of the films. The dielectric properties of the films were studied. The capacitance-voltage characteristics have been studied in metal-ferroelectric-insulator-semiconductor (MFIS) configuration. The dielectric constant of BVO thin films formed on Si(100) is about 146 measured at a frequency of 100 kHz at room temperature. The capacitance-voltage plot of a Bi 2VO 5.5 MFIS capacitor subjected to a dc polarizing voltages shows a memory window of 1.42 V during a sweep of ±5 V gate bias. The flatband voltage ( Vf) shifts towards the positive direction rather than negative direction. This leads to the asymmetric behavior of the C- V curve and decrease in memory window. The oxide trap density at a ramp rate of 0.2 V/s was estimated to be as high as 1.45×10 12 cm -2.

  9. Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite

    Science.gov (United States)

    Chatterjee, Krishanu; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2013-05-01

    Bismuth telluride (Bi2Te3) nanorods and polyaniline (PANI) nanoparticles have been synthesized by employing solvothermal and chemical oxidative processes, respectively. Nanocomposites, comprising structurally ordered PANI preferentially grown along the surface of a Bi2Te3 nanorods template, are synthesized using in situ polymerization. X-ray powder diffraction, UV-vis and Raman spectral analysis confirm the highly ordered chain structure of PANI on Bi2Te3 nanorods, leading to a higher extent of doping, higher chain mobility and enhancement of the thermoelectric performance. Above 380 K, the PANI-Bi2Te3 nanocomposite with a core-shell/cable-like structure exhibits a higher thermoelectric power factor than either pure PANI or Bi2Te3. At room temperature the thermal conductivity of the composite is lower than that of its pure constituents, due to selective phonon scattering by the nanointerfaces designed in the PANI-Bi2Te3 nanocable structures. The figure of merit of the nanocomposite at room temperature is comparable to the values reported in the literature for bulk polymer-based composite thermoelectric materials.

  10. Synthesis of Bismuth-Nanoparticle-Enriched Nanoporous Carbon on Graphene for Efficient Electrochemical Analysis of Heavy-Metal Ions.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2015-08-03

    A BiNPs@NPCGS nanocomposite was designed for highly efficient detection of multiple heavy-metal ions by in situ synthesis of bismuth-nanoparticle (BiNP)-enriched nanoporous carbon (NPS) on graphene sheet (GS). The NPCGS was prepared by pyrolysis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals deposited on graphene oxide and displayed a high surface area of 1251 m(2)  g(-1) and a pore size of 3.4 nm. BiNPs were deposited on NPCGS in situ by chemical reduction of Bi(3+) with NaBH4 . Due to the restrictive effect of the pore/surface structure of NPCGS, the BiNPs were uniform and well dispersed on the NPCGS. The BiNPs@NPCGS showed good conductivity and high effective area, and the presence of BiNPs allowed it to act as an efficient material for anodic-stripping voltammetric detection of heavy-metal ions. Under optimized conditions, the BiNPs@NPCGS-based sensor could simultaneously determine Pb(2+) and Cd(2+) with detection limits of 3.2 and 4.1 nM, respectively. Moreover, the proposed sensor could also differentiate Tl(+) from Pb(2+) and Cd(2+). Owing to its advantages of simple preparation, environmental friendliness, high surface area, and fast electron-transfer ability, BiNPs@NPCGS showed promise for practical application in sensing heavy-metal ions.

  11. Synthesis of mercuric iodide and bismuth tri-iodide nanoparticles for heavy metal iodide films nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Fornaro, L.; Pereira, H.Bentos [Compound Semiconductors Group, CURE, Universidad de la Republica, Rocha (Uruguay); Aguiar, I.; Perez Barthaburu, M. [Compound Semiconductors Group, Facultad de Quimica, Univ. de la Republica, Montevideo (Uruguay)

    2011-12-15

    We synthesized mercuric iodide and bismuth tri-iodide nanoparticles by suspension in octadecene, from Hg(NO{sub 3}){sub 2}.H{sub 2}O and I{sub 2}, and from Bi(NO{sub 3}){sub 3}.5H{sub 2}O and I{sub 2}, respectively. The best synthesis conditions were 2 h at 70-80 C, followed by 10 min at 110 C for mercuric iodide nanoparticles, and 4 h at 80-110 C, followed by 10 min at 180-210 C for bismuth tri-iodide ones. Nanoparticles were then washed and centrifuged with ether repeatedly. Compounds identity was confirmed by X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). We found shifts of the X-ray diffraction maxima for nanoparticles of both compounds. We characterized the nanoparticles by transmission (TEM) and scanning (SEM) electron microscopy. We obtained disk-like and squared mercuric iodide nanostructures, 80-140 nm and 100-125 nm in size respectively. We also obtained rounded and rod-like bismuth tri-iodide nanoparticles, 30-500 nm in size. Acetonitrile and isopropanol suspensions of mercuric iodide nanoparticles, and acetonitrile suspension of bismuth tri-iodide nanoparticles exhibited peak maxima shifts in their UV-Vis spectra. We synthesized for the first time mercuric iodide and bismuth tri-iodide nanoparticles by the suspension method, although we have not yet obtained uniform shape and size distributions. They offer interesting perspectives for crystalline film nucleation and for improving current applications of these materials, as well as for opening new ones. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Dose reduction in CT using bismuth shielding: measurements and Monte Carlo simulations.

    Science.gov (United States)

    Chang, Kyung-Hwan; Lee, Wonho; Choo, Dong-Myung; Lee, Choon-Sik; Kim, Youhyun

    2010-03-01

    In this research, using direct measurements and Monte Carlo calculations, the potential dose reduction achieved by bismuth shielding in computed tomography was evaluated. The patient dose was measured using an ionisation chamber in a polymethylmethacrylate (PMMA) phantom that had five measurement points at the centre and periphery. Simulations were performed using the MCNPX code. For both the bare and the bismuth-shielded phantom, the differences of dose values between experiment and simulation were within 9%. The dose reductions due to the bismuth shielding were 1.2-55% depending on the measurement points, X-ray tube voltage and the type of shielding. The amount of dose reduction was significant for the positions covered by the bismuth shielding (34 - 46% for head and 41 - 55% for body phantom on average) and negligible for other peripheral positions. The artefact on the reconstructed images were minimal when the distance between the shielding and the organs was >1 cm, and hence the shielding should be selectively located to protect critical organs such as the eye lens, thyroid and breast. The simulation results using the PMMA phantom was compared with those using a realistically voxelised phantom (KTMAN-2). For eye and breast, the simulation results using the PMMA and KTMAN-2 phantoms were similar with each other, while for thyroid the simulation results were different due to the discrepancy of locations and the sizes of the phantoms. The dose reductions achieved by bismuth and lead shielding were compared with each other and the results showed that the difference of the dose reductions achieved by the two materials was less than 2-3%.

  13. Hall Plateaus at magic angles in ultraquantum Bismuth

    Science.gov (United States)

    Benoît, Fauqué.

    2009-03-01

    The behaviour of a three-dimensional electron gas in the presence of a magnetic field strong enough to put all carriers in the first Landau level (i.e. beyond the quantum limit) is a longstanding question of theoretical condensed matter physics [1]. This issue has been recently explored by two high-field experiments on elemental semi-metal Bismuth. In a first study of transport coefficients (which are dominated by hole-like carriers), the Nernst coefficient presented three unexpected maxima that are concomitant with quasi-plateaux in the Hall coefficient [2]. In a second series of experiments, torque magnetometry (which mainly probes the three Dirac valley electron pockets) detected a field-induced phase transition [3]. The full understanding of the electron and hole behaviours above the quantum limit of pure Bi is therefore still under debate. In this talk, we will present our measurement of the Hall resistivity and torque magnetometry with magnetic field up to 31 T and rotating in the trigonal-bisectrix plane [4]. The Hall response is dominated by the hole pockets according to its sign as well as the period and the angular dependence of its quantum oscillations. In the vicinity of the quantum limit, it presents additional anomalies which are the fingerprints of the electron pockets. We found that for particular orientations of the magnetic field (namely ``magic angles''), the Hall response becomes field-independent within the experimental resolution around 20T. This drastic dependence of the plateaux on the field orientation provides strong constraints for theoretical scenarios. [4pt] [1] Bertrand I. Halperin, Japanese Journal of Applied Physics, 26, Supplement 26-3 (1987).[0pt] [2] Kamran Behnia, Luis Balicas, Yakov Kopelevich, Science, 317, 1729 (2008).[0pt] [3] Lu Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong , Science, 321, 5888 (2008).[0pt] [4] Benoît Fauqu'e, Luis Balicas, Ilya Sheikin, Jean Paul Issi and Kamran Behnia

  14. Focused Ion Beam and Advanced Electron Microscopy for Minerals: Insights and Outlook from Bismuth Sulphosalts

    Directory of Open Access Journals (Sweden)

    Cristiana L. Ciobanu

    2016-10-01

    Full Text Available This paper comprises a review of the rapidly expanding application of nanoscale mineral characterization methodology to the study of ore deposits. Utilising bismuth sulphosalt minerals from a reaction front in a skarn assemblage as an example, we illustrate how a complex problem in ore petrology, can be approached at scales down to that of single atoms. We demonstrate the interpretive opportunities that can be realised by doing this for other minerals within their petrogenetic contexts. From an area defined as Au-rich within a sulphosalt-sulphide assemblage, and using samples prepared on a Focused Ion Beam–Scanning Electron Microscopy (SEM platform, we identify mineral species and trace the evolution of their intergrowths down to the atomic scale. Our approach progresses from a petrographic and trace element study of a larger polished block, to high-resolution Transmission Electron Microscopy (TEM and High Angle Annular Dark Field (HAADF Scanning-TEM (STEM studies. Lattice-scale heterogeneity imaged in HAADF STEM mode is expressed by changes in composition of unit cell slabs followed by nanoparticle formation and their growth into “veins”. We report a progressive transition from sulphosalt species which host lattice-bound Au (neyite, lillianite homologues; Pb-Bi-sulphosalts, to those that cannot accept Au (aikinite. This transition acts as a crystal structural barrier for Au. Fine particles of native gold track this progression over the scale of several hundred microns, leading to Au enrichment at the reaction front defined by an increase in the Cu gradient (several wt %, and abrupt changes in sulphosalt speciation from Pb-Bi-sulphosalts to aikinite. Atom-scale resolution imaging in HAADF STEM mode allows for the direct visualisation of the three component slabs in the neyite crystal structure, one of the largest and complex sulphosalts of boxwork-type. We show for the first time the presence of aikinite nanoparticles a few nanometres in

  15. Role of stirring assist during solvothermal synthesis for preparing single-crystal bismuth telluride hexagonal nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Kai, Shintaro; Wada, Kodai [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Takasugi, Soichi [Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Tomita, Koji [Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-04-15

    We investigated the role of stirring assist during solvothermal synthesis for preparing high quality bismuth telluride (Bi{sub 2}Te{sub 3}) hexagonal nanoplates. We performed a series of experiments that comprised solvothermal synthesis with stirring assist at 500 rpm and without stirring assist. As a result, high purity Bi{sub 2}Te{sub 3} hexagonal nanoplates with uniform morphology and edge length of 400–800 nm were obtained by solvothermal synthesis using stirring assist, whereas intermediate products such as tellurium and tellurium oxide compounds were also produced besides the Bi{sub 2}Te{sub 3} hexagonal nanoplates by solvothermal synthesis without stirring assist. To further study the nanostructure of the nanoplates with stirring assist, we performed high-resolution transmission electron microscopy and selected-area electron diffraction analysis. It was found that the Bi{sub 2}Te{sub 3} hexagonal nanoplates were composed of rhombohedral phases and highly single-crystalline structures. Based on the experimental and analytical results, we propose a possible reaction process and growth mechanism of the Bi{sub 2}Te{sub 3} hexagonal nanoplates. The reaction rate is the key factor to control the shapes of nanostructures. When the reaction rate was sufficient, it proceeded to the final stage, and then Bi{sub 2}Te{sub 3} nanoplates were produced. However, when the reaction rate was insufficient, the entire morphology evolution process was terminated at the intermediate stage, and intermediate products besides Bi{sub 2}Te{sub 3} nanoplates were also produced. - Highlights: • High quality Bi{sub 2}Te{sub 3} hexagonal nanoplates were prepared by solvothermal synthesis. • Role of stirring assist during the solvothermal synthesis were investigated. • Bi{sub 2}Te{sub 3} hexagonal nanoplates with edge length of 400–800 nm were obtained. • Bi{sub 2}Te{sub 3} hexagonal nanoplates were composed of single-crystalline structures. • The reaction rate is the key

  16. Novel cathodes for low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Xia, C. [Georgia Inst. of Tech., Atlanta, GA (United States). Center for Innovative Fuel Cell and Battery Technologies

    2002-04-04

    A solid-oxide fuel cell that operates at 500 C (instead of 600 C and higher), with lower material cost and better long-term stability, is presented. Its key piece is a cathode made of a silver/copper-doped bismuth vanadate (Ag-BI-CUVOX) composite, which reduces oxygen at lower temperatures and diminishes the resistance between the cathode and the electrolyte. (orig.)

  17. Experimental study on the effects of bismuth subgallate on the inflammatory process and angiogenesis of the oral mucosa

    Directory of Open Access Journals (Sweden)

    Eduardo Vieira Couto

    2016-02-01

    Full Text Available ABSTRACT INTRODUCTION: Bismuth subgallate is a salt derived from heavy metal. The aim of this study was to evaluate the effect of this salt on some phases of healing. OBJECTIVES: To assess the effect of subgallate on mucosa and to evaluate the association between the use of bismuth subgallate and neogenesis of vessels in oral mucosal wounds. METHODS: This was a prospective and experimental study. This study used sixty rats, which were divided into control and experimental groups. The animals were submitted to a surgical procedure, which caused oral mucosal injury. A saline solution was applied on the wound of the control group, and in the experimental group, a solution of bismuth subgallate was administrated. RESULTS: The experimental group showed greater inflammatory reaction with increasing monomorphic proliferation. There was increased vessel proliferation in the control group. CONCLUSION: Bismuth subgallate had a negative influence on the healing process, delaying the rate of new vessel formation and optimal wound healing.

  18. 钒酸铋掺杂体系的研究进展%DEVELOPMENT OF DOPED BISMUTH VANADATE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    朱振峰; 张炼

    2012-01-01

    This paper mainly introduces development of bismuth vanadate doped with rare earth elements,transition elements,carbon group elements and other elements and put forward a development direction of bismuth vanadate materials in the future.%介绍了稀土元素、过渡元素、碳族元素和其它元素的钒酸铋掺杂体系,并对未来的发展方向做出展望。

  19. Bismuth Based Hybrid Perovskites A3Bi2 I9 (A: Methylammonium or Cesium) for Solar Cell Application.

    Science.gov (United States)

    Park, Byung-Wook; Philippe, Bertrand; Zhang, Xiaoliang; Rensmo, Håkan; Boschloo, Gerrit; Johansson, Erik M J

    2015-11-18

    Low-toxic bismuth-based perovskites are prepared for the possible replacement of lead perovskite in solar cells. The perovskites have a hexagonal crystalline phase and light absorption in the visible region. A power conversion efficiency of over 1% is obtained for a solar cell with Cs3 Bi2 I9 perovskite, and it is concluded that bismuth perovskites have very promising properties for further development in solar cells.

  20. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    OpenAIRE

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ; Leonas NARUŠKEVIČIUS; Žielienė, Albina; Birutė ŠIMKŪNAITĖ-STANYNIENĖ; Genovaitė VALIULIENĖ; Aloyzas SUDAVIČIUS

    2011-01-01

    The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ...

  1. Pharmacokinetics and bioequivalence of ranitidine and bismuth derived from two compound preparations

    Institute of Scientific and Technical Information of China (English)

    Quan Zhou; Zou-Rong Ruan; Hong Yuan; Bo Jiang; Dong-Hang Xu

    2006-01-01

    AIM: To evaluate the bioequivalence of ranitidine and bismuth derived from two compound preparations.METHODS: The bioavailability was measured in 20healthy male Chinese volunteers following a single oral dose (equivalent to 200 mg of ranitidine and 220 mg of bismuth) of the test or reference products in the fasting state. Then blood samples were collected for 24 h.Plasma concentrations of ranitidine and bismuth were analyzed by high-performance liquid chromatography and inductively coupled plasma-mass spectrometry (ICPMS), respectively. The non-compartmental method was used for pharmacokinetic analysis. Log-transformed Cmax,AUC(0-t) and AUC(0-∞) were tested for bioequivalence using ANOVA and Schuirmann two-one sided t-test. Tmax was analyzed by Wilcoxon's test.RESULTS: Various pharmacokinetic parameters of ranitidine derived from the two compound preparations,including Cmax, AUC(0-t), AUC(0-∞), Tmax and T1/2, were nearly consistent with previous observations. These parameters derived from test and reference drug were as follows: Cmax(0.67 ± 0.21 vs 0.68 ± 0.22mg/L), AUC(0-t)(3.1 ± 0.6 vs 3.0 ± 0.7 mg/L per hour),AUC(0-∞)(3.3 ± 0.6 vs 3.2 ± 0.8 mg/L per hour),Tmax (2.3 ± 0.9 vs 2.1 ± 0.9 h) and T1/2 (2.8 ± 0.3 vs 3.1± 0.4 h). In addition, double-peak absorption profiles of ranitidine were found in some Chinese volunteers.For bismuth, those parameters derived from test and reference drug were as follows: Cmax (11.80 ± 7.36 vs 11.40 ± 6.55 μg/L),AUC(0-t) (46.65 ± 16.97 vs 47.03 ±21.49 μg/L per hour), Tmax (0.50 ± 0.20 vs 0.50 ± 0.20 h)and T1/2 (10.2 ± 2.3 vs 13.0 ± 6.9 h). Ninety percent of confidence intervals for the test/reference ratio of Cmax,AUC(0-t) and AUC(0-∞) derived from both ranitidine and bismuth were found within the bioequivalence acceptable range of 80%-125%. No significant difference was found in Tmax derived from both ranitidine and bismuth.CONCLUSION: The two compound preparations are bioequivalent and may be prescribed

  2. Bismuth-ceramic nanocomposites through ball milling and liquid crystal synthetic methods

    Science.gov (United States)

    Dellinger, Timothy Michael

    Three methods were developed for the synthesis of bismuth-ceramic nanocomposites, which are of interest due to possible use as thermoelectric materials. In the first synthetic method, high energy ball milling of bismuth metal with either MgO or SiO2 was found to produce nanostructured bismuth dispersed on a ceramic material. The morphology of the resulting bismuth depended on its wetting behavior with respect to the ceramic: the metal wet the MgO, but did not wet on the SiO2. Differential Scanning Calorimetry measurements on these composites revealed unusual thermal stability, with nanostructure retained after multiple cycles of heating and cooling through the metal's melting point. The second synthesis methodology was based on the use of lyotropic liquid crystals. These mixtures of water and amphiphilic molecules self-assemble to form periodic structures with nanometer-scale hydrophilic and hydrophobic domains. A novel shear mixing methodology was developed for bringing together reactants which were added to the liquid crystals as dissolved salts. The liquid crystals served to mediate synthesis by acting as nanoreactors to confine chemical reactions within the nanoscale domains of the mesophase, and resulted in the production of nanoparticles. By synthesizing lead sulfide (PbS) and bismuth (Bi) particles as proof-of-concept, it was shown that nanoparticle size could be controlled by controlling the dimensionality of the nanoreactors through control of the liquid crystalline phase. Particle size was shown to decrease upon going from three-dimensionally percolating nanoreactors, to two dimensional sheet-like nanoreactors, to one dimensional rod-like nanoreactors. Additionally, particle size could be controlled by varying the precursor salt concentration. Since the nanoparticles did not agglomerate in the liquid crystal immediately after synthesis, bismuth-ceramic nanocomposites could be prepared by synthesizing Bi nanoparticles and mixing in SiO2 particles which

  3. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    Science.gov (United States)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  4. Three-Component One-Pot Synthesis of Novel Benzo[b]1,8-naphthyridines Catalyzed by Bismuth(III Chloride

    Directory of Open Access Journals (Sweden)

    Tangali R. Ravikumar Naik

    2008-01-01

    Full Text Available A novel and efficient three-component one-pot synthesis of benzo[b]1,8-naphthyridines by 2-amino-4-methylquinoline, aromatic aldehydes, and malononitrile was done. The reaction was catalyzed by an acidic Bismuth(III chloride, functionalized Bismuth(III chloride, at room temperature to give various benzo[b]1,8-naphthyridines in high yields. The Bismuth(III chloride is an environmentally friendly catalyst.

  5. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  6. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part I. Preparation and characterisation

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, K.; Lippens Jr., B.C.; Gellings, P.J.; Burggraaf, A.J.

    1987-01-01

    A study of the preparative variables in the synthesis of ceramics based on Bi2O3-Er2O3 solid solutions has shown that the best results are obtained with a coprecipitation method. Critical parameters in the synthesis are found to be i) wet milling of the precalcined powder with an appropriate liquid

  7. Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid solutions

    NARCIS (Netherlands)

    Kruidhof, H.; Vries, de K.J.; Burggraaf, A.J.

    1990-01-01

    The thermochemical stability of fast oxygen ion conducting yttria stabilized bismuthoxide (YSB) solid solutions containing 22.0–32.5 mol% of yttria was investigated. It was shown that in the temperature range between 650–740 C the stabilized cubic δ-phase containing less than 31.8 mol% of yttria is

  8. Synthesis, crystal growth and characterization of g-phase bismuth titanium oxide with gallium

    Directory of Open Access Journals (Sweden)

    Lobato A.R.

    2000-01-01

    Full Text Available Gallium solubility in the Bi12TiO20 (BTO matrix was investigated by solid state reaction synthesis and Bi12Ti(1-xGa xO20 (BTGaO single crystals were grown by Top Seeded Solution Growth (TSSG. We determined that it is possible to obtain a continuous solid solution from (xBi12TiO20: (1-xBi12[Ga0.7Bi0.3]O20 and that Ga replaces Ti in the BTO matrix giving Bi12Ti(1-xGa(xO20 up to x < 0.2. BTGaO single crystals grown with an excess of Bi2O3 were transparent, a bleaching effect was observed due to the presence of gallium in the crystalline sillenite structure and their lattice parameter was higher than for pure BTO. The results for BTGaO single crystals showed an increase in the optical activity from rho0 = 6.4° ± 0.3°/mm, for BTO, to rho0 = 9.7° ± 0.3°/mm, for BTGaO grown with x = 0.30 in the melt. The BTGaO crystal presented an activation energy value of 0.48 ± 0.02 eV for 100 °C <= T <= 300 °C.

  9. Effect of yttrium oxide addition on absorption and emission properties of bismuth-doped silicate glasses

    Institute of Scientific and Technical Information of China (English)

    DAI Nengli; WANG Yanshan; XU Bing; YANG Lüyun; LUAN Huaixun; LI Jinyan

    2012-01-01

    Y/Bi co-doped silicate glasses were prepared,and the effects of Y2O3 on the absorption and emission properties were investigated by spectrum measurement.It was found that the absorption intensity in visible region decreases with increase of Y3+ concentration in (70-x)SiO2-xY2O3-30CaO-1.5Bi2O3 (x=0mol.%,1mol.%,3 mol.%,5 mol.%,7 mol.%) glasses.The emissions centered at 410,630,1200 and 1290 nmwere observed under 280,470,514 and 808 nm excitation,respectively.The emission intensity had the similar change tendency in the visible and near infrared region.We also discussed the actual role of Y 3+ ions playing in the visible and near infrared emissions of the silicate glasses.

  10. Surface oxygen exchange properties of bismuth oxide-based solid electrolytes and electrode materials

    NARCIS (Netherlands)

    Boukamp, B.A.; Vinke, I.C.; Vries, de K.J.; Burggraaf, A.J.

    1989-01-01

    The surface oxygen exchange coefficient, ks, has been measured for the solid solution (Bi2O3)0.75(Er2O3)0.25 and (Bi2O3)0.6(Tb2O3)0.4 (abbreviated BE25 and BT40), using gas-phase 18O exchange techniques. The activation enth alpy of ks amounts to ΔE=110 kJ/molforBT40 andΔE=130 kJ/molforBE25. The magn

  11. Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Waseem; Haque, M.M. [Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 (India); Muneer, M., E-mail: m.muneer.ch@amu.ac.in [Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 (India); Harada, T.; Matsumura, M. [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531 (Japan)

    2015-11-05

    Pure and doped Bi{sub 2}O{sub 3} nanoparticles were synthesized by sol gel method. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), UV–Visible Spectroscopy, Scanning Electron Microscopy (SEM), Thermogravimetry/Differential thermal analysis (TGA/DTA), potentiostat/galvanostat (CV), Electron-spin resonance (ESR) and Fourier transform infrared spectroscopy (FTIR). The XRD patterns of the fabricated Bi{sub 2}O{sub 3} nanoparticles exhibited only the characteristic peaks of well crystallized monoclinic α−Bi{sub 2}O{sub 3} and were in pure state. It was found that the crystallite size of doped Bi{sub 2}O{sub 3} nanoparticles decreases with increase in dopant concentration up to certain limit and then decrease. The SEM image depicts that pure and doped Bi{sub 2}O{sub 3} nanoparticles displayed nanorod like morphology; on doping the surface becomes rough. The UV–Vis absorption spectra of synthesized nanoparticles revealed that absorption edge shifts towards the longer wavelength after doping and it is highly beneficial for absorbing more visible light in the solar spectrum. FTIR spectra of doped Bi{sub 2}O{sub 3} nanoparticles showed an additional absorption band. The photocatalytic performance of the as prepared photocatalyst was evaluated by degradation of three different organic dyes as a function of irradiation time. - Highlights: • We have synthesized excellent material which can be used for waste water treatment using simple one pot sol gel method. • The characterization of Ce & Nd doped Bi{sub 2}O{sub 3} showed nanorod like uniform morphology having monoclinic phase and good structural stability. • 2% Ce doped Bi{sub 2}O{sub 3} photocatalyst exibit a high photocatalytic activity for degradation of all dyes under visible light illumination. • The effect of doped material was examined on the photocatalytic activity.

  12. Syntactic intergrowth problems with BCSCO and fabrication difficulties therefrom. [Bismuth-Calcium-Strontium-Copper-Oxide superconductors

    Science.gov (United States)

    Morgan, P. E. D.; Ratto, J. J.; Housley, R. M.; Porter, J. R.

    1988-01-01

    EDXS performed on isolated particles of the Bi-Ca-Sr-Cu-O high-temperature ceramic superconductor has verified the presence of significant elemental exchange between the Ca and Sr, and, to a lesser extent, between Cu and Bi. Two primary preparations, identified as primarily 24.4 A and 30.6 A, respectively, are identified. The Cu:Bi ratio in the 30.6 A material is approximately 1:1 for most particles, although only a few particles of the nominally 24.4 A material have the expected 1:2 ratio. No unequivocal assignment of atomic composition to the predominantly 24.4 A or 30.6 A appears possible, if major syntactic problems are present.

  13. [L'application des radioisotopes a la chromatographie sur colonnes de celluloses substituees-IV L'analyse du mercure et du zinc dans le bismuth].

    Science.gov (United States)

    Muzzarelli, R A; Marcotrigiano, G

    1967-03-01

    The Chromatographic behaviour of nanogram amounts of bismuth has been studied by radioisotope techniques on cellobiose, cellulose and seven substituted celluloses. All celluloses in ethyl ether adsorb bismuth, provided that it is as nitrate, and that excess of nitric acid is avoided. Bismuth can be eluted with thiocyanate in ether-methanol or with hydrochloric acid in methanol, depending on the retention strength of the various functional groups of celluloses. A very simple method of separation of bismuth from mercury over a wide range of concentration is presented.

  14. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman; Keith L. Duncan

    2002-09-30

    A bilayer electrolyte consisting of acceptor-doped ceria (on the fuel/reducing side) and cubic-stabilized bismuth oxide (on the oxidizing side) was developed. The bilayer electrolyte that was developed showed significant improvement in open-circuit potential versus a typical ceria based SOFC. Moreover, the OCP of the bilayer cells increased as the thickness of the bismuth oxide layer increased relative to the ceria layer. Thereby, verifying the bilayer concept. Although, because of the absence of a suitable cathode (a problem we are still working assiduously to solve), we were unable to obtain power density curves, our modeling work predicts a reduction in electrolyte area specific resistance of two orders of magnitude over cubic-stabilized zirconia and projects a maximum power density of 9 W/m{sup 2} at 800 C and 0.09 W/m{sup 2} at 500 C. Towards the development of the bilayer electrolyte other significant strides were made. Among these were, first, the development of a, bismuth oxide based, oxide ion conductor with the highest conductivity (0.56 S/cm at 800 C and 0.043 S/cm at 500 C) known to date. Second, a physical model of the defect transport mechanisms and the driving forces for the ordering phenomena in bismuth oxide and other fluorite systems was developed. Third, a model for point defect transport in oxide mixed ionic-electronic conductors was developed, without the typical assumption of a uniform distribution of ions and including the effect of variable loads on the transport properties of an SOFC (with either a single or bilayer electrolyte).

  15. Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing

    Science.gov (United States)

    Firstov, S. V.; Firstova, E. G.; Alyshev, S. V.; Khopin, V. F.; Riumkin, K. E.; Melkumov, M. A.; Guryanov, A. N.; Dianov, E. M.

    2016-08-01

    The effect of annealing temperature on the luminescent properties of bismuth-doped fibers bleached by 532 nm laser radiation was investigated. The photoluminescence (PL) measurements were performed in pristine and photobleached samples which were thermally annealed at various temperatures ranging from 100 to 900 °C and slowly cooled. We observed that the intensity of the PL band at 1700 nm in the photobleached fibers recovered its pre-bleached level. Moreover, it was shown that a significant increase of the PL level could be achieved using the special annealing regime. Thereby, we obtained the experimental evidence of a thermally activated recovery process of the PL intensity showing that photoinduced changes of PL in bismuth-doped fibers are completely reversible. The mechanism of the thermal recovery of the PL is discussed.

  16. Bismuth Basic Nitrate as a Novel Adsorbent for Azo Dye Removal

    Directory of Open Access Journals (Sweden)

    E. A. Abdullah

    2012-01-01

    Full Text Available Bismuth basic nitrate (BBN and its TiO2-Ag modified sorbent, PTBA were successfully synthesized via a precipitation method. The structural characteristics of prepared sorbents were determined through different analytical techniques. The potential use of prepared sorbents for organic compounds' removal was evaluated using Methyl Orange and Sunset Yellow dyes as model pollutants in aqueous solutions. The experimental results showed that the presence of TiO2 and Ag particles during the crystal growth of bismuth basic nitrate has an effect on the crystal structure, point of zero charge (pHpzc, pore volume and diameter. The lower binding energy of Ti 2p core level peak indicates the octahedral coordination of TiO2 particles on the PTBA surface. The alteration of hydrophilic-hydrophobic characteristics of sorbent's surface improves the adsorptive performance of the modified sorbent and provides an efficient route for organic contaminants' removal from aqueous solutions.

  17. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  18. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    Science.gov (United States)

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process.

  19. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Science.gov (United States)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  20. Zero-dimensional nanostructured material with metallic bismuth nanoparticles: a new route for thermoelectrics

    Science.gov (United States)

    Benoit, Roland; Treguer, Mona; Saboungi, Marie-Louise

    2011-03-01

    The thermoelectric figure of merit ZT has so far not exceeded the value ZT=3 need to compete with mechanical energy conversion systems. However, theoretical work has shown that it is possible to reach values of ZT higher than this. One of the most promising routes is nanostructured materials, which offer the opportunity to tailor physical properties such as electrical and heat transport, due to the effects of electron filtering and phonon confinement. Dresselhaus et al. (ref.?) were among the first to show that 2D and 1D structures are capable of reaching ZT values higher than 2. The thermoelectric materials of current interest are in the form of nanotubes, nanodots and, more generally, superlattices composed of a matrix and nanoparticles. In our work we synthesize a periodic network of bismuth nanoparticles in a matrix of mesoporous Si O2 . We find that in this form bismuth transforms from a rhombohedral to a cubic structure, with improved filtering of electrons and phonons.

  1. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    Science.gov (United States)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  2. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  3. Synthesis of Bismuth Ferrite Nanoparticles via a Wet Chemical Route at Low Temperature

    Directory of Open Access Journals (Sweden)

    Yongming Hu

    2011-01-01

    Full Text Available Nanoparticles (NPs of multiferroic bismuth ferrite (BiFeO3 with narrow size distributions were synthesized via a wet chemical route using bismuth nitrate and iron nitrate as starting materials and excess tartaric acid and citric acid as chelating agent, respectively, followed by thermal treatment. It was found that BiFeO3 NPs crystallized at ∼350∘C when using citric acid as chelating agent. Such crystallization temperature is much lower than that of conventional chemical process in which other types of chelating agent are used. BiFeO3 NPs with different sizes distributions show obvious ferromagnetic properties, and the magnetization is increased with reducing the particle size.

  4. Effect of Fe2O3 on the physical and structural properties of bismuth silicate glasses

    Science.gov (United States)

    Parmar, Rajesh; Kundu, R. S.; Punia, R.; Aghamkar, P.; Kishore, N.

    2013-06-01

    Iron containing bismuth silicate glasses with compositions 70SiO2ṡ(100-x)Bi2O3ṡxFe2O3 have been prepared using conventional melt-quenching method and their amorphous nature has been investigated using XRD. Density has been measured using Archimedes' principle and molar volume (Vm) have also been estimated. With increase in Fe2O3 content, there is a decrease in density and molar volume of the glass samples. The glass transition temperature (Tg) have been determined using Differential Scanning Calorimetry (DSC) and are observed to increase with increase in Fe2O3 content. In the present glass system bismuth and iron plays the role of network modifier and the symmetry of silicate network goes on increasing with Fe2O3 content and it modifies the physical and structural properties of these glasses.

  5. Synthesis and Electrochemical Sensing Toward Heavy Metals of Bunch-like Bismuth Nanostructures

    Directory of Open Access Journals (Sweden)

    Zhang Zhi

    2009-01-01

    Full Text Available Abstract Large-scale bunch-like bismuth (Bi nanostructures were the first time to be synthesized via two-step electrochemical deposition. The growth mechanism of the nanostructures was discussed. Such a designed bunch-like Bi electrode has high sensitivity to detect the heavy metal ions due to its unique three-dimensional structures and strong ability of adsorbing the heavy metal ions. The bunch-like Bi electrode’s detection of heavy metals was statically performed using anodic stripping voltammetry (ASV. The detection in the Pb(II concentration range of 2.5–50 μg/l was also performed. Based on the experimental results, this bunch-like Bi electrode can be considered as an interesting alternative to common mercury electrodes and bismuth film electrodes for possible use in electrochemical studies and electroanalytical applications.

  6. Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses

    Science.gov (United States)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Yenchai, Chadet; Laopaiboon, Raewat

    2012-07-01

    The attenuation coefficients of barium-bismuth-borosilicate glasses have been measured for gamma-ray photon energies of 662, 1173 and 1332 keV using a narrow beam transmission geometry. These coefficients were then used to obtain the values of mass attenuation coefficients, effective atomic number, effective electron density and mean free path. Good agreement has been observed between experimental and theoretical values of these parameters. From the obtained results it is reported here that from the barium-bismuth-borosilicate glasses are better shields to gamma-radiations in comparison to the standard radiation shielding concretes from the shielding point of view. The molar volume, FTIR and acoustic investigations have been used to study the structural properties of the prepared glass system. The obtained results reveal that the formation of non-bridging oxygens occurs at higher concentration of Bi2O3.

  7. Using polycrystalline bismuth filter in an ultracold neutron source with superfluid helium

    Science.gov (United States)

    Serebrov, A. P.; Lyamkin, V. A.; Runov, V. V.; Ivanov, S. A.; Onegin, M. S.; Fomin, A. K.

    2015-10-01

    Placing polycrystalline bismuth filter in front of an ultracold neutron (UCN) source with superfluid helium at 1 K is shown to be effective. The use of this filter ensures a 30-fold decrease (down to 0.5 W) in the level of heat load in the UCN source, while reducing by 30% the flux of neutrons with 9-Å wavelength (which are converted into UCNs). The phenomenon of small-angle scattering on polycrystalline bismuth has been studied and shown to be insignificant. Cooling of the filter to liquid nitrogen temperature increases the transmission of 9-Å neutrons by only 8%; hence, creation of this cooling system is inexpedient. A project of a technological complex designed for the UCN source at the PIK reactor is presented, which ensures the removal of 1-W heat load from the UCN source with superfluid helium at a 1-K temperature level.

  8. Compatibility tests of steels in flowing liquid lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, F.; Benamati, G. E-mail: benamati@brasimone.enea.it; Fazio, C.; Rusanov, A

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10{sup -6} wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 {mu}m) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  9. Quantum Interference of Surface States in Bismuth Nanowires in Transverse Magnetic Fields

    Science.gov (United States)

    Konopko, L. A.; Huber, T. E.; Nikolaeva, A. A.; Burceacov, L. A.

    2013-06-01

    We report the results of studies of the magnetoresistance (MR) and electric field effect (EFE) of single-crystal Bi nanowires with diameter dMurakami, bismuth bilayers can exhibit the quantum spin Hall effect. A Bi crystal can be viewed as a stacking of bilayers with a honeycomblike lattice structure along the [111] direction. An interpretation of transverse MR oscillations with using this theory is presented.

  10. A kinetic study of jack-bean urease denaturation by a new dithiocarbamate bismuth compound

    Science.gov (United States)

    Menezes, D. C.; Borges, E.; Torres, M. F.; Braga, J. P.

    2012-10-01

    A kinetic study concerning enzymatic inhibitory effect of a new bismuth dithiocarbamate complex on jack-bean urease is reported. A neural network approach is used to solve the ill-posed inverse problem arising from numerical treatment of the subject. A reaction mechanism for the urease denaturation process is proposed and the rate constants, relaxation time constants, equilibrium constants, activation Gibbs free energies for each reaction step and Gibbs free energies for the transition species are determined.

  11. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment.

    Science.gov (United States)

    Ceh, Justin; Youd, Tom; Mastrovich, Zach; Peterson, Cody; Khan, Sarah; Sasser, Todd A; Sander, Ian M; Doney, Justin; Turner, Clark; Leevy, W Matthew

    2017-02-24

    Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene) filaments infused with varied concentrations of bismuth (1.2-2.7 g/cm³), a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT) experiments of these filaments indicated that a density of 1.2 g/cm³ of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm³ created a stable material that could attenuate 50% of (99m)Technetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization.

  12. Influence of inherent strain on the curie temperature of rare earth ion-doped bismuth vanadate

    OpenAIRE

    Sooryanarayana, K; Row, TNG; R. Somashekar; Varma, KBR

    1998-01-01

    X-ray line broadening is found to be an effective parameter to estimate the strain associated with rare earth ion (Gd3+)-doped polycrystalline bismuth vanadate(Bi2VO5.5). The strain increases with increasing Gd3+ concentration. It is anisotropic and found to be maximum in (111) plane. The Curie temperature which is known to decrease with increase in the rare earth ion concentration in these compounds is correlated with increase in strain.

  13. Photoelectroactivity of Bismuth Vanadate Prepared by Combustion Synthesis: Effect of Different Fuels and Surfactants

    OpenAIRE

    Afonso,Renata; Serafim, Jessica A.; Lucilha,Adriana C.; Marcelo R. Silva; Lepre, Luiz F.; Ando, Romulo A.; Dall'Antonia,Luiz H.

    2014-01-01

    The bismuth vanadate (BiVO4) is a semiconductor that has attracted much attention due to the photocatalytic efficiency in the visible light region. The objective of this work was to synthesize monoclinic BiVO4 by solution combustion synthesis, with different surfactants and fuels and apply it as photoelectrodes. The characterization by infrared spectroscopy and Raman spectroscopy showed that all samples showed characteristic bands of the monoclinic structure BiVO4. The samples synthesized wit...

  14. Dielectric, piezoelectric, and pyroelectric anisotropy in KCL- modified grain-oriented bismuth vanadate ceramics

    OpenAIRE

    Shantha, K; Varma, KBR

    1999-01-01

    The effect of the additive KCl, on the structural, microstructural, and polar properties of bismuth vanadate (BiV) ceramics is investigated. The scanning electron microscopic (SEM) studies reveal a remarkable modification in the microstructure and the occurrence of high grain-orientation (75%) on KCl addition. The energy dispersive x ray (EDX) analyses indicate the presence of chemically inhomogeneous distribution of KCl, with core-shell-like grain structure. The KCl-modified BiV samples exhi...

  15. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment

    Directory of Open Access Journals (Sweden)

    Justin Ceh

    2017-02-01

    Full Text Available Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene filaments infused with varied concentrations of bismuth (1.2–2.7 g/cm3, a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT experiments of these filaments indicated that a density of 1.2 g/cm3 of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm3 created a stable material that could attenuate 50% of 99mTechnetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization.

  16. STUDY ON THE DETERMINATION OF TRACE BISMUTH(Ⅲ) BY THIN-LAYER RESIN PHASE SPECTROPHOTOMETRY

    Institute of Scientific and Technical Information of China (English)

    YAN Yongsheng; LU Xiaohua; FU Chengguang

    2003-01-01

    In this paper, a new thin-layer ion-exchange resin phase analytical method is introduced. It is based on that, the bismuthous cation can associate with iodic anions, so as to formed an anioncomplex [BiI-4] in a strong acidic environments. This anion complex can also exchanges with a weaker anions on the surface active site of anion exchange resin, so that a [R+] [BiI-4] solid phase binary associational system is produced. Owing to the solid system is a great many dispersive particulates, it can be pressed to a thin-layer by press tools of the so called "thin-layer resin phase"or "resin phase ", and using this solid association system spectrophotometry for the determination of trace metals. So it can increase the analytical sensitivity. This association system exhibits maximum absorbance at 460nm, and obeys Beer's law over the concentration range 0. 01ug/ml~1.20ug/ml of bismuthous(Ⅲ). It has a molar absorptivity of 7.1 ×105 [L/mol cm]. It indicated the resin phase spectrophotometry is a sensitive analytical method for trace bismuthous. It is 18 times higher than routine aqueous spectrophotometry. The relative standard deviations is 1.82% (n=6) for the measurements of 0. 5ug/ml Bi(Ⅲ). The detection limit of Bismuthous(Ⅲ) is 1.4 ×10-8mol/L. The method has applied to the analysis Bi(Ⅲ) in environmental water samples.

  17. Report - Melter Testing of New High Bismuth HLW Formulations VSL-13R2770-1

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The primary objective of the work described was to test two glasses formulated for a high bismuth waste stream on the DM100 melter system. Testing was designed to determine processing characteristics and production rates, assess the tendency for foaming, and confirm glass properties. The glass compositions tested were previously developed to maintain high waste loadings and processing rates while suppressing the foaming observed in previous tests

  18. Electroless deposition of bismuth on Si(111) wafer from hydrogen fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Romann, T., E-mail: tavo.romann@ut.e [Institute of Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia); Anderson, E.; Kallip, S. [Institute of Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia); Maendar, H.; Matisen, L. [Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu (Estonia); Lust, E. [Institute of Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia)

    2010-05-03

    Thin Bi layers were deposited by simple immersion of silicon chip into diluted HF aqueous solution, containing bismuth(III) ions. Bi nanoparticles or continuous up to 300 nm thick Bi film can be grown on silicon by the variation of the temperature and deposition time. Prepared surfaces have been characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering, photoluminescence and resistivity measurement methods. It was found that thinner Bi layers have a yellowish colour.

  19. Effect of bismuth addition to the triple therapy of Helicobacter pylori eradication

    Directory of Open Access Journals (Sweden)

    Ezel Taşdemir

    2012-03-01

    Full Text Available Objective: Success rates of amoxicillin, clarithromycin, and proton-pump inhibitor therapy in the Helicobacter pylori (Hp eradication have been decreasing. The aim of this study was to investigate the impact of bismuth subcitrate addition to triple therapy.Materials and methods: 148 patients diagnosed Hp infection with both histology and Hp stool antigen (HpSA tests were examined retrospectively. The patients were divided into 3 groups according to the eradication therapy. The first group received triple therapy with claritromycine 2x 500 mg, amoxicilline 2x1 g and PPI 2x1 for 14 days (n=40. The second group had bismuth subcitrate 4x120 mg with triple therapy for 14 days (n=73. The third group received 14 days pretreatment with bismuth subcitrate 4x1 together with PPI 2x1 then had triple therapy for 14 days (n=35. (14C urea breath and HpSA tests were used to detect posttreatment H.pylori status.Results: There were no statistical difference between the groups in terms of gender and age (p > 0.05. In group one 12 patients, in group two 20 patients and in group three 10 patients were identified as Hp positive after treatment. Eradication rates were 70% for group one, 72.6% for group two and 71.4% for group three respectively. There was no statistical difference between the groups in terms of eradication rates of treatment (p > 0.05.Conclusions: The addition of bismuth to conventional triple therapy did not affect treatment success rates.

  20. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    Science.gov (United States)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present inBi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely 241Am and 137Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  1. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    Science.gov (United States)

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD.

  2. Bismuth Modified Porous Silica Preparation, Characterization and Photocatalytic Activity Evaluation for Degradation of Isoproturon

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar Reddy Police; Srinivas Basavaraju; Durga Kumari Valluri; Subrahmanyam Machiraju

    2013-01-01

    Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Sio5 species containing surface.The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD),X-ray photoelectron spectroscopy (XPS),UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS),scanning electron microscopy (SEM),energy dispersive analysis of X-ray (EDAX),transmission electron microscopy (TEM),Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques.EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2Sio5,which is substantiated by XRD.The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica.FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework.SEM and TEM show the spherical morphology,whereas N2 adsorption/desorption study confirms the porosity of the prepared materials.The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa Tio2.

  3. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures

    Energy Technology Data Exchange (ETDEWEB)

    Waghmare, Shivaji D.; Jadhav, Vijaykumar V.; Gore, Shaym K. [Center for Nanomaterials and Energy Devices, School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra (India); Yoon, Seog-Joon; Ambade, Swapnil B. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Seoul 133-1791 (Korea, Republic of); Lokhande, B.J. [Department of Physics, Solapur University, Solapur (India); Mane, Rajaram S., E-mail: rsmane_2000@yahoo.com [Center for Nanomaterials and Energy Devices, School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra (India); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Seoul 133-1791 (Korea, Republic of)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ► These structures were characterized by XRD and SEM. ► LPG, CO{sub 2} and NH{sub 4} gases were exposed. ► Properties related to gas sensors were measured and reported. -- Abstract: Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO{sub 2}) and ammonium (NH{sub 3}) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO{sub 2} and NH{sub 3} gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported.

  4. Alkali-metal-supported bismuth polyhedra-principles and theoretical studies.

    Science.gov (United States)

    Monakhov, Kirill Yu; Linti, Gerald; Wolters, Lando P; Bickelhaupt, F Matthias

    2011-06-20

    We have quantum chemically investigated the structure, stability, and bonding mechanism in highly aggregated alkali-metal salts of bismuthanediide anions [RBi](2-) using relativistic density functional theory (DFT, at ZORA-BP86/TZ2P) in combination with a quantitative energy decomposition analysis (EDA). Our model systems are alkali-metal-supported bismuth polyhedra [(RBi)(n)M(2n-4)](4-) with unique interpenetrating shells of a bismuth polyhedron and an alkali-metal superpolyhedron. Furthermore, we have analyzed the trianionic inclusion complexes [M'@{(RBi)(n)M(2n-4)}](3-) involving an additional endohedral alkali-metal ion M'. The main objective is to assist the further development of synthetic approaches toward this class of compounds. Our analyses led to electron-counting rules relating, for example, the number of bonding orbitals (N(bond)) of the cage molecules [(RBi)(n)M(2n+Q)](Q) to the number of bismuth atoms (n(Bi)), alkali-metal atoms (n(M)), and net charge Q as N(bond) = n(Bi) + n(M) - Q (R = one-electron donor ligand; M = alkali metal; n = 4-12; Q = -4, -6, -8). Finally, on the basis of our findings, we predict the next members in the 5-fold symmetrical row of alkali-metallobismaspheres with a macroicosahedral arrangement.

  5. The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yue [Institute of Material Physical Chemistry, Huaqiao University, Key Laboratory for Functional Materials of Fujian Higher Education, Quanzhou, Fujian 362021 (China); Huang Miaoliang, E-mail: huangml@hqu.edu.c [Institute of Material Physical Chemistry, Huaqiao University, Key Laboratory for Functional Materials of Fujian Higher Education, Quanzhou, Fujian 362021 (China); Huang Yi; Lin Jianming; Wu Jihuai [Institute of Material Physical Chemistry, Huaqiao University, Key Laboratory for Functional Materials of Fujian Higher Education, Quanzhou, Fujian 362021 (China)

    2010-04-30

    Bismuth vanadate powders were prepared by hydrothermal method with NaVO{sub 3} and Bi(NO{sub 3}){sub 3} as starting materials and with Na{sub 2}CO{sub 3} to adjust pH, and characterized by XRD, SEM, EDS and surface area analyzer. The results showed that the phase formation of bismuth vanadate depended on the adding amount of Na{sub 2}CO{sub 3}. The bismuth vanadate samples existed as monoclinic BiVO{sub 4} by adding 0.019 and 0.038 mol of Na{sub 2}CO{sub 3} with corresponding pH value of 0.2 and 5.8, respectively, and as Bi{sub 4}V{sub 2}O{sub 11} by adding 0.057 mol of Na{sub 2}CO{sub 3} with corresponding pH value of 9.7. The photocatalytic activities of the samples were evaluated by the decolorization of methylene blue (MB) under visible light irradiation. The sample with monoclinic form obtained by adding 0.019 mol of Na{sub 2}CO{sub 3} had the highest photocatalytic activity, the decolorization rate of MB reached to 96.4% under visible light irradiation in 200 min and the reaction rate constant was 0.015 min{sup -1}.

  6. Underpotential Deposition Study and Determination of Bismuth on Gold Electrode by Using Voltammetry

    Institute of Scientific and Technical Information of China (English)

    DU,Yong-Ling(杜永令); WANG,Chun-Ming(王春明)

    2002-01-01

    The cyclic voltammetry (CV) and the semidifferential anodic stripping voltanmetry (SdASV) were used for investigation of bismuth(Ⅲ) underpotential deposition (UPD) on gold electrode. Based on the excellent electrochemical properties of Au/Bi UPD system, a new method for determining bismuth (Ⅲ)was established. A solution of 0.1 mol/L HNO3 was selected as the supporting electrolyte. Factors affecting the Bi(Ⅲ) UPD and stripping steps were investigated and an opthmized analytical procedure was developed. The calibration plots for Bi(Ⅲ) concentration in the range 1.25 × 10-8-1.0 × 10-7 mol/L were obtained. The detection limit, calculated as three times the standard deviation of the analytical signal of 8.3×10-8 mol/L for a 90 s electrodeposition at 0.00 V (while the solution magnetically stirred at a speed of 300 rpm), was 7.5× 10-9 mol/ L. For8 successive determinations of 1.25 × 10-7 mol/L Bi(Ⅲ), the obtained RSD (relative standard deviation) was 0.4%. The developed method was applied to bismuth determining in medicine and urine samples. The analytical results were compared with that of atomic emission spectrometry (AES) method.

  7. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Science.gov (United States)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  8. Effect of bismuth ion substitution on structural properties of zinc ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Naraavula Suresh Kumar

    2016-06-01

    Full Text Available Bismuth doped nano zinc ferrite particles having the general formula ZnFe2-xBixO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25 were synthesized by sol-gel combustion method. The effect of bismuth doping on structural properties were investigated. The X-ray diffraction (XRD spectra confirm the single phase cubic spinel structure. The average crystallite sizes of all the samples were determined by Debye-Scherrer equation and are in the range 16–20 nm. The lattice parameter increases with the increase of bismuth ion concentration. This is due to the larger ionic radius of Bi3+ ions substituting smaller Fe3+ ions at octahedral sites (B-sites. The surface morphology of all compounds was studied by scanning electron microscope (SEM. The microstructure analysis and the particle size were examined by transmission electron microscope (TEM. The compositional stoichiometry of these samples was verified by energy dispersive spectroscopy (EDS analysis.

  9. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    Science.gov (United States)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-02-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.

  10. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zulfiqar; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Butt, Faheem K.; Tahir, Muhammad; Tanveer, M.; Aslam, Imran; Rizwan, Muhammad; Idrees, Faryal; Khalid, Syed [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Butt, Sajid [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-11-15

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximately of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.

  11. Landau spectrum and twin boundaries of bismuth in the extreme quantum limit.

    Science.gov (United States)

    Zhu, Zengwei; Fauqué, Benoît; Malone, Liam; Antunes, Arlei Borba; Fuseya, Yuki; Behnia, Kamran

    2012-09-11

    The Landau spectrum of bismuth is complex and includes many angle-dependent lines in the extreme quantum limit. The adequacy of single-particle theory to describe this spectrum in detail has been an open issue. Here, we present a study of angle-resolved Nernst effect in bismuth, which maps the angle-resolved Landau spectrum for the entire solid angle up to 28 T. The experimental map is in good agreement with the results of a theoretical model with parabolic dispersion for holes and an extended Dirac Hamiltonian for electrons. The angular dependence of additional lines in the Landau spectrum allows us to uncover the mystery of their origin. They correspond to the lines expected for the hole Landau levels in a secondary crystal tilted by 108°, the angle between twinned crystals in bismuth. According to our results, the electron reservoirs of the two identical tilted crystals have different chemical potentials, and carriers across the twin boundary have different concentrations. An exceptional feature of this junction is that it separates two electron-hole compensated reservoirs. The link between this edge singularity and the states wrapping a three-dimensional electron gas in the quantum limit emerges as an outstanding open question.

  12. LiBi3S5-A lithium bismuth sulfide with strong cation disorder

    Science.gov (United States)

    Nakhal, Suliman; Wiedemann, Dennis; Stanje, Bernhard; Dolotko, Oleksandr; Wilkening, Martin; Lerch, Martin

    2016-06-01

    Among chalcogenide semiconductors for thermoelectric applications, alkali-metal bismuth compounds occur in many complex compositions favorable for high performance. Although LiBi3S5 had been announced in 1977, the potential 1D lithium-ion conductor has hitherto eluded selective synthesis and structure determination. In this study, we present a solid-state route to phase-pure LiBi3S5 powder starting from LiBiS2 and Bi2S3. Neutron diffractograms and lithium NMR spectra reveal its crystal structure to be a cation-disordered variety of the AgBi3S5 type (synthetic pavonite; monoclinic, C2/m). Topological analyses and lithium NMR relaxometry suggest that correlated lithium-ion diffusion with activation energies up to 0.66(2) eV occurs along the channels in b direction including tetrahedral voids. Because of cation disorder, immobile bismuth(III) ions clog these pathways, making LiBi3S5 a moderate to poor ionic conductor. The synthesis route reported is nonetheless promising for new lithium bismuth sulfides with, possibly ordered, structure types of the pavonite homologous series.

  13. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    Science.gov (United States)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-01-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures. PMID:26847409

  14. 铋含量对铅铋合金表面张力的影响分析%Influence of Bismuth Content on Surface Tension of Lead-bismuth Alloy

    Institute of Scientific and Technical Information of China (English)

    王龙; 徐敬尧; 徐刚; 刘少军; 黄群英

    2013-01-01

    Liquid lead-bismuth alloy has been considered as the potential candidates for the liquid spallation targets and the coolant of accelerator driven sub-critical system (ADS ) . Surface tension is one of the important thermal and physical properties parameters of lead-bismuth alloy , and temperature and chemical composition are important influence factors of surface tension . In this paper , the surface tension of liquid lead-bismuth alloy was measured by sessile drop (SD ) method . The results indicate that the surface tension of lead-bismuth alloy firstly increases and then decreases with the increase of the test temperature ,and the surface tension for low test temperature is significantly small .At the same temperature ,the surface tension of lead-bismuth alloy decreases with the increase of bismuth content , and segregation of bismuth onto the surface of molten lead-bismuth alloy is a key factor leading to the smaller surface tension .T he results of this study provide basic reference for composition optimization of lead-bismuth alloy ,w hich is of great significance for the development of spallation targets and the coolant materials of accelerated driven sub-critical system .%液态铅铋合金是加速器驱动的次临界系统(ADS )中散裂靶兼冷却剂的主要候选材料。表面张力是液态铅铋合金的重要热物性参数之一,而温度和化学组成是影响表面张力的关键因素。本文采用静滴法测量了5种不同成分铅铋合金的表面张力。实验结果显示:在测试温度范围内,铅铋合金的表面张力均随温度的升高先增大后减小,且在低温区表面张力非常小;相同温度下,铅铋合金的表面张力随Bi含量的增大逐渐降低,其中Bi的表面偏聚是导致其变小的重要因素之一。本研究结果为铅铋合金的成分优化提供了基本参考,对发展ADS散裂靶和冷却剂材料具有重要意义。

  15. Bandgap Tunability in Sb-Alloyed BiVO₄ Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications.

    Science.gov (United States)

    Loiudice, Anna; Ma, Jie; Drisdell, Walter S; Mattox, Tracy M; Cooper, Jason K; Thao, Timothy; Giannini, Cinzia; Yano, Junko; Wang, Lin-Wang; Sharp, Ian D; Buonsanti, Raffaella

    2015-11-01

    The challenge of fine compositional tuning and microstructure control in complex oxides is overcome by developing a general two-step synthetic approach. Antimony-alloyed bismuth vanadate, which is identified as a novel light absorber for solar fuel applications, is prepared in a wide compositional range. The bandgap of this quaternary oxide linearly decreases with the Sb content, in agreement with first-principles calculations.

  16. 氯氧铋脱氯转化为氧化铋的试验研究%Test study on bismuth oxide transformation by dechlorination of bismuth oxychloride

    Institute of Scientific and Technical Information of China (English)

    杜新玲; 郭江; 葛道健

    2016-01-01

    针对冶炼渣铋回收过程中存在氯氧铋直接还原产生易挥发的氯化铋而导致铋直收率低的问题,提出将氯氧铋在碱性条件下脱氯转化为氧化铋,通过正交试验方案设计,得出最佳的脱氯工艺条件:pH值14左右,转化温度80℃,搅拌时间2h.

  17. Study on Bismuth Separation from Bismuth Oxide Slag by Hydrometallurgical Process%湿法处理氧化铋渣分离铋的研究

    Institute of Scientific and Technical Information of China (English)

    杜新玲; 马科友; 葛道健

    2016-01-01

    采用氯化浸出—水解沉锑—中和沉铋工艺流程从火法处理铜铅阳极泥过程中产出的氧化铋渣中分离铋.研究了终酸浓度、浸出时间、浸出液固比、浸出温度等对铋浸出率的影响;水解方式、pH和水解时间对锑水解率的影响;以及pH、中和时间对铋沉淀率的影响.在适当的工艺条件下,铋浸出率可以达到95.25%,锑水解率可达83.77%,铋沉淀率可达99%以上,同时可以回收锑、铜等有价金属.

  18. Li3PO4 Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery.

    Science.gov (United States)

    Sun, Chuan-Fu; Hu, Junkai; Wang, Peng; Cheng, Xi-Yuan; Lee, Sang Bok; Wang, YuHuang

    2016-09-14

    Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.

  19. The cytotoxicity of organobismuth compounds with certain molecular structures can be diminished by replacing the bismuth atom with an antimony atom in the molecules.

    Science.gov (United States)

    Kohri, Kumiko; Yoshida, Eiko; Yasuike, Shuji; Fujie, Tomoya; Yamamoto, Chika; Kaji, Toshiyuki

    2015-06-01

    Organic-inorganic hybrid molecules, which are composed of an organic structure and metal(s), are indispensable for synthetic chemical reactions; however, their toxicity has been incompletely understood. In the present study, we discovered two cytotoxic organobismuth compounds whose cytotoxicity diminished upon replacement of the intramolecular bismuth atom with an antimony atom. The intracellular accumulation of the organobismuth compounds was much higher than that of the organoantimony compounds with the corresponding organic structures. We also showed that both the organic structure and bismuth atom are required for certain organobismuth compounds to exert their cytotoxic effect, suggesting that the cytotoxicity of such a compound is a result of an interaction between the organic structure and the bismuth atom. The present data suggest that organobismuth compounds with certain molecular structures exhibit cytotoxicity via an interaction between the molecular structure and the bismuth atom, and this cytotoxicity can be diminished by replacing the bismuth atom with an antimony atom, resulting in lower intracellular accumulation.

  20. Ce(3+)/Yb(3+)/Er(3+) triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers.

    Science.gov (United States)

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-09-20

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er(3+) can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce(3+) and its effects on the luminescence properties of Er(3+) are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce(3+)/Yb(3+)/Er(3+) triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers.