WorldWideScience

Sample records for bismuth film electrodes

  1. Bismuth film electrodes for heavy metals determination

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan; Vojs, Marian; Mika, Fedor

    2007-05-01

    Bismuth film electrodes (BiFEs) have a potential to replace toxic mercury used most frequently for determination of heavy metals (Cd, Pb, Zn) by anodic stripping voltammetry. We prepared a graphite disc electrode (0.5 mm in diameter) from a pencil-lead rod and developed a nitrogen doped diamond-like carbon (NDLC) microelectrode array consisting of 50 625 microdiscs with 3 μm in diameter and interelectrode distances of 20 μm on a highly conductive silicon substrate as a support for BiFEs. The disc graphite BiFE was used for simultaneous determination of Pb(II), Cd(II) and Zn(II) by square wave voltammetry (SWV) in an aqueous solution. We found the optimum bismuth-to-metal concentration ratio in the solution to be 20. The dependence of the stripping responses on the concentration of target metals was linear in the range from 1×10 -8 to 1.2×10 -7 mol/L. Detection limits 2.4×10 -9 mol/L for Pb(II), 2.9×10 -9 mol/L for Cd(II) and 1.2×10 -8 mol/L for Zn(II) were estimated. A bismuth-plated NDLC microelectrode array was used for Pb(II) determination by differential pulse voltammetry (DPV) in an aqueous solution. We found that the stripping current for bismuth-plated NDLC array was linear in the concentration range of Pb(II) from 2×10 -8 to 1.2×10 -7 mol/L. The detection limit 2.2×10 -8 mol/L was estimated from a calibration plot.

  2. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE

    Directory of Open Access Journals (Sweden)

    Carlo Dossi

    2016-07-01

    Full Text Available Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance.

  3. Microscopic and electrochemical studies on the role of plating regime in the preparation and applicability of bismuth film carbon paste electrodes in electroanalytical measurements

    Czech Academy of Sciences Publication Activity Database

    Švancara, I.; Baldriánová, L.; Kotzian, P.; Vlček, Milan; Girousi, S.; Economou, A.; Voulgaropoulos, A.; Vytřas, K.

    Thessaloniki Grece : Aristotele University of Thessaloniki, 2004. s. -. [Annual Meeting of the International Society of Electrochemistry /55./. 19.09.2004-24.09.2004, Thessaloniki] Keywords : bismuth film carbon electrodes Subject RIV: CA - Inorganic Chemistry

  4. In situ bismuth-film electrode for square-wave anodic stripping voltammetric determination of tin in biodiesel

    International Nuclear Information System (INIS)

    Highlights: → A bismuth-film electrode for tin determination. → The sensor showed excellent performance. → High levels of tin were found in biodiesel samples. - Abstract: A bismuth-film electrode (BiFE) was applied in square-wave anodic stripping voltammetry (SWASV) in order to determine Sn (IV) in biodiesel samples. In situ simultaneous deposition of tin and bismuth at -1.2 V for 90 s was carried out in a supporting electrolyte containing 0.1 mol L-1 acetate buffer (pH 4.5) and 1.73 mmol L-1 caffeic acid as the complexing agent. A single well-defined anodic stripping peak was observed at -0.58 V for the oxidation of Sn to Sn (II), which was used as the analytical signal. The calibration curve was obtained in the concentration range of 0.17-7.83 μmol L-1 with the detection limit being 0.14 μmol L-1 (r = 0.9990). Repeatability and reproducibility for the measurement of the current peak were characterized by relative standard deviations of 3.6% and 4.1%, respectively, for a 5.0 μmol L-1 Sn (IV) solution (n = 10). The method was validated by comparing the results obtained with those provided by application of the atomic absorption spectroscopy technique.

  5. Electrocatalytic oxidations at electrodeposited bismuth (III)-doped beta-lead dioxide film electrodes

    International Nuclear Information System (INIS)

    Heterogeneous rate constants for the anodic oxidation of many inorganic and organic compounds at electrolytically deposited beta-PbO2 film electrodes in 1.0M HClO4 are increased by doping the oxide with Bi(III). The rate constants at the mixed-oxide electrode rise sharply for a change from 0 to 10 mole percent (m/o) Bi(III) in the electrodeposition solution, and reach a mass transport-limited value for some compounds at 40 m/o Bi(III). Results of kinetic, voltammetric, and spectroscopic studies of these electrodes are described. In addition, the lifetime of Bi(III)-doped PbO2 film electrodes is discussed as a function of concentration, rotation speed, analyte, and applied voltage

  6. Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application

    Science.gov (United States)

    Jadhav, Vijaykumar V.; Zate, Manohar K.; Liu, Shude; Naushad, Mu.; Mane, Rajaram S.; Hui, K. N.; Han, Sung-Hwan

    2016-04-01

    Nanoflake bismuth ferrite thin film was synthesized by means of electrodeposition technique at room temperature. The morphology and phase evaluation of the synthesized electrode were analyzed using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and surface wettability techniques. Specifically, the bismuth ferrite nanoflake electrode exhibited high specific capacitance of 72.2 F g-1 at a current density of 1 A g-1, and high rate capability with 37 % retention of capacitance even up to 20A g-1, and excellent cycling stability with 82.8 % retention of the initial capacitance after 1500 charge/discharge cycles, supporting that the bismuth ferrite thin-film electrode could be a potential candidate for supercapacitor application.

  7. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  8. Electroanalysis of organic compounds at bismuth electrodes: a short review

    OpenAIRE

    Lezi, Nikolitsa; Vyskočil, Vlastimil; Economou, Anastasios; Barek, Jiří

    2012-01-01

    Over the last twelve years, it has been demonstrated that bismuth electrodes have comparable electroanalytical performance to mercury electrodes in the negative potential range. Since the toxicicty of bismuth is lower than that of mercury, bismuth can serve as an alternative “green” electrode material to mercury. However, the great majority of published work at bismuth–based electrodes is concerned with the determination of trace metals by voltammetric techniques with only few applications de...

  9. Environmentally-friendly in situ plated bismuth-film electrode for the quantification of the endocrine disruptor parathion in skimmed milk.

    Science.gov (United States)

    Gerent, Giles G; Spinelli, Almir

    2016-05-01

    An in situ bismuth-film electrode (BiFE) together with square-wave cathodic voltammetry (SWCV) was used to determine the concentration of the endocrine disruptor parathion in skimmed milk. The experimental conditions (deposition time, deposition potential and Bi (III) concentration) were optimized for the preparation of the BiFE. A glassy carbon electrode was used as the substrate. The selection of the chemical composition of the supporting electrolyte and the solution pH was aimed at improving the reduction of parathion at the BiFE surface. In addition, the parameters of the square-wave cathodic voltammetry were adjusted to improve the sensor performance. A cathodic current identified at -0.523V increased linearly with the parathion concentration in the range of 0.2-2.0μmolL(-1) (R=0.999). The sensitivity of the calibration curve obtained was 4.09μALμmol(-1), and the limits of detection (LOD) and quantification (LOQ) were 55.7nmolL(-1) and 169.0 nmolL(-1), respectively. The performance of the sensor was tested using a sample of skimmed milk with parathion added. The same determination was carried out by UV-vis spectroscopy and the results obtained were used for the statistical evaluation of the data obtained. PMID:26812083

  10. Bismuth electrodes, an alternative in stripping voltammetry

    International Nuclear Information System (INIS)

    The heavy metals are known as highly toxic contaminants, the processes carried out in industry contribute that finally they remain dispersed in effluents and sewage, doing part of the food chain. The importance of controlling the levels of these heavy metals has become an international policy, so it has generated interest in developing new analytical methodologies for its determination [1, 2, 3, 4]. The stripping voltammetry has been considered as a family of electro-sensitive analytical techniques useful for the determination of trace levels of many metals in environmental, clinical and industrial samples [3, 4]. This work presents an overview of these bismuth-based electrodes which were introduced around 2000, which have interesting characteristics for detection of heavy metals and which represent an alternative to mercury electrodes

  11. Bismuth electrodes, an alternative in stripping voltammetry

    Science.gov (United States)

    Barón-Jaimez, J.; Joya, M. R.; Barba-Ortega, J.

    2013-11-01

    The heavy metals are known as highly toxic contaminants, the processes carried out in industry contribute that finally they remain dispersed in effluents and sewage, doing part of the food chain. The importance of controlling the levels of these heavy metals has become an international policy, so it has generated interest in developing new analytical methodologies for its determination [1, 2, 3, 4]. The stripping voltammetry has been considered as a family of electro-sensitive analytical techniques useful for the determination of trace levels of many metals in environmental, clinical and industrial samples [3, 4]. This work presents an overview of these bismuth-based electrodes which were introduced around 2000, which have interesting characteristics for detection of heavy metals and which represent an alternative to mercury electrodes.

  12. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    International Nuclear Information System (INIS)

    Bismuth vanadate, Bi4V2O11, and related compounds with various metal (Me) substitutions, Bi4(MexV1−x)2O11−δ, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated

  13. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated.

  14. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    OpenAIRE

    Marko Rodić; Olga Vajdle; Valéria Guzsvány; Jasmina Zbiljić; Zsigmond Papp

    2011-01-01

    Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE) and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV) mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD) not exceeding 1.5%. The tricresyl phosp...

  15. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  16. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the form

  17. Bismuth pyrochlore thin films for dielectric energy storage

    International Nuclear Information System (INIS)

    Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate were fabricated using chemical solution deposition. This family of materials exhibited moderate relative permittivities between 55 ± 2 and 145 ± 5 for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 ± 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. For example, at 10 kHz, the room temperature breakdown strength of bismuth zinc niobate was 5.1 MV/cm, while that of bismuth zinc tantalate was 6.1 MV/cm. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 ± 2.0 J/cm3, while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 ± 2.0 J/cm3. Intermediate compositions of bismuth zinc niobate tantalate offered higher energy storage densities; at 10 mol. % tantalum, the maximum recoverable energy storage density was ∼66.9 ± 2.4 J/cm3

  18. Inexpensive laser-induced surface modification in bismuth thin films

    International Nuclear Information System (INIS)

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters

  19. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  20. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jasmine B. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Garje, Shivram S., E-mail: ssgarje@chem.mu.ac.in [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Nuwad, Jitendra; Pillai, C.G.S. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-08-15

    Two different phase pure materials (Bi{sub 2}S{sub 3} and Bi{sub 2}P{sub 4}O{sub 13}) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi(S{sub 2}P(OR){sub 2}){sub 3} [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr{sup n}) (3) and iso-Propyl (Pr{sup i}) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi{sub 2}P{sub 4}O{sub 13}) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi{sub 2}P{sub 4}O{sub 13} thin films were also carried out. - Graphical abstract: Solvothermal decomposition of bismuth(III) dialkyldithiophosphates in ethylene glycol gave Bi{sub 2}S{sub 3} nanoparticles, whereas aerosol assisted chemical vapor deposition of these single source precursors deposited Bi{sub 2}P{sub 4}O{sub 13} thin films. Display Omitted - Highlights: • Preparation of phase pure orthorhombic Bi{sub 2}S{sub 3} nanorods and monoclinic Bi{sub 2}P{sub 4}O{sub 13} thin films. • Use of single source precursors for deposition of bismuth phosphate thin films. • Use of solvothermal decomposition and AACVD methods. • Morphology controlled synthesis of Bi{sub 2}P{sub 4}O{sub 13} thin films. • Bi{sub 2}S{sub 3} nanorods and Bi{sub 2}P{sub 4}O{sub 13} thin films using same single source precursors.

  1. Magnetic anisotropies in ultrathin bismuth iron garnet films

    International Nuclear Information System (INIS)

    Ultrathin bismuth iron garnet Bi3Fe5O12 films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi3Fe5O12 films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi3Fe5O12 films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi3Fe5O12 were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed

  2. Bismuth onion thin film in situ grown on silicon wafer synthesized through a hydrothermal approach

    International Nuclear Information System (INIS)

    Bismuth onion structured nanospheres with the same structure as carbon onions have been synthesized and observed. The nanospheres were synthesized through a hydrothermal method using bismuth hydroxide and silicon wafer as reactants. By controlling the heating temperature, heating time, and the pressure, nanoscale bismuth spheres can be in situ synthesized on silicon wafer, and forms a bismuth onion film on the substrate. The electronic property of the films was investigated. A formation mechanism of the formation of bismuth onions and the onion film has been proposed on the basis of experimental observations.

  3. Separation of plutonium from lanthanum by electrolysis in LiCl KCl onto molten bismuth electrode

    Science.gov (United States)

    Serp, J.; Lefebvre, P.; Malmbeck, R.; Rebizant, J.; Vallet, P.; Glatz, J.-P.

    2005-04-01

    This work presents a study on the electroseparation of plutonium from lanthanum using molten bismuth electrodes in LiCl-KCl eutectic at 733 K. The reduction potentials of Pu3+ and La3+ ions were measured on a Bi thin film electrode using cyclic voltammetry (CV). A difference between the peak potentials for the formation of PuBi2 and LaBi2 of approximately 100 mV was found. Separation tests were then carried out using different current densities and salt phase compositions between a plutonium rod anode and an unstirred molten Bi cathode in order to evaluate the efficiency of an electrolytic separation process. At a current density of 12 mA/cm2/wt% (Pu3+), only Pu3+ ions are reduced into the molten Bi electrode, leaving La3+ ions in the salt melt. Similar results were found at two different Pu/La concentration ratios ([Pu]/[La] = 4 and 10). At a current density of 26 mA/cm2/wt% (Pu3+), co-reduction of Pu and La was observed as expected by the large negative potential of the Bi cathode during the separation test.

  4. Thin film bismuth iron oxides useful for piezoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  5. Electrodes modified with bismuth, antimony and tin precursor compounds for electrochemical stripping analysis of trace metals (a short review)

    OpenAIRE

    Lezi, Nikolitsa; Economou, Anastasios; Barek, Jiří

    2014-01-01

    Over the last decade, intensive research is being carried out towards the development of “green” electrochemical sensors. Bismuth, antimony and tin electrodes have been proposed as potential substitutes of mercury electrodes in electrochemical stripping analysis of trace metals. The main advantage of these metals as electrode materials is their lower toxicity compared to mercury. Among the different configuration of bismuth, antimony and tin electrodes, one of the most attractive inv...

  6. Ferroelectric thin film bismuth titanate prepared from acetate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanxia; Hoelzer, D.T.; Schulze, W.A. [Alfred Univ., NY (United States); Tuttle, B.A.; Potter, B.G. [Sandia National Labs., Albuquerque, NM (United States)

    1994-10-01

    Bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) thin films were fabricated by spin coat deposition followed by rapid thermal processing (RTP). Acetate derived solutions for deposition were synthesized by blending bismuth acetate in aqueous acetic acid and then adding titanium acetate. A series of electrically insulating, semiconducting and conducting substrates were evaluated for Bi{sub 4}Ti{sub 3}O{sub 12} film deposition. While X-ray diffraction and TEM analyses indicated that the initial perovskite crystallization temperature was 500{degrees}C or less for these Bi{sub 4}Ti{sub 3}O{sub 12} films, a 700{degrees}C crystallization treatment was used to obtain single phase perovskite films. Bi{sub 4}Ti{sub 3}O{sub 12} film crystallographic orientation was shown to depend on three factors: substrate surface morphology, the number of coating layers and thermal processing. While preferred c-direction orientation was observed for Bi{sub 4}Ti{sub 3}O{sub 12} films deposited on silver foil substrates, preferred a-direction orientation was obtained for films deposited on both Si and Pt coated Si wafers. The films were dense, smooth, crack free, and had grain sizes ranging from 20 nm to 100 nm. Film thickness and refractive index were determined using a combination of ellipsometry, waveguide refractometry and TEM measurements. Both low field dielectric and ferroelectric properties were measured for an 800 nm thick film deposited on a Pt coated MgO substrate. A remanent polarization of 38 {mu}C/cm{sup 2} and a coercive field of 98 kV/cm were measured for this film that was crystallized at 700{degrees}C.

  7. 有机-无机杂化复合铋膜电极溶出伏安法测痕量镉、铅离子%Fabrication of an organic-inorganic hybrid composite bismuth film electrode for stripping analysis of trace Cd( Ⅱ )and Pb( Ⅱ )

    Institute of Scientific and Technical Information of China (English)

    凌玉; 尹丽君; 刘刚; 李萍; 吴守国

    2011-01-01

    将铋和聚苯胺共沉积在玻碳电极上制备了杂化膜,然后在杂化膜上沉积一层铋膜,制备了一种新颖的电化学传感器——有机-无机杂化复合铋膜电极(HCBiFE),用于痕量重金属离子Cd(Ⅱ)和Pb(Ⅱ)的检测(0.1mol/L醋酸缓冲溶液,pH 4.7).优化了镀膜条件、离子测试参数.在1~90 μg·L-1的浓度范围内,两离子溶出峰电流与浓度呈现出良好的线性关系,富集时间120 s时,Cd(Ⅱ)和Pb(Ⅱ)的检测限分别低至0.2,0.5μg·L-1.该复合膜具有很好的稳定性和重现性,能够抗机械剥蚀、不易脱落,对50 μg·L-1的Cd(Ⅱ)和Pb(Ⅱ)连续测定50次,相对标准偏差分别为4.3%,6.1%.30 d后,该复合膜电极对Cd(Ⅱ)和Pb(Ⅱ)溶出峰电流分别下降3.2%,4.9%,表明该复合膜电极性能稳定,有望应用于环境水体的现场监测.%A novel electrochemical sensor(organic-inorganic hybrid composite bismuth film electrode)was fabricated on a glassy carbon substrate electrode by an electrochemical co-deposition of polyaniline and bismuth followed by plating a thin layer of bismuth on the hybrid film.The hybrid composite bismuth film electrode was applied to detect trace Cd(Ⅱ)and Pb( Ⅱ )in 0.1 mol/L acetate buffer solution(pH 4.7 )by square ware anodic stripping voltammetry.The influencing factors of stripping signals and the operational parameters were investigated in detail.The newly developed electrode revealed highly linear behavior in the examined concentration range from 1 to 90μg · L-1 for both test metal ions,with the detection limits of 0.2 μg · L-1 and 0.5 μg · L-1 for Cd( Ⅱ )and Pb( Ⅱ )respectively,offering good coefficients of variation(CVs)of 4.3% and 6.1% for Cd( Ⅱ )and Pb( Ⅱ )(50 μg · L-1,n=50)respectively.After 30 d,the stripping peak currents for 50 μg · L-1 Pb( Ⅱ )and Cd(Ⅱ)on the composite film were detected decreasing 3.2% and 4.9%,respectively.The long term stability makes it possible to be applied in on

  8. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Quintana, Josefina [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Amine, Aziz [Faculte des Sciences et Techniques, B.P.146, Mohammadia, Morocco, Rome (Italy); Punzo, Francesco; Destri, Giovanni Li [LAMSUN and CSGI at Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95125, Catania (Italy); Bianchini, Chiara [Dipartimento di Ingegneria Chimica Materiali Ambienti dell' Universita degli Studi ' La Sapienza' di Roma, via Eudossiana 18, 00184 Rome (Italy); Zane, Daniela; Curulli, Antonella [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR,via del Castro Laurenziano 7, 00161 Rome (Italy); Palleschi, Giuseppe; Moscone, Danila [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer 'In situ' Bi-SPE has higher sensitivity than 'ex situ' Bi-SPE and 'Bi{sub 2}O{sub 3} bulk' SPE. Black-Right-Pointing-Pointer Electrochemical treatment of SPE before Bi film deposition allows one to reach low LOD. Black-Right-Pointing-Pointer The linearity of Pb{sup 2+} in HCl and HClO{sub 4} is greatly affected by the ionic strength. Black-Right-Pointing-Pointer Satisfactory values of the recovery percentage were obtained in drinking water samples. - Abstract: Lead determination was carried out in the frame of the European Union project Biocop ( (www.biocop.org)) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using 'in situ', 'ex situ' and 'bulk' procedures was carried out. On the basis of the results obtained, we confirmed that the 'in situ' procedure resulted in better analytical performances with respect to not only 'ex situ' but also to 'Bi{sub 2}O{sub 3} bulk' modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 {mu}g L{sup -1} and a detection limit of 0.15 {mu}g L{sup -1}. We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of

  9. Investigation of solution-processed bismuth-niobium-oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Satoshi, E-mail: s-inoue@jaist.ac.jp [Green Device Research Center, Japan Advanced Institute of Science and Technology (JAIST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Ariga, Tomoki [Green Device Research Center, Japan Advanced Institute of Science and Technology (JAIST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); ERATO Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency (JST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Matsumoto, Shin [School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Onoue, Masatoshi; Miyasako, Takaaki [ERATO Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency (JST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Tokumitsu, Eisuke; Shimoda, Tatsuya [Green Device Research Center, Japan Advanced Institute of Science and Technology (JAIST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); ERATO Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency (JST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Chinone, Norimichi; Cho, Yasuo [Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  10. Investigation of solution-processed bismuth-niobium-oxide films

    International Nuclear Information System (INIS)

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550 °C involving three phases: an amorphous phase, Bi3NbO7 fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO4 crystals at 590 °C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550 °C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500 °C contained approximately 6.5 atm. % carbon, which was lost at approximately 550 °C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  11. Ultra-flat bismuth films for diamagnetic levitation by template-stripping

    Energy Technology Data Exchange (ETDEWEB)

    Kokorian, J. [University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); TU Delft — 3mE-PME, Mekelweg 2, 2628 CD Delft (Netherlands); Engelen, J.B.C. [University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); IBM Research — Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Vries, J. de; Nazeer, H.; Woldering, L.A. [University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Abelmann, L., E-mail: l.abelmann@utwente.nl [University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2014-01-01

    In this paper we present a method to deposit thin films of bismuth with sub-nanometer surface roughness for application to diamagnetic levitation. Evaporated films of bismuth have a high surface roughness with peak to peak values in excess of 100 nm and average values on the order of 20 nm. We expose the smooth backside of the films using a template stripping method, resulting in a great reduction of the average surface roughness, to 0.8 nm. Atomic force microscope and X-ray diffraction measurements show that the films have a polycrystalline texture with preferential c-axis orientation. On the back side of the film, fine grains are grouped into larger clusters. Cantilever resonance shift measurements indicate that the Young's modulus of the films is on the order of 20 GPa. - Highlights: • We deposited continuous but rough bismuth films of 200–500 nm in thickness by thermal evaporation. • We analyzed the material properties of bismuth films using a variety of measurement techniques. • We reduced the roughness of bismuth films from 20 nm to 0.8 nm by a template stripping method. • The Young's modulus of bismuth thin films is comparable to bulk bismuth.

  12. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    Science.gov (United States)

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. PMID:24520000

  13. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    Science.gov (United States)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  14. Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles

    International Nuclear Information System (INIS)

    We report on a glassy carbon electrode modified with bismuth nanoparticles (NanoBiE) for the simultaneous determination Pb2+ and Cd2+ by anodic stripping voltammetry. Operational parameters such as bismuth nanoparticles labelling amount, deposition potential, deposition time and stripping parameters were optimized with respect to the determination of Pb2+ and Cd2+ in 0.1 M acetate buffer solution (pH 4.5). The NanoBiE gives well-defined, reproducible and sharp stripping peaks. The peak current response increases linearly with the metal concentration in a range of 5.0–60.0 μg L−1, with a detection limit of 0.8 and 0.4 μg L−1 for Pb2+ and Cd2+, respectively. The morphology and composition of the modified electrode before and after voltammetric measurements were analysed by scanning electron microscopy and energy dispersive X-ray analysis. The NanoBiE was successfully applied to analysis of Pb2+ and Cd2+ in real water samples and the method was validated by ICP-MS technique, suggesting that the electrode can be considered as an interesting alternative to the bismuth film electrode for possible use in electrochemical studies and electro analysis. (author)

  15. Determination of (111) ordered domains on platinum electrodes by irreversible adsorption of bismuth.

    Science.gov (United States)

    Rodríguez, Paramaconi; Solla-Gullón, José; Vidal-Iglesias, Francisco J; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2005-08-15

    Irreversible adsorbed bismuth can be used to determine the fraction of (111) domains on a given platinum sample. On Pt(111) electrodes, the surface redox process of adsorbed bismuth takes place at 0.63 V in a well-defined peak. The behavior of this redox process on the Pt(111) vicinal surfaces indicates that the bismuth atoms involved in the redox process are only those deposited on the (111) terrace sites and that the charge under the peak at 0.63 V is directly proportional to the number of sites on (111) ordered domains (terraces). The good linear relationship obtained between the charge for the bismuth redox process and the number of (111) terrace sites on the vicinal surfaces allows construction of a calibration curve. This calibration curve has been used to directly estimate the amount of (111) ordered domain terrace sites on polycrystalline platinum samples with different surface ordered domains. The results agree with what we would expect from our knowledge of these surfaces. PMID:16097774

  16. Crystallinity and electrical properties of neodymium-substituted bismuth titanate thin films

    International Nuclear Information System (INIS)

    We report on the properties of Nd-substituted bismuth titanate Bi4-xNd xTi3O12 (BNdT) thin films for ferroelectric non-volatile memory applications. The Nd-substituted bismuth titanate thin films fabricated by modified chemical solution deposition technique showed much improved properties compared to pure bismuth titanate. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 640 deg. C and grain size was found to be considerably increased as the annealing temperature increased. The film properties were found to be strongly dependent on the Nd content and annealing temperatures. The measured dielectric constant of BNdT thin films was in the range 172-130 for Bi4-xNd xTi3O12 with x 0.0-0.75. Ferroelectric properties of Nd-substituted bismuth titanate thin films were significantly improved compared to pure bismuth titanate. For example, the observed 2P r and E c for Bi3.25Nd0.75Ti3O12, annealed at 680 deg. C, were 38 μC/cm2 and 98 kV/cm, respectively. The improved microstructural and ferroelectric properties of BNdT thin films suggest their suitability for high density ferroelectric random access memory applications

  17. Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes

    OpenAIRE

    Wenhua Zuo; Pan Xu; Yuanyuan Li; Jinping Liu

    2015-01-01

    As promising candidates for next-generation energy storage devices, aqueous rechargeable batteries are safer and cheaper than organic Li ion batteries. But due to the narrow voltage window of aqueous electrolytes, proper anode materials with low redox potential and high capacity are quite rare. In this work, bismuth electrode film was directly grown by a facile hydrothermal route and tested in LiOH, NaOH and KOH electrolytes. With low redox potential (reduction/oxidation potentials at ca. −0....

  18. Group III-nitride thin films grown using MBE and bismuth

    Science.gov (United States)

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  19. Microwave and magneto-optic properties of bismuth-substituted yttrium iron garnet thin films

    Science.gov (United States)

    Butler, J. C.; Kramer, J. J.; Esman, R. D.; Craig, A. E.; Lee, J. N.; Ryuo, T.

    1990-05-01

    Microwave and magneto-optic measurements have been made on bismuth-substituted yttrium iron garnet (BiYIG) films. Forward-volume (FV) magnetostatic-wave (MSW) attenuation has been measured from ferrimagnetic resonance and from pulse delay data. We report the indirect observation of FV MSW in BiYIG using two independent techniques: a pulse transmission technique and a passband measurement technique. Faraday rotation in the films was also recorded at a wavelength of 1.3 μm. The bismuth-substituted films are grown on carefully cleaned substrates and have yttrium:bismuth ratios of 1:1. The composition of the bismuth substituted films is Y1.5Bi1.5Fe5O12 deduced from lattice parameters and absolute Faraday rotation. These films show particular promise for use in waveguide-type high-speed MSW-optical devices where low MSW attenuation and high Faraday rotation are among the necessary criteria for successful operation.

  20. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  1. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    International Nuclear Information System (INIS)

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi2O3 thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi2O3 phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi2O3 thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV

  2. Ultrafast electron diffraction studies of optically excited thin bismuth films

    International Nuclear Information System (INIS)

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  3. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  4. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie;

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formatio...

  5. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering

    OpenAIRE

    Marina Ratova; Kelly, Peter J; Glen T. West; Xiaohong Xia; Yun Gao

    2016-01-01

    Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ra...

  6. A novel tin-bismuth alloy electrode for anodic stripping voltammetric determination of zinc

    International Nuclear Information System (INIS)

    We report on a novel tin-bismuth alloy electrode (SnBiE) for the determination of trace concentrations of zinc ions by square-wave anodic stripping voltammetry without deoxygenation. The SnBiE has the advantages of easy fabrication and low cost, and does not require a pre-treatment (in terms of modification) prior to measurements. A study on the potential window of the electrode revealed a high hydrogen overvoltage though a limited anodic range due to the oxidation of tin. The effects of pH value, accumulation potential, and accumulation time were optimized with respect to the determination of trace zinc(II) at pH 5. 0. The response of the SnBiE to zinc(II) ion is linear in the 0.5-25 μM concentration range. The detection limit is 50 nM (after 60 s of accumulation). The SnBiE was applied to the determination of zinc(II) in wines and honeys, and the results were consistent with those of AAS. (author)

  7. Dielectric properties of pure and lanthanum modified bismuth titanate thin films

    International Nuclear Information System (INIS)

    We investigated the dielectric properties of pure and lanthanum modified bismuth titanate thin films obtained by the polymeric precursor method. X-ray diffraction of the film annealed at 300 deg. C for 2 h indicates a disordered structure. Lanthanum addition increases gradually the dielectric permittivity of films, keeping unchanged their loss tangent. From C-V curve we can see no hysteresis behavior indicating the absence of domain structure. The decrease in the conductivity for the heavily doped Bi4Ti3O12 (BIT) must be associated to the unidentified crystal defects. For comparison, dielectric properties of crystalline BIT film were also investigated

  8. Rapid Determination of Uranium in Water Samples by Adsorptive Cathodic Stripping Voltammetry Using a Tin-Bismuth Alloy Electrode

    International Nuclear Information System (INIS)

    In this work, the tin-bismuth alloy electrode (SnBiE) was used for U(VI) concentration determination for the first time. Compared to the conventional solid electrode (glassy carbon electrode and bismuth bulk electrode), the SnBiE possesses a higher hydrogen overpotential, which indicates that the tin-bismuth alloy can considerably extend the application of potentially available electrode detection systems. Combining with electrochemical behavior analysis and spectrometric measurements as well as theoretical calculation methods, the geometric structures of uranium-cupferron (N-nitrosophenylhydroxylamine) complexes have been revealed and a more detailed electrode mechanism has been proposed. The electroanalysis results show that the optimal sensitivity could be obtained by using diphenylguanidine as the auxiliary reagent. The calibration plot for U(VI) quantification was linear from 0.5 nM to 30 nM with a correlation coefficient of 0.999. In the meanwhile, a detection limit of 0.24 nM was obtained in connection with an accumulation time of 30 s, which is comparable with that of mercury analogues. The practical applications of SnBiE have been tentatively performed for the determination of UO22+ in real water samples and the results were well consistent with those by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). A very simple, convenient and cheap approach was established for the determination of UO22+ in natural water samples containing surfactants without the otherwise necessity of sample pretreatment, which drastically reduce the analysis time

  9. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive...... presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements....

  10. Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film

    International Nuclear Information System (INIS)

    N-type bismuth telluride (Bi2Te3) thermoelectric thin films were deposited by co-sputtering simple substance Te and Bi targets. The deposited films were annealed under various temperatures. The composition ratio, micro-structure and thermoelectric properties of the prepared films were systematically investigated by energy dispersive spectrometer, X-ray diffraction, four-probe method and Seebeck coefficient measurement system. When the annealing temperature is 400 °C, the stoichiometric N-type Bi2Te3 film is achieved, which has a maximum thermoelectric power factor of 0.821 × 10−3 W m−1 K−2. Furthermore, the dependence of Seebeck coefficient, electrical conductivity and power factor of the stoichiometric N-type Bi2Te3 film annealed at film 400 °C on the applied temperature ranging from 25 °C to 315 °C was investigated. The results show that a highest power factor of 3.288 × 10−3 W m−1 K−2 is obtained at the applied temperature of 275 °C. The structural and thermoelectric properties of the deposited bismuth telluride thin films are greatly improved by annealing and the Seebeck coefficient, electrical conductivity and power factor increase with the applied temperature rising, which are helpful and could be guidance for preparing the high-performance thin film thermoelectric materials for thermoelectric application.

  11. Sol-gel synthesis and property studies of layered perovskite bismuth titanate thin films

    International Nuclear Information System (INIS)

    Layered perovskite bismuth titanate (BTO) thin films were deposited on platinum coated silicon substrates by spin coating. A homogeneous and stable precursor solution was prepared by sol-gel process using bismuth nitrate and titanium(IV) butoxide as starting materials, glacial acetic acid and ethanolamine were selected as solvent and stabilizing agent, respectively. The crystal structure, surface morphology, composition and electrical properties of the films have been investigated. Crystal structure and morphology of the films are strongly influenced by the heat cycle adopted to form crystalline BTO films. Morphology of the films studied by AFM is found to be smooth, dense, and crack free. The deposited films possess good compositional homogeneity and thickness uniformity. The dielectric constant and the dissipation factor measured at 1 kHz at room temperature are found to be 135 and 0.018, respectively, for the films of 0.4-μm thickness annealed at 600 deg. C for 1 h. The remnant polarization and coercive field values are estimated to be 5 μC cm-2 and 45 kV cm-1. The films possess good fatigue properties and useful for application in the non-volatile memories

  12. Sol-gel synthesis and property studies of layered perovskite bismuth titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Madeswaran, S.; Giridharan, N.V.; Jayavel, R

    2003-04-29

    Layered perovskite bismuth titanate (BTO) thin films were deposited on platinum coated silicon substrates by spin coating. A homogeneous and stable precursor solution was prepared by sol-gel process using bismuth nitrate and titanium(IV) butoxide as starting materials, glacial acetic acid and ethanolamine were selected as solvent and stabilizing agent, respectively. The crystal structure, surface morphology, composition and electrical properties of the films have been investigated. Crystal structure and morphology of the films are strongly influenced by the heat cycle adopted to form crystalline BTO films. Morphology of the films studied by AFM is found to be smooth, dense, and crack free. The deposited films possess good compositional homogeneity and thickness uniformity. The dielectric constant and the dissipation factor measured at 1 kHz at room temperature are found to be 135 and 0.018, respectively, for the films of 0.4-{mu}m thickness annealed at 600 deg. C for 1 h. The remnant polarization and coercive field values are estimated to be 5 {mu}C cm{sup -2} and 45 kV cm{sup -1}. The films possess good fatigue properties and useful for application in the non-volatile memories.

  13. Microscopic and electrochemical characterization of lead film electrode applied in adsorptive stripping analysis

    International Nuclear Information System (INIS)

    Lead film electrodes (PbFEs) deposited in situ on glassy carbon or carbon paste supports have recently found application in adsorptive stripping voltammetric determination of inorganic ions and organic substances. In this work, the PbFE, prepared in ammonia buffer solutions, was investigated using scanning electron microscopy, atomic force microscopy and various voltammetric techniques. The microscopic images of the lead films deposited on the glassy carbon substrate showed a considerable variability in microstructure and compactness of the deposited layer depending on the selected experimental conditions, such as the concentration of Pb(II) species, the nucleation and deposition potential, and the time applied. The catalytic adsorptive systems of cobalt and nickel in a solution containing 0.1 ammonia buffer, 2.5 x 10-5 M nioxime and 0.25 M NaNO2 were employed to investigate the electrochemical characteristics and utility of the in situ prepared lead films. The optimal parameters, i.e. the lead concentration in the solution, the procedure of film removal, and the time and potential of lead nucleation and film deposition for the adsorptive determination of metal traces, were selected, resulting in the very good reproducibility (RSD = 4.2% for 35 scans) of recorded signals. The voltammetric utility of the lead film electrode was compared to that of glassy carbon, mercury film and bismuth film electrodes, and was subsequently evaluated as superior.

  14. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    Science.gov (United States)

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD. PMID:27166737

  15. Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films

    International Nuclear Information System (INIS)

    Bismuth ferrite thin films were deposited on Pt/Ti/SiO2/Si substrates by a soft chemical method and spin-coating technique. The effect of annealing atmosphere (air, N2 and O2) on the structure and electrical properties of the films are reported. X-ray diffraction analysis reveals that the film annealed in air atmosphere is a single-phase perovskite structure. The films annealed in air showed better crystallinity and the presence of a single BFO phase leading to lower leakage current density and superior ferroelectric hysteresis loops at room temperature. In this way, we reveal that BFO film crystallized in air atmosphere by the soft chemical method can be useful for practical applications, including nonvolatile digital memories, spintronics and data-storage media.

  16. Piezoresponse behavior of niobium doped bismuth ferrite thin films grown by chemical method

    International Nuclear Information System (INIS)

    This paper focuses on the piezoresponse characteristics at room temperature in niobium modified bismuth ferrite thin films (BFN) deposited on Pt/TiO2/SiO2/Si (1 0 0) substrates by the soft chemical method. The obtained films were grown at a temperature of 500 oC. The Nb dopant is effective in improving electrical properties of BFO films. XPS results show a single-phase Nb-doped BFO thin films with a Fe3+ valence state. It was found that Nb-doped BFO thin films exhibited good electrical properties, such as improved capacitance-voltage and high piezoeletric coefficient, indicating a promising material for use in future memories based on magnetic ferroelectrics.

  17. Effect of different surfactants and thicknesses on electrodeposited films of bismuth telluride and its thermoelectric performance

    Science.gov (United States)

    Kulsi, Chiranjit; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali; Goswami, Shyamaprosad

    2015-10-01

    Thin films of bismuth telluride using various surfactants such as sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) have been electrochemically deposited. The influence of different surfactants on crystal orientation and morphology was investigated and correlated with the thermoelectric performance of the electrodeposited films. Since thickness affects the thermoelectric performance compared to the surfactant, thickness- dependent thermoelectric performance has also been investigated. The carrier mobilities of the films obtained are significantly enhanced due to improved surface morphology using different surfactants. Between the two surfactants, films with SDS exhibited the higher value of thermoelectric power, power factor, and figure of merit, which is due to the effect of micelle formation. The XRD pattern of all the films, which are electrodeposited without surfactant or using SDS and PVP, showed preferred crystal orientation along the (018) direction. The roles of organic molecules in the development of nanoparticles with improved thermoelectric properties have been investigated.

  18. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery.

    Science.gov (United States)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2013-03-13

    Employing electrolytes containing Bi(3+), bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). The influence of the Bi nanoparticles on the electrochemical performance of the VRFB is thoroughly investigated. It is confirmed that Bi is only present at the negative electrode and facilitates the redox reaction between V(II) and V(III). However, the Bi nanoparticles significantly improve the electrochemical performance of VRFB cells by enhancing the kinetics of the sluggish V(II)/V(III) redox reaction, especially under high power operation. The energy efficiency is increased by 11% at high current density (150 mA·cm(-2)) owing to faster charge transfer as compared with one without Bi. The results suggest that using Bi nanoparticles in place of noble metals offers great promise as high-performance electrodes for VRFB application. PMID:23398147

  19. Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    Highlights: • The leakage current is effectively reduced by adding a certain amount of titanium. • Addition of titanium increases the remnant polarization and decreases the band gap. • The power conversion efficiency increases as titanium content increases. - Abstract: Ti-doped bismuth ferrite thin films were prepared via sol–gel spin-coating method. The effects of titanium on the microstructure, optical, leakage, ferroelectric and photovoltaic characteristics have been investigated systematically. The result shows that bismuth ferrite thin films doped with 0–8 at.% Ti are rhombohedral distortion perovskite structure. The addition of titanium inhibits the grain growth and enhances the thickness uniformity and can decrease the band gap of bismuth ferrite thin films. The leakage current of bismuth ferrite thin films is effectively reduced by adding a certain amount of titanium and the leakage mechanism has been investigated. Addition of titanium increases the remnant polarization of the films. As titanium content increases, the short circuit photocurrent density decrease first and then increase, while the open circuit photovoltage increase first and then decrease. The power conversion efficiency of Ti-doped bismuth ferrite thin films increases as titanium content increases, which can be explained as a result of the increased remnant polarization and decreased band gap

  20. Optical and electrical properties of thin films of bismuth ferric oxide

    International Nuclear Information System (INIS)

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe2O3) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO3 in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO3 composition. These samples showed a secondary phase (Bi25FeO40 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe2O3) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  1. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    The influence of Cerium doping on the structural and magnetic properties of BiFeO3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi1−xCexFeO3 (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm−1) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm−1), shows a minor shift. Sudden evolution of Raman mode at 668 cm−1, manifested as A1-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (Ms) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi0.88Ce0.12FeO3 thin film found to exhibit better magnetic properties with Ms=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi1−xCexFeO3 thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical applications of such materials exhibiting pinching behavior are conferred

  2. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi (India)

    2015-03-15

    The influence of Cerium doping on the structural and magnetic properties of BiFeO{sub 3} thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi{sub 1−x}Ce{sub x}FeO{sub 3} (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm{sup −1}) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm{sup −1}), shows a minor shift. Sudden evolution of Raman mode at 668 cm{sup −1}, manifested as A{sub 1}-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M{sub s}) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi{sub 0.88}Ce{sub 0.12}FeO{sub 3} thin film found to exhibit better magnetic properties with M{sub s}=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi{sub 1−x}Ce{sub x}FeO{sub 3} thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical

  3. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  4. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m-1 K-2) and 10 μV/K (and 19.5 μW m-1 K-2), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  5. Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2013-02-04

    The selection of electrode materials plays a great role in improving performances of all vanadium redox flow batteries (VRBs). Low-cost graphite felt (GF) as traditional electrode material has to be modified to address its issue of low electrocatalytic activity. In our paper, low-cost and highly conductive bismuth nanoparticles, as a powerful alternative electrocatalyst to noble metal, are proposed and synchronously electro-deposited onto the surface of GF while running flow cells employing the electrolytes containing suitable Bi3+. Although bismuth is proved to only take effect on the redox reaction of V(II)/V(III) and present at negative half-cell side, the whole cell electrochemical performances are significantly improved. In particular, the energy efficiency is increased by 11% owing to faster charge transfer as compared with one without Bi at high charge/discharge rate of 150 mA/cm2, which is prone to reduce stack size, thus dramatically reducing the cost. The excellent results show great promise of Bi nano-catalysts in the commercialization of VRBs in terms of product cost as well as electrochemical properties.

  6. Method for synthesizing thin film electrodes

    Science.gov (United States)

    Boyle, Timothy J.

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  7. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deb, Marwan, E-mail: marwan.deb@ipcms.unistra.fr; Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS, Université de Strasbourg, BP 43, 23 rue du Loess, 67034 Strasbourg Cedex 02 (France)

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  8. Preparation and characterization of nanostructured copper bismuth diselenide thin films from a chemical route

    Indian Academy of Sciences (India)

    R H Bari; L A Patil

    2010-12-01

    Thin films of copper bismuth diselenide were prepared by chemical bath deposition technique onto glass substrate below 60°C. The deposition parameters such as time, temperature of deposition and pH of the solution, were optimized. The set of films having different elemental compositions was prepared by varying Cu/Bi ratio from 0.13–1.74. Studies on structure, composition, morphology, optical absorption and electrical conductivity of the films were carried out and discussed. Characterization includes X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDAX), absorption spectroscopy, and electrical conductivity. The results are discussed and interpreted.

  9. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method

    International Nuclear Information System (INIS)

    Metastable bismuth iron garnet (BIG, an abbreviation of Bi3Fe5O12), one kind of garnet-type ferrites, is known to manifest very large Faraday rotation as well as low optical absorption in the visible to infrared region. We report on successful synthesis of thin film composed of single-phase BIG epitaxially grown on single-crystalline gadolinium gallium garnet (Gd3Ga5O12, GGG) substrate by using mist chemical vapor deposition (CVD) method, which is an emerging technique for preparation of thin films. The crystal structure, surface morphology, and magnetic, optical and magneto-optical properties of the resultant thin films have been explored. The BIG thin film has a relatively flat surface free from roughness compared to those prepared by other vapor deposition methods. Saturation magnetization is about 1620 G at room temperature, which is close to that expected from the ideal magnetic structure of BIG. The maximum value of Faraday rotation angle reaches 54.3 deg/μm at a wavelength of 424 nm. This value is rather large when compared with those reported for BIG thin films prepared by other techniques. The wavelength dependence of Faraday rotation angle is analyzed well in terms of the crystal electric field (CEF) level schema. Our result suggests that the mist CVD method is a simple and effective technique to synthesize BIG thin film with excellent magneto-optical properties. (author)

  10. Bismuth Substituted Yttrium Iron Garnet Single Crystal Films Prepared by Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Magneto-optic Faraday rotation effect and the amount of bismuth substituted in yttrium iron garnet single crystal films prepared by gel-coating on modified gadolinium-gallium garnet substrates are investigated, where the gel is synthesized by a sol-gel reaction of nitrates and ethylene glycol. The coated gel is annealed in air at temperatures up to 660℃ for 4h, which is about 300℃ lower than that of liquid-phase epitaxy. The maximum amount of Bi substitution is x=2.7 and the crystallization temperature of garnet phase decreases with the increase of x down to 520℃ for x=2.7. In this film, a huge Faraday rotation of -8.1×104 (°)/cm at λ=0.633μm is obtained.

  11. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    Science.gov (United States)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  12. Si film electrodes prepared on discontinuous current collector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyu-bong; Im, Yeon-min; Lee, Won-rak; Lee, Sang-hun; Ji, Seong- yong [School of Materials Science and Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Gazwadong 900, Jinju, Gyeongnam 660-701 (Korea, Republic of); Kim, Guk-tae [Institute of Physical Chemistry, MEET Battery Research Center, Corrensstr 46, 48149 Münster (Germany); Nam, Tae-hyun [School of Materials Science and Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Gazwadong 900, Jinju, Gyeongnam 660-701 (Korea, Republic of); Kim, Ki-won, E-mail: kiwonkim@gnu.ac.kr [School of Materials Science and Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Gazwadong 900, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-11-01

    Discontinuous Si film electrodes with 400, 800, and 1700 μm discontinuous lines (break lines) were fabricated by a simple masking and etching process. The structural and electrochemical properties of continuous and discontinuous Si film electrodes were investigated by means of optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and charge–discharge tests. Although all electrodes showed similar first-charge capacities in the range of 210–230 μAh/g, the discontinuous electrode exhibited improved coulombic efficiency and cyclability when compared to the continuous electrode. Up to 100 cycles, the discontinuous electrode with the shortest line distance of 400 μm demonstrated the highest efficiency (95.2%) and capacity retention (89%). Observation of the cycled Si film electrodes revealed that discontinuity enhanced the structural stability of the electrode during the charge–discharge process. - Highlights: • Si film electrodes with various distances between discontinuous lines were fabricated. • The discontinuous electrode improved coulombic efficiency and cycleability. • The discontinuous line in the Si film electrode enhanced the structural stability.

  13. Determination of Sb(III) using an ex-situ bismuth screen-printed carbon electrode by adsorptive stripping voltammetry.

    Science.gov (United States)

    Rojas-Romo, Carlos; Serrano, Núria; Ariño, Cristina; Arancibia, Verónica; Díaz-Cruz, José Manuel; Esteban, Miquel

    2016-08-01

    The determination of Sb(III) on an ex-situ bismuth screen-printed carbon electrode (ex-situ BiSPCE) by means of adsorptive stripping voltammetry (AdSV) using quercetin-5'-sulfonic acid as chelating agent was optimized. The effect of different experimental parameters such pH, ligand concentration (CQSA), accumulation potential (Eacc) and accumulation time (tacc) were studied to obtain a wide linear range, the highest sensitivity and the lowest detection limit. Ex-situ BiSPCE was analytically compared with a sputtered bismuth screen-printed electrode (BispSPE) under optimal conditions. The obtained analytical parameters suggest that ex-situ BiSPCE behaves much better than BispSPE and the first was selected for this study. Optimal parameters were pH=4.6; CQSA=10.0 to 20.0×10(-6)molL(-1); Eacc=-0.5V and tacc=60s. Peak area is proportional to Sb(III) concentration up to 100.0μgL(-1) (tacc 60s) and 45.0μgL(-1) (tacc 120s) range, with detection limits of 1.2μgL(-)(1) (tacc 60s) and 0.8μgL(-1) (tacc 120s). The relative standard deviation for a Sb(III) solution (20.0μgL(-1)) was 3.9% for ten successive assays. Thus, the effect of various interfering metal ions was studied and the methodology was validated using a spiked groundwater reference material with very satisfactory results. PMID:27216652

  14. Potentiometric stripping analysis of bismuth based on carbon paste electrode modified with cryptand [2.2.1] and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    An electrochemical method based on potentiometric stripping analysis (PSA) employing a cryptand [2.2.1] (CRY) and carbon nanotube (CNT) modified paste electrode (CRY-CNT-PE) has been proposed for the subnanomolar determination of bismuth. The characterization of the electrode surface has been carried out by means of scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronocoulometry (CC). It was observed that by employing CRY-CNT-PE, a 9-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s/V) was proportional to the Bi(III) concentration in the range of 5.55 x 10-8 to 9.79 x 10-11 M (r = 0.9990) with the detection limit (S/N = 3) of 3.17 x 10-11 M. The practical analytical utilities of the modified electrode were demonstrated by the determination of bismuth in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as a simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. Moreover, the results obtained for bismuth analysis in commercial and real samples using CRY-CNT-PE and those obtained by atomic absorption spectroscopy (AAS) are in agreement at the 95% confidence level.

  15. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Marina Ratova

    2016-01-01

    Full Text Available Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD. Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS. Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating.

  16. Growth of epitaxial sodium-bismuth-titanate films by metal-organic chemical vapor phase deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzkopf, J., E-mail: schwarzkopf@ikz-berlin.de [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Schmidbauer, M.; Duk, A.; Kwasniewski, A. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Anooz, S. Bin [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Physics Department, Faculty of Science, Hadhramout University of Science and Technology, Mukalla 50511, Republic of Yemen (Yemen); Wagner, G. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Devi, A. [Inorganic Materials Chemistry, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum (Germany); Fornari, R. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany)

    2011-10-31

    The liquid-delivery spin metal-organic chemical vapor phase deposition method was used to grow epitaxial sodium-bismuth-titanate films of the system Bi{sub 4}Ti{sub 3}O{sub 12} + xNa{sub 0.5}Bi{sub 0.5}TiO{sub 3} on SrTiO{sub 3}(001) substrates. Na(thd), Ti(O{sup i}Pr){sub 2}(thd){sub 2} and Bi(thd){sub 3}, solved in toluene, were applied as source materials. Depending on the substrate temperature and the Na/Bi ratio in the gas phase several structural phases of sodium-bismuth-titanate were detected. With increasing temperature and/or Na/Bi ratio, phase transitions from an Aurivillius phase with m = 3 to m = 4 via an interleaved state with m = 3.5, and, finally, to Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} with perovskite structure (m = {infinity}) were established. These phase transitions proceed at remarkably lower temperatures than in ceramics or bulk crystals for which they had been exclusively observed so far.

  17. Three-electrode current-voltage measurements on erbia-stabilized bismuth oxide with sputtered noble metal electrodes

    NARCIS (Netherlands)

    Vinke, I.C.; Boukamp, B.A.; Vries, de K.J.; Burggraaf, A.J.

    1992-01-01

    The anodic and cathodic polarization behaviour of sputtered porous gold electrodes on (Bi2O3)0.75(Er2O3)0.25 (abbreviated BE25) was studied as function of temperature and oxygen partial pressure using a three-electrode cell. The anodic polarization is smaller than the cathodic polarization, allowing

  18. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    International Nuclear Information System (INIS)

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N2 atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H2 (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K2) that of the thin films treated with EB irradiation alone

  19. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Kurita, Kensuke [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.

  20. Bismuth tri-iodide polycrystalline films for X-ray direct and digital imagers

    International Nuclear Information System (INIS)

    Bismuth tri-iodide films were grown by the physical vapor deposition method on gold-coated glass substrates 1 in.x1 in. (2.5x2.5 cm) in size. The growth was performed in a system especially designed and constructed for getting a fine control of the growth parameters. The best growth conditions were a source temperature of 350 deg. C, a growth temperature of 175 deg. C and a growth time of 24 h, with an initial pressure of 3x10-2 Pa. Film thicknesses and grain sizes gave values ranging between 5 and 60 μm (10%), and between 0.5 and 2 μm, respectively. The dark current density of the films is 9.7 pA/mm2 for an electric field of 5.6 V/μm, and the resistivity is 1.4x1013 Ω cm. Mobility-lifetime values of 3x10-7 cm2/V can be estimated for electrons. A signal to dark relation of 2.3 was measured at 250 mA and 40 KVp, with an electric field of 1 V/μm applied to the film.

  1. Surface Landau levels and spin states in bismuth (111) ultrathin films

    Science.gov (United States)

    Du, Hongjian; Sun, Xia; Liu, Xiaogang; Wu, Xiaojun; Wang, Jufeng; Tian, Mingyang; Zhao, Aidi; Luo, Yi; Yang, Jinlong; Wang, Bing; Hou, J. G.

    2016-03-01

    The development of next-generation electronics is much dependent on the discovery of materials with exceptional surface-state spin and valley properties. Because of that, bismuth has attracted a renewed interest in recent years. However, despite extensive studies, the intrinsic electronic transport properties of Bi surfaces are largely undetermined due to the strong interference from the bulk. Here we report the unambiguous determination of the surface-state Landau levels in Bi (111) ultrathin films using scanning tunnelling microscopy under magnetic fields perpendicular to the surface. The Landau levels of the electron-like and the hole-like carriers are accurately characterized and well described by the band structure of the Bi (111) surface from density functional theory calculations. Some specific surface spin states with a large g-factor are identified. Our findings shed light on the exploiting surface-state properties of Bi for their applications in spintronics and valleytronics.

  2. Preparation of bismuth telluride thin film by electrochemical atomic layer epitaxy(ECALE)

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Junyou; GAO Xianhui; HOU Jie; BAO Siqian; FAN Xian

    2007-01-01

    Thin-layer electrochemical studies of the underpotential deposition(UPD)of Bi and Te on cold rolled silver substrate have been performed.The voltammetric analysis of underpotential shift demonstrates that the initial Te UPD on Bi-covered Ag and Bi UPD on Te-covered Ag fitted UPD dynamics mechanism.A thin film of bismuth telluride was formed by alternately depositing Te and Bi via an automated flow deposition system.X-ray diffraction indicated the deposits of Bi2Te3.Energy Dispersive X-ray Detector quantitative analysis gave a 2:3 stoichiornetric ratio of Bi to Te,which was consistent with X-ray Diffraction results.Electron probe microanalysis of the deposits showed a network structure that results from the surface defects of the cold rolled Ag substrate and the lattice mismatch between substrate and deposit.

  3. Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry.

    Science.gov (United States)

    Węgiel, Krystian; Jedlińska, Katarzyna; Baś, Bogusław

    2016-06-01

    A study of a new type of mercury-free working electrode - the bismuth bulk annular band working electrode (BiABE) - applied for thallium(I) detection via differential pulse anodic stripping voltammetry (DP ASV), preceded by the complexation of interfering ions (Cd(2+), Pb(2+)) with EDTA in an acetate buffer (pH 4.5), is reported. The optimisation of experimental conditions included selection of the appropriate supporting electrolyte solution, potential and time of preconcentration, and DP mode parameters. The peak current was proportional to the concentration of Tl(I) in the range from 0.5 to 49nmolL(-1) (R=0.9992) and from 0.05 to 1.4nmolL(-1) (R=0.9987) for accumulation times of 60s and 300s, respectively. For 60s of accumulation time, the LOD was 0.005nmolL(-1) (1ngL(-1)) (at S/N=3), and the sensitivity of 18.5nA/nM was achieved. The relative standard deviation for 4.9nmolL(-1) of Tl(I) was 4.3% (n=5). Finally, the proposed method was successfully applied to determine Tl(I) in the certified reference materials-waters (SPS-SW1 and SPS-SW2) as well as the spiked tap and river water samples. PMID:26921513

  4. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance. PMID:27389820

  5. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-01

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson–Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm‑1 K‑2), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  6. Study for Electrode Metals on Taste Sensor with LB film

    Science.gov (United States)

    Yokoya, Takahiro; Hirata, Takamichi; Akiya, Masahiro

    In this paper, sensor responses with only metal electrode as Au, Cr, Ti and more with LB film were described. LB film material was the Dioctadecyldimethylammonium bromide combined by PVSK as an underlayer. To detect five basic taste substances, sensor parameters were defined as maximum voltage change and response time. Response time for sourness and umami with Ti and Cr evaporated metal electrode was larger than that of usual Au electrode. LB film effect was finally found to increase response time for five basic taste materials.

  7. Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes

    Directory of Open Access Journals (Sweden)

    Wenhua Zuo

    2015-10-01

    Full Text Available As promising candidates for next-generation energy storage devices, aqueous rechargeable batteries are safer and cheaper than organic Li ion batteries. But due to the narrow voltage window of aqueous electrolytes, proper anode materials with low redox potential and high capacity are quite rare. In this work, bismuth electrode film was directly grown by a facile hydrothermal route and tested in LiOH, NaOH and KOH electrolytes. With low redox potential (reduction/oxidation potentials at ca. −0.85/−0.52 V vs. SCE, respectively and high specific capacity (170 mAh·g−1 at current density of 0.5 A·g−1 in KOH electrolyte, Bi was demonstrated as a suitable anode material for aqueous batteries. Furthermore, by electrochemical impedance spectroscopy (EIS analysis, we found that with smaller Rs and faster ion diffusion coefficient, Bi electrode film in KOH electrolyte exhibited better electrochemical performance than in LiOH and NaOH electrolytes.

  8. Semimetal-semiconductor transitions in bismuth-antimony films and nanowires induced by size quantization

    International Nuclear Information System (INIS)

    In this paper we present the experimental results of an investigation of the electrical transport, thermoelectrical properties, the Shubnikov de Haas oscillations of Bi1-xSbx films (0 < x < 0.04) grown by the vacuum thermal evaporation and nanowires prepared by a modified Ulitovsky - Teilor technique. The results of the X-ray diffraction indicate that the trigonal axes were perpendicular to the film plane and the single Bi-2at%Sb nanowires with the diameter 100-1000 nm were represented by single crystals in a glass capillary with (1011) orientation along the wire axis. The investigations of the Shubnikov de Haas oscillations on Bi-2at%Sb wires with d > 600 nm show that overlapping of L and T bands was twice smaller than that in pure Bi. The temperature dependences of thin semimetallic Bi-3at%Sb films and Bi-2at%Sb wires show a semiconducting behavior. The semimetal semiconductor transition induced by the quantum confinement effect is observed in semimetal Bi1-xSbx films and nanowires at the diameters up to five times greater than those in the pure Bi. That experimental fact, on the one hand, will allow observing the display quantum confinement effect at higher temperatures on nanowires of the same diameters, and, on the other hand, will allows separating effects connected with the surface state and the quantum size effects. In addition, the thermoelectric properties and thermoelectric efficiency of bismuth-antimony wires are considered and a possibility to use them in thermoelectric converters of energy is discussed. (authors)

  9. Structural, morphology and electrical studies on ferroelectric bismuth titanate thin films prepared by sol?gel technique

    Science.gov (United States)

    Giridharan, N. V.; Madeswaran, S.; Jayavel, R.

    2002-04-01

    Crystal structure, surface morphology, compositional homogeneity and electrical properties of layered perovskite bismuth titanate (BTO) thin films have been investigated. BTO thin films were deposited on silicon and platinum-coated silicon substrates by spin coating. X-ray diffraction analysis confirms that the crystallinity of the films increases with increasing annealing temperature and the optimum temperature is found to be 600°C. Morphology studies by AFM showed that the surface of the films were smooth, dense and crack free. Composition analysis on the surface and in-depth confirms the stoichiometry of the films. C- V measurements show a counter-clockwise dielectric hysteresis, indicating that the ferroelectric property sufficiently controls the silicon potential with a memory width of 2 V. The leakage current density of the films is measured to be 2×10 -7 A/cm 2 from I- V characteristics at an applied voltage of 1 V.

  10. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali

    2012-08-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.

  11. Microstructure, morphology, adhesion and tribological behavior of sputtered niobium carbide and bismuth films on tool steel

    Directory of Open Access Journals (Sweden)

    Laura Angélica Ardila Rodríguez

    2014-11-01

    Full Text Available Normal 0 21 false false false ES-CO X-NONE AR-SA Normal 0 21 false false false ES-CO X-NONE AR-SA NbC, Bi and Bi/NbC coatings were deposited on AISI M2 steel substrates using unbalanced magnetron sputtering at room temperature with zero bias voltage. Were studied the phase structure, the morphology, the adhesion and the tribological behavior of the three coatings. The niobium carbide film crystallized in the NbC cubic structure, and the bismuth layers had a rhombohedral phase with random orientation. The NbC coating had a smooth surface with low roughness, while the Bi layers on steel and on NbC coating had higher roughness and a morphology composed of large particles. By using a ductile Nb interlayer good adhesion between the NbC coating and the steel substrate was achieved. The Bi coating had better adhesion with the NbC layer than with the steel substrate. The tribological performance of the Bi coating on steel was not satisfactory, but according to the preliminary results, the produced NbC and Bi/NbC coatings have the potential to improve the tribological performance of the steel.

  12. Method for producing thin film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Manoj; Ma, Beihai; Balachandran, Uthamalingam; Dorris, Stephen

    2016-06-07

    The invention provides for A method for producing pure phase strontium ruthenium oxide films, the method comprising solubilizing ruthenium-containing and strontium-containing compounds to create a mixture; subjecting the mixture to a first temperature above that necessary for forming RuO.sub.2 while simultaneously preventing formation of RuO.sub.2; maintaining the first temperature for a time to remove organic compounds from the mixture, thereby forming a substantially dry film; and subjecting the film to a second temperature for time sufficient to crystallize the film. Also provided is pure phase material comprising strontium ruthenium oxide wherein the material contains no RuO.sub.2.

  13. Tungsten oxide in polymer electrolyte fuel cell electrodes-A thin-film model electrode study

    Energy Technology Data Exchange (ETDEWEB)

    Wickman, Bjoern, E-mail: bjorn.wickman@chalmers.s [Competence Centre for Catalysis, Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Wesselmark, Maria; Lagergren, Carina; Lindbergh, Goeran [Applied Electrochemistry, School of Chemical Science and Engineering, KTH, SE-100 44 Stockholm (Sweden)

    2011-10-30

    Highlights: > Platinum and tungsten oxide thin-film electrocatalysts. > Single cell fuel cell evaluation. > Hydrogen-tungsten bronze formation. > CO oxidation on platinum on tungsten oxide. - Abstract: Thin films of WO{sub x} and Pt on WO{sub x} were evaporated onto the microporous layer of a gas diffusion layer (GDL) and served as model electrodes in the polymer electrolyte fuel cell (PEFC) as well as in liquid electrolyte measurements. In order to study the effects of introducing WO{sub x} in PEFC electrodes, precise amounts of WO{sub x} (films ranging from 0 to 40 nm) with or without a top layer of Pt (3 nm) were prepared. The structure of the thin-film model electrodes was characterized by scanning electron microscopy and X-ray photoelectron spectroscopy prior to the electrochemical investigations. The electrodes were analyzed by cyclic voltammetry and the electrocatalytic activity for hydrogen oxidation reaction (HOR) and CO oxidation was examined. The impact of Nafion in the electrode structure was examined by comparing samples with and without Nafion solution sprayed onto the electrode. Fuel cell measurements showed an increased amount of hydrogen tungsten bronzes formed for increasing WO{sub x} thicknesses and that Pt affected the intercalation/deintercalation process, but not the total amount of bronzes. The oxidation of pre-adsorbed CO was shifted to lower potentials for WO{sub x} containing electrodes, suggesting that Pt-WO{sub x} is a more CO-tolerant catalyst than Pt. For the HOR, Pt on thicker films of WO{sub x} showed an increased limiting current, most likely originating from the increased electrochemically active surface area due to proton conductivity and hydrogen permeability in the WO{sub x} film. From measurements in liquid electrolyte it was seen that the system behaved very differently compared to the fuel cell measurements. This exemplifies the large differences between the liquid electrolyte and fuel cell systems. The thin-film model

  14. Synthesis and materials chemistry of bismuth tris-(di-i-propylcarbamate): deposition of photoactive Bi2O3 thin films.

    Science.gov (United States)

    Cosham, Samuel D; Hill, Michael S; Horley, Graeme A; Johnson, Andrew L; Jordan, Laura; Molloy, Kieran C; Stanton, David C

    2014-01-01

    The bismuth carbamate Bi(O2CNPr(i)2)3, a tetramer in the solid-state, has been synthesized and used to deposit mixtures of bismuth oxides by aerosol-assisted chemical vapor deposition (AACVD). The nature of the deposited oxide is a function of both temperature and run-time. Initially, δ-Bi2O3 is deposited, over which grows a thick layer of β-Bi2O3 nanowires, the latter having an increasing degree of preferred orientation at higher deposition temperatures. The photocatalytic activity of a thin film of δ-Bi2O3 for the degradation of methylene blue dye was found to be similar to that of a commercial TiO2 film on glass, while the film overcoated with β-Bi2O3 nanowires was less active. Exposure of Bi(O2CNPr(i)2)3 to controlled amounts of moist air affords the novel oxo-cluster Bi8(O)6(O2CNPr(i)2)12, whose structure has also been determined. PMID:24387747

  15. Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells

    OpenAIRE

    Han, Lihao; Abdi, Fatwa F.; Van De Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Arno H. M. Smets

    2014-01-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2 % under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten–bismuth vanadate (W:BiVO_4) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light t...

  16. Spray deposited titanium oxide thin films as passive counter electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, P.S.; Mujawar, S.H.; Inamdar, A.I.; Patil, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004 (India); Deshmukh, H.P. [Bharati Vidyapeeth Deemed University, Yashwantrao Mohite College, Pune-411038 (India)

    2007-02-15

    Titanium dioxide (TiO{sub 2}) thin films were deposited from methanolic solution onto fluorine doped tin oxide coated conducting glass substrates by spray pyrolysis technique. The electrochemical properties of TiO{sub 2} thin films were investigated using cyclic voltammetry, chronoamperometry, chronocoulometry and iono-optical studies, in 0.1N H{sub 2}SO{sub 4} electrolyte. Performance of the films deposited at three different substrate temperatures, viz. 350, 400 and 450 C is discussed in view of their utilization in electrochromic devices, as counter electrode. The magnitude of charge storage capacity, Q/t (4.75-6.13 x 10{sup -3} mC/(cm{sup 2} nm)) and colouration efficiency (3.2-4.3 cm{sup 2}/mC) of TiO{sub 2} rank these films among the promising counter electrodes in electrochromic devices. (author)

  17. Electrochemical co-detection of As(III), Hg(II) and Pb(II) on a bismuth modified exfoliated graphite electrode.

    Science.gov (United States)

    Mafa, Potlako J; Idris, Azeez O; Mabuba, Nonhlangabezo; Arotiba, Omotayo A

    2016-06-01

    The applicability of a bismuth modified exfoliated graphite (EG) electrode for the co-detection of heavy metal ions -As(III), Hg(II) and Pb(II)-in water samples using square wave anodic stripping voltammetry (SWASV) is reported. Bismuth nanoparticles were deposited on an EG electrode potentiostatically at -1000mV for 300s to form EG-Bi electrode. The Bi modified EG electrode was characterised in 5mM ferrocene and used to as an electrochemical sensor for Pb(II) and Hg(II) individually in 0.1M acetate buffer solution (pH 5) with detection limits (LODs) of 0.83μgL(-1)., 0.46μgL(-1) and limit of quantification of 2.8μgL(-1) and 1.5μgL(-1) respectively. Simultaneous detection of Pb(II), As(III) and Hg(II) was also performed with LODs of 0.053μgL(-1), 0.014μgL(-1), 0.081μgL(-1) and LOQs of 0.18μgL(-1), 0.047μgL(-1) and 0.27μgL(-1) for Pb(II), As(III) and Hg(II) respectively. All the detections were performed under optimised experimental conditions. The stability of the EG-Bi sensor was tested and the electrode was applied to environmental samples. The results found with this method were comparable with those obtained with inductively coupled plasma - optical emission spectrometric technique. PMID:27130095

  18. Polyaniline-graphite composite film glucose oxidase electrode

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-hui; CHEN Hong; CHEN Jin-hua; KUANG Ya-fei

    2006-01-01

    A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voltammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and 0.2 mol/L aniline. The PGCF GOD electrode was prepared by doping GOD into the composite film. The morphology of the PGCF and the response property of the PGCF GOD electrode were investigated by scanning electron microscopy and electrochemical measurement,respectively. The results show that the PGCF has a porous and netty structure and the PGCF GOD electrode has excellent response property such as high sensitivity and short response time. Influences of pH value, temperature, glucose concentration and potential on the response current of the electrode were also discussed. The sensor has a maximum steady-state current density of 357.17 tA/cm2and an apparent Michaelis-Menten constant of 16.57 mmol/L. The maximum current response of the enzyme electrode occurs under the condition of pH 5.5, 0.8 V and 65 ℃.

  19. Voltammetry at the Thin-Film Mercury Electrode (TFME).

    Science.gov (United States)

    Pomeroy, R. S.; And Others

    1989-01-01

    Reviewed is the use of the Thin-Film Mercury Electrode for anodic stripping voltammetry, simple voltammetry of solution cations and cathodic stripping voltammetry for the determination of an environmentally important molecule, thiourea. The construction of a simple potentiostat and applications for student laboratory courses are included. (CW)

  20. Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, SY; Zhang, HN; Sviridov, L; Huang, LM; Liu, XH; Samson, J; Akins, D; Li, J; O' Brien, S

    2012-11-07

    We present a novel approach to preparing bismuth acceptor doped barium titanate nanocrystal formulations that can be deposited in conjunction with polymers in order to prepare a thin film nanocomposite dielectric that exhibits desirable capacitor characteristics. Exploring the limits of dielectric function in nanocomposites is an important avenue of materials research, while paying strict attention to the overall device quality, namely permittivity, loss and equivalent series resistance (ESR). Pushing capacitor function to higher frequencies, a desirable goal from an electrical engineering point of view, presents a new set of challenges in terms of minimizing interfacial, space charge and polarization effects within the dielectric. We show the ability to synthesize BaTi0.96Bi0.04O3 or BaTi0.97Bi0.03O3 depending on nominal molar concentrations of bismuth at the onset. The low temperature solvothermal route allows for substitution at the titanium site (strongly supported by Rietveld and Raman analysis). Characterization is performed by XRD with Rietveld refinement, Raman Spectroscopy, SEM and HRTEM. A mechanism is proposed for bismuth acceptor substitution, based on the chemical reaction of the alkoxy-metal precursors involving nucleophilic addition. Dielectric analysis of the nanocrystal thin films is performed by preparing nanocrystal/PVP 2-2 nanocomposites (no annealing) and comparing BaTi0.96Bi0.04O3 and BaTi0.97Bi0.03O3 with undoped BaTiO3. Improvements of up to 25% in capacitance (permittivity) are observed, with lower loss and dramatically improved ESR, all to very high frequency ranges (>10 MHz).

  1. Growth and characterization of bismuth selenide thin films by chemical vapor deposition

    Science.gov (United States)

    Brom, Joseph E.

    Topological insulators are a recently discovered class of materials that have garnered much interest due to their unique surface states. With its relatively high band gap (0.3eV) and nearly ideal band structure, Bi2Se 3 has been a primary material of interest in the study of topological insulating behavior. However, several factors have made this study difficult. Bi2Se3 typically has a high native selenium vacancy concentration, and selenium vacancies act as donors in the material, leading to a high bulk electron concentration. The surface of Bi2Se 3 has also been shown to be susceptible to environmental doping when exposed to ambient air. Combining these two factors means that Bi2Se 3 is usually highly n-type doped, making it difficult to study the surface conducting states by transport measurements. This study investigated the use of two different chemical vapor deposition (CVD) techniques for the growth of Bi2Se3 thin films on sapphire (001): hybrid physicalchemical vapor deposition (HPCVD) and metal-organic chemical vapor deposition (MOCVD). HPCVD is a process which combines the evaporation of elemental selenium with the thermal decomposition of trimethylbismuth (TMBi). The use of elemental selenium immediately around the substrate provides a high overpressure of selenium, allowing for reduction of the selenium vacancy concentration. Bi2Se3 films grown on sapphire were epitaxial and highly oriented parallel to the substrate giving rise to narrow X-ray rocking curves (full-width-at-half-maximum=160 arcsecs for (006) reflection) and 6-fold rotational symmetry as determined by phi scans. The structural properties were consistent with deposition via a van der Waals epitaxy process. The selenium to bismuth ratio (VI/V) ratio proved important for achieving a reduced electron concentration of TMBi) dimethylselenide (DMSe) as precursors. Epitaxial Bi 2Se3 films were also produced by MOCVD on sapphire, however, the electron concentrations were generally higher (1- 3x

  2. Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Greg M. Swain, PI

    2009-03-10

    The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

  3. Sputtering and surface topography modification of bismuth thin films under swift {sup 84}Kr{sup 15+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S. [Centre de Recherche Nucleaire d' Alger, CRNA, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S., E-mail: souchaoui@gmail.com [Universite des Sciences et de la Technologie H. Boumediene (USTHB), Faculte de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H. [Centre de Recherche Nucleaire d' Alger, CRNA, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, P.O. Box 1906, Bellville 7535 (South Africa); Dib, A. [Centre de Recherche Nucleaire d' Alger, CRNA, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Msimanga, M. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa)

    2012-12-01

    The sputtering and surface topography modification of bismuth thin films deposited onto Si substrates and irradiated by 27.5 MeV {sup 84}Kr{sup 15+} ions over the fluence range 10{sup 12}-10{sup 14} cm{sup -2} have been studied using three complementary techniques: Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM) and X-ray diffraction (XRD). The RBS analysis reveals a linear reduction of the initial thickness of the irradiated bismuth samples by {approx}4% up to 7% with increasing ion fluence corresponding to a mean sputtering yield of {approx}2.9 Multiplication-Sign 10{sup 2} at/ion. Besides, significant sample surface topography changes occur upon ion irradiation consisting in grain growth and surface roughening clearly pointed out by performed AFM and XRD analyses. Moreover, a close correlation is observed between the variations versus ion fluence of the measured sputtering yield and the determined Bi surface grain size and compressive strain. These moderate Bi surface effects are similar to those pointed out previously for thin films irradiated by MeV heavy ions. They can be mainly caused by inelastic electronic collision mechanisms taking place within the Bi material electronic stopping power regime below the threshold for latent track formation.

  4. Fabrication, characterisation and magneto-optical enhancement of thin-film bismuth gallium:dysprosium iron garnet

    Science.gov (United States)

    Teggart, Brian Joseph

    This thesis describes the production of BiGa:Dy Iron garnet thins films by the processes of both pulsed laser deposition and r.f. magnetron sputtering. High quality films with large magneto-optical effects, perpendicular magnetic anisotropy, square hysteresis loops and smooth surfaces with small grain size have been produced by both methods from the same Bi2.3Dy0.8 Fe4.0Ga0.9O12 target. The optimised PLD conditions required to produce films of maximum MO activity onto GGG(111) substrates included a substrate temperature of 590°C and an oxygen pressure of 0.2mbar. Film composition exhibited the same stoichiometry as the target material. The films produced by r.f. magnetron sputtering displayed a low bismuth content, compared to those of the PLD films. Optimised conditions, including a post annealing temperature of 690°C and an argon pressure of 0.04mbar, produced films of composition Bi1.2Dy1.3Fe4.4Ga 1.1O12. Optical and MO characterisation of both types of film, in terms of the intrinsic complex refractive index (n) and Voigt parameter (Q), throughout the visible region, revealed the increased Bi content harvested from the PLD process led to significantly larger optical absorption and MO effects. However, the sputtering technique produced films with superior surface quality, and film uniformity over a larger area. The optical and MO characterisation enabled the design and fabrication of multilayer enhancement structures to maximise the Kerr rotation, whilst minimising the Kerr ellipticity for a given reflectance value at a chosen wavelength. Large MO enhancement proved possible towards higher wavelengths (>500nm) where the absorption of the garnet was low, despite the much lower intrinsic MO activity displayed at these wavelengths.

  5. Construção e aplicação de um minissensor de filme de bismuto utilizando materiais de baixo custo para determinações voltamétricas in loco

    Directory of Open Access Journals (Sweden)

    Luiz Carlos S. Figueiredo-Filho

    2012-01-01

    Full Text Available The construction of a low cost mini sensor containing a bismuth-film electrode (BiFE, as work electrode, a silver electrode as pseudo reference electrode, and copper as counter electrode is proposed. The application of this mini sensor using a low cost electrochemical cell for in loco voltammetric determinations of inorganic and organic analytes is also described.

  6. Growth of bismuth telluride thin film on Pt by electrochemical atomic layer epitaxy

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Jun-you; GAO Xian-hui; HOU Jie; ZHANG Tong-jun; CUI Kun

    2005-01-01

    An automated thin-layer flow cell electrodeposition system was developed for growing Bi2 Te3 thin film by ECALE. The dependence of the Bi and Te deposition potentials on Pt electrode was studied. In the first attempt,this reductive Te underpotential deposition (UPD)/reductive Bi UPD cycle was performed to 100 layers. A better linearity of the stripping charge with the number of cycles has been shown and confirmed a layer-by-layer growth mode, which is consistent with an epitaxial growth. The 4: 3 stoichiometric ratio of Bi to Te suggests that the incomplete charge transfer in HTeO2+ reduction excludes the possibility of Bi2 Te3 formation. X-ray photoelectron spectroscopy (XPS) analysis also reveals that the incomplete charge transfer in HTeO2+ occurs in Te direct deposition. The effective way of depositing Bi2 Te3 on Pt consists in oxidative Te UPD and reductive Bi UPD. The thin film deposited by this procedure was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). A polycrystalline characteristic was confirmed by XRD. The 2 : 3 stoichiometric ratio was confirmed by XPS. The SEM image indicates that the deposit looks like a series of buttons about 0.3 - 0.4 μm in diameter, which is corresponding with calculated thickness of the epitaxial film. This suggests that the particle growth appears to be linear with the number of cycles, as it is consistent with a layer by layer growth mode.

  7. High-relative-dielectric-constant bismuth-niobium-oxide films prepared using Nb-rich precursor solution

    Science.gov (United States)

    Ariga, Tomoki; Inoue, Satoshi; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya

    2015-09-01

    Various ceramic materials have been developed for electronic devices. Bismuth-niobium-oxide (BNO) films prepared by a chemical solution deposition (CSD) method have the cubic pyrochlore phase, high relative dielectric constant, and low tangent loss (tan δ). We found that a BNO cubic pyrochlore crystal was Nb-rich, even though its pyrochlore formula is A2B2O7. The crystallization temperature of BNO increased with increasing Nb ratio. The relative dielectric constants of BNO films were related to the Nb ratio in the precursor solution. The dielectric constant of the BNO films was 250 when the Bi and Nb ratios in BNO precursor solutions were 4 and 6, respectively, and the sintering temperature was 600 °C. In addition, the tan δ was less than 0.01 at 1 kHz, which is higher than the reported values of BNO systems despite using the CSD method. These results show that the properties of BNO films prepared by the CSD method were associated with the Nb ratio in the precursor solution. Furthermore, the dielectric characteristics indicated that the Nb-rich BNO films have potential applications in electronic devices.

  8. Electrochemical immunosensor based on bismuth nanocomposite film and cadmium ions functionalized titanium phosphates for the detection of anthrax protective antigen toxin.

    Science.gov (United States)

    Sharma, Mukesh K; Narayanan, J; Upadhyay, Sanjay; Goel, Ajay K

    2015-12-15

    Bacillus anthracis is a bioterrorism agent classified by the Centers for Disease Control and Prevention (CDC). Herein, a novel electrochemical immunosensor for the sensitive, specific and easy detection of anthrax protective antigen (PA) toxin in picogram concentration was developed. The immunosensor consists of (i) a Nafion-multiwall carbon nanotubes-bismuth nanocomposite film modified glassy carbon electrodes (BiNPs/Nafion-MWCNTs/GCE) as a sensing platform and (ii) titanium phosphate nanoparticles-cadmium ion-mouse anti-PA antibodies (TiP-Cd(2+)-MαPA antibodies) as signal amplification tags. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), thermogravimmetric analysis (TGA), Fourier transform-infra red spectroscopy (FT-IR), zeta-potential analysis, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to characterize the synthesized TiP nanoparticles and modified electrode surfaces. The immunosensing performance of BiNPs/Nafion-MWCNTs/GCE was evaluated based on sandwich immunoassay protocol. A square wave voltammetry (SWV) scan from -1.2 to -0.3 V in HAc-NaAc buffer solution (pH 4.6) without stripping process was performed to record the electrochemical responses at -0.75 V corresponding to high content of Cd(2+) ions loaded in TiP nanoparticles for the measurement of PA toxin. Under optimal conditions, the currents increased with increasing PA toxin concentrations in spiked human serum samples and showed a linear range from 0.1 ng/ml to 100 ng/ml. The limit of detection of developed immunosensor was found to be 50 pg/ml at S/N=3. The total time of analysis was 35 min. PMID:26148674

  9. CZTS thin films on transparent conducting electrodes by electrochemical technique

    International Nuclear Information System (INIS)

    We have fabricated single phase Cu2ZnSnS4 (CZTS) films using a specially designed 3-stage electrochemical system. Sequential electrodepositon of constituent metallic layers was carried out on SnO2/F coated glass substrates using a platinum counter electrode and a saturated calomel reference electrode. Unique bath compositions were formulated for each of these constituents. Sequentially deposited tri-layer stacks were annealed in sulfur environment to get CZTS phase. Detailed structural, morphological and optical characterization experiments were performed using several techniques including x-ray diffraction, Raman and UV–visible spectroscopy, scanning electron microscopy and atomic force microscopy. All characterization experiments indicated that the films are single phase with a measured direct band gap of 1.5 eV.

  10. Transferred metal electrode films for large-area electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Guo [Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore S117543 (Singapore); NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Medical Drive, Singapore S117456 (Singapore); Kam, Fong-Yu [Department of Chemistry, National University of Singapore, Lower Kent Ridge Road, Singapore S117543 (Singapore); Chua, Lay-Lay [Department of Chemistry, National University of Singapore, Lower Kent Ridge Road, Singapore S117543 (Singapore); Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore S117543 (Singapore)

    2014-11-10

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300 nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm{sup −1} have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS{sup ®} (Zeon). High-quality OFETs with sub-10 V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films.

  11. Porphyrin electrode films prepared by electrooxidation of metalloprotoporphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Macor, K.A.; Spiro, T.G.

    1983-08-24

    Electrooxidation in organic solvents of the dimethyl esters of several metalloprotoporphyrins (PP) (Ni/sup II/PP, Zn/sup II/PP, Co/sup II/PP, (Fe/sup III/PP)Cl, (Fe/sup III/PP)/sub 2/O, and (Cr/sup III/PP)/sub 2/O) leads to the deposition of thick (approx. 1000 monolayer equivalents), electroactive porphyrin films, which have been characterized by cyclic voltammetry and absorption spectroscopy on transparent SnO/sub 2/ electrodes. The films are stable toward organic solvents and aqueous acids and bases, but are removed by treatment with hot concentrated acids. The resonance Raman spectrum of the NiPP film indicates that one of the two vinyl groups is saturated on most of the porphyrin units. Deposition continues for some minutes after the current is interrupted. This evidence is consistent with a mechanism involving electroinitiated cationic vinyl polymerization. No film is formed if the metal, rather than the ring, is oxidized. Thus the first oxidation step of Co/sup II/PP, to (Co/sup III/PP)/sup +/, does not support film formation (although the potential is as high as for ring oxidation in ZnPP), but the second step, to (Co/sup III/PP)/sup 2 +/, does. Lack of film formation for (Mn/sup III/PP)Cl and (Cr/sup IV/PP)O suggests metal, rather than ring oxidation, to Mn/sup IV/ and Cr/sup V/. However, (CrPP)/sub 2/O oxidation does produce a film, suggesting ring oxidation, analogous to (FePP)/sub 2/O, which also produces a film. However, while (CrPP)/sub 2/O is incorporated intact into the film, the (FePP)/sub 2/O film contains monomer units. Incorporation of other metal ions can be accomplished by soaking a ZnPP-coated electrode in H/sub 2/SO/sub 4/ followed by contact wtih a solution of the metal dihalide in refluxing DMF. The porphyrin sites are accessible to small ions, as shown by chloride coordination of ZnPP film upon soaking in chloride solution. 49 references, 13 figures, 1 table.

  12. Development of Bismuth-based Lead-free Piezoelectric Materials: Thin Film Piezoelectric Materials via PVD and CSD Routes

    Science.gov (United States)

    Jeon, Yu Hong

    Piezoelectric materials have been widely used in electromechanical actuators, sensors, and ultrasonic transducers. Among these materials, lead zirconate titanate Pb(Zr1-xTix)O3 (PZT) has been primarily investigated due to its excellent piezoelectric properties. However, environmental concerns due to the toxicity of PbO have led to investigations into alternative materials systems. Bismuth-based perovskite piezoelectric materials such as (Bi0.5,Na0.5)TiO3 - (Bi0.5K 0.5)TiO3 (BNT - BKT), (Bi0.5,Na0.5 )TiO3 - (Bi0.5K0.5)TiO3 - BaTiO3(BNT - BKT - BT), (Bi0.5K 0.5)TiO3 - Bi(Zn0.5,Ti0.5)O 3 (BKT - BZT), and (Bi0.5,Na0.5)TiO 3 - (Bi0.5K0.5)TiO3 - Bi(Mg 0.5,Ti0.5)O3 (BNT - BKT - BMgT) have been explored as potential alternatives to PZT. These materials systems have been extensively studied in bulk ceramic form, however many of the ultimate applications will be in thin film embodiments (i.e., microelectromechanical systems). For this reason, in this thesis these lead-free piezoelectrics are synthesized in thin film form to understand the structure-property-processing relationships and their impact on the ultimate device response. Fabrication of high quality of 0.95BKT - 0.05BZT thin films on platinized silicon substrates was attempted by pulsed laser deposition. Due to cation volatility, deposition parameters such as substrate temperature, deposition pressure, and target-substrate distance, as well as target overdoping were explored to achieve phase pure materials. This route led to high dielectric loss, indicative of poor ferroelectric behavior. This was likely a result of the poor thin film morphology observed in films deposited via this method. Subsequently, 0.8BNT - 0.2BKT, 85BNT - 10BKT - 5BT, and 72.5BNT - 22.5BKT - 5BMgT (near morphotropic phase boundary composition) were synthesized via chemical solution deposition. To compensate the loss of A-site cations, overdoped precursor solutions were prepared. Crystallization after each spin cast layer were required to

  13. Modified carbon nanoparticle-chitosan film electrodes: Physisorption versus chemisorption

    Energy Technology Data Exchange (ETDEWEB)

    Rassaei, Liza; Sillanpaeae, Mika [Laboratory of Applied Environmental Chemistry, Department of Environmental Sciences, University of Kuopio, Patteristonkatu 1, 50101 Mikkeli (Finland); Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)

    2008-08-01

    Surface functionalised carbon nanoparticles of ca. 8 nm diameter co-assemble with chitosan into stable thin film electrodes at glassy carbon surfaces. Robust electrodes for application in sensing or electrocatalysis are obtained in a simple solvent evaporation process. The ratio of chitosan binder backbone to carbon nanoparticle conductor determines the properties of the resulting films. Chitosan (a poly-D-glucosamine) has a dual effect (i) as the binder for the mesoporous carbon composite structure and (ii) as binding site for redox active probes. Physisorption due to the positively charged ammonium group (pK{sub A} {approx} 6.5) occurs, for example, with anionic indigo carmine (a reversible 2e{sup -}-2H{sup +} reduction system in aqueous media). Chemisorption at the amine functionalities is demonstrated with 2-bromo-methyl-anthraquinone in acetonitrile (resulting in a reversible 2e{sup -}-2H{sup +} anthraquinone reduction system in aqueous media). Redox processes within the carbon nanoparticle-chitosan films are studied and at sufficiently high scan rates diffusion of protons (buffer concentration depended) is shown to be rate limiting. The chemisorption process provides a much more stable interfacial redox system with a characteristic and stable pH response over a pH 2-12 range. Chemisorption and physisorption can be employed simultaneously in a complementary binding process. (author)

  14. Voltage-Induced Buckling of Dielectric Films using Fluid Electrodes

    CERN Document Server

    Tavakol, Behrouz

    2016-01-01

    Accurate and integrable control of different flows within microfluidic channels is crucial to further development of lab-on-a-chip and fully integrated adaptable structures. Here we introduce a flexible microactuator that buckles at a high deformation rate and alters the downstream fluid flow. The microactuator consists of a confined, thin, dielectric film that buckles into the microfluidic channel when exposed to voltage supplied through conductive fluid electrodes. We estimate the critical buckling voltage, and characterize the buckled shape of the actuator. Finally, we investigate the effects of frequency, flow rate, and the pressure differences on the behavior of the buckling structure and the resulting fluid flow. These results demonstrate that the voltage--induced buckling of embedded microstructures using fluid electrodes provides a means for high speed attenuation of microfluidic flow.

  15. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes

    Science.gov (United States)

    Zhu, Hongwei; Zeng, Haifeng; Subramanian, Venkatachalam; Masarapu, Charan; Hung, Kai-Hsuan; Wei, Bingqing

    2008-11-01

    Carbon nanotube (CNT) films have been used as counter electrodes in natural dye-sensitized (anthocyanin-sensitized) solar cells to improve the cell performance. Compared with conventional cells using natural dye electrolytes and platinum as the counter electrodes, cells with a single-walled nanotube (SWNT) film counter electrode show comparable conversion efficiency, which is attributed to the increase in short circuit current density due to the high conductivity of the SWNT film.

  16. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes

    International Nuclear Information System (INIS)

    Carbon nanotube (CNT) films have been used as counter electrodes in natural dye-sensitized (anthocyanin-sensitized) solar cells to improve the cell performance. Compared with conventional cells using natural dye electrolytes and platinum as the counter electrodes, cells with a single-walled nanotube (SWNT) film counter electrode show comparable conversion efficiency, which is attributed to the increase in short circuit current density due to the high conductivity of the SWNT film.

  17. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    International Nuclear Information System (INIS)

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs. (paper)

  18. Preparation and properties of low-calcium-content superconductive thin films in bismuth systems

    International Nuclear Information System (INIS)

    Superconductive, polycrystalline thin films from Bi systems with low Ca content in relation to the high-Tc phase and with various Bi(Pb) contents were obtained by two-step annealing of the deposited amorphous films prepared by rf magnetron sputtering. The obtained films, A, B, and C, exhibited a high Tc (Tc > 100 K) for a wide range of secondary annealing temperatures. The critical current densities of these films at 77.3 K in zero magnetic field were sensitive to the secondary annealing temperature. The highest critical current densities of the films were 2,700, 3,900, and 5,500 A/cm2 for films A, B, and C, respectively. Film B exhibited large decreases in critical current density under an applied magnetic field. The grain boundaries of this film, which were composed of PbO, CuO, and Bi2O3, apparently acted as weak links in the superconductor materials

  19. Synthesis and Electrochemical Sensing Toward Heavy Metals of Bunch-like Bismuth Nanostructures

    Science.gov (United States)

    Zhang, Zhi; Yu, Ke; Bai, Dan; Zhu, Ziqiang

    2010-02-01

    Large-scale bunch-like bismuth (Bi) nanostructures were the first time to be synthesized via two-step electrochemical deposition. The growth mechanism of the nanostructures was discussed. Such a designed bunch-like Bi electrode has high sensitivity to detect the heavy metal ions due to its unique three-dimensional structures and strong ability of adsorbing the heavy metal ions. The bunch-like Bi electrode’s detection of heavy metals was statically performed using anodic stripping voltammetry (ASV). The detection in the Pb(II) concentration range of 2.5-50 μg/l was also performed. Based on the experimental results, this bunch-like Bi electrode can be considered as an interesting alternative to common mercury electrodes and bismuth film electrodes for possible use in electrochemical studies and electroanalytical applications.

  20. ELECTROANALYTICAL APPLICATIONS OF CARBOXYL-MODIFIED CARBON NANOTUBE FILM ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu

    2003-01-01

    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  1. A glassy carbon electrode modified with bismuth nanotubes in a silsesquioxane framework for sensing of trace lead and cadmium by stripping voltammetry

    International Nuclear Information System (INIS)

    Single-walled bismuth nanotubes (sw-BiNTs) were self-assembled with octa(3-aminopropyl) silsesquioxane as a framework and to govern morphology. Deposited on a glassy carbon electrode (GCE), the sw-BiNTs were used for the simultaneous analysis of Pb(II) and Cd(II) by square wave stripping voltammetry. The sw-BiNTs were prepared by (a) coordination interaction between the amino groups of the silsesquioxane and the Bi(III) ions, and by (b) reduction with sodium borohydride. Transmission electron microscopy images revealed single-walled tubular structures with diameters of ∼4–6 nm, and with lengths of several hundreds nanometers. GCEs modified with such sw-BiNTs perform much better than bare GCEs in stripping analysis of Pb(II) and Cd(II). The effects of adsorption quantity of sw-BiNTs, solution pH, pulse amplitude, and pulse width were optimized. The modified electrode was then used for the analysis of Pb(II) and Cd(II) in a linear response range from 0.4 to 6 μM with a sensitivity of 4.692 μA μM−1 and 3.835 μA μM−1, and detection limits of 1 nM and 5 nM, respectively. The method was successfully applied to the analysis of Pb(II) and Cd(II) in toy leachates, and the results were in good agreement with those obtained with atomic absorption spectrometry. Sensitivity and detection limits were compared with other voltammetric methods, and the sw-BiNTs are deemed to be an attractive alternative for practical applications. Other features of the electrode include low costs, a well reproducible nanostructure, and ease of scale-up of the fabrication process. (author)

  2. Electrochemical protection of thin film electrodes in solid state nanopores

    International Nuclear Information System (INIS)

    Solid state nanopores are a core element of next-generation single molecule tools in the field of nano-biotechnology. Thin film electrodes integrated into a pore can interact with charges and fields within the pore. In order to keep the nanopore open and thus functional electrochemically induced surface alteration of electrode surfaces and bubble formation inside the pore have to be eliminated. This paper provides electrochemical analyses of nanopores drilled into TiN membranes which in turn were employed as thin film electrodes. We studied physical pore integrity and the occurrence of water decomposition yielding bubble formation inside pores by applying voltages between - 4.5 and + 4.5 V to membranes in various protection stages continuously for up to 24 h. During potential application pores were exposed to selected electrolyte-solvent systems. We have investigated and successfully eliminated electrochemical pore oxidation and reduction as well as water decomposition inside nanopores of various diameters ranging from 3.5 to 25 nm in 50 nm thick TiN membranes by passivating the nanopores with a plasma-oxidized layer and using a 90% solution of glycerol in water as KCl solvent. Nanopore ionic conductances were measured before and after voltage application in order to test for changes in pore diameter due to electrochemical oxidation or reduction. TEM imaging was used to confirm these observations. While non-passivated pores were electrochemically oxidized, neither electrochemical oxidation nor reduction was observed for passivated pores. Bubble formation through water decomposition could be detected in non-passivated pores in KCl/water solutions but was not observed in 90% glycerol solutions. The use of a protective self-assembled monolayer of hexadecylphosphonic acid (HDPA) was also investigated.

  3. Structures and dielectric properties of pyrochlore bismuth zinc niobate thin films with zinc compensation

    International Nuclear Information System (INIS)

    Highlights: ► BZN thin films were characterized as a function of zinc amount. ► All thin films show a cubic pyrochlore phase and a strong preferential orientation. ► BZN thin films show a low temperature dielectric relaxation. ► Tm shifts towards higher temperature with increasing Zn amount. -- Abstract: Pyrochlore Bi1.5Zn1.0Nb1.5O7 (BZN) thin films deposited at 650 °C under an oxygen pressure of 10 Pa by pulsed laser deposition were characterized as a function of zinc amount. The zinc concentration in the thin films was varied using ceramic targets having 0–40 mol% excess zinc contents. The X-ray diffraction measurement shows that thin films have a cubic pyrochlore phase structure and a strong preferential orientation of (1 1 1) plane. The dielectric properties are investigated as functions of temperature and frequency. Dielectric constant and loss tangent of the thin films both slightly increase with the increase of Zn amount. The thin film with 40 mol% zinc exhibits a dielectric constant of 198 and a loss tangent of 0.004 at 10 kHz. The dielectric relaxation behavior has been studied by measuring the temperature dependence of dielectric properties. The characteristic temperatures (Tm) move to the high temperature with the increase of Zn and gradually approach that of BZN ceramic. Meanwhile, in a wide frequency and temperature range (1 kHz–1 MHz, −100–150 °C), the dielectric constant of the thin films almost keeps unchanged and shows a negative temperature coefficient. Leakage current density of the thin films with 20 mol% zinc is approximately three order magnitude lower than that of films with 0 mol% zinc at 400 kV/cm. The conduction of BZN thin films is controlled by the Schottky emission mechanism and the space-charge-limited current mechanism

  4. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    International Nuclear Information System (INIS)

    Phosphorous-alloyed Bi2Te3 thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi2Te3 thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 μV/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process with...

  6. Pr and Gd co-doped bismuth ferrite thin films with enhanced multiferroic properties

    Indian Academy of Sciences (India)

    Chang Chun Chen; Zi Xuan Liu; Gui Wang; Yi Lin Yan

    2014-12-01

    Pr and Gd co-modified Bi0.95−PrGd0.05FeO3 ( = 0.00, 0.05, 0.10) (BPGFO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates were prepared by a sol-gel together with spin coating technique. A detailed study of electrical and magnetic properties of these thin films is reported. X-ray diffraction analysis shows that, with an increase in Pr content, the crystal structures of BPGFO thin films retain rhombohedral (R3c) symmetry accompanied by structure distortion. Polarization-electric field hysteresis loops of these thin films demonstrate that the incorporation of Pr and Gd into the Bi site of BiFeO3 thin film could enhance the ferroelectric performance. Compared to other thin films, the optimal ferroelectric behaviours in Bi0.85Pr0.1Gd0.05FeO3 thin film are ascribed to its large dielectric constant, low dissipation factor and low leakage current density. Room temperature magnetization-magnetic field curves of these thin films indicate that all the samples are of paramagnetic behaviours and the enhanced saturation magnetic properties can be found.

  7. Polyaniline/polysulfone composite film electrode for simultaneous determination of hydroquinone and catechol

    International Nuclear Information System (INIS)

    Highlights: ► We prepared a composite film which has bi-layers with asymmetric microstructure and relatively rich porosity which provides larger surface area for electrochemical reaction. ► The outer polysulfone layer is propitious for the organic molecules to enrich on the composite film, which brings great enhancement in electron transfer kinetics. ► The composite film electrode can be used to detect qualitatively or quantitatively hydroquinone and catechol in the single solute or mixed systems. - Abstract: Polyaniline (PAN)/polysulfone (PSF) composite film electrodes were successfully prepared by electropolymerization using cyclic votammetry technique. The composite film electrodes show a great enhancement in electron transfer kinetics, and the separation between oxidation and reduction peaks (ΔEp) decreases from 200 to 35 mV for hydroquinone (H2Q) and from 275 to 42 mV for catechol (CC) at bare Pt and composite film electrodes respectively. In their mixed systems, the redox peak of H2Q and two pairs of redox peaks of CC on this composite film electrode could be obviously distinguished which indicates the composite film electrodes have excellent electrocatalytic activity and reversibility towards the oxidation of two diphenols (hydroquinone and catechol). The linear relationships between the peak current and concentration are observed for single solute and mixed systems within the certain concentration range, implying that the composite film electrodes have potential application in the qualitative or quantitative analysis of diphenol.

  8. An experimental analysis of thick-film solid-state reference electrodes

    OpenAIRE

    Sophocleous, Marios; Glanc-Gostkiewicz, Monika; Atkinson, John Karl; Garcia-Breijo, Eduardo

    2012-01-01

    Thick-Film planar solid-state Silver/Silver Chloride (Ag/AgCl) reference electrodes were developed and tested for ion susceptibility and long term drift in approximately 0.04 M potassium chloride (KCl) solution. Various types of electrodes were tested exhibiting stabilities down to 2 millivolts per decade change of chloride concentration. It is demonstrated that Thick-Film reference electrodes are suitable for use in underground soil measurements due to their ruggedness and robustness.

  9. A glucose biosensor using methyl viologen redox mediator on carbon film electrodes

    OpenAIRE

    Ghica, Mariana Emilia; Christopher M. A. Brett

    2005-01-01

    A new methyl viologen-mediated amperometric enzyme electrode sensitive to glucose has been developed using carbon film electrode substrates. Carbon film electrodes from resistors fabricated by pyrolytic deposition of carbon were modified by immobilization of glucose oxidase through cross-linking with glutaraldehyde in the presence of bovine serum albumin. The mediator, methyl viologen, was directly immobilised with the enzyme together with Nafion cation-exchange polymer. The electrochemistry ...

  10. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.

    Science.gov (United States)

    Han, Lihao; Abdi, Fatwa F; van de Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Smets, Arno H M

    2014-10-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten-bismuth vanadate (W:BiVO4 ) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO4 and the nc-Si:H cell. PMID:25138735

  11. Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping.

    Science.gov (United States)

    Sahoo, M P K; Zhang, Yajun; Wang, Jie

    2016-07-27

    Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1 μB. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis. PMID:27406933

  12. Critical film thickness for fracture in thin-film electrodes on substrates in the presence of interfacial sliding

    International Nuclear Information System (INIS)

    It is well known that thin-film electrodes on substrates could fracture during lithium insertion/extraction above a critical film thickness. Recent studies have revealed that lithium could facilitate sliding at the interface between lithiated Si and the underlying substrate. In this paper, we investigate fracture in thin-film electrodes and derive the critical film thickness for fracture as a function of both the fracture toughness of the film and the sliding resistance of the interface. The analysis indicates that a slippery interface due to lithiation could significantly decrease the critical thickness for fracture. (paper)

  13. Optical and structural properties of indium doped bismuth selenide thin films

    Science.gov (United States)

    Pavagadhi, Himanshu; Vyas, S. M.; Patel, Piyush; Patel, Vimal; Patel, Jaydev; Jani, M. P.

    2015-08-01

    In: Bi2Se3 crystals were grown by Bridgman method at a growth velocity of 0.5cm/h with temperature gradient of 650 C/cm in our laboratory. The thin films of In:Bi2se3 were grown on amorphous substrate (glass) at a room temperature under a pressure of 10-4Pa by thermal evaporation technique. Thin film were deposited at various thicknesses and optical absorption spectrum of such thin films, obtain in wave no. range 300 to 2600 cm-1. The optical energy gap calculated from this data were found to be inverse function of square of thickness, particularly for thickness about 1800 Å or less. This dependence is explained in terms of quantum size effect. For thicker films, the bandgap is found to be independent of film thickness. For the surface stud of the as grown thin film by using AFM, which shows continuous film with some step height and surface roughness found in terms of few nm and particle size varies with respect to thickness.

  14. Optical and structural properties of indium doped bismuth selenide thin films

    International Nuclear Information System (INIS)

    In: Bi2Se3 crystals were grown by Bridgman method at a growth velocity of 0.5cm/h with temperature gradient of 650 C/cm in our laboratory. The thin films of In:Bi2se3 were grown on amorphous substrate (glass) at a room temperature under a pressure of 10−4Pa by thermal evaporation technique. Thin film were deposited at various thicknesses and optical absorption spectrum of such thin films, obtain in wave no. range 300 to 2600 cm−1. The optical energy gap calculated from this data were found to be inverse function of square of thickness, particularly for thickness about 1800 Å or less. This dependence is explained in terms of quantum size effect. For thicker films, the bandgap is found to be independent of film thickness. For the surface stud of the as grown thin film by using AFM, which shows continuous film with some step height and surface roughness found in terms of few nm and particle size varies with respect to thickness

  15. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness

    KAUST Repository

    Jana, Partha Sarathi

    2014-01-01

    Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria to transfer electrons to solid anodes is a key feature of this emerging technology, yet the electron transfer mechanism is not fully characterized as yet. Acetate oxidation current generated from biofilms of an EAB, Geobacter sulfurreducens, on graphite electrodes as a function of time does not correlate with film thickness. Values of film thickness, and the number and local concentration of electrically connected redox sites within Geobacter sulfurreducens biofilms as well as a charge transport diffusion co-efficient for the biofilm can be estimated from non-turnover voltammetry. The thicker biofilms, of 50 ± 9 μm, display higher charge transport diffusion co-efficient than that in thinner films, as increased film porosity of these films improves ion transport, required to maintain electro-neutrality upon electrolysis. This journal is © the Partner Organisations 2014.

  16. Deposition of bismuth-titanate films with liquid-delivery spin MO-CVD

    International Nuclear Information System (INIS)

    A vertical liquid-delivery metal-organic chemical vapour deposition (MO-CVD) reactor was used to deposit Bi4Ti3O12 films on SrTiO3(1 0 0) substrates. Depending on the growth conditions the films show a pure Bi4Ti3O12 phase or additionally a Bi poor phase. Well-ordered, (0 0 1)-oriented, epitaxially grown Bi4Ti3O12 films were obtained at a growth temperature of 700 deg. C, a Bi excess of 25%, and a substrate rotation between 500 and 750 rpm. The Bi deficiency can be influenced by the concentration of MO precursor in the liquid solution. Depositions on NdGaO3(1 1 0) also result in epitaxial (0 0 1)-oriented Bi4Ti3O12 films, but the structural quality was slightly poorer

  17. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian; Li, Shanghua; Toprak, Muhammet S.; Muhammed, Mamoun [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Soliman, Hesham M.A. [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Advanced Technology and New Materials Research Institute (ATNMRI), Mubarak City for Scientific Research and Technology Applications, New Borg El-Arab, 21934 Alexandria (Egypt); Platzek, Dieter; Mueller, Eckhard [Institute of Materials Research, German Aerospace Center (DLR), 51170 Koeln (Germany)

    2008-07-01

    Phosphorous-alloyed Bi{sub 2}Te{sub 3} thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi{sub 2}Te{sub 3} thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 {mu}V/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique

    Science.gov (United States)

    Abed, S.; Bouchouit, K.; Aida, M. S.; Taboukhat, S.; Sofiani, Z.; Kulyk, B.; Figa, V.

    2016-06-01

    ZnO doped Bi thin films were grown on glass substrates by spray ultrasonic technique. This paper presents the effect of Bi doping concentration on structural and nonlinear optical properties of zinc oxide thin films. These thin films were characterized by X-ray diffractometer technique. XRD analysis revealed that the ZnO:Bi thin films indicated good preferential orientation along c-axis perpendicular to the substrate. The nonlinear optical properties such as nonlinear absorption coefficient (β) and third order nonlinear susceptibility (Imχ(3)) are investigated. The calculations have been performed with a Z scan technique using Nd:YAG laser emitting 532 nm. The reverse saturable absorption (RSA) mechanism was responsible for the optical limiting effect. The results suggest that this material considered as a promising candidate for future optical device applications.

  19. Structural, magnetic and electrical properties of calcium modified bismuth manganite thin films

    International Nuclear Information System (INIS)

    The present investigation involves the growth of Bi1−xCaxMnO3 (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 on platinized silicon substrates at two different substrate temperatures (400 °C and 800 °C) using RF magnetron sputtering. It also deals with their characterization by employing various techniques: X-ray diffraction analysis (XRD), Atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), Vibrating sample magnetometer (VSM), Leakage, dielectric and ferroelectric measurements. The XRD reveals that the single phasic monoclinic structure of pure BiMnO3 (BMO) is distorted to a small degree with the variation in growth temperatures and the addition of calcium at different concentrations. The composition and valence state of the elements analyzed with XPS confirms the formation of BiMnO3 phase and substitution of Ca ions on Bi site. The room temperature hysteresis loops of BCMO (x = 0.2) films grown at 400 and 800 °C show better magnetic moments of 754 and 858 emu/cc respectively than the values of the other prepared films. The leakage measurements indicate that the leakage current density decreases gradually with the increasing Ca concentration. For both the temperatures, a sharp minimum leakage current density of 5.7 × 10−3 A/cm2 has been observed for BCMO (x = 0.2) films. Moreover, the study evaluates the effects of calcium substitution and growth temperatures on morphology, elemental, dielectric and ferroelectric properties of BMO films. - Highlights: • Bi1−xCaxMnO3 thin films were grown by RF magnetron sputtering. • Ca substituted BMO films enhance the room temperature ferromagnetism and ferroelectricity. • The BCMO film grown at 800 °C with 20 at% Ca doping is suitable for device fabrication

  20. Digital simulation of anodic stripping voltammetry from thin film electrodes

    International Nuclear Information System (INIS)

    The anodic stripping voltammetry (ASV) is routinely applied to control of Cu(II) in heavy water in the primary cooling loop of the Nuclear Power Reactor. The anodic stripping voltammetry (ASV) is a very well-known technique in electroanalytical chemistry. However, due to the complexity of the phenomena, it is practised with the fundamentals of empiric considerations. A geometric model for the anodic stripping voltammetry (ASV) from thin film electrodes which can be calculated by explicit digital simulation method is proposed as a possibility of solving the electrochemically reversible, cuasi-reversible and irreversible reactions under linear potential scan and multiple potential scans. (Until now the analytical mathematical method was applied to reversible reactions). All the results are compared with analytical solutions and experimental results and it permits to conclude that the anodic stripping voltammetry (ASV) can be studied with the simplicity and potentialities of explicit digital simulation methods. (M.E.L.)

  1. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  2. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    Science.gov (United States)

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement. PMID:26736028

  3. Comparison of lanthanum substituted bismuth titanate (BLT) thin films deposited by sputtering and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Besland, M.P. [Institut des Materiaux Jean Rouxel, Universite de Nantes, UMR CNRS 6502, 2 rue de la Houssiniere, B.P. 32229, 44322, Nantes cedex 3 (France)]. E-mail: Marie-Paule.Besland@cnrs-imn.fr; Djani-ait Aissa, H. [Division milieux Ionises et lasers, Centre de Developpement des Technologies Avancees CDTA, Baba Hassen Alger, Algerie (Algeria); Barroy, P.R.J. [Institut des Materiaux Jean Rouxel, Universite de Nantes, UMR CNRS 6502, 2 rue de la Houssiniere, B.P. 32229, 44322, Nantes cedex 3 (France); Lafane, S. [Division milieux Ionises et lasers, Centre de Developpement des Technologies Avancees CDTA, Baba Hassen Alger, Algerie (Algeria); Tessier, P.Y. [Institut des Materiaux Jean Rouxel, Universite de Nantes, UMR CNRS 6502, 2 rue de la Houssiniere, B.P. 32229, 44322, Nantes cedex 3 (France); Angleraud, B. [Institut des Materiaux Jean Rouxel, Universite de Nantes, UMR CNRS 6502, 2 rue de la Houssiniere, B.P. 32229, 44322, Nantes cedex 3 (France); Richard-Plouet, M. [Institut des Materiaux Jean Rouxel, Universite de Nantes, UMR CNRS 6502, 2 rue de la Houssiniere, B.P. 32229, 44322, Nantes cedex 3 (France); Brohan, L. [Institut des Materiaux Jean Rouxel, Universite de Nantes, UMR CNRS 6502, 2 rue de la Houssiniere, B.P. 32229, 44322, Nantes cedex 3 (France); Djouadi, M.A. [Institut des Materiaux Jean Rouxel, Universite de Nantes, UMR CNRS 6502, 2 rue de la Houssiniere, B.P. 32229, 44322, Nantes cedex 3 (France)

    2006-01-20

    Bi{sub 4-x}La {sub x}Ti{sub 3}O{sub 12} (BLT {sub x}) (x = 0 to 1) thin films were grown on silicon (100) and platinized substrates Pt/TiO{sub 2}/SiO{sub 2}/Si using RF diode sputtering, magnetron sputtering and pulsed laser deposition (PLD). Stoichiometric home-synthesized targets were used. Reactive sputtering was investigated in argon/oxygen gas mixture, with a pressure ranging from 0.33 to 10 Pa without heating the substrate. PLD was investigated in pure oxygen, at a chamber pressure of 20 Pa for a substrate temperature of 400-440 deg. C. Comparative structural, chemical, optical and morphological characterizations of BLT thin films have been performed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Photoelectron Spectroscopy (XPS), Spectro-ellipsometric measurements (SE) and Atomic Force Microscopy (AFM). Both sputtering techniques allow to obtain uniform films with thickness ranging from 200 to 1000 nm and chemical composition varying from (Bi,La){sub 2} Ti{sub 3} O{sub 12} to (Bi,La){sub 4.5}Ti{sub 3}O{sub 12}, depending on deposition pressure and RF power. In addition, BLT films deposited by magnetron sputtering, at a pressure deposition ranging from 1.1 to 5 Pa, were well-crystallized after a post-deposition annealing at 650 deg. C in oxygen. They exhibit a refractive index and optical band gap of 2.7 and 3.15 eV, respectively. Regarding PLD, single phase and well-crystallized, 100-200 nm thick BLT films with a stoichiometric (Bi,La){sub 4}Ti{sub 3}O{sub 12} chemical composition were obtained, exhibiting in addition a preferential orientation along (200). It is worth noting that BLT films deposited by magnetron sputtering are as well-crystallized than PLD ones.

  4. Comparison of lanthanum substituted bismuth titanate (BLT) thin films deposited by sputtering and pulsed laser deposition

    International Nuclear Information System (INIS)

    Bi4-xLa xTi3O12 (BLT x) (x = 0 to 1) thin films were grown on silicon (100) and platinized substrates Pt/TiO2/SiO2/Si using RF diode sputtering, magnetron sputtering and pulsed laser deposition (PLD). Stoichiometric home-synthesized targets were used. Reactive sputtering was investigated in argon/oxygen gas mixture, with a pressure ranging from 0.33 to 10 Pa without heating the substrate. PLD was investigated in pure oxygen, at a chamber pressure of 20 Pa for a substrate temperature of 400-440 deg. C. Comparative structural, chemical, optical and morphological characterizations of BLT thin films have been performed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Photoelectron Spectroscopy (XPS), Spectro-ellipsometric measurements (SE) and Atomic Force Microscopy (AFM). Both sputtering techniques allow to obtain uniform films with thickness ranging from 200 to 1000 nm and chemical composition varying from (Bi,La)2 Ti3 O12 to (Bi,La)4.5Ti3O12, depending on deposition pressure and RF power. In addition, BLT films deposited by magnetron sputtering, at a pressure deposition ranging from 1.1 to 5 Pa, were well-crystallized after a post-deposition annealing at 650 deg. C in oxygen. They exhibit a refractive index and optical band gap of 2.7 and 3.15 eV, respectively. Regarding PLD, single phase and well-crystallized, 100-200 nm thick BLT films with a stoichiometric (Bi,La)4Ti3O12 chemical composition were obtained, exhibiting in addition a preferential orientation along (200). It is worth noting that BLT films deposited by magnetron sputtering are as well-crystallized than PLD ones

  5. Distributed Phase Shifter with PyrochloreBismuth Zinc Niobate Thin Films

    OpenAIRE

    Park, Jaehoon; Lu, Jiwei; Boesch, Damien; Stemmer, Susanne; York, Robert A.

    2006-01-01

    A monolithic Ku-band phase shifter employing voltage tunable Bi1 5Zn1 0Nb1 5O7 (BZN) thin film parallel plate capacitors is reported. BZN films were deposited by radio frequency magnetron sputtering on single-crystal sapphire substrates. A nine-section distributed coplanar waveguide loaded-line phase-shifter structure was designed. A differential phase shift of 175 was achieved with a maximum insertion loss of 3.5 dB at 15 GHz, giving a figure of merit 50 dB. To the best of our knowledge, thi...

  6. Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

    Institute of Scientific and Technical Information of China (English)

    Niu Zhi-Qiang; Ma Wen-Jun; Dong Hai-Bo; Li Jin-Zhu; Zhou Wei-Ya

    2011-01-01

    An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications.

  7. Low-Power Super-resolution Readout with Antimony Bismuth Alloy Film as Mask layer

    Institute of Scientific and Technical Information of China (English)

    JIANG Lai-Xin; WU Yi-Qun; WANG Yang; WEI Jing-Song; GAN Fu-Xi

    2009-01-01

    Sb-Bi alloy films are proposed as a new kind of super-resolution mask layer with low readout threshold power. Using the Sb-Bi alloy film as a mask layer and SiN as a protective layer in a read-only memory disc, the super-resolution pits with diameters of 38Onm are read out by a dynamic setup, the laser wavelength is 78Onto and the numerical aperture of pickup lens is 0.45. The effects of the Sb-Bi thin film thickness, laser readout power and disc rotating velocity on the readout signal are investigated. The results show that the threshold laser power of super-resolution readout of the Sb-Bi mask layer is about 0.5roW, and the corresponding carrier-to-noise ratio is about 20dB at the film thickness of 5Ohm. The super-resolution mechanism of the Sb-Bi alloy mask layer is discussed based on its temperature dependence of reflection.

  8. On the doping problem of CdTe films: The bismuth case

    International Nuclear Information System (INIS)

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 1013 cm-3, depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 1015 cm-3. Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented

  9. On the doping problem of CdTe films: The bismuth case

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Brown, M. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Ruiz, C.M. [Depto. Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Vidal-Borbolla, M.A. [Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Lomas 4a. Secc., 78210 San Luis Potosi, SLP (Mexico); Ramirez-Bon, R. [CINVESTAV-IPN, U. Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Queretaro, Qro. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)], E-mail: mtufinovel@yahoo.com.mx; Calixto, M. Estela [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Compaan, A.D. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)

    2008-08-30

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10{sup 13} cm{sup -3}, depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10{sup 15} cm{sup -3}. Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented.

  10. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    International Nuclear Information System (INIS)

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed

  11. Pt-WOx electrode structure for thin-film fuel cells

    Science.gov (United States)

    Park, Kyung-Won; Ahn, Kwang-Soon; Choi, Jong-Ho; Nah, Yoon-Chae; Kim, Young-Min; Sung, Yung-Eun

    2002-07-01

    An electrode structure consisting of two phases of Pt and WOx for use in thin-film fuel cells was designed and fabricated using a cosputtering system with a Pt metal and a tungsten oxide target. The coexistence of a polycrystalline Pt nanosized phase and an amorphous tungsten oxide phase in the electrode layer was confirmed by transmission electron microscopic images and x-ray diffraction data. In addition, compared with a Pt thin-film electrode, the two-phase electrode of Pt and WOx showed excellent performance for the devices because of the improved activity of the Pt metallic phase and the spill-over effect of porous tungsten oxides.

  12. Magnetic, ferroelectric and leakage current properties of gadolinium doped bismuth ferrite thin films by sol–gel method

    International Nuclear Information System (INIS)

    Bi0.9Gd0.1FeO3 (BGFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by using the sol–gel technology. The effects of annealing temperature (400–700 °C) on microstructure and multiferroic properties of thin films were investigated. The X-ray diffraction analysis showed that the BGFO thin films had an orthorhombic structure. The thin films showed ferroelectric and ferromagnetic properties with remanent polarization (2Pr) of 10 μC/cm2, remnant magnetization (2Mr) of 2.4 emu/g and saturation magnetization (Ms) of 5.3 emu/g. A small leakage current density (J) was 4.64×10−8 A/cm2 under applied field 100 kV/cm. It was found that more than one conduction mechanism is involved in the electric field range used in these experiments. The leakage current mechanisms were controlled by Poole–Frenkel emission in the low electric field region and by Schottky emission from the Pt electrode in the high field region. - Highlights: • Bi3.96Pr0.04Ti2.95Nb0.05O12 thin films were prepared by sol–gel technology. • Thin films showed 2Pr of 10 μC/cm2, 2Mr of 2.4 emu/g and Ms of 5.3 emu/g. • Leakage current mechanisms were controlled by Poole–Frenkel and Schottky emission

  13. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  14. Facile one-step direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid

    International Nuclear Information System (INIS)

    Highlights: • BiNWs prepared through simple, fast one step electrochemical route. • BiNWs showed more catalytic activity and sensitivity than GC towards FA reduction. • Selective detection of FA was achieved with low limit of detection (9.53 × 10−9 mol L−1). • Real sample analysis was successfully demonstrated using FA pharmaceutical tablets. • BiNWs based sensor matrix is inexpensive, and more suitable for FA real application. - Abstract: In the present work, we have developed a facile one step route to electrodeposition of stabilizer-free bismuth nanowires (BiNWs) on glassy carbon (GC) substrates by using a simple potentiostatic method. Formation of BiNWs on GC substrate was confirmed by field emission scanning electron microscopy (FE-SEM). The growth of BiNWs on the GC substrate was monitored by cyclic voltammetry and found that continuous in-situ generation of hydrogen bubbles during electrodeposition provides a stagnant template for the formation of BiNWs on the GC substrate. Phase-purity of the deposited BiNWs on GC substrate studied by XRD indicates no other oxide formation. The electrodeposited BiNWs on GC substrate was used for electro-reduction of folic acid (FA) and its quantitative determination in Britton-Robinson buffer of pH 4.5 solutions. The observed cyclic voltammetric reduction current of FA on BiNWs/GC is almost 15 times higher with 0.015 V less negative overpotential compared to bare GC substrate alone. This result clearly reveals the electrocatalytic activity of the deposited BiNWs. In addition, square wave voltammetry (SWV) showed a perfectly linear response in the concentration range of 1 × 10−8–15 × 10−8 mol L−1 with a correlation coefficient of 0.9956. The limit of detection (LOD) and limit of quantitation (LOQ) are determined to be 9.53 × 10−9 and 31.68 × 10−9 mol L−1 respectively. The response of the BiNWs/GC sensor matrix is not affected by any usual interference from excess concentrations of metal ions

  15. Electrochromic properties of WO3 thin film onto gold nanoparticles modified indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Gold nanoparticles (GNPs) thin films, electrochemically deposited from hydrogen tetrachloroaurate onto transparent indium tin oxide (ITO) thin film coated glass, have different color prepared by variation of the deposition condition. The color of GNP film can vary from pale red to blue due to different particle size and their interaction. The characteristic of GNPs modified ITO electrodes was studied by UV-vis spectroscopy, scanning electron microscope (SEM) images and cyclic voltammetry. WO3 thin films were fabricated by sol-gel method onto the surface of GNPs modified electrode to form the WO3/GNPs composite films. The electrochromic properties of WO3/GNPs composite modified ITO electrode were investigated by UV-vis spectroscopy and cyclic voltammetry. It was found that the electrochromic performance of WO3/GNPs composite films was improved in comparison with a single component system of WO3.

  16. Structural and electrical properties of samarium-substituted bismuth titanate ferroelectric thin films on Pt/TiO x/SiO2/Si substrates

    International Nuclear Information System (INIS)

    Polycrystalline samarium-substituted ferroelectric bismuth titanate films (Bi3.45Sm0.55Ti3O12) were prepared on Pt/TiO x/SiO2/Si substrates by chemical solution deposition (CSD) and were annealed at various temperatures. For comparison, films with similar composition were grown by pulsed laser deposition (PLD) and annealed at 700 deg. C. X-ray diffraction and Raman spectroscopy results showed similar crystallographic orientations and structures for the films fabricated using these different deposition methods. It was found that film crystallinity, structural, dielectric, ferroelectric and leakage current properties were strongly dependent upon the annealing temperature for CSD-derived films. Atomic force microscopy showed that film surface roughness values are comparable for both deposition methods following annealing at the same temperature, although PLD-grown films had a more uniform grain size. Cross-sectional images obtained by scanning electron microscopy revealed distinct grain shapes and structures: dense, columnar grains for PLD-grown films, spherical grains and a more porous structure for CSD-derived films. The remanent polarization of CSD-derived films increased with increasing annealing temperature. The PLD-grown films annealed at 700 deg. C showed higher remanent polarization (2P r = 41.8 μC/cm2) and lower coercive field (E c = 91 kV/cm), than CSD-derived films annealed at the same temperature (27.4 μC/cm2 and 121 kV/cm). The former also had a lower leakage current density (6.7 x 10-7 A/cm2) than the latter (4.6 x 10-6 A/cm2) at a dc electric field of 100 kV/cm (∼10 V), and both film types demonstrated fatigue-free behaviour up to 109 read/write switching cycles with 1 MHz bipolar pulses

  17. Fabrication and Analysis of Thin Film Supercapacitor using a Cobalt Oxide Thin Film Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. K.; Lim, J. H.; Jeon, E. J.; Cho, W. I.; Yoon, Y. S. [Korea Institute of Science and Technology, Seoul (Korea); Seong, T. Y. [Kwangju Institute of Science and Technology, Kwangju (Korea)

    2001-05-01

    An all solid-state thin film supercapacitor (TFSC) with Co{sub 3}O{sub 4}/LiPON/Co{sub 3}O{sub 4} structure was fabricated on Pt/Ti/Si substrate using Co{sub 3}O{sub 4} thin film electrode. Each Co{sub 3}O{sub 4} film was grown by reactive dc reactive magnetron sputtering with increasing O{sub 2}/[Ar+O{sub 2}] ratio. Amorphous LiPON electrolyte film was deposited on Co{sub 3}O{sub 4}/Pt/Ti/Si in pure nitrogen ambient by using reactive rf magnetron sputtering. The electrochemical behavior of the Co{sub 3}O{sub 4}/LiPON/Co{sub 3}O{sub 4} multi-layer structures exhibits a behavior of a bulk-type supercapacitor, even though much lower capacity (from 5 to 25 mF/cm{sup 2}-{mu}m) than that of the bulk one. It was found that the TFSC showed a fairly constant discharge capacity with a constant current of 50{mu} A/cm{sup 2} at the cut-off voltage 0-2V during 400 cycles. It is shown that the electrochemical behavior of the Co{sub 3}O{sub 4}/LiPON/Co{sub 3}O{sub 4} TFSC is dependent upon the sputtering gas ratio. The capacity dependency of electrode films on different gas ratios was explained by different structural, electrical, and surfacical properties. (author). 15 refs., 8 figs.

  18. Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode

    Institute of Scientific and Technical Information of China (English)

    Bin Zhou; Jiuhui Qu; Xu Zhao; Huijuan Liu

    2011-01-01

    Monoclinic bismuth vanadate (BiVO4) thin film was fabricated on indium-tin oxide glass from an amorphous heteronuclear complex via dip-coating.After annealation at 400, 500, and 600℃, the thin films were characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometry.The BiVO4 particles on the ITO glass surface had a monoclinic structure.The UV-Visible diffuse reflection spectra showed the BiVO4 thin film had photoabsorption properties, with a band gap around 2.5 eV.In addition, the thin film showed high visible photocatalytic activities towards 2,4-dichiorophenol and Bisphenol A degradation under visible light irradiation (λ.> 420 nm).Over 90% of the two organic pollutants were removed in 5 hr.A possible degradation mechanism of 2,4-dichlorophenol were also studied.

  19. Amorphous and crystalline IrO2 thin films as potential stimulation electrode coatings

    International Nuclear Information System (INIS)

    Amorphous and crystalline iridium oxide thin films with potential use as coating materials for stimulation electrodes were studied. Characterization of these films by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and an increase in charge capacity of iridium oxide thin films after an electrochemical activation process in 0.9% NaCl solution. The surface morphology of these films was studied by scanning electron microscopy. The two types of IrO2 films were also compared under conditions relevant to applications as stimulation electrodes. The results indicate that amorphous IrO2 films have significantly higher charge storage capacity and lower impedance than crystalline IrO2 films. This makes the amorphous films a preferable coating material for stimulation applications

  20. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  1. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    Science.gov (United States)

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  2. Measurement of secondary ionization coefficient of CaO film electrode

    Science.gov (United States)

    Suzuki, Susumu; Kashiwagi, Yasuhide; Itoh, Haruo

    2013-02-01

    The secondary ionization coefficient γ of a CaO film electrode is investigated taking into account the difference in breakdown voltage obtained by repeated voltage applications. Such measurement is performed under a sinusoidal voltage of 0.5 Hz. If the CaO film electrode acts as the cathode, breakdown voltage gradually decreases and converges to an almost constant value after several breakdowns. From the obtained results, the γ of the CaO film electrode is determined for each breakdown using Townsend's criterion. The γ in the first breakdown is lower than those in subsequent breakdowns, particularly in the steady state. The difference in γ is considered to originate from accumulated charges on the CaO film electrode. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  3. Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells

    OpenAIRE

    ZHAO Guoqing; Wang, Wei; Bae, Tae-Sung; Lee, Sang-Geul; Mun, ChaeWon; Lee, Sunghun; Yu, Huashun; Lee, Gun-Hwan; Song, Myungkwan; Yun, Jungheum

    2015-01-01

    Advances in flexible optoelectronic devices have led to an increasing need for developing highly efficient, low-cost, flexible transparent conducting electrodes. Copper-based electrodes have been unattainable due to the relatively low optical transmission and poor oxidation resistance of copper. Here, we report the synthesis of a completely continuous, smooth copper ultra-thin film via limited copper oxidation with a trace amount of oxygen. The weakly oxidized copper thin film sandwiched betw...

  4. Micromachined dense palladium electrodes for thin-film solid acid fuel cells

    NARCIS (Netherlands)

    Unnikrishnan, Sandeep

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work investigate

  5. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-01

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting. PMID:27246652

  6. Process optimization for the sputter deposition of molybdenum thin films as electrode for AlN thin films

    International Nuclear Information System (INIS)

    Molybdenum thin films have been deposited on Ti/(100) Si substrates by dc sputtering. For process optimization, a design of experiments method was used with three input factors (target power, substrate temperature, and process gas flow). Deposition rate, resistivity, roughness, diffraction angle, and rocking curve width were analyzed as output responses using statistical analysis method. Subsequently, a process allowing the deposition of highly crystalline, smooth, and low resistivity Mo film was selected and tested against film thickness. The as-optimized sputtered molybdenum thin film was used as seeding electrode for the growth of highly c-axis textured AlN film by dc pulsed reactive sputtering

  7. Structural, electrical, and thermoelectric properties of bismuth telluride: Silicon/carbon nanocomposites thin films

    International Nuclear Information System (INIS)

    In this study, the effect of the presence of secondary phases on the structural, electrical, and thermoelectric properties of nanocomposite Bi2Te3 films prepared by co-sputtering of silicon and carbon with Bi2Te3 has been investigated. Growth temperature and the presence of Si and C phase are observed to have a strong effect on the topography and orientation of crystallites. X-ray diffraction study demonstrates that Bi2Te3 and Bi2Te3:C samples have preferred (0 0 15) orientation in comparison to Bi2Te3:Si sample, which have randomly oriented crystallites. Atomic force, conducting atomic force, and scanning thermal microscopy analysis show significant differences in topographical, electrical, and thermal conductivity contrasts in Bi2Te3:Si and Bi2Te3:C samples. Due to the randomly oriented crystallites and the presence of Si along the crystallite boundaries, appreciable Seebeck coefficient, higher electrical conductivity, and lower thermal conductivity is achieved resulting in relatively higher value of power factor (3.71 mW K−2 m−1) for Bi2Te3:Si sample. This study shows that by incorporating a secondary phase along crystallite boundaries, microstructural, electrical, and thermoelectric properties of the composite samples can be modified

  8. Multianalyte Biosensors for the Simultaneous Determination of Glucose and Galactose Based on Thin Film Electrodes

    Institute of Scientific and Technical Information of China (English)

    Neng Qin JIA; Zong Rang ZHANG; Jiang Zhong ZHU; Guo Xiong ZHANG

    2004-01-01

    A multianalyte biosensor for the simultaneous determination of glucose and galactose was developed by immobilizing glucose oxidase (GOD) and galactose oxidase (GAO) on Nafion-modified thin film platinum disk electrodes. The dual Pt working electrodes with disk shape and the surrounding ring shaped counter electrode were fabricated by thin film technology, which were integrated onto the same microchip. The response of the designed biosensor for glucose and galactose were linear up to 6.0 mmol/L and 3.5 mmol/L with sensitivities of 0.3 (A/mmol/L and 0.12 μA/mmol/L, respectively. No cross-talking effect was observed.

  9. Effect of Some Metal Ion Dopants on Electrochemical Properties of Ni(OH)2 Film Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng-bin; LIU Han-san; CAO Xue-jing; SUN Chia-chung

    2003-01-01

    The Ni(OH)2 film electrodes doped respectively with alkali-earth metal aluminum, lead, partial transition metal and some rare-earth metal(altogether 17 kinds of metals) ions were prepared by cathode electrodeposition. The electrode reaction reversibility, the difficult extent of oxygen evolution, the proton diffusion coefficient, the discharge potential of middle value and the active material utilization of the Ni(OH)2 film electrode were compared with those of the ones doped with the metal ions by means of cyclic voltammetry, potential step and constant current charge-discharge experiments. It was found that Ca2+, Co2+, Cd2+, Al3+ etc. have obviously positive effect.

  10. Diffusional transport to and through thin-layer nanoparticle film modified electrodes: capped CdSe nanoparticle modified electrodes.

    Science.gov (United States)

    Hepburn, William G; Batchelor-McAuley, Christopher; Tschulik, Kristina; Barnes, Edward O; Kachoosangi, Roohollah Torabi; Compton, Richard G

    2014-09-01

    We present a simple and general theoretical model which accounts fully for the influence of an electrode modifying non-electroactive layer on the voltammetric response of a diffusional redox probe. The layer is solely considered to alter the solubilities and diffusion coefficients of the electroactive species within the thin layer on the electrode surface. On this basis it is demonstrated how, first, the apparent electrochemical rate constant can deviate significantly from that measured at an unmodified electrode. Second, depending on the conditions within the layer the modification of the electrode may lead to either apparent 'negative' or 'positive' electrocatalytic effects without the true standard electrochemical rate constant for the electron transfer at the electrode surface being altered. Having presented the theoretical model three experimental cases are investigated, specifically, the reductions of ruthenium(III) hexaamine, oxygen and boric acid on a gold macro electrode with and without a multi-layer organic capped nanoparticle film. In the latter case of the reduction of boric acid the voltammetric reduction is found to be enhanced by the presence of the organic layer. This result is interpreted as being due to an increase in the solubility of the analyte within the non-electroactive layer and not due to an alteration of the standard electrochemical rate constant. PMID:25050481

  11. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements

    International Nuclear Information System (INIS)

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  12. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements

    Science.gov (United States)

    Cunico, F. J.; Marquez, J. C.; Hilke, H.; Skrifvars, M.; Seoane, F.

    2013-04-01

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  13. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors

    Science.gov (United States)

    Kim, Han-Ki; Seong, Tae-Yeon; Lim, Jae-Hong; Cho, Won, Ii; Soo Yoon, Young

    The electrochemical and structural properties of cobalt oxide films which are deposited at different sputtering gas-ratios of O 2/(Ar+O 2) are investigated. In order to examine the electrochemical properties of the as-deposited films, all solid-state thin-film supercapacitors (TFSCs) are fabricated. There consist of Co 3O 4 electrodes and an amorphous LiPON thin-film electrolyte. It is shown that the capacitance behaviour of the Co 3O 4/LiPON/Co 3O 4 TFSCs is similar to bulk-type supercapacitor behaviour. It is further shown that the electrochemical behaviour of the TFSCs is dependent on the sputtering gas-ratios. The gas-ratio dependence of the capacitance of the oxide electrode films is discussed based on X-ray diffraction (XRD) and electrical results for the Co 3O 4 films.

  14. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.;

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....

  15. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  16. High PEC conversion efficiencies from CuSe film electrodes modified with metalloporphyrin/polyethylene matrices

    International Nuclear Information System (INIS)

    Enhancement of hole-transfer across CuSe electrode/liquid junction can be facilitated by coating with metalloporphyrin complexes embedded inside polyethylene matrices. - Highlights: • CuSe films were electrochemically deposited onto FTO/Glass • Annealing CuSe film electrodes enhanced PEC characteristics • PEC characteristics were further enhanced by metalloporphyrin/polyethylene matrices, yielding ∼15% efficiency • Matrix behavior as charge transfer mediator enhanced electrode conversion efficiency and stability - Abstract: Electrodeposited CuSe film electrodes have been prepared onto FTO/glass by a facile method based on earlier methods described for other systems. The films were characterized, modified by annealing and further characterized. The films were then modified by coating with tetra(-4-pyridyl) pophyrinato-manganese (MnTPyP) complexes embedded inside commercial polyethylene (PE) matrices. The effects of modifications on different film properties, such as X-ray diffraction (XRD) patterns, surface morphology, photoluminescence (PL) spectra and electronic absorption spectra were investigated. Compared with other thin film electrode systems, very high photoelectrochemical (PEC) conversion efficiency values have been observed here. Pre-annealing the CuSe films at 150°C for 2 h, followed by attaching the MnTPyP/PE matrices remarkably enhanced their PEC characteristics. The conversion efficiency was significantly enhanced, from less than 1.0% to more than 15%. Fill factor (FF) was also enhanced from ∼30% to ∼80%. Values of open-circuit potential (VOC) and short-circuit current (JSC) were significantly enhanced. While annealing affects uniformity, particle inter-connection and surface texture of the CuSe films, the MnTPyP complex species behaves as an additional charge-transfer mediator across the film/electrolyte junction. Optimization of PEC characteristics, using different deposition times, different annealing temperatures, different annealing

  17. Paper-supported nanostructured ultrathin gold film electrodes – Characterization and functionalization

    International Nuclear Information System (INIS)

    Highlights: • Mechanically stable ultrathin gold films can be prepared on a latex coated paper. • Thickness of ultrathin gold film determines its electrical and optical properties. • Surface properties of ultrathin gold films can be changed by thin film coatings. • Ultrathin gold film electrodes can be used in electrochemical experiments. - Abstract: Ultrathin gold films (UTGFs) were fabricated on a nanostructured latex-coated paper substrate by physical vapour deposition (PVD) with the aim to provide low-cost and flexible conductive electrodes in paper-based electronics. Morphological, electric and optical properties of UTGFs were dependent on the deposited film thickness. In addition, UTGFs were functionalized with insulating and hydrophobic 1-octadecanethiol self-assembled monolayer and inkjet-printed conductive and hydrophilic poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT–PSS) layer and their electrochemical properties were examined. Results showed that sufficient mechanical stability and adhesion of UTGFs deposited on latex-coated paper was achieved without the need on any additional adhesive layers, enabling a more robust fabrication process of the electrodes. UTGF electrodes tolerated extensive bending without adverse effects and conductivity comparable to the bulk gold was obtained already with the film thickness of 6 nm. Although not been fabricated with the high-throughput method like printing, a very low material consumption (∼12 μg/cm2) together with a high conductivity (resistivity < 3 × 10−6 Ω cm) makes the UTGFs electrodes potential candidates low-cost components in flexible electronics. In addition, the excellent stability of the UTGF electrodes in electrochemical experiments enables their application in the development of paper-based electrochemical platforms, e.g. for biosensing purposes

  18. Paper-supported nanostructured ultrathin gold film electrodes – Characterization and functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Ihalainen, Petri, E-mail: petri.ihalainen@abo.fi [Laboratory of Physical Chemistry, Department of Natural Sciences, Åbo Akademi University, Turku (Finland); Määttänen, Anni [Laboratory of Physical Chemistry, Department of Natural Sciences, Åbo Akademi University, Turku (Finland); Pesonen, Markus [Physics, Department of Natural Sciences, Åbo Akademi University, Turku (Finland); Sjöberg, Pia; Sarfraz, Jawad [Laboratory of Physical Chemistry, Department of Natural Sciences, Åbo Akademi University, Turku (Finland); Österbacka, Ronald [Physics, Department of Natural Sciences, Åbo Akademi University, Turku (Finland); Peltonen, Jouko [Laboratory of Physical Chemistry, Department of Natural Sciences, Åbo Akademi University, Turku (Finland)

    2015-02-28

    Highlights: • Mechanically stable ultrathin gold films can be prepared on a latex coated paper. • Thickness of ultrathin gold film determines its electrical and optical properties. • Surface properties of ultrathin gold films can be changed by thin film coatings. • Ultrathin gold film electrodes can be used in electrochemical experiments. - Abstract: Ultrathin gold films (UTGFs) were fabricated on a nanostructured latex-coated paper substrate by physical vapour deposition (PVD) with the aim to provide low-cost and flexible conductive electrodes in paper-based electronics. Morphological, electric and optical properties of UTGFs were dependent on the deposited film thickness. In addition, UTGFs were functionalized with insulating and hydrophobic 1-octadecanethiol self-assembled monolayer and inkjet-printed conductive and hydrophilic poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT–PSS) layer and their electrochemical properties were examined. Results showed that sufficient mechanical stability and adhesion of UTGFs deposited on latex-coated paper was achieved without the need on any additional adhesive layers, enabling a more robust fabrication process of the electrodes. UTGF electrodes tolerated extensive bending without adverse effects and conductivity comparable to the bulk gold was obtained already with the film thickness of 6 nm. Although not been fabricated with the high-throughput method like printing, a very low material consumption (∼12 μg/cm{sup 2}) together with a high conductivity (resistivity < 3 × 10{sup −6} Ω cm) makes the UTGFs electrodes potential candidates low-cost components in flexible electronics. In addition, the excellent stability of the UTGF electrodes in electrochemical experiments enables their application in the development of paper-based electrochemical platforms, e.g. for biosensing purposes.

  19. Application of a palladium hexacyanoferrate film-modified aluminum electrode to electrocatalytic oxidation of hydrazine.

    Science.gov (United States)

    Razmi, Habib; Azadbakht, Azadeh; Sadr, Moayad Hossaini

    2005-11-01

    A palladium hexacyanoferrate (PdHCF) film as an electrocatalytic material was obtained at an aluminum (Al) electrode by a simple electroless dipping method. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of hydrazine. The electrocatalytic oxidation of hydrazine was studied by cyclic voltammetry and rotating disk electrode voltammetry techniques. A calibration graph obtained for the hydrazine consisted of two segments (localized at concentration ranges 0.39-10 and 20-75 mM). The rate constant k and transfer coefficient alpha for the catalytic reaction and the diffusion coefficient of hydrazine in the solution D, were found to be 3.11 x 10(3) M(-1) s(-1), 0.52 and 8.03 x 10(-6) cm2 s(-1) respectively. The modified electrode was used to amperometric determination of hydrazine in photographic developer. The interference of ascorbic acid and thiosulfate were investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level of stability during electrochemical experiments, making it particularly suitable for analytical purposes. PMID:16317900

  20. Electrode loading effect and high temperature performance of ZnO thin film ultrasonic transducers

    Science.gov (United States)

    Zhou, X. S.; Zhang, J.; Hou, R.; Zhao, C.; Kirk, K. J.; Hutson, D.; Hu, P. A.; Peng, S. M.; Zu, X. T.; Fu, Y. Q.

    2014-10-01

    Nanocrystalline ZnO films of 5.8 μm thick were sputter-deposited on ferritic carbon steel plates (25 × 25 × 3 mm3) and characterized for use as ultrasonic transducers at both room temperature and high temperatures. Electrode loading effects have been studied using two types of electrodes, i.e., sputtered Cr/Au (5/50 nm) and silver paste, with electrode diameters 0.7-2.5 mm. Longitudinal and transverse waves were obtained in pulse-echo tests using both types of electrodes. With a silver paste top electrode, a dominant longitudinal mode was obtained, but with a thin Cr/Au film as the top electrode, shear waves were more dominant. Pulse-echo tests of the ZnO transducers were also performed at elevated temperatures up to 450 °C using a carbon paste electrodes. The sputtered ZnO films maintained a stable crystalline structure and orientation at the elevated temperatures, and ZnO devices on ferritic carbon steel could be used successfully up to 400 °C. However, when the temperature was increased further, rapid surface oxidation of the ferritic carbon steel caused the failure of the transducer.

  1. Tunnelling conductive hybrid films of gold nanoparticles and cellulose and their applications as electrochemical electrodes.

    Science.gov (United States)

    Liu, Zhiming; Wang, Xuefeng; Li, Mei; Wu, Wenjian

    2015-11-20

    Conductive hybrid films of metal nanoparticles and polymers have practical applications in the fields of sensing, microelectronics and catalysis, etc. Herein, we present the electrochemical availability of tunnelling conductive hybrid films of gold nanoparticles (GNPs) and cellulose.The hybrid films were provided with stable tunnelling conductive properties with 12 nm GNPs of 12.7% (in weight). For the first time, the conductive hybrid films were used as substrates of electrochemical electrodes to load calmodulin (CaM) proteins for sensing of calcium cations.The electrodes of hybrid films with 20 nm GNPs of 46.7% (in weight) exhibited stable electrochemical properties, and showed significant responses to calcium cations with concentrations as low as 10(−9) M after being loaded with CaM proteins. PMID:26511782

  2. Flexible electrochromic films based on CVD-graphene electrodes

    Science.gov (United States)

    Choi, Dong Soo; Han, Seung Ho; Kim, Hyeongkeun; Kang, So Hee; Kim, Yena; Yang, Cheol-Min; Kim, Tae Young; Yoon, Dae Ho; Yang, Woo Seok

    2014-09-01

    Graphene synthesized via chemical vapor deposition is a notable candidate for flexible large-area transparent electrodes due to its great physical properties and its 2D activated surface area. Electrochromic devices in optical displays, smart windows, etc are suitable applications for graphene when used as a transparent conductive electrode. In this study, various-layer graphene was synthesized via chemical vapor deposition, and inorganic WOx was deposited on the layers, which have advantageous columnar structures and W6+ and W4+ oxidation states. The characteristics of graphene and WOx were verified using optical transmittance, Raman spectroscopy, x-ray photoelectron spectroscopy and scanning electron microscopy. The optimum transparent conductive electrode condition for controlling graphene layers was investigated based on the optical density and cyclic voltammetry. Electrochromic devices were fabricated using a three-layer graphene electrode, which had the best optical density. The graphene in the flexible electrochromic device demonstrated a potential for replacing ITO in flexible electronics.

  3. Flexible electrochromic films based on CVD-graphene electrodes

    International Nuclear Information System (INIS)

    Graphene synthesized via chemical vapor deposition is a notable candidate for flexible large-area transparent electrodes due to its great physical properties and its 2D activated surface area. Electrochromic devices in optical displays, smart windows, etc are suitable applications for graphene when used as a transparent conductive electrode. In this study, various-layer graphene was synthesized via chemical vapor deposition, and inorganic WOx was deposited on the layers, which have advantageous columnar structures and W6+ and W4+ oxidation states. The characteristics of graphene and WOx were verified using optical transmittance, Raman spectroscopy, x-ray photoelectron spectroscopy and scanning electron microscopy. The optimum transparent conductive electrode condition for controlling graphene layers was investigated based on the optical density and cyclic voltammetry. Electrochromic devices were fabricated using a three-layer graphene electrode, which had the best optical density. The graphene in the flexible electrochromic device demonstrated a potential for replacing ITO in flexible electronics. (paper)

  4. Influence of bismuth on properties and microstructures of Sr0.5Ba0.5–Bi TiO3 thin films

    Indian Academy of Sciences (India)

    Tao Wenhong; Wang Yin; Fu Xinghua; Wei Qihong

    2006-10-01

    The influence of bismuth (Bi) on the dielectric and ferroelectric properties of Sr0.5Ba0.5–Bi TiO3 (BST, 0 < < 0.030 mol) thin films was studied. The results showed that the dielectric constant (r) and dielectric loss (tan ) decreased, and temperature, m, for maximum and r (Curie temperature), moved to lower temperature with increasing Bi content. The r, s and c were 0.22 C/cm2, 0.32 C/cm2 and 60 kV/cm, respectively for Sr0.5Ba0.485Bi0.015TiO3 thin films measured at 100 Hz, 20 V. The microstructure of BST thin films was studied by XRD and TEM. Tetragonal perovskite grains existed in BST thin films, but the grain size decreased with increasing doping ratio in BST. The characteristic absorption band for octahedron [TiO2] (471.65 cm-1) was shifted to lower wave number.

  5. Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes

    International Nuclear Information System (INIS)

    Polyaniline-carboxylic multiwalled carbon nanotubes composite film (PANi-MWCNT) has been polymerized on the surface of interdigitated platinum electrode (fabricated by MEMS technology) which was compatibly connected to Autolab interface via universal serial bus (USB). An amperometric biosensor based on covalent immobilization of cholesterol oxidase (ChOx) on PANi–MWCNT film with potassium ferricyanide (FeCN) as the redox mediator was developed. The mediator helps to shuttle the electrons between the immobilized ChOx and the PANi-MWCNT electrode, therefore operating at a low potential of −0.3 V compared to the saturated calomel electrode (SCE). This potential precludes the interfering compounds from oxidization. The bio-electrode exhibits good linearity from 0.02 to 1.2 mM cholesterol concentration with a correlation coefficient of 0.9985

  6. 微波消解-铋膜/Nation修饰电极溶出伏安法测定鳗鱼中的镉含量%Determination of Cadmium in Eel by Microwave Digestion Followed by Stripping Voltammetry on Bismuth/Nation Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    李静; 李红波; 范大和; 王伟

    2011-01-01

    A stripping voltammetric method based on microwave digestion was developed for determining cadmium in eel on a bismuth/nafion modified electrode. Oxidation yield a well-defined square wave peak for Cd^2+ at about - 0.85 V. Nation concentration, bismuth film thickness, buffer solution pH, deposition potential accumulation time and other potential interference factors were investigated. A linear relationship was found between peak area and cadmium concentration over the range of 4.0 to 14.0 μg/L with a correlation coefficient of 0.9964. The limit of detection of the method was 0.2 μg/L. The sensor was highly sensitive and effective to detect cadmium even in the presence of several excess potential interference ions.%运用铋膜/Nation修饰电极耦合微波消解技术测定鳗鱼中的Cd^2+。Cd^2+在-0.85V处出现清晰的方波氧化峰。Nafion、铋膜的厚度、缓冲液的pH值、富集电位、富集时间及可能干扰物质的影响因素进行考察。Cd^2+在4.0~14.0μg/L质量浓度范围内线性关系,线性相关性系数为0.9964,检出限为0.2ug/L。结果表明,该传感器在过量的干扰离子存在条件下,表现出超灵敏性和有效性。

  7. Study on hydrogen evolution performance of the carbon supported PtRu alloy film electrodes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.

  8. Polymer Photovoltaic Cell Using TiO2/G-PEDOT Nanocomplex Film as Electrode

    Directory of Open Access Journals (Sweden)

    F. X. Xie

    2008-01-01

    Full Text Available Using TiO2/G-PEDOT (PEDOT/PSS doped with glycerol nanocomplex film as a substitute for metal electrode in organic photovoltaic cell is described. Indium tin oxide (ITO worked as cathode and TiO2/G-PEDOT nanocomplex works as anode. The thickness of TiO2 layer in nanocomplex greatly affects the act of this nonmetallic electrode of the device. To enhance its performance, this inverted organic photovoltaic cell uses another TiO2 layer as electron selective layer contacted to ITO coated glass substrates. All films made by solution processing techniques are coated on the transparent substrate (glass with a conducting film ITO. The efficiency of this solar cell is compared with the conventional device using Al as electrode.

  9. Lanthanide doped ceria thin films as possible counter electrode materials in electrochromic devices

    CERN Document Server

    Hartridge, A

    2000-01-01

    suitability of these thin films as counter electrodes in electrochromic devices. The final chapter then turns to the electrochemical insertion of lithium into these materials using cyclic voltammetry. All films studied enabled the reversible insertion of lithium with varying potentials and charge capacities without the loss of transmission of light common to other potential counter electrode materials. Certain compositions however, comprising ceria doped with Dy, Y, Nd and Pr, allowed enough lithium insertion (charge capacity) to fulfil the requirements of counter electrode materials in electrochromic devices. These materials are therefore worthy of further study. Crystalline solid solutions of lanthanide doped ceria have long been known for their high ionic conductivity and as such have found applications as oxygen sensors and in solid oxide fuel cells. With advances in preparative techniques over the years, thin films of ceria doped with zirconia and titania have been studied and found to possess the necess...

  10. Non-stoichiometry and magneto-optic properties of magnetic bubble thin films of TmIG substituted with bismuth and gallium

    International Nuclear Information System (INIS)

    Thulium iron garnet thin films substituted with bismuth and gallium were prepared by LPE from a PbO.B2O3 flux. Radioactive isotope tracers were added to the melt as the chemical analysis technique. The deviation from the ratio (Pb + Bi + Tm)/(Fe + Ga) = 0.6 of the layers was large and a proportion of the thulium ions possibly lie on the octahedral crystallographic sites. The concentration of Bi, Pb, and Ga as function of the growth temperature was studied. The magneto-optic properties show that the layers are well suited for use in a magneto-optic device. A figure of merit of 2.5 degree per decibel at lambda = 560 nm was obtained and some magnetic bubble parameters are also presented. (orig.)

  11. Effect of top electrode material on radiation-induced degradation of ferroelectric thin film structures

    Science.gov (United States)

    Brewer, Steven J.; Deng, Carmen Z.; Callaway, Connor P.; Paul, McKinley K.; Fisher, Kenzie J.; Guerrier, Jonathon E.; Rudy, Ryan Q.; Polcawich, Ronald G.; Jones, Jacob L.; Glaser, Evan R.; Cress, Cory D.; Bassiri-Gharb, Nazanin

    2016-07-01

    The effects of gamma irradiation on the dielectric and piezoelectric responses of Pb[Zr0.52Ti0.48]O3 (PZT) thin film stacks were investigated for structures with conductive oxide (IrO2) and metallic (Pt) top electrodes. The samples showed, generally, degradation of various key dielectric, ferroelectric, and electromechanical responses when exposed to 2.5 Mrad (Si) 60Co gamma radiation. However, the low-field, relative dielectric permittivity, ɛr, remained largely unaffected by irradiation in samples with both types of electrodes. Samples with Pt top electrodes showed substantial degradation of the remanent polarization and overall piezoelectric response, as well as pinching of the polarization hysteresis curves and creation of multiple peaks in the permittivity-electric field curves post irradiation. The samples with oxide electrodes, however, were largely impervious to the same radiation dose, with less than 5% change in any of the functional characteristics. The results suggest a radiation-induced change in the defect population or defect energy in PZT with metallic top electrodes, which substantially affects motion of internal interfaces such as domain walls. Additionally, the differences observed for stacks with different electrode materials implicate the ferroelectric-electrode interface as either the predominant source of radiation-induced effects (Pt electrodes) or the site of healing for radiation-induced defects (IrO2 electrodes).

  12. The role of front and back electrodes in parasitic absorption in thin-film solar cells

    Directory of Open Access Journals (Sweden)

    Boccard Mathieu

    2014-07-01

    Full Text Available When it comes to parasitic absorption in thin-film silicon solar cells, most studies focus on one electrode only, most of the time the substrate (in n-i-p configuration or superstrate (in p-i-n configuration. We investigate here simultaneously the influence of the absorption in both front and back electrodes on the current density of tandem micromorph solar cells in p-i-n configuration. We compare four possible combinations of front and back electrodes with two different doping levels, but identical sheet resistance and identical light-scattering properties. In the infrared part of the spectrum, parasitic absorption in the front or back electrode is shown to have a similar effect on the current generation in the cell, which is confirmed by modeling. By combining highly transparent front and back ZnO electrodes and high-quality silicon layers, a micromorph device with a stabilized efficiency of 11.75% is obtained.

  13. The role of front and back electrodes in parasitic absorption in thin-film solar cells

    Science.gov (United States)

    Boccard, Mathieu; Cuony, Peter; Hänni, Simon; Stuckelberger, Michael; Haug, Franz-Josef; Meillaud, Fanny; Despeisse, Matthieu; Ballif, Christophe

    2014-07-01

    When it comes to parasitic absorption in thin-film silicon solar cells, most studies focus on one electrode only, most of the time the substrate (in n-i-p configuration) or superstrate (in p-i-n configuration). We investigate here simultaneously the influence of the absorption in both front and back electrodes on the current density of tandem micromorph solar cells in p-i-n configuration. We compare four possible combinations of front and back electrodes with two different doping levels, but identical sheet resistance and identical light-scattering properties. In the infrared part of the spectrum, parasitic absorption in the front or back electrode is shown to have a similar effect on the current generation in the cell, which is confirmed by modeling. By combining highly transparent front and back ZnO electrodes and high-quality silicon layers, a micromorph device with a stabilized efficiency of 11.75% is obtained.

  14. The role of front and back electrodes in parasitic absorption in thin-film solar cells

    OpenAIRE

    Boccard Mathieu; Cuony Peter; Hänni Simon; Stuckelberger Michael; Haug Franz-Josef; Meillaud Fanny; Despeisse Matthieu; Ballif Christophe

    2014-01-01

    When it comes to parasitic absorption in thin-film silicon solar cells, most studies focus on one electrode only, most of the time the substrate (in n-i-p configuration) or superstrate (in p-i-n configuration). We investigate here simultaneously the influence of the absorption in both front and back electrodes on the current density of tandem micromorph solar cells in p-i-n configuration. We compare four possible combinations of front and back electrodes with two different doping levels, but ...

  15. Characterization of thiol-functionalised silica films deposited on electrode surfaces

    Directory of Open Access Journals (Sweden)

    Ivana Cesarino

    2008-12-01

    Full Text Available Thiol-functionalised silica films were deposited on various electrode surfaces (gold, platinum, glassy carbon by spin-coating sol-gel mixtures in the presence of a surfactant template. Film formation occurred by evaporation induced self-assembly (EISA involving the hydrolysis and (cocondensation of silane and organosilane precursors on the electrode surface. The characterization of such material was performed by IR spectroscopy, thermogravimetry (TG, elemental analysis (EA, atomic force microscopy (AFM, scanning electron microscopy (SEM and cyclic voltammetry (CV.

  16. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    OpenAIRE

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01

    Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is...

  17. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  18. Electrocatalytic behaviour of hybrid cobalt–manganese hexacyanoferrate film on glassy carbon electrode

    International Nuclear Information System (INIS)

    A thin film of hybrid cobalt–manganese hexacyanoferrate (CoMnHCF), a redox mediator was electrodeposited on a glassy carbon (GC) electrode and was employed as an amperometric sensor towards L-Tryptophan (L-Trp). The hybrid film was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction technique (XRD), scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDAX), and electrochemical techniques. The atomic absorption spectroscopic analysis provided the stoichiometry of the hybrid film to be K1.74-y Coy Mn0.78 [Fe(CN)6], y ≤ 0.68. The electrochemical impedance study revealed the excellent charge transfer properties of GC/CoMnHCF electrode. The voltammetric investigations demonstrated exceptional electrocatalytic properties of the hybrid film modified electrode when compared to that of bare GC, GC/CoHCF and GC/MnHCF electrodes, towards the L-Trp oxidation. The kinetic parameters such as electron transfer coefficient, the electron transfer rate constant, the diffusion coefficient and the catalytic rate constant for the electrooxidation process of L-Trp were investigated. The amperometric detection of L-Trp employing GC/CoMnHCF electrode possessed a good sensitivity of 10 × 10−2 A M−1 cm−2 in a wide range of detection (2–200 μM) at a reduced overpotential of 680 mV. In addition, the proposed amperometric method was applied to the detection of L-Trp in commercial milk samples with reproducible results. - Highlights: • A hybrid cobalt–manganese hexacyanoferrate film was prepared. • The hybrid film possesses excellent charge transfer properties. • The hybrid film exhibits excellent electrocatalytic properties towards Tryptophan. • Tryptophan detection is possible from commercial milk samples

  19. Electrocatalytic behaviour of hybrid cobalt–manganese hexacyanoferrate film on glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Vinu Mohan, A.M., E-mail: vinumohan756@gmail.com; Rambabu, Gutru, E-mail: chinnu.ram09@gmail.com; Aswini, K.K., E-mail: aswinikk@ymail.com; Biju, V.M., E-mail: vmbiju@ymail.com

    2014-08-28

    A thin film of hybrid cobalt–manganese hexacyanoferrate (CoMnHCF), a redox mediator was electrodeposited on a glassy carbon (GC) electrode and was employed as an amperometric sensor towards L-Tryptophan (L-Trp). The hybrid film was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction technique (XRD), scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDAX), and electrochemical techniques. The atomic absorption spectroscopic analysis provided the stoichiometry of the hybrid film to be K{sub 1.74-y} Co{sub y} Mn{sub 0.78} [Fe(CN){sub 6}], y ≤ 0.68. The electrochemical impedance study revealed the excellent charge transfer properties of GC/CoMnHCF electrode. The voltammetric investigations demonstrated exceptional electrocatalytic properties of the hybrid film modified electrode when compared to that of bare GC, GC/CoHCF and GC/MnHCF electrodes, towards the L-Trp oxidation. The kinetic parameters such as electron transfer coefficient, the electron transfer rate constant, the diffusion coefficient and the catalytic rate constant for the electrooxidation process of L-Trp were investigated. The amperometric detection of L-Trp employing GC/CoMnHCF electrode possessed a good sensitivity of 10 × 10{sup −2} A M{sup −1} cm{sup −2} in a wide range of detection (2–200 μM) at a reduced overpotential of 680 mV. In addition, the proposed amperometric method was applied to the detection of L-Trp in commercial milk samples with reproducible results. - Highlights: • A hybrid cobalt–manganese hexacyanoferrate film was prepared. • The hybrid film possesses excellent charge transfer properties. • The hybrid film exhibits excellent electrocatalytic properties towards Tryptophan. • Tryptophan detection is possible from commercial milk samples.

  20. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  1. Development of liquid film thickness measurement technique by high-density multipoint electrodes method

    International Nuclear Information System (INIS)

    High-density multipoint electrode method was developed to measure a liquid film thickness transient on a curved surface. The devised method allows us to measure spatial distribution of liquid film with its conductance between electrodes. The sensor was designed and fabricated as a multilayer print circuit board, where electrode pairs were distributed in reticular pattern with narrow interval. In order to measure a lot of electrode pairs at a high sampling rate, signal-processing method used by the wire mesh sensor measurement system was applied. An electrochemical impedance spectrometry concludes that the sampling rate of 1000 slices/s is feasible without signal distortion by electric double layer. The method was validated with two experimental campaigns: (1) a droplet impingement on a flat film and (2) a jet impingement on a rod-shape sensor surface. In the former experiment, a water droplet having 4 mm in diameter impinged onto the 1 mm thick film layer. A visual observation study with high-speed video camera shows after the liquid impingement, the water layer thinning process was clearly demonstrated with the sensor. For the latter experiment, the flexible circuit board was bended to form a cylindrical shape to measure water film on a simulated fuel rod in bundle geometry. A water jet having 3 mm in diameter impinged onto the rod-shape sensor surface. The process of wetting area enlargement on the rod surface was demonstrated in the same manner that the video-frames showed. (author)

  2. Investigation on the dielectric properties of (Ba, Sr)TiO3 thin films on hybrid electrodes

    International Nuclear Information System (INIS)

    Ba0.65Sr0.35TiO3 (BST) thin films were deposited on Pt/Ti/SiO2/Si, RuO2/SiO2/Si and RuO2/Pt/Ti/SiO2/Si substrates by radio frequency magnetron sputtering technique. The effects of these bottom electrodes on the microstructure and dielectric properties of the BST thin films were investigated by using X-ray diffraction (XRD), atomic force microscope (AFM), transmission electron microscopy (TEM) and electrical measurements. The BST thin films on RuO2/Pt hybrid bottom electrodes exhibit good crystalline and interfacial structure with a thinner transition layer. Dielectric measurement reveals that the films on RuO2/Pt hybrid electrodes have comparable dielectric constant and loss tangent with the films on Pt electrode, and the dielectric tunability of BST films on RuO2/Pt reaches 38.2%, which is higher than that of BST films on a single Pt or RuO2 electrode. The BST thin films on RuO2/Pt exhibit lower leakage current density by nearly two orders' of magnitude than that on RuO2 electrode. The higher tunability and lower leakage current of the films on RuO2/Pt hybrid bottom electrodes are mainly attributed to the RuO2 layer, which facilitates the nucleation and growth of BST films, and inhibits the interfacial diffusion between the BST films and bottom electrodes. The results show a potential for RuO2/Pt hybrid electrodes replacing Pt electrode in microelectronic device applications.

  3. Bifacial dye-sensitized solar cells using highly transparent PEDOT:PSS films as counter electrodes

    International Nuclear Information System (INIS)

    Highlights: • PEDOT:PSS films were developed as counter electrodes (CE) for bifacial DSSC. • PEDOT:PSS films involved a pristine film and 10 modified films. • PEDOT:PSS films exhibited transmittances ranging from 78% to 83.5% at 550 nm. • IOD, DMSO or PEG200 modified film used in DSSC was superior to pristine film. • PEDOT:PSS film used in DSSC had higher CE-illuminated efficiency than Pt electrode. - Abstract: Highly transparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) films prepared by a facile spin-coating process were developed as counter electrodes for the configuration of bifacial dye-sensitized solar cells (DSSCs) with capability of utilizing the light from both sides. The used PEDOT:PSS films involved a pristine PEDOT:PSS film and ten modified PEDOT:PSS ones. The additives for preparing the modified PEDOT:PSS films were involved in iodine (IOD), dimethyl sulfoxide (DMSO), ethanol, acetone, glycerol, sorbitol and poly(ethylene glycol) (PEG) with different molecular weights (200, 400, 800 and 20,000). The UV–Vis spectra confirm that all the PEDOT:PSS films on fluorine-doped tin oxide substrates have excellent transparency with transmittance ranging from 78% to 83.5% at 550 nm. The bifacial DSSC using the pristine PEDOT:PSS film exhibits the efficiencies of 4.71% and 2.38% corresponding to the illuminations from the front and the rear sides, respectively. When the additives of IOD, DMSO and PEG200 are applied to modify the pristine PEDOT:PSS film, the corresponding device shows a significantly improved efficiency of 5.19%, 5.11% and 5.29% under the front illumination and an almost unchanged efficiency under the rear illumination, respectively. The strengthened efficiency is mainly attributed to the improved catalytic activity of the modified PEDOT:PSS films induced by the coarser surface and the lower sheet resistance. Moreover, the bifacial DSSCs with the three modified PEDOT:PSS films not only have a comparable front

  4. Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode

    OpenAIRE

    Chidambaram, N.; Balma, D.; Nigon, R.; Mazzalai, A.; Matloub, R.; Sandu, C. S.; Muralt, P.

    2015-01-01

    The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on insulating MgO buffered, oxidized silicon substrates. IDEs were fabricated by lift-off techniques and cantilevers were formed by dicing. The deflection upon application of a sweeping voltage was measured as large signal response in parallel t...

  5. Flexible electrochromic films based on CVD-graphene electrodes.

    Science.gov (United States)

    Soo Choi, Dong; Ho Han, Seung; Kim, Hyeongkeun; Hee Kang, So; Kim, Yena; Yang, Cheol-Min; Kim, Tae Young; Ho Yoon, Dae; Seok Yang, Woo

    2014-10-01

    Graphene synthesized via chemical vapor deposition is a notable candidate for flexible large-area transparent electrodes due to its great physical properties and its 2D activated surface area. Electrochromic devices in optical displays, smart windows, etc are suitable applications for graphene when used as a transparent conductive electrode. In this study, various-layer graphene was synthesized via chemical vapor deposition, and inorganic WO(x) was deposited on the layers, which have advantageous columnar structures and W(6+) and W(4+) oxidation states. The characteristics of graphene and WO(x) were verified using optical transmittance, Raman spectroscopy, x-ray photoelectron spectroscopy and scanning electron microscopy. The optimum transparent conductive electrode condition for controlling graphene layers was investigated based on the optical density and cyclic voltammetry. Electrochromic devices were fabricated using a three-layer graphene electrode, which had the best optical density. The graphene in the flexible electrochromic device demonstrated a potential for replacing ITO in flexible electronics. PMID:25201016

  6. Reversible potentiometric oxygen sensors based on polymeric and metallic film electrodes.

    Science.gov (United States)

    Yim, H S; Meyerhoff, M E

    1992-09-01

    Various materials and sensor configurations that exhibit reversible potentiometric responses to the partial pressure of oxygen at room temperature in neutral pH solution are examined. In one arrangement, platinum electrodes are coated with plasticized poly(vinyl chloride) films doped with a cobalt(II) tetraethylene pentamine complex. For such sensors, potentiometric oxygen response is attributed to a mixed potential originating from the underlying platinum electrode surface as well as a change in redox potential of the Co(II)-tetren-doped film as the complex binds oxygen reversibly. The response due to the platinum surface is prolonged by the presence of the Co(II)-tetren/PVC film. Alternately, thin films of metallic copper, electrochemically deposited on platinum and/or sputtered or vapor deposited on a single crystal silicon substrate, may be used for reversible oxygen sensing. The long-term reversibility and potentiometric stability of such copper film-based sensors is enhanced (up to 1 month) by preventing the formation of cuprous oxide on the surfaces via the application of an external nonpolarizing cathodic current through the working electrode or by specifically using sputtered copper films that have [100] preferred crystal structures as determined by X-ray diffraction. The implications of these findings in relation to fabricating analytically useful potentiometric oxygen sensors are discussed. PMID:1416035

  7. Electrochemical Deposition of CdTe Semiconductor Thin Films for Solar Cell Application Using Two-Electrode and Three-Electrode Configurations: A Comparative Study

    Directory of Open Access Journals (Sweden)

    O. K. Echendu

    2016-01-01

    Full Text Available Thin films of CdTe semiconductor were electrochemically deposited using two-electrode and three-electrode configurations in potentiostatic mode for comparison. Cadmium sulphate and tellurium dioxide were used as cadmium and tellurium sources, respectively. The layers obtained using both configurations exhibit similar structural, optical, and electrical properties with no specific dependence on any particular electrode configuration used. These results indicate that electrochemical deposition (electrodeposition of CdTe and semiconductors in general can equally be carried out using two-electrode system as well as the conventional three-electrode system without compromising the essential qualities of the materials produced. The results also highlight the advantages of the two-electrode configuration in process simplification, cost reduction, and removal of a possible impurity source in the growth system, especially as the reference electrode ages.

  8. Thin film preparation of hydrogen storage alloys and their characteristics as metal hydride electrodes

    International Nuclear Information System (INIS)

    This paper reports on thin films of hydrogen storage alloys (LaNi5, LaNi25 Co25) prepared by RF sputtering under argon and hydrogen atmospheres. Crystallinity (amorphous or crystalline) and electrical capacity of the thin films depended on the types of targets and the kinds of substrates and the conditions for RF sputtering such as RF power, temperature, and atmosphere. Both crystalline-oriented and amorphous films were obtained. In the former film, the c-axis was parallel to the substrate plane. Hydrogen was absorbed as a solid solution, causing no new phase. Electrode properties such as discharge capacity, charge-discharge cycle life, discharge capability, temperature dependence, and self-discharge rate were examined and discussed in comparison with those for the bulk materials. These alloy films had no pressure plateau on electrochemical pressure-composition isotherms. The maximum capacities were 160 mAh/g for LaNi5 crystalline film, 80 mAh/g for LaNi5-H film prepared under Ar-H2 atmosphere, and 80 mAh/g for the LaNi25 Co25 amorphous film. The capacity of LaNi5 films was reduced to half after 100 cycles, while the LaNi5-H and LaNi25Co25 films showed only small capacity decay even after 500 cycles (about 10-25%). The LaNi25Co25 film had better discharge capability at low temperatures than the LaNi5 film. Self-discharge rates of these electrodes were so high that the storage capacities were completely lost within one week

  9. Patterned electrical conductance and electrode formation in ion-implanted diamond films

    International Nuclear Information System (INIS)

    Selective implantation of 140 keV Co ions into self-supporting diamond films converts the surface into a conductive region at which redox electron transfer and metal deposition have been accomplished. Simple masking allows precise definition of the area to be plated within the insulating diamond matrix. Formation and electrochemical characterization of a rotating disk electrode in this manner are demonstrated

  10. Characterisation of hydrophobic carbon nanofiber-silica composite film electrodes for redox liquid immobilisation

    International Nuclear Information System (INIS)

    Carbon (50-150 nm diameter) nanofibers were embedded into easy to prepare thin films of a hydrophobic sol-gel material and cast onto tin-doped indium oxide substrate electrodes. They promote electron transport and allow efficient electrochemical reactions at solid|liquid and at liquid|liquid interfaces. In order to prevent aggregation of carbon nanofibers silica nanoparticles of 7 nm diameter were added into the sol-gel mixture as a 'surfactant' and homogeneous high surface area films were obtained. Scanning electron microscopy reveals the presence of carbon nanofibers at the electrode surface. The results of voltammetric experiments performed in redox probe-ferrocenedimethanol solution in aqueous electrolyte solution indicate that in the absence of organic phase, incomplete wetting within the hydrophobic film of carbon nanofibers can cause hemispherical diffusion regime typical for ultramicroelectrode like behaviour. The hydrophobic film electrode was modified with two types of redox liquids: pure tert-butylferrocene or dissolved in 2-nitrophenyloctylether as a water-insoluble solvent and immersed in aqueous electrolyte solution. With a nanomole deposit of pure redox liquid, stable voltammetric responses are obtained. The presence of carbon nanofibers embedded in the mesoporous matrix substantially increases the efficiency of the electrode process and stability under voltammetric conditions. Also well-defined response for diluted redox liquids is obtained. From measurements in a range of different aqueous electrolyte media a gradual transition from anion transfer dominated to cation transfer dominated processes is inferred depending on the hydrophilicity of the transferring anion or cation

  11. Investigation of top electrode for PZT thick films based MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Kristiansen, Paw T.;

    2010-01-01

    In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 mu m. Three test structures are used...

  12. Scanning electrochemical microscope characterization of thin film combinatorial libraries for fuel cell electrode applications

    Science.gov (United States)

    Black, M.; Cooper, J.; McGinn, P.

    2005-01-01

    Pt-Ru combinatorial libraries of potential fuel cell anode catalysts are formed by sequential sputter deposition through masks onto Si wafers. Scanning electrochemical microscopy (SECM) is employed for characterization of electrocatalytic activity. Aspects of using a scanning electrochemical microscope for characterization of an array of thin film fuel cell electrode materials are discussed. It is shown that in applying SECM to library characterization, careful attention must be paid to thin film annealing, specimen topography and tip degradation in order to realize meaningful results. Results from a Pt-Ru thin film library reveal the most active members near the 50 Pt/50 Ru composition.

  13. Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology

    Directory of Open Access Journals (Sweden)

    Robert Koncki

    2006-04-01

    Full Text Available Various planar technologies are employed for developing solid-state sensorshaving low cost, small size and high reproducibility; thin- and thick-film technologies aremost suitable for such productions. Screen-printing is especially suitable due to itssimplicity, low-cost, high reproducibility and efficiency in large-scale production. Thistechnology enables the deposition of a thick layer and allows precise pattern control.Moreover, this is a highly economic technology, saving large amounts of the used inks. Inthe course of repetitions of the film-deposition procedure there is no waste of material dueto additivity of this thick-film technology. Finally, the thick films can be easily and quicklydeposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodesbased on ionophores as well as crystalline ion-selective materials dedicated forpotentiometric measurements are demonstrated. Analytical parameters of these sensors arecomparable with those reported for conventional potentiometric electrodes. All mentionedthick-film strip electrodes have been totally fabricated in only one, fully automated thick-film technology, without any additional manual, chemical or electrochemical steps. In allcases simple, inexpensive, commercially available materials, i.e. flexible, plastic substratesand easily cured polymer-based pastes were used.

  14. Increased bismuth concentration in MBE GaAs{sub 1−x}Bi{sub x} films by oscillating III/V flux ratio during growth

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Adam W., E-mail: awood4@wisc.edu; Babcock, Susan E. [Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Li, Jincheng; Brown, April S. [Electrical and Computer Engineering, Duke University, Durham, North Carolina 27707 (United States)

    2015-05-15

    The authors have examined bismuth concentration profiles in GaAs{sub 1−x}Bi{sub x} films grown by molecular beam epitaxy using high angle annular dark field imaging (Z-contrast imaging) in an aberration-corrected scanning transmission electron microscope in conjunction with x-ray diffraction. Samples were grown with a gradient in each of the component fluxes, and therefore, the III/V ratio across the substrate. Rotating the sample during growth exposed the growth surface to an oscillating III/V flux ratio. Sinusoidal [Bi] profiles resulted in the growth direction, the wavelength and number of which were consistent with the growth rate and the rate of substrate rotation. However, the magnitude of [Bi] in the observed fluctuations was greater than the maximum [Bi] achieved using the same Bi flux and Ga/As flux ratios in steady-state conditions on a stationary substrate, suggesting that varying the III/V flux ratio during growth promotes the incorporation of Bi in GaAs{sub 1−x}Bi{sub x} films. A proposed qualitative model for how this enhancement might occur hypothesizes a critical role for alternating growth and shrinkage of Ga-Bi predroplet clusters on the surface as the growing material is rotated through Ga-rich and As-rich flux compositions.

  15. Composition dependence of the ferroelectric properties of lanthanum-modified bismuth titanate thin films grown by using pulsed-laser deposition

    CERN Document Server

    Bu, S D; Park, B H; Noh, T W

    2000-01-01

    Lanthanum-modified bismuth titanate, Bi sub 4 sub - sub x La sub x Ti sub 3 O sub 1 sub 2 (BLT), thin films with a La concentration of 0.25<=x<=1.00 were grown on Pt/Ti/SiO sub 2 /Si substrates by using pulsed-laser deposition. The BLT films showed well-saturated polarization-electric field curves whose remnant polarizations were 16.1 mu C/cm sup 2 , 27.8 mu C/cm sup 2 , 19.6 mu C/cm sup 2 , and 2.7 mu C/cm sup 2 , respectively, for x=0.25, 0.05, 0.75, and 1.00. The fatigue characteristics became better with increasing x up to 0.75. The Au/BLT/Pt capacitor with a La concentration of 0.50 showed an interesting dependence of the remanent polarization on the number of repetitive read/write cycles. On the other hand, the capacitor with a La concentration of 0.75 showed fatigue-free characteristics.

  16. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    International Nuclear Information System (INIS)

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window

  17. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Hui-Yng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Engineering, Nanyang Polytechnic, Singapore 569830 (Singapore); Shrestha, Milan; Lau, Gih-Keong, E-mail: mgklau@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-28

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window.

  18. Semiconducting properties of oxide films formed onto an Nb electrode in NaOH solutions

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIC

    2008-03-01

    Full Text Available In this paper, the results of the potentiostatic formation of homogeneous and heterogeneous, nano-crystalline passive films of Nb2O5 onto an Nb electrode in NaOH solutions of different concentrations at potentials lower than 3.0 V vs. SCE are presented. The semiconducting properties of such films were investigated by EIS measurements. After fitting the EIS results by appropriate equivalent circuits, the space charge capacitance (Csc and space charge resistance (Rsc of these films were determined. The donor density (Nsc, flat band potential (Efb and thickness of the space charge layer (dsc for such oxide films were determined from the corresponding Mott–Schottky (M–S plots. It is shown that all oxide films were n-type semiconductors in a certain potential range.

  19. Surface modification of polytetrafluoroethylene film using single liquid electrode atmosphericpressure glow discharge

    Institute of Scientific and Technical Information of China (English)

    Zhou Lan; Lü Guo-Hua; Chen Wei; Pang Hua; Zhang Gu-Ling; Yang Si-Ze

    2011-01-01

    Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water contact angle of polytetrafluoroethylene film drops from 114° to 46° and the surface free energy increases from 22.0 mJ/m2 to 59.1 mJ/m2. The optical emission spectrum indicates that there are reactive species such as O2+, O and He in the plasma plume. After plasma treatment, a highly crosslinking structure is formed on the film surface and the oxygen element is incorporated into the film surface in the forms of -C-O-C-, -C=O, and -O-C=O groups. Over a period of 10 days, the contact angle of the treated film is recovered by only about 10°, which indicates that the plasma surface modification is stable with time.

  20. Nanoporous MnO{sub x} thin-film electrodes synthesized by electrochemical lithiation/delithiation for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Lai, Man On; Lu, Li [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2011-02-15

    Nanoporous MnO{sub x} thin-film electrodes are synthesized using a combination of pulsed laser deposition (PLD) and electrochemical lithiation/delithiation methods. A dense Mn{sub 3}O{sub 4} thin-film deposited by PLD can transform into a nanoporous MnO{sub x} thin-film after electrochemical lithiation/delithiation. A nanoporous MnO{sub x} thin-film electrode exhibits significantly improved supercapacitive performance compared with an as-deposited Mn{sub 3}O{sub 4} thin-film electrode. A MnO{sub x} thin-film finally transforms into a MnO{sub 2} thin-film through an electrochemical oxidation process during continuous cyclic voltammetry scanning. (author)

  1. Evolution of orientation degree, lattice dynamics and electronic band structure properties in nanocrystalline lanthanum-doped bismuth titanate ferroelectric films by chemical solution deposition.

    Science.gov (United States)

    Zhang, Jinzhong; Chen, Xiangui; Jiang, Kai; Shen, Yude; Li, Yawei; Hu, Zhigao; Chu, Junhao

    2011-08-21

    Ferroelectric lanthanum (La)-substituted bismuth titanate (Bi(4-x)La(x)Ti(3)O(12), BLT) nanocrystalline films with the composition range of 0 ≤x≤ 1 have been directly deposited on n-type Si (100) substrates by chemical solution deposition. The La substitution effects on the preferred orientation, surface morphology, phonon modes, emission bands and electronic band structures of the BLT films have been investigated by microscopy, Raman scattering, photoluminescence and spectroscopic ellipsometry at room temperature. X-Ray diffraction analysis shows that the films are polycrystalline and exhibit the pure perovskite phase structure. With increasing La composition, the (100)-orientation degree can be enhanced and the root-mean-square roughnesses slightly increase from 6.5 to 8.3 nm. It was found that the Raman-active mode A(1g)[Bi] at about 59 cm(-1) is unchanged while the B(1g) and A(1g)[Ti] phonon modes at about 648 and 853 cm(-1) are shifted towards higher frequency by about 36.6 and 8.4 cm(-1), respectively. Photoluminescence spectra show that the intensity of the peak located at about 2.3 eV increases with the La composition, except for the Bi(3)LaTi(3)O(12) film, due to the smallest grain size and oxygen vacancy defects. The optical constants of the BLT films have been uniquely extracted by fitting the measured ellipsometric spectra with a four-phase layered model (air/surface rough layer/BLT/Si) in the photon energy range of 0.73-4.77 eV. The Adachi dielectric function model has been successfully applied and reasonably describes the optical response behavior of the ferroelectric BLT films. Moreover, the film packing density decreases while the optical band gap linearly increases from 3.610 ± 0.066 to 3.758 ± 0.068 eV with increasing La composition. It is surmised that the phenomena are mainly ascribed to the variations of the electronic structure, especially for the conduction band, which is perturbed by the La doping. PMID:21743909

  2. Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor

    International Nuclear Information System (INIS)

    Cost-effective disposable electrodes were fabricated from copper clad laminate, usually used for printed circuit board (PCB) in electronic industries, by using dry film photoresist. Electro-oxidation (anodisation) was employed to obtain a good formation of thiourea film on the electrode surface. The affinity binding pair of carcinoembryonic antigen (CEA) and anti-carcinoembryonic antigen (anti-CEA) was used as a model system. Anti-CEA was immobilized on thiourea film via covalent coupling. This modified electrode was incorporated with a capacitive system for CEA analysis. This capacitive immunosensor provided a linear range between 0.01 and 10 ng ml-1 with a detection limit of 10 pg ml-1. When applied to analyze CEA in serum samples, the results agreed well with the enzyme linked fluorescent assay (ELFA) technique (P > 0.05). The proposed strategy for the preparation of disposable modified copper electrode is very cost effective and simple. Moreover, it provides good reproducibility. This technique can easily be applied to immobilize other biological sensing elements for biosensors development.

  3. Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor

    Energy Technology Data Exchange (ETDEWEB)

    Limbut, Warakorn, E-mail: warakorn.l@psu.ac.t [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thavarungkul, Panote [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Kanatharana, Proespichaya [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wongkittisuksa, Booncharoen [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Asawatreratanakul, Punnee [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Limsakul, Chusak [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2010-03-30

    Cost-effective disposable electrodes were fabricated from copper clad laminate, usually used for printed circuit board (PCB) in electronic industries, by using dry film photoresist. Electro-oxidation (anodisation) was employed to obtain a good formation of thiourea film on the electrode surface. The affinity binding pair of carcinoembryonic antigen (CEA) and anti-carcinoembryonic antigen (anti-CEA) was used as a model system. Anti-CEA was immobilized on thiourea film via covalent coupling. This modified electrode was incorporated with a capacitive system for CEA analysis. This capacitive immunosensor provided a linear range between 0.01 and 10 ng ml{sup -1} with a detection limit of 10 pg ml{sup -1}. When applied to analyze CEA in serum samples, the results agreed well with the enzyme linked fluorescent assay (ELFA) technique (P > 0.05). The proposed strategy for the preparation of disposable modified copper electrode is very cost effective and simple. Moreover, it provides good reproducibility. This technique can easily be applied to immobilize other biological sensing elements for biosensors development.

  4. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  5. Nanocarbon-copper thin film as transparent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, R. A.; Zhu, H.; Preston, Colin; LeMieux, M.; Jaim, H. M. Iftekhar; Hu, L., E-mail: binghu@umd.edu; Salamanca-Riba, L. G., E-mail: riba@umd.edu [Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742 (United States); Mansour, A. [Carderock Division, Naval Surface Warfare Center, West Bethesda, Maryland 20817 (United States); Zavalij, P. Y. [Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 (United States); Rabin, O. [Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2015-05-11

    Researchers seeking to enhance the properties of metals have long pursued incorporating carbon in the metallic host lattice in order to combine the strongly bonded electrons in the metal lattice that yield high ampacity and the free electrons available in carbon nanostructures that give rise to high conductivity. The incorporation of carbon nanostructures into the copper lattice has the potential to improve the current density of copper to meet the ever-increasing demands of nanoelectronic devices. We report on the structure and properties of carbon incorporated in concentrations up to 5 wt. % (∼22 at. %) into the crystal structure of copper. Carbon nanoparticles of 5 nm–200 nm in diameter in an interconnecting carbon matrix are formed within the bulk Cu samples. The carbon does not phase separate after subsequent melting and re-solidification despite the absence of a predicted solid solution at such concentrations in the C-Cu binary phase diagram. This material, so-called, Cu covetic, makes deposition of Cu films containing carbon with similar microstructure to the metal possible. Copper covetic films exhibit greater transparency, higher conductivity, and resistance to oxidation than pure copper films of the same thickness, making them a suitable choice for transparent conductors.

  6. Bismuth, Metronidazole, and Tetracycline

    Science.gov (United States)

    Helidac® (as a kit containing Bismuth Subsalicylate, Metronidazole, Tetracycline) ... Bismuth, metronidazole, and tetracycline is used along with other ulcer medications to treat duodenal ulcers. It is in a class of medications called ...

  7. Unlinking absorption and haze in thin film silicon solar cells front electrodes

    OpenAIRE

    Boccard, Mathieu; Cuony, Peter; Battaglia, Corsin; Despeisse, Matthieu; Ballif, Christophe

    2010-01-01

    We study the respective influence of haze and free carrier absorption (FCA) of transparent front electrodes on the photogenerated current of micromorph thin film silicon solar cells. To decouple the haze and FCA we develop bi-layer front electrodes: a flat indium tin oxide layer assures conduction and allows us to tune FCA while the haze is adjusted by varying the thickness of a highly transparent rough ZnO layer. We show how a minimum amount of FCA leads only to a few percents absorption for...

  8. Electron beam induced modifications of bismuth sulphide (Bi2S3) thin films: Structural and optical properties

    International Nuclear Information System (INIS)

    Thin films of Bi2S3 prepared by electrodeposition method are subjected to electron beam irradiation for different doses from 0 to 100 kGy in steps of 20 kGy in air at room temperature. The changes in structural, surface morphological and optical properties that occurred before and after irradiation in Bi2S3 thin films are studied using X-ray diffraction, scanning electron microscopy and UV-vis spectroscopy. It is shown that electron irradiation can be used as a tool to decrease the crystallite size of the irradiated films from 418 to 285 A as the dose varies from 20 to 100 kGy. The decrease in crystallinity of the films leading to the band gap energy of the films get blue shifted from unirradiated films. These results are explained in the light of thermal spike model.

  9. Direct electrochemistry of hemoglobin entrapped in dextran film on carbon ionic liquid electrode

    Indian Academy of Sciences (India)

    Xiaoqing Li; Yan Wang; Xiaoying Sun; Tianrong Zhan; Wei Sun

    2010-03-01

    Direct electrochemistry of hemoglobin (Hb) entrapped in the dextran (De) film on the surface of a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) modified carbon paste electrode (CILE) has been investigated. UV-Vis and FT-IR spectroscopy showed that Hb retained its native structure in the De film. Scanning electron microscopy (SEM) indicated an uniform film was formed on the electrode surface. Cyclic voltammetric experiments indicated that the electron transfer efficiency between Hb and the electrode was greatly improved due to the presence of the De film and ionic liquid, which provided a biocompatible and higher conductive interface. A pair of well-defined and quasi-reversible redox peak was obtained with the anodic and cathodic peaks located at -0.195 V and -0.355 V in pH 7.0 phosphate buffer solution, respectively. The electrochemical parameters were calculated by investigating the relationship of the peak potential with the scan rate. The fabricated De/Hb/CILE showed good electrocatalytic ability to the reduction of H2O2 with the linear concentration range from 4.0 × 10-6 to 1.5 × 10-5 mol/L and the apparent Michaelis-Menten constant ($K_{M}^{\\text{app}}$) for the electrocatalytic reaction was calculated as 0.17 M.

  10. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres.

    Science.gov (United States)

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-04-21

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m(-1). During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □(-1) with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H₂O₂ electrode with a sensitivity of 0.56 mA mM(-1) cm(-2), a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM(-1) cm(-2) and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices. PMID:24615460

  11. Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Chilin [Department of Chemistry and Laser Chemistry Institute, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433 (China); Fu Zhengwen [Department of Chemistry and Laser Chemistry Institute, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433 (China)], E-mail: zhengwen@sh163.net

    2008-05-01

    Nano-sized CuWO{sub 4} thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO{sub 4} liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO{sub 4} film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO{sub 4} layers shows a high-volume rate capacity of 145 {mu}Ah/cm{sup 2} {mu}m in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu{sup 2+}/Cu{sup 0}, additional capacity can be achieved by the reversible reactivity of (WO{sub 4}){sup 2-} framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO{sub 4} thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries.

  12. Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries

    International Nuclear Information System (INIS)

    Nano-sized CuWO4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO4 layers shows a high-volume rate capacity of 145 μAh/cm2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu2+/Cu0, additional capacity can be achieved by the reversible reactivity of (WO4)2- framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries

  13. Electrocatalytic characterization and dye degradation of Nano-TiO2 electrode films fabricated by CVD

    International Nuclear Information System (INIS)

    A 20-40 nm anatase-titania film on a titanium electrode was fabricated using chemical vapor deposition (CVD). The film was characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The CVD deposition time and number of deposition coatings were evaluated to establish the appropriate film fabrication parameters. Results indicate that two coatings at a deposition time of 6 h each produced the best nano-TiO2 electrode films (NTEFs) with an even distribution of ca. 20 nm diameter nanoparticles in the anatase lattice. The NTEF was tested as an electrocatalytic anode to investigate the degradation efficiency in treating methyl orange dye wastewater. A high removal efficiency of methyl orange dye and total organic carbon (TOC) of 97 and 56%, respectively; was achieved using a current density of 20 mA cm-2 for 160 min. Cyclic voltammetry showed that the electrochemical degradation reaction rate at the NTEF surface was predominately driven by molecular diffusion. The electrocatalytic decomposition rate of organic pollutants at the NTEF is controlled by mass transport, which was associated with the nanostructure of the electrocatalytic electrode.

  14. Novel Bismuth Nanotubes

    Institute of Scientific and Technical Information of China (English)

    苏长荣; 李家明

    2002-01-01

    Theoretical investigations show that bismuth nanotubes are semiconductors for all diameters. For smalldiameter bismuth nanotubes, the band structures and bandgaps vary strongly with the strong hybridization effect. When the diameters are larger than 18 A, the bandgaps ofBi (n, n) and (n, 0) nanotubes approach 0.63 e V, corresponding to the bandgap of bismuth sheet at the Γ point. Thus, bismuth nanotubes are expected to be a potential semiconductor nanomaterial in future nanoelectronics.

  15. Bismuth doping effect on the phase-change characteristics of nitrogen-doped GeTe films

    International Nuclear Information System (INIS)

    The microstructures and electrical properties of 8.4% nitrogen-doped GeTe and GeBi(6 at.%)Te films thermally annealed in N2 atmosphere were investigated. With the addition of Bi to N-doped GeTe films, the initial crystallization temperature was reduced and crystallization speed slowed. The N-doped GeBiTe films showed a rapid increase in crystallite size compared to the N-doped GeTe films. The formation energy of the nucleus may be lower due to the Bi atoms and the growth speed may be slower.

  16. Indium-free organic thin-film solar cells using a plasmonic electrode

    Science.gov (United States)

    Takatori, Kentaro; Nishino, Takayuki; Okamoto, Takayuki; Takei, Hiroyuki; Ishibashi, Koji; Micheletto, Ruggero

    2016-05-01

    We propose a new kind of organic solar cell (OSC) that substitutes the standard indium tin oxide (ITO) electrode with a silver layer with randomly arranged circular nanoholes (plasmonic electrode). The quasi-random structure in the silver layer efficiently converts wideband incident light into surface plasmon polaritons propagating along the surface of the silver film. In this way, the converted surface plasmon polaritons enhance light absorption in the active layer. We describe in detail the fabrication process we used and we give a thorough report of the resulting optical characteristics and performances. Although the transmittance of the plasmonic electrode is approximately one-third of that of the ITO electrodes, the power conversion efficiency of the OSCs with our plasmonic electrode is comparable to that of conventional inverted solar cells using ITO electrodes. Moreover, the obtained incident photon to current efficiency was better than that of the inverted solar cells in the wavelength regions around 400 nm and over 620 nm.

  17. Preparation of the nickel foam/Ni-Ce-Co-O film electrode by thermal decomposition for oxygen evolution reaction

    International Nuclear Information System (INIS)

    The Ni-Ce-Co-O film on nickel foam was prepared by thermal decomposition of acetates. The electrochemical activity of the film was affected by the temperature of thermal decomposition. Cerium ions introduced into the oxide film could increase the surface area and improve the oxygen evolution reaction (OER) activity of the electrode. Compared with thermal decomposition of nitrates, the OER activity of the film prepared with acetates was higher. When the nickel foam/Ni-Ce-Co-O film electrode prepared with acetates was used as the anode, in 30% KOH solution (88 ± 2 deg. C) at the current density of 4000 A/m2, the cell voltage was 250 mV lower than that of the nickel foam anode. Furthermore, the film electrode exhibited good stability

  18. Electrochromic properties of WO{sub 3} thin film onto gold nanoparticles modified indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jiajia; Gu Ming [College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou Industrial Park, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.cn [College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou Industrial Park, Suzhou, Jiangsu 215123 (China)

    2011-04-15

    Gold nanoparticles (GNPs) thin films, electrochemically deposited from hydrogen tetrachloroaurate onto transparent indium tin oxide (ITO) thin film coated glass, have different color prepared by variation of the deposition condition. The color of GNP film can vary from pale red to blue due to different particle size and their interaction. The characteristic of GNPs modified ITO electrodes was studied by UV-vis spectroscopy, scanning electron microscope (SEM) images and cyclic voltammetry. WO{sub 3} thin films were fabricated by sol-gel method onto the surface of GNPs modified electrode to form the WO{sub 3}/GNPs composite films. The electrochromic properties of WO{sub 3}/GNPs composite modified ITO electrode were investigated by UV-vis spectroscopy and cyclic voltammetry. It was found that the electrochromic performance of WO{sub 3}/GNPs composite films was improved in comparison with a single component system of WO{sub 3}.

  19. Measurements of processes in ruthenium oxide film electrodes with the quartz-crystal microbalance technique

    International Nuclear Information System (INIS)

    The authors describe the first application of the quartz-crystal microbalance (QCM) technique for monitoring electrochemical processes in oxide film electrodes. They have investigated a film of ruthenium oxide, applied by the thermal decomposition of ruthenium chloride onto one side of the quartz-crystal. The quartz-crystal was precoated with gold keyhole patterns on both sides for inducing the 5 MHz resonance, followed by a thin Ti layer to ensure good adherence of the ruthenium oxide. Ruthenium oxide films are being investigated at Los Alamos for potential use in electrochemical capacitors. The material exhibits large charge capacity per geometric area and fast charge-discharge rates. Different possible processes can be responsible for charge compensation in such oxide materials, including those associated with simple double-layer charging, with pseudocapacitance, and with ion insertion into the small grains of the high-surface-area oxide material. The dynamics of such processes are determined, for a given oxide film, by the nature of the electrolyte and the resulting mechanism of charge-compensation. The QCM technique provides interesting information on these processes, as well as on film hydration and film dissolution process. The authors' initial results are presented in this paper. The results demonstrate the QCM as a sensitive tool for following not only ionic insertion processes during potential modulation, but also processes of film swelling and film dissolution

  20. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors

    International Nuclear Information System (INIS)

    Highlights: → A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film fabricated by flow-directed assembly and hydrazine to reduce. → The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets. → The freestanding GN/MWCNT film has a potential application in flexible energy storage devices. - Abstract: A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film has been fabricated by flow-directed assembly from a complex dispersion of graphite oxide (GO) and pristine MWCNTs followed by the use of gas-based hydrazine to reduce the GO into GN sheets. The GN/MWCNT (16 wt.% MWCNTs) film characterized by Fourier transformation infrared spectra, X-ray diffraction and scanning electron microscope has a layered structure with MWCNTs uniformly sandwiched between the GN sheets. The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets, increasing electrolyte/electrode contact area and facilitating transportation of electrolyte ion and electron into the inner region of electrode. Electrochemical data demonstrate that the GN/MWCNT film possesses a specific capacitance of 265 F g-1 at 0.1 A g-1 and a good rate capability (49% capacity retention at 50 A g-1), and displays an excellent specific capacitance retention of 97% after 2000 continuous charge/discharge cycles. The results of electrochemical measurements indicate that the freestanding GN/MWCNT film has a potential application in flexible energy storage devices.

  1. Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes

    International Nuclear Information System (INIS)

    A film composed of carbon nanoparticles and poly(diallyldimethylammonium chloride) or CNP-PDDAC is formed in a layer-by-layer deposition process at tin-doped indium oxide (ITO) substrates. Excess positive binding sites within this film in aqueous phosphate buffer at pH 9.5 are quantified by adsorption of iron(III)phthalocyanine tetrasulfonate and indigo carmine. Both anionic redox systems bind with Langmuirian characteristics (K ∼ 105 mol-1 dm3) and show electrochemical reactivity throughout the film at different thicknesses. Therefore, the electrical conductivity in CNP-PDDAC films is good and the positive binding sites are approximately 140 pmol cm-2 per layer. Structural instability of the CNP-PDDAC film in the presence of high concentrations of iron(III)phthalocyanine tetrasulfonate or indigo carmine is observed. Triclosan, a widely used anti-bacterial and anti-fungal agent, exists in aqueous media at pH 9.5 as a negatively charged chlorinated poly-aromatic phenol. Due to the negative charge, triclosan is readily accumulated into CNP-PDDAC films with an efficiency consistent with that expected for simple electrostatic interaction with the cationic binding sites. Oxidation of bound triclosan occurs at 0.6 V versus SCE in a chemically irreversible process. The CNP-PDDAC film electrode is renewed by rinsing in organic solvent and the triclosan oxidation response is shown to correlate with the triclosan concentration in solution from 0.5 to 50 μM. Applications of the CNP-PDDAC film electrode (or improved versions of it) in analysis or in anodic extraction are proposed

  2. Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Mandana [Department of Chemistry, Sharif University of Technology, Teheran (Iran, Islamic Republic of); Shahrokhian, Saeed [Department of Chemistry, Sharif University of Technology, Teheran (Iran, Islamic Republic of); Psillakis, Elefteria [Laboratory of Aquatic Chemistry, Department of Environmental Engineering, Technical University of Crete, Polytechnioupolis, 73100 Chania-Crete (Greece); Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)]. E-mail: f.marken@bath.ac.uk

    2007-06-12

    A film composed of carbon nanoparticles and poly(diallyldimethylammonium chloride) or CNP-PDDAC is formed in a layer-by-layer deposition process at tin-doped indium oxide (ITO) substrates. Excess positive binding sites within this film in aqueous phosphate buffer at pH 9.5 are quantified by adsorption of iron(III)phthalocyanine tetrasulfonate and indigo carmine. Both anionic redox systems bind with Langmuirian characteristics (K {approx} 10{sup 5} mol{sup -1} dm{sup 3}) and show electrochemical reactivity throughout the film at different thicknesses. Therefore, the electrical conductivity in CNP-PDDAC films is good and the positive binding sites are approximately 140 pmol cm{sup -2} per layer. Structural instability of the CNP-PDDAC film in the presence of high concentrations of iron(III)phthalocyanine tetrasulfonate or indigo carmine is observed. Triclosan, a widely used anti-bacterial and anti-fungal agent, exists in aqueous media at pH 9.5 as a negatively charged chlorinated poly-aromatic phenol. Due to the negative charge, triclosan is readily accumulated into CNP-PDDAC films with an efficiency consistent with that expected for simple electrostatic interaction with the cationic binding sites. Oxidation of bound triclosan occurs at 0.6 V versus SCE in a chemically irreversible process. The CNP-PDDAC film electrode is renewed by rinsing in organic solvent and the triclosan oxidation response is shown to correlate with the triclosan concentration in solution from 0.5 to 50 {mu}M. Applications of the CNP-PDDAC film electrode (or improved versions of it) in analysis or in anodic extraction are proposed.

  3. Effect of film structure on the electrochemical properties of gold electrodes for neural implants

    International Nuclear Information System (INIS)

    Highlights: → Tuning of gold microstructure by sputter deposition pressure. → Improved electrochemical properties of columnar gold as neural device material (interface impedance, charge injection capabilities). → Comparison of columnar gold to well-established titanium nitride shows similar properties but has a more stable deposition process. → Active surface area of sputtered columnar gold comparable to electrochemically grown overlayers. - Abstract: The development of interfaces with low impedance is a prerequisite for long-term neural devices. A broad range of new materials has been developed for this purpose. Here we show how the performance of traditional gold electrodes can be improved by controlling the deposition parameters of the gold film. The morphology of the film was tuned from granular to columnar structure as shown by scanning electron microscopy of film cross sections. Electrochemical characterisation with impedance spectroscopy, chronoamperometry and cyclic voltammetry demonstrates that the dense columnar structure of the films effectively lowers the impedance of the interface and increases charge injection properties. The samples produced are also compared to titanium nitride films, a well-established electrode material with a columnar structure.

  4. In-situ Microscopic FT-IR Spectroelectrochemical Investigation of Polythiophene Film Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A polythiophene film was electrochemically deposited on a Pt micro-plate electrode and investigated by cyclic voltammetry and in-situ reflection microscopic FTIR spectroscopy. The FTIR analysis showed that the electropolymerization of thiophene on the Pt surface was affected by the surface adsorption processes of thiophene molecules. Two adsorption modes were identified. Two structure models of the polythiophene chain were observed simultaneously. It was proposed that the good conductibility of the polythiophene film was originated from a co-vibratory equilibrium of the link part of model Ⅰ and model Ⅱ.

  5. In-situ x-ray investigation of hydrogen charging in thin film bimetallic electrodes

    International Nuclear Information System (INIS)

    Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchrotron Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data was also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film. copyright 1997 Materials Research Society

  6. Direct current conductivity of polyvinyl alcohol (PVA) films using gold and aluminium electrodes

    International Nuclear Information System (INIS)

    The electrical properties of pure and doped films of poly vinyl alcohol (PVA) with aluminium and gold electrodes are studied. Al- PVA-Al, Au- PVA-Au and Al- PVA-Au structures are investigated. The current-voltage characteristics can be explained in terms of the charge transport mechanism operating in the PVA polymer film in the different voltage regions. The width of Schottky barrier is shown to increase with voltage, and decreases with increasing temperature. The temperature dependence of the dc conductivity of the samples has been described by Greaves variable rang hopping (VRH) model

  7. Electrochemical Sensor for Determination of Parathion Based on Electropolymerization Poly(Safranine Film Electrode

    Directory of Open Access Journals (Sweden)

    Xingyuan Liu

    2011-01-01

    Full Text Available Parathion has been determined with voltammetric technique based on a novel sensor fabricated by electropolymerization of safranine on a glassy carbon electrode (GCE. The electrochemical behavior of poly(safranine film electrode and its electrocatalytic activity toward parathion were studied in detail by cyclic voltammetry (CV and linear sweep voltammetry (LSV. All experimental parameters were optimized, and LSV was proposed for its determination. In optimal working conditions, the reduction current of parathion at this poly(safranine-modified electrode exhibited a good linear relationship with parathion concentration in the range of 3.43×10−8 to 3.43×10−5 mol L−1. The detection limit was 1.0×10−8 mol L−1. The high sensitivity and selectivity of the sensor were demonstrated by its practical application for the determination of trace amounts of parathion in fruit samples.

  8. Direct electrochemistry and electrocatalysis of myoglobin in dodecyltrimethylammonium bromide film modified carbon ceramic electrode

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhen Zhou; Hui Wang; She Ying Dong; An Xiang Tian; Zhi Xian He; Bin Chen

    2011-01-01

    Direct electrochemistry and electrocatalysis of myoglobin (Mb) were studied with Mb immobilized on dodecyltrimethylammonium bromide (DTAB) film modified carbon ceramic (CC) electrode. Cyclic voltammetry showed a pair of well-defined and nearly reversible redox peaks of Mb (FeⅡ/FeⅢ) at about -0.3 V vs. SCE (pH = 6.98). The currents of the redox peak were linear to scan rate, and rate constant (Ks) was estimated to be 3.03 s-1. The formal potential (E01) of Mb in the DTAB/CC electrodes shifted linearly with pH with a slope of-36.44 mV/pH, implying that the electron transfer between DTAB and CC electrodes is accompanied by proton transportation. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide (H2O2).

  9. Transparent electrode requirements for thin film solar cell modules

    KAUST Repository

    Rowell, Michael W.

    2011-01-01

    The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power conversion efficiency. Reflection, absorption, resistive losses and lost active area either from the scribed interconnect region in monolithically integrated modules or from the shadow losses of a metal grid in standard modules typically reduce the efficiency by 10-25%. Here, we perform calculations to show that a competitive TC must have a transparency of at least 90% at a sheet resistance of less than 10 Ω/sq (conductivity/absorptivity ≥ 1 Ω -1) for monolithically integrated modules. For standard modules, losses are much lower and the performance of alternative lower cost TC materials may already be sufficient to replace conducting oxides in this geometry. © 2011 The Royal Society of Chemistry.

  10. Development and characterization of fluorine tin oxide electrodes modified with high area porous thin films containing gold nanoparticles

    International Nuclear Information System (INIS)

    Different electrode materials are prepared using fluoride doped tin oxide (FTO) electrodes modified with high area porous thin films of metal oxides containing gold nanoparticles. Three different metal oxides (TiO2, MgO and SnO2) have been assayed to this end. The effect of the metal oxide nature and gold loading on the structure and performance of the modified electrodes was examined by Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction (XRD), Diffuse Reflectance Spectroscopy and electrochemical techniques. XRD measurements reveal that MgO electrodes present the smallest gold nanoparticles after the sintering step however, the electrochemical response of these electrodes shows important problems of mass transport derived from the high porosity of these materials (Brunauer Emmett Teller area of 125 m2/g). The excellent sintering properties of titania nanoparticles result in robust films attached to the FTO electrodes which allow more reliable and reproducible results from an electroanalytical point of view.

  11. Electrochemical oxygen transfer reaction on synthetic boron-doped diamond thin film electrode

    OpenAIRE

    Marselli, Béatrice; Comninellis, Christos

    2005-01-01

    Synthetic boron-doped diamond thin film is a new promising anode material. Because of its properties (high anodic stability under drastic conditions and wide potential window), it is widely investigated for numerous possible electrochemical applications such as electrosynthesis, preparation of powerful oxidants and electroincineration. In the first part of this work, simple charge transfer was investigated at boron-doped diamond electrode through the study of an outer sphere system in the pot...

  12. Spike Sorting of Muscle Spindle Afferent Nerve Activity Recorded with Thin-Film Intrafascicular Electrodes

    OpenAIRE

    Milan Djilas; Christine Azevedo-Coste; David Guiraud; Ken Yoshida

    2010-01-01

    Afferent muscle spindle activity in response to passive muscle stretch was recorded in vivo using thin-film longitudinal intrafascicular electrodes. A neural spike detection and classification scheme was developed for the purpose of separating activity of primary and secondary muscle spindle afferents. The algorithm is based on the multiscale continuous wavelet transform using complex wavelets. The detection scheme outperforms the commonly used threshold detection, especially with recordings ...

  13. Large-scale graphene-based composite films for flexible transparent electrodes fabricated by electrospray deposition

    Science.gov (United States)

    Kim, Woo Sik; Moon, Sook Young; Kim, Hui Jin; Park, Sungjin; Koyanagi, Jun; Huh, Hoon

    2014-12-01

    Large-scale transparent conducting electrodes were fabricated using the electrospray method on a glass wafer and polyethylene terephthalate film using chemically reduced graphene oxide and poly (3,4-ethylenedioxythiophene) (PEDOT). Graphene oxide (GO) is prepared by the modified Hummers method, and reduced GO (RG) is prepared at low temperature. By varying the concentration of RG and PEDOT of the composite material on the substrate, the electrical conductivity and transmittance of the electrode was controlled. The optical transmittance values of the graphene-based electrode at a wavelength of 550 nm were between 81 and 95% and had sheet resistances from 370 to 5400 Ω sq-1. After 1000 cycles of a bending test, the sheet resistances of the graphene-based composite films were unchanged. Different types of graphene and graphene-based electrodes were characterized by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, high-resolution Raman spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmittance, and electrical conductivity measurements.

  14. From clay- to organoclay-film modified electrodes: tuning charge selectivity in ion exchange voltammetry

    International Nuclear Information System (INIS)

    The surface of two natural smectite-type clay samples was chemically modified by covalent grafting of amine groups, by reaction with γ-aminopropyltriethoxysilane, which were easily protonated in HCl medium. Multisweep cyclic voltammograms of clay-film modified glassy carbon electrodes made of either the raw clays or the propylammonium-functionalized samples exposed to Ru(NH3)63+ or Fe(CN)63- electroactive probes were obtained. The results indicated a permselective behavior of these clay and organoclay-films based on either favorable or unfavorable electrostatic interactions. The cation-exchanging raw clay film modified electrodes exhibited accumulation properties for Ru(NH3)63+ species while rejecting Fe(CN)63-, whereas the anion-exchanging organoclay coatings acted as a barrier against Ru(NH3)63+ while increasing dramatically the concentration of Fe(CN)63- species at the electrode surface. Strong binding of the probe to the organoclays resulted in a potential shift of ca. 0.1 V of the voltammetric signals characteristic of the Fe(CN)63-/4- couple in the anodic direction. Their good preconcentration efficiency at low analyte concentration highlighted their interest for electroanalytical applications

  15. An improved biosensor for acetaldehyde determination using a bienzymatic strategy at poly(neutral red) modified carbon film electrodes

    OpenAIRE

    Ghica, Mariana Emilia; Pauliukaite, Rasa; Marchand, Nicolas; Devic, Eric; Brett, Christopher M. A.

    2007-01-01

    Improved biosensors for acetaldehyde determination have been developed using a bienzymatic strategy, based on a mediator-modified carbon film electrode and co-immobilisation of NADH oxidase and aldehyde dehydrogenase. Modification of the carbon film electrode with poly(neutral red) mediator resulted in a sensitive, low-cost and reliable NADH detector. Immobilisation of the enzymes was performed using encapsulation in a sol-gel matrix or cross-linking with glutaraldehyde. The bienzymatic biose...

  16. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol

    OpenAIRE

    Gouveia-Caridade, Carla; Pauliukaite, Rasa; Brett, Christopher M. A.

    2008-01-01

    Functionalised multi-walled carbon nanotubes (MWCNTs) were cast on glassy carbon (GC) and carbon film electrodes (CFE), and were characterised electrochemically and applied in a glucose-oxidase-based biosensor. MWCNT-modified carbon film electrodes were then used to develop an alcohol oxidase (AlcOx) biosensor, in which AlcOx-BSA was cross-linked with glutaraldehyde and attached by drop-coating. The experimental conditions, applied potential and pH, for ethanol monitoring were optimised, and ...

  17. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jisheng

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  18. Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS

    DEFF Research Database (Denmark)

    McIntyre, Melissa D.; Walker, Robert; Traulsen, Marie Lund;

    2015-01-01

    an applied potential.1-3 The presented work explores the polarisation induced changes in LSM electrode composition by utilizing in operando Raman spectroscopy and post mortem ToF-SIMS depth profiling on LSM thin film model electrodes fabricated by pulsed laser deposition on YSZ substrates with a thin...

  19. Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode

    Indian Academy of Sciences (India)

    Suling Yang; Ran Yang; Gang Li; Jianjun Li; Lingbo Qu

    2010-11-01

    A Nafion/multi-wall carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied to the sensitive and convenient determination of theophylline (TP). Multi-wall carbon nanotubes (MWNTs) were easily dispersed homogeneously into 0.1% Nafion methanol solution by sonication. Appropriate amount of Nafion/MWNTs suspension was coated on a glassy carbon electrode. After evaporating methanol, a Nafion/MWNTs composite film-modified electrode was achieved. TP could effectively accumulate at Nafion/MWNTs composite film-modified electrode and cause a sensitive anodic peak at around 1180 mV (vs SCE) in 0.01 mol/L H2SO4 medium (pH 1.8). In contrast with the bare glassy carbon electrode, Nafion film-modified electrode, Nafion/MWNTs film-modified electrode could remarkably increase the anodic peak current and decreased the overpotential of TP oxidation. Under the optimized conditions, the anodic peak current was proportional to TP concentration in the range of 8.0 × 10-8-6.0 × 10-5 mol/L, with a detection limit of 2.0 × 10-8 mol/L. This newly developed method was used to determine TP in drug samples with good percentage of recoveries.

  20. Annealing Effect on the Structural and Optical Properties of Sputter-Grown Bismuth Titanium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    José E. Alfonso

    2014-04-01

    Full Text Available The aim of this work is to assess the evolution of the structural and optical properties of BixTiyOz films grown by rf magnetron sputtering upon post-deposition annealing treatments in order to obtain good quality films with large grain size, low defect density and high refractive index similar to that of single crystals. Films with thickness in the range of 220–250 nm have been successfully grown. After annealing treatment at 600 °C the films show excellent transparency and full crystallization. It is shown that to achieve larger crystallite sizes, up to 17 nm, it is better to carry the annealing under dry air than under oxygen atmosphere, probably because the nucleation rate is reduced. The refractive index of the films is similar under both atmospheres and it is very high (n =2.5 at 589 nm. However it is still slightly lower than that of the single crystal value due to the polycrystalline morphology of the thin films.

  1. Preparation of PZT thin films on YBCO electrodes by KrF excimer laser ablation technique

    International Nuclear Information System (INIS)

    Pb(ZrXTi1-X)O3 (PZT) films have excellent ferroelectric, optical, piezoelectric, and pyroelectric properties. We prepared PZT thin films by the excimer laser ablation technique. A pulsed KrF excimer laser (Lambda Physik LPX305icc, pulse duration of 25 ns, λ=248 nm, 850 mJ Max.) was used to ablate the bulk targets. We investigated the influence of bottom electrode materials on the characteristics of the PZT thin films prepared on Pt and YBCO underlayers. The X-ray diffraction (XRD) patterns showed that the PZT films prepared with a laser fluence of 2 Jcm-2 on YBCO/MgO(100) substrate at a wide temperature range of 550-680 C have a perovskite (001) structure. At the same laser fluence, the PZT films prepared on Pt/MgO(100) substrate have a perovskite (001) structure only at 650 C. The polarization-electric field (P-E) characteristics and fatigue properties of PZT thin films were measured by the Sawyer-Tower circuit. The remnant polarization and coercive field have been found to be Pr=15 μC cm-2, 30 μC cm-2 and Ec=200 kV cm-1, 100 kV cm-1 for Au/PZT/Pt/MgO and Au/PZT/YBCO/MgO correspondingly. The remnant polarization of Au/PZT/YBCO/MgO thin film was reduced to one-half after about 108 cycles of switching. (orig.)

  2. Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Shi C

    2010-01-01

    Full Text Available Abstract Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0–3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g−1 was observed for the sample with a specific mass of 89 μg cm−2 at a scan rate of 2 mV s−1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES.

  3. Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors

    Science.gov (United States)

    Shi, C.; Zhitomirsky, I.

    2010-03-01

    Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).

  4. Carrier accumulation near electrodes in ferroelectric films due to polarization boundary conditions

    International Nuclear Information System (INIS)

    We study the effect of surface polarization on the distribution of free carriers in a wide bandgap semiconductor ferroelectric (FE) film using a thermodynamic approach. We show that free carriers, namely, holes and electrons from ionizable impurities or atomic vacancies can accumulate near the film-electrode interface, if FE polarization profile has a very steep change near the surface that is specified by the extrapolation length. Such an outcome is just the opposite of what happens in a Schottky junction in a partially or fully depleted film. This is also an entirely different effect than what has been often studied in similar structures, where the work function and screening length of the electrode metal determines the electronic character of the interface. Even for low-to-moderate densities of ionizable defects with states within the bandgap close to the band edges, high densities of carriers can localize close to the electrodes in a single domain state FE film when above a critical thickness. For very low densities of such ionizable defects, short extrapolation lengths cause electrical domain formation with minimal carrier accumulation because of the already weak depolarizing fields. This is also true for films below a critical thickness with low-to-moderate densities of ionizable impurities, i.e., electrical domains get stabilized regardless of defect density. The implications of our findings for polarization controlled Schottky to Ohmic-like transition of an interface and experimental results are discussed. It is also found that interfaces of an n-type FE heterostructure can behave like a p-type depending on the barrier heights and impurity density. We conclude that, for low-to-moderate ionizable impurity densities, it is the rate of change of polarization at the interface with position rather than solely its presence that leads to carrier accumulation and that both interfaces can become Ohmic-like with opposite signs of carriers.

  5. Unlinking absorption and haze in thin film silicon solar cells front electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Boccard, Mathieu; Cuony, Peter; Battaglia, Corsin; Despeisse, Matthieu; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland)

    2010-11-15

    We study the respective influence of haze and free carrier absorption (FCA) of transparent front electrodes on the photogenerated current of micromorph thin film silicon solar cells. To decouple the haze and FCA we develop bi-layer front electrodes: a flat indium tin oxide layer assures conduction and allows us to tune FCA while the haze is adjusted by varying the thickness of a highly transparent rough ZnO layer. We show how a minimum amount of FCA leads only to a few percents absorption for a single light path but to a strong reduction of the cell current in the infrared part of the spectrum. Conversely, a current enhancement is shown with increasing front electrode haze up to a saturation of the current gain. This saturation correlates remarkably well with the haze of the front electrode calculated in silicon. This allows us to clarify the requirements for the front electrodes of micromorph cells. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Layer-by-Layer Assembly of Silicotungstate Multilayer Films Modified on Glassy Carbon Electrode and Their Electrochemical Behaviors

    International Nuclear Information System (INIS)

    A new electrode was modified by multilayer films composed of heteropolyanion (SiW12) and cationic polymer poly(diallyldimethylammonium chloride) through electrochemical growth. The modified electrode electrochemical behavior, the effect of solution ph and electrocatalytic response to the reduction of BrO3- and NO2- have been investigated. The result shows that the electrochemical process of multilayer films modified electrode including SiW12 is a reversible process by electrochemical step. One-electron process has no proton participation in the first step, and one-electron process is accompanied by one proton participation in the second step and two-electron process is accompanied by two protons participation in the third step. The films grow uniformly, and the peak currents increase with increasing layer numbers. The peak currents increase with scan rate, and the reduced potentials of multilayer films shift negatively with increasing pH. The electrochemical mechanism of multilayer films was suggested

  7. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    International Nuclear Information System (INIS)

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures

  8. Spin coated graphene films as the transparent electrode in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Many research efforts have been devoted to the replacement of the traditional indium–tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C61-butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 kΩ/sq) and the poor hydrophilicity of the spin coated graphene films.

  9. Enhanced adhesion and conductivity of Cu electrode on AlN substrate for thin film thermoelectric device

    Science.gov (United States)

    Hu, Shaoxiong; Chen, Xin; Deng, Yuan; Wang, Yao; Gao, Hongli; Zhu, Wei; Cao, Lili; Luo, Bingwei; Zhu, Zhixiang; Ma, Guang; Han, Yu

    2015-02-01

    The Cu thin film electrode grown on aluminum nitride (AlN) substrate is widely used in the thin film thermoelectric devices due to its high electrical conductivity. We have developed a new type of buffer layer by co-sputtering Ti and Cu forming Ti-Cu layer. The Ti-Cu layer was sputtered on the Ti buffered AlN substrate so that the adhesion and electrical conductivity properties of the Cu film electrode on AlN substrate could be improved. The interface between the thin films and the substrate were characterized by the scanning electron microscope (SEM). Nanoscratch tests were conducted on a nanomechanical test system to investigate the adhesion between the Cu film electrodes and AlN substrate. Meanwhile, accelerated ageing test under thermal cycling was conducted to evaluate the reliability of the thin film electrode. The results show that the adhesion and the reliability of Cu film electrode on AlN substrate have been greatly improved by employing Ti-Cu/Ti buffer layers.

  10. Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2015-05-01

    Full Text Available To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO using p-phenylenediamine (PPD as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles.

  11. Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Uniform films of Cu2O with thickness below 1 μm were prepared from a Cu(II) lactate solution. The deposits were compact and of high purity with the particle size varying from 60 to 400 nm. They were tested as electrodes in lithium batteries and their electrochemical response was consistent with the Cu2O + 2e- + 2Li+ ↔ 2Cu + Li2O reaction. Nevertheless, the reversibility of this reaction was dependent on thickness. Kinetic factors associated with the poor electronic conductivity of Cu2O could account for the relevance of the influence of film thickness. The thinnest film, about 300 nm thick, exhibited the best electrochemical performance by sustaining a specific capacity as high as 350 Ah kg-1

  12. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres

    Science.gov (United States)

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-03-01

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a sensitivity of 0.56 mA mM-1 cm-2, a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM-1 cm-2 and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a

  13. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes

    International Nuclear Information System (INIS)

    Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications. (paper)

  14. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes

    Science.gov (United States)

    Wu, Wei; Yu, Qingkai; Peng, Peng; Liu, Zhihong; Bao, Jiming; Pei, Shin-Shem

    2012-01-01

    Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications.

  15. Anodic Oxidation in Aluminum Electrode by Using Hydrated Amorphous Aluminum Oxide Film as Solid Electrolyte under High Electric Field.

    Science.gov (United States)

    Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi

    2016-05-01

    Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures. PMID:27070754

  16. Influence of Diffusion Plane Orientation on Electrochemical Properties of Thin Film LiCoO2 Electrodes

    NARCIS (Netherlands)

    Bouwman, P.J.; Boukamp, B.A.; Bouwmeester, H.J.M.; Notten, P.H.L.

    2002-01-01

    Submicrometer LiCoO2 films have been prepared on silicon substrates with RF sputtering and pulsed laser deposition (PLD). The electrochemical activity of both types of thin film electrodes is compared using scanning cyclic voltammetry, galvanostatic and potentiostatic intermittent titration, and ele

  17. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  18. Fabrication of La-doped TiO2 Film Electrode and investigation of its electrocatalytic activity for furfural reduction

    International Nuclear Information System (INIS)

    Lanthanum trivalent ions (La3+) doped nano-TiO2 film electrode was prepared by the sol–gel method. The prepared electrode was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). The electrocatalytic properties of the roughened TiO2 film electrode towards the electrocatalytic reduction of furfural to furfural alcohol were evaluated by CV and preparative electrolysis experiments. The results of the optimum molar ratio of La: Ti was 0.005:1. Experimental evidence was presented that the La nano-TiO2 electrode exhibited higher electrocatalytic activity for the reduction of furfural than the undoped nano-TiO2 electrode in N,N-dimethylformamide medium. Bulk electrolysis studies were also carried out for the reduction of furfural and the product was confirmed by NMR

  19. Improved endurance behavior of resistive switching in (Ba,Sr)TiO3 thin films with W top electrode

    Science.gov (United States)

    Shen, Wan; Dittmann, Regina; Breuer, Uwe; Waser, Rainer

    2008-12-01

    We compared the resistive switching performance of barium strontium titanate (BST) thin films with tungsten (W) and platinum (Pt) top electrodes, respectively. The yield, endurance, and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop in the resistance for both high and low resistance states, the devices with W top electrode can be switched for 104 times without any obvious degradation. We attribute the improved switching performance to a reversible oxidation and reduction in a WOx layer at the W-BST interface, which was detected by time-of-flight secondary-ion-mass spectroscopy measurements.

  20. Photoelectrochemical characterization of p-type silicon electrodes covered with tunnelling nitride dielectric films

    International Nuclear Information System (INIS)

    The photoelectrochemical behaviour of p-Si(100) single crystal electrodes in aqueous solution, covered with a very thin nitride film, was studied. The silicon surface nitridation was achieved in a N2-H2 plasma at floating potential. The as-grown insulating Si3N4 layers, with thickness inferior to 3.1 nm, allow the electrons to tunnel in the presence of an electric field by the Fowler-Nordheim tunnelling mechanism. However, the p-Si(100)/Si3N4-electrolyte interface generated lower photocurrent densities than those generated by naked p-Si(100) electrodes. In contrast, the nitridated silicon surface displayed a significant stability improvement in aqueous electrolyte (neutral pH). An overvoltage higher than 0.6 V for water oxidation on a p-Si(100) covered with a 2.4 nm Si3N4 layer was measured. The results show that silicon covered with a nitridated thin film may be useful to stabilize electrodes in photoelectrochemical applications

  1. Photoelectrochemical characterization of p-type silicon electrodes covered with tunnelling nitride dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Lana-Villarreal, T. [Laboratory of Electrocatalysis, UMR 6503, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France); Departament de Quimica Fisica and Institut Universitari d' Electroquimica, Universitat d' Alacant, Ap. 99, E-03080 Alacant (Spain); Straboni, A. [Laboratoire de Metallurgie Physique, UMR 6630, SP2MI, Universite de Poitiers, Boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil Cedex (France); Pichon, Luc [Laboratoire de Metallurgie Physique, UMR 6630, SP2MI, Universite de Poitiers, Boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil Cedex (France); Alonso-Vante, N. [Laboratory of Electrocatalysis, UMR 6503, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France)]. E-mail: nicolas.alonso.vante@univ-poitiers.fr

    2007-06-25

    The photoelectrochemical behaviour of p-Si(100) single crystal electrodes in aqueous solution, covered with a very thin nitride film, was studied. The silicon surface nitridation was achieved in a N{sub 2}-H{sub 2} plasma at floating potential. The as-grown insulating Si{sub 3}N{sub 4} layers, with thickness inferior to 3.1 nm, allow the electrons to tunnel in the presence of an electric field by the Fowler-Nordheim tunnelling mechanism. However, the p-Si(100)/Si{sub 3}N{sub 4}-electrolyte interface generated lower photocurrent densities than those generated by naked p-Si(100) electrodes. In contrast, the nitridated silicon surface displayed a significant stability improvement in aqueous electrolyte (neutral pH). An overvoltage higher than 0.6 V for water oxidation on a p-Si(100) covered with a 2.4 nm Si{sub 3}N{sub 4} layer was measured. The results show that silicon covered with a nitridated thin film may be useful to stabilize electrodes in photoelectrochemical applications.

  2. [Preparation of NiAl-MMO Films Electrode and Its Capacitive Deionization Property].

    Science.gov (United States)

    Wang, Ting; Zhu, Chun-shan; Hu, Cheng-zhi

    2016-02-15

    Hydrotalcites are not only considered as important absorbents in water treatment and but also widely used as super capacitor materials. In this study, NiAl metal oxide (NiAl-MMO) films, which were the calcined products of hydrotalcite-like compounds, were grown on the surface of a foam nickel by an in-situ growth method using a foam nickel substrate as the nickel source. The prepared NiAl-MMO films electrodes materials had stable electrochemical capability, remarkable electrochemical capacitor, and gave a highest specific capacitance of 667 F x g(-1). The desalination performance of material indicated high voltage and weakly alkaline solution were favored for desalination. A highest desalination efficiency was up to 58.17% when the initial concentration of Cl- was 0.003 mol x L(-1), the voltage value was 1.0 V and pH value was 8. The adsorption saturated electrodes could be rapidly regenerated with a desorption rate of 87.96% by electrodes reversion. This study provides a new choice for desalination in wastewater treatment. PMID:27363150

  3. Electrodeposition and Characterization of Bismuth Telluride Nanowires

    Science.gov (United States)

    Frantz, C.; Stein, N.; Gravier, L.; Granville, S.; Boulanger, C.

    2010-09-01

    In this work, we report thermoelectric measurements on electroplated bismuth telluride nanowires. Porous polycarbonate membranes, obtained by ion-track irradiation lithography, were chosen as electroplating templates. Bismuth telluride nanowires were achieved in acidic media under potentiostatic conditions at -100 mV versus saturated silver chloride electrode. The filling ratio of the pores was increased to 80% by adding dimethyl sulfoxide to the electrolyte. Whatever the experimental conditions, the nanowires were polycrystalline in the rhombohedral phase of Bi2Te3. Finally, the power output of arrays of bismuth telluride nanowires was analyzed as a function of load resistance. The results were strongly dependent on the internal resistance, which can be significantly reduced by the presence of dimethyl sulfoxide during electroplating.

  4. Investigation of polyaniline films doped with Fe3+ as the electrode material for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Highlights: • The PANI/Fe3+ films were synthesized by CV on stainless steel wire mesh. • The growth rate of PANI/Fe3+ films were greatly increased. • The PANI/Fe3+ films show a larger specific capacitance and lower resistance. • The relationship between electrochemical properties of a serious of transition metal ions doped PANI and the ratio of electronic affinity and ionic radius (Ea/r) has also been researched. - Abstract: H+ and Fe3+ ions co–doped polyaniline were synthesized by cyclic voltammetry onto the stainless steel mesh with various concentration of ferric chloride (FeCl3·6H2O) in electrolyte. The structure and morphology of PANI and PANI/Fe3+ films were characterized by Fourier transform infrared (FT–IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical properties of PANI and PANI/Fe3+ films were investigated by cyclic voltammetry, galvanostatic charge–discharge test and electrochemical impedance spectroscopy (EIS) in 0.5 mol L−1 H2SO4 electrolyte in three–electrode system. The PANI/0.2 M Fe3+ film shows a larger specific capacitance of 602 F g−1 at a current density of 3 mA/cm2 and lower resistance compared with the pure PANI film. The relationship between electrochemical properties of a serious of transition metal ions doped PANI/Mn+ (Mn+ = Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Fe3+) films and the ratio of electronic affinity and ionic radius (Ea/r) has also been researched

  5. Electrocatalytic Hydrogen Evolution from Molybdenum Sulfide-Polymer Composite Films on Carbon Electrodes.

    Science.gov (United States)

    Lattach, Youssef; Deronzier, Alain; Moutet, Jean-Claude

    2015-07-29

    The design of more efficient catalytic electrodes remains an important objective for the development of water splitting electrolyzers. In this context a structured composite cathode material has been synthesized by electrodeposition of molybdenum sulfide (MoSx) into a poly(pyrrole-alkylammonium) matrix, previously coated onto carbon electrodes by oxidative electropolymerization of a pyrrole-alkylammonium monomer. The composite material showed an efficient electrocatalytic activity toward proton reduction and the hydrogen evolution reaction (HER). Data from Tafel plots have demonstrated that the electron transfer rate in the composite films is fast, in agreement with the high catalytic activity of this cathode material. Bulk electrolysis of acidic water at carbon foam electrodes modified with the composite have shown that the cathodes display a high catalytic activity and a reasonable operational stability, largely exceeding that of regular amorphous MoSx electrodeposited on naked carbon foam. The enhanced catalytic performances of the composite electrode material were attributed to the structuration of the composite, which led to a homogeneous distribution of the catalyst on the carbon foam network, as shown by SEM characterizations. PMID:26147828

  6. [Desulphurization with multi-needle-water film electrodes by corona discharge].

    Science.gov (United States)

    Huang, Xu-ran; Li, Guo-feng; Li, Jie; Wu, Yan

    2008-09-01

    The study of this paper adopted stainless steel multi-needle as a high voltage electrode system, and water film as low voltage electrode. The electrodes were supplied with negative DC high voltage. Polluted gas containing sulfur dioxide (SO2) flowed into the corona discharge field from the center of the high voltage electrode system in an axis direction, then get across the water surface. Under the effect of corona discharge plasma and water absorption, SO2 was removed by converting it into sulfuric acid. The effect of the three factors which were the applied voltage, SO2 inlet concentration and duration of the exposure to the corona discharge on desulphurization efficiency has been studied mostly. Moreover, the concentrations of SO3(2-) and SO4(2-) ions in the water were measured and the mechanism of desulphurization was analyzed. The results showed that there was a synergistic effect on the removal of SO2 when combining corona discharge and water absorption, and both the desulphurization efficiency and the amount of sulfuric acid increased evidently. As the applied voltage and the duration increased, the desulphurization efficiency increased. Also, the SO2 inlet concentration had effect on desulphurization efficiency. When the SO2 inlet concentration was 430 x 10(-6), the voltage was 14.5 kV and the duration was 7.5 s, a desulphurization efficiency of more than 90% could be attained. PMID:19068659

  7. Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices.

    Science.gov (United States)

    Bi, Yan-Gang; Feng, Jing; Ji, Jin-Hai; Chen, Yang; Liu, Yu-Shan; Li, Yun-Fei; Liu, Yue-Feng; Zhang, Xu-Lin; Sun, Hong-Bo

    2016-05-21

    An ultrathin, ultrasmooth and flexible Au film as an alternative of the indium-tin oxide (ITO) electrode in organic light-emitting devices (OLEDs) has been reported. The 7 nm Au film shows excellent surface morphology, optical and electronic characteristics including a root-mean-square roughness of 0.35 nm, a high transparency of 72% at 550 nm, and a sheet resistance of 23.75 Ω sq(-1). These features arise from the surface modification of the glass substrate by using a SU-8 film, which fixes metal atoms via chemical bond interactions between Au and SU-8 film to suppress the island growth mode. A 17% enhancement in current efficiency has been obtained from the OLEDs based on the ultrathin Au electrodes compared to that of the devices with the ITO electrodes. The OLEDs with the ultrathin Au/SU-8 anodes exhibit high flexibility and mechanical robustness. PMID:27128168

  8. Investigation of the electrochemical behavior of multilayers film assembled porphyrin/gold nanoparticles on gold electrode

    International Nuclear Information System (INIS)

    Multilayers film of nanostructured gold nanoparticles (AuNPs) has been fabricated based on the layer-by-layer (LBL) technique using a self-assembled monolayer of 5,15-di-[p-(6-mercaptohexyl)-phenyl]-10,20-diphenylporphyrin (trans-PPS2). AuNPs act as physical cross-link points in the multilayers. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are applied to study the formation of the organic-inorganic multilayers film and have determined the electrochemical parameters, i.e., the heterogeneous electron transfer rate constant (Ket). The observed phenomena indicate that the electron transfer (ET) process is affected by material properties and the molecular structure of self-assembled monolayers (SAMs). Using the high sensitivity of ET of ferricyanide to the modification of the gold surface with multilayers film, we select this reaction as a probe to study the different modification stages at this modified electrode. ET is retarded on the trans-PPS2 alternative deposition of layers on the electrode surface and is accelerated on the AuNPs' layers. SECM images are used to collect surface information in the course of the successive modification process. SECM images obtained from bare and different modification stages show very high resolution with different topographies.

  9. Investigation of the electrochemical behavior of multilayers film assembled porphyrin/gold nanoparticles on gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiaoquan, E-mail: luxq@nwnu.edu.c [College of Chemistry and Chemical Engineering, Northwest Normal University, No. 967 Anning Eastern Road, Lanzhou, Gansu 730070 (China); Zhi Fupeng; Shang Hui; Wang Xiaoyan; Xue Zhonghua [College of Chemistry and Chemical Engineering, Northwest Normal University, No. 967 Anning Eastern Road, Lanzhou, Gansu 730070 (China)

    2010-04-15

    Multilayers film of nanostructured gold nanoparticles (AuNPs) has been fabricated based on the layer-by-layer (LBL) technique using a self-assembled monolayer of 5,15-di-[p-(6-mercaptohexyl)-phenyl]-10,20-diphenylporphyrin (trans-PPS{sub 2}). AuNPs act as physical cross-link points in the multilayers. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are applied to study the formation of the organic-inorganic multilayers film and have determined the electrochemical parameters, i.e., the heterogeneous electron transfer rate constant (K{sub et}). The observed phenomena indicate that the electron transfer (ET) process is affected by material properties and the molecular structure of self-assembled monolayers (SAMs). Using the high sensitivity of ET of ferricyanide to the modification of the gold surface with multilayers film, we select this reaction as a probe to study the different modification stages at this modified electrode. ET is retarded on the trans-PPS{sub 2} alternative deposition of layers on the electrode surface and is accelerated on the AuNPs' layers. SECM images are used to collect surface information in the course of the successive modification process. SECM images obtained from bare and different modification stages show very high resolution with different topographies.

  10. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    Science.gov (United States)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  11. Vibration optimization of ZnO thin film bulk acoustic resonator with ring electrodes

    Science.gov (United States)

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin

    2016-04-01

    A rectangular ZnO thin film bulk acoustic resonator with ring electrodes is presented in this paper to demonstrate the existence of a nearly uniform displacement distribution at the central part of this typical resonator. The variational formulation based on two-dimensional scalar differential equations provides a theoretical foundation for the Ritz method adopted in our analysis. The resonant frequencies and vibration distributions for the thickness-extensional modes of this ring electrode resonator are obtained. The structural parameters are optimized to achieve a more uniform displacement distribution and therefore a uniform mass sensitivity, which guarantee the high accuracy and repeatable measurement for sensor detection in an air or a liquid environment. These results provide a fundamental reference for the design and optimization of the high quality sensor.

  12. DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode

    Science.gov (United States)

    Zhang, Wei; Yang, Tao; Jiang, Chen; Jiao, Kui

    2008-05-01

    This study reports a novel electrochemical DNA biosensor based on zirconia (ZrO 2) and gold nanoparticles (NG) film modified glassy carbon electrode (GCE). NG was electrodeposited onto the glassy carbon electrode at 1.5 V, and then zirconia thin film on the NG/GCE was fabricated by cyclic voltammetric method (CV) in an aqueous electrolyte of ZrOCl 2 and KCl at a scan rate of 20 mV/s. DNA probes were attached onto the ZrO 2/NG/GCE due to the strong binding of the phosphate group of DNA with the zirconia film and the excellent biocompatibility of nanogold with DNA. CV and electrochemical impedance spectroscopy (EIS) were used to characterize the modification of the electrode and the probe DNA immobilization. The electrochemical response of the DNA hybridization was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. After the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA), the cathodic peak current of MB decreased obviously. The difference of the cathodic peak currents of MB between before and after the hybridization of the probe DNA was used as the signal for the detection of the target DNA. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene in the transgenic plants was detected with a detection range from 1.0 × 10 -10 to 1.0 × 10 -6 mol/L, and a detection limit of 3.1 × 10 -11 mol/L.

  13. Electrochemical quartz crystal microbalance study on the two-electrode-system cyclic voltammetric behavior of Prussian blue films

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A two-channel electrochemical quartz crystal microbalance (EQCM) was used to investigate the cyclic voltammetric behavior of two Prussian blue (PB) film-modified Au electrodes in a two-electrode con-figuration in aqueous solution. The redox peaks observed in the two-electrode cyclic voltammogram (CV) are assigned to the intrinsic redox transitions among the Everitt’s salt, PB, and Prussian yellow for the film itself, the redox process of the Au substrate and the redox process of small-quantity ferri-/ferrocyanide impurities entrapped in the PB film, as also supported by ultraviolet-visible (UV-Vis) spectroelectrochemical data. The profile of the two-electrode solid-state CV for the PB powder sand-wiched between two gold-coated indium-tin oxide (ITO) electrodes is similar to that for two PB-modified Au electrodes in aqueous solution, implying similar origins for the corresponding redox peaks. The two-channel EQCM method is expected to become a highly effective technique for the studies of the two-electrode electrochemical behaviors of many other species/materials.

  14. Electromechanical field concentrations near the electrode tip in partially poled multilayer piezo-film actuators

    International Nuclear Information System (INIS)

    This paper describes the results of our numerical and experimental studies of the electromechanical field concentrations due to electrodes in partially poled multilayer piezoelectric film actuators under electric fields. A nonlinear finite element analysis is performed to create the partial poling state through the high electric field and to discuss the electromechanical fields. Displacement versus electric field curves are also measured to validate the numerical predictions, and comparisons are made between numerical results and experimental data. Moreover, the results of the partially poled multilayer actuators are compared with those of fully poled actuators

  15. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    Directory of Open Access Journals (Sweden)

    Tsubasa Funabashi

    2013-09-01

    Full Text Available A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM, was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce. Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC were achieved by the vacuum ultraviolet/ozone (VUV/O3 treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  16. Impedance analysis of different cell monolayers grown on gold-film electrodes.

    Science.gov (United States)

    Reiss, Bjoern; Wegener, Joachim

    2015-08-01

    Impedance analysis of mammalian cells grown on planar film electrodes provides a label-free, non-invasive and unbiased observation of cell-based assays addressing the biological response to drugs, toxins or stressors in general. Whereas the time course of the measured impedance at one particular frequency has been used a lot for quantitative monitoring, in-depth analysis of the frequency-dependent impedance spectra is rarely performed. This study summarizes and validates the existing model for spectral analysis by applying it to eight different cell types from different mammalian tissues. Model parameters correctly predict the functional and/or structural properties of the individual cells under study. PMID:26737923

  17. Solid-state electrochromic cell with anodic iridium oxide film electrodes

    International Nuclear Information System (INIS)

    A new solid-state electrochromic cell has been fabricated using an anodic iridium oxide film (AIROF) display electrode. The cell has the symmetric sandwich structure AIROFvertical-barNafionvertical-barAIROF, with the Nafion solid electrolyte opacified by an in situ precipitation technique. A symmetric square-wave voltage of 1.5 V amplitude produces clearly perceivable color changes from pale to dark blue-gray in approx. =1 sec when viewed in diffuse reflection. Good open-circuit optical memory is exhibited:

  18. Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties

    International Nuclear Information System (INIS)

    The composite thin film electrodes were prepared with one-dimensional (1D) TiO2-B nanotubes (NTs) and zero-dimensional TiO2 nanoparticles (NPs) based on different weight ratios. The electron transport properties of the NTs/NPs composite thin film electrodes applied for dye-sensitized solar cells had been investigated systematically. The results indicated that although the amount of dye adsorption decreased slightly, the devices with the NTs/NPs composite thin film electrodes could obtain higher open-circuit voltage and overall conversion efficiency compared to devices with pure TiO2 NPs electrodes by rational tuning the weight ratio of TiO2-B NTs and TiO2 NPs. When the weight ratio of TiO2-B NTs in the NTs/NPs composite thin film electrodes increased, the density of states and recombination rate decreased. The 1D structure of TiO2-B NTs can provide direct paths for electron transport, resulting in higher electron lifetime, electron diffusion coefficient and electron diffusion length. The composite thin film electrodes possess the merits of the rapid electron transport of TiO2-B NTs and the high surface area of TiO2 NPs, which has great applied potential in the field of photovoltaic devices. - Highlights: • The composite thin film electrodes (CTFEs) were prepared with nanotubes and nanoparticles. • The CTFEs possess the rapid electron transport and high surface area. • The CTFEs exhibit lower recombination rate and longer electron life time. • The CTFEs have great applied potential in the field of photovoltaic devices

  19. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    International Nuclear Information System (INIS)

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10−2 A W−1 and a shot-derived specific detectivity of 3 × 109 Jones at 1530 nm wavelength

  20. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinos, Christos, E-mail: xkokkinos@gmail.com [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Prodromidis, Mamas [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Economou, Anastasios [Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 157 71 Athens (Greece); Petrou, Panagiota; Kakabakos, Sotirios [Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, Aghia Paraskevi, 153 10 Athens (Greece)

    2015-07-30

    A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL{sup −1} CRP and the limit of detection was 0.05 ng mL{sup −1} CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production. - Highlights: • A bismuth citrate-modified screen-printed immunosensor was developed. • PbS quantum dots labels were used in the sandwich immunoassay for CRP determination. • A Bi film was formed at the sensor surface during the preconcentration step of Pb. • The immunosensor minimizes the limitations of electroplated metal film electrodes.

  1. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum

    International Nuclear Information System (INIS)

    A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL−1 CRP and the limit of detection was 0.05 ng mL−1 CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production. - Highlights: • A bismuth citrate-modified screen-printed immunosensor was developed. • PbS quantum dots labels were used in the sandwich immunoassay for CRP determination. • A Bi film was formed at the sensor surface during the preconcentration step of Pb. • The immunosensor minimizes the limitations of electroplated metal film electrodes

  2. MOS dosemeter using bismuth oxide (Bi2O3) and copper phthalocyanine (CuPc) polymer thick film

    International Nuclear Information System (INIS)

    A metal-oxide-silicon (MOS)-capacitor having an Ag/Bi2O3/CuPc/Ag and an MOS-transistor with Ag (gate)-Bi2O3 (gate insulator)-CuPc (semiconductor)-CdO (drain and source) structure were fabricated using screen-printing polymer thick film. The effects of gamma irradiation on the characteristics of both MOS-capacitor and MOS-transistor were investigated. The flat band voltage (VFB) of the MOS-capacitor showed a shift towards the negative gate voltage when exposed to gamma rays. The IDS-VGs characteristics displayed enhancement mode transistor for such devices. The threshold voltage was found to be 4.25 V, which displayed a linear and gradual decrease in ΔVT=0.5 V at VDS=0 V and ΔVT=1.0 V at VDS=2 V when exposed to gamma rays of dose step of 60 Gy. (authors)

  3. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

    International Nuclear Information System (INIS)

    We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (ks) of Hb in RBCs is 0.42 s−1, and <1.13 s−1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode. (author)

  4. Carbon paste electrode modified with duplex molecularly imprinted polymer hybrid film for metronidazole detection.

    Science.gov (United States)

    Xiao, Ni; Deng, Jian; Cheng, Jianlin; Ju, Saiqin; Zhao, Haiqing; Xie, Jin; Qian, Duo; He, Jun

    2016-07-15

    A novel electrochemical sensor based on duplex molecularly imprinted polymer (DMIP) hybrid film modified carbon paste electrode (CPE) has been developed for highly sensitive and selective determination of metronidazole (MNZ). A conductive poly(anilinomethyltriethoxysilane) film is firstly electrodeposited on the surface of a CPE, and then a molecularly imprinted polysiloxane (MIPS) membrane is covalently covered on the film via sol-gel process. The as-constructed DMIP hybrid film, combining the advantages of MIPS and conducting MIP, can make feasible the direct and efficient signal transformation between the target analyte and the transducer, as well as enhance the imprinting recognition capability, mass transfer efficiency and the detection sensitivity. Under optimized conditions, the reduction peak currents of MNZ are linear to MNZ concentrations in the range from 4.0×10(-7) to 2.0×10(-4) molL(-1) with a detection limit of 9.1×10(-8)molL(-1). The RSD values vary from 2.9% to 4.7% for intra-day and from 3.4% to 4.2% for inter-day precision. The DMIP-based sensor has been successfully applied for the determination of MNZ in biological and pharmaceutical samples. The accuracy and reliability of the method is further confirmed by high performance liquid chromatography. PMID:26921552

  5. Direct and Simultaneous Determination of Phenol, Hydroquinone and Nitrophenol at Boron-Doped Diamond Film Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Guo-Hua; TANG, Yi-Ting; LIU, Mei-Chuan; LEI, Yan-Zhu; XIAO, Xiao-E

    2007-01-01

    The electrochemical characteristics of multi-component phenolic pollutants, such as phenol (Ph), hydroquinone (HQ) and 4-nitrophenol (4-NP), were investigated on boron-doped diamond (BDD) film electrode by differential pulse voltammetry (DPV) technique. A simple and feasible platform was accordingly established for the direct and simultaneous determination of these three phenolic pollutants. Results showed that, Ph, HQ and 4-NP gave obvious oxidation peaks on BDD electrode at the potential of 1.24, 0.76 and 1.52 V, respectively. Each of them displayed good linear relationship between their oxidation peak currents and their corresponding concentrations in a rather wide range coexisting with one or two of the other phenolic pollutants. The detection limits of Ph, HQ and 4-NP were estimated to be as low as 1.82×10-6, 1.67×10-6 and 1.44×10-6mol·L-1, respectively. Therefore, a promising direct and simultaneous electrochemical determination method of multi-component phenolic pollutants in wastewater samples was constructed successfully on BDD electrode with advantages being rapid, simple, convenient, sensitive, in situ and inexpensive.

  6. Electrochemical performance and stability of thin film electrodes with metal oxides in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wesselmark, M., E-mail: maria.wesselmark@ket.kth.s [Applied Electrochemistry, School of Chemistry and Chemical Engineering, KTH, SE-100 44 Stockholm (Sweden); Wickman, B. [Competence Centre for Catalysis, Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Lagergren, C.; Lindbergh, G. [Applied Electrochemistry, School of Chemistry and Chemical Engineering, KTH, SE-100 44 Stockholm (Sweden)

    2010-11-01

    Thin film electrodes are prepared by thermal evaporation of nanometer thick layers of metal oxide and platinum on a gas diffusion layer (GDL), in order to evaluate different metal oxides' impact on the activity and stability of the platinum cathode catalyst in the polymer electrolyte fuel cell. Platinum deposited on tin, tantalum, titanium, tungsten and zirconium oxide is investigated and the morphology and chemistry of the catalysts are examined with scanning electron microscopy and X-ray photoelectron spectroscopy. Cyclic sweeps in oxygen and nitrogen are performed prior and after potential cycling degradation tests. Platinum seems to disperse better on the metal oxides than on the GDL and increased electrochemically active surface area (ECSA) of platinum is observed on tin, titanium and tungsten oxide. A thicker layer metal oxide results in a higher ECSA. Platinum deposited on tungsten performs better than sole platinum in the polarisation curves and displays higher Tafel slopes at higher current densities than all other samples. The stability does also seem to be improved by the addition of tungsten oxide, electrodes with 3 nm platinum on 3, 10 and 20 nm tungsten oxide, performs better than all other electrodes after the accelerated degradation tests.

  7. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    CERN Document Server

    Gac, A

    2002-01-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (approx 850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiomet...

  8. Nitric Oxide Detection with Glassy Carbon Electrodes Coated with Charge-different Polymer Films

    Directory of Open Access Journals (Sweden)

    Jianping Lei

    2005-04-01

    Full Text Available Trace amounts of nitric oxide (NO have been determined in aqueous phosphate buffersolutions (pH=7.4 by using a glassy carbon electrode coated with three charge-different polymerfilms. The glassy carbon electrode was coated first with negatively charged Nafion film containingtetrakis(pentafluorophenylporphyrin iron(III chloride (Fe(IIITPFPP as the NO oxidation catalyst,and then with positively charged poly(acrylamide-co-diallyldimethylammonium chloride (PADDAand with neutral poly(dimethylsiloxane (silicone at the outermost layer. This polymer-coatedelectrode showed an excellent selectivity towards NO against possible concomitants in blood such asnitrite, ascorbic acid, uric acid, and dopamine. All current ratios between each concomitant and NOat the cyclic voltammogram was in 10-3 ~ 10-4. This type of electrode showed a detection limit of80 nM for NO. It was speculated from the electrochemical study in methanol that high-valent oxoiron(IV of Fe(TPFPP participated in the catalytic oxidation of NO.

  9. Electric measurement and nuclear microanalysis of the degradation induced in thin film semiconductors by electrode diffusion

    International Nuclear Information System (INIS)

    So far electrical characteristics degradation of electronic devices made of amorphous semiconductor thin films has not been related to the evolution of the electrode-glass interface. For chalcogenide systems, binary (As50Te50) or quaternary (As38Ge14Te43S5) and gold electrodes, 3.5MeV alpha particle backscattering has evidenced a complex thermal diffusion process below the glass transition temperature of these materials. Compared with elementary media As and Te where the Fick's law applies such materials are subject to an 'easy path' diffusion process, interpreted by the Fisher's formalism initially proposed for the grain-boundary diffusion in polycristalline materials. In the other hand, the electrical performance degradations, mainly expressed by the change in the activation energy of the systems, is closely correlated with the gold content in the middle of the film. Various hypothesis are proposed to interpret such a mechanism, the most consistent being a gold migration at preferential diffusion sites, well localized, the material remaining basically amorphous. Some reordering due to the presence of the metal appears feasible in this temperature range where the atomic mobility is very low

  10. Surface Enhanced Infrared Studies of 4-Methoxypyridine Adsorption on Gold Film Electrodes.

    Science.gov (United States)

    Quirk, Amanda; Unni, Bipinlal; Burgess, Ian J

    2016-03-01

    This work uses electrochemical surface sensitive vibrational spectroscopy to characterize the adsorption of a known metal nanoparticle stabilizer and growth director, 4-methoxypyridine (MOP). Surface enhanced infrared absorption spectroscopy (SEIRAS) is employed to study the adsorption of 4-methoxypyridine on gold films. Experiments are performed under electrochemical control and in different electrolyte acidities to identify both the extent of protonation of the adsorbed species as well as its orientation with respect to the electrode surface. No evidence of adsorbed conjugated acid is found even when the electrolyte pH is considerably lower than the pKa. Through an analysis of the transition dipole moments, determined from DFT calculations, the SEIRA spectra support an adsorption configuration through the ring nitrogen which is particularly dominant in neutral pH conditions. Adsorption is dependent on both the electrical state of the Au film electrode as well as the presence of ions in the electrolyte that compete for adsorption sites at positive potentials. Combined differential capacitance measurements and spectroscopic data demonstrate that both a horizontal adsorption geometry and a vertical adsorption phase can be induced, with the former being found on negatively charged surfaces in acidic media and the latter over a wide range of polarizations in neutral solutions. PMID:26862774

  11. Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes

    OpenAIRE

    Battaglia, Corsin; Erni, Lukas; Boccard, Mathieu; Barraud, Loris; Escarré, Jordi; SöDerströM, Karin; Bugnon, Grégory; Billet, Adrian; Ding, Laura; Despeisse, Matthieu; Haug, Franz-Josef; De Wolf, Stefaan; Ballif, Christophe

    2011-01-01

    We investigate the performance of hydrogenated indium oxide as a transparent front electrode for micromorph thin-film silicon solar cells on glass. Light trapping is achieved by replicating the morphology of state-of-the-art zinc oxide electrodes, known for their outstanding light trapping properties, via ultraviolet nanoimprint lithography. As a result of the high electron mobility and excellent near-infrared transparency of hydrogenated indium oxide, the short-circuit current density of the...

  12. Studying the ion transfer across liquid interface of thin organic-film-modified electrodes in the presence of glucose oxidase

    OpenAIRE

    Mirceski, Valentin; Mitrova, Biljana; Ivanovski, Vladimir; Mitreska, Nikolina; Aleksovska, Angela; Gulaboski, Rubin

    2015-01-01

    A coupled electron-ion transfer reaction at thin organic-film-modified electrodes (TFE) is studied in the presence of glucose oxidase (GOx) under voltammetric conditions. TFE consists of a graphite electrode modified with a nitrobenzene solution of decamethylferrocene (DMFC) as a redox mediator and tetrabuthylammonium perchlorate as an organic-supporting electrolyte, in contact with aqueous buffer solutions containing percholarte ions and GOx. The redox turnover of DMFC coupled with perchl...

  13. Heterogeneous growth of anodic oxide film on a polycrystalline titanium electrode observed with a scanning electrochemical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, Koji; Okawa, Tsuyoshi; Azumi, Kazuhisa; Seo, Masahiro

    2000-02-01

    A scanning electrochemical microscope (SECM) was applied to study anodic oxide film grown on a polycrystalline titanium electrode in deaerated pH 8.4 borate solution. The probe current images of SECM could detect the heterogeneous growth of anodic oxide film, depending on the substrate crystal grains. This heterogeneity increased with increasing the film formation potential at the potential higher than 3 V (SHE). The study of the dependence of film thickness on the substrate grain has been also supported with Raman microprobe spectroscopy.

  14. Selective Electrochemical Detection of Ciprofloxacin with a Porous Nafion/Multiwalled Carbon Nanotube Composite Film Electrode.

    Science.gov (United States)

    Gayen, Pralay; Chaplin, Brian P

    2016-01-27

    This study focuses on the development of electrochemical sensors for the detection of Ciprofloxacin (CFX) in natural waters and wastewater effluents. The sensors are prepared by depositing a layer of multiwalled carbon nanotubes (MWCNTs) dispersed in a porous Nafion film on to a boron-doped diamond (BDD) electrode substrate. The porous-Nafion-MWCNT/BDD electrode enhanced detection of CFX due to selective adsorption, which was accomplished by a combination of electrostatic attraction at -SO3(-) sites in the porous Nafion film and the formation of charge assisted hydrogen bonding between CFX and -COOH MWCNT surface functional groups. By contrast, the bare BDD electrode did not show any activity for CFX oxidation. The sensors were selective for CFX detection in the presence of other antibiotics (i.e., amoxicillin) and other nontarget water constituents (i.e., Cl(-), Ca(2+), humic acid, sodium dodecylbenzenesulfonate, salicylic acid, 4-aminobenzoic acid, and 4-hydroxybenzoic acid). A limit of detection of 5 nM (S/N = 5.04 ± 0.26) in a 0.1 M KH2PO4 supporting electrolyte (pH = 4.5) was obtained using differential pulse voltammetry. The linear dynamic ranges with respect to CFX concentration were 0.005-0.05 μM and 0.05-10 μM, and the sensitivities were 41 ± 5.2 μA μM(-1) and 2.1 ± 0.22 μA μM(-1), respectively. Sensor fouling was observed at high concentrations of some organic compounds such as 1 mM 4-aminobenzoic acid and 4-hydroxybenzoic acid. However, a short cathodic treatment fully restores sensor response. The results indicate that these sensors have application in detecting CFX in natural waters and wastewater effluents. PMID:26711553

  15. Flexible Electrode Design: Fabrication of Freestanding Polyaniline-Based Composite Films for High-Performance Supercapacitors.

    Science.gov (United States)

    Khosrozadeh, Ali; Darabi, Mohammad Ali; Xing, Malcolm; Wang, Quan

    2016-05-11

    Polyaniline (PANI) is a promising pseudocapacitance electrode material. However, its structural instability leads to low cyclic stability and limited rate capability which hinders its practical applications. In view of the limitations, flexible PANI-based composite films are developed to improve the electrochemical performance of electrode materials. We report in the research a facile and cost-effective approach for fabrication of a high-performance supercapacitor (SC) with excellent cyclic stability and tunable energy and power densities. SC electrode containing a very high mass loading of active materials is a flexible film of PANI, tissue wiper-based cellulose, graphite-based exfoliated graphite (ExG), and silver nanoparticles with potential applications in wearable electronics. The optimum preparation weight ratios of silver nitrate/aniline and ExG/aniline used in the research are estimated to be 0.18 and 0.65 (or higher), respectively. Our results show that an ultrahigh capacitance of 3.84 F/cm(2) (240.10 F/g) at a discharge rate of 5 mA can be achieved. In addition, our study shows that the power density can be increased from 1531.3 to 3000 W/kg by selecting the weight ratio of ExG/aniline to be more than 0.65, with a sacrifice in the energy density. The obtained promising electrochemical properties are found to be mainly attributed to an effective combination of PANI, ExG, cushiony cellulose scaffold, and silver as well as the porosity of the composite. PMID:27116563

  16. Nanocrystalline TiO2 thin film electrodes prepared by common pressure hydrothermal method at low temperature

    Institute of Scientific and Technical Information of China (English)

    LI Chengyu; LIN Yuan; LI Xueping; WANG Zhengping; MA Yutao; ZHOU Xiaowen; FENG Shujing; XIAO Xurui

    2005-01-01

    Nanocrystalline TiO2 thin film electrodes have been prepared from mixed pastes of tetrabutyl titanate and nanocrystalline TiO2 particles by common pressure hydrothermal method at low temperature. The tetrabutyl titanate was hydrolyzed and crystallized into anatase TiO2 to interconnect nanocrystalline TiO2 particles and adhere them to conductive substrates, obtaining highly porous and mechanically stable TiO2 nanocrystalline film. The conversion efficiencies of the dye-sensitized solar cells based on prepared electrodes on conductive glass substrates and flexible substrates were 4.8% and 1.9% under illumination of 100 mW/cm2, respectively.

  17. Stress-driven growth of bismuth nanowires

    Science.gov (United States)

    Cheng, Yang-Tse; Weiner, Anita M.; Wong, Curtis A.; Balogh, Michael P.; Lukitsch, Michael J.

    2003-03-01

    We recently reported that compressive stresses in thin films can be exploited to grow nanowires (Ref.1). Nanowires of bismuth (Bi) with diameters ranging from 30 to 200 nm and lengths up to several millimeters were formed spontaneously at the rate of a few micrometers per second at room temperature on surfaces of freshly grown composite thin films consisting of Bi and chrome-nitride (CrN). The high compressive stress in the composite thin films was shown to be the driving force responsible for the nanowire formation. In this presentation, the effects of stress, composition, and temperature on the growth and structure of bismuth nanowires will be discussed. This method of growing nanowires can also be extended to other material systems. Ref. 1. Yang-Tse Cheng, Anita M. Weiner, Curtis A. Wong, Michael P. Balogh, and Michael J. Lukitsch, Applied Physics Letters 81, 3248 (2002).

  18. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung, E-mail: hkkim@ynu.ac.kr

    2015-08-31

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □{sup −1} and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □{sup −1} after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐{sup −1}) and high transmittance (87.6%)

  19. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    International Nuclear Information System (INIS)

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □−1 and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □−1 after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐−1) and high transmittance (87.6%)

  20. Top electrode material related bipolar memory and unipolar threshold resistance switching in amorphous Ta2O5 films

    Science.gov (United States)

    Cai, Yunyu; Sheng, Cuicui; Liang, Changhao

    2013-06-01

    Tantalum oxide (Ta2O5) is one of the most studied materials for its stable resistance switching and potential application in nonvolatile memory devices. Top electrode and essential switching material are two critical points dominating its switching characteristics. Here, Ta2O5 films of amorphous nature (a-Ta2O5) with tunable thicknesses were made by changing the applied voltage during anodic oxidation of Ta-metal foils. The resistance-switching behavior of an a-Ta2O5 film in a metal/a-Ta2O5/Ta configuration was investigated by using a sputtered W or Ag metal film as the top electrode. The unipolar threshold switching phenomenon was observed using W as top electrode (WTE), while bipolar switching behaviors were achieved using active Ag metal as top electrode (AgTE). The thickness of the a-Ta2O5 film shows an obvious effect on the SET voltage in a WTE/a-Ta2O5/Ta device. The interfacial redox reaction induced formation of more conductive Ta-rich suboxide and the Joule heating effect are proposed to contribute to the unipolar threshold switching behavior. It is also suggested that the bipolar switching could have resulted from the electrochemical reaction-induced dissolution and growth of Ag conducting channels inside the Ta2O5 films.

  1. Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode

    International Nuclear Information System (INIS)

    Highlights: ► The enhanced oxidation of ractopamine on MWCNT film surface was firstly studied. ► The oxidation occurred at phenolic hydroxyl groups and transferred two electrons. ► A sensitive and effective electrochemical sensor was developed for ractopamine. ► It was used to detect ractopamine in animal tissues, the recovery was satisfactory. - Abstract: Insoluble multi-walled carbon nanotube (MWCNT) was readily dispersed into water in the presence of dihexadecyl hydrogen phosphate, and then used to modify the surface of glassy carbon electrode (GCE) by means of solvent evaporation. Scanning electron microscopy test indicated that the GCE surface was coated with uniform MWCNT film. The resulting MWCNT film-modified GCE greatly enhanced the oxidation signal of ractopamine. The oxidation mechanism was studied, and it was found that the oxidation of ractopamine occurred at two phenolic hydroxyl groups, involving two protons and two electrons. Moreover, the influences of pH value, amount of MWCNT, accumulation potential and time were investigated on the oxidation signal of ractopamine. Based on the strong enhancement effect of MWCNT, a sensitive, rapid and simple electrochemical method was developed for the detection of ractopamine. The linear range was from 50 μg L−1 to 2 mg L−1, and the detection limit was 20 μg L−1. Finally, this method was successfully used to detect the content of ractopamine in pork and liver samples, and the recovery was in the range from 93.1% to 107.2%.

  2. Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes

    International Nuclear Information System (INIS)

    In the present investigation, we have successfully assembled symmetric supercapacitor device based on cobalt hydroxide [Co(OH)2] thin film electrodes using 1 M KOH as an electrolyte. Initially, potentiodynamic electrodeposition method is employed for the preparation of Co(OH)2 thin films onto stainless steel substrate. These films are characterized for structural and morphological elucidations using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD reveals formation of β-Co(OH)2 material with hexagonal crystal structure. The SEM images show formation of nanoflakes like microstructure with average flake width 100 nm. Electrochemical characterizations of Co(OH)2 based symmetric supercapacitor cell are carried out using cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy (EIS) techniques. In the performance evaluation the maximum values of specific capacitance, specific energy and specific power are encountered as 44 F g−1, 3.96 Wh kg−1 and 42 kW kg−1. The value of equivalent series resistance (ESR) is estimated as 2.3 Ω using EIS

  3. Combination of porous silica monolith and gold thin films for electrode material of supercapacitor

    Science.gov (United States)

    Pastre, A.; Cristini-Robbe, O.; Boé, A.; Raulin, K.; Branzea, D.; El Hamzaoui, H.; Kinowski, C.; Rolland, N.; Bernard, R.

    2015-12-01

    An all-solid electrical double layer supercapacitor was prepared, starting from a porous silica matrix coated with a gold thin-film. The metallization of the silica xerogel was performed by an original wet chemical process, based on the controlled growth of gold nanoparticles on two opposite faces of the silica monolith as a seed layer, followed by an electroless deposition of a continuous gold thin film. The thickness of the metallic thin film was assessed to be 700 nm. The silica plays two major roles: (1) it is used as a porous matrix for the gold electrode, creating a large specific surface area, and (2) it acts as a separator (non-metallized part of the silica). The silica monolith was soaked in a polyvinyl alcohol and phosphoric acid mixture which is used as polymer electrolyte. Capacitance effect was demonstrated by cyclic voltammetry experiments. The specific capacitance was found to be equal to 0.95 mF cm- 2 (9.5 F g-1). No major degradation occurs within more than 3000 cycles.

  4. Electrospray deposition of carbon nanotube thin films for flexible transparent electrodes.

    Science.gov (United States)

    Meng, Yinan; Xin, Guoqing; Nam, Jaewook; Cho, Sung Min; Chae, Heeyeop

    2013-09-01

    Flexible transparent carbon nanotube (CNT) electrodes were fabricated by electrospray deposition, a large-area scalable and cost-effective process. The carbon nanotubes were dispersed in N,N-dimethylformamide (DMF) and deposited on polyethylene terephthalate (PET) substrates by electrospray deposition process at room temperature and atmospheric pressure. Major process variables were characterized and optimized for the electrospray process development such as electric field between nozzle and substrates, CNT solution flowrate, gap between nozzle and substrates, solution concentration, solvent properties and surface temperature. The sheet resistance of the electrospray deposited CNT films were reduced by HNO3 doping process. 169 Omega/sq sheet resistance and 86% optical transmittance was achieved with low surface roughness of 1.2 nm. The films showed high flexibility and transparency, making them potential replacements of ITO or ZnO in such as solid state lighting, touch panels, and solar cells. Electrospray process is a scalable process and we believe that this process can be applied for large area carbon nanotube film formation. PMID:24205613

  5. Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display

    International Nuclear Information System (INIS)

    Indium tin oxide (ITO) thin films doped with various metal atoms were investigated in terms of phase transition behavior and electro-optical properties for the purpose of upgrading ITO and indium zinc oxide (IZO) films, commonly used for pixel electrodes in flat panel displays. We explored Ce, Mg, Zn, and Ga atoms as dopants to ITO by the co-sputtering technique, and Ga-doped ITO films (In:Sn:Ga = 87.4:6.7:5.9 at.%) showed the phase transition behavior at 210 °C within 20 min with high visible transmittance of 91% and low resistivity of 0.22 mΩ cm. The film also showed etching rate similar to amorphous ITO, and no etching residue on glass surfaces. These results were confirmed with the film formed from a single Ga-doped ITO target with slightly different compositions (In:Sn:Ga = 87:9:4 at.%). Compared to the ITO target, Ga-doped ITO target left 1/4 less nodules on the target surface after sputtering. These results suggest that Ga-doped ITO films could be an excellent alternative to ITO and IZO for pixel electrodes in thin film transistor liquid crystal display (TFT-LCD). - Highlights: ► We report Ga-doped In–Sn–O films for a pixel electrode in liquid crystal display. ► Ga-doped In–Sn–O films show phase transition behavior at 210 °C. ► Ga-doped In–Sn–O films show high wet etchability and low resistivity

  6. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode

    International Nuclear Information System (INIS)

    We are reporting the highly sensitive determination of hydroxylamine (HA) using 2-mercapto-4-methyl-5-thiazoleacetic acid (TAA) capped fused spherical gold nanoparticles (AuNPs) modified Au electrode. The fused TAA-AuNPs were immobilized on (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film, which was pre-assembled on Au electrode. The immobilization of fused TAA-AuNPs on MPTS sol-gel film was confirmed by UV-vis absorption spectroscopy and atomic force microscopy (AFM). The AFM image showed that the AuNPs retained the fused spherical morphology after immobilized on sol-gel film. The fused TAA-AuNPs on MPTS modified Au electrode were used for the determination of HA in phosphate buffer (PB) solution (pH = 7.2). When compared to bare Au electrode, the fused AuNPs modified electrode not only shifted the oxidation potential of HA towards less positive potential but also enhanced its oxidation peak current. Further, the oxidation of HA was highly stable at fused AuNPs modified electrode. Using amperometric method, determination of 17.5 nM HA was achieved for the first time. Further, the current response of HA increases linearly while increasing its concentration from 17.5 nM to 22 mM and a detection limit was found to be 0.39 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 17.5 nM HA in the presence of 200-fold excess of common interferents such as urea, NO2-, NH4+, oxalate, Mn2+, Na+, K+, Mg2+, Ca2+, Ba2+ and Cu2+. The practical application of the present modified electrode was demonstrated by measuring the concentration of HA in ground water samples.

  7. Growth of anodic films on compound semiconductor electrodes: InP in aqueous (NH sub 4) sub 2 S

    CERN Document Server

    Buckley, D N

    2002-01-01

    Film formation on compound semiconductors under anodic conditions is discussed. The surface properties of InP electrodes were examined following anodization in a (NH sub 4) sub 2 S electrolyte. The observation of a current peak in the cyclic voltammetric curve was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution revealed surface pitting. Thicker films formed at higher potentials exhibited extensive cracking as observed by optical and electron microscopy, and this was explicitly demonstrated to occur ex situ rather than during the electrochemical treatment. The composition of the thick film was identified as In sub 2 S sub 3 by EDX and XPS. The measured film thickness varies linearly with the charge passed, and comparison between experimental thickness measurements and theoretical estimates for the thickness indicate a porosity of over 70 %. Cracking is attributed to shrinkage during drying of the highly porous film and does n...

  8. In Search of the Holy Grail of Photoelectrochemistry: A Study of Thin Film Electrodes for Solar Hydrogen Generation

    International Nuclear Information System (INIS)

    Hydrogen is a wanted energy carrier in a future society less dependent of fossil fuels. This thesis investigates the possibilities of using solar energy to convert water into hydrogen and oxygen, so called artificial photosynthesis. Through this work multiple inexpensive and stable thin film semiconductor electrodes have been produced and used as solar energy absorbers and active sites for direct watersplitting in photoelectrochemical cells. The electrodes have mainly been of nanostructured metal oxide character but also nitrides have been studied. Detailed back ground theory on photoelectrochemistry of semiconductors for hydrogen evolution is given in the summary of the thesis. Nanostructured WO3 electrodes with a quantum yield close to unity were designed and photoelectrochemically characterized. Hematite, a-Fe2O3, nanorods were synthesized and characterized for the aim of water oxidation. The morphology of the hematite nanorods was found to be in favor of the traditional isotropic nanostructured electrodes. Moreover, a unique porous nitrogen doped TiO2 material, photoactive in visible light, was obtained by reactive sputtering. The nitrogen doped material has interesting photoelectrochemical properties and is also promising for related applications such as pollution degradation by photocatalysis. Polycrystalline indium nitride, InN, was produced by reactive sputtering. Electrodes of the as prepared InN as well as electrodes annealed in nitrogen were studied for the aim of photooxidation of water. The electrodes studied are interesting candidates as potential watersplitting electrodes in photoelectrochemical cells, even if all had in common that further improvements and optimizations need to be done

  9. Electrical properties of (Ba, Sr)TiO3 thin films with Pt and ITO electrodes: dielectric and rectifying behaviour

    International Nuclear Information System (INIS)

    The electrical properties of (Ba, Sr)TiO3 (BST) thin films are studied using different combinations of Pt and tin-doped indium oxide (In2O3:Sn, ITO) as electrode material. With Pt as bottom and top electrode the films show insulating behaviour with a low leakage current. A rectifying current-voltage characteristic is obtained by replacing the top electrode with ITO. As shown by photoemission as well as by electrical measurements, the property of the BST/ITO interface depends strongly on the deposition sequence, and can be related to the level of oxidation of the ITO film. Highly doped ITO as top electrode forms an Ohmic contact with BST. This enables the preparation of highly rectifying diodes that exhibit a space-charge-limited current behaviour. Larger barriers are obtained when ITO is used as bottom electrode. This is related to the oxidation of the ITO layer during BST deposition and results in a low interface-limited current. Due to the large energy gaps of both BST and ITO, the combination of these materials provides an additional route to transparent electronics.

  10. Langmuir–Blodgett films of cholesterol oxidase and S-layer proteins onto screen-printed electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Juliana Aguilar, E-mail: helen@peq.coppe.ufrj.br; Ferraz, Helen Conceição; Alves, Tito Lívio Moitinho

    2014-04-01

    Graphical abstract: - Highlights: • Langmuir and LB monolayers of ChOx and S-layer proteins were obtained. • Mixed ChOx/S-layer proteins films presented an ideal-like behavior. • Modified sensor showed stable peaks with moderate intensity. • The type of LB deposition affects the sensor ability of detecting cholesterol. • Mixed ChOx/S-layer proteins LB films improve sensor properties. - Abstract: Stable Langmuir monolayers of cholesterol oxidase (ChOx) and S-layer proteins were produced at the water–air interface and subsequently transferred onto the surface of screen-printed carbon electrodes by the Langmuir–Blodgett (LB) technique. The modified electrode surface was characterized by atomic force microscopy (AFM) and cyclic voltammetry (CV). AFM indicated the presence of deposited layers, showing reduction of surface roughness (RMS and Rt parameters). Significant changes in the shape of CVs were observed in modified electrodes compared to bare electrodes. The anodic peaks could be observed in cyclic voltammograms (CV), at a scan rate equal to 25 mV s{sup −1}, using electrodes with Z-type LB deposition. The presence of S-layer proteins in the ChOx LB film increases the oxidation peak intensity and reduces the oxidation potential. Altogether, these results demonstrate the feasibility of producing a cholesterol biosensor based on the immobilization of ChOx and S-layer proteins by LB technique.

  11. Biocompatibility of Implantable Electrodes Coated with PVA Films in the Brain of Rats:a Histological Evaluation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qin; LI Tao; LI Chengyan; YE Ming; LU Yi; DUAN Yanwen

    2009-01-01

    The biocompatibility of silicone rubber(SR)based electrodes coating with poly (vinyl alcohol)(PVA)films after implanted in the brain of rats was investigated.Twenty-two Wistar rats were used and implanted with SR electrodes and PVA/PAA films coated electrodes in left and right cerebral cortex respectively.After 4 and 8 weeks,the expression of glial fibrillary acidic protein (GFAP,a specific marker of astrocytes)and cluster of differentiation 68(CD68,a specific marker of macrophages)were evaluated by immunohistochemistry.After 8 weeks,GFAP and CD68 expressions around PVA electrodes were significantly lower than those around SR electrodes in every stratified area(0-50μm,50-100μm,100μm from further up to the electrode-tissue interface).The results show that PVA coating can reduce the expressions of GFAP and CD68,suggesting the PVA coating can improve the biocompatibility of the SR while it is implanted in brain.

  12. ANODIC STRIPPING VOLTAMMETRY AT A MERCURY FILM ELECTRODE: BASELINE CONCENTRATIONS OF CADMIUM, LEAD, AND COPPER IN SELECTED NATURAL WATERS

    Science.gov (United States)

    A simple, rapid, and inexpensive anodic stripping voltammetric method with a mercury thin film electrode is reported for the establishment of baseline concentrations of cadmium, lead, and copper in natural waters. The procedure for routine surface preparation of wax-impregnated g...

  13. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren; Rechendorff, Kristian; Petrak, Vaclav; Nesladek, Milos; Rijkhoff, Nico; Pennisi, Cristian P.

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film, ...

  14. Synthesis of Graphene Films by Chemical Vapor Deposition for Transparent Conducting Electrodes of GaN Light-Emitting Diodes

    Science.gov (United States)

    Jo, Gunho; Choe, Minhyeok; Cho, Chu-Young; Kim, Jin Ho; Park, Woojin; Lee, Sangchul; Park, Seong-Ju; Hong, Byung Hee; Kahng, Yung Ho; Lee, Takhee

    2011-12-01

    This work demonstrales large-scale simultaneous fabrication of patterned graphene-based GaN light-emitting diodes (LEDs). Graphene sheets were synthesized using a chemical vapor deposition (CVD) technique on nickel films and showed typical CVD-synthesized film properties, possessing a sheet resistance of ˜605 Ω/⃞ with a transparency of more than 85% in the 400-800 nm wavelength range, and was applied as transparent condueting electrodes of GaN-based blue LHDs, The light output performance of GaN LEDs with graphene electrodes was comparable to that of conventional ITO-electrode LEDs over the range of input current up to 150 mA.

  15. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    International Nuclear Information System (INIS)

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (∼850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms. (author)

  16. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gac, Arnaud

    2002-07-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature ({approx}850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms. (author)

  17. Interconnection of multichannel polyimide electrodes using anisotropic conductive films (ACFs) for biomedical applications.

    Science.gov (United States)

    Baek, Dong-Hyun; Park, Ji Soo; Lee, Eun-Joong; Shin, SuJung; Moon, Jin-Hee; Pak, James Jungho; Lee, Sang-Hoon

    2011-05-01

    In this paper, we propose a method for interconnecting soft polyimide (PI) electrodes using anisotropic conductive films (ACFs). Reliable and automated bonding was achieved through development of a desktop thermocompressive bonding device that could simultaneously deliver appropriate temperatures and pressures to the interconnection area. The bonding conditions were optimized by changing the bonding temperature and bonding pressure. The electrical properties were characterized by measuring the contact resistance of the ACF bonding area, yielding a measure that was used to optimize the applied pressure and temperature. The optimal conditions consisted of applying a pressure of 4 kg f/cm(2) and a temperature of 180 °C for 20 s. Although ACF base bonding is widely used in industry (e.g., liquid crystal display manufacturing), this study constitutes the first trial of a biomedical application. We performed a preliminary in vivo biocompatibility investigation of ACF bonded area. Using the optimized temperature and pressure conditions, we interconnected a 40-channel PI multielectrode device for measuring electroencephalography (EEG) signals from the skulls of mice. The electrical properties of electrode were characterized by measuring the impedance. Finally, EEG signals were measured from the mice skulls using the fabricated devices to investigate suitability for application to biomedical devices. PMID:21189231

  18. The fabrication and characterization of an ex situ plated lead film electrode prepared with the use of a reversibly deposited mediator metal

    International Nuclear Information System (INIS)

    Research highlights: → The lead film electrode prepared with use of the mediator metal was elaborated. → The lead-based sensors were characterized by optical and voltammetric methods. → The adsorptive system of folic acid was employed to investigate a new electrode. → The application of the mediator metal improved properties of a lead film electrode. - Abstract: In this paper an ex situ plated lead film electrode prepared with use of the mediator metal (Zn) was elaborated. The electrochemical method for lead film formation is based on a co-deposition of a metal of interest (Pb) with a reversibly deposited mediator metal (Zn) and then on an oxidation of zinc and further deposition of lead by the appropriate potential. This serves to increase the density of islands of lead atoms, promoting lead film growth. The lead-based sensors were characterized by optical method (atomic force microscopy (AFM)) and as well as cyclic, linear sweep and square wave voltammetry. The adsorptive system of folic acid was employed to investigate the electrochemical characteristics a novel type of lead film electrode. Well-formed stripping peaks and a linear dependence of the stripping current on the folic acid concentration were observed on the lead film electrode prepared with use of the mediator metal while comparative measurements attempted with the lead film electrode prepared without use of the mediator metal were unsuccessful.

  19. The fabrication and characterization of an ex situ plated lead film electrode prepared with the use of a reversibly deposited mediator metal

    Energy Technology Data Exchange (ETDEWEB)

    Tyszczuk, Katarzyna, E-mail: ktyszczuk@poczta.umcs.lublin.p [Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2011-04-15

    Research highlights: The lead film electrode prepared with use of the mediator metal was elaborated. The lead-based sensors were characterized by optical and voltammetric methods. The adsorptive system of folic acid was employed to investigate a new electrode. The application of the mediator metal improved properties of a lead film electrode. - Abstract: In this paper an ex situ plated lead film electrode prepared with use of the mediator metal (Zn) was elaborated. The electrochemical method for lead film formation is based on a co-deposition of a metal of interest (Pb) with a reversibly deposited mediator metal (Zn) and then on an oxidation of zinc and further deposition of lead by the appropriate potential. This serves to increase the density of islands of lead atoms, promoting lead film growth. The lead-based sensors were characterized by optical method (atomic force microscopy (AFM)) and as well as cyclic, linear sweep and square wave voltammetry. The adsorptive system of folic acid was employed to investigate the electrochemical characteristics a novel type of lead film electrode. Well-formed stripping peaks and a linear dependence of the stripping current on the folic acid concentration were observed on the lead film electrode prepared with use of the mediator metal while comparative measurements attempted with the lead film electrode prepared without use of the mediator metal were unsuccessful.

  20. Pyrolyzed Photoresist Carbon Electrodes for Trace Electroanalysis of Nickel(II

    Directory of Open Access Journals (Sweden)

    Ligia Maria Moretto

    2015-05-01

    Full Text Available Novel pyrolyzed photoresist carbon electrodes for electroanalytical applications have been produced by photolithographic technology followed by pyrolysis of the photoresist. A study of the determination of Ni(II dimethylglyoximate (Ni-DMG through adsorptive cathodic stripping voltammetry at an in situ bismuth-modified pyrolyzed photoresist electrode (Bi-PPCE is reported. The experimental conditions for the deposition of a bismuth film on the PPCE were optimized. The Bi-PPCE allowed the analysis of trace concentrations of Ni(II, even in the presence of Co(II, which is the main interference in this analysis, with cathodic stripping square wave voltammograms characterized by well-separated stripping peaks. The calculated limits of detection (LOD were 20 ng∙L−1 for Ni(II alone and 500 ng∙L−1 in the presence of Co(II. The optimized method was finally applied to the analysis of certified spring water (NIST1640a.

  1. In-situ and ex-situ resistance measurements of polypyrrole film using double-band electrode

    Science.gov (United States)

    Cysewska, K.; Jasiński, P.

    2016-01-01

    Many in-situ techniques are performed in order to determine the resistance of conducting polymer film. However, the resistance measured in solution can be the combination of polymer resistance and that of other components, such as resistance of supporting electrolyte. Therefore, in this work, the influence of the solution on the resistance of polypyrrole (PPy) film has been studied. PPy film was electrchemically synthesized onto the iron double-band electrode in a one step process from an aqueous solution of 0.1 M pyrrole and 0.1 M sodium salicylate. Resistance determination of PPy film was based on impedance spectroscopy measurements and was performed in-situ, ex-situ and in a function of electrode potential. Based on these measurements electrical equivalent circuit of PPy coated Fe electrode in contact with solution or with the air have been studied. It was noticed that the concentration of electrolyte in measuring solution did not influence on the polymer resistance measured by in-situ technique. It was also noticed that measurements of polymer resistance conducted in- situ differ from that obtained in ex-situ experiments. The differences were related with the diffusion reactions occurring between the polymer film and air/solution.

  2. Novel amperometric sensor using metolcarb-imprinted film as the recognition element on a gold electrode and its application

    Energy Technology Data Exchange (ETDEWEB)

    Pan Mingfei; Fang Guozhen; Liu Bing; Qian Kun [Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang Shuo, E-mail: pmf2006@126.com [Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2011-04-01

    A molecularly imprinted film is electrochemically synthesized on a gold electrode using cyclic voltammetry to electropolymerize o-aminothiophenol in the presence of metolcarb (MTMC). The mechanism of the imprinting process and a number of factors affecting the activity of the imprinted film are discussed and optimized. Scanning electron microscope observations and binding measurements have proved that an MTMC-imprinted film (with a thickness of nearly 100 nm) was formed on the surface of the gold electrode. The film exhibited high binding affinity and selectivity towards the template MTMC, as well as good penetrability, reproducibility and stability. A novel amperometry sensor using the imprinted film as recognition element was developed for MTMC determination in food samples. Under the experimental conditions, the MTMC standard is linear within the concentration range studied (r{sup 2} = 0.9906). The limit of detection (S/N = 3) of the modified electrode was achieved to 1.34 x 10{sup -8} mol L{sup -1}. Recoveries of MTMC from spiked apple juice, cabbage and cucumber samples for the developed electrochemical assay ranged from 94.80% to 102.43%, which was with great correlation coefficient (0.9929) with results from high-performance liquid chromatography. In practical application, the prepared amperometric sensor also showed good reproducibility and long lifetime for storage. The research in this study has offered a rapid, accurate and sensitive electrochemical method for quantitative determination of MTMC in food products.

  3. Novel amperometric sensor using metolcarb-imprinted film as the recognition element on a gold electrode and its application

    International Nuclear Information System (INIS)

    A molecularly imprinted film is electrochemically synthesized on a gold electrode using cyclic voltammetry to electropolymerize o-aminothiophenol in the presence of metolcarb (MTMC). The mechanism of the imprinting process and a number of factors affecting the activity of the imprinted film are discussed and optimized. Scanning electron microscope observations and binding measurements have proved that an MTMC-imprinted film (with a thickness of nearly 100 nm) was formed on the surface of the gold electrode. The film exhibited high binding affinity and selectivity towards the template MTMC, as well as good penetrability, reproducibility and stability. A novel amperometry sensor using the imprinted film as recognition element was developed for MTMC determination in food samples. Under the experimental conditions, the MTMC standard is linear within the concentration range studied (r2 = 0.9906). The limit of detection (S/N = 3) of the modified electrode was achieved to 1.34 x 10-8 mol L-1. Recoveries of MTMC from spiked apple juice, cabbage and cucumber samples for the developed electrochemical assay ranged from 94.80% to 102.43%, which was with great correlation coefficient (0.9929) with results from high-performance liquid chromatography. In practical application, the prepared amperometric sensor also showed good reproducibility and long lifetime for storage. The research in this study has offered a rapid, accurate and sensitive electrochemical method for quantitative determination of MTMC in food products.

  4. Removal of a hydrogenated amorphous carbon film from the tip of a micropipette electrode using direct current corona discharge.

    Science.gov (United States)

    Kakuta, Naoto; Okuyama, Naoki; Yamada, Yukio

    2010-02-01

    Micropipette electrodes are fabricated by coating glass micropipettes first with metal and then with hydrogenated amorphous carbon (a-C:H) as an electrical insulator. Furthermore, at the tip of the micropipette electrode, the deposited a-C:H film needs to be removed to expose the metal-coated surface and hollow for the purposes of electrical measurement and injection. This paper describes a convenient and reliable method for removing the a-C:H film using direct current corona discharge in atmospheric air. The initial film removal occurred at an applied voltage of 1.5-2.0 kV, accompanied by an abrupt increase in the discharge current. The discharge current then became stable at a microampere level in the glow corona mode, and the removed area gradually extended. PMID:20192514

  5. Composition and crystal structure of perovskite films attained from electrodes of used car battery

    Science.gov (United States)

    Dhiaputra, Ilham; Permana, Bayu; Maulana, Yusep; Inayatie, Yuniar Dwi; Purba, Yonatan R.; Bahtiar, Ayi

    2016-02-01

    Perovskite solar cells have been intensively investigated for high performance and low-cost solid-state solar cells. Perovskite based-lead materials are commonly used as active material for high power conversion efficiency solar cells. Herein, we report our study on the development of used electrodes car battery as a cheap raw lead material to be converted into lead (II) iodide PbI2 by using simple chemical method. We have successfully obtained PbI2 material with purity higher than 85% and its crystal structure is comparable with that of commercial product. The perovskite CH3NH3PbI3 film was prepared by spin-coating of PbI2 solution and followed by spin-coating two-times of methylamonium iodide (MAI) solution. In this paper, the crystal structure of perovskite film attained from used car battery is shown and compared with that of prepared from commercial PbI2. By utilizing the used car battery into perovskite valuable material for high performance solar cells, we can not only improve the economical value (added-value) of wasted car battery but also we can simultaneously save the environment.

  6. Electrical Properties of Al, Ag, Cu, Ti and SS Thin Film for Electrode of Solar Cell

    International Nuclear Information System (INIS)

    The Al, Ag, Cu, Ti and SS materials were deposited on the surface of glass substrate using plasma DC sputtering technique. The deposition process was done with the following plasma parameters : deposition time, gas pressure and substrate temperature with the aim to obtain a good conductance of thin films. Variation of substrate deposition time was 1 - 15 minutes, gas pressure was 5x10-2 - 7x10-2 torr and of temperature was 100 - 300 oC. The resistance measurement has been done by four points probes and the conductivity was calculated using mathematic formulation. It was obtained that the minimum resistance in the order of R = 0.07 Ω, was found at Ag materials and this was obtained at the following plasma parameters : deposition time 15 minutes, gas pressure 6x10-2 torr and temperature 300 oC, while, the resistance of : Cu, Al, Ti and SS materials were R = 0.13 Ω, R = 450 Ω, R = 633 Ω, R = 911 Ω respectively, It could be concluded that the Ag thin film has a minimum resistance, high conductivity compared to the other materials Al, Cu, Ti and SS. Ag is therefore the suitable material for applying as electrode of solar cell. (author)

  7. Injecting electrode controlled electronic transport across Fe3O4 film-Si interfacial structure

    International Nuclear Information System (INIS)

    Highlights: • CPP I–V measurements have been carried out on Fe3O4/SiO2/Si heterostructure. • Verwey transition has been found for injection from Fe3O4 film. • Low temperature GMR of ∼200% has also been observed for the same injection. • The features of injecting electrodes have been found from CPP I–V data. - Abstract: A study of electronic transport has been carried out across a half-metallic Fe3O4 film–nSi interfacial structure in CPP mode with an interfacial SiO2 layer of <5 nm. It has been measured with and without applied magnetic field along the plane of the interface between 25 K and 300 K to investigate the role of half-metallic Fe3O4 layer on the transport. The electronic transport has shown a distinct behaviour for the reverse bias in which injection takes place from metallic film of Fe3O4 to silicon than for the forward bias in which injection takes place from silicon to metallic Fe3O4 side. It has been found that the reverse bias current shows a tunnel transport, Verwey transition like feature and low temperature positive GMR, evidencing spin involved transport from Fe3O4 to semiconductor side. Whereas the forward bias current has not shown any of the above features but a thermionic controlled transport, showing a change of resistance with temperature as of semiconductor silicon. Thus, it has been found that the transport is controlled by physical properties of the injecting electrode. The study has shown that the transport below Verwey transition temperature (TV) for the Fe3O4 film interfacial structure is also related to its electronic spins. The observed GMR of ∼200% at low temperature (for reverse bias current only) has been discussed as the effect of electronic spin scattering. Our unique observations from simple measurements of CPP I–V across the interfacial structure of Fe3O4–nSi seem significant to reveal that the Verwey transition is related to spins of half-metallic Fe3O4

  8. Thin-film crystal growth of microcrystalline silicon using very-high-frequency hollow-electrode-enhanced glow plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tabuchi, Toshihiro, E-mail: toshihiro_tabuchi@komatsu.co.jp [Research Division, Komatsu Ltd., 1200 Manda, Hiratsuka, Kanagawa 254-8567 (Japan); Toyoshima, Yasumasa [Research Division, Komatsu Ltd., 1200 Manda, Hiratsuka, Kanagawa 254-8567 (Japan); Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2015-03-31

    The thin-film crystal growth of hydrogenated microcrystalline silicon (μc-Si:H) on SiO{sub 2} was investigated by using a very-high-frequency hollow-electrode-enhanced glow plasma system with an ultrahigh-vacuum reactor. The properties of the μc-Si:H thin films deposited with different flow rates of both mono-silane and hydrogen were characterized. We achieved fabrication of a μc-Si:H thin film with a growth rate of 4.0 nm/s, good photosensitivity, high crystallinity, and highly preferred crystal orientation along the < 110 > direction at a gas pressure of 80 Pa. To study the crystallographic structure in detail, cross-sectional transmission electron microscopy (TEM), limited-visual-field electron beam diffraction imaging, and high-resolution TEM were applied for the thin films deposited with the highest (4.0 nm/s) and lowest (0.25 nm/s) growth rates, respectively. The crystallographic images clearly show columnar growth of microcrystalline silicon in every region of the films, with a very thin transition layer less than 2 nm thick, suggesting direct growth from the substrate surface. - Highlights: • Hollow-electrode-enhanced plasma transfer method was applied to thin film growth. • We achieved fabrication of a μc-Si:H thin film with a growth rate of 4.0 nm/s. • The μc-Si thin films with good photosensitivity were obtained. • The μc-Si thin films with highly preferred crystal orientation were obtained. • The μc-Si thin films with thin transition layer less than 2 nm thick were obtained.

  9. Thin-film crystal growth of microcrystalline silicon using very-high-frequency hollow-electrode-enhanced glow plasma

    International Nuclear Information System (INIS)

    The thin-film crystal growth of hydrogenated microcrystalline silicon (μc-Si:H) on SiO2 was investigated by using a very-high-frequency hollow-electrode-enhanced glow plasma system with an ultrahigh-vacuum reactor. The properties of the μc-Si:H thin films deposited with different flow rates of both mono-silane and hydrogen were characterized. We achieved fabrication of a μc-Si:H thin film with a growth rate of 4.0 nm/s, good photosensitivity, high crystallinity, and highly preferred crystal orientation along the < 110 > direction at a gas pressure of 80 Pa. To study the crystallographic structure in detail, cross-sectional transmission electron microscopy (TEM), limited-visual-field electron beam diffraction imaging, and high-resolution TEM were applied for the thin films deposited with the highest (4.0 nm/s) and lowest (0.25 nm/s) growth rates, respectively. The crystallographic images clearly show columnar growth of microcrystalline silicon in every region of the films, with a very thin transition layer less than 2 nm thick, suggesting direct growth from the substrate surface. - Highlights: • Hollow-electrode-enhanced plasma transfer method was applied to thin film growth. • We achieved fabrication of a μc-Si:H thin film with a growth rate of 4.0 nm/s. • The μc-Si thin films with good photosensitivity were obtained. • The μc-Si thin films with highly preferred crystal orientation were obtained. • The μc-Si thin films with thin transition layer less than 2 nm thick were obtained

  10. Electrochemical properties of tungsten oxysulphide thin films as positive electrodes for lithium microbatteries

    Indian Academy of Sciences (India)

    I Martin-Litas; P Vinatier; A Levasseur; J C Dupin; D Gonbeau

    2003-12-01

    Several WOS tungsten oxysulphide thin films were tested as positive electrodes for lithium microbatteries. The amorphous WO1.05S2 thin film was found very promising. A capacity decrease occurred during the first few cycles, after which the films were able to intercalate reversibly up to 1.1 lithium ion per formula unit under high regime (75 A/cm2). They were tested for 250 charge–discharge cycles, between 3.0 V and 1.2 V. X-ray photoelectron spectroscopy measurements were performed on different compounds in both intercalated (Li1WO1.05S2, Li2.7WO1.05S2 and Li3.8WO1.05S2) and partially de-intercalated (Li1WO1.05S2) states in order to understand the redox processes occurring during the first discharge–charge cycle. The analysis of both the W4 and the S2 peaks has shown that the redox processes involve not only the tungsten atoms but also sulphur atoms. At the beginning of the intercalation, W6+ was first partially reduced into W5+, and then into W4+, but the important stage was the reduction of W4+ into W0. In W0, the electron binding energy was very close to that of metallic tungsten. At the same time, S$^{2-}_2$ ions were partially reduced into S2- ions. But only the reduction process of tungsten atoms appeared to be totally reversible.

  11. Fabrication of Ru–Pd bimetallic monolayer on nanoporous gold film electrode with excellent electrocatalytic performance towards captopril oxidation

    International Nuclear Information System (INIS)

    This paper describes a simple and novel method to construct ruthenium–palladium (RuPd) bimetallic thin films by coating thin layer of RuPd metals on the nanoporous gold film (NPGF) electrode. The codeposition of Ru and Pd was done through oxidation of copper underpotential deposition (UPD) layer by Ru and Pd ions. This low RuPd-loading electrode (RuPdNPGF) behaved as the nanostructured bimetallic RuPd for the detection of captopril (CAP). Whereas at the surface of the bare electrode an electrochemical activity for CAP cannot be observed, a very sharp anodic peak of the potential of −0.295 V (vs. Ag/AgCl) in pH = 7.0 is obtained using the prepared RuPdNPGF electrode. RuPdNPGF exhibited an excellent performance toward electrochemical oxidation of CAP without any additional mediator showing a significant decrease in the anodic over potential, a high sensitivity and a low detection limit (1.25 × 10−9 M) for CAP. Under the optimized conditions, the amperometric of CAP showed two linear ranges for determination of CAP: 2.50 × 10−9 to 4.75 × 10−7 M CAP and 2.5 × 10−6 to 3.25 × 10−5 M CAP. The results show that the RuPdNPGF electrode exhibited a selective, rapid response, good stability with excellent precision (RSD = 2.19%)

  12. Fabrication and characterization of p+-i-p+ type organic thin film transistors with electrodes of highly doped polymer

    Science.gov (United States)

    Tadaki, Daisuke; Ma, Teng; Zhang, Jinyu; Iino, Shohei; Hirano-Iwata, Ayumi; Kimura, Yasuo; Rosenberg, Richard A.; Niwano, Michio

    2016-04-01

    Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p+-i-p+ type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p+) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) was used as the p-type dopant. A fabricating method of p+-i-p+ OTFTs has been developed by using SiO2 and aluminum films as capping layers for micro-scaled patterning of the p+-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p+-i-p+ OTFTs work with carrier injection through a built-in potential at p+/i interfaces. We found that the p+-i-p+ OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p+-P3HT layers.

  13. Evaluation of various strategies to formation of pH responsive hydroquinone-terminated films on carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Allan Hjarbaek; Vase, Karina Hojrup [Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus (Denmark); Winther-Jensen, Bjorn [Danish Polymer Centre, Department of Chemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Pedersen, Steen Uttrup [Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus (Denmark)], E-mail: sup@chem.au.dk; Daasbjerg, Kim [Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus (Denmark)], E-mail: kdaa@chem.au.dk

    2007-12-31

    The hydroquinone/quinone (H{sub 2}Q/Q) redox system was tethered to glassy carbon surfaces using first an electrochemical pre-oxidation treatment to afford carboxylic acid functionalities followed by immobilizing the H{sub 2}Q precursor, n-(2,5-dimethoxyphenyl)alkan-1-amine (general structure: H{sub 2}N-(CH{sub 2}){sub n}-C{sub 6}H{sub 3}(OCH{sub 3}){sub 2}, n = 1, 2, 4, 8, and 12), by carbodiimide chemistry and a final demethylation reaction. The resultant surfaces exhibited the expected chemical reversibility in aqueous solution with a pH-sensitive position of the formal potential ({approx}55 mV/pH unit), and an increase in the peak potential separation going from 0.02 V for n = 1 to 0.21 V for n = 12. The films were very robust and could withstand prolonged sonication and relatively large potential excursions. While the films followed the expected kinetic distance dependence for up to 4 methylene units the electrode kinetics was faster than expected for longer alkyl spacers. We suggest that film disorder, electrode-mediating effects, and a roughened electrode material could account for these apparent inconsistencies. To further understand such effects, two complementary electrode modification strategies leading to better film ordering on carbon were adapted; immobilizing a thin layer of benzoic acid by oxidative deposition of 4-aminobenzoic acid or employing a plasma deposition process to tether an acid analogue. Analysis of the various electrodes was accomplished by electrochemical methods, atomic force microscopy, and X-ray photoelectron spectroscopy.

  14. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    Science.gov (United States)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-06-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.

  15. Enhanced sensitivity for biosensors: Functionalized P1,5-diaminonaphthalene-multiwall carbon nanotube composite film-modified electrode

    International Nuclear Information System (INIS)

    A homogeneous electroactive poly(1,5-diaminonaphthalene) (P1,5DAN) and multiwalled carbon nanotube (MWNT) composite film-modified electrode was fabricated by cyclic voltammetry and a casting method. The dispersion and morphology of the MWNTs/P1,5DAN composite film were investigated by scanning electron microscopy. The cyclic voltammograms of the electrode modified by the MWNTs/P15DAN composite film strongly depended on the film thickness and pH of the electrolyte solution. Two absolutely isolated oxidation potentials were found as the MWCNTs were immobilized onto the surface of P1,5DAN film in a pH 6.8 buffer solution containing ascorbic acid (AA) and uric acid (UA). Both peak currents linearly increased with increased concentrations. The electrochemical behavior of UA was not interrupted even in the presence of high-concentration AA given that AA had no observable electrochemical changes at the immobilized concentration. The electrocatalytic behavior of H2O2 was also investigated by steady-state amperometry for the immobilization of horseradish peroxidase on the P1,5DAN film. The plot of the response current vs. H2O2 concentration was linear over the wide concentration range of 0.015–5.37 mM.

  16. Oleic acid-assisted exfoliated few layer graphene films as counter electrode in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Highlights: ► Few layer graphene was obtained by liquid exfoliation in oleic acid (OLA). ► The concentration of exfoliated few layer graphene is as high as 1.3 mg/mL. ► OLA-assisted graphite (OLA-G) film has high catalytic activity. ► A power conversion efficiency of 3.56% can be gained by DSSCs with the counter electrode of OLA-G film. - Abstract: We have demonstrated a facile sonication method to exfoliate graphite into few layer graphene with a high concentration of 1.3 mg/mL in oleic acid (OLA). The exfoliations of natural graphite in oleylamine (OA) and trioctylphosphine (TOP) are investigated as a comparison. The few layer graphene dispersion in OLA and the graphite nanoparticles in OA are confirmed by transmission electron microscopy (TEM) observation. The exfoliated graphene dispersion in OLA (OLA-G) and graphite dispersion in OA (OA-G) are fabricated into a film on the FTO substrate by the doctor-blading method. The morphology and catalytic activity in the redox couple regeneration of all the graphite films are examined by field emission scanning electron microscopy and cyclic voltammograms. The OLA-G films on FTO glass with few layer graphene flakes shows better catalytic activity than the OA-G films. The energy conversion efficiency of the cell with the OLA-G film as counter electrode reached 3.56%, which is 70% of dye-sensitized solar cell (DSSC) with the sputtering-Pt counter electrode under the same experimental condition.

  17. Binder free MoO3/multiwalled carbon nanotube thin film electrode for high energy density supercapacitors

    International Nuclear Information System (INIS)

    Highlights: • Greener alternative method for electrode preparation. • The composite electrode exhibits an energy density of 7.28 Wh kg−1. • The composite electrode exhibit high power density of 4930 W kg−1 at high current rates. • Potential energy storage material for portable and consumer electronics. - Abstract: MoO3/multiwalled carbon nanotube (MWCNT) composites were prepared by Magnetron sputtering in Ar/O2 atmosphere. This will provide a greener alternative for the fabrication of binder free composite electrode for supercapacitor applications. MWCNT provides good support for the growth of MoO3 thin films. This integrated composite electrode exhibited specific capacitance of 93 F g−1 and a corresponding energy density of 7.28 Wh kg−1 in non-aqueous electrolyte, which is almost fourfold increase compared to the bare MWCNT. Also the electrode maintains high power density of 4930 W kg−1 at high current rates, suggesting a potential energy storage material for portable and consumer electronics

  18. Thin Film Electrode Materials Li4Ti5O12 and LiCoO2 Prepared by Spray Pyrolysis Method

    International Nuclear Information System (INIS)

    The Li4Ti5O12 and the LiCoO2 have been considered as promising candidates of electrode materials for all-solid-state lithium secondary batteries. The spray pyrolysis method is a useful economical technique to prepare various thicknesses of oxide films though have not been intensively studied for fabrication of thin film lithium batteries. Thin films of Li4Ti5O12 and LiCoO2 electrode materials about 100-400 nm were prepared on quartz and gold substrates by the spray pyrolysis method by using Liacac and, TiO(acac)4 or Co(acac)3 with DMF solvent as starting materials. Electric properties as electrode materials for lithium batteries were estimated by using 3 probe liquid cells with liquid electrolyte LiPF6 in EC-DMC and Li metal as reference and counter electrodes. Structure and morphology of the films were investigated by XRD and SEM. Crystalline Li4Ti5O12 and LiCoO2 thin films were found to be prepared over 700 deg. C of substrate temperature. Cyclic voltammograms of the Li4Ti5O12 electrode thin films showed sharp oxidation and reduction peaks around 1.6 and 1.5 V, respectively. Charge-discharge curves for both Li4Ti5O12 and LiCoO2 electrode thin films showed discharge plateaus around 1.4 and 3.8 V with about 80 mAhg-1 of capacity. These results showed that these electrode thin films prepared by the spray pyrolysis method are electrochemically active and spray pyrolysis method is a promising technique to prepare thin film electrode materials.

  19. In Search of the Holy Grail of Photoelectrochemistry: A Study of Thin Film Electrodes for Solar Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Torbjoern

    2004-02-01

    Hydrogen is a wanted energy carrier in a future society less dependent of fossil fuels. This thesis investigates the possibilities of using solar energy to convert water into hydrogen and oxygen, so called artificial photosynthesis. Through this work multiple inexpensive and stable thin film semiconductor electrodes have been produced and used as solar energy absorbers and active sites for direct watersplitting in photoelectrochemical cells. The electrodes have mainly been of nanostructured metal oxide character but also nitrides have been studied. Detailed back ground theory on photoelectrochemistry of semiconductors for hydrogen evolution is given in the summary of the thesis. Nanostructured WO{sub 3} electrodes with a quantum yield close to unity were designed and photoelectrochemically characterized. Hematite, a-Fe{sub 2}O{sub 3}, nanorods were synthesized and characterized for the aim of water oxidation. The morphology of the hematite nanorods was found to be in favor of the traditional isotropic nanostructured electrodes. Moreover, a unique porous nitrogen doped TiO{sub 2} material, photoactive in visible light, was obtained by reactive sputtering. The nitrogen doped material has interesting photoelectrochemical properties and is also promising for related applications such as pollution degradation by photocatalysis. Polycrystalline indium nitride, InN, was produced by reactive sputtering. Electrodes of the as prepared InN as well as electrodes annealed in nitrogen were studied for the aim of photooxidation of water. The electrodes studied are interesting candidates as potential watersplitting electrodes in photoelectrochemical cells, even if all had in common that further improvements and optimizations need to be done.

  20. Electrochemical characterization of amorphous LiFe(WO4)2 thin films as positive electrodes for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Amorphous LiFe(WO4)2 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition at room temperature. The as-deposited and electrochemically cycled thin films are, respectively, characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectra techniques. An initial discharge capacity of 198 mAh/g in Li/LiFe(WO4)2 cells is obtained, and the electrochemical behavior is mostly preserved in the following cycling. These results identified the electrochemical reactivity of two redox couples, Fe3+/Fe2+ and W6+/Wx+ (x = 4 or 5). The kinetic parameters and chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry and alternate-current (AC) impedance measurements. All-solid-state thin film lithium batteries with Li/LiPON/LiFe(WO4)2 layers are fabricated and show high capacity of 104 μAh/cm2 μm in the first discharge. As-deposited LiFe(WO4)2 thin film is expected to be a promising positive electrode material for future rechargeable thin film batteries due to its large volumetric rate capacity, low-temperature fabrication and good electrode/electrolyte interface

  1. Fully transparent thin film transistors based on zinc oxide channel layer and molybdenum doped indium oxide electrodes

    Science.gov (United States)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2016-03-01

    In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.

  2. Self-passivated copper as a gate electrode in a poly-Si thin film transistor liquid crystal display

    International Nuclear Information System (INIS)

    Self-passivated copper as a gate electrode in the form of TiO/Cu/TiO/TiN/SiO2 has been obtained by annealing Cu/Ti/TiN/SiO2. The thickness of Ti in Cu/TiTiN was optimized at 150 Aa by forming an 80 Aa continuous TiO film on the outer surface of the Cu. The multilayer of SiO2/TiO/Cu/TiO/TiN/SiO2 showed stable electrical passivating properties against Cu diffusion into the top or bottom SiO2. Consequently, self-passivated copper has secured the dielectric properties of plasma enhanced chemical vapor deposition SiO2 and can be utilized as a gate electrode in low temperature poly-Si thin film transistor liquid crystal displays without sacrificing the low resistivity of Cu. [copyright] 2001 American Institute of Physics

  3. Pt/Ti Electrodes of PZT Thin Films Patterning by Novel Lift-Off Using ZnO as a Sacrificial Layer

    International Nuclear Information System (INIS)

    We achieve a successful novel lift-off of patterning Pt/Ti electrodes on SiO2/Si substrates by employing ZnO sacrificial layer deposition and patterning, successive uniform Pt/Ti deposition and final lift-off. Then we deposit PZT thin films on the electrodes. Compared with the conventional lift-off processes for the electrodes, this novel process does not need post-annealing, which must be performed after conventional lift-off process. It is demonstrated that the electrodes patterned by the novel lift-off process have stronger adhesion. The electrodes and the PZT films on the electrodes are more compact and smoother than those by the conventional lift-off process

  4. Dielectric dispersion of BaxSr1-xTiO3 thin film with parallel-plate and coplanar interdigital electrodes

    International Nuclear Information System (INIS)

    Ferroelectric BaxSr1-xTiO3 (BST) thin films with x = 0.25 and 0.5 were grown by pulsed laser deposition on single crystal LaAlO3 and Pt/Ti/SiO2/Si substrates, respectively. Capacitors were then fabricated from the BST thin films based on coplanar interdigital electrodes (CIEs) and parallel-plate electrodes (PPEs). The dielectric properties of the BST film with CIE and PPE were investigated and compared over a wide frequency range from 100 Hz to 10 GHz. The dielectric dispersion in PPE configuration, caused by the interfacial polarization in film/electrode interfaces, exhibited a strong dependence on frequency. However, the permittivity εCIE in CIE configuration shows a gentle variation with the frequency indicating interfacial polarization substantially suppressed. The influence upon the dielectric properties of the columnar BST grains due to the use of different forms of electrodes was discussed.

  5. Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting

    International Nuclear Information System (INIS)

    Metallic Zn thin films were electrodeposited on fluorine-doped tin oxide (FTO) glass substrates and oxidized under air by conventional radiant and microwave post-annealing methods to obtain ZnO thin film electrodes. The temperature of each post-annealing method was varied systematically and the photoelectrochemical (PEC) performance of electrodes was evaluated. The best photocurrent density achieved by the conventional radiant annealing method at 425 °C for 15 min was 93 μA cm−2 at 1.23 V vs. NHE and the electrode showed an incident photon-to-electron conversion efficiency (IPCE) of 28.2%. X-ray diffractogram of this electrode showed that the oxidation of Zn to ZnO was not completed during the radiant annealing process as evident by the presence of metallic Zn in the electrode. For the electrode oxidized from Zn to ZnO under microwave irradiation, a photocurrent of 130 μA cm−2 at 1.23 V vs. NHE and IPCE of 35.6% was observed after annealing for just 3 min, during which the temperature reached 250 °C. The photocurrent was 40% higher for the microwave annealed sample; this increase was attributed to higher surface area by preserving the nanostructure, confirmed by SEM surface topographical analysis, and better conversion yields to crystalline ZnO. Overall, it was demonstrated that oxidation of Zn to ZnO can be accomplished by microwave annealing five times faster than that of conventional annealing, thus resulting in a ~ 75% power saving. This study shows that microwave processing of materials offers significant economic and performance advantages for industrial scale up. - Highlights: • Conversion of Zn to ZnO by microwave and radiant annealing was conducted. • Microwave conversion was 5 times faster compared to radiant annealing. • Photoelectrochemical performance of microwave annealed ZnO was 40% higher. • Microwave annealing results in a 75% energy saving

  6. Characterisation of poly(neutral red) modified carbon film electrodes; application as a redox mediator for biosensors

    OpenAIRE

    Pauliukaite, Rasa; Ghica, Mariana; Barsan, Madalina; Brett, Christopher

    2007-01-01

    Abstract The polymer redox mediator, poly(neutral red) (PNR), has been synthesised and characterised electrochemically to investigate the best electropolymerisation and mediation conditions for application in enzyme biosensors and to clarify the mechanism of action. Neutral red was electropolymerised by potential cycling on carbon film electrode substrates by allowing the monomer to be oxidised during the full 20 cycles of polymerisation or reducing the positive limit of the potential window...

  7. Development of a poly(alizarin red S)/ionic liquid film modified electrode for voltammetric determination of catechol

    International Nuclear Information System (INIS)

    Highlights: • This study is the first to conduct electroploymerization of ARS in RTILs. • BMIMBF4 was successfully mixed in polymeric ARS film. • PARS/BMIMBF4 film was tighter, smoother and better electrochemical property. • PARS/BMIMBF4/GCE showed superior performance for catechol determination. - Abstract: A novel modified electrode for voltammetric catechol determination was fabricated by electroploymerization of alizarin red S (ARS) onto a glassy carbon electrode (GCE) in one kind of room-temperature ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIMBF4). The polymeric ARS/ionic liquid (PARS/BMIMBF4) film modified electrode was characterized by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrochemical methods. The EDX, XPS and FTIR results indicated that PARS/BMIMBF4 film was successfully obtained. Compared with the GCE modified by electroploymerization of ARS in aqueous solution, the GCE modified by electroploymerization of ARS in BMIMBF4 showed smoother and more compact morphology for coating and better electroanalytical properties. Given the combined electrochemical activity of PARS and excellent conductivity of BMIMBF4, the PARS/BMIMBF4/GCE has been successfully used for catechol determination by differential pulse voltammetry (DPV) with a linear range of 0.10 to 500 μM. The sensitivity and detection limit are 42 nA/μM and 0.026 μM, respectively. The PARS/BMIMBF4 modified electrode was successfully applied to the determination of catechol in real water samples and may serve as a simple but high-performance sensor for the determination of some environmental pollutants

  8. Thiol anchoring and catalysis of gold nanoparticles at the liquid interface of thin-organic film-modified electrodes

    OpenAIRE

    Mirceski, Valentin; Aleksovska, Angela; Pejova, Biljana; Ivanovski, Vladimir; Mitrova, Biljana; Mitreska, Nikolina; Gulaboski, Rubin

    2014-01-01

    The deposition of in-situ formed gold nanoparticles at the liquid/liquid (L/L) interface is studied by means of thin-organic-film-modified electrodes (TFE). The degree of ordering and aggregation of gold nanoparticles can be tuned by adding a lipophilic and hydrophilic thiol in the organic and aqueous phase, respectively. The ordered thiol-anchored gold nanoparticles exhibit pronounced catalytic effect toward electron-transfer reactions across the L/L interface.

  9. Voltammetric method for sensitive determination of herbicide picloram in environmental and biological samples using boron-doped diamond film electrode

    International Nuclear Information System (INIS)

    The voltammetric behavior and determination of picloram, a member of a pyridine herbicide family, was for the first time investigated on a boron doped diamond film electrode using cyclic and differential pulse voltammetry. The influence of supporting electrolyte and scan rate on the current response of picloram was examined to select the optimum experimental conditions. It was found that picloram provided one well-shaped oxidation peak at very positive potential (+1.5 V vs. Ag/AgCl electrode) in strong acidic medium. At optimized differential pulse voltammetric parameters, the current response of picloram was proportionally linear in the concentration range from 0.5 to 48.07 μmol L−1 and the low limit of detection of 70 nmol L−1 as well as good repeatability (relative standard deviation of 2.6% at 10 μmol L−1 for n = 11) were obtained on unmodified boron-doped diamond film electrode. The proposed method was successfully applied in analysis of environmental (tap and natural water) and biological (human urine) samples spiked with picloram with good accuracy (relative standard deviations less than 5% for all samples, n = 5). By this way, the boron-doped diamond could introduce a green (environmentally acceptable) alternative to mercury electrodes for the monitoring of herbicides

  10. Electrochemical properties of estradiol at glassy carbon electrode modified with nano-Al2O3 film

    International Nuclear Information System (INIS)

    Nano-Al2O3 is dispersed onto the surface of the glassy carbon electrode (GCE). This nanostructured film modified GCE exhibits a great enhancement to the oxidation of estradiol (E2), especially when adequate concentration of cationic surfactant such as cetyltrimethylammonium bromide (CTAB) is added into the sample solution. Due to the nanoparticle's unique properties and its inclination to selectively combine with some groups of bimolecules, as well as synergistic adsorption of E2 and CTAB on the electrode surface, E2 gives a more sensitive voltammetric response compared with bare GCE performed in the absence of CTAB. The lowest detectable concentration (3σ) of E2 is estimated to be 8x10-8 mol l-1 (accumulation for 2 min). The linear relationship between peak current and concentration of E2 holds in the range 4x10-7-4x10-5 mol l-1 (R=0.9932). The electrochemical properties of E2 on this modified electrode are investigated by linear scan voltammetry and cyclic voltammetry. Scanning electron microscope (SEM) and BET are employed to characterize the surface of the electrode modified with nano-Al2O3 film

  11. Bottom electrode crystallization of Pb(Zr,Ti)O3 thin films made by RF magnetron sputtering

    International Nuclear Information System (INIS)

    The bottom electrode crystallization method was used for the heat-treatment of amorphous Pb(Zr0.52,Ti0.48)O3 thin films deposited by radio-frequency magnetron sputtering on Pt/Ti/SiO2/Si substrates. Two different heating and cooling rates were applied and two different contact wires (W and Pt) were alternately used for the Joule heat generation in the Pt bottom electrode. The dielectric and ferroelectric properties of the films were compared with the properties of the films crystallized using halogen lamp annealing in the same conditions. All the PZT samples showed similar ferroelectric properties at room temperature, with high dielectric constant and remanent polarization values as well as good resistance to ferroelectric fatigue, the Al/PZT/Pt/Ti/SiO2/Si capacitors having low leakage currents. The experimental results obtained show that the bottom electrode crystallization method is a cheap and low power consumption method which can successfully replace the classical crystallization methods

  12. Li3V2(PO4)3 membrane electrode supported on a 3D-porous carbon fiber film

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic illustration of the synthesis process of free-standing LVP@C laminates. -- Abstract: A novel and simple in-situ solid-state reaction route is developed to synthesize a three-dimensional (3D) porous carbon fiber film-supported Li3V2(PO4)3 membrane electrode. The carbon film is obtained via the carbonization of a bioproduct rice paper (RP). The carbon film can function as both a current collector and a 3D electronic conduction network for the loaded Li3V2(PO4)3 particles. The structure and electrochemical properties of the Li3V2(PO4)3 membrane electrode are characterized. As a free-standing membrane electrode, it exhibits good rate performance at room temperature with a specific capacity of 108 and 142 mAh g−1 at 10 C rate in the voltage range of 3.0–4.3 V and 3.0–4.8 V, respectively. It also shows good cycling performance with a specific capacity of 123 mAh g−1 after 500 cycles at 1 C rate in the voltage range of 3.0–4.8 V

  13. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    International Nuclear Information System (INIS)

    Nanostructured cerium oxide (CeO2) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO3)3·6H2O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO2 and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO2/TCO film to form the lipase/nano-CeO2/TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO2/TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO2/TCO film and hence the lipase/nano-CeO2/TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6 weeks. Highlights:

  14. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    Energy Technology Data Exchange (ETDEWEB)

    Panky, Sreedevi; Thandavan, Kavitha [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sivalingam, Durgajanani [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sethuraman, Swaminathan; Krishnan, Uma Maheswari [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Jeyaprakash, Beri Gopalakrishnan [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Rayappan, John Bosco Balaguru, E-mail: rjbosco@ece.sastra.edu [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India)

    2013-01-15

    Nanostructured cerium oxide (CeO{sub 2}) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO{sub 2} and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film to form the lipase/nano-CeO{sub 2}/TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO{sub 2}/TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film and hence the lipase/nano-CeO{sub 2}/TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp

  15. AZO/Au/AZO tri-layer thin films for the very low resistivity transparent electrode applications

    International Nuclear Information System (INIS)

    Highlights: • High-quality Al-doped ZnO (AZO)/Au/AZO transparent conducting oxide films. • AZO films (30 nm) made by RF sputtering; ion sputtering for Au film (5–20 nm). • Effects of Au thickness on optical and electrical properties were analyzed. • The resistivity of 9 × 10−5 Ω cm and the transmittance of 86.2% of the multilayer films were obtained in this study. - Abstract: Aluminum-doped ZnO (AZO)/gold/AZO tri-layer structures with very low resistivity and high transmittance are prepared by simultaneous RF magnetron sputtering (for AZO) and ion sputtering (for Au). The properties of the tri-layer films are investigated at different Au layer thicknesses (5–20 nm). The effects of Au layer thickness and the role of Au on the transmission properties of the tri-layer films were investigated. The very low resistivity of 1.01 × 10−5 Ω cm, mobility of 27.665 cm2 V−1 s−1, and carrier concentration of 4.563 × 1022 cm−3 were obtained at an Au layer thickness of 20 nm. The peak transmittance of 86.18% at 650-nm wavelength was obtained at an Au layer thickness of 8 nm. These results show the films to be a good candidate for high-quality electrode scheme in various display applications

  16. AZO/Au/AZO tri-layer thin films for the very low resistivity transparent electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chien-Hsun [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Hung-Wei, E-mail: hwwu@mail.ksu.edu.tw [Department of Computer and Communication, Kun Shan University, Tainan 71003, Taiwan (China); Huang, Jow-Lay [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-08-01

    Highlights: • High-quality Al-doped ZnO (AZO)/Au/AZO transparent conducting oxide films. • AZO films (30 nm) made by RF sputtering; ion sputtering for Au film (5–20 nm). • Effects of Au thickness on optical and electrical properties were analyzed. • The resistivity of 9 × 10{sup −5} Ω cm and the transmittance of 86.2% of the multilayer films were obtained in this study. - Abstract: Aluminum-doped ZnO (AZO)/gold/AZO tri-layer structures with very low resistivity and high transmittance are prepared by simultaneous RF magnetron sputtering (for AZO) and ion sputtering (for Au). The properties of the tri-layer films are investigated at different Au layer thicknesses (5–20 nm). The effects of Au layer thickness and the role of Au on the transmission properties of the tri-layer films were investigated. The very low resistivity of 1.01 × 10{sup −5} Ω cm, mobility of 27.665 cm{sup 2} V{sup −1} s{sup −1}, and carrier concentration of 4.563 × 10{sup 22} cm{sup −3} were obtained at an Au layer thickness of 20 nm. The peak transmittance of 86.18% at 650-nm wavelength was obtained at an Au layer thickness of 8 nm. These results show the films to be a good candidate for high-quality electrode scheme in various display applications.

  17. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  18. Magnetoconductance fluctuations in open bismuth quantum dots

    Science.gov (United States)

    Hackens, B.; Minet, J. P.; Farhi, G.; Crahay, A.; Faniel, S.; Gustin, C.; Bayot, V.

    2002-03-01

    We investigate the low temperature (300 mK - 10 K) magnetoconductance of open circular bismuth quantum dots (diameter: 500 nm). The structures are fabricated using a combination of electron beam lithography, lift off and plasma etching techniques on bismuth thin films evaporated on heated SiO2 substrates. We observe reproducible magnetoconductance fluctuations (UCFs) up to 5T, qualitatively similar to conductance fluctuations evidenced in open quantum dots patterned in high mobility semiconductor heterostructures. In our samples, UCFs are superposed on a slowly varying negative magnetoconductance background. We also observe a sharp conductance maximum centered in B=0, which is reminescent of the spin-orbit induced anti-localisation phenomenon. The behavior of UCFs and of the conductance maximum is discussed as a function of the temperature, thickness and degree of cristallinity of the cavity.

  19. In situ scanning tunneling microscopy study of cobalt thin film electrodeposited on Pt(1 1 1) electrode

    International Nuclear Information System (INIS)

    Thanks to the availability of single crystal electrodes and the advance of scanning probes, it is now possible to characterize the process of electrodeposition in real time and the atomic structure of ultrathin film. Reported here is an in situ scanning tunneling microscopy (STM) study of cobalt electrodeposition on an ordered Pt(1 1 1) electrode in a pH 3 chloride-containing medium. It was found to be a two-staged process, involving an underpotential deposition (UPD) stage and an overpotential deposition (OPD) occurring at potentials positive and negative of the Nernst potential of −0.57 V (versus Ag/AgCl) calculated for 0.04 M CoCl2. Time-dependent STM imaging revealed Co nucleated mainly in one atom high islands on terraces and at steps in the UPD stage, followed by quasi layer-by-layer growth to form a smooth thin film up to five layers in thickness. The UPD layer comprised Co atoms arranging in disarray, possibly resulting from competitive adsorption of hydrogen at the Pt electrode. Starting from the second layer, the Co film assumed ordered microstructures featuring a long range undulation of atomic height. This moire structure consisted of Co(0 0 0 1) like plane stacked on the Pt(1 1 1) substrate with an in-plane interatomic spacing of 0.257 nm in the bilayer film. Due to different lattice constants of Co and Pt, the Co/Pt(1 1 1) was strained, but the degree of this interfacial strain gradually decreased with the thickness of Co deposit, as revealed by the diminish of the moire pattern when the Co film grew to more than five layer in thickness. Meanwhile, the morphology of the Co deposit became rougher with thickness, which suggests a Stranski–Krastanov growth

  20. Development of coated-wire silver ion selective electrodes on paper using conductive films of silver nanoparticles.

    Science.gov (United States)

    Janrungroatsakul, Wanwisa; Lertvachirapaiboon, Chutiparn; Ngeontae, Wittaya; Aeungmaitrepirom, Wanlapa; Chailapakul, Orawon; Ekgasit, Sanong; Tuntulani, Thawatchai

    2013-11-21

    Films of silver nanoparticles are used for the first time as an electrical conductor and ion-to-electron transducer to fabricate coated-wire ion selective electrodes (ISEs) on paper. The film of nano silver ink (nano silver film), synthesized from the reduction of AgNO3 by NaBH4, was screen printed on paper. Transmission electron microscopy showed that the synthesized silver nanoparticles (AgNPs) possessed a spherical shape with diameter ca. 5 nm. Energy-dispersive X-ray spectroscopy supported the purity and good stability of the synthesized AgNPs. Nano silver films were sintered at room temperature, 100 °C and 200 °C. Upon increasing the sintering temperature, atomic force microscopy showed that the size of AgNPs of nano silver films increased, but the sheet resistivity decreased. Silver ISEs were then fabricated from nano silver films and o-NPOE-plasticized polymeric membranes containing benzothiazolyl calix[4]arene () as ionophore and KTpClPB as anionic site. The performance of the developed Ag-ISEs was investigated by potentiometric measurements, potentiometric water layer tests, current reversal chronopotentiometry and electrochemical impedance spectroscopy. The coated-wire electrode fabricated from the nano silver film sintering at room temperature showed the best characteristics of Ag-ISEs giving a near Nernstian response slope of 59.7 ± 1.0 mV per decade, 10(-6) to 10(-2) M linear range, detection limit of 4.5 × 10(-7) M, long-term potential stability and good reversibility. PMID:24071789

  1. Preferential growth and enhanced dielectric properties of Ba0.7Sr0.3TiO3 thin films with preannealed Pt bottom electrode

    International Nuclear Information System (INIS)

    Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm−1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes. (paper)

  2. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    Science.gov (United States)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Karczewski, Jakub; Śliwiński, Gerard

    2015-12-01

    The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40-120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  3. Enhanced oxide emission in electrode-aided laser deposition of YBa2Cu3O7-x thin films

    International Nuclear Information System (INIS)

    Emission spectroscopy was used to study the effect of a polarized electrode on the properties of pulsed laser deposition plasmas. Complex phenomena were noticed when an electrode with an applied dc voltage is introduced in the laser ablation plasma. The most interesting is that the presence of the electrode can preferentially excite oxides under certain conditions. This enhanced oxide emission is characteristic for the high-density regions of the plasma: the near-target region in vacuum, and the region behind the shock front in a gas atmosphere. This result is potentially important for improving the quality of laser-deposited high-Tc thin films. The electrical properties of YBa2Cu3O7-x depend strongly on the oxygen content. Therefore, the amount of oxides which exists in the target-substrate region, as well as their reactivity, are very important. Most phenomena may be described considering the additional excitation produced by electron collisions in the electrode-target region, after a discharge is initiated in the plasma. The behaviour of emissive species alone, however, cannot fully explain why the formation of excited oxides is favored over that of elementary species, or why a positive electrode bias leads to stronger emission than a negative one for 450 V, and weaker emission for 240 V. The clarification of these points, and a more comprehensive description of the process, warrants the use of complementary methods of plasma analysis. (author)

  4. Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes

    Science.gov (United States)

    Battaglia, Corsin; Erni, Lukas; Boccard, Mathieu; Barraud, Loris; Escarré, Jordi; Söderström, Karin; Bugnon, Grégory; Billet, Adrian; Ding, Laura; Despeisse, Matthieu; Haug, Franz-Josef; Wolf, Stefaan De; Ballif, Christophe

    2011-06-01

    We investigate the performance of hydrogenated indium oxide as a transparent front electrode for micromorph thin-film silicon solar cells on glass. Light trapping is achieved by replicating the morphology of state-of-the-art zinc oxide electrodes, known for their outstanding light trapping properties, via ultraviolet nanoimprint lithography. As a result of the high electron mobility and excellent near-infrared transparency of hydrogenated indium oxide, the short-circuit current density of the cells is improved with respect to indium tin oxide and zinc oxide electrodes. We assess the potential for further current gains by identifying remaining sources of parasitic absorption and evaluate the light trapping capacity of each electrode. We further present a method, based on nonabsorbing insulating silicon nitride electrodes, allowing one to directly relate the optical reflectance to the external quantum efficiency. Our method provides a useful experimental tool to evaluate the light trapping potential of novel photonic nanostructures by a simple optical reflectance measurement, avoiding complications with electrical cell performance.

  5. Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-SDBS composite film.

    Science.gov (United States)

    Sun, Zhirong; Wei, Xuefeng; Zhang, Huan; Hu, Xiang

    2015-03-01

    Pentachlorophenol (PCP) is a persistent pollutant and a suspected human carcinogen. It can be found in the air, water, and soil and enters the environment through evaporation from treated wood surfaces, industrial spills, and disposal at uncontrolled hazardous waste sites. Ecotoxicity of PCP necessitates the development of rapid and reliable remediation techniques. Electrocatalytic hydrogenolysis (ECH) has been proven as a promising method for detoxification of halogenated wastes, due to its rapid reaction rate, low apparatus cost, mild reaction conditions, and absence of secondary contaminants. Challenge for the application of ECH is to prepare a Pd-coated cathode with high stability, high catalytic activity, and low Pd loading level. In this work, Pd/polypyrrole-sodium dodecyl benzene sulfonate/meshed Ti (Pd/PPy-SDBS/Ti) electrode was prepared and was characterized by cyclic voltammetry, scanning electron microscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectrometry. Electrochemically reductive dechlorination of PCP on the Pd/PPy-SDBS/Ti electrode in aqueous solution was investigated. Pd microparticles were uniformly dispersed on PPy-SDBS film which was previously electrodeposited on the meshed Ti supporting electrode. The loading of Pd on the electrode was 0.72 mg cm(-2). Electrocatalytic dechlorination of PCP was performed in a two-compartment cell separated by cation-exchange membrane. The PCP removal on the Pd/PPy-SDBS/Ti electrode could reach 100 % within 70 min with dechlorination current 3 mA when PCP initial concentration was 10 mg L(-1) and initial pH was 2.4. Conversion of PCP on the Pd/PPy-SDBS/Ti electrode followed pseudo-first-order kinetics, and the apparent activation energy was 13.0 kJ mol(-1). The removal of PCP still kept 100 % after 70 min dechlorination when the Pd/PPy-SDBS/Ti cathode was reused ten times. The electrode exhibited promising dechlorination potential with high electrocatalytic activity, good stability

  6. A nano-architectured porous electrode assembly of copper rich Cu6Sn5 thin film for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Highlights: ► A nano-architectured porous electrode assembly of Cu6Sn5 thin film was produced. ► Electrode’s composition and architecture effects on its performance were shown. ► An electrode with high capacity and long cycle life was produced by OAD method. -- Abstract: Cu and Sn are codeposited on a copper substrate via electron beam evaporation deposition method to form a nano porous thin film anode. The galvanostatic charge–discharge results show that the nano porous Cu6.26Sn5 thin film performs 784 mAh g−1 as first discharge capacity. A capacity fade is observed during the first three cycles, this sharp capacity decay has disappeared and a progressive increase in the capacity is observed up to 40th cycles. Then, a steady state regime has begun and continued up to 60th cycles. The enhanced electrochemical properties of the nano porous, structured Cu–Sn composite thin film is attributed to its particular composition, morphology and structure

  7. Bottom electrodes dependence of microstructures and dielectric properties of compositionally graded (Ba1-xSrx)TiO3 thin films

    International Nuclear Information System (INIS)

    Compositionally graded (Ba1-xSrx)TiO3 (BST) thin films, with x decreasing from 0.3 to 0, were deposited on Pt/Ti/SiO2/Si and Ru/SiO2/Si substrates by radio frequency magnetron sputtering technology. The microstructure and dielectric properties of the graded BST thin films were investigated. It was found that the films on Ru electrode have better crystallization, and that RuO2 is present between the Ru bottom electrode and the graded BST thin films by X-ray diffraction and SEM analysis. Dielectric measurement reveals that the graded BST thin films deposited on Ru bottom electrode have higher dielectric constant and tunability. The enhanced dielectric behavior is attributed to better crystallization as well as smaller space charge capacitance width and the formation of RuO2 that is more compatible with the BST films. The graded BST films on Ru electrode show higher leakage current due to lower barrier height and rougher surface of bottom electrode

  8. Study on corrosion test techniques in lead bismuth eutectic flow. Joint research report in JFY2002

    International Nuclear Information System (INIS)

    cable electrode type and tubular electrode type were tested in the lead bismuth loop, and the performances were compared with each other. (author)

  9. Optical detection of ion diffusion in electrochromic poly(3,4-ethylenedioxy)thiophene film using microcantilever electrodes

    DEFF Research Database (Denmark)

    Lin, Rong; Stokbro, Kurt; Madsen, Dorte Nørgaard;

    2005-01-01

    We present measurements of microscale electrochromic switching of poly(3,4-ethylenedioxy)thiophene doped with poly(4-styrene sulfonate), thin film using microfabricated multi-point probe electrodes. After treatment with a dilute hydrochloric acid, a voltage bias above 3 V with respect to the ground...... experimental approach to provide new insight into ion diffusion in electrochromic films, allowing real-time recording of diffusion dynamics on a microscale to be studied directly. (c) 2005 Elsevier B.V. All rights reserved....... potential of the film induced dark (light-absorbing) rings, which spread out from the anode on a time scale of seconds. The rate of expansion of the rings as well as the final diameter depended on the bias voltage. Using two micro four-point probes simultaneously, we measured with one probe the conductance...

  10. Development of conductive coated polyester film as RPC electrodes using screen printing

    International Nuclear Information System (INIS)

    Each of the three 16 kton ICAL detector modules at the India-based Neutrino Observatory (INO) will use RPCs as the active element, sandwiched between 6 cm thick soft iron plates, for measurements on atmospheric neutrinos. The electrodes of the RPC are float glass sheets having a volume resistivity of about 1012-1013 Ω cm (at room temperature) covered with carbon/graphite or a conductive paint with a surface resistivity of ∼800 kΩ/square to 1 MΩ/square to apply high voltage on the glass surface, so that this surface does not shield the discharge signal from the external pickup plates and is small compared to the resistivity of the glass to provide a uniform potential across the entire surface. We initially coated the surface with locally available graphite powder, mixed with lacquer and thinner, and were able to get a few hundred kΩ/square resistivity. However, we observed a drastic reduction in surface resistivity with time and it came unstuck from the glass. Subsequently a conductive paint developed by Kansai-Nerolac was used. This paint uses modified acrylic resin as binder, conductive black pigment and solvents, which include aromatic hydrocarbons and alcohols. At room temperature, the surface dries in 10 minutes, while complete drying takes ∼18 hours. The spraying is done at a pressure of 4 kg/cm2 with the glass plate kept at a distance of 8-10 in. Using this paint, we are able to achieve the required resistance of ∼ few hundred kΩ/square. We still need to study the long term stability and best curing method. We need to automate the procedure to get a uniform coat and to coat a large number of glasses for the final detector. While robotic systems are available abroad costing about 5 000 000 rupees, we are exploring other alternatives. In particular, we are in the process of developing a polyester film, with a conductive coating on one side, which can be glued on to the glass. The coating was done using on a local commercial screen printing machine

  11. Development of conductive coated polyester film as RPC electrodes using screen printing

    Science.gov (United States)

    Kalmani, S. D.; Mondal, N. K.; Satyanarayana, B.; Verma, P.; Datar, V. M.

    2009-05-01

    Each of the three 16 kton ICAL detector modules at the India-based Neutrino Observatory (INO) will use RPCs as the active element, sandwiched between 6 cm thick soft iron plates, for measurements on atmospheric neutrinos. The electrodes of the RPC are float glass sheets having a volume resistivity of about 10 12-10 13 Ω cm (at room temperature) covered with carbon/graphite or a conductive paint with a surface resistivity of ˜800 kΩ/square to 1 MΩ/square to apply high voltage on the glass surface, so that this surface does not shield the discharge signal from the external pickup plates and is small compared to the resistivity of the glass to provide a uniform potential across the entire surface. We initially coated the surface with locally available graphite powder, mixed with lacquer and thinner, and were able to get a few hundred kΩ/square resistivity. However, we observed a drastic reduction in surface resistivity with time and it came unstuck from the glass. Subsequently a conductive paint developed by Kansai-Nerolac was used. This paint uses modified acrylic resin as binder, conductive black pigment and solvents, which include aromatic hydrocarbons and alcohols. At room temperature, the surface dries in 10 minutes, while complete drying takes ˜18 hours. The spraying is done at a pressure of 4 kg/cm 2 with the glass plate kept at a distance of 8-10 in. Using this paint, we are able to achieve the required resistance of ˜ few hundred kΩ/square. We still need to study the long term stability and best curing method. We need to automate the procedure to get a uniform coat and to coat a large number of glasses for the final detector. While robotic systems are available abroad costing about 5 000 000 rupees, we are exploring other alternatives. In particular, we are in the process of developing a polyester film, with a conductive coating on one side, which can be glued on to the glass. The coating was done using on a local commercial screen printing machine

  12. Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2015-01-01

    Full Text Available Transparent conductive oxides (TCOs play a major role as the front electrodes of thin-film silicon (Si solar cells, as they can provide optical scattering and hence improved photon absorption inside the devices. In this paper we report on the surface texturing of aluminium-doped zinc oxide (ZnO:Al or AZO films for improved light trapping in thin-film Si solar cells. The AZO films are deposited onto soda-lime glass sheets via pulsed DC magnetron sputtering. Several promising AZO texturing methods are investigated using diluted hydrochloric (HCl and hydrofluoric acid (HF, through a two-step etching process. The developed texturing procedure combines the advantages of the HCl-induced craters and the smaller and jagged—but laterally more uniform—features created by HF etching. In the two-step process, the second etching step further enhances the optical haze, while simultaneously improving the uniformity of the texture features created by the HCl etch. The resulting AZO films show large haze values of above 40%, good scattering into large angles, and a surface angle distribution that is centred at around 30°, which is known from the literature to provide efficient light trapping for thin-film Si solar cells.

  13. Preparation of Li4Ti5O12 electrode thin films by a mist CVD process with aqueous precursor solution

    Directory of Open Access Journals (Sweden)

    Kiyoharu Tadanaga

    2015-03-01

    Full Text Available Spinel Li4Ti5O12 thin films were prepared by a mist CVD process, using an aqueous solution of lithium nitrate and a water-soluble titanium lactate complex as the source of Li and Ti, respectively. In this process, mist particles ultrasonically atomized from a source aqueous solution were transferred by nitrogen gas to a heating substrate to prepare thin films. Scanning electron microscopy observation showed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 500 nm were obtained. In the X-ray diffraction analysis, formation of Li4Ti5O12 spinel phase was confirmed in the obtained thin film sintered at 700 °C for 4 h. The cell with the thin films as an electrode exhibited a capacity of about 110 mAh g−1, and the cell showed good cycling performance during 10 cycles.

  14. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    International Nuclear Information System (INIS)

    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrOx) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrOx have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrOx films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O2 gas ratio. The IrOx film deposited with an Ar:O2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm−2, which was about five times higher than that of films deposited with a 1:1 gas ratio.

  15. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    Science.gov (United States)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Suh, Jun-Kyo Francis; Kang, Ji Yoon

    2010-03-01

    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrOx) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrOx have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrOx films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O2 gas ratio. The IrOx film deposited with an Ar:O2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm-2, which was about five times higher than that of films deposited with a 1:1 gas ratio.

  16. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes

    International Nuclear Information System (INIS)

    This work demonstrates a large-scale batch fabrication of GaN light-emitting diodes (LEDs) with patterned multi-layer graphene (MLG) as transparent conducting electrodes. MLG films were synthesized using a chemical vapor deposition (CVD) technique on nickel films and showed typical CVD-synthesized MLG film properties, possessing a sheet resistance of ∼620 Ω/□ with a transparency of more than 85% in the 400-800 nm wavelength range. The MLG was applied as the transparent conducting electrodes of GaN-based blue LEDs, and the light output performance was compared to that of conventional GaN LEDs with indium tin oxide electrodes. Our results present a potential development toward future practical application of graphene electrodes in optoelectronic devices.

  17. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes.

    Science.gov (United States)

    Jo, Gunho; Choe, Minhyeok; Cho, Chu-Young; Kim, Jin Ho; Park, Woojin; Lee, Sangchul; Hong, Woong-Ki; Kim, Tae-Wook; Park, Seong-Ju; Hong, Byung Hee; Kahng, Yung Ho; Lee, Takhee

    2010-04-30

    This work demonstrates a large-scale batch fabrication of GaN light-emitting diodes (LEDs) with patterned multi-layer graphene (MLG) as transparent conducting electrodes. MLG films were synthesized using a chemical vapor deposition (CVD) technique on nickel films and showed typical CVD-synthesized MLG film properties, possessing a sheet resistance of [Formula: see text] with a transparency of more than 85% in the 400-800 nm wavelength range. The MLG was applied as the transparent conducting electrodes of GaN-based blue LEDs, and the light output performance was compared to that of conventional GaN LEDs with indium tin oxide electrodes. Our results present a potential development toward future practical application of graphene electrodes in optoelectronic devices. PMID:20368676

  18. Analytical modeling and simulation of electrochemical charge/discharge behavior of Si thin film negative electrodes in Li-ion cells

    Science.gov (United States)

    Jagannathan, M.; Chandran, K. S. Ravi

    2014-02-01

    Physically-based analytical models that provide insights into the diffusion and/or interface charge transfer effects in bulk (lithiating/delithiating) electrodes are needed to truly assess the performance/limitations of electrode materials for Li-ion batteries. In this context, an analytical modeling framework is constructed here to predict the electrochemical charge-discharge characteristics during lithiation and delithiation of solid amorphous Si (a-Si) thin film electrodes. The framework includes analytical expressions that satisfy Fick's second law for Li transport and the requisite flux boundary conditions of lithiation and delithiation steps. The expressions are derived here by the method of separation of variables. They enable the determination of transient Li concentration profiles in the thin film electrode as a function of state of charge/discharge. The time-dependent electrode surface concentrations (at the electrode-electrolyte interface) obtained from these profiles were used to determine the activation overpotentials and thus, the non-equilibrium cell potentials, as a function of state of charge/discharge using Butler-Volmer kinetics. The simulated charge/discharge characteristics agreed well with the experimental data of a-Si thin film electrodes obtained at different C-rates. The model offers insights into how the charge-discharge behavior is controlled by diffusion limitation within electrode and/or the activation overpotentials at the interface. The analytical framework is also shown to predict successfully the hysteretic behavior of lithiation/delithiation voltage curves.

  19. Horseradish Peroxidase (HRP Immobilized Poly(aniline-co-m-aminophenol Film Electrodes–fabrication and Evaluation as Hydrogen Peroxide Sensor

    Directory of Open Access Journals (Sweden)

    Seong-Ho Choi

    2007-05-01

    Full Text Available Enzyme modified electrodes were fabricated with poly(aniline-co-m-aminophenol. Electrochemical polymerization of aniline and m-aminophenol wasperformed to get the film of copolymer on the surface of gold electrode. Modifiedelectrodes were fabricated by two methods, physical entrapment and covalent cross-linking.In one of the method, gold nanoparticles were loaded into the copolymer film andhorseradish peroxidase (HRP was immobilized into the Au nanoparticle loaded copolymerfilm through physical entrapment. In the other method, the amino and -OH groups in thecopolymer are utilized to form covalent functionalization with HRP via glutaric dialdehydeas cross-linker/mediator. The conducting copolymer/enzyme modified electrodes preparedby physical entrapment/covalent functionalization of enzyme were tested forelectrocatalytic activities towards sensing of H2O2. Amperometric results indicate thatenzyme modified electrode via physical entrapment possesses better electrocatalyticperformance over covalent functionalized enzyme electrode.

  20. The effect on performance of fabrication parameter variations of thick-film screen printed silver/silver chloride potentiometric reference electrodes

    OpenAIRE

    Sophocleous, Marios; Glanc, Monika; Atkinson, John; Garcia-Breijo, Eduardo

    2013-01-01

    Thick-film screen printed silver-silver chloride (Ag/AgCl) reference electrodes have been fabricated and investigated as an alternative to liquid electrolyte Ag/AgCl reference electrodes. The performance of the electrodes was examined with variations of the potassium chloride (KCl) concentration in the final (top) layer of the electrode. Also, different types of binder (glass and polymer) were tested for the underlying Ag/AgCl layer. The addition of another layer on top of the KCl containing ...

  1. Modeling ion conduction and electrochemical reactions in water films on thin-film metal electrodes with application to low temperature fuel cells

    International Nuclear Information System (INIS)

    Transport-regulated electrochemical reactions in thin-film platinum (Pt) electrodes for polymer electrolyte fuel cells (PEFCs) is theoretically investigated with a meso-scale modeling framework. These electrodes are of interest for their potential to reduce low temperature fuel cell costs, but the mechanisms governing their operation are not well-understood at this time. A primary question arising from experimental data is the origin of the high ion conductivity and oxygen reduction reaction (ORR) activity on ionomer-free Pt during PEFC operation when typical ORR potentials are well above commonly measured potentials of zero charge (PZC) for Pt surfaces. These ORR potentials should result in low proton conductivity and high activation losses. Herein, we address these questions with a model that considers both polymer electrolyte and water-covered portions of the Pt electrocatalysts similar to the experimental electrodes. Local electroneutrality is not assumed and the ion transport in water- and polymer electrolyte-covered regions of the Pt is modeled using the continuum Poisson- Nernst- Planck (PNP) equations including spatially-resolved domains for the compact (Stern) portions of the double layer. In addition, the model incorporates the water dissociation reaction (WDR) and both the acidic and alkaline ORR mechanisms. In water-covered regions, the ionic conductivity is highly dependent on the Pt surface charge, local pH, and transport-regulated ORR pathway. The model predicts the experimentally observed high ionic conductivity for Pt thin films in water and attributes it to high hydroxide concentration

  2. Electrochemical behaviour of metal hexacyanoferrate converted to metal hydroxide films immobilized on indium tin oxide electrodes-Catalytic ability towards alcohol oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: In this work, we demonstrate a simple method to modify indium tin oxide (ITO) electrodes in order to perform electro-catalytic oxidation of alcohols in alkaline medium. Metal hexacyanoferrate (MHCF) films such as nickel hexacyanoferrate (NiHCF) and copper hexacyanoferrate (CuHCF) were successfully immobilized on ITO electrodes using an electrochemical method. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the structural and morphological aspects of MHCF films. Cyclic voltammetry (CV) was used to study the redox properties and to determine the surface coverage of these films on ITO electrodes. Electrochemical potential cycling was carried out in alkaline medium in order to alter the chemical structure of these films and convert to their corresponding metal hydroxide films. SEM and XPS were performed to analyze the structure and morphology of metal hydroxide modified electrodes. Electro-catalytic oxidation ability of these films towards methanol and ethanol in alkaline medium was investigated using CV. From these studies we found that metal hydroxide modified electrodes show a better catalytic performance and good stability for methanol oxidation along with the alleviation of CO poisoning effect. We have obtained an anodic oxidation current density of ∼82 mA cm-2 for methanol oxidation, which is at least 10 fold higher than that of any metal hydroxide modified electrodes reported till date. The onset potential for methanol oxidation is lowered by ∼200 mV compared to other chemically modified electrodes reported. A plausible mechanism was proposed for the alcohol oxidation based on the redox properties of these modified electrodes. The methodology adapted in this work does not contain costlier noble metals like platinum and ruthenium and is economically viable.

  3. Thin films of the La0.95Sr0.05F2.95 fluoride-ionic conductor: impedometry with platinum electrodes

    International Nuclear Information System (INIS)

    Thin films of fluoride-ionic conductor La0.95Sr0.05F2.95 were prepared by the method of vacuum sputtering. Impedance of the films with Pt-electrodes was studied in the range of frequencies from 5 Hz to 500 kHz in the temperature range of 20-260 deg C. Parameters of electric processes taking place in the volume of the film electrolyte and on its boundaries with Pt-electrodes were ascertained. Characteristics of fluoride-ionic transport in La0.95Sr0.05F2.95 films and in monocrystal of the same composition were compared. Electron conductivity in La0.95Sr0.05F2.95 film electrolytes was estimated. It is shown that La0.95Sr0.05F2.95 thin-film electrolytes can be used in diverse electrochemical sensor devices

  4. Electrochemical determination of 4-nitrophenol using uniform nanoparticle film electrode of glass carbon fabricated facilely by square wave potential pulses

    International Nuclear Information System (INIS)

    Highlights: • Uniform nanoparticle film of GC was easily prepared by square wave potential pulses. • The fabrication involves repeated anodic oxidation of smooth GC in NaOH solution. • The thin film decorated with functional groups showed high electrochemical activity. • The effects of preparation parameters on CV behaviors of 4-NP were investigated. • The film exhibited good performances for voltammetric determination of 4-NP. - Abstract: Voltammetric determination of 4-nitrophenol (4-NP) has been preformed at uniform nanoparticle film electrode (UNFE) of glass carbon (GC) (GC-UNFE). The UNFE was facilely fabricated from smooth GC surface in a blank solution of NaOH with square wave potential pulses (SWPPs). This film was composed of uniform, dense GC nanoparticles decorated with oxygen-containing functional groups and exhibited high electrochemical activity. The film formation might be related to repeated pulse electrochemical oxidation of GC surface. The as-prepared film was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The parameters including anodic potential, time and frequency of SWPPs for film preparation were examined on CV behaviors of 4-NP redox. The oxidation peak was chosen to the 4-NP determination, and under the optimized conditions, its currents varied linearly with a concentration range for 4-NP of 0.5–3000 μM (over two consecutive calibration curves) with a detection limit of 0.23 μM (3σ/slope) and quantification limit of 0.77 μM (10 σ/slope). The advantages of present method included easy fabrication, high sensitivity, good stability, good reproducibility and very broad linear range, and it was successfully applied to detect 4-NP in water samples with satisfied results

  5. Flow-injection determination of iodide ion in nuclear emergency tablets, using boron-doped diamond thin film electrode

    International Nuclear Information System (INIS)

    The electrochemical determination of iodide was studied at boron-doped diamond thin film electrodes (BDD) using cyclic voltammetry (CV) and flow-injection (FI) analysis, with amperometric detection. Cyclic voltammetry of iodide was conducted in a phosphate buffer pH 5. Experiments were performed using glassy carbon (GC) electrode as a comparison. Well-defined oxidation waves of the quasi-reversible cyclic voltammograms were observed at both electrodes. Voltammetric signal-to-background ratios (S/B) were comparable. However, the GC electrode gives much greater in the background current as usual. The potential sweep rate dependence exhibited that the peak current of iodide oxidation at 1mM varied linearly (r2 = 0.998) with the square root of the scan rate, from 0.01 to 0.30Vs-1. This result indicates that the reaction is a diffusion-controlled process with negligible adsorption on BDD surface, at this iodide concentration. Results of the flow-injection analysis show a highly reproducible amperometric response. The linear working range was observed up to 200μM (r2 = 0.999). The detection limit, as low as 0.01μM (3σ of blank), was obtained. This method was successfully applied for quantification of iodide contents in nuclear emergency tablets

  6. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenju [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wang Fang [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)] [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yao Yanli [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Hu Shengshui [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shiu, Kwok-Keung, E-mail: kkshiu@hkbu.edu.h [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-09-30

    The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H{sub 2}O{sub 2} which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H{sub 2}O{sub 2} production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M{sup -1} cm{sup -2} at an applied potential of -0.10 V in air-saturated electrolytes.

  7. Electrochemical properties of LiCoO2 thin film electrode prepared by ink-jet printing technique

    International Nuclear Information System (INIS)

    LiCoO2 thin film electrodes with a thickness of about 1.2 μm were fabricated by an improved ink-jet printing method. LiCoO2 powder was synthesized via a modified sol-gel method. The LiCoO2 ink could be easily prepared by an ultrasonic dispersion technique using a commercially available surfactant. The jet printing LiCoO2 thin films were characterized by X-ray diffraction and Raman spectroscopy, scanning electron microscopy, cyclic voltammetry, charge/discharge cycling and electrochemical impedance spectroscopy. Experimental results showed that the LiCoO2 thin film electrodes present excellent cycling performance at high discharge rate. At discharge current density of 180 μA/cm2 (at this current density, the battery can be fully discharged in 12 min), the initial discharge capacity was 120 mAh/g, and after 100 charge-discharge cycles, the capacity loss was only 5%. It can be even charge-discharged at the current density as high as 384 μA/cm2

  8. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes.

    Science.gov (United States)

    Lian, Wenjing; Liu, Shuang; Wang, Lei; Liu, Hongyun

    2015-11-15

    A new strategy for the sensitive detection of kanamycin (KA) and other antibiotics based on molecularly imprinted polymer (MIP) and bioelectrocatalysis was developed in the present study. The KA-polypyrrole MIP films were electropolymerized on the surface of pyrolytic graphite (PG) electrodes, with pyrrole (PY) serving as the monomer and KA as the template. Because KA is electro-inactive, electroactive K3[Fe(CN)6] was used as the probe in the cyclic voltammetric (CV) measurements. The difference of the CV reduction peaks of K3[Fe(CN)6] at electrodes between the MIP films after KA removal and KA-rebinding MIP films could thus be used to determine KA quantitatively. When horseradish peroxidase (HRP) and H2O2 were added into the testing solution, the detection sensitivity of the system was greatly amplified because the electrochemical reduction of H2O2 could be catalyzed by HRP and mediated by K3[Fe(CN)6]. With the bioelectrocatalysis amplification, the limit of detection (LOD) for KA fell as low as 28 nM, approximately two orders of magnitude lower than that for the MIP films in the absence of enzymatic catalysis. The strategy demonstrated the generality. Not only KA but also other antibiotics, such as oxytetracycline (OTC), could be determined by this method. More significantly, in addition to the K3[Fe(CN)6]-HRP-H2O2 system, other bioelectrocatalysis systems, such as Fc(COOH)2-GOD-glucose (Fc(COOH)2=ferrocenedicarboxylic acid, GOD=glucose oxidase), could also be used to amplify the CV signal and realize the sensitive detection of KA for the MIP film system, thereby illustrating the great potential and prospects of the strategy. PMID:26079673

  9. Fabrication of conducting polymer-gold nanoparticles film on electrodes using monolayer protected gold nanoparticles and its electrocatalytic application

    International Nuclear Information System (INIS)

    We wish to report a simple and new strategy for the fabrication of gold nanoparticles-conducting polymer film on glassy carbon (GC) and indium tin oxide (ITO) surfaces using 5-amino-2-mercapto-1,3,4-thiadiazole capped gold nanoparticles (AMT-AuNPs) in 0.01 M H2SO4 by electropolymerization. The presence of amine groups on the surface of the AuNPs was responsible for the deposition of the AMT-AuNPs film on the electrode surface. The atomic force microscopy (AFM) studies reveal that the fabricated p-AMT-AuNPs film showed homogeneously distributed AuNPs with a spherical shape of ∼8 nm diameter. The XPS spectrum shows the binding energies at 83.8 and 87.5 eV in the Au 4f region corresponding to 4f7/2 and 4f5/2, respectively. The position and difference between these two peaks (3.7 eV) exactly match the value reported for Au0. The N1s XPS showed three binding energies at 396.7, 399.6 and 403.3 eV, corresponding to the =NH, -NH- and -N+H-, respectively, confirming that the electropolymerization proceeded through the oxidation of -NH2 groups present on the periphery of the AMT-AuNPs. The application of the present p-AMT-AuNPs modified electrode was demonstrated by studying the electro reduction of oxygen at pH 7.2. The p-AMT-AuNPs film enhanced the oxygen reduction current more than three times than that of p-AMT film prepared under identical conditions.

  10. Electrochemical biosensor for detection of PML/RARα fusion gene based on eriochrome cyanine R film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    This communication reports on a novel biosensor to study the hybridization specificity based on eriochrome cyanine R (ECR) monolayer film modified glassy carbon electrode (GCE). Differential pulse voltammetry (DPV) was used to monitor the hybridization reaction on the ECR-modified electrode. The decrease of the peak current of methylene blue (MB), an electroactive indicator, was observed upon hybridization of the probe with the target DNA. Electrochemical investigations indicated that ECR modified biosensor displayed a wide linear range of 5.0–200 pM with a detection limit of 0.982 pM. This new biosensor exhibited good selectivity for one-base mismatch and complementary sequence after hybridization in detecting promyelocytic leukemia/retinoic acid receptor α (PML/RARα) fusion gene in acute promyelocytic leukemia (APL).

  11. Novel pH microsensor based on a thin film gold electrode modified with lead dioxide nanoparticles

    International Nuclear Information System (INIS)

    A highly sensitive thin-film pH micro-sensor has been fabricated by deposition of lead dioxide (β-PbO2) nanoparticles (NPs) on a planar gold electrode. The resulting pH microchip electrode displays excellent potentiometric response to pH values with a super-Nernstian slope of 84 mVpH−1 over the pH 0.25–13 range. The NPs were electrochemically placed on the planar gold substrate by low current deposition in combination with high voltage oxidation. The merits offered by this elaborated pH microsensor include fast response time, high sensitivity, reasonable selectivity, simple fabrication, long lifetime and the feasibility of miniaturization and integration. (author)

  12. Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode

    Science.gov (United States)

    Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung

    2016-04-01

    Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.

  13. Effects of high working pressure on dielectric properties of sputtered (Ba,Sr)TiO3 films on Ir electrodes

    International Nuclear Information System (INIS)

    High working pressure (47 mTorr) was used for rf-sputtered (Ba,Sr)TiO3 (BST) films on Ir bottom electrodes to enhance the in situ formation of IrO2 without postannealing. We verified that oxygen plasma bombardment on the Ir surface during the deposition of BST films was the dominant mechanism for in situ IrO2 formation under the condition of high working pressure. The as-deposited BST film of 100 nm grown at 500 deg. C shows a high dielectric constant of 630 (at 10 kHz); however, the leakage current is relatively large (6x10-5 A/cm2 at 100 kV/cm). The large leakage current results from the rough interface due to the formation of thick IrO2. To reduce leakage current, the double-layer technology was used, in which a thin BST film (5 nm) was first deposited with pure Ar, and followed by the deposition of a thick film (95 nm) with mixture gas (Ar/O2=1). The thin BST layer can significantly reduce the roughness of IrO2, resulting in lower leakage current (4x10-7 A/cm2); however, since the thin BST layer is oxygen deficient, the dielectric constant is reduced to 443

  14. Ascorbate electro-oxidation by modified electrodes: Polypyrrole and polypyrrole/Ni(OH){sub 2} composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues da Silva, Marcelo [Faculdade de Engenharia/Colegio Tecnico Industrial, UNESP, CP 473, 17033-360 Bauru, SP (Brazil); Ferreira, Marcelo Silva [Departamento de Quimica, Centro de Ciencias Exatas, UEL, CP 6001, 86051-980 Londrina, PR (Brazil); Dall' Antonia, Luiz Henrique, E-mail: luizh@uel.br [Departamento de Quimica, Centro de Ciencias Exatas, UEL, CP 6001, 86051-980 Londrina, PR (Brazil)

    2012-08-01

    The present paper describes the utilization of polypyrrole and the composite of polypyrrole doped with nickel hydroxide modified electrodes toward the catalytic oxidation of ascorbate. Films were potentiostatically deposited onto a glassy carbon surface and Fluor-doped tin oxide glass for different times. The physical characterization was performed using the low angle X-ray diffraction technique. Furthermore, the films were electrochemically characterized using cyclic voltammetry. The X-ray diffraction results show the existence of different polymorphic phases of nickel hydroxide in the polymer matrix, and the {beta}-Ni(OH){sub 2} phase appears to be dominant. The cyclic voltammetry profile in KOH solution shows the presence of two redox peaks that are related to the Ni{sup II}/Ni{sup III} and Ni{sup III}/Ni{sup II} couples, at approximately 0.5 and 0.35 V, respectively. The reversible electro-oxidation of ascorbate was observed on the surface of the polypyrrole and composite films. The analytical curves obtained using voltammetric techniques show a linear relationship between the faradaic current and the increase of the ascorbic acid concentration. The sensitivity of these films, which is obtained from the slope of the analytical curves, shows that the composite film is more electroactive than the polypyrrole film: 133.4 mA L mol{sup -1} cm{sup -2} and 83.8 mA L mol{sup -1} cm{sup -2}, respectively. The rate constants of the catalytic ascorbate electro-oxidation were also reported, where the mean values were found to be 217.74 M{sup -1} s{sup -1} and 54.37 M{sup -1} s{sup -1}, for the composite and polypyrrole films, respectively. The low cost of polypyrrole doped with Ni(OH){sub 2} composite electrodes presents a more selective and high sensitivity to determine ascorbic acid concentration. - Highlights: Black-Right-Pointing-Pointer Electrochemical synthesis of polypyrrole and nickel hydroxide composite thin films Black-Right-Pointing-Pointer High sensitivity

  15. Supported TiO2 film photocatalysis rection system with air(oxygen) electrode%含空气(氧)电极的负载型TiO2光催化反应体系

    Institute of Scientific and Technical Information of China (English)

    蔡乃才; 黄行九; 彭正合

    2000-01-01

      A novel photocatlysis reaction system is introduced, in which the air(oxygen) erectrode is used as counter electrode of supported TiO2 film electrode. When air(oxygen) electrode and TiO2 film electrode are in state of closed circuit by the Conductor, the rate of degradtion of the organic contaminant is apparently increased, for example, Under condition of same radiant intensity, after reaction for 3h, quantity of degradated oxalic acid in the solution is greater by about 46% than that in the absence of the air(oxygen) electrode. The function of the air(oxygen) electrode is discussed in the paper.

  16. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    International Nuclear Information System (INIS)

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 μM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  17. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of)

    2010-04-15

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 muM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  18. An electrode-free method of characterizing the microwave dielectric properties of high-permittivity thin films

    Science.gov (United States)

    Bovtun, V.; Pashkov, V.; Kempa, M.; Kamba, S.; Eremenko, A.; Molchanov, V.; Poplavko, Y.; Yakymenko, Y.; Lee, J. H.; Schlom, D. G.

    2011-01-01

    A thin dielectric resonator consisting of a dielectric substrate and the thin film deposited upon it is shown to suffice for microwave characterization and dielectric parameter measurement of high-permittivity thin films without electrodes. The TE01δ resonance mode was excited and measured in thin (down to 0.1 mm) rectangular- or disk-shaped low-loss dielectric substrates (D ˜10 mm) with permittivity ɛ'≥10 inserted into a cylindrical shielding cavity or rectangular waveguide. The in-plane dielectric permittivity and losses of alumina, DyScO3, SmScO3, and (LaAlO3)0.29(SrAl1/2Ta1/2O3)0.71 (LSAT) substrates were measured from 10 to 18 GHz. The substrate thickness optimal for characterization of the overlying thin film was determined as a function of the substrate permittivity. The high sensitivity and efficiency of the method, i.e., of a thin dielectric resonator to the dielectric parameters of an overlying film, was demonstrated by characterizing ultrathin strained EuTiO3 films. A 22 nm thick EuTiO3 film grown on a (100) LSAT substrate and strained in biaxial compression by 0.9% exhibited an increase in microwave permittivity at low temperatures consistent with it being an incipient ferroelectric; no strain-induced ferroelectric phase transition was seen. In contrast, a 100 nm thick EuTiO3 film grown on a (110) DyScO3 substrate and strained in biaxial tension by 1% showed two peaks as a function of temperature in microwave permittivity and loss. These peaks correspond to a strain-induced ferroelectric phase transition near 250 K and to domain wall motion.

  19. Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Nirmal Peiris, T.A.; Sagu, Jagdeep S.; Hazim Yusof, Y.; Upul Wijayantha, K.G., E-mail: U.Wijayantha@lboro.ac.uk

    2015-09-01

    Metallic Zn thin films were electrodeposited on fluorine-doped tin oxide (FTO) glass substrates and oxidized under air by conventional radiant and microwave post-annealing methods to obtain ZnO thin film electrodes. The temperature of each post-annealing method was varied systematically and the photoelectrochemical (PEC) performance of electrodes was evaluated. The best photocurrent density achieved by the conventional radiant annealing method at 425 °C for 15 min was 93 μA cm{sup −2} at 1.23 V vs. NHE and the electrode showed an incident photon-to-electron conversion efficiency (IPCE) of 28.2%. X-ray diffractogram of this electrode showed that the oxidation of Zn to ZnO was not completed during the radiant annealing process as evident by the presence of metallic Zn in the electrode. For the electrode oxidized from Zn to ZnO under microwave irradiation, a photocurrent of 130 μA cm{sup −2} at 1.23 V vs. NHE and IPCE of 35.6% was observed after annealing for just 3 min, during which the temperature reached 250 °C. The photocurrent was 40% higher for the microwave annealed sample; this increase was attributed to higher surface area by preserving the nanostructure, confirmed by SEM surface topographical analysis, and better conversion yields to crystalline ZnO. Overall, it was demonstrated that oxidation of Zn to ZnO can be accomplished by microwave annealing five times faster than that of conventional annealing, thus resulting in a ~ 75% power saving. This study shows that microwave processing of materials offers significant economic and performance advantages for industrial scale up. - Highlights: • Conversion of Zn to ZnO by microwave and radiant annealing was conducted. • Microwave conversion was 5 times faster compared to radiant annealing. • Photoelectrochemical performance of microwave annealed ZnO was 40% higher. • Microwave annealing results in a 75% energy saving.

  20. Impact of glycerol on zinc-oxide-based thin film transistors with indium molybdenum oxide transparent electrodes

    Science.gov (United States)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Flores, Raquel; Viegas, Jaime

    2016-02-01

    We report the fabrication of thin film transistors with ZnO channel and indium molybdenum oxide electrodes by sputtering. The fabricated transistors were then exposed to glycerol. We observe a temporary change in device performance after immersion of the FET in glycerol. Control structures without channel material are also used for demonstrating that the effect of saturation current increase is not due to glycerol alone as sugar alcohol is a low conductive medium. Various electrical and optical parameters are extracted. The presented results are useful for further integration of photonics and electronics in sensing applications

  1. Development of Novel Glucose and Pyruvate Biosensors at Poly(Neutral Red) Modified Carbon Film Electrodes. Application to Natural Samples

    OpenAIRE

    Ghica, Mariana Emilia; Brett, Christopher M. A.

    2006-01-01

    Amperometric biosensors based on the corresponding oxidase enzyme with poly(neutral red) redox mediator have been developed for the determination of glucose and pyruvate. The enzymes have been immobilized on top of poly(neutral red) modified carbon film electrodes with glutaraldehyde as the cross-linking agent. The biosensors were characterized by cyclic voltammetry and by electrochemical impedance spectroscopy. The glucose biosensor exhibited a linear response in the range 90 muM to 1.8 mM w...

  2. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode

    International Nuclear Information System (INIS)

    Facile electrical communication between redox-active labeling molecules and electrode is essential in the electrochemical detection of bio-affinity reactions. In this report, nanometer-sized indium tin oxide (ITO) particles were employed in the fabrication of porous thick film electrodes to enhance the otherwise impeded electrochemical activity of redox labels in multi-layered protein films, and to enable quantitative detection of avidin/biotin binding interaction. To carry out the affinity reaction, avidin immobilized on an ITO electrode was reacted with mouse IgG labeled with both biotin and ruthenium Tris-(2,2'-bipyridine) (Ru-bipy). The binding reaction between avidin and biotin was detected by the catalytic voltammetry of Ru-bipy in an oxalate-containing electrolyte. On sputtered ITO thin film electrode, although a single layer of Ru-bipy labeled avidin exhibited substantial anodic current, attaching the label to the outer IgG layer of the avidin/biotin-IgG binding pair resulted in almost complete loss of the signal. However, electrochemical current was recovered on ITO film electrodes prepared from nanometer-sized particles. The surface of the nanoparticle structured electrode was found by scanning electron microscopy to be very porous, and had twice as much surface binding capacity for avidin as the sputtered electrode. The results were rationalized by the assumption of different packing density of avidin inner layer on the two surfaces, and consequently different electron transfer distance between the electrode and Ru-bipy on the IgG outer layer. A linear relationship between electrochemical current and IgG concentration was obtained in the range of 40-4000 nmol L-1 on the nanoparticle-based electrode. The approach can be employed in the electrochemical detection of immunoassays using non-enzymatic redox labels

  3. Electrocatalytic oxidation behavior of L-cysteine at Pt microparticles modified nanofibrous polyaniline film electrode

    Institute of Scientific and Technical Information of China (English)

    MA Song-jiang; LUO Sheng-lian; ZHOU Hai-hui; KUANG Ya-fei; NING Xiao-hui

    2008-01-01

    Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy. The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI electrode was investigated by cyclic voltammetry. The results indicate that the pH value of the solution and the Pt loading of the electrode have great effect on the electrocatalytic property of the Pt/nanofibrous PANI electrode; the suitable Pt loading of the electrode is 600 μg/cm2 and the suitable pH value of the solution is 4.5 for investigating L-cysteine oxidation. The L-cysteine sensor based on the Pt/nanofibrous PANI electrode has a good selectivity, reproducibility and stability. The Pt/nanofibrous PANI electrode is highly sensitive to L-cysteine, and the linear calibration curve for the oxidation of L-cysteine can be observed in the range of 0.2-5.0 mmol/L.

  4. Direct Electrochemistry of Cytochrome c on EDTA-ZrO2 Organic-inorganic Hybrid Film Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    徐静娟; 彭影; 刘守清; 陈洪渊

    2004-01-01

    A composite film of ethylenediamine tetraacetic acid (EDTA)-ZrO2 organic-inorganic hybrid was prepared based on the chelation between Zr(Ⅳ) and EDTA. The direct electrochemical behavior of cytochrome c (cyt. c) at the hybrid film modified glassy carbon electrodes was investigated. The immobilized EDTA can promote the redox of heme in horse heart cyt. c which gives rise to a pair of reversible redox peaks with a formal potential of 40 mV (vs. SCE). The peak current increased linearly with the increase of cyt. c concentration in the range of 1.6 × 10-6_the electron transfer of cyt. c. The impediment capability of metal ions depends on their coordination capability with EDTA and their valence number.

  5. Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study

    KAUST Repository

    Sapsanis, Christos

    2015-07-24

    A prototypical metal-organic framework (MOF), a 2D periodic porous structure based on the assembly of copper ions and benzene dicarboxylate (bdc) ligands (Cu(bdc)·xH2O), was grown successfully as a thin film on interdigitated electrodes (IDEs). IDEs have been used for achieving planar CMOS-compatible low-cost capacitive sensing structures for the detection of humidity and volatile organic compounds (VOCs). Accordingly, the resultant IDEs coated with the Cu(bdc)·xH2O thin film was evaluated, for the first time, as a capacitive sensor for gas sensing applications. A fully automated setup, using LabVIEW interfaces to experiment conduction and data acquisition, was developed in order to measure the associated gas sensing performance.

  6. Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study.

    Science.gov (United States)

    Sapsanis, Christos; Omran, Hesham; Chernikova, Valeriya; Shekhah, Osama; Belmabkhout, Youssef; Buttner, Ulrich; Eddaoudi, Mohamed; Salama, Khaled N

    2015-01-01

    A prototypical metal-organic framework (MOF), a 2D periodic porous structure based on the assembly of copper ions and benzene dicarboxylate (bdc) ligands (Cu(bdc)·xH2O), was grown successfully as a thin film on interdigitated electrodes (IDEs). IDEs have been used for achieving planar CMOS-compatible low-cost capacitive sensing structures for the detection of humidity and volatile organic compounds (VOCs). Accordingly, the resultant IDEs coated with the Cu(bdc)·xH2O thin film was evaluated, for the first time, as a capacitive sensor for gas sensing applications. A fully automated setup, using LabVIEW interfaces to experiment conduction and data acquisition, was developed in order to measure the associated gas sensing performance. PMID:26213943

  7. Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study

    Directory of Open Access Journals (Sweden)

    Christos Sapsanis

    2015-07-01

    Full Text Available A prototypical metal-organic framework (MOF, a 2D periodic porous structure based on the assembly of copper ions and benzene dicarboxylate (bdc ligands (Cu(bdc·xH2O, was grown successfully as a thin film on interdigitated electrodes (IDEs. IDEs have been used for achieving planar CMOS-compatible low-cost capacitive sensing structures for the detection of humidity and volatile organic compounds (VOCs. Accordingly, the resultant IDEs coated with the Cu(bdc·xH2O thin film was evaluated, for the first time, as a capacitive sensor for gas sensing applications. A fully automated setup, using LabVIEW interfaces to experiment conduction and data acquisition, was developed in order to measure the associated gas sensing performance.

  8. Electrochemical studies of thin films of conducting polymers and conducting polymer composites deposited on metal and semiconductor electrodes

    Science.gov (United States)

    Nagasubramanian, G.; Di Stefano, S.; Moacanin, J.

    1987-01-01

    Electrochemical studies indicate that poly(Isothianaphthene) or PITN, can be p-doped only. Electrochemical properties of PITN and Nafion-PITN in acetonitrile solutions containing tetra-phenyl Phosphonium chloride as supporting electrolyte are compared. In both cases, the electrochemical behavior of thin films are different from that of thick films. In addition, Nafion does not seem to alter the electrochemical properties of PITN. Cyclic voltammetric and chronocoulometric measurements were made to compute the diffusion coefficient of the counter ions. Electrochemical behavior of both PITN and Nafion-PITN in acetonitrile solution containing different counter ions are described. PITN, when electrochemically deposited, apparently neither passivates surface states present nor forms ohmic contacts with p-Si or p(+)Si single-crystal electrodes.

  9. Characterization of ultra-thin dielectric films buried under poly-Si electrodes using x-ray reflectivity

    International Nuclear Information System (INIS)

    Probe of deep buried gate dielectric thin films under poly-Si electrode capping layer by x-ray reflectivity using synchrotron radiation has been demonstrated. The structural variation in gate insulator was observed sensitively and the depth profiles of density were obtained with depth resolution less than 4 A. The structural parameters were evaluated quantitatively from discrete-layers model using the modified Parratt recursive formalism, provided that the real interfaces could be represented by a continuous refractive index profile. The depth profiles from the discrete-layers model to consider the interfacial roughnesses were compared to those from the continuous-media model within the experimental limit that doesn't include interfacial roughness. Consistency was so satisfactory that we could suggest the x-ray reflectivity to be the reliable measurement of the thickness of ultra-thin dielectric films and to be useful for the off-line characterizations of structural variation from thermal processes

  10. Self-healing protective films prepared on zinc electrodes by treatment in a cerium(III) nitrate solution and modification with sodium phosphate and calcium or magnesium nitrate

    International Nuclear Information System (INIS)

    Self-healing protective films were prepared on a zinc electrode by treatment in a Ce(NO3)3 solution and modification with Na3PO4 and Ca(NO3)2 or Mg(NO3)2. The protective and self-healing abilities of the films were examined by polarization measurements and observation of pit formation after the electrode was scratched with a knife-edge and immersed in aerated 0.5 M NaCl for many hours. The protective efficiency of the film modified with Ca(NO3)2 was higher than that of the film without Ca(NO3)2 but the self-healing ability of the former film was not sufficiently high during the prolonged immersion. Mechanisms of the protective and self-healing activities were discussed using X-ray photoelectron spectroscopy and electron-probe microanalysis

  11. Working Electrodes

    Science.gov (United States)

    Komorsky-Lovrić, Šebojka

    In electrochemistry an electrode is an electronic conductor in contact with an ionic conductor. The electronic conductor can be a metal, or a semiconductor, or a mixed electronic and ionic conductor. The ionic conductor is usually an electrolyte solution; however, solid electrolytes and ionic melts can be used as well. The term "electrode" is also used in a technical sense, meaning the electronic conductor only. If not specified otherwise, this meaning of the term "electrode" is the subject of the present chapter. In the simplest case the electrode is a metallic conductor immersed in an electrolyte solution. At the surface of the electrode, dissolved electroactive ions change their charges by exchanging one or more electrons with the conductor. In this electrochemical reaction both the reduced and oxidized ions remain in solution, while the conductor is chemically inert and serves only as a source and sink of electrons. The technical term "electrode" usually also includes all mechanical parts supporting the conductor (e.g., a rotating disk electrode or a static mercury drop electrode). Furthermore, it includes all chemical and physical modifications of the conductor, or its surface (e.g., a mercury film electrode, an enzyme electrode, and a carbon paste electrode). However, this term does not cover the electrolyte solution and the ionic part of a double layer at the electrode/solution interface. Ion-selective electrodes, which are used in potentiometry, will not be considered in this chapter. Theoretical and practical aspects of electrodes are covered in various books and reviews [1-9].

  12. Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode

    Institute of Scientific and Technical Information of China (English)

    Hui Ping Bai; Xu Xiao Lu; Guang Ming Yang; Yun Hui Yang

    2008-01-01

    A new amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase at the glassy carbon electrode modified with zinc oxide nanoflowers produced by electrodeposition onto multi-walled carbon nanotubes (MWNTs) firm. The morphology of the MWNTs/nano-ZnO electrode has been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the electrode has also been studied by amperometric method. The resulting electrode offered an excellent detection for hydrogen peroxide at -0.11 V with a linear response range of 9.9 × 10(-7) to 2.9 × 10(-3) mol/L with a correlation coefficient of 0.991, and response time <5 s. The biosensor displays rapid response and expanded linear response range, and excellent stability.

  13. The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells

    Science.gov (United States)

    Noh, Ho-Sung; Yoon, Kyung Joong; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2014-02-01

    Thin-film electrolytes and nanostructured electrodes are essential components for lowering the operation temperature of solid oxide fuel cells (SOFCs); however, reliably implementing thin-film electrolytes and nano-structure electrodes over a realistic SOFC platform, such as a porous anode-support, has been extremely difficult. If these components can be created reliably and reproducibly on porous substrates as anode supports, a more precise assessment of their impact on realistic SOFCs would be possible. In this work, structurally sound thin-film and nano-structured SOFC components consisting of a nano-composite NiO-yttria-stabilized zirconia (YSZ) anode interlayer, a thin YSZ and gadolinia-doped ceria (GDC) bi-layer electrolyte, and a nano-structure lanthanum strontium cobaltite (LSC)-base cathode, are sequentially fabricated on a porous NiO-YSZ anode support using thin-film technology. Using an optimized cell testing setup makes possible a more exact investigation of the potential and challenges of thin-film electrolyte and nanostructured electrode-based anode-supported SOFCs. Peak power densities obtained at 500 °C surpass 500 mW cm-2, which is an unprecedented low-temperature performance for the YSZ-based anode-supported SOFC. It is found that this critical, low-temperature performance for the anode-supported SOFC depends more on the electrode performance than the resistance of the thin-film electrolyte during lower temperature operation.

  14. Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires.

    Science.gov (United States)

    Shen, Liuxue; Du, Lianhuan; Tan, Shaozao; Zang, Zhigang; Zhao, Chuanxi; Mai, Wenjie

    2016-05-01

    We successfully fabricate flexible electrochromic supercapacitor (SC) electrodes employing novel flexible transparent conducting substrates. The as-synthesized flexible electrochromic SC electrodes exhibit great electrochemical performances (13.6 mF cm(-2), 138.2 F g(-1)) and high coloration efficiency (80.2 cm(2) C(-1)), which demonstrate their potential applications in flexible smart windows combining energy storage and electrochromism. PMID:27087032

  15. Synthesis, microstructure, and electronic band structure properties of nanocrystalline neodymium-doped bismuth titanate ferroelectric films fabricated by the sol–gel method

    International Nuclear Information System (INIS)

    Graphical abstract: X-ray diffraction indicates that the films are polycrystalline with the pure perovskite phase. Ten Raman active modes and one silicon substrate mode can be observed. The A1 g[Bi] at about 59 cm−1 is unchanged whereas the B1 g and A1 g[Ti] phonon modes shift towards higher frequencies. Photoluminescence shows that the intensities of the two peaks increase with Nd concentration except the Bi3NdTi3O12 film, due to the smallest grain size and oxygen vacancy defects. Good optical functions of the BNT films are achieved due to the SE suggesting potential applications in ferroelectric-based optoelectronic devices. - Abstract: Bi4−xNdxTi3O12 (BNT) films with different Nd contents (from 0 to 1 with 0.25 intervals) are prepared by the sol–gel process. The Nd substitution effects on the preferred orientation, surface morphology, phonon modes, emission bands, andelectronic band structures of the BNT films are investigated by microscopy, Raman scattering, photoluminescence, and spectroscopic ellipsometry (SE) at room temperature. X-ray diffraction indicates that the films are polycrystalline with the pure perovskite phase. Ten Raman active modes and one silicon substrate mode can be observed. The A1 g[Bi] at about 59 cm−1 is unchanged whereas the B1 g and A1 g[Ti] phonon modes shift towards higher frequencies. Photoluminescence shows that the intensities of the two peaks increase with Nd concentration except the Bi3NdTi3O12 film, due to the smallest grain size and oxygen vacancy defects. Good optical functions of the BNT films are achieved due to the SE suggesting potential applications in ferroelectric-based optoelectronic devices

  16. Amorphous MoSx thin-film-coated carbon fiber paper as a 3D electrode for long cycle life symmetric supercapacitors

    Science.gov (United States)

    Balasingam, Suresh Kannan; Thirumurugan, Arun; Lee, Jae Sung; Jun, Yongseok

    2016-06-01

    Amorphous MoSx thin-film-coated carbon fiber paper as a binder-free 3D electrode was synthesized by a facile hydrothermal method. The maximum specific capacitance of a single electrode was 83.9 mF cm-2, while it was 41.9 mF cm-2 for the symmetric device. Up to 600% capacitance retention was observed for 4750 cycles.Amorphous MoSx thin-film-coated carbon fiber paper as a binder-free 3D electrode was synthesized by a facile hydrothermal method. The maximum specific capacitance of a single electrode was 83.9 mF cm-2, while it was 41.9 mF cm-2 for the symmetric device. Up to 600% capacitance retention was observed for 4750 cycles. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR01200K

  17. Synthesis, structure and electrochemical properties of novel Li-Co-Mn-O epitaxial thin-film electrode using layer-by-layer deposition process

    Science.gov (United States)

    Lim, Jaemin; Lee, Soyeon; Suzuki, Kota; Kim, KyungSu; Kim, Sangryun; Taminato, Sou; Hirayama, Masaaki; Oshima, Yoshifumi; Takayanagi, Kunio; Kanno, Ryoji

    2015-04-01

    A novel epitaxial thin-film electrode for lithium batteries, with a composition of Li0.92Co0.65Mn1.35O4 and a cubic spinel structure, is fabricated on a SrTiO3(111) single-crystal substrate. Fabrication is carried out by layer-by-layer pulsed laser deposition of LiCoO2 with a layered rock-salt structure and LiMn2O4 with a spinel structure. The electrode is found to exhibit unique disordering of the lithium (8a) and transition-metal (16d) sites, leading to a higher rate capability and cycle retention ratio than those for a thin-film electrode with the same composition prepared by a conventional single-step deposition process. The proposed layer-by-layer deposition method allows an expanded range of compositional and structural variations for lithium battery electrode materials.

  18. Direct electrochemistry of glucose oxidase on the hydroxyapatite/Nafion composite film modified electrode and its application for glucose biosensing

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel glucose biosensor was constructed by immobilizing the glucose oxidase(GOD) on a hydroxyapatite(HAp)/Nafion composite film modified glassy carbon electrode(GCE) and applied to the highly selective and sensitive determination of glucose.With the cooperation of HAp and Nafion,the composite film played an important role in enhancing the stability and sensitivity of the biosensor.The results demonstrate that the GOD adsorbed onto the HAp/Nafion composite film exhibits a pair of welldefined nearly reversible redox peaks and fine catalysis to the oxidation of glucose companied with the consumption of dissolved oxygen.On the basis of the decrease of the reduction current of dissolved oxygen at the applied potential of -0.80 V(vs.SCE) upon the addition of glucose,the concentration of glucose could be detected sensitively and selectively.The decreased reduction current was linear with the concentration of glucose in the range of 0.12―2.16 mM.The detection limit and sensitivity were 0.02 mM(S/N=3) and 6.75 mA·M-1,respectively.All the results demonstrate that HAp/Nafion composite film provides a novel and efficient platform for the immobilization of enzymes and realizes the direct electrochemistry.The composite materials should have potential applications in the fabrication of third-generation biosensors.

  19. Direct electrochemistry of glucose oxidase on the hydroxyapatite/Nafion composite film modified electrode and its application for glucose biosensing

    Institute of Scientific and Technical Information of China (English)

    MA RongNa; WANG Bin; LIU Yan; LI Jing; ZHAO Qian; WANG GuoTao; JIA WenLi; WANG HuaiSheng

    2009-01-01

    A novel glucose biosensor was constructed by immobilizing the glucose oxidase (GOD) on a hydroxyapatite (Hap)/Nafion composite film modified glassy carbon electrode (GCE) and applied to the highly selective and sensitive determination of glucose.With the cooperation of Hap and Nation,the composite film played an important role in enhancing the stability and sensitivity of the biosensor.The results demonstrate that the GOD adsorbed onto the Hap/Nation composite film exhibits a pair of welldefined nearly reversible redox peaks and fine catalysis to the oxidation of glucose companied with the consumption of dissolved oxygen.On the basis of the decrease of the reduction current of dissolved oxygen at the applied potential of-0.80 V (vs.SCE) upon the addition of glucose,the concentration of glucose could be detected sensitively and selectively.The decreased reduction current was linear with the concentration of glucose in the range of 0.12-2.16 mM.The detection limit and sensitivity were 0.02 mM (S/N=3) and 6.75 mA·M~(-1),respectively.All the results demonstrate that Hap/Nafion composite film provides a novel and efficient platform for the immobilization of enzymes end realizes the direct electrochemistry.The composite materials should have potential applications in the fabrication of third-generation biosensors.

  20. Magnetron sputtered AZO thin films on commercial ITO glass for application of a very low resistance transparent electrode

    International Nuclear Information System (INIS)

    In this paper, we report a coating method of reducing the sheet resistance of commercial Sn-doped In2O3 (ITO) glass by DC magnetron sputtering, without reducing its optical transmittance in the visible range of spectra. Aluminium oxide doped zinc oxide (AZO) films deposited on ITO glass showed highly (002)-oriented textured structure. An experimental procedure was designed to minimize the sheet resistance of AZO/ITO films in the deposition parameter space (mainly deposition temperature). Resistivity measurements showed that the ITO films with AZO coated under optimized deposition conditions showed a significant 81.4% decrease of sheet resistance when compared with those formed without AZO. Room temperature Hall effect measurements showed that the Hall mobility of the combined layers was greatly increased compared with that for single layer ITO. A high quality transparent electrode, having a resistance as low as 4.13 Ω/square and a high optical transmittance of 80% in the visible spectral range (with substrate), was obtained. The bilayer AZO/ITO film glass may be a good alternative substrate to ITO glass for advanced electro-optic applications

  1. An efficient and transparent copper sulfide nanosheet film counter electrode for bifacial quantum dot-sensitized solar cells

    Science.gov (United States)

    Ke, Weijun; Fang, Guojia; Lei, Hongwei; Qin, Pingli; Tao, Hong; Zeng, Wei; Wang, Jing; Zhao, Xingzhong

    2014-02-01

    Copper sulfide (CuS) with nanosheet structure has been synthesized at a low temperature in situ on copper (Cu) film coated fluorine-doped tin oxide glass and bifacial quantum dot-sensitized solar cells (QDSSCs) were herein developed by using these CuS as counter electrodes (CEs). CuS is an environmental compatible and low toxic material. The obtained two-dimensional CuS nanosheet film presents high carrier mobility and exhibits highly catalytic performance for the polysulfide-based electrolyte. The QDSSC based on a CuS CE presents a power conversion efficiency (PCE) of 3.65% by optimizing the thickness of the Cu film under front illumination. The QDSSC based on a CuS CE prepared with a 200 nm thick Cu film shows a very close PCE under front and rear illuminations in which the values are as high as 2.70% and 2.40%, respectively. All the PCEs of the CuS CEs are much higher than that of the Pt CE (1.34%).

  2. The development of chloride ion selective polypyrrole thin film on a layer-by-layer carbon nanotube working electrode

    Science.gov (United States)

    Liu, Yang; Lynch, Jerome

    2011-04-01

    A chloride ion selective thin film sensor is proposed for measuring chloride ion concentration, which is an environmental parameter correlated to corrosion. In this work, electrochemical polymerization of Polypyrrole (PPy) doped with chloride ions was achieved on the top of a carbon nanotube (CNT) thin film as a working electrode in an electrochemical cell. The underlying CNT layer conjugated with doped PPy thin film can form a multifunctional "selfsensing" material platform for chloride ion detection in a concrete environment. The paper presents the first type of work using CNT and PPy as hybrid materials for chloride ion sensing. Electrochemical polymerization of PPy results in oxidation that yields an average of one positive charge distributed over four pyrrole units. This positive charge is compensated by negatively-charged chloride ions in the supporting electrolyte. In effect, the chloride ion-doped PPy has become molecularly imprinted with chloride ions thereby providing it with some degree of perm-selectivity for chloride ions. The detection limit of the fabricated chloride ion-doped PPy thin film can reach 10-8 M and selectivity coefficients are comparable to those in the literature. The reported work aims to lay a strong foundation for detecting chloride ion concentrations in the concrete environment.

  3. Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes

    International Nuclear Information System (INIS)

    Highlights: → Inkjet printing of ITO films. → Ag-grid was inkjet-printed in between two ITO layers in order to improve the electrical property. → Ag-grid inserted ITO films with 2 mm Ag-grid pitch showed the sheet resistance less than 3.4 Ω/sq and the transmittance higher than 82%. - Abstract: Indium-tin-oxide (ITO) films have been prepared by inkjet-printing using ITO nanoparticle inks. The electrical and optical properties of the ITO films were investigated in order to understand the effects of annealing temperatures under microwave. The decrease in the sheet resistance and resistivity of the inkjet-printed ITO films was observed as the annealing temperature increases. The film annealed at 400 deg. C showed the sheet resistance of 517 Ω/sq with the film thickness of ∼580 nm. The optical transmittance of the films remained constant regardless of their annealing temperatures. In order to further reduce the sheet resistance of the films, Ag-grid was printed in between two layers of inkjet-printed ITO. With 3 mm Ag-grid line-to-line pitch, the Ag-grid inserted ITO film has the sheet resistance of 3.4 Ω/sq and the transmittance of 84% after annealing at 200 deg. C under microwave.

  4. Potentiodynamic formation of gold nanoparticles film on glassy carbon electrode using aminophenyl diazonium cations grafted gold nanoparticles: Determination of histamine H2 receptor antagonist

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Grafting based AuNPs were synthesized in aqueous medium by spontaneous grafting. • GC/ITO electrode was modified with AuNPs film by potentiodynamic method. • AuNPs film modified electrode was characterized by XPS, AFM and CV. • Simultaneous determination of ranitidine and paracetamol was demonstrated. • Practical application was demonstrated in commercial drugs. - Abstract: The aminophenyl (AP) functionalized AuNPs (AP-AuNPs) were synthesized in aqueous medium by spontaneous grafting method and were used for the formation of AuNPs film on glassy carbon (GC) and indium tin oxide (ITO) surfaces by potentiodynamic method. The formed AP-AuNPs film modified electrodes were characterized by cyclic voltammetry (CV), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). EIS studies show that the electron transfer reaction of [Fe(CN)6]3-/4− was higher at the AP-AuNPs film modified electrode (1.58 × 10−4 cm s−1) than at bare (3.78 × 10−5 cm s−1) GC electrode. The surface coverage of the AP-AuNPs film modified electrode was found to be 4.4 × 10−10 mol cm−2. The film formation takes place via -NH2 groups of AP-AuNPs, which was confirmed by XPS from the observed peaks corresponding to =N-H (396.7 eV), -N-H (399.2 eV), -N = N- (400.2 eV) and -N+-H (403.3 eV). The AP-AuNPs film modified electrode was successfully utilized for the determination of histamine H2 receptor antagonist ranitidine (RA). Further, the AP-AuNPs film modified electrode was effectively used for the selective determination of RA in the presence of 40-fold excess paracetamol. The present method was successfully used to determine the concentration of RA in commercial drugs

  5. Determination of 4-aminophenol using a glassy carbon electrode modified with a three-dimensionally ordered macroporous film of polycysteine

    International Nuclear Information System (INIS)

    A three-dimensionally ordered macroporous (3DOM) film of polycysteine (poly-Cys) was used to modify a glassy carbon electrode (GCE) to result in a sensor for 4-aminophenol. The new electrode was used to study the behavior of 4-aminophenol by cyclic voltammetry and differential pulse voltammetry. In comparison to a bare GCE and a GCE modified with poly-Cys without using template, this electrode displays a larger peak current which may be attributed to the structure of poly-Cys and the large surface area of the macroporous structure. The anodic peak current at a working voltage of 195 mV is linearly related to the concentration of 4-aminophenol in two concentration intervals: 0.02 to 20 μM and 20 to 200 μM, respectively. The detection limit is 8 nM (at an S/N ratio of 3). The method was successfully applied to the determination of 4-aminophenol in spiked water samples. (author)

  6. Metal ion analysis in contaminated water samples using anodic stripping voltammetry and a nanocrystalline diamond thin-film electrode

    International Nuclear Information System (INIS)

    Boron-doped nanocrystalline diamond thin-film electrodes were employed for the detection and quantification of Ag (I), Cu (II), Pb (II), Cd (II), and Zn (II) in several contaminated water samples using anodic stripping voltammetric (ASV). Diamond is an alternate electrode that possesses many of the same attributes as Hg and, therefore, appears to be a viable material for this electroanalytical measurement. The nanocrystalline form has been found to perform slightly better than the more conventional microcrystalline form of diamond in this application. Differential pulse voltammetry (DPASV) was used to detect these metal ions in lake water, well water, tap water, wastewater treatment sludge, and soil. The electrochemical results were compared with data from inductively coupled plasma mass spectrometric (ICP-MS) and or atomic absorption spectrometric (AAS) measurements of the same samples. Diamond is shown to function well in this electroanalytical application, providing a wide linear dynamic range, a low limit of quantitation, excellent response precision, and good response accuracy. For the analysis of Pb (II), bare diamond provided a response nearly identical to that obtained with a Hg-coated glassy carbon electrode

  7. Determination of Antimony (III in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode

    Directory of Open Access Journals (Sweden)

    Olga Domínguez-Renedo

    2009-01-01

    Full Text Available This paper describes a procedure for the determination of antimony (III by differential pulse anodic stripping voltammetry using a mercury film screen-printed electrode as the working electrode. The procedure has been optimized using experimental design methodology. Under these conditions, in terms of Residual Standard Deviation (RSD, the repeatability (3.81 % and the reproducibility (5.07 % of the constructed electrodes were both analyzed. The detection limit for Sb (III was calculated at a value of 1.27×10–8 M. The linear range obtained was between 0.99 × 10–8 – 8.26 × 10–8 M. An analysis of possible effects due to the presence of foreign ions in the solution was performed and the procedure was successfully applied to the determination of antimony levels in pharmaceutical preparations and sea water samples.

  8. Microscopy Study of Structural Evolution in Epitaxial LiCoO2 Positive Electrode Films during Electrochemical Cycling.

    Science.gov (United States)

    Tan, Haiyan; Takeuchi, Saya; Bharathi, K Kamala; Takeuchi, Ichiro; Bendersky, Leonid A

    2016-03-01

    The evolution of interface between the epitaxial thin film LiCoO2 (LCO) electrode and liquid electrolyte and inside the LCO film during electrochemical cycling has been analyzed by high resolution scanning transmission electron microscopy. Relaxation of sharp translational domain boundaries with mismatched layers of CoO2 octahedra occurs during cycling and results in formation of continuous CoO2 layers across the boundaries. The original trigonal layered structure of LiCoO2 tends to change into a spinel structure at the electrode/electrolyte interface after significant extraction of Li from LCO. This change is more pronounced at 4.2 V peak of CV, indicating lower stability of the layered LCO structure near its surface after Li is extracted above 60%. The transformed structure is identified to be close to Co3O4, with Co both on tetrahedral and octahedral sites, rather than to LiCo2O4 as it was suggested in earlier publications. Electron energy-loss spectroscopy measurements also show that Co ions oxidation state is reduced to mixed valence state Co(2+)/Co(3+) during the structure changes to spinel rather than oxidized. PMID:26911456

  9. Two Ti13-oxo-clusters showing non-compact structures, film electrode preparation and photocurrent properties.

    Science.gov (United States)

    Hou, Jin-Le; Luo, Wen; Wu, Yin-Yin; Su, Hu-Chao; Zhang, Guang-Lin; Zhu, Qin-Yu; Dai, Jie

    2015-12-14

    Two benzene dicarboxylate (BDC) and salicylate (SAL) substituted titanium-oxo-clusters, Ti13O10(o-BDC)4(SAL)4(O(i)Pr)16 (1) and Ti13O10(o-BDC)4(SAL-Cl)4(O(i)Pr)16 (2), are prepared by one step in situ solvothermal synthesis. Single crystal analysis shows that the two Ti13 clusters take a paddle arrangement with an S4 symmetry. The non-compact (non-sphere) structure is stabilized by the coordination of BDC and SAL. Film photoelectrodes are prepared by the wet coating process using the solution of the clusters and the photocurrent response properties of the electrodes are studied. It is found that the photocurrent density and photoresponsiveness of the electrodes are related to the number of coating layers and the annealing temperature. Using ligand coordinated titanium-oxo-clusters as the molecular precursors of TiO2 anatase films is found to be effective due to their high solubility, appropriate stability in solution and hence the easy controllability. PMID:26508128

  10. Area-Selective ZnO Thin Film Deposition on Variable Microgap Electrodes and Their Impact on UV Sensing

    Directory of Open Access Journals (Sweden)

    Q. Humayun

    2013-01-01

    Full Text Available ZnO thin films were deposited on patterned gold electrodes using the sol-gel spin coating technique. Conventional photolithography process was used to obtain the variable microgaps of 30 and 43 μm in butterfly topology by using zero-gap chrome mask. The structural, morphological, and electrical properties of the deposited thin films were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, and Keithley SourceMeter, respectively. The current-voltage (I-V characterization was performed to investigate the effect of UV light on the fabricated devices. The ZnO fabricated sensors showed a photo to dark current (Iph/Id ratios of 6.26 for 30 μm and 5.28 for 43 μm gap electrodes spacing, respectively. Dynamic responses of both fabricated sensors were observed till 1V with good reproducibility. At the applied voltage of 1 V, the response time was observed to be 4.817 s and 3.704 s while the recovery time was observed to be 0.3738 s and 0.2891 s for 30 and 43 μm gaps, respectively. The signal detection at low operating voltages suggested that the fabricated sensors could be used for miniaturized devices with low power consumption.

  11. Simultaneous determination of lead, copper and cadmium onto mercury film supported on wax impregnated carbon paste electrode

    International Nuclear Information System (INIS)

    The deposition and stripping processes of lead and copper and cadmium ions over the wide concentrations range of 1 x 10-5 to 5 x 10-9 M, have been studied at mercury film deposited on wax impregnated carbon paste electrode, using cyclic voltammetry, linear sweep anodic stripping voltammetry and differential pulse anodic stripping voltammetry. The carbon paste electrode modified with the mercury film was characterized for its physical and electrochemical properties. The parameters of deposition and stripping processes of the analytes have been investigated using standard solution of the metal ions at various concentrations and different supporting electrolytes and different pH. The linear sweep anodic stripping has been adopted for the determination of analytes at higher concentration whereas the analytes at lower concentrations were determined using DPASV. The DPASV behavior for the ions studied dependent on concentrations of the analyte as well as on the time used in the pre-concentration step. The method developed using standard solutions have been successfully applied for the determination of Cu(II), Pb(II) and Cd(II) in Fin Fish muscles and water samples

  12. Photoreactive and Metal-Platable Copolymer Inks for High-Throughput, Room-Temperature Printing of Flexible Metal Electrodes for Thin-Film Electronics.

    Science.gov (United States)

    Yu, You; Xiao, Xiang; Zhang, Yaokang; Li, Kan; Yan, Casey; Wei, Xiaoling; Chen, Lina; Zhen, Hongyu; Zhou, Hang; Zhang, Shengdong; Zheng, Zijian

    2016-06-01

    Photoreactive and metal-platable copolymer inks are reported for the first time to allow high-throughput printing of high-performance flexible electrodes at room temperature. This new copolymer ink accommodates various types of printing technologies, such as soft lithography molding, screen printing, and inkjet printing. Electronic devices including resistors, sensors, solar cells, and thin-film transistors fabricated with these printed electrodes show excellent electrical performance and mechanical flexibility. PMID:27074139

  13. Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination

    Directory of Open Access Journals (Sweden)

    Sergio Bitencourt Araújo Barros

    2012-01-01

    with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA. The tests showed great sensitivity of the film for this analyte that was detected at 10−5 mol L−1.

  14. A composite catalytic film of Ni-NPs/PEDOT: PSS for the counter electrodes in dye–sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: The POEM-dispersed Ni-NPs were incorporated with PEDOT:PSS as the electro-catalytic composite film for the CE of a DSSC. The η of the DSSC using Ni-NPs/PEDOT:PSS CE (7.81%) is better than that of the cell with a Pt CE (7.63%). The Ni-NPs/PEDOT:PSS CE showed an unfailing stability after long-term potential cycling. - Highlights: • POEM was synthesized for the good dispersion of the Ni-NPs. • PEDOT:PSS was intended to enable a good contact between the Ni-NPs and the substrate. • Ni-NPs was used to improve the conductivity of PEDOT:PSS film. • The η of the DSSC with Ni-NPs/PEDOT:PSS (7.81%) was higher than that of the cell with Pt (7.63%). • The Ni-NPs/PEDOT:PSS CE showed a high stability after long-term potential cycling. - Abstract: As the catalytic material for the counter electrode (CE) of a dye-sensitized solar cell (DSSC), a composite film of nickel nanoparticles (Ni-NPs) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was deposited on an FTO glass substrate, by using a home-made polymeric dispersant, poly(oxyethylene)-segmented imide (POEM). Scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray spectroscopy (EDX) were used to characterize the films. A solar-to-electricity conversion efficiency (η) of 7.81% was achieved for the DSSC using Ni-NPs/PEDOT: PSS, while the DSSC with the Pt CE showed a ηof 7.63%. The best composite film showed a high stability, when it was subjected to potential cycling for 100 cycles in an electrolyte containing the redox couple, iodide/triiodide (I-/I3−), while the Pt film showed a considerable decrease in its stability. In replacing the conventional sputtered Pt film as the CE in a DSSC, the Ni-NPs/PEDOT: PSS film exhibited multiple advantages of higher power conversion efficiency, higher stability of the catalytic film, and less expensive material cost. The photovoltaic parameters of the cells were substantiated by incident photon

  15. Synthesis and characterization of platinum thin film as top electrodes for multifunctional layer devices by PLD

    International Nuclear Information System (INIS)

    Platinum thin films were grown onto (001) oriented SrTiO3 substrates by means of the pulsed laser deposition technique. Structural and morphological characterizations were performed using XRD and AFM. The influence of substrate temperature and deposition rate was analyzed on the crystallographic properties of the film. As a result, an increment in the crystallinity of the film due to the change on the temperature was observed. On the other hand, Pt films showed a granular morphology and its roughness was related to the fluence and low deposition temperature. Finally their electrical properties were analyzed and discussed as a function of the previous morphological results.

  16. Optical properties and electrochemical dealloying of Gold-Silver alloy nanoparticles immobilized on composite thin-film electrodes

    Science.gov (United States)

    Starr, Christopher A.

    Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (lambdamax = 404 nm) for pure silver to 4.1 x 107 M-1 cm -1 (lambdamax = 511 nm) for pure gold. The NPs were immobilized onto transparent indium-tin oxide composite electrodes using layer-by-layer (LbL) deposition with poly(diallyldimethylammonium) acting as a cationic binder. The UV-Vis absorbance of the LbL film was used to calculate the surface coverage of alloy NPs on the electrode. Typical preparations had average NP surface coverages of 2.8 x 10-13 mol NPs/cm2 (~5% of cubic closest packing) with saturated films reaching ~20% of ccp for single-layer preparations (1.0 ~ 10-12 mol NPs/cm2). X-ray photoelectron spectroscopy confirmed the presence of alloy NPs in the LbL film and showed silver enrichment of the NP surfaces by ~9%. Irreversible oxidative dissolution (dealloying) of the less noble silver atoms from the NPs on LbL electrodes was performed by cyclic voltammetry (CV) in sulfuric acid. Alloy NPs with higher gold content required larger overpotentials for silver dealloying. Dealloying of the more-noble gold atoms from the alloy NPs was also achieved by CV in sodium chloride. The silver was oxidized first to cohesive silver chloride, and then gold dealloyed to soluble HAuCl 4- at higher potentials. Silver oxidation was inhibited during the first oxidative scan, but subsequent cycles showed typical, reversible silver-to-silver chloride voltammetry. The

  17. A New Type of Large-Surface Bismuth Film Electrode on a Silver Solid Amalgam Substrate and its Application for the Voltammetric Determination of 5-Nitrobenzimidazole

    Czech Academy of Sciences Publication Activity Database

    Deýlová, D.; Vyskočil, V.; Economou, A.; Mansfeldová, Věra; Barek, J.

    2014-01-01

    Roč. 9, č. 8 (2014), s. 4653-4664. ISSN 1452-3981 Institutional support: RVO:61388955 Keywords : 5-Nitrobenzimidazole * Atomic force microscopy * Differential pulse voltammetry Subject RIV: CG - Electrochemistry Impact factor: 1.500, year: 2014

  18. A novel and simple electrochemical sensor for electrocatalytic reduction of nitrite and oxidation of phenylhydrazine based on poly (o-anisidine) film using ionic liquid carbon paste electrode

    International Nuclear Information System (INIS)

    In this study, nitrite electroreduction and phenylhydrazine electrooxidation were investigated on poly(o-anisidine) formed by cyclic voltammetry at the surface of ionic liquid carbon paste electrode. The films were characterized by cyclic voltammetry and scanning electron microscopy (SEM) and were contrasted with poly(o-anisidine) prepared under identical conditions in the absence of ionic liquid in carbon paste electrode. This carbon paste modified electrode exhibits a good electrocatalytic capability (via an EC’ mechanism) for both electrooxidation and electroreduction of some important molecules. The obtained results showed that the catalytic oxidation peak currents of phenylhydrazine and catalytic reduction peak currents of nitrite at the surface of this simple (unfunctionalized) polymeric electrode were linearly dependent on their concentrations. Electrode was successfully applied for determination of nitrite and phenylhydrazine in real samples.

  19. Low-cost microarray thin-film electrodes with ionic liquid gel-polymer electrolytes for miniaturised oxygen sensing.

    Science.gov (United States)

    Lee, Junqiao; Silvester, Debbie S

    2016-06-21

    A robust, miniaturised electrochemical gas sensor for oxygen (O2) has been constructed using a commercially available Pt microarray thin-film electrode (MATFE) with a gellified electrolyte containing the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) and poly(methyl methacrylate) (PMMA) in a 50 : 50 mass ratio. Diffusion coefficients and solubilities for oxygen in mixtures of PMMA/RTIL at different PMMA doping concentrations (0-50% mass) were derived from potential step chronoamperometry (PSCA) on a Pt microdisk electrode. The MATFE was then used with both the neat RTIL and 50% (by mass) PMMA/RTIL gel, to study the analytical behavior over a wide concentration range (0.1 to 100 vol% O2). Cyclic voltammetry (CV) and long-term chronoamperometry (LTCA) techniques were employed and it was determined that the gentler CV technique is better at higher O2 concentrations (above 60 vol%), but LTCA is more reliable and accurate at lower concentrations (especially below 0.5% O2). In particular, there was much less potential shifting (from the unstable Pt quasi-reference electrode) evident in the 50% PMMA/RTIL gel than in the neat RTIL, making this a much more suitable electrolyte for long-term continuous oxygen monitoring. The mass production and low-cost of the electrode array, along with the minimal amounts of RTIL/PMMA required, make this a viable sensing device for oxygen detection on a bulk scale in a wide range of environmental conditions. PMID:26931642

  20. Synthesis, microstructure, and electronic band structure properties of nanocrystalline neodymium-doped bismuth titanate ferroelectric films fabricated by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fengjuan [College of Communications and Electronics Engineering, Qiqihar University, Heilongjiang 161006 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Tao, Bairui, E-mail: tbr_sir@163.com [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Computer Center, Qiqihar University, Heilongjiang 161006 (China); Chu, Paul K. [Department of Physics and Material Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-01-15

    Graphical abstract: X-ray diffraction indicates that the films are polycrystalline with the pure perovskite phase. Ten Raman active modes and one silicon substrate mode can be observed. The A{sub 1} {sub g}[Bi] at about 59 cm{sup −1} is unchanged whereas the B{sub 1} {sub g} and A{sub 1} {sub g}[Ti] phonon modes shift towards higher frequencies. Photoluminescence shows that the intensities of the two peaks increase with Nd concentration except the Bi{sub 3}NdTi{sub 3}O{sub 12} film, due to the smallest grain size and oxygen vacancy defects. Good optical functions of the BNT films are achieved due to the SE suggesting potential applications in ferroelectric-based optoelectronic devices. - Abstract: Bi{sub 4−x}Nd{sub x}Ti{sub 3}O{sub 12} (BNT) films with different Nd contents (from 0 to 1 with 0.25 intervals) are prepared by the sol–gel process. The Nd substitution effects on the preferred orientation, surface morphology, phonon modes, emission bands, andelectronic band structures of the BNT films are investigated by microscopy, Raman scattering, photoluminescence, and spectroscopic ellipsometry (SE) at room temperature. X-ray diffraction indicates that the films are polycrystalline with the pure perovskite phase. Ten Raman active modes and one silicon substrate mode can be observed. The A{sub 1} {sub g}[Bi] at about 59 cm{sup −1} is unchanged whereas the B{sub 1} {sub g} and A{sub 1} {sub g}[Ti] phonon modes shift towards higher frequencies. Photoluminescence shows that the intensities of the two peaks increase with Nd concentration except the Bi{sub 3}NdTi{sub 3}O{sub 12} film, due to the smallest grain size and oxygen vacancy defects. Good optical functions of the BNT films are achieved due to the SE suggesting potential applications in ferroelectric-based optoelectronic devices.

  1. Energetics of bismuth vanadate

    Energy Technology Data Exchange (ETDEWEB)

    Nagabhushana, G.P.; Tavakoli, A.H.; Navrotsky, A., E-mail: anavrotsky@ucdavis.edu

    2015-05-15

    Bismuth vanadate has gained considerable interest as a photoanode for water splitting reactions under visible light. It exists in four different polymorphs, out of which three of them have been synthesized. Thermodynamic properties of these three polymorphs are investigated using high temperature oxide melt solution calorimetry. The monoclinic scheelite phase which exhibits photocatalytic activity under visible light is found to be the most stable polymorph, followed by tetragonal scheelite which exhibits activity under UV light. The photocatalytically inactive tetragonal zircon form is found to be the least stable polymorph. The small difference in enthalpy of formation between the two scheelite structures (−8 kJ/mol) is in accord with the reversibility of the transformation between them and the larger difference between the most stable monoclinic phase and the least stable tetragonal zircon phase (−23 kJ/mol) is in accord with the irreversible (monoclinic→tetragonal zircon) phase transformation. - Graphical abstract: Schematic representation of polymorphic transitions in BiVO{sub 4} along with their formation enthalpies. - Highlights: • Bismuth vanadate crystallizes in three different polymorphs. • High temperature calorimetric measurements were made to determine their formation enthalpies. • Enthalpy of formation decreases in the order BV-ms→BV-ts→BV-tz. • Photocatalytically active monoclinic-BiVO{sub 4} was found to be the most stable polymorph.

  2. Liquid crystalline phase synthesis of nanoporous MnO2 thin film arrays as an electrode material for electrochemical capacitors

    International Nuclear Information System (INIS)

    Graphical abstract: Three-dimensional (3D) MnO2 thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO2 materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of −0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g−1 are achieved in 0.5 M Na2SO4 solution at a charge/discharge current density of 4 A g−1. Highlights: ► 3D MnO2 thin film arrays with nanoporous structure is fabricated for the first time. ► A maximum specific capacitance as high as 462 F g−1 is obtained. ► The 3D and nanoporous superarchitecture facilitate electrolyte penetration. -- Abstract: Three-dimensional (3D) MnO2 thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO2 materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of −0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g−1 are achieved in 0.5 M Na2SO4 solution at a charge/discharge current density of 4 A g−1.

  3. All-organic polymer-dispersed liquid crystal light-valves integrated with electroactive anthraquinone-2-sulfonate-doped polypyrrole thin films as driving electrodes

    International Nuclear Information System (INIS)

    Highlights: → Fabrication of flexible semi-transparent all-polymer electrodes under ambient conditions without using a CVD system. → Characterization of the above electrodes based on anthraquinone-2-sulfonate-doped polypyrrole thin films. → Demonstration of all-organic liquid crystal light-valves with polypyrrole thin films as the driving electrodes. - Abstract: All-organic PDLC (polymer-dispersed liquid crystal) light-valves using all-polymer conductive substrates containing thin films of polypyrrole doped with anthraquinone-2-sulfonate (AQSA-) as the driving electrodes were fabricated in this study. The all-polymer conductive substrates were prepared under ambient conditions by in situ depositing polypyrrole thin films on blank flexible poly(ethylene terephthalate), or PET, substrates from aqueous media in which oxidative polymerization of pyrrole was taking place. The obtained flexible all-polymer conductive substrates were semi-transparent with cohesive coatings of AQSA-doped polypyrrole thin films (thickness ∼55 nm). The all-polymer flexible conductive substrates had sheet resistivity ∼40 kΩ □-1and T% transparency against air ∼78% at 600 nm. The light-valves fabricated using the above all-polymer conductive substrates showed ∼50% transparency against air at 600 nm when 4 V μm-1 electric field was applied.

  4. Chemical synthesis of α-La{sub 2}S{sub 3} thin film as an advanced electrode material for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S.J.; Kumbhar, V.S.; Patil, B.H.; Bulakhe, R.N.; Lokhande, C.D., E-mail: l_chandrakant@yahoo.com

    2014-10-25

    Highlights: • The simple, chemical method used for synthesis of lanthanum sulphide thin films. • The lanthanum sulphide thin film surface exhibited porous microstructure. • The lanthanum sulphide thin film electrode is used for supercapacitor application. - Abstract: α-La{sub 2}S{sub 3} thin films have been synthesized for the first time by successive ionic layer adsorption and reaction (SILAR) method and used for supercapacitor application. These films are characterized for crystal structure, surface morphology and wettability studies using X-ray diffraction (XRD), Fourier Transform-Raman (FT-Raman) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements. The electrochemical supercapacitive performance of α-La{sub 2}S{sub 3} electrode is evaluated by cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. From the electrochemical study, it is seen that α-La{sub 2}S{sub 3} electrode delivers high specific capacitance of 256 F g{sup −1} at scan rate of 5 mV s{sup −1} with cycling stability of 85% over 1000 cycles. Such La{sub 2}S{sub 3} electrode has great application in supercapacitor device for energy storage.

  5. An Unusual Bismuth Ethanedisulfonate Network

    Directory of Open Access Journals (Sweden)

    Fabienne Gschwind

    2012-09-01

    Full Text Available The three dimensional bismuth ethanedisulfonate framework Bi(O3SC2H4SO31.5(H2O2 was synthesized under hydrothermal conditions using the bidentate ligand 1,2-ethanedisulfonate and then characterized through X-ray diffraction and elemental analyses. The bismuth cation coordinates at three different ethanedisulfonate ligands and has a coordination number of eight, which is accompanied by a distorted square antiprismatic configuration. Here, we report on the crystal structure of this bismuth metal–organic framework and its coordination behavior, which has thus far not been reported in heavier main group elements.

  6. Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte

    Science.gov (United States)

    Yang, C. R.; Wang, Y. Y.; Wan, C. C.

    This work examines the formation of a passive film on the carbon electrode of lithium-ion batteries. With a single solvent of EC (ethylene carbonate), the structure of the passive film is found to be (CH 2OCOOLi) 2. In a DEC (diethyl carbonate) or DMC (dimethyl carbonate) system, C 2H 5OCOOLi and Li 2CO 3 are formed on the surface of the carbon electrode. According to results from mass spectra, CO 2 gas is the main product when EC is decomposed. By contrast, DEC is decomposed into CO and C 2H 6, and DMC into CO and CH 4. These findings suggest that the composition of the passive film depends on the chosen solvent. In a binary solvent system which contains EC, the passive film contains chiefly (CH 2OCOOLi) 2, which is identical to a single EC solvent system.

  7. Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine

    International Nuclear Information System (INIS)

    A novel method for the fabrication of a TiO2/Nafion nano-film on glassy carbon electrode (NTGCE) is described. In the presence of dispersant, TiO2 nanoparticles were dispersed into water to give a homogeneous and stable suspension. After the solvent evaporation, a porous and uniform TiO2 nano-film was obtained on the GCE surface. Further coated with Nafion, the complex film possesses remarkable stability in aqueous solution. This nano-film was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The prepared electrode showed excellent electrocatalytic behavior of dopamine and high concentration of ascorbic acid does not interfere with the dopamine detection. Based on this, an electrochemical method is developed for the determination of dopamine with simplicity and high sensitivity

  8. Electrical conductivity dependence of thin metallic films of Au and Pd as a top electrode in capacitor applications

    International Nuclear Information System (INIS)

    Electrical conductivity dependence of thin metallic films of Au and Pd over the different perovskites was investigated. It is found from electrical properties that crystallographic growth orientation of Au and Pd thin layers attained from X-ray diffraction results indicate the slop of current (I)-voltage (V) plots. Besides, surface morphology and topography was considered using Field Emission Scanning Electron Microscopy and Atomic Force Microscopy, respectively. Obtained results showed the Stranski-Krastanov growth of the Pd and Au. Indeed, diminishing of the root-mean-square roughness of Pd/BiMnO3/SrTiO3 following by Au deposition should be concerned due to growth of Au onto the crack-like parts of the substrate. These crack-like parts appeared due to parasitic phases of the Bi-Mn-O system mainly Mn3O4 (l 0 l) and Mn3O4 (0 0 4 l). The different response in the electrical properties of heterostructures suggests that electrical conductance of the Au and Pd thin metallic films have the crystallographic orientation dependence. Furthermore, polycrystallinity of the thin metallic films are desired in electrode applications due to increase the conductivity of the metallic layers.

  9. SnS Thin Film Prepared by Pyrolytic Synthesis as an Efficient Counter Electrode in Quantum Dot Sensitized Solar Cells.

    Science.gov (United States)

    Dai, Xiaoyan; Shi, Chengwu; Zhang, Yanru; Liu, Feng; Fang, Xiaqin; Zhu, Jun

    2015-09-01

    The SnS thin films were successfully prepared by pyrolysis procedure for the counter electrodes in quantum dot sensitized solar cells (QDSCs) using the methanol solution containing stannous chloride dihydrate (0.40 mol x L(-1)) and thiourea (0.40 mol x L(-1)) as precursor solution at 300 degrees C in the air atmosphere. The electrochemical catalytic activity of the SnS thin films prepared by pyrolytic synthesis for the redox couple of S(2-)/S(2-) was investigated by electrochemical impedance spectroscopy. The result revealed that the charge transfer resistance of the as-prepared SnS thin film with the dipping-heating cycles of 5 was 106.4 Ω and the corresponded QDSCs gave a short circuit photocurrent density of 8.69 mA x cm(-2), open circuit voltage of 0.42 V, and fill factor of 0.43, yielding the photoelectric conversion efficiency of 1.57%, under the illumination of simulated AM 1.5 sunlight (100 mWx cm(-2)). PMID:26716249

  10. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors

    OpenAIRE

    Ghica, M. Emilia; Christopher M. A. Brett

    2014-01-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer...

  11. The use of non-traditional carbon film electrode for voltammetric determination of 8-aminoquinoline

    Czech Academy of Sciences Publication Activity Database

    Jiránek, I.; Barek, J.; Josypčuk, Bohdan

    2008-01-01

    Roč. 102, - (2008), s. 101-102. E-ISSN 1213-7103. [International Conference on Electroanalysis /12./. 16.06.2008-19.06.2008, Prague] R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrodes * voltammetry Subject RIV: CG - Electrochemistry

  12. Digital simulation of chronoamperometry at a disk electrode under a flat polymer film containing an enzyme

    DEFF Research Database (Denmark)

    Britz, Dieter; Strutwolf, Jörg

    2015-01-01

    Current-time and steady state current behaviour were simulated for an ultramicrodisk electrode (UMDE) inlaid flush with an insulating plane and overlaid by a flat film of polymer containing an enzyme, of various film thicknesses and essentially infinite extent. Steady state currents go through a maxim...

  13. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor

    International Nuclear Information System (INIS)

    For incompletely reduced graphene oxides (RGOs), an effect of oxygen functional groups such as carboxyl, phenol, carbonyl, and quinone on electrochemical capacitive behavior was studied. To prepare RGO thin-film electrodes, a simple fabrication process by (i) dropping and evaporating the graphene oxide (GO) solution, (ii) irradiating pulsed light, and (iii) heat-treating at 200 ∼ 360 °C was applied. It was notable that the pulsed light irradiation was effective to prevent the disfiguring of deposited GO thin-film during the thermal reduction. From XRD analyses, interlayer distances of the RGOs were gradually decreased from 0.379 to 0.354 nm. As increasing the thermal reduction temperature from 200 to 360 °C, XPS O 1s spectra analyses showed that the atomic percentages of carboxyl and phenol of the RGOs were sustained as 5.40 ± 0.36 and 4.77 ± 0.41 at% respectively. Meanwhile, those of carbonyl and quinone of the RGOs were gradually declined from 3.10 to 1.81 and from 1.32 to 0.65 at% with different thermal reduction temperature respectively. For all RGO thin-film electrodes, the specific capacitance from the CV measurement in 6 M KOH was sustained as ca. 220 F g−1 at the scan of 5 mV s−1. However, in 1 M H2SO4, the specific capacitance was gradually decreased from 171 to 136 F g−1. After 100,000 cycles in 6 M KOH, 1 M H2SO4, and 0.5 M Na2SO4, the RGO (200 °C) electrodes showed ca. 92, 54, and 104% of the initial capacitances respectively. The atomic percentages of the oxygen functional groups involved in the pseudocapacitive Faradaic reaction were decreased after the cycle test. Especially in 1 M H2SO4, quinone group was decreased to ca. 48% of initial atomic percentage, which seems to be a main reason for the drastic reduction of capacitance. The specific pseudocapacitance per unit atomic percentage for either carboxyl or phenol group in 6 M KOH was obtained as 12.59 F g−1 at%−1. For carbonyl group in 1 M H2SO4, it was a slightly deviated value as

  14. ITO electrode modified by self-assembling multilayer film of polyoxometallate on poly(vinyl alcohol) nanofibers and its electrocatalytic behavior

    International Nuclear Information System (INIS)

    Poly(vinyl alcohol) (PVA) nanofiber mats were collected on indium tin oxide (ITO) substrate by electrospinning method. A multilayer film composed of α-[P2W18O62]6- (abbr. P2W18), a polyoxometallate (POM) anion, and poly(diallymethylammonium chloride) (abbr. PDDA) was fabricated by layer-by-layer (LBL) self-assembly technique on the PVA/ITO electrode. The PDDA/P2W18 multilayer film could be unselectively or selectively deposited on the PVA/ITO electrode via changing the amount of PVA nanofibers on the ITO substrate. The scanning electron microscope (SEM) images showed that when the electrospun time was short the PDDA/P2W18 multilayer film was unselectively deposited on PVA nanofiber mats because the amount of PVA nanofibers was too little to cover most of the ITO substrate. However, when the electrospun time was long enough, the PDDA/P2W18 multilayer film was selectively deposited on PVA nanofiber mats because of the larger surface area and higher surface energy of PVA nanofibers in comparison with the flat ITO substrate. Growth process of the multilayer film was determined by cyclic voltammetry (CV). Electrocatalytic effects of the PDDA/P2W18 multilayer film unselectively and selectively deposited on the PVA/ITO electrode on NO2- were observed

  15. Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors

    OpenAIRE

    Shi C; Zhitomirsky I

    2010-01-01

    Abstract Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0–3 μm. Cyclic voltammetry data for the...

  16. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bu-Jong; Han, Sang-Hoon; Park, Jin-Seok

    2014-12-01

    This study demonstrates hybrid-type transparent electrodes based on carbon nanotubes (CNTs) that possess characteristics desirable for touch screen panels. This has been accomplished by depositing CNTs via spray-coating and then depositing thin conductive polymer (such as PEDOT:PSS) films on the CNTs via spin-coating. For all of the samples such as CNTs, PEDOT:PSS, and hybrid (i.e., PEDOT:PSS-coated CNTs), their surface morphologies, sheet resistances, visible transmittances, and chromatic properties are characterized as functions of their preparation conditions. In the PEDOT:PSS-coated CNTs, the PEDOT:PSS particles fill up the voids between tubes in CNTs, forming a conduction bridge for electron transfer and eventually decreasing the sheet resistance of the hybrid electrode. Also, the hybrid electrode reveals a superior color property compared with that of CNTs or the PEDOT:PSS single electrode due to the complementary color relation between CNTs and PEDOT:PSS. Experimental results show that the fabricated hybrid-type electrodes can simultaneously satisfy the requirements necessary for transparent electrodes of touch screen panels such as the sheet resistance requiring to be lower than 100 Ω/sq, visible transmittance higher than 80%, and yellowness approaching to zero. - Highlights: • Hybrid-type (PEDOT:PSS-coated CNTs) electrodes for touch panels are fabricated. • PEDOT:PSS films are coated via spin-coating on spray-deposited CNTs. • Hybrid electrodes are fabricated by varying the thickness of CNTs and PEDOT:PSS. • The resistance, transmittance, and color properties have been analyzed. • Hybrid electrodes satisfy electrical and optical properties for touch panels.

  17. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels

    International Nuclear Information System (INIS)

    This study demonstrates hybrid-type transparent electrodes based on carbon nanotubes (CNTs) that possess characteristics desirable for touch screen panels. This has been accomplished by depositing CNTs via spray-coating and then depositing thin conductive polymer (such as PEDOT:PSS) films on the CNTs via spin-coating. For all of the samples such as CNTs, PEDOT:PSS, and hybrid (i.e., PEDOT:PSS-coated CNTs), their surface morphologies, sheet resistances, visible transmittances, and chromatic properties are characterized as functions of their preparation conditions. In the PEDOT:PSS-coated CNTs, the PEDOT:PSS particles fill up the voids between tubes in CNTs, forming a conduction bridge for electron transfer and eventually decreasing the sheet resistance of the hybrid electrode. Also, the hybrid electrode reveals a superior color property compared with that of CNTs or the PEDOT:PSS single electrode due to the complementary color relation between CNTs and PEDOT:PSS. Experimental results show that the fabricated hybrid-type electrodes can simultaneously satisfy the requirements necessary for transparent electrodes of touch screen panels such as the sheet resistance requiring to be lower than 100 Ω/sq, visible transmittance higher than 80%, and yellowness approaching to zero. - Highlights: • Hybrid-type (PEDOT:PSS-coated CNTs) electrodes for touch panels are fabricated. • PEDOT:PSS films are coated via spin-coating on spray-deposited CNTs. • Hybrid electrodes are fabricated by varying the thickness of CNTs and PEDOT:PSS. • The resistance, transmittance, and color properties have been analyzed. • Hybrid electrodes satisfy electrical and optical properties for touch panels

  18. Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode

    International Nuclear Information System (INIS)

    In this study, a novel stannum film/poly(p-aminobenzene sulfonic acid)/graphene composite modified glassy carbon electrode (GCE) was prepared by using electrodeposition of exfoliated graphene oxide, electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and in situ plating stannum fim methods, successively. This sensor was further used for sensitive determination of trace cadmium ions by square wave anodic stripping voltammetry (SWASV). The morphologies and electrochemistry properties of the modified electrode were characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry. It was found that the formed graphene layer on the top of GCE could remarkably facilitate the electron transfer and enlarge the specific surface area of the electrode. While the poly(p-ABSA) film could effectively increase the adhesion and stability of graphene layer, enhance ion-exchange capacity and prevent the macromolecule in real samples absorbing on the surface of electrode. By combining co-deposits ability with heavy metals of stannum film, the obtained electrode exhibited a good stripping performance for the analysis of Cd(II). Under the optimum conditions, a linear response was observed in the range from 1.0 to 70.0 μgL−1 with a detection limit of 0.05 μgL−1 (S/N = 3). The sensor was further applied to the determination of cadmium ions in real water samples with satisfactory results

  19. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    Science.gov (United States)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  20. Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Li, Chun-Ting; Lee, Chi-Ta; Li, Sie-Rong; Lee, Chuan-Pei; Chiu, I.-Ting; Vittal, R.; Wu, Nae-Lih; Sun, Shih-Sheng; Ho, Kuo-Chuan

    2016-01-01

    A composite film based on carbon black nanoparticles and sulfonated-poly(thiophene-3-[2-(2-methoxyethoxy)ethoxy]-2,5-diyl) (CB-NPs/s-PT) is formed on a flexible titanium foil for the use as the electro-catalytic counter electrode (CE) of dye-sensitized solar cells (DSSCs). The CB-NPs provide the large amount of electro-catalytic active sites for the composite film, and the s-PT polymer serves as a conductive binder to enhance the inter-particle linkage among CB-NPs and to improve the adhesion between the composite film and the flexible substrate. The flexible CB-NPs/s-PT composite film is designed to possess good electro-catalytic ability for I-/I3- redox couple by providing large active sites and rapid reduction kinetic rate constant of I3- . The cell with a CB-NPs/s-PT CE exhibits a good cell efficiency (η) of 9.02 ± 0.01% at 100 mW cm-2, while the cell with a platinum CE shows an η of only 8.36 ± 0.02% under the same conditions. At weak light illuminations (20-80 mW cm-2), a DSSC with CB-NPs/s-PT CE still exhibits η's of 7.20 ± 0.04-9.08 ± 0.02%. The low-cost CB-NPs/s-PT CE not only renders high cell efficiency to its DSSC but also shows a great potential to replace the expensive platinum; moreover it is suitable for large-scale production or for indoor applications.

  1. Enhanced direct electron transfer reactivity of hemoglobin in cationic gemini surfactant-room temperature ionic liquid composite film on glassy carbon electrodes

    International Nuclear Information System (INIS)

    A novel composite film comprising cationic gemini surfactant butyl-α,ω-bis(dimethylcetylammonium bromide) (C16H33N(CH3)2-C4H8-N(CH3)2C16H33, C16-C4-C16) and ionic liquid 1-octyl-3-methylimidazolium hexafluorophate (OMIMPF6) has been prepared. The composite film shows good biocompatibility and it can promote the direct electron transfer between hemoglobin (Hb) and glassy carbon (GC) electrode. On the C16-C4-C16 (dissolved in ethanol)-OMIMPF6 film coated GC electrode, the immobilized Hb can exhibit a pair of well-defined, quasi-reversible and stable redox peaks with a formal potential of -0.317 V (vs SCE) in 0.10 M pH 7 phosphate buffer solutions. The electron transfer coefficient (α) of Hb is calculated to be 0.44 and the heterogeneous electron transfer rate constant is 6.08 s-1. With the length of alkyl chains of gemini surfactant increasing and the ethanol concentration rising, the redox peaks of the resulting electrode C16-C4-C16-OMIMPF6-Hb/GC become bigger. The electrode presents good electrocatalytic response to peroxide hydrogen. The kinetic parameters Imax and km for the catalytic reaction are estimated. In addition, UV-vis spectra and reflectance absorption infrared spectra demonstrate that the Hb immobilized in the C16-C4-C16-OMIMPF6 film almost retains the structure of native Hb

  2. Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations.

    Science.gov (United States)

    Yiğit, Aydın; Yardım, Yavuz; Çelebi, Metin; Levent, Abdulkadir; Şentürk, Zühre

    2016-09-01

    A graphene-Nafion composite film was fabricated on the glassy carbon electrode (GR-NF/GCE), and used for simultaneous determination of paracetamol (PAR), aspirin (ASA) and caffeine (CAF). The electrochemical behaviors of PAR, ASA and CAF were investigated by cyclic voltammetry and square-wave adsorptive anodic stripping voltammetry. By using stripping one for simultaneous determination of PAR, ASA and CAF, their electrochemical oxidation peaks appeared at +0.64, 1.04 and 1.44V, and good linear current responses were obtained with the detection limits of 18ngmL(-1) (1.2×10(-9)M), 11.7ngmL(-1) (6.5×10(-8)M) and 7.3ngmL(-1) (3.8×10(-8)M), respectively. Finally, the proposed electrochemical sensor was successfully applied for quantifying PAR, ASA and CAF in commercial tablet formulations. PMID:27343573

  3. Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes

    KAUST Repository

    Phadke, Sujay

    2011-09-30

    Factors affecting charge transport through ZnO nanowire mat films were studied by aligning ZnO nanowires on substrates and coupling experimental measurements with 2D nanowire network simulations. Gallium doped ZnO nanowires were aligned on thermally oxidized silicon wafer by shearing a nanowire dispersion in ethanol. Sheet resistances of nanowire thin films that had current flowing parallel to nanowire alignment direction were compared to thin films that had current flowing perpendicular to nanowire alignment direction. Perpendicular devices showed ∼5 fold greater sheet resistance than parallel devices supporting the hypothesis that aligning nanowires would increase conductivity of ZnO nanowire electrodes. 2-D nanowire network simulations of thin films showed that the device sheet resistance was dominated by inter-wire contact resistance. For a given resistivity of ZnO nanowires, the thin film electrodes would have the lowest possible sheet resistance if the inter-wire contact resistance was one order of magnitude lower than the single nanowire resistance. Simulations suggest that the conductivity of such thin film devices could be further enhanced by using longer nanowires. Solution processed Gallium doped ZnO nanowires are aligned on substrates using an innovative shear coating technique. Nanowire alignment has shown improvement in ZnO nanowire transparent electrode conductivity. 2D network simulations in conjunction with electrical measurements have revealed different regimes of operation of nanowire thin films and provided a guideline for improving electrical performance of nanowire electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optimization of method for zinc analysis in several bee products on renewable mercury film silver based electrode.

    Science.gov (United States)

    Opoka, Włodzimierz; Szlósarczyk, Marek; Maślanka, Anna; Piech, Robert; Baś, Bogusław; Włodarczyk, Edyta; Krzek, Jan

    2013-01-01

    Zinc is an interesting target for detection as it is one of the elements necessary for the proper functioning of the human body, its excess and deficiency can cause several symptoms. Several techniques including electrochemistry have been developed but require laboratory equipment, preparative steps and mercury or complex working electrodes. We here described the development of a robust, simple and commercially available electrochemical system. Differential pulse (DP) voltammetry was used for this purpose with the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) and 0.05 M KNO3 solution as a supporting electrolyte. The effect of various factors such as: preconcentration potential and time, pulse amplitude and width, step potential and supporting electrolyte composition are optimized. The limits of detection (LOD) and quantification (LOQ) were 1.62 ng/mL and 4.85 ng/mL, respectively. The repeatability of the method at a concentration level of the analyte as low as 3 ng/mL, expressed as RSD is 3.5% (n = 6). Recovery was determined using certified reference material: Virginia Tobacco Leaves (CTA-VTL-2). The recovery of zinc ranged from 96.6 to 106.5%. The proposed method was successfully applied for determination of zinc in bee products (honey, propolis and diet supplements) after digestion procedure. PMID:24383319

  5. Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells

    Directory of Open Access Journals (Sweden)

    Moulin Etienne

    2015-01-01

    Full Text Available The optical and electrical properties of transparent conductive oxides (TCOs, traditionally used in thin-film silicon (TF-Si solar cells as front-electrode materials, are interlinked, such that an increase in TCO transparency is generally achieved at the cost of reduced lateral conductance. Combining a highly transparent TCO front electrode of moderate conductance with metal fingers to support charge collection is a well-established technique in wafer-based technologies or for TF-Si solar cells in the substrate (n-i-p configuration. Here, we extend this concept to TF-Si solar cells in the superstrate (p-i-n configuration. The metal fingers are used in conjunction with a millimeter-scale textured foil, attached to the glass superstrate, which provides an antireflective and retroreflective effect; the latter effect mitigates the shadowing losses induced by the metal fingers. As a result, a substantial increase in power conversion efficiency, from 8.7% to 9.1%, is achieved for 1-μm-thick microcrystalline silicon solar cells deposited on a highly transparent thermally treated aluminum-doped zinc oxide layer combined with silver fingers, compared to cells deposited on a state-of-the-art zinc oxide layer.

  6. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    Science.gov (United States)

    Jin, Bin Bin; Wang, Ye Feng; Wang, Xue Qing; Zeng, Jing Hui

    2016-04-01

    Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  7. Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu2SnSe3 source

    International Nuclear Information System (INIS)

    This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu2SnSe3 sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (VA = 25 cm3/min). Higher value of photoresponse was observed for films deposited under VA = 25 cm3/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse

  8. Electrochemical lithiation and passivation mechanisms of iron monosulfide thin film as negative electrode material for lithium-ion batteries studied by surface analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Feng; Światowska, Jolanta, E-mail: jolanta-swiatowska@chimie-paristech.fr; Maurice, Vincent; Seyeux, Antoine; Klein, Lorena H.; Zanna, Sandrine; Marcus, Philippe

    2013-10-15

    The lithiation/delithiation reaction mechanism of iron monosulfide (troilite Fe{sub (1−x)}S, x = 0.07) as negative electrode material for lithium-ion batteries and the electrode passivation induced by reductive decomposition of the electrolyte were studied by combining surface (X-ray photoelectron spectroscopy, XPS, and time-of-flight secondary ion mass spectrometry, ToF-SIMS) and electrochemical analysis (cyclic voltammetry, CV) of thin films grown by thermal sulfidation of metal iron substrate. XPS analysis performed at different stages of the first lithiation/delithiation cycle shows that the reversible formation of metallic iron and lithium sulfide is not solely limited to the principal cathodic/anodic peaks at 1.23/1.89 V and that disulfide products, possibly Li{sub 2}FeS{sub 2}, are also formed at lower cathodic potentials. ToF-SIMS depth profiling of the thin film electrode confirms an incomplete process of conversion/deconversion and reveals an expansion/shrinkage of the material induced by electrochemical lithiation/delithiation. The solid electrolyte interphase (SEI) layer formed on the iron monosulfide thin film electrode is mostly composed of Li{sub 2}CO{sub 3} with some presence of ROCO{sub 2}Li. For the first time, it is shown that the SEI layer thickness varies upon conversion/deconversion, between 9 and 4.5 nm in the lithiated and delithiated states, respectively, on a conversion-type electrode. Moreover, the electrolyte decomposition products penetrate the bulk electrode until the current collector owing to pulverization/cracking caused by expansion and shrinkage of the thin film material upon cycling.

  9. Electrochemical fabrication of TiO2 nanoparticles/[BMIM]BF4 ionic liquid hybrid film electrode and its application in determination of p-acetaminophen

    International Nuclear Information System (INIS)

    A water soluble ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF4), was incorporated into TiO2 nanoparticles to fabricate a hybrid film modified glassy carbon electrode (nano‐TiO2/[BMIM]BF4/GCE) through electrochemical deposition in a tetrabutyltitanate sol solution containing [BMIM]BF4. The obtained nano‐TiO2/[BMIM]BF4/GCEs were characterized scanning electronic microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). Electrochemical behaviors of p‐acetaminophen at the nano‐TiO2/[BMIM]BF4/GCEs were thoroughly investigated. Compared to the redox reaction of p‐acetaminophen using an unmodified electrode under the same conditions, a new reduction peak was observed clearly at 0.26 V with the modified electrode. In addition, the peak potential for the oxidation of p‐acetaminophen was found to shift negatively about 90 mV and the current response increased significantly. These changes indicate that the nano‐TiO2/[BMIM]BF4 hybrid film can improve the redox reactions of p‐acetaminophen in aqueous medium. Under optimum conditions, a linear relationship was obtained for the p‐acetaminophen solutions with concentration in the range from 5.0 × 10−8 to 5.0 × 10−5 M. The estimated detection limit was 1.0 × 10−8 M (S/N = 3). The newly developed method was applied for the determination of p-acetaminophen in urine samples. - Highlights: ► Nano-TiO2/[BMIM]BF4 hybrid film electrode was fabricated with electrodeposition. ► Voltammetric behavior of p-acetaminophen at the obtained electrode was investigated. ► The hybrid film electrode shows good electrocatalytic response to p-acetaminophen. ► p-acetaminophen in urine samples was successfully determined.

  10. A Comparison of Modifications Induced by Li3+ and Ag14+ Ion Beam in Spectroscopic Properties of Bismuth Alumino-Borosilicate Glass Thin Films

    Directory of Open Access Journals (Sweden)

    Ravneet Kaur

    2013-01-01

    Full Text Available Ion irradiation effects on the glass network and structural units have been studied by irradiating borosilicate glass thin film samples with 50 MeV Li3+ and 180 MeV Ag14+ swift heavy ions (SHI at different fluence rates ranging from 1012 ions/cm2 to 1014 ions/cm2. Glass of the composition (65-x Bi2O3-10Al2O3-(65-y B2O3-25SiO2 (x = 45, 40; y = 20, 25 has been prepared by melt quench technique. To study the effects of ionizing radiation, the glass thin films have been prepared from these glasses and characterized using XRD, FTIR, and UV-Vis spectroscopic techniques. IR spectra are used to study the structural arrangements in the glass before and after irradiation. The values of optical band gap, Urbach energy, and refractive index have been calculated from the UV-Vis measurements. The variation in optical parameters with increasing Bi2O3 content has been analyzed and discussed in terms of changes occurring in the glass network. A comparative study of the influence of Li3+ ion beam on structural and optical properties of the either glass system with Ag14+ ion is done. The results have been explained in the light of the interaction that SHI undergo on entering the material.

  11. Sputter-prepared (001) BiFeO3 thin films with ferromagnetic L10-FePt(001) electrode on glass substrates

    OpenAIRE

    Chang, Huang-Wei; Yuan, Fu-Te; Shih, Chih-Wei; Ku, Ching-Shun; Chen, Ping-Han; Wang, Chang-Ren; Chang, Wen-Cheng; Jen, Shien-Uang; Lee, Hsin-yi

    2012-01-01

    Highly textured BiFeO3(001) films were formed on L10-FePt(001) bottom electrodes on glass substrates by sputtering at reduced temperature of 400°C. Good electric polarization 2P r = 80 and 95 μC/cm2, comparable to that of the reported epitaxial films, and coercivity E c = 415 and 435 kV/cm are achieved in the samples with 20-nm- and 30-nm-thick electrodes. The BiFeO3(001) films show different degrees of compressive strain. The relation between the variations of strain and 2P r suggests that t...

  12. Determination of biogenic amines from electrocatalytic responses of graphite electrodes modified with metallic osmium or an osmium oxide-ruthenium cyanide film

    International Nuclear Information System (INIS)

    Particles of osmium or an inorganic polymeric film of osmium oxide-ruthenium cyanide (OsO-RuCN) electrodeposited on glassy carbon (GC) electrocatalyze the oxidation of dopamine (DA), adrenaline (AD), and noradrenaline (NAD). It is found that these biogenic amines are determined with a high sensitivity by oxidation at an electrode with an OsO-RuCN film. Procedures for the voltammetric determination of DA, AD, or NAD at a composite film electrode are developed. The currents of the substrate oxidation are linear functions of the concentrations in the ranges from 5x10-7 to 1x10-3 M for DA and from 1x10-6 to 1x10-3 M for AD and NAD

  13. Enhancement in electrical performance of thin-film silicon solar cells based on a micro- and nano-textured zinc oxide electrodes

    International Nuclear Information System (INIS)

    Highlights: • We designed a process to modify the surfaces of boron-doped ZnO films. • A sputtering hydrogen-doped ZnO layer is used to smoothen the sharp features of the films. • An additional ZnO layer was deposited to increase the current density. • Micro- and nano-textured zinc oxide electrodes were successfully fabricated. • The novel electrodes significantly improved the device performance. - Abstract: Boron-doped ZnO (BZO) films deposited by metal organic chemical vapor deposition (MOCVD) generally act as transparent conductive oxide films in hydrogenated amorphous silicon (a-Si:H) solar cells and exhibit a high external quantum efficiency (EQE) performance in the short-wavelength region. They, therefore, facilitate efficient use of sunlight in solar cells. However, sharp surface features on the BZO film may result in nano-cracks and voids in the cells. In this study, we devised a process for modifying these sharp features. The BZO films were smoothened by performing a sputtering hydrogen-doped ZnO (HZO) layer using a magnetron sputtering system. The a-Si:H solar cells based on BZO films subjected to this treatment exhibited a higher open-circuit voltage (Voc), fill factor (FF), and efficiency; however, their short-circuit current density (Jsc) decreased slightly. In an attempt to increase the Jsc while maintaining a high electrical performance for the solar cells, we deposited an additional thin BZO film on the sputter-treated one to realize a micro- and nano-textured structure. This strategy succeeded in increasing Jsc and also caused a further improvement in the Voc, FF, and efficiency. As a result, over 10% efficiency of a-Si:H solar cells based on BZO electrodes with a micro- and nano-textured structure was achieved. Moreover, the thickness of the cell is only 300 nm

  14. Spectroscopic Characterization of Poly(ortho-Aminophenol) Film Electrodes: A Review Article

    OpenAIRE

    Ricardo Tucceri; Pablo Maximiliano Arnal; Alberto Néstor Scian

    2013-01-01

    This paper refers to spectroscopic studies carried out to identify the products of o-aminophenol electro-oxidation and elucidate the structure of electrochemically synthesized poly(o-aminophenol) (POAP) films. Spectroscopic studies of the redox conversion of POAP are also reviewed.

  15. Spectroscopic Characterization of Poly(ortho-Aminophenol Film Electrodes: A Review Article

    Directory of Open Access Journals (Sweden)

    Ricardo Tucceri

    2013-01-01

    Full Text Available This paper refers to spectroscopic studies carried out to identify the products of o-aminophenol electro-oxidation and elucidate the structure of electrochemically synthesized poly(o-aminophenol (POAP films. Spectroscopic studies of the redox conversion of POAP are also reviewed.

  16. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoSx) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoSx thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoSx thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoSx samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoSx thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoSx thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoSx thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO2 working electrode and an iodine-based electrolyte, the DSSC with the MoSx flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm−2). Thus, we report that the MoSx thin films are active catalysts for triiodide reduction. The MoSx thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoSx thin films produced by pulsed ECD are good candidates for catalysts in

  17. A Study on Tannic Acid-doped Polypyrrole Films on Gold Electrodes for Selective Electrochemical Detection of Dopamine

    Directory of Open Access Journals (Sweden)

    Shouzhuo Yao

    2005-04-01

    Full Text Available Tannic acid-doped polypyrrole (PPY/TA films have been grown on goldelectrodes for selective electrochemical detection of dopamine (DA. Electrochemicalquartz crystal microbalance (EQCM studies revealed that, in vivid contrast toperchlorate-doped polypyrrole films (PPY/ClO4-, the redox switching of PPY/TA filmsin aqueous solutions involved only cation transport if the solution pH was greater than3~4. The PPY/TA Au electrodes also exhibited attractive permselectivity forelectroactive cations, namely, effectively blocking the electrochemical reactions ofanionic ferricyanide and ascorbic acid (AA while well retaining the electrochemicalactivities of hexaammineruthenium (III and dopamine as cationic species. A 500 HzPPY/TA film could effectively block the redox current of up to 5.0 mM AA. Thecoexistence of ascorbic acid in the measurement solution notably enhanced the currentsignal for dopamine oxidation, due probably to the chemical regeneration of dopaminethrough an ascorbic acid-catalyzed reduction of the electro-oxidation product ofdopamine (EC’ mechanism, and the greatest amplification was found at an ascorbic acidconcentration of 1.0 mM. The differential pulse voltammetry peak current for DAoxidation was linear with DA concentration in the range of 0 to 10 μM, with sensitivityof 0.125 and 0.268 μA/μM, as well as lower detection limit of 2.0 and 0.3 μM in a PBSsolution without AA and with 1.0 mM coexisting AA, respectively.

  18. Preparation of Inkjet-Printed NiO Films for Ba(Ti,Zr)O3-Based Ceramics and Application to Multilayer Ceramics with Ni Electrodes

    Science.gov (United States)

    Sakai, Yuichi; Futakuchi, Tomoaki; Adachi, Masatoshi

    2008-09-01

    The possibility of fabricating a lead-free multilayer ceramic (MLC) actuator with Ni inner electrodes prepared by inkjet printing has been investigated. Inkjet ink containing NiO powder was prepared. NiO films were prepared on [(BaO)1.00(CaO)0.01](Ti0.95Zr0.05)O2 green sheets by the inkjet method and co-fired in a reducing atmosphere. After co-firing, the NiO films were reduced to metal Ni films, which acted as electrodes. The remanent polarization Pr and coercive field Ec of the ceramics were 2.5 µC/cm2 and 3.0 kV/cm, respectively. The Curie temperature, orthorhombic-tetragonal transition temperature, and rhombohedral-orthorhombic transition temperature were 110, 45, and 0 °C, respectively. The [(BaO)1.00(CaO)0.01](Ti0.95Zr0.05)O2 MLCs with Ni inner electrodes were prepared using NiO ink. The diffusion and reaction of Ni to ceramic layers were not observed. The displacement of the MLCs with seven active layers was approximately 0.17 µm when the electric field was 20 kV/cm. It is expected that inkjet printing using NiO ink will be applicable to the fabrication of lead-free MLC actuators with Ni inner electrodes.

  19. Optimization of Sputtering Condition of IrOx Thin Film Stimulation Electrode for Retinal Prosthesis Application

    International Nuclear Information System (INIS)

    We have optimized the sputtering condition of the RF sputtering deposition for the fabrication of the iridium oxide thin film used in retinal prosthesis applications. The deposited IrOx thin films were characterized by using the cyclic voltammetry method and the charge delivery capacity was calculated from the integral of the generic CV curve. From the experimental results, the charge delivery capacity of IrOx under the best sputtering condition was improved to more than 50 times that of Pt. We also verified from our in vivo experiment results that IrOx has a better charge delivery capacity than that of Pt. The in vitro and in vivo experimental results also show that IrOx is a promising candidate for retinal prosthesis applications.

  20. Photoelectrocatalytic Degradation of Sodium Oxalate by TiO2/Ti Thin Film Electrode

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chang

    2012-01-01

    Full Text Available The photocatalytically active TiO2 thin film was deposited on the titanium substrate plate by chemical vapor deposition (CVD method, and the photoelectrocatalytic degradation of sodium oxalate was investigated by TiO2 thin film reactor prepared in this study with additional electric potential at 365 nm irradiation. The batch system was chosen in this experiment, and the controlled parameters were pH, different supporting electrolytes, applied additional potential, and different electrolyte solutions that were examined and discussed. The experimental results revealed that the additional applied potential in photocatalytic reaction could prohibit recombination of electron/hole pairs, but the photoelectrocatalytic effect was decreased when the applied electric potential was over 0.25 V. Among the electrolyte solutions added, sodium sulfate improved the photoelectrocatalytic effect most significantly. At last, the better photoelectrocatalytic degradation of sodium oxalate occurred at pH 3 when comparing the pH influence.