WorldWideScience

Sample records for bismuth base alloys

  1. Transport phenomena in nanowires based on bismuth alloys

    International Nuclear Information System (INIS)

    Full text: In this work, we study the conductivity and thermopower of quantum wires (QW) based on bismuth alloys. Calculations are carried out for nanowires with degenerate and nondegenerate gas of carriers at various crystalline orientations taking into account the real band structure of Bi. We find the energy eigenvalues of holes and taking into account the nonparabolicity of the band, the energy eigenvalues for electrons. The conductivity and thermopower determined with the use of the Kubo formulae in the case when the basic mechanism of carrier scattering is assumed to be elastic acoustic-phonon scattering and on a roughness surface of QW. Dependences of kinetic coefficients on temperature, nanowire diameter and crystalline orientation are investigated. The conductivity and thermopower of a QW contains the contributions of electrons and holes. Taking into account values of carrier effective masses and other band parameters of Bi, it is possible to conclude that the contribution of holes to the conductivity of nondegenerate carriers of QWs is more less than that of electrons, which is attributed to smaller effective mass of electrons. For a semiconducting Bi QW the conductivity depends exponentially on a temperature and wire diameter. The thermopower of a semiconducting and of a semimetallic Bi QW at low temperatures can be positive and change sign in more higher temperatures. The theoretical results are close to experiment for Bi wires with diameter of 50-100 nm. (author)

  2. Superconducting transition temperature of metastable, crystalline lead-bismuth alloys

    International Nuclear Information System (INIS)

    The increase of the superconducting temperature by ion implantation with bismuth-ions in a saturated lead-bismuth alloy, by recoil-implantation and by quenching of a lead-bismuth alloy with bismuth precipitates was studied. At room-temperature an increase of 11 at% Bi over the thermodynamic solution limit in a lead-bismuth alloy could be measured. The highest superconducting temperature was 9.02 K for a lead-bismuth alloy with 43 at% bismuth. (orig.)

  3. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    Science.gov (United States)

    Sahin, Cuneyt

    The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained strontium titanate (STO) and a two-dimensional electron gas in STO (such as at the LAO/STO interface). Our results suggest robust spin coherence and spin transport properties in STO related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony (BISb) semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((h/e)O--1cm--1) for bismuth to 96((h/e)O--1cm --1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 e

  4. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  5. Influence of bismuth content on viscosity of lead-bismuth alloy

    International Nuclear Information System (INIS)

    In this paper, viscosities of Pb44.5 Bi55.5 (LBE), Pb60 Bi40, Pb70 Bi30, Pb80 Bi20 and Pb are studied in a certain temperature range above liquidus, the results show that the viscosities of five melts decrease with the increase of temperature. Excepting for pure Pb, anomalous changes in the viscosity values are found in LBE, Pb60 Bi40, Pb70 Bi30 and Pb80 Bi20 in the test temperature range, it is presumed that melts structure occurs at the anomalous point of the viscosity. In the temperature range of 623∼923 K, viscosity value of Pb60 Bi40 is obviously higher than that of the other proportion of lead bismuth alloy, and it increases with the decrease of bismuth content at temperature above 1023 K. The experimental results provide data support for the choice of lead-bismuth hypoeutectic applied in advanced nuclear reactor. (authors)

  6. Electrodeposition of bismuth alloys by the controlled potential method

    International Nuclear Information System (INIS)

    We worked with the electrodeposition of three bismuth alloys, the composition of the first electrolyte was: 0.3 g/l. Bi; 20 g/l. Ni; and the conditions were pH = 5.2 - 5.6; T = 25 Centigrade degrees; current density 0.3 A / dm2 - 6.6 A / dm2. Following alloy was between Bi - Pb, composition of the electrolyte was 3.18 g/l. Bi (metallic); 31.81 g/l. Pb (Pb(NO3)2) pH : 1; T = 20 Centigrade degrees; current density 10.20 A/dm2 . The third electrolyte was Bi-Cu, its composition was: 20.89 g/l. Bi; (metallic) 63.54 g/l Cu (Cu(NO3)2) pH : 1.5 - 1.8; T = 25-30 Centigrade degrees; current density 1-2 A/dm2 . The best results were obtained with the third electrolyte. The purpose of this work was to experiment with different parameters like temperature, pH and the electrolyte concentration to obtain a bismuth alloy. (Author)

  7. Bismuth alloying properties in GaAs nanowires

    International Nuclear Information System (INIS)

    First-principles calculations have been performed to investigate the structural, electronic and optical properties of bismuth alloying in GaAs nanowires. A typical model of Ga31As31 nanowires is introduced for its reasonable band gap. The band gap of GaAs1−xBix shrinks clearly with the increasing Bi concentration and the band edge shifts when spin–orbit coupling (SOC) is considered. The insertion of Bi atom leads to hybridization of Ga/As/Bi p states which contributes a lot around Fermi level. Scissor effect is involved. The optical properties are presented, including dielectric function, optical absorption spectra and reflectivity, which are also varied with the increasing of Bi concentrations. - Graphical abstract: Top view of Bi-doped GaAs nanowires. Ga, As, and Bi atoms are denoted with grey, purple and red balls, respectively. Display Omitted - Highlights: • A typical model of Ga31As31 nanowires is introduced for its reasonable band gap. • The band gap of GaAs1−xBix shrinks clearly with the increasing Bi concentration. • The band edge shifts when spin–orbit coupling (SOC) is considered. • The insertion of Bi atom leads to hybridization of Ga/As/Bi p states

  8. Poisoning effect of bismuth on modification behaviour of strontium in LM25 alloy

    Indian Academy of Sciences (India)

    S Farahany; A Ourdjini; M H Idris; L T Thai

    2011-10-01

    Nucleation and growth, temperature measurements andmicrostructure observations of silicon phase are presented for strontium modified Al–7%Si (LM25) cast alloy treated with bismuth. The results show that addition of bismuth in strontium modified alloys may have a poisoning effect resulting in lost modification of the silicon phase. With increasing Bi/Sr ratio, thermal analysis measurements showed that the eutectic growth temperature increased remarkably to 573°C and recalescence decreased to 0.2°C and the morphology of silicon displayed the same flakelike structure as in the unmodified alloys. Microstructural observation showed that a minimum Bi/Sr ratio of 1.2 which is equivalent to a Sr/Bi ratio of 0.43 is required for effective strontium modification and neutralization of the poisoning effect of bismuth.

  9. Low gravity solidification structures in the tin-15 wt pct lead and tin-3 wt pct bismuth alloys

    Science.gov (United States)

    Johnston, M. H.; Parr, R. A.

    1982-01-01

    The tin-15 wt pct lead and tin-3 wt pct bismuth alloys have been solidified in the low-gravity environment provided by the Space Processing Applications Rocket (SPAR), on the KC-135 airplane, and at high 'g' levels in a centrifuge furnace. In each case the resultant cast structure was significantly different from that obtained in ground based experiments. Earlier low-gravity studies with the metal-model system NH4Cl-H2O presaged these results. This paper presents and discusses the influence of changes in the gravity force on the grain structure of these materials.

  10. Polymeric architectures of bismuth citrate based on dimeric building blocks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Four bismuth complexes, (H2En)[Bi2(cit)2(H2O)4/3]·(H2O)x (1), (H2En)3[Bi2(cit)2Cl4]·(H2O)x (2), (HPy)2[Bi2(cit)2(H2O)8/5]·(H2O)x (3) and (H2En)[Bi2(cit)2](H2O)x (4) [cit = citrate4-; En = ethylenediamine; Py = pyridine] have been synthesized and crystallized. The crystal structures reveal that the basic building blocks in all of these complexes are bismuth citrate dimeric units which combine to form polymeric architectures. The embedded protonated ethylenediamine and pyridine moieties in the polymeric frameworks have been identified by X-ray crystallography and solid-state cross polarization/magic angle spinning (CP/MAS) 13C NMR. Based on the framework of complex 1, a structural model of a clinically used antiulcer drug, ranitidine bismuth citrate (RBC) was generated. The behavior of the protonated amine-bismuth citrate complexes in acidic aqueous solution has been studied by electrospray ionization-mass spectrometry (ESI-MS).

  11. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    Science.gov (United States)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  12. Trace characterisation of tin-bismuth alloy by optical emission spectrography

    International Nuclear Information System (INIS)

    An emission spectrographic method has been developed for the determination of eighteen impurities in a tin-bismuth alloy sample. The metal alloy is converted to its oxide form and mixed with pure graphite in the ratio 2:1. 20mg of this mixture taken in a 1/4inch dia graphite electrode, is excited in nitrogen atmosphere using a 10 amp d.c. arc. The spectra of the samples are photographed using a 3.4M Ebert spectrograph with a 1180 grooves/mm grating. The concentration range covered are between 0.1ppm and 1000ppm for various elements and the precision of the method is found to be about 18 per cent. (author). 4 tabs., 6 figs

  13. Proton irradiation on textured bismuth based cuprate superconductors

    International Nuclear Information System (INIS)

    Textured bulk polycrystalline samples of bismuth based cuprate superconductors have been subjected to irradiation with 15 MeV protons. In case of Bi-2212, there has been substantial increase in Tc, which may be due to proton induced knock-out of loosely bound oxygen. In case of (Bi,Pb)-2223, there has been a reduction in Tc. The difference in behaviour in these two systems towards proton irradiation has been explained. (author). 7 refs., 3 figs., 1 tab

  14. Research on enhancement of natural circulation capability in lead-bismuth alloy cooled reactor by using gas-life pump

    International Nuclear Information System (INIS)

    The gas-lift pump has been adopted to enhance the natural circulation capability in the conceptual designs of lead-bismuth alloy cooled reactors such as ADS and LMFR. The natural circulation capability and the system safety have been obviously influenced by the two phase flow characteristics of liquid metal-inert gas. The numerical research was performed to evaluate the natural circulation capability of lead-bismuth alloy cooled ADS with gas-lift pump. Based on the drift-flux flow model, void fraction prediction model and frictional pressure drop prediction model were adopted in the numerical simulation. The effects of the gas mass flow rate, the gas quality, the bubble diameter and the height of rising pipe on natural circulation capability of gas-lift pump were analyzed. The results show that in bubbly flow pattern, for a fixed value of gas mass flow rate, the natural circulation capability increases with the decrease of the bubble diameter. In the bubbly flow, slug flow, churn flow and annular flow patterns, with the gas mass flow rate and the gas quality increase, the natural circulation capability increases initially and then decreases. As the height of rising pipe increases, the natural circulation flow rate goes up. The flow parameters influence the thermal hydraulic characteristics of the reactor core significantly. Therefore, in practical engineering application, the gas mass flow rate, gas quality, bubble diameter and rising pipe height are very important parameters for the design of gas-lift pump systems. The present work is helpful for optimizing the design of the natural circulation cooling system by gas-lift pump. (authors)

  15. Development of an oxygen sensor for molter 44.5% lead-55.5% bismuth alloy

    International Nuclear Information System (INIS)

    A potentiometric sensor for measuring oxygen activity in molter 44.5% lead-55.5% bismuth alloy is under development. Three parts form this sensor: an In/In2O3 reference electrode, a ZrO2/Y2O3 solid electrolyte, and a molybdenum working electrode. The oxygen partial pressure in the melt is calculated applying the Nernst equation to the potential difference measured by the sensor. The minimum oxygen partial pressure detected by this sensor is 10-40 bar. The sensor has been calibrated with the following metal/metal oxide mixtures: Pb-Bi/PbO, Pb/PbO, Sn/SnO2, and Bi/Bi2O3. Reproducible measurements of the oxygen pressure of PbO formation have been obtained. The sensor performance has been evaluated in 99.999% N2 and air (20% O2) environments

  16. Optimal biliary drainage for inoperable Klatskin's tumor based on Bismuth type

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate differences in the effects of biliary drainage procedures in patients with inoperable Klatskin's tumor based on Bismuth type, considering endoscopic retrograde biliary drainage (ERBD), external percutaneous transhepatic biliary drainage (EPTBD) and internal biliary stenting via the PTBD tract (IPTBD).METHODS: The initial success rate, cumulative patency rate, and complication rate were compared retrospectively, according to the Bismuth type and ERBD,EPTBD, and IPTBD. Patency was defined as the duration for adequate initial bile drainage or to the point of the patient's death associated with inadequate drainage.RESULTS: One hundred thirty-four patients (93 men,41 women; 21 Bismuth type Ⅱ, 47 Ⅲ, 66 Ⅳ; 34 ERBD,66 EPTBD, 34 IPTBD) were recruited. There were no differences in demographics among the groups.Adequate initial relief of jaundice was achieved in 91% of patients without a significant difference in the results among different procedures or Bismuth types. The cumulative patency rates for ERBD and IPTBD were better than those for EPTBD with Bismuth type Ⅲ.IPTBD provided an excellent response for Bismuth type Ⅳ. However, there was no difference in the patency rate among drainage procedures for Bismuth type Ⅱ.Procedure-related cholangitis occurred less frequently with EPTBD than with ERBD and IPTBD.CONCLUSION: ERBD is recommended as the firstline drainage procedure for the palliation of jaundice in patients with inoperable Klatskin's tumor of Bismuth type Ⅱ or Ⅲ, but IPTBD is the best option for Bismuth type Ⅳ.

  17. High power and compact switchable bismuth based multiwavelength fiber laser

    International Nuclear Information System (INIS)

    A compact switchable multiwavelength fibre laser (SWFL) is proposed and demonstrated using a bismuth based erbium doped fibre amplifier (Bi-EDFA) and a Sagnac loop mirror (SLM) in a ring cavity. The proposed compact SWFL can generate up to 6 switchable wavelengths with an average peak power of 11 dBm and also shows good stability over time with a high side mode signal ratio (SMSR) of 40 dB that negates minor fluctuations in the laser output. The Bi-EDF based gain medium gives the SWFL a large usable bandwidth of up to 80 nm, and it is expected that this will allow the SWFL to be used as a tunable laser source for high power applications to meet increasing demand

  18. Assessment of the transmutation capability an accelerator driven system cooled by lead bismuth eutectic alloy

    International Nuclear Information System (INIS)

    1. PURPOSE The reduction of long-lived fission products (LLFP) and minor actinides (MA) is a key point for the public acceptability and economy of nuclear energy. In principle, any nuclear fast reactor is able to burn and transmute MA, but the amount of MA content has to be limited a few percent, having unfavourable consequences on the coolant void reactivity, Doppler effect, and delayed neutron fraction, and therefore on the dynamic behaviour and control. Accelerator Driven Systems (ADS) are instead able to safely burn and/or transmute a large quantity of actinides and LLFP, as they do not rely on delayed neutrons for control or power change and the reactivity feedbacks have very little importance during accidents. Such systems are very innovative being based on the coupling of an accelerator with a subcritical system by means of a target system, where the neutronic source needed to maintain the neutron reaction chain is produced by spallation reactions. To this end the PDS-XADS (Preliminary Design Studies on an experimental Accelerator Driven System) project was funded by the European Community in the 5th Framework Program in order both to demonstrate the feasibility of the coupling between an accelerator and a sub-critical core loaded with standard MOX fuel and to investigate the transmutation capability in order to achieve values suitable for an Industrial Scale Transmuter. This paper summarizes and compares the results of neutronic calculations aimed at evaluating the transmutation capability of cores cooled by Lead-Bismuth Eutectic alloy and loaded with assemblies based on (Pu, Am, Cm) oxide dispersed in a molybdenum metal (CERMET) or magnesia (CERCER) matrices. It also describes the constraints considered in the design of such cores and describes the thermo-mechanical behaviour of these innovative fuels along the cycle. 2. DESCRIPTION OF THE WORK: The U-free composite fuels (CERMET and CERCER) were selected for this study, being considered at European level

  19. Tin-silver-bismuth solders for electronics assembly

    Science.gov (United States)

    Vianco, Paul T.; Rejent, Jerome A.

    1995-01-01

    A lead-free solder alloy for electronic assemblies composed of a eutectic alloy of tin and silver with a bismuth addition, x, of 0tin effective to depress the melting point of the tin-silver composition to a desired level. Melting point ranges from about 218.degree. C. down to about 205.degree. C. depending an the amount of bismuth added to the eutectic tin-silver alloy as determined by DSC analysis, 10.degree. C./min. A preferred alloy composition is 91.84Sn-3.33Ag-4.83Bi (weight percent based on total alloy weight).

  20. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition

    International Nuclear Information System (INIS)

    Heavy liquid metals such as lead or lead-bismuth have been proposed and investigated as coolants for fast reactors since the 1950's. More recently, there has been renewed interest worldwide in the use of these materials to support the development of systems for the transmutation of radioactive waste. Heavy liquid metals are also under evaluation as a reactor core coolant and accelerator-driven system neutron spallation source. Several national and international R and D programmes are ongoing for the development of liquid lead-alloy technology and the design of liquid lead-alloy-cooled reactor systems. In 2007, a first edition of the handbook was published to provide deeper insight into the properties and experimental results in relation to lead and lead-bismuth eutectic technology and to establish a common database. This handbook remains a reference in the field and is a valuable tool for designers and researchers with an interest in heavy liquid metals. The 2015 edition includes updated data resulting from various national and international R and D programmes and contains new experimental data to help understand some important phenomena such as liquid metal embrittlement and turbulent heat transfer in a fuel bundle. The handbook provides an overview of liquid lead and lead-bismuth eutectic properties, materials compatibility and testing issues, key aspects of thermal-hydraulics and existing facilities, as well as perspectives for future R and D. (authors)

  1. A novel tin-bismuth alloy electrode for anodic stripping voltammetric determination of zinc

    International Nuclear Information System (INIS)

    We report on a novel tin-bismuth alloy electrode (SnBiE) for the determination of trace concentrations of zinc ions by square-wave anodic stripping voltammetry without deoxygenation. The SnBiE has the advantages of easy fabrication and low cost, and does not require a pre-treatment (in terms of modification) prior to measurements. A study on the potential window of the electrode revealed a high hydrogen overvoltage though a limited anodic range due to the oxidation of tin. The effects of pH value, accumulation potential, and accumulation time were optimized with respect to the determination of trace zinc(II) at pH 5. 0. The response of the SnBiE to zinc(II) ion is linear in the 0.5-25 μM concentration range. The detection limit is 50 nM (after 60 s of accumulation). The SnBiE was applied to the determination of zinc(II) in wines and honeys, and the results were consistent with those of AAS. (author)

  2. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    Energy Technology Data Exchange (ETDEWEB)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh, E-mail: daryoosh.vashaee@okstate.edu [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tahmasbi Rad, Armin [School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tayebi, Lobat, E-mail: daryoosh.vashaee@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2014-05-28

    Nanocomposite thermoelectric compound of bismuth telluride (Bi{sub 2}Te{sub 3}) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi{sub 2}Te{sub 3} were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (∼500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  3. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    International Nuclear Information System (INIS)

    Phosphorous-alloyed Bi2Te3 thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi2Te3 thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 μV/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    OpenAIRE

    Marko Rodić; Olga Vajdle; Valéria Guzsvány; Jasmina Zbiljić; Zsigmond Papp

    2011-01-01

    Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE) and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV) mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD) not exceeding 1.5%. The tricresyl phosp...

  5. Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite

    Science.gov (United States)

    Jartych, Elżbieta; Pikula, Tomasz; Kowal, Karol; Dzik, Jolanta; Guzdek, Piotr; Czekaj, Dionizy

    2016-04-01

    Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi5Ti3FeO15 compound ( α ME ~ 10 mVcm-1 Oe-1). In the case of (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm-1 Oe-1, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi5Ti3FeO15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2-3 times.

  6. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian; Li, Shanghua; Toprak, Muhammet S.; Muhammed, Mamoun [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Soliman, Hesham M.A. [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Advanced Technology and New Materials Research Institute (ATNMRI), Mubarak City for Scientific Research and Technology Applications, New Borg El-Arab, 21934 Alexandria (Egypt); Platzek, Dieter; Mueller, Eckhard [Institute of Materials Research, German Aerospace Center (DLR), 51170 Koeln (Germany)

    2008-07-01

    Phosphorous-alloyed Bi{sub 2}Te{sub 3} thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi{sub 2}Te{sub 3} thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 {mu}V/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Rapid Determination of Uranium in Water Samples by Adsorptive Cathodic Stripping Voltammetry Using a Tin-Bismuth Alloy Electrode

    International Nuclear Information System (INIS)

    In this work, the tin-bismuth alloy electrode (SnBiE) was used for U(VI) concentration determination for the first time. Compared to the conventional solid electrode (glassy carbon electrode and bismuth bulk electrode), the SnBiE possesses a higher hydrogen overpotential, which indicates that the tin-bismuth alloy can considerably extend the application of potentially available electrode detection systems. Combining with electrochemical behavior analysis and spectrometric measurements as well as theoretical calculation methods, the geometric structures of uranium-cupferron (N-nitrosophenylhydroxylamine) complexes have been revealed and a more detailed electrode mechanism has been proposed. The electroanalysis results show that the optimal sensitivity could be obtained by using diphenylguanidine as the auxiliary reagent. The calibration plot for U(VI) quantification was linear from 0.5 nM to 30 nM with a correlation coefficient of 0.999. In the meanwhile, a detection limit of 0.24 nM was obtained in connection with an accumulation time of 30 s, which is comparable with that of mercury analogues. The practical applications of SnBiE have been tentatively performed for the determination of UO22+ in real water samples and the results were well consistent with those by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). A very simple, convenient and cheap approach was established for the determination of UO22+ in natural water samples containing surfactants without the otherwise necessity of sample pretreatment, which drastically reduce the analysis time

  8. Research on enhancement of natural circulation capability in lead–bismuth alloy cooled reactor by using gas-lift pump

    International Nuclear Information System (INIS)

    Highlights: • The gas-lift pump has been adopted to enhance the natural circulation capability. • LENAC code is developed in my study. • The calculation results by LENAC code show good agreement with experiment results. • Gas mass flow rate, bubble diameter, rising pipe length are important parameters. -- Abstract: The gas-lift pump has been adopted to enhance the natural circulation capability in the type of lead–bismuth alloy cooled reactors such as Accelerator Driven System (ADS) and Liquid–metal Fast Reactor (LMFR). The natural circulation ability and the system safety are obviously influenced by the two phase flow characteristics of liquid metal–inert gas. In this study, LENAC (LEad bismuth alloy NAtural Circulation capability) code has been developed to evaluate the natural circulation capability of lead–bismuth cooled ADS with gas-lift pump. The drift flow theory, void fraction prediction model and friction pressure drop prediction model have been incorporated into LENAC code. The calculation results by LENAC code show good agreement with experiment results of CIRCulation Experiment (CIRCE) facility. The effects of the gas mass flow rate, void fraction, gas quality, bubble diameter and the rising pipe height or the potential difference between heat exchanger and reactor core on natural circulation capability of gas-lift pump have been analyzed. The results showed that in bubbly flow pattern, for a fixed value of gas mass flow rate, the natural circulation capability increased with the decrease of the bubble diameter. In the bubbly flow, slug flow, churn flow and annular flow pattern, with the gas mass flow rate increasing, the natural circulation capability initially increased and then declined. And the flow parameters influenced the thermal hydraulic characteristics of the reactor core significantly. The present work is helpful for revealing the law of enhancing the natural circulation capability by gas-lift pump, and providing theoretical

  9. Ab initio molecular dynamics study of temperature dependent structure properties of liquid lead–bismuth eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Li, Dongdong [National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Xu, Yichun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Pan, B.C. [National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-11-15

    Considerable attention has been devoted to liquid lead-bismuth eutectic (LBE) alloy due to its potential application as spallation target and coolant in future sub-critical reactors. Whether there exists an abnormal structural change at high temperatures in this liquid alloy is still under debate. In this paper, we perform ab initio molecular dynamics simulation on the structure and dynamics of liquid LBE at different temperatures from 573 to 1173 K. Through the analysis of the pair correlation function, static structure factor, coordination number, atomic bonded pair, excess entropy, and diffusion constant with increasing temperature, we find that these structure-sensitive quantities change gradually with temperature and exhibit linear temperature dependence. No abnormal structural transformations with temperature variation are observed.

  10. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  11. Bismuth subcarbonate as filler particle for an Epoxy-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Eduardo Schwartzer

    2013-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the addition of bismuth subcarbonate with different concentrations regarding the rheological properties of an experimental epoxy-based root canal sealer. Materials and Methods: Endodontic sealers were prepared with epoxy resin-based sealer with bismuth subcarbonate additions of 20%, 40%, 60%, 80%, 100%, and 120%. Flow, film thickness, working time, setting time, dimensional change, sorption, solubility, and cytotoxicity were studied according to the ISO standards. Data were statistically analyzed by one-way ANOVA, and Tukey multiple comparisons were used, with a significance level of 5%. Results: The flow, working time, water sorption, and solubility significantly decreased and the film thickness and dimensional change increased with higher filler particle addition. There were no statistically significant differences for setting time and cytotoxicity between the filler particle proportions. Conclusion: Experimental resin-based sealer with bismuth subcarbonate addition up to 40% can be an alternative for root canal sealer.

  12. Low-Power Super-resolution Readout with Antimony Bismuth Alloy Film as Mask layer

    Institute of Scientific and Technical Information of China (English)

    JIANG Lai-Xin; WU Yi-Qun; WANG Yang; WEI Jing-Song; GAN Fu-Xi

    2009-01-01

    Sb-Bi alloy films are proposed as a new kind of super-resolution mask layer with low readout threshold power. Using the Sb-Bi alloy film as a mask layer and SiN as a protective layer in a read-only memory disc, the super-resolution pits with diameters of 38Onm are read out by a dynamic setup, the laser wavelength is 78Onto and the numerical aperture of pickup lens is 0.45. The effects of the Sb-Bi thin film thickness, laser readout power and disc rotating velocity on the readout signal are investigated. The results show that the threshold laser power of super-resolution readout of the Sb-Bi mask layer is about 0.5roW, and the corresponding carrier-to-noise ratio is about 20dB at the film thickness of 5Ohm. The super-resolution mechanism of the Sb-Bi alloy mask layer is discussed based on its temperature dependence of reflection.

  13. Growth of GaAsBi alloy under alternated bismuth flows by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Chine, Z.; Fitouri, H.; Zaied, I.; Rebey, A.; El Jani, B.

    2011-09-01

    A successful method to epitaxy GaAsBi layer on (0 0 1) GaAs substrate is proposed. During growth, alternated trimethyl bismuth (TMBi) flows were used. These TMBi flashes were switched on for a short time. The growth was monitored in situ by laser reflectometry using a 632.8 nm beam. The reflectance signal is found to change significantly during both bismuth flashes and GaAs growth stages. High-resolution X-ray diffraction (HRXRD), secondary ion mass spectroscopy (SIMS) and photoreflectance spectroscopy (PR) have been used to characterize the obtained GaAsBi layer. HRXRD curve shows a diffraction peak that can be attributed to a GaAsBi epilayer. SIMS measurements of GaAsBi layer suggest that bismuth diffuses faster near the interface. The PR spectrum indicates the band-to-band transition in GaAsBi layer. The band gap energy was determined by adjusting the PR spectrum with a multilayer model.

  14. Optimal biliary drainage for inoperable Klatskin's tumor based on Bismuth type

    OpenAIRE

    Lee, Sang Hyub; Park, Joo Kyung; Yoon, Won Jae; Lee, Jun Kyu; Ryu, Ji Kon; Yoon, Yong Bum; Kim, Yong-Tae

    2007-01-01

    AIM: To investigate differences in the effects of biliary drainage procedures in patients with inoperable Klatskin’s tumor based on Bismuth type, considering endoscopic retrograde biliary drainage (ERBD), external percutaneous transhepatic biliary drainage (EPTBD) and internal biliary stenting via the PTBD tract (IPTBD).

  15. Vibrational spectra and structure of bismuth based quaternary glasses

    International Nuclear Information System (INIS)

    Quaternary bismuthate glasses containing Li2O, ZnO and B2O3 have been prepared by melt quench technique and studied by density, DSC, IR and Raman spectroscopy. Raman and infrared spectroscopy have been employed to investigate the (75 - x)Bi2O3-xLi2O-10ZnO-15B2O3 glasses in order to obtain information about the competitive role of Bi2O3 and B2O3 in the formation of glass network. The increase of Bi2O3 content causes a progressive conversion of three- to four-fold coordinated boron. IR and Raman spectra show that these glasses are made up of [BiO3] pyramidal and [BiO6] octahedral units. The formation of Zn in tetrahedral coordination was observed

  16. Compatibility of Austenitic Steel With Molten Lead-Bismuth-Tin Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-qian; LI Yan; WANG Xiao-min

    2011-01-01

    The compatibility of the austenitic AISI 304 steel with Pb-Bi-Sn alloy was analyzed. The AISI 304 steels were immersed in stagnant molten Pb-33.3Bi-33. 3Sn alloy at 400, 500 and 600℃ for different exposure times (100-2 000 h) respectively. XRay diffractio

  17. Bismuth bronze from machu picchu, peru.

    Science.gov (United States)

    Gordon, R B; Rutledge, J W

    1984-02-10

    The decorative bronze handle of a tumi excavated at the Inca city of Machu Picchu, Peru, contains 18 percent bismuth and appears to be the first known example of the use of bismuth with tin to make bronze. The alloy is not embrittled by the bismuth because the bismuth-rich constituent does not penetrate the grain boundaries of the matrix phase. The use of bismuth facilitates the duplex casting process by which the tumi was made and forms an alloy of unusual color. PMID:17749940

  18. 67 cm long bismuth-based erbium doped fiber amplifier with wideband operation

    International Nuclear Information System (INIS)

    In this paper, we demonstrate a wideband Bismuth-based erbium doped fiber amplifier (Bi-EDFA) using two pieces of bismuth-based erbium-doped fiber (Bi-EDF) with a total length of 67 cm as gain media in a double pass parallel configuration. Both Bi-EDFs have an erbium ion concentration of 6300 ppm. Compared to conventional silica-based erbium-doped fiber amplifier (Si-EDFA) with the same amount of erbium ions, the Bi-EDFA provides a higher attainable gain as well as a greater amplification bandwidth, which ranging from 1525 to 1620 nm. The proposed Bi-EDFA achieved a wideband gain of around 18 dB within the wavelength region from 1530 to 1565 nm. The noise figures are maintained below 10 dB within a wide wavelength region from 1535 nm to 1620 nm

  19. Terbium base alloy

    International Nuclear Information System (INIS)

    Composition of terbium-5-7 % gadolinium alloy with high magnetostriction sensitivity (180x10-8 Oe) is suggested. The alloy is designed for usage under cryogenic temperature within 500-1500 Oe fields. Magnetostriction sensitivity of the suggested alloy is by 2-2.5 times higher, than that of well-known before one. 1 tab

  20. Effect of bismuth and silver on the corrosion behavior of Sn-9Zn alloy in NaCl 3 wt.% solution

    International Nuclear Information System (INIS)

    Highlights: → Sn-9Zn-xAg-yBi as alternative for Sn-Pb solder. → Effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt%. → Bi and Ag lead to the increase of corrosion rate. → EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn5(OH)8Cl2H2O) as the major corrosion product. - Abstract: The effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt.% solution was investigated using electrochemical techniques. The results showed that the addition of Bi and Ag lead to the increase of corrosion rate and the corrosion potential Ecorr is shifted towards less noble values. After immersion, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of spectroscopy (EDS) analysis of the corroded alloy surface revealed the nature of corrosion products. EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn5(OH)8Cl2H2O) as the major corrosion product formed on the outer surface of in the tested three solder alloys.

  1. Optical properties of bismuth-doped SiO2- or GeO2-based glass core optical fibers

    OpenAIRE

    Firstova, Elena G.

    2015-01-01

    A detailed study of optical properties of bismuth-doped fibers based on SiO2 and GeO2 glasses containing no other dopants has been carried out. To provide important information about spectroscopic properties of IR bismuth-related active centers (BAC) the excitation-emission fluorescence spectra for a spectral region of 220-2000 nm have been measured. The obtained three-dimensional spectra have been presented for different host glass compositions: silicate, germanate, aluminosilicate and phosp...

  2. Gibbs free energy of formation of liquid lanthanide-bismuth alloys

    International Nuclear Information System (INIS)

    The linear free energy relationship developed by Sverjensky and Molling provides a way to predict Gibbs free energies of liquid Ln-Bi alloys formation from the known thermodynamic properties of aqueous trivalent lanthanides (Ln3(5(6+). The Ln-Bi alloys are divided into two isostructural families named as the LnBi2 (Ln=La, Ce, Pr, Nd and Pm) and LnBi (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb). The calculated Gibbs free energy values are well agreed with experimental data

  3. Tritium sorption in lithium-bismuth and lithium-aluminum alloys

    International Nuclear Information System (INIS)

    The sorption of tritium by molten lithium-bismuth, Li-Bi (15 at.% lithium), and solid equiatomic lithium-aluminum, Li-Al, was investigated to evaluate the potential application of both materials in controlled thermonuclear reactors. The solubility of tritium in molten Li-Bi is less than 0.1 ppb at 500 - 700 0C and tritium partial pressures of 10-1 - 10-3 Torr. Therefore, extraction of tritium from molten Li2BeF4 salt with Li-Bi is not practical. The solubility of hydrogen in solid Li-Al (50 - 50 at.%) at 500 0C follows Sieverts' Law; the Sieverts' constant was measured to be 1.9 (+-0.1) X 104 Torrsup(1/2)/atomic fraction. Tritium sorption in Li-Al ranged from 0.01 to 7 ppm at 400 - 600 0C at respective tritium partial pressures of 0.14 - 0.52 Torr. (Auth.)

  4. Brittle fracture of T91 steel in liquid lead–bismuth eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Changqing, E-mail: Changqing.ye@ed.univ-lille1.fr; Vogt, Jean-Bernard, E-mail: jean-bernard.vogt@univ-lille1.fr; Proriol-Serre, Ingrid, E-mail: ingrid.proriol-serre@univ-lille1.fr

    2014-12-15

    Highlights: • Tempering temperature is important for LBE embrittlement occurrence. • Brittle behaviour in LBE evidenced by small punch test and fatigue test. • Brittle behaviour in low oxygen LBE observed for low loading rate. - Abstract: The mechanical behaviour of the T91 martensitic steel has been studied in liquid lead–bismuth eutectic (LBE) and in inert atmosphere. Several conditions were considered to point out the most sensitive embrittling factors. Smooth and notched specimens were employed for respectively monotonic and cyclic loadings. The present investigation showed that T91 appeared in general as a ductile material, and became brittle in the considered conditions only if at least tests were performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement of T91 in LBE. For the standard heat treatment condition, loading monotonically the T91 very slowly instead of rapidly in LBE resulted in brittle fracture. Also, under cyclic loading, the crack propagated in a brittle manner in LBE.

  5. Mechanical properties and machining of aluminum-silicon alloys modified by bismuth or tin

    Science.gov (United States)

    Chen, Peisheng

    The dry machining performance, microstructure and mechanical properties of hypoeutectic and hypereutectic Al-Si alloys modified with different amounts of Bi and Sn, and cast at different cooling rates, were studied. The measured cutting and thrust forces decreased with the addition of Bi and Sn. These elements caused intense shear localization, and promoted the formation of segmented chips, thereby improving the dry machining performance. Also Bi and Sn melted and thus acted as lubricants during dry turning. However, the mechanical properties decreased with the addition of Sn, although Sn had no effect on the Si morphology. Bi had no effect on the Si morphology when cast at high cooling rates. The optimum amount of Bi addition was found to be 0.5 % and this alloy cast under a high cooling rates of 26 °C/s, improved the overall machining performance without compromising the mechanical properties.

  6. Effect of cadmium doping on some properties of glass-insulated bismuth-based microwires

    International Nuclear Information System (INIS)

    Full text: According to the literature, semiconductor converters based on films and wire crystals are widely used in present-day microelectronics. However, the production of efficient semiconductor converters requires crystals of high structural perfection with a given composition and desired electrical and mechanical properties. In this work, we describe the study of the perfection of the microstructure and mechanical properties of glass-insulated microwires based on Bi doped with cadmium (Cd) and the technique of preparation of micro resistors suitable for instrumentation applications. Microscopic studies of ground, polished, and chemically etched microwires doped with cadmium showed that they have smooth cylindrical surfaces in the entire range of diameters. Sizes of defects in the form of micropores, microcracks, dislocations, and twins on their surface are much smaller than those of pure bismuth microwire. It is also found that the tendency to twinning and the number and size of surface defects decrease with decreasing diameters; at the same time, their homogeneity increases. The tensile strength of the studied microwires with glass insulation is high for all tested diameters and ranges within 33.274.1 kg/mm with respect to internal diameters of 5.6 21.2 m; in addition, they withstand a breaking force up to 130 g and more, whereas the samples of pure bismuth microwires withstood a force up to 80 g. It is also found that the tensile strength of cadmium doped microwires is significantly higher than that of undoped samples. The bending strength as a measure of elasticity was determined using a special installation according to the critical bending radius of the sample at which the sample integrity is violated. The results of bending tests showed that, with increasing diameter of the doped samples, the critical radius linearly increases; that is, in this case, the elasticity increases with decreasing diameter. Metallographic analysis revealed that cadmium in the

  7. Properties of lead-bismuth coolant and perspectives of non-electric applications of lead-bismuth reactor

    International Nuclear Information System (INIS)

    Key physical and chemical properties of lead-bismuth eutectic alloy are reviewed. Based on the low chemical activity of the alloy to other work media, a new concept of direct contact heat exchangers is proposed. A series of experiments were performed to validate the concept, using water, model salt solutions of sodium chloride, and oil. Key experimental results are summarized in the report. (author)

  8. Uranium-Based Cermet Alloys

    International Nuclear Information System (INIS)

    The paper describes certain features of dispersion-hardened uranium-based cermets. As possible hardening materials, consideration was given to UO2, UC, Al2O3, MgO and UBe13. Data were obtained on the behaviour of uranium alloys containing the above-mentioned admixtures during creep tests, short-term strength tests and cyclic thermal treatment. The corrosion resistance o f UBe13-based uranium alloys was also studied. )author)

  9. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C

    Science.gov (United States)

    Roy, Marion; Martinelli, Laure; Ginestar, Kevin; Favergeon, Jérôme; Moulin, Gérard

    2016-01-01

    Ten austenitic steels and Ni rich alloys were tested in static lead-bismuth eutectic (LBE) at 520 °C in order to obtain a selection of austenitic steels having promising corrosion behaviour in LBE. A test of 1850 h was carried out with a dissolved oxygen concentration between 10-9 and 5 10-4 g kg-1. The combination of thermodynamic of the studied system and literature results leads to the determination of an expression of the dissolved oxygen content in LBE as a function of temperature: RT(K)ln[O](wt%) = -57584/T(K) -55.876T(K) + 254546 (R is the gas constant in J mol-1 K-1). This relation can be considered as a threshold of oxygen content above which only oxidation is observed on the AISI 316L and AISI 304L austenitic alloys in static LBE between 400 °C and 600 °C. The oxygen content during the test leads to both dissolution and oxidation of the samples during the first 190 h and leads to pure oxidation for the rest of the test. Results of mixed oxidation and dissolution test showed that only four types of corrosion behaviour were observed: usual austenitic steels and Ni rich alloys behaviour including the reference alloy 17Cr-12Ni-2.5Mo (AISI 316LN), the 20Cr-31Ni alloy one, the Si containing alloy one and the Al containing alloy one. According to the proposed criteria of oxidation and dissolution kinetics, silicon rich alloys and aluminum rich alloy presented a promising corrosion behaviour.

  10. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    OpenAIRE

    Ryszard Buczynski; Henry Bookey; Mariusz Klimczak; Dariusz Pysz; Ryszard Stepien; Tadeusz Martynkien; McCarthy, John E.; Andrew J. Waddie; Kar, Ajoy K.; Taghizadeh, Mohammad R.

    2014-01-01

    In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. Th...

  11. Numerical simulation of Taylor bubble rising in liquid lead-bismuth eutectic based on MPS method

    International Nuclear Information System (INIS)

    The Taylor bubble rising in a vertical tube filled with liquid lead-bismuth eutectic was simulated based on MPS method. Several performed results including shape development, bubble rising terminal speed fitting line, and the thickness and axial velocity profile of the falling film were presented. The simulation results were compared with some experimental results from literature and reveal the corresponding laws obeyed by the terminal speed, velocity profile and film thickness. The computational results agree well with both theoretical analysis and experimental results, which demonstrates the reasonable selection of model as well as the accuracy and reliability of MPS method. (authors)

  12. Bismuth-content-dependent polarized Raman spectrum of InPBi alloy

    Science.gov (United States)

    Guan-Nan, Wei; Qing-Hai, Tan; Xing, Dai; Qi, Feng; Wen-Gang, Luo; Yu, Sheng; Kai, Wang; Wen-Wu, Pan; Li-Yao, Zhang; Shu-Min, Wang; Kai-You, Wang

    2016-06-01

    We systematically investigate the optical properties of the InP1‑x Bi x ternary alloys with 0 ≤ x ≤ 2.46%, by using high resolution polarized Raman scattering measurement. Both InP-like and InBi-like optical vibration modes (LO) are identified in all the samples, suggesting that most of the Bi-atoms are incorporated into the lattice sites to substitute P-atoms. And the intensity of the InBi-like Raman mode is positively proportional to the Bi-content. Linear red-shift of the InP-like longitudinal optical vibration mode is observed to be 1.1 cm‑1/Bi%, while that of the InP-like optical vibration overtone (2LO) is nearly doubled. In addition, through comparing the Z(XX)Z̅ and Z(XY)Z̅ Raman spectra, longitudinal-optical-plasmon-coupled (LOPC) modes are identified in all the samples, and their intensities are found to be proportional to the electron concentrations. Project supported by the National Basic Research Program of China (Grant No. 2014CB643903) and the National Natural Science Foundation of China (Grant Nos. 61225021, 11474272, and 11174272).

  13. Chemistry of bismuth and lead based superconducting perovskites

    International Nuclear Information System (INIS)

    At the present time, there are three known members of the Bi and Pb based family of perovskite superconductors, Ba(Pb,Bi)O3, (Ba,K)BiO3, and Ba(Pb,Sb)O3. This paper describes the crystal chemistry of these materials and also of the nonsuperconducting end members BaPbO3 and BaBiO3. In particular, it is a basic introduction to the chemical characteristics which make them an intriguing family of materials

  14. Bismuth oxide nanoplates-based efficient DSSCs: Influence of ZnO surface passivation layer

    International Nuclear Information System (INIS)

    Graphical abstract: Bismuth oxide nanoplates prepared by chemical bath deposition show high performance when used as photoanode in DSSC. The power conversion efficiency has been improved when coated with ZnO passivation layer. -- Highlights: • Bi2O3 NPLs photoanodes are prepared by a simple one-step chemical bath deposition. • When used in DSSCs as photoanode, Bi2O3 NPLs shows high power conversion efficiency (1%). • ZnO surface passivation layer further improves the efficiency by 50%. • ZnO coating layer suppresses the charge recombination and improves the transport properties. -- Abstract: For the first time, bismuth oxide (Bi2O3) nanoplates synthesized by single-step chemical method were envisaged as photoanodes in dye-sensitized solar cells. The structural elucidation demonstrated tetragonal structure with a predominant β-Bi2O3. The power conversion efficiency (1%) of Bi2O3 nanoplates-based dye-sensitized solar cells was enhanced up to 50% when decorated with zinc oxide thin layer (ZnO). The best performing electrode showed 24% incident photon-to-current conversion efficiency. This high DSSC performance of Bi2O3–ZnO photoanode is attributed to the increased electron transportation due to the suppression of recombination centers by ZnO passivation layer

  15. Variation of the electronic densities of states as a function of impurity concentration in amorphous bismuth alloys

    Science.gov (United States)

    Mata-Pinzon, Zaahel; Valladares, Ariel Alberto; Valladares, Alexander; Valladares, Renela Maria

    2014-03-01

    The properties of materials are strongly related to their atomic topology, especially when we compare properties related to the ordered and disordered phases. Using Density Functional Theory methods on 64-atom supercells we obtain the structure and calculate the electronic density of states (eDOS) as a function of the concentration of lead, thallium or antimony in an amorphous bismuth supercell. This is done to investigate how the eDOS affects the superconducting transition temperature (Tc), taking into account the measurements made by Shier and Ginsberg[2] on contaminated amorphous bismuth thin films. Supported by CONACYT and DGAPA (UNAM).

  16. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [Los Alamos National Laboratory

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  17. Shielding property of bismuth glass based on MCNP 5 and WINXCOM simulated calculation

    International Nuclear Information System (INIS)

    Background: Currently, lead glass is widely used as observation window, while lead is toxic heavy metal. Purpose: Non-toxic materials and their shielding effects are researched in order to find a new material to replace lead containing material. Methods: The mass attenuation coefficients of bismuth silicate glass were investigated with gamma-ray's energy at 0.662 MeV, 1.17 MeV and 1.33 MeV, respectively, by MCNP 5 (Monte Carlo) and WINXCOM program, and compared with those of the lead glass. Results: With attenuation factor K, shielding and mechanical properties taken into consideration bismuth glass containing 50% bismuth oxide might be selected as the right material. Dose rate distributions of water phantom were calculated with 2-cm and 10-cm thick glass, respectively, irradiated by 137Cs and 60Co in turn. Conclusion: Results show that the bismuth glass may replace lead glass for radiation shielding with appropriate energy. (authors)

  18. Flatly broadened supercontinuum generation in nonlinear fibers using a mode locked bismuth oxide based erbium doped fiber laser

    International Nuclear Information System (INIS)

    Supercontinuum generation with considerable flatness and low fluctuation is investigated in nonlinear fibers by amplification of pulsed seed signal of a stable mode locked bismuth oxide based erbium doped fiber laser. Spectral expansion from 980 to 1750 nm is obtained by 340 fs pulses at 1560 nm amplified up to 177 kW in a dispersion flattened highly non-linear fiber. A comparison is made for different types of nonlinear fibers and evaluation of spectral bandwidth at high powers is probed

  19. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Ryszard Buczynski

    2014-06-01

    Full Text Available In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700–3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950–2500 nm range.

  20. Nickel-base alloys combat corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, D.C. [VDM Technologies Corp., Houston, TX (United States); Herda, W. [Krupp-VDM GmbH, Werdohl (Germany)

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  1. Preparation of bismuth-based nanosheets by ultrasound-assisted liquid laser ablation

    Science.gov (United States)

    Escobar-Alarcón, L.; Velarde Granados, E.; Solís-Casados, D. A.; Olea-Mejía, O.; Espinosa-Pesqueira, M.; Haro-Poniatowski, E.

    2016-04-01

    The preparation of bismuth nanosheets ablating a high purity Bi target immersed in water subjected to an ultrasound wave is reported. The effect of the laser fluence used for ablation on the size and shape of the nanostructures synthesized was investigated. The obtained results reveal the formation of nanosheets with square-like shape and sizes from approximately 140-543 nm. In comparison, experiments without the ultrasound field lead to the formation of quasi-spherical nanoparticles. The nanosheets were characterized by means of transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), UV-Vis and Raman spectroscopies. The bismuth nanosheets, as deposited, are highly crystalline, and depending on the preparation conditions, the α or β phases of Bi2O3 are obtained. UV-Vis measurements show the typical band absorption characteristic of bismuth with nanometric size. Raman spectra confirm the formation of Bi2O3 nanostructures.

  2. Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.

    Science.gov (United States)

    Rosolina, Samuel M; Carpenter, Thomas S; Xue, Zi-Ling

    2016-02-01

    A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported. PMID:26742539

  3. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and a...... low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state are...... discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  4. Surface Bond Strength in Nickel Based Alloys

    OpenAIRE

    Ramesh, Ganesh; Padmanabhan, T. V.; Ariga, Padma; Joshi, Shalini; Bhuminathan, S.; Vijayaraghavan, Vasantha

    2012-01-01

    Bonding of ceramic to the alloy is essential for the longevity of porcelain fused to metal restorations. Imported alloys used now a days in processing them are not economical. So this study was conducted to evaluate and compare the bond strength of ceramic material to nickel based cost effective Nonferrous Materials Technology Development Center (NFTDC), Hyderabad and Heraenium S, Heraeus Kulzer alloy. An Instron testing machine, which has three-point loading system for the application of loa...

  5. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  6. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  7. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  8. Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas

    International Nuclear Information System (INIS)

    New adsorbents based on bismuth were investigated for the capture of iodine-129 (129I) in off-gas produced from spent fuel reprocessing. Porous bulky materials were synthesized with polyvinyl alcohol (PVA) as a sacrificial template. Our findings showed that the iodine trapping capacity of as-synthesized samples could reach 1.9-fold that of commercial silver-exchanged zeolite (AgX). The thermodynamic stability of the reaction products explains the high removal efficiency of iodine. We also found that the pore volume of each sample was closely related to the ratio of the reaction products

  9. Mode-locked bismuth-based erbium-doped fiber laser with stable and clean femtosecond pulses output

    Science.gov (United States)

    Harun, S. W.; Akbari, R.; Arof, H.; Ahmad, H.

    2011-06-01

    A passively mode-locked fiber ring laser is demonstrated using a 49 cm long bismuth oxide based erbium-doped fiber (Bi-EDF) and a fast semiconductor saturable absorber. Stable and clean short pulses are achieved because of these short and high nonlinear characteristics of the Bi-EDF. The laser operates at 1560 nm with a repetition rate of 8.3 MHz and a center wavelength of 1560 nm. The calibrated auto-correlator pulse trace of the laser shows a sech2 pulse shape, with an estimated pulse width of 340 fs.

  10. Multi-wavelength Brillouin fiber laser using a holey fiber and a bismuth-oxide based erbium-doped fiber

    International Nuclear Information System (INIS)

    Multi-wavelength Brillouin fiber laser (BFL) is demonstrated using a holey fiber and a Bismuth-oxide based erbium-doped fiber (Bi-EDF) in a simple ring resonator. The proposed BFL is able to generate up to 13 lines including anti-Stokes with a channel spacing of 0.08 nm at the 1574 nm region. The multi-wavelength BFL is stable at room temperature and also compact due to the use of only a 20 m long of holey fiber and a 215 cm long of Bi-EDF

  11. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  12. Use of Russian technology of ship reactors with lead-bismuth coolant in nuclear power

    International Nuclear Information System (INIS)

    The experience of using lead-bismuth coolant in Russian nuclear submarine reactors has been presented. The fundamental statements of the concept of using the reactors cooled by lead-bismuth alloy in nuclear power have been substantiated. The results of developments for using lead bismuth coolant in nuclear power have been presented. (author)

  13. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  14. Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, SY; Zhang, HN; Sviridov, L; Huang, LM; Liu, XH; Samson, J; Akins, D; Li, J; O' Brien, S

    2012-11-07

    We present a novel approach to preparing bismuth acceptor doped barium titanate nanocrystal formulations that can be deposited in conjunction with polymers in order to prepare a thin film nanocomposite dielectric that exhibits desirable capacitor characteristics. Exploring the limits of dielectric function in nanocomposites is an important avenue of materials research, while paying strict attention to the overall device quality, namely permittivity, loss and equivalent series resistance (ESR). Pushing capacitor function to higher frequencies, a desirable goal from an electrical engineering point of view, presents a new set of challenges in terms of minimizing interfacial, space charge and polarization effects within the dielectric. We show the ability to synthesize BaTi0.96Bi0.04O3 or BaTi0.97Bi0.03O3 depending on nominal molar concentrations of bismuth at the onset. The low temperature solvothermal route allows for substitution at the titanium site (strongly supported by Rietveld and Raman analysis). Characterization is performed by XRD with Rietveld refinement, Raman Spectroscopy, SEM and HRTEM. A mechanism is proposed for bismuth acceptor substitution, based on the chemical reaction of the alkoxy-metal precursors involving nucleophilic addition. Dielectric analysis of the nanocrystal thin films is performed by preparing nanocrystal/PVP 2-2 nanocomposites (no annealing) and comparing BaTi0.96Bi0.04O3 and BaTi0.97Bi0.03O3 with undoped BaTiO3. Improvements of up to 25% in capacitance (permittivity) are observed, with lower loss and dramatically improved ESR, all to very high frequency ranges (>10 MHz).

  15. Effect of bismuth and strontium interaction on the microstructure development, mechanical properties and fractography of a secondary Al–Si–Cu–Fe–Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed, E-mail: saeedfarahany@gmail.com; Idris, Mohd Hasbullah; Ourdjini, Ali

    2015-01-05

    The effect of various additions of bismuth and strontium on the microstructure characteristics, impact and tensile properties, as well as fracture behaviour of a secondary Al–Si–Cu–Fe–Zn under as-cast condition are systematically investigated in this study. The as-cast samples were examined using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Microstructural analyses showed the occurrence of interaction between Bi and Sr, which, significantly, led to the change of eutectic Si morphology from fibrous to flake morphology, with an increase of mean length, area, and shape factor, an alteration of crystallographic orientation, and an increase in twin density. The mechanical properties were investigated by hardness, impact, and tensile tests with various concentrations of Bi and Sr. It was found that the highest mechanical properties obtained for Sr/Bi were for a ratio of more than 0.44, while deterioration occurred at a ratio of less than 0.32. The hardness, impact toughness, ultimate tensile strength (UTS), elongation to fracture (El), and quality index (Q) of alloys decreased by 7%, 62%, 19%, 57% and 48% respectively when the Sr/Bi ratio diminished from 0.44 to 0.32. The fracture behaviour of impact samples with an Sr/Bi ratio of more than 0.44 showed clear ductile fracture, while the specimens with an Sr/Bi ratio of less than 0.32 presented brittle fracture that corresponds to impact toughness values. Furthermore, the fracture surfaces of tensile samples revealed that the dimple ductile fracture transformed to cleavage brittle mode with drop of the Sr/Bi ratio to less than 0.32 due to an increase in the length, area, and shape factor of eutectic Si. Additionally, the interaction mechanism between Bi and Sr are also discussed in this study.

  16. Passivation of alloys on titanium base

    International Nuclear Information System (INIS)

    Results of passivation studies on Ti-base alloys show that the inhibition of anodic processes on these alloys is determined not by the total thickness of passive film, but by its barrier layer. The protective properties of the barrier layer increase if the passive film is formed at anodic potentials more positive than +1.4V. They were determined not by chemical stability of barrier layer, but by an inhibition which is produced by this layer for ionic current along the anodic direction. The protective properties are related to character defectiveness and semiconductor properties of the barrier layer. Additions of Al, V, Mo, Zr, and Nb to titanium increase the anodic current in the passive state. Additions of Cr and Mn decrease this current, and Sn does not influence it. The direct electrochemical transition of titanium ions into solution (as TiO2+) is a main anodic process of titanium dissolution and its low alloyed alloys in the passive state. Double phase titanium alloys (after tempering) have a lower corrosion resistance than those in the homogeneous single phase state (after hardening). The less passive phase of double phase alloys dissolves perferentially. The less passive phases are: in the active state, α-phase; in transpassive state for Ti--Mo alloys, β-phase, containing in a high Mo percentage; and for Ti--Cr alloys, γ-phase, having more chromium. (U.S.)

  17. Optical properties of bismuth-doped SiO2- or GeO2-based glass core optical fibers

    CERN Document Server

    Firstova, Elena G

    2015-01-01

    A detailed study of optical properties of bismuth-doped fibers based on SiO2 and GeO2 glasses containing no other dopants has been carried out. To provide important information about spectroscopic properties of IR bismuth-related active centers (BAC) the excitation-emission fluorescence spectra for a spectral region of 220-2000 nm have been measured. The obtained three-dimensional spectra have been presented for different host glass compositions: silicate, germanate, aluminosilicate and phosphosilicate. Energy-level configuration and main radiative transitions associated with BACs in GeO2 and SiO2 glasses have been revealed. Fluorescence lifetime analysis of the basic radiative transitions of BAC have been carried out. It has been shown that the energy-level schemes of BAC-Si and BAC-Ge (BAC associated with silicon and germanium, respectively) are similar, corresponding BAC-Ge energy levels lying 10-16% lower than those of BAC-Si. It has been determined that BAC-Si, BAC-Ge and BAC-Si, BAC-P can exist simultan...

  18. LASER CLADDING ON ALUMINIUM BASE ALLOYS

    OpenAIRE

    Pilloz, M.; Pelletier, J; Vannes, A.; Bignonnet, A.

    1991-01-01

    laser cladding is often performed on iron or titanium base alloys. In the present work, this method is employed on aluminum alloys ; nickel or silicon are added by powder injection. Addition of silicon leads to sound surface layers, but with moderated properties, while the presence of nickel induces the formation of hard intermetallic compounds and then to an attractive hardening phenomena ; however a recovery treatment has to be carried out, in order to eliminate porosity in the near surface...

  19. Bismuth, Metronidazole, and Tetracycline

    Science.gov (United States)

    Helidac® (as a kit containing Bismuth Subsalicylate, Metronidazole, Tetracycline) ... Bismuth, metronidazole, and tetracycline is used along with other ulcer medications to treat duodenal ulcers. It is in a class of medications called ...

  20. Novel Bismuth Nanotubes

    Institute of Scientific and Technical Information of China (English)

    苏长荣; 李家明

    2002-01-01

    Theoretical investigations show that bismuth nanotubes are semiconductors for all diameters. For smalldiameter bismuth nanotubes, the band structures and bandgaps vary strongly with the strong hybridization effect. When the diameters are larger than 18 A, the bandgaps ofBi (n, n) and (n, 0) nanotubes approach 0.63 e V, corresponding to the bandgap of bismuth sheet at the Γ point. Thus, bismuth nanotubes are expected to be a potential semiconductor nanomaterial in future nanoelectronics.

  1. Hydrostatic pressure and temperature calibration based on phase diagram of bismuth

    Science.gov (United States)

    Wang, Zhigang; Liu, Yonggang; Bi, Yan; Song, Wei; Xie, Hongsen

    2012-06-01

    Under high-temperature and high pressure (HTHP) experiments, materials of small elastic modulus deform easily, and the length of the sample can be hardly predicted which lead to failure of ultrasonic velocity measurement. In this paper, a hydrostatic assembly of the sample for ultrasonic measurements is designed under HPHT, which can prevent plastic deformation. According to the abrupt change of travel time of the sample across the different phase boundaries of bismuth, the correspondent relation of sample pressure and oil pressure of multi-anvil apparatus can be calibrated, and the relation of sample temperature and temperature measured by thermocouple can also be determined. Sample pressure under high temperature is also determined by ultrasonic results. It is believed that the new sample assembly of hydrostatic pressure is valid and feasible for ultrasonic experiments under HTHP.

  2. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    Science.gov (United States)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  3. Oxygen diffusion in vanadium-based alloys

    International Nuclear Information System (INIS)

    The experimental study of transport and equilibrium properties of oxygen in vanadium-based alloys was made by EMF measurements on solid electrolytic cells over the temperature range of 873 to 14230K. The oxygen diffusion in vanadium was not significantly modified by small additions of Ti, Cr, Ni, Nb and Ta. The increase in the activation energy for oxygen diffusion in the V-based alloys containing Cr, Ni, Nb and Ta probably reflects the effect of these substitutional solutes on the activity coefficient of oxygen. The oxygen activity was increased by the addition of 1 at % of Cr, Ni and Nb, and decreased by the addition of Ti and Ta. However, the effects in the alloys containing Nb and Ta are very small

  4. Irradiation creep of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  5. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  6. Creep of nickel-base alloys in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J.S.; Attanasio, S.A.; Krasodomski, H.T.; Wilkening, W.W.; Was, G.S.; Cookson, J.; Yi, Y.

    1999-08-01

    Creep tests were performed to compare the creep behavior of commercial nickel-base alloys as a function of stress, temperature, and the environment. The results support earlier work that showed that low carbon alloys are more susceptible to creep and intergranular cracking than are high carbon alloys. Results also show a smaller influence of a water environment on the creep rate of commercial, creep-resistant alloys compared to high purity alloys.

  7. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinos, Christos, E-mail: xkokkinos@gmail.com [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Prodromidis, Mamas [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Economou, Anastasios [Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 157 71 Athens (Greece); Petrou, Panagiota; Kakabakos, Sotirios [Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, Aghia Paraskevi, 153 10 Athens (Greece)

    2015-07-30

    A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL{sup −1} CRP and the limit of detection was 0.05 ng mL{sup −1} CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production. - Highlights: • A bismuth citrate-modified screen-printed immunosensor was developed. • PbS quantum dots labels were used in the sandwich immunoassay for CRP determination. • A Bi film was formed at the sensor surface during the preconcentration step of Pb. • The immunosensor minimizes the limitations of electroplated metal film electrodes.

  8. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum

    International Nuclear Information System (INIS)

    A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL−1 CRP and the limit of detection was 0.05 ng mL−1 CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production. - Highlights: • A bismuth citrate-modified screen-printed immunosensor was developed. • PbS quantum dots labels were used in the sandwich immunoassay for CRP determination. • A Bi film was formed at the sensor surface during the preconcentration step of Pb. • The immunosensor minimizes the limitations of electroplated metal film electrodes

  9. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  10. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kad, Bimal [University of California, San Diego; Dryepondt, Sebastien N [ORNL; Jones, Andy R. [University of Liverpool; Vito, Cedro III [National Energy Technology Laboratory (NETL); Tatlock, Gordon J [ORNL; Pint, Bruce A [ORNL; Tortorelli, Peter F [ORNL; Rawls, Patricia A. [National Energy Technology Laboratory (NETL)

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  11. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease magnetohydrodynamic resistance authors propose to form insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the insulating coatings characteristics ρδ is ∼ 10-5 Ohm·m2 for steels and 5,0x10-6 - 5,0x10-5 Ohm·m2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steamgenerators and equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem of technology of lead and lead-bismuth coolants for power high temperature radioactive facilities has been solved. Accidents, emergency situations such as leakage of steamgenerators or depressurization of gas system in facilities with lead and lead-bismuth coolants have been explored and suppressed. (author)

  12. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    K T Kashyap

    2009-08-01

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is observed. This criterion points to diffusional coherency strain theory to be the operative mechanism for DP.

  13. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  14. Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    Highlights: • The leakage current is effectively reduced by adding a certain amount of titanium. • Addition of titanium increases the remnant polarization and decreases the band gap. • The power conversion efficiency increases as titanium content increases. - Abstract: Ti-doped bismuth ferrite thin films were prepared via sol–gel spin-coating method. The effects of titanium on the microstructure, optical, leakage, ferroelectric and photovoltaic characteristics have been investigated systematically. The result shows that bismuth ferrite thin films doped with 0–8 at.% Ti are rhombohedral distortion perovskite structure. The addition of titanium inhibits the grain growth and enhances the thickness uniformity and can decrease the band gap of bismuth ferrite thin films. The leakage current of bismuth ferrite thin films is effectively reduced by adding a certain amount of titanium and the leakage mechanism has been investigated. Addition of titanium increases the remnant polarization of the films. As titanium content increases, the short circuit photocurrent density decrease first and then increase, while the open circuit photovoltage increase first and then decrease. The power conversion efficiency of Ti-doped bismuth ferrite thin films increases as titanium content increases, which can be explained as a result of the increased remnant polarization and decreased band gap

  15. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.

    Science.gov (United States)

    Han, Lihao; Abdi, Fatwa F; van de Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Smets, Arno H M

    2014-10-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten-bismuth vanadate (W:BiVO4 ) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO4 and the nc-Si:H cell. PMID:25138735

  16. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress

    Science.gov (United States)

    Huang, Zhen-Feng; Pan, Lun; Zou, Ji-Jun; Zhang, Xiangwen; Wang, Li

    2014-11-01

    Water oxidation is the key step for both photocatalytic water splitting and CO2 reduction, but its efficiency is very low compared with the photocatalytic reduction of water. Bismuth vanadate (BiVO4) is the most promising photocatalyst for water oxidation and has become a hot topic for current research. However, the efficiency achieved with this material to date is far away from the theoretical solar-to-hydrogen conversion efficiency, mainly due to the poor photo-induced electron transportation and the slow kinetics of oxygen evolution. Fortunately, great breakthroughs have been made in the past five years in both improving the efficiency and understanding the related mechanism. This review is aimed at summarizing the recent experimental and computational breakthroughs in single crystals modified by element doping, facet engineering, and morphology control, as well as macro/mesoporous structure construction, and composites fabricated by homo/hetero-junction construction and co-catalyst loading. We aim to provide guidelines for the rational design and fabrication of highly efficient BiVO4-based materials for water oxidation.

  17. Characterization of copper base alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    The micro and nano structure of mechanical alloys of Cu-Al, Cu-V and Cu-Ti obtained by reactive milling, using an Attritor mill, was analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscope (TEM). In order to study the evolution of the alloys during the manufacturing process and during the period of service, the DSC and XRD were done before the mechanical milling, after 30 hours of milling and after hot extrusion of the alloyed powders. Using the Williamson-Hall and Klug-Alexander methods the size of the crystallites and the density of the dislocations in the prepared alloys were evaluated. In all the milled powder cases, the grain and crystallite size was found to be nanometric, the dispersoids were also nanometric and there was texture in the copper planes (220), in the cases of the milled Cu- Ti and Cu-V powders (au)

  18. Potentiometric stripping analysis of bismuth based on carbon paste electrode modified with cryptand [2.2.1] and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    An electrochemical method based on potentiometric stripping analysis (PSA) employing a cryptand [2.2.1] (CRY) and carbon nanotube (CNT) modified paste electrode (CRY-CNT-PE) has been proposed for the subnanomolar determination of bismuth. The characterization of the electrode surface has been carried out by means of scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronocoulometry (CC). It was observed that by employing CRY-CNT-PE, a 9-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s/V) was proportional to the Bi(III) concentration in the range of 5.55 x 10-8 to 9.79 x 10-11 M (r = 0.9990) with the detection limit (S/N = 3) of 3.17 x 10-11 M. The practical analytical utilities of the modified electrode were demonstrated by the determination of bismuth in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as a simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. Moreover, the results obtained for bismuth analysis in commercial and real samples using CRY-CNT-PE and those obtained by atomic absorption spectroscopy (AAS) are in agreement at the 95% confidence level.

  19. Ti-V-Mn based alloys for hydrogen compression system

    Energy Technology Data Exchange (ETDEWEB)

    Dehouche, Z. [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres, Que., G9A 5H7 (Canada)]. E-mail: zahir_dehouche@uqtr.ca; Savard, M. [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres, Que., G9A 5H7 (Canada); Laurencelle, F. [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres, Que., G9A 5H7 (Canada); Goyette, J. [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres, Que., G9A 5H7 (Canada)

    2005-09-01

    Ti-V-Mn based hydrides are one family of alloys with improved hydrogenation properties and they have a great potential to replace the AB{sub 5} alloys as the sorption materials in hydrogen compression systems, although there still are many problems associated with their use, including unstable reversible hydrogen capacity and unfavorable thermodynamic properties. To gain a better understanding on the effect of the substitution elements and to optimize the alloy composition for high storage capacity, the influence of the alloy stoichiometry was investigated. Ti-Zr-V-Mn alloys were prepared by arc melting technique and were annealed in vacuum at temperature above 900 deg. C to obtain great sorption properties. Hydrogen absorption and desorption kinetics and PCT characteristics of these alloys at ambient temperature were measured and compared. These hydrogen storage features were also discussed in relation to the effect of alloy element compositions. Ti-Zr-V-Mn alloy cycling behavior was also examined.

  20. Ti-V-Mn based alloys for hydrogen compression system

    International Nuclear Information System (INIS)

    Ti-V-Mn based hydrides are one family of alloys with improved hydrogenation properties and they have a great potential to replace the AB5 alloys as the sorption materials in hydrogen compression systems, although there still are many problems associated with their use, including unstable reversible hydrogen capacity and unfavorable thermodynamic properties. To gain a better understanding on the effect of the substitution elements and to optimize the alloy composition for high storage capacity, the influence of the alloy stoichiometry was investigated. Ti-Zr-V-Mn alloys were prepared by arc melting technique and were annealed in vacuum at temperature above 900 deg. C to obtain great sorption properties. Hydrogen absorption and desorption kinetics and PCT characteristics of these alloys at ambient temperature were measured and compared. These hydrogen storage features were also discussed in relation to the effect of alloy element compositions. Ti-Zr-V-Mn alloy cycling behavior was also examined

  1. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    Full text: One of the main requirements of advanced nuclear-power engineering is inherent safety of power installations. It initiates R and D of heavy liquid metals (lead, lead- bismuth eutectic) application in fission reactors as substitute of sodium. The same requirement makes advisable R and D of the lead and lead-bismuth eutectic application in blanket of fusion reactors as substitute of lithium. High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease MHD-resistance authors propose to form electro-insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the electro-insulating coatings characteristics rd (r - specific resistance of coatings, d - thickness) is ∼ 10-5Ω·m2 for steels and 5, 0x10-6 - 5, 0x10-5Ω·m2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there electro-insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steam generators and another equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem

  2. Electroanalysis of organic compounds at bismuth electrodes: a short review

    OpenAIRE

    Lezi, Nikolitsa; Vyskočil, Vlastimil; Economou, Anastasios; Barek, Jiří

    2012-01-01

    Over the last twelve years, it has been demonstrated that bismuth electrodes have comparable electroanalytical performance to mercury electrodes in the negative potential range. Since the toxicicty of bismuth is lower than that of mercury, bismuth can serve as an alternative “green” electrode material to mercury. However, the great majority of published work at bismuth–based electrodes is concerned with the determination of trace metals by voltammetric techniques with only few applications de...

  3. Development of Bismuth-based Lead-free Piezoelectric Materials: Thin Film Piezoelectric Materials via PVD and CSD Routes

    Science.gov (United States)

    Jeon, Yu Hong

    Piezoelectric materials have been widely used in electromechanical actuators, sensors, and ultrasonic transducers. Among these materials, lead zirconate titanate Pb(Zr1-xTix)O3 (PZT) has been primarily investigated due to its excellent piezoelectric properties. However, environmental concerns due to the toxicity of PbO have led to investigations into alternative materials systems. Bismuth-based perovskite piezoelectric materials such as (Bi0.5,Na0.5)TiO3 - (Bi0.5K 0.5)TiO3 (BNT - BKT), (Bi0.5,Na0.5 )TiO3 - (Bi0.5K0.5)TiO3 - BaTiO3(BNT - BKT - BT), (Bi0.5K 0.5)TiO3 - Bi(Zn0.5,Ti0.5)O 3 (BKT - BZT), and (Bi0.5,Na0.5)TiO 3 - (Bi0.5K0.5)TiO3 - Bi(Mg 0.5,Ti0.5)O3 (BNT - BKT - BMgT) have been explored as potential alternatives to PZT. These materials systems have been extensively studied in bulk ceramic form, however many of the ultimate applications will be in thin film embodiments (i.e., microelectromechanical systems). For this reason, in this thesis these lead-free piezoelectrics are synthesized in thin film form to understand the structure-property-processing relationships and their impact on the ultimate device response. Fabrication of high quality of 0.95BKT - 0.05BZT thin films on platinized silicon substrates was attempted by pulsed laser deposition. Due to cation volatility, deposition parameters such as substrate temperature, deposition pressure, and target-substrate distance, as well as target overdoping were explored to achieve phase pure materials. This route led to high dielectric loss, indicative of poor ferroelectric behavior. This was likely a result of the poor thin film morphology observed in films deposited via this method. Subsequently, 0.8BNT - 0.2BKT, 85BNT - 10BKT - 5BT, and 72.5BNT - 22.5BKT - 5BMgT (near morphotropic phase boundary composition) were synthesized via chemical solution deposition. To compensate the loss of A-site cations, overdoped precursor solutions were prepared. Crystallization after each spin cast layer were required to

  4. Microstructures of nickel-base alloy dissimilar metal welds

    OpenAIRE

    Mouginot, Roman; Hänninen, Hannu

    2013-01-01

    Dissimilar metal welds (DMWs) between low-alloy steels (LAS), stainless steels (SS) and nickel-base alloys are very important in the design of conventional and nuclear power plants (NPPs). They help to reach better performances for high temperature environment but they can promote premature failure of components. Failure is often related to cracking in the heat affected zone of base materials. In this study, a literature review was conducted concerning the behavior of Inconel Ni-base alloy...

  5. Determining the background levels of bismuth in tissues of wild game birds: a first step in addressing the environmental consequences of using bismuth shotshells

    International Nuclear Information System (INIS)

    Bismuth shotshells have been approved as a 'nontoxic' alternative to lead in North America. Approval was based on a limited number of studies; even background levels of bismuth in wildfowl were unknown. We report on the concentration of bismuth (and lead) in muscle and liver tissues of wildfowl (Anas platyrhynchos, Anas acuta, Anas crecca, Branta canadensis, Chen caerulescens) harvested with lead shotshell. Average liver-bismuth levels detected in the present study (e.g., teal, 0.05 μg/g dw; mallard, 0.09 μg/g dw) suggest analytical error in other studies examining the effects of bismuth in birds. Significant positive relationships between bismuth- and lead-tissue levels for muscle when all species were combined (and for B. canadensis and C. caerulescens separately) can be explained by noting that bismuth is a contaminant of lead. Thus, more research is recommended to confirm the appropriateness of bismuth as a 'nontoxic' shot alternative

  6. Indentation toughness of Mo5Si3-based alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The indentation toughness of Mo5Si3 -based phases was studied with regard to different alloying elements, amount of alloying addition as well as the presence of secondary phases. Cr, Ti, Nb, Ni and Co were added as alloying elements. The results show that the indentation fracture toughness of Mo5Si3 increases with the alloying additions, from 2.4 Mpa *m1/2 for mon olithic to just over 3 Mpa*m1/2 for highly alloyed Mo5Si3. Small volume fractions of brittle secondary phases may have a positive impact on the inde ntation toughness; while larger fractions seems to lower the toughness.

  7. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    International Nuclear Information System (INIS)

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss

  8. Metabolism of Bismuth Subsalicylate and Intracellular Accumulation of Bismuth by Fusarium sp. Strain BI

    OpenAIRE

    Dodge, Anthony G.; Wackett, Lawrence P

    2005-01-01

    Enrichment cultures were conducted using bismuth subsalicylate as the sole source of carbon and activated sludge as the inoculum. A pure culture was obtained and identified as a Fusarium sp. based on spore morphology and partial sequences of 18S rRNA, translation elongation factor 1-α, and β-tubulin genes. The isolate, named Fusarium sp. strain BI, grew to equivalent densities when using salicylate or bismuth subsalicylate as carbon sources. Bismuth nitrate at concentrations of up to 200 μM d...

  9. Study on technology for manufacturing alloy (lead-tin-bismuth-cadmium) having low melting temperature (≤ 80 deg C) used to shield radioactive rays for treating cancer

    International Nuclear Information System (INIS)

    Up to now, hospitals in Vietnam have mostly imported radioactive equipments from America, German, France, England to treat cancer. Accompany with those equipments, alloy, namely Cyroben having low melting temperature (≤ 80 oC) is used to cover patients good tissues in order to protect them against harmful rays and help radioactive rays get through the cast hole to kill cancer cells. This project is carried out for determining chemical compositions and melting temperatures of researched alloy to create alloy having low melting temperature (≤ 80 oC) to meet demand for treating cancer in Vietnam. (author)

  10. RECYCLING TECHNOLOGY INTO INDUSTRIAL TURNOVER OF BISMUTH AND MOLYBDENUM FROM DEAD CATALYST

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2015-05-01

    Full Text Available The technology of separate extraction of bismuth and molybdenum from spent catalyst was presented and information on the effectiveness of its use in a composition of comprehensive modifier in the iron-carbon alloy was given.

  11. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  12. Thermal sprayed iron base alloys coatings

    International Nuclear Information System (INIS)

    Particularities of thermal spraying of iron-based alloys coatings are associated with sufficiently great values of parameter of melting difficulty (for Fe D = 2.08 I-10/sup 10/ kJ.kg/sup -1/.m/sup -3/), and relatively low values of coefficients-of heat accumulation (for Fe b=C.raw.Lambda /sub 0.5/=108 W.m/sup -2/.K.sec/sup-0.5/). These materials are less inclined to form quality coating under the influence of the thermal activation and therefore it is reasonable to use in addition the mechanical activation of substrate surface. The powder of iron-base alloy FeSi/sub 7/AI/sub 3.5/C/sub 2/ was obtained by melt-atomization with water hardening of droplets. The main phase components of powder are alpha and gamma -solid solution on base of Fe (austenite), cementite (Fe/sub 3/C), metastable rhombic lattice x-phase, and possibly metastable carbide Fe/sub 2/C. When the powder particles shape is oval which axis dimensions about 80 and 300 micro meter, the main phase components of detonation sprayed coatings in case of oxy-acetylene gas mixture are alpha and gamma -phases, in case of oxy-propane-butane mixture the coating phase component the same as initial powder. When the powder particles size is 63-100 micro meter, the coatings phase components are alpha and gamma - solid solutions, Fe/sub 3/C, x-phase, Fe/sub 2/C, Fe/sub 3/0/sub 4/ and FeO. The main phase components of FeSi/sub 7/B/sub 12,6/ powder are alpha-solid solution, borides Fe/sub 2/B and FeB, X- phase. The sprayed coatings have the same phase composition. These types of Fe-base alloys powders have relatively low cost, easy available and can used for deposition of wear resistant coatings. (author)

  13. ATOM PROBE STUDY OF TITANIUM BASE ALLOYS : PRELIMINARY RESULTS

    OpenAIRE

    Menand, A.; Chambreland, S.; Martin, C

    1986-01-01

    Two different titanium base alloys, Ti46 Al54 and Ti88.8 Cu2.3, Al8.9, have been studied by atom probe microanalysis. A precipitate of Ti2 Al was analysed in the binary alloys. Micro-analysis of Ti Cu Al alloy revealed the presence of Copper enriched zones. The study has also exhibited a penetration of Hydrogen in the samples, probably due to preparation technique. The results demonstrate the feasibility of studies on titanium base alloys by mean of atom probe.

  14. Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique

    Science.gov (United States)

    Subohi, Oroosa; Kumar, G. S.; Malik, M. M.; Kurchania, Rajnish

    2015-03-01

    The effect of fuel characteristics on the processing and properties of bismuth titanate (BIT) ceramics obtained by solution combustion route using different fuels are reported in this paper. Dextrose, urea and glycine were used as fuel in this study. The obtained bismuth titanate ceramics were characterized by using XRD, SEM at different stages of sample preparation. It was observed that BIT obtained by using dextrose as fuel shows higher dielectric constant and higher remnant polarization due to smaller grain size and lesser c-axis growth as compared to the samples with urea and glycine as fuel. The electrical behavior of the samples with respect to temperature and frequency was also investigated to understand relaxation phenomenon.

  15. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    International Nuclear Information System (INIS)

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data

  16. Insulin-like growth factor-I in Helicobacter pylori gastritis and response to eradication using bismuth based triple therapy.

    OpenAIRE

    Taha, A. S.; Beastall, G.; Morton, R; Park, R H; Beattie, A D

    1996-01-01

    AIMS: To measure insulin-like growth factor-I (IGF-I) concentrations in the presence and absence of Helicobacter pylori infection and in response to eradication of the organism. METHODS: An enzyme linked immunosorbent assay was used to measure gastric and fasting serum concentrations of IGF-I in 17 patients with and 11 without H pylori infection. Repeat assessments were performed in the infected patients six weeks after they received a two week course of bismuth chelate, metronidazole, and am...

  17. Hot rolling of intermetallics FeAl phase based alloys

    OpenAIRE

    G. Niewielski; D. Kuc; Schindler, I.; I. Bednarczyk

    2008-01-01

    Purpose: The one of major problem restricting universal employment of intermetallic phase base alloy istheir low plasticity which leads to hampering their development as construction materials. The following workconcentrates on possibilities to form through rolling process the alloys with various aluminium content.Design/methodology/approach: After casting and annealing, alloy specimens were subjected to axialsymmetriccompression at temperatures ranging from 900 to 1200°C at 10 s-1 strain rat...

  18. Intermetallic growth at the interface between copper and bismuth-tin solder

    OpenAIRE

    Vollweiler, Fred O. P.

    1993-01-01

    Approved for public release; distribution is unlimited. Tin-bismuth alloys have been proposed as alternatives to lead containing solders for interconnection and packaging applications. Consequently, the interface between copper metallizations and bismuth-tin solders needs to be evaluated with respect to brittle intermetallic formation. In the binary Bi-Sn alloys both the Cu6Sn5 and Cu3Sn intermetallic phases were found at the Cu/ solder interface after exposure at 250 deg C, 300 deg C, and...

  19. HIGH CYCLE FATIGUE PROPERTIES OF NICKEL-BASE ALLOY 718

    Institute of Scientific and Technical Information of China (English)

    K.Kobayashi; K.Yamaguchi; M.Hayakawa; M.Kimura

    2004-01-01

    The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strengtn was 0.51 at 107 cycles. In contrast, the fatigue strength of the coarse-grain alloy was 0.32 at the same cycles, although the fatigue strengths in the range from 103to 105 cycles are the same for both alloys. The fracture appearances fatigued at around 106 cycles showed internal fractures originating from the flat facets of austenite grains for both alloys. The difference in fatigue strength at 107 cycles between the fine- and coarse-grain alloys could be explained in terms of the sizes of the facets from which the fractures originated.

  20. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  1. Acoustic and electrical properties of bismuth sodium titanate-based materials

    Science.gov (United States)

    Hejazi Dehaghani, Seyed Mehdi

    In this research, an attempt has been made to develop and characterize lead-free ceramics, transducers, and thin films based on Bi0.5Na 0.5TiO3 (BNT) compositions. BNT-based ceramics with different compositions were prepared by mixed oxide route. The electromechanical and acoustic properties of the ceramics were studied. 0.88BNT-0.08BKT-0.04BT (BNKTBT88) and 0.076BNT-0.20BKT-0.04BLT (BNKLT76) ceramics showed relatively high values of piezoelectric coefficient (d33~170-175 pC.N-1), dielectric constant (850-950), and planar coupling coefficient (kp~0.32-0.37). On the other hand, BNKLT88 ceramics with a rhombohedral structure exhibited high mechanical quality factor (Qm~420). Acceptor dopants such as Mn and Fe were doped in BNKLT88 ceramics. By optimizing the powder processing and sintering temperature, Qm values as high as 900-975 were obtained in 1.5 mol.% Fe or Mn-doped ceramics sintered at 1100 °C. This composition showed the maximum vibration velocity (0.6 m.s-1), minimum heat generation, minimum input power, and the best efficiency among the studied compositions. High frequency ultrasonic transducers for medical imaging were designed and fabricated based on the BNKLT88 ceramics. The focused transducer with a center frequency of 23 MHz, exhibited a -6dB bandwidth and insertion loss of 55% and -32.1 dB, respectively. B-mode images of a wire phantom (30 microm in diameter) were produced by the transducer. BNT-based thin films with four different compositions in BNT-BKT-BT as well as BNT-BKT-BLT systems were deposited on (001)-oriented SrRuO3/SrTiO 3 substrates by pulsed laser deposition technique. The effects of deposition parameters on the microstructure, chemical composition, and electrical properties of thin films were evaluated. Under optimized condition, BNKTBT88 thin films exhibited a remnant polarization of about 30 muC.cm-2 and coercive field of 85 kV.cm-1. The dielectric constant and loss tangent at 1 kHz were measured to be 645 and 0.052, respectively

  2. Preparation and High-T/sub c/ (zero)measurements of bismuth based superconductors

    International Nuclear Information System (INIS)

    The Bi-based superconductors with Pb and Sb doped were prepared by solid state reaction method. All samples were cooled slowly in air. The T/sub c/(Zero) of the samples were determined by the standard electrical method. It was found that Bi/sub 2/-Sr/sub 2/-Ca/sub 2/-Cu/sub 2/-O/sub x/ had T/sub c/(Zero) near 75 K. The superconducting Bi/sub 1.6/-Pb/sub 0.4/-Sr/sub 2/-Ca/sub 2/-Cu/sub 3/O/sub x/ and Bi/sub 1.6/-Pb/sub 0.3/-Sb/sub 0.1/-Sr/sub 2/-Ca/sub 2/-Cu/sub 3/O/sub x/ showed T/sub c/(Zero) near 113 K and 141/K respectively. (author)

  3. Domain switching in nanometer scale in Bismuth-based relaxor solid solution

    International Nuclear Information System (INIS)

    Microscopic piezoresponse force microscopy observation in 0.9967(Na1/2Bi1/2)TiO3(NBT)-0.0033BaTiO3(BT) rhombohedral (001) plate reveals two kinds of piezoresponse images, one with domain switching characterized with superior piezoresponsibility and the other without one, whereas macroscopic observation reveals non-switching of domain. Such microscopic remarkable difference of domain switching depends on coercive field caused by localized nucleation of domains with reversed polarization. Such coercive fields depend on relaxor states induced by random fields due to built-in charge disorder resulting from lattice defects at A-site and oxygen vacancies in ABO3 perovskite. The random fields based on lattice defects on {110} plane lower activation barrier for domain switching, leading to nucleation and growth of domains, while for non-switching of domains, oxygen vacancies on {110} and/or {001} plane play a role as clamping center for restriction of domain switching.

  4. LASER CLADDING WITH COBALT-BASED HARDFACING ALLOYS

    OpenAIRE

    Frenk, A.; WagniÈre, J.-D.

    1991-01-01

    Preliminary results aimed at designing Co-based hardfacing alloys specifically for the laser cladding process are reported. Three alloys, ranging from hypo- to hypereutectic were deposited using scanning velocities between 1.7 and 170 mm/s. The microstructures and the dry sliding wear resistances of the clads were investigated. First trends relating composition to dry sliding wear resistance were deduced.

  5. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  6. Metabolism of bismuth subsalicylate and intracellular accumulation of bismuth by Fusarium sp. strain BI.

    Science.gov (United States)

    Dodge, Anthony G; Wackett, Lawrence P

    2005-02-01

    Enrichment cultures were conducted using bismuth subsalicylate as the sole source of carbon and activated sludge as the inoculum. A pure culture was obtained and identified as a Fusarium sp. based on spore morphology and partial sequences of 18S rRNA, translation elongation factor 1-alpha, and beta-tubulin genes. The isolate, named Fusarium sp. strain BI, grew to equivalent densities when using salicylate or bismuth subsalicylate as carbon sources. Bismuth nitrate at concentrations of up to 200 muM did not limit growth of this organism on glucose. The concentration of soluble bismuth in suspensions of bismuth subsalicylate decreased during growth of Fusarium sp. strain BI. Transmission electron microscopy and energy-dispersive spectroscopy revealed that the accumulated bismuth was localized in phosphorus-rich granules distributed in the cytoplasm and vacuoles. Long-chain polyphosphates were extracted from fresh biomass grown on bismuth subsalicylate, and inductively coupled plasma optical emission spectrometry showed that these fractions also contained high concentrations of bismuth. Enzyme activity assays of crude extracts of Fusarium sp. strain BI showed that salicylate hydroxylase and catechol 1,2-dioxygenase were induced during growth on salicylate, indicating that this organism degrades salicylate by conversion of salicylate to catechol, followed by ortho cleavage of the aromatic ring. Catechol 2,3-dioxygenase activity was not detected. Fusarium sp. strain BI grew with several other aromatic acids as carbon sources: benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, gentisate, d-mandelate, l-phenylalanine, l-tyrosine, phenylacetate, 3-hydroxyphenylacetate, 4-hydroxyphenylacetate, and phenylpropionate. PMID:15691943

  7. Fabrication and characterization of niobium based Fe-Cr alloys via mechanical alloying

    International Nuclear Information System (INIS)

    Niobium (Nb) based alloys and composites are currently used in various high temperature applications such as rocket engine nozzles, superconducting magnets, and automotive structural components. Niobium has also been traditionally employed as a micro-alloying element to fabricate high strength, low alloy steels and nickel based superalloys (example: Inconel 718) on account of its ability to form nano dispersions/precipitates which effectively impede high temperature grain growth. Traditionally, niobium alloys such as C-103 (Nb-10Hf-1Ti) and FS-85 (Nb-10W-28Ta-1Zr) having excellent high temperature properties have been fabricated using arc melting and e-beam melting methods. However these alloys have not been widely used on account of their high fabrication costs. On the other hand, nanostructured steels such as oxide dispersion strengthened (ODS) alloys (example: 12Y1, 12YWT, FeCrAl, HT-9, Hestalloy etc) are being proposed for high temperature structural applications for new generation nuclear reactors. In this context we present some of the work related to fabrication and characterization of some known ODS steel compositions with Nb as a micro-alloying element that is currently underway at the High Temperature Materials Laboratory at Virginia Commonwealth University in context of high temperature nuclear applications. (author)

  8. Processing TiAl-Based Alloy by Elemental Powder Metallurgy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    TiAl-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48Al alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48Al alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γlamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAl-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in α field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAl-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service.

  9. Stress corrosion cracking of nickel-base alloy weldments

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) of weldments occurs in media such as chloride, hydrofluoric acid, polythionic acid, caustic soda and molten metals. Nickel-base alloys on account of their low SCC are preferred for weldments in the above media. However, the choice of a particular nickel-base alloy depends upon the condition in which they are used. Studies on this aspect are reviewed. In reprocessing plants, Ni-Cr-Mo alloy No6625 and No6455 are found suitable. The Ni-Cr alloy No6600 failed in BWR type reactor due intergranular SCC. The alloy No6690 which has a higher chromium content is immune to intergranular SCC. Reduction of free carbon in the matrix of the weld metal makes it resistant to intergranular SCC. (M.G.B.)

  10. The effects of nanoparticle inclusions upon the microstructure and thermoelectric transport properties of bismuth telluride-based composites

    Science.gov (United States)

    Gothard, Nicholas Wesley

    Research into materials that have high efficiencies of thermoelectric heat-energy conversion has been at a plateau since the middle of the last century. During this time, efficiencies have been engineered high enough for several interesting niche applications but not high enough for widespread adaptation into traditional power generation or refrigeration technologies. The past decade has seen considerable advancement, as a number of theoretical works have suggested that lower dimensional structures could hold the key for enhanced efficiency, and several experiments have provided the proof of principle needed to inspire just such a research direction. The benefit of low dimensional structures for thermoelectric efficiency comes from both the potential enhancement of the electronic properties due to quantum confinement effects as well as from the potential for increased scattering of heat-carrying phonons. Widespread application of these principles for technological application requires the creation of composites of nanostructures that can be manufactured easily with dimensions on the bulk materials scale. A good starting point for such materials research is to manufacture composites of materials that are currently known to have high thermoelectric efficiencies by incorporating nanostructures into a bulk matrix. The goal of this project is to create nanocomposites using bismuth telluride, a compound known to have one of the highest thermoelectric efficiencies at room temperature, as a matrix material. Various methods of synthesizing sufficient quantities of bismuth telluride nanostructures were attempted, including pulsed laser vaporization, chemical vapor deposition, and solvothermal synthesis. The method of solvothermal synthesis was found to be the simplest approach for producing high yields of bismuth telluride nanostructures. In the initial stages of the project, cold pressing was tested as a means of compaction, but in the end a uniaxial hot pressing technique

  11. Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells

    OpenAIRE

    Han, Lihao; Abdi, Fatwa F.; Van De Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Arno H. M. Smets

    2014-01-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2 % under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten–bismuth vanadate (W:BiVO_4) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light t...

  12. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse; Panagopoulos, C. N.; Papachristos, V. D.; Katsikis, S.

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion and...... wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  13. The role of bismuth on the microstructure and corrosion behavior of ternary Mg–1.2Ca–xBi alloys for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: • Secondary phases have a significant effect on corrosion properties of the alloys. • Microstructure of Mg–Ca–xBi was refined significantly after Bi addition. • Addition of 0.5 wt.% Bi to Mg–Ca alloy leads to increase corrosion resistance. • Microstructure analysis showed needle-shaped precipitates at the grain boundaries. - Abstract: In this study the influence of various Bi additions on the microstructure and corrosion behavior of the Mg–1.2Ca–xBi alloys (x = 0.5, 1.5, 3, 5, 12 wt.%) were evaluated by using optical and scanning electron microscopy, immersion and electrochemical tests. Microstructural observations showed that the refinement efficiency became more pronounced with increased Bi amount. Microstructural results of Mg–1.2Ca–xBi (x = 0.5, 1.5, and 3) indicated that the formation of three distinct phases—namely α-Mg, Mg2Ca and Mg3Bi2. However, further addition of Bi to 5 and 12 wt.% leads to evolution of α-Mg, Mg3Bi2, and Mg2Bi2Ca phases. The addition of Bi up to 0.5 wt.% enhanced corrosion resistance while further addition from 1.5 to 12 wt.% accelerated the degradation rate because of the emergence of more galvanic coupling between the α-Mg phases and secondary phases. The analyses showed that the Mg–1.2Ca–0.5Bi alloy gives the best corrosion resistance behavior, which makes it ideal for biodegradable medical applications

  14. FABRICATION AND TESTING OF MICROWAVE SINTERED SOL-GEL SPRAY-ON BISMUTH TITANATE-LITHIUM NIOBATE BASED PIEZOELECTRIC COMPOSITE FOR USE AS A HIGH TEMPERATURE (>500 deg. C) ULTRASONIC TRANSDUCER

    International Nuclear Information System (INIS)

    Bismuth titanate-lithium niobate based ultrasonic transducers have been fabricated using a sol-gel spray-on deposition technique. These transducers were then tested to determine their potential as high temperature ultrasonic transducers. Fabricated transducers were capable of operating to 1000 deg. C in pulse-echo mode; however, the exposure to such extreme temperatures appears to be destructive to the transducers.

  15. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    Alloys of Cr-Cr{sub 2}Nb with exceptionally high strength at 1200{degrees}C have been developed. However, these compositions suffer from limited ductility and toughness at room temperature. Despite improvements from processing modifications, as-fabricated defects still limit room temperature mechanical behavior. In contrast, an alloy system with only a small mismatch of the coefficients of thermal expansion of the two phases, Cr-Cr{sub 2}Zr, showed good fabricability. However, these alloys are weaker than Cr-Cr{sub 2}Nb compositions at high temperatures and have poor oxidation resistance. Silicide coatings can provide high-temperature oxidation and sulfidation protection of these alloys. Improvements in room temperature mechanical properties of Laves-phase-strengthened alloys will rely on further development based on increasing the ductility of the matrix phase by impurity control and compositional modifications.

  16. On the mechanical properties of TiNb based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Georgarakis, K. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Yokoyama, Y. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Yavari, A.R., E-mail: euronano@minatec.inpg.fr [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France)

    2013-09-15

    Highlights: •Systematic study of compressive behaviors of TiNb based alloys in different states. •Comparison between X-ray diffraction results in reflection and transmission mode. •High melting temperature TiNb based alloys were fabricated by copper mold casting. •Textures of studied alloys are analyzed through synchrotron radiation data. -- Abstract: A series of TiNb(Sn) alloys were synthesized by copper mold suction casting and subjected to different heat treatments (furnace cooling or water quenching). The microstructure, thermal and mechanical properties of the as-cast and heat treated samples were investigated. For the Ti–8.34 at.% Nb alloy, the as-cast and water quenched samples possess martensitic α′′ phase at room temperature and compression tests of these samples show occurrence of shape memory effect. For β phase Ti–25.57 at.% Nb alloys, stress-induced martensitic transformation was found during compression in the as-cast and water quenched samples. For the ternary Ti–25.05 at.%Nb–2.04 at.%Sn alloy, conventional linear elastic behavior was observed. It is shown that the addition of Sn increases the stability of the β phase. The Young’s moduli of these alloys were also measured by ultrasonic measurements. Water-quenched Ti–25.57 at.%Nb alloy was found to exhibit the lowest Young’s modulus value. Sn addition has small impact on the Young’s moduli of the TiNb alloys.

  17. Development of Mg-based Hydrogen Storage Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail,we reviewed the preparation and properties of Mg-Ni-based hydrogen storage alloys. All kinds of attempts have been done to improve the hydriding and dehydriding behaviors. It is found that the partial substitution of foreign elements can decrease the hydrogen absorption temperature,especially the substitution of a more electronegative element, such as Al and Mn. Mechanical alloying (MA) and mechanical grinding (MG) are the most effective methods to improve the hydriding/dehydriding kinetics and electrochemical capacity, and decrease the desorption temperature, but the corrosion resistance is so poor that the 80% of maximum capacity is lost within ten cycles. Microencapsulation is a useful measurement for improving the corrosion resistance and electrocatalytic activity. In order to improve the properties of the alloys for practical application, the alloys should have a large number of defects, which give activated sites, subsequently,MA, MG and electroless plating should be used to improve the hydriding/dehydriding kinetics and protect the surface of alloys, respectively. The new composite Mg-based alloys give a new way for the hydrogen storage material to practical application. Furthermore we put forward several problems which will be discussed in future.

  18. Nonlinear Hamiltonian modelling of magnetic shape memory alloy based actuators.

    OpenAIRE

    Gauthier, Jean-Yves; Hubert, Arnaud; Abadie, Joël; Chaillet, Nicolas; Lexcellent, Christian

    2008-01-01

    This paper proposes an application of the Lagrangian formalism and its Hamiltonian extension to design, model and control a mechatronic system using Magnetic Shape Memory Alloys. In this aim, an original dynamical modelling of a Magnetic Shape Memory Alloy based actuator is presented. Energy-based techniques are used to obtain a coherent modelling of the magnetical, mechanical and thermodynamic phenomena. The Lagrangian formalism, well suited in such a case, is introduced and used to take int...

  19. The accurate determination of bismuth in lead concentrates and other non-ferrous materials by AAS after separation and preconcentration of the bismuth with mercaptoacetic acid.

    Science.gov (United States)

    Howell, D J; Dohnt, B R

    1982-05-01

    A method for determining 0.0001% and upwards of bismuth in lead, zinc or copper concentrates, metals or alloys and other smelter residues is described. Bismuth is separated from lead, iron and gangue materials with mercaptoacetic acid after reduction of the iron with hydrazine. Large quantities of tin can be removed during the dissolution. An additional separation is made for materials high in copper and/or sulphate. The separated and concentrated bismuth is determined by atomic-absorption spectrometry using the Bi line at 223.1 nm. The proposed method also allows the simultaneous separation and determination of silver. PMID:18963145

  20. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  1. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  2. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  3. Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3 Bi2I9 for Photovoltaic Applications.

    Science.gov (United States)

    Singh, Trilok; Kulkarni, Ashish; Ikegami, Masashi; Miyasaka, Tsutomu

    2016-06-15

    Methylammonium iodo bismuthate ((CH3NH3)3Bi2I9) (MBI) perovskite is a promising alternative to rapidly progressing hybrid organic-inorganic lead perovskites because of its better stability and low toxicity compared to lead-based perovskites. Solution-processed perovskite fabricated by single-step spin-coating and subsequent heating produced polycrystalline films of hybrid perovskite (CH3NH3)3Bi2I9), whose morphology was influenced drastically by the nature of substrates. The optical measurements showed a strong absorption band around 500 nm. The devices made on anatase TiO2 mesoporous layer showed good performance with current density over 0.8 mA cm(-2) while the devices on brookite TiO2 layer and planar (free of porous layer) was inefficient. However, all the MBI devices were stable to ambient conditions for more than 10 weeks. PMID:27225529

  4. A Computationally Based Approach to Homogenizing Advanced Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P D; Cowen, C J

    2011-02-27

    We have developed a computationally based approach to optimizing the homogenization heat treatment of complex alloys. The Scheil module within the Thermo-Calc software is used to predict the as-cast segregation present within alloys, and DICTRA (Diffusion Controlled TRAnsformations) is used to model the homogenization kinetics as a function of time, temperature and microstructural scale. We will discuss this approach as it is applied to both Ni based superalloys as well as the more complex (computationally) case of alloys that solidify with more than one matrix phase as a result of segregation. Such is the case typically observed in martensitic steels. With these alloys it is doubly important to homogenize them correctly, especially at the laboratory scale, since they are austenitic at high temperature and thus constituent elements will diffuse slowly. The computationally designed heat treatment and the subsequent verification real castings are presented.

  5. The shape memory effect in systems Cu-based alloys

    OpenAIRE

    2013-01-01

    330a The aim of this work was to analyse the mechanisms of hindered internal passivation of silver based alloys which was obtained by the modification of basic chemical composition. A generalisation of the phenomenon, experimental verification and the estimated range of micro-element concentration is also introduced. The ability for inoculation of a particular alloy is determined by the differences between the formation energies of oxides, as well as their crystallographic similarity. Therefo...

  6. Incorporation of Refractory Metals into Niobium Base Alloys

    OpenAIRE

    Antoni-Zdziobek, A.; Driole, J.; Durand, F; Durand, Franck

    1995-01-01

    Niobium-based alloys with additions such as Al, Ti and Mo were prepared in an inductive cold crucible. A process route was established to provide homogeneous ingots. Key ideas concerning the application of inductive cold crucible to preparation of refractory alloys are brought out. A model is proposed to explain and quantify the experimental observations, which couples the diffusive and convective heat transfers and the heat of mixing involved.

  7. Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection

    International Nuclear Information System (INIS)

    Highlights: → A regular solution model for solute segregation is capable of estimating the effect of solutes on the stability of nanocrystalline Fe. → Stability increases for solutes having larger heats of segregation. → Zr and Ta had an effect on stabilizing the nanocrystalline microstructure of Fe, while Cr and Ni did not. - Abstract: Using a modified regular solution model for grain boundary solute segregation, the relative thermal stability of a number of Fe-based nanocrystalline binary alloys was predicted with considerable accuracy. It was found that nanocrystalline iron was strongly stabilized by zirconium, moderately stabilized by tantalum, and not significantly stabilized by nickel or chromium. These findings are fully in line with the aforementioned predictions. This success with iron based alloys highlights the utility of this practical approach to selecting stabilizing solutes for nanocrystalline alloys.

  8. Effect of Annealing on Rare Earth Based Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Jinhua

    2004-01-01

    Rare earth-based hydrogen storage alloy used as negative electrode materials for nickel-metal hydride (Ni-MH) batteries are used commercially.The effect of annealing treatment with different annealing temperature and time on the MLNi3.68 Co0.78 Mn0.35 Al0.27 and MMNi3.55 Co0.75 Mn0.40 Al0.30 alloys were investigated.The crystal microstructure,pressure-composition-isotherms (p-C-T) and electrochemical properties of alloys were examined by X-ray diffraction (XRD), automatic PCI monitoring system and electrical performance testing instruments.The optimum annealing treatment conditions of two kinds of alloys were determined.

  9. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-06-01

    The cast products Mg–Sn based alloys are promising candidates for automobile industries, since they provide a cheap yet thermally stable alternative to existing alloys. One drawback of the Mg–Sn based alloys is their insufficient hardness. The hardenability can be improved by engineering the microstructure through additions of Zn to the base alloy and selective aging conditions. Therefore, detailed knowledge about the microstructural characteristics and the role of Zn to promote precipitation hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT was employed to obtain precise chemical information on the distribution of Zn in the microstructure. It was found from microstructural studies that different precipitates with varying sizes and phases were present; lath-shaped precipitates of the Mg2Sn phase have an incoherent interface with the matrix, unlike the lath-shaped MgZn2 precipitates. Furthermore, nano-sized precipitates dispersed in the microstructure with short-lath morphology can either be enriched with Sn or Zn. On the other hand, APT analysis revealed the strong repulsion between Sn and Zn atoms in a portion of the analysis volume. However, larger reconstruction volume required to identify the role of Zn is still limited to the optimization of specimen preparation.

  10. Creep properties of Zr-based alloys with Zr-xNb-xSn-Fe-Cr-Mn alloying system

    International Nuclear Information System (INIS)

    To investigate the effect of Nb and Sn on the mechanical properties of Zr-based alloys with Zr-xNb-xSn-Fe-Cr-Mn alloying system, the Zr-based alloys were manufactured as two kinds of sheet specimens and tested for tensile properties and creep behaviors. PK2 alloy, which have more Sn content than Nb, showed higher tensile strength and creep resistance than PK1 alloy. With rising the applied stress and test temperature, PK1 and PK2 alloys increased the steady state creep rate and activation energy for the creep of the alloys. This behavior would be due to the effect of solid-solution hardening of Sn and the dislocation in worked structure. The stress exponent of the alloys also increased in response to rise the applied stress at the constant temperature. In the stress range of 50 to 180 MPa at 350 .deg. C and 400 .deg. C, the alloys showed creep deformation behavior due to diffusion and viscous dislocation glide mechanism below 4 of the stress exponent (n). Based on the higher stress exponent than 7. It is thought that the alloys were strained by dislocation climb mechanism at the applied stress over 100 MPa at 450 .deg. C

  11. Durable pd-based alloy and hydrogen generation membrane thereof

    Science.gov (United States)

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  12. Cyclic and Linear Polarization of Yttrium-Containing Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Lian, T; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys are produced by rapid solidification from the melt. These alloys may possess unique mechanical and corrosion resistant properties. The chemical composition of the alloy may influence the cooling rate that is necessary for the alloys to be completely vitreous. At the same time, the corrosion resistance of the amorphous alloys may also depend on their chemical composition. This paper examines the anodic behavior of iron-based amorphous alloys containing three different concentrations (1, 3 and 5 atomic %) of yttrium (Y) in several electrolyte solutions. Results from polarization resistance potentiodynamic polarization show that when the alloy contains 5% atomic Y, the corrosion resistance decreases.

  13. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  14. Cobalt-based ferromagnetic shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Kopeček, Jaromír; Jarošová, Markéta; Drahokoupil, Jan; Majtás, Dušan; Kratochvílová, Irena; Heczko, Oleg

    Beijing : Chinese Association for Crystal Growth, 2010 - (Jiang, M.; Chen, C.). GM2 ISBN N. [International Conference on Crystal Growth /16./ (ICCG-16). 08.08.2010-13. 08.2010, Beijing] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824 Institutional research plan: CEZ:AV0Z10100520 Keywords : shape memory alloys * crystal growth * SBSD method * metallography Subject RIV: BM - Solid Matter Physics ; Magnetism http://210.72.154.189/Prelim_Abstract_Display.php?EID=1757

  15. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.; Easton, D.S.; Heatherly, L.

    1996-06-01

    The objective of this work is to develop a new generation of structural materials based on intermetallic alloys for use at high temperatures in advanced fossil energy conversion systems. Target applications of such ultrahigh strength alloys include hot components (for example, air heat exchangers) in advanced energy conversion systems and heat engines. However, these materials may also find use as wear-resistant parts in coal handling systems (for example, nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. One potential class of such alloys is that based on Cr-Cr{sub 2}Nb alloys. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for initial development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), and excellent high-temperature strength (at 1000 to 1250{degrees}C). This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions.

  16. Strain heterogeneity and the production of coarse grains in mechanically alloyed iron-based PM2000 alloy

    OpenAIRE

    Capdevila, Carlos; Miller, U; Jelenak, H; Bhadeshia, H. K. D. H.

    2001-01-01

    Mechanically alloyed iron-based ODS alloys have the potential for application in heat exchangers for biomass processing, with gas operating temperatures and pressures of approximately 1100°C and 15–30 bar. The yttria dispersion in such alloys improves the high-temperature creep and stress rupture life. The elevated temperature strength is enhanced by the development of a coarse-grained microstructure during recrystallisation. Factors controlling the evolution of this desirable micros...

  17. Hot rolling of intermetallics FeAl phase based alloys

    Directory of Open Access Journals (Sweden)

    G. Niewielski

    2008-02-01

    Full Text Available Purpose: The one of major problem restricting universal employment of intermetallic phase base alloy istheir low plasticity which leads to hampering their development as construction materials. The following workconcentrates on possibilities to form through rolling process the alloys with various aluminium content.Design/methodology/approach: After casting and annealing, alloy specimens were subjected to axialsymmetriccompression at temperatures ranging from 900 to 1200°C at 10 s-1 strain rates. In order to analyse theprocesses which take place during deformation, the specimens after deformation were intensely cooled with water.Structural examination was carried out using light microscopy. The process was conducted on the K -350 quartorolling mill used for hot rolling of flat products. The process was conducted in some stages in at temperaturesranging from 1200-900°C:Findings: The research carried out enabled the understanding of the phenomena taking place during hot rolling ofthe investigated alloy. An alloy with 38%at. aluminium concentration can be plastically formed at a temperature of upto 900°C, which has been also confirmed in plastometric studies conducted in the form of hot compression tests.Research limitations/implications:Practical implications: The obtained sheets can be used as constructional elements working in complex stressfields, at a high temperature and corrosive environmentsOriginality/value: The tests have shown that it is possible to form the investigated alloys through rolling processingonly where shields are applied. Rolling of the alloys without shields led to the occurrence of a grid of cracks.

  18. Hyperfine Clock Transitions of Bismuth Donors in Silicon Detected by Spin Dependent Recombination

    OpenAIRE

    Mortemousque, Pierre-André; Berger, Simon; Sekiguchi, Takeharu; Culan, Christophe; Elliman, Robert G.; Kohei M. Itoh

    2014-01-01

    Bismuth donors ion-implanted in $^{28}$Si and $^\\text{nat}$Si are studied using magnetic resonance spectroscopy based on spin dependent recombination. The hyperfine clock transition, at which the linewidth is significantly narrowed, is observed for the bismuth donors. The experimental results are modeled quantitatively by molecular orbital theory for a coupled pair consisting of a bismuth donor and a spin dependent recombination readout center, including the effect of hyperfine and Zeeman int...

  19. Positron lifetime study in dilute electron irradiated lead based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moya, G. [Lab. de Physique des Materiaux, 13 Marseille (France); Li, X.H. [D.R.F.M., S.P.2.M., M.P., C.E.N.G., 38 Grenoble (France); Menai, A. [Lab. de Physique des Materiaux, 13 Marseille (France); Kherraz, M. [Lab. de Physique des Materiaux, 13 Marseille (France); Amenzou, H. [Lab. de Physique des Materiaux, 13 Marseille (France); Bernardini, J. [Lab. de Metallurgie, 13 Marseille (France); Moser, P. [D.R.F.M., S.P.2.M., M.P., C.E.N.G., 38 Grenoble (France)

    1995-06-01

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centred at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (orig.)

  20. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  1. Positron lifetime study in dilute electron irradiated lead based alloys

    International Nuclear Information System (INIS)

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centred at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (orig.)

  2. Improved Mg-based alloys for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Stetson, N.T.; Evans, J. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1998-08-01

    The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a sample having a higher plateau pressure.

  3. Positron lifetime study in dilute electron irradiated lead based alloys

    International Nuclear Information System (INIS)

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centered at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (authors). 3 figs., 9 refs

  4. Effect of B addition to hypereutectic Ti-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Louzguina-Luzgina, Larissa V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, Dmitri V. [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)], E-mail: dml@imr.tohoku.ac.jp; Inoue, Akihisa [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-04-17

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 {beta}-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied.

  5. Structure and magnetic properties of Fe-based amorphous alloys

    Directory of Open Access Journals (Sweden)

    K. Błoch

    2013-12-01

    Full Text Available Purpose: This paper presents studies relating to the structure, magnetic properties and thermal stability of the following bulk amorphous alloys: Fe61Co10Ti3-xY6+xB20 (where x = 0 or 1 Design/methodology/approach: The investigated samples were prepared in the form of rods by using the suction-casting method. The material structures were investigated using X-ray diffractometry and Mössbauer spectroscopy. The thermal stability was determined on the basis of Differential Scanning Calorimetry (DSC plots The magnetic properties were studied using a completely automated set up for measuring susceptibility and its disaccommodation. Findings: It was found that both alloys were amorphous in the as-cast state. The DSC curve obtained for Fe61Co10Ti2Y7B20 alloy exhibited one exothermic peak, while for the Fe61Co10Ti3Y6B20 sample, two peaks were distinguishable, corresponding to the crystallization of the sample. The bifurcation of the maximum on the DSC curve for the Fe61Co10Ti3Y6B20 sample may also testify to the presence of the primary crystallizing phase (FeCo23B6 [1,2]. Data obtained from the analysis of the magnetic susceptibility disaccommodation curves clearly show that in the Fe61Co10Ti3Y6B20 alloy there is less free volumes than in the second of the investigated alloys, this results in a lesser range of relaxation time. Moreover, Fe61Co10Ti3Y6B20 alloy exhibits the better time and thermal stability of magnetic properties In both of the studied alloys, at low frequencies, the total losses were comparable with those observed in classical silicon-iron alloys. Practical implications: A Ferrometer was used for the determination of core losses. Originality/value: The paper presents some researches of the Fe-based bulk amorphous alloys obtained by the suction-casting method.

  6. Purely inorganic coatings based on nanoparticles for magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feil, Florian [DECHEMA e.V., Karl-Winnacker-Institut, Frankfurt am Main (Germany)], E-mail: feil@dechema.de; Fuerbeth, Wolfram; Schuetze, Michael [DECHEMA e.V., Karl-Winnacker-Institut, Frankfurt am Main (Germany)

    2009-03-30

    The chemical nanotechnology is offering a chance to apply stable inorganic coatings onto magnesium alloys. The cast alloy AZ91 as well as the wrought alloy AZ31 could be dip-coated with aqueous dispersions based on commercially available silica particles and various additives. The high surface activity of the nanoparticles and appropriate additives, e.g. boron, aluminium or alkali salts, help to densify these coatings under moderate conditions even suitable for those thermally precarious magnesium alloys. Another coating technique is based on the electrophoretic deposition of nanoparticles already containing all sintering aids. These particles could be synthesised by a base-catalysed sol-gel process. Polydiethoxysiloxane can act as an adhesion promoter for these coatings. Additionally concentration gradients of different oxides within these particles can adjust the coating properties, too. Usually single coatings are very thin (200-500 nm). However, multiple coating applications as well as a process involving special particle mixtures lead to coatings with a thickness of up to several micrometers. Even after thermal treatment at 200 or 400 deg. C these coatings stay crack-free. The composition and texture of these coatings were studied using IR, atomic force microscopy (AFM), scanning electron microscopy (SEM) and other techniques. Electrochemical impedance measurements show an improvement of the corrosion performance by these coatings. The coating resistance is improving with the coating thickness.

  7. Energetics of bismuth vanadate

    Energy Technology Data Exchange (ETDEWEB)

    Nagabhushana, G.P.; Tavakoli, A.H.; Navrotsky, A., E-mail: anavrotsky@ucdavis.edu

    2015-05-15

    Bismuth vanadate has gained considerable interest as a photoanode for water splitting reactions under visible light. It exists in four different polymorphs, out of which three of them have been synthesized. Thermodynamic properties of these three polymorphs are investigated using high temperature oxide melt solution calorimetry. The monoclinic scheelite phase which exhibits photocatalytic activity under visible light is found to be the most stable polymorph, followed by tetragonal scheelite which exhibits activity under UV light. The photocatalytically inactive tetragonal zircon form is found to be the least stable polymorph. The small difference in enthalpy of formation between the two scheelite structures (−8 kJ/mol) is in accord with the reversibility of the transformation between them and the larger difference between the most stable monoclinic phase and the least stable tetragonal zircon phase (−23 kJ/mol) is in accord with the irreversible (monoclinic→tetragonal zircon) phase transformation. - Graphical abstract: Schematic representation of polymorphic transitions in BiVO{sub 4} along with their formation enthalpies. - Highlights: • Bismuth vanadate crystallizes in three different polymorphs. • High temperature calorimetric measurements were made to determine their formation enthalpies. • Enthalpy of formation decreases in the order BV-ms→BV-ts→BV-tz. • Photocatalytically active monoclinic-BiVO{sub 4} was found to be the most stable polymorph.

  8. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    Science.gov (United States)

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring. PMID:25127474

  9. Admittance Loci Based Design of a Plasmonic Structure Using Ag-Au Bimetallic Alloy Film

    OpenAIRE

    Kaushik Brahmachari; Mina Ray

    2013-01-01

    A theoretical study based on the use of admittance loci method in the design of surface plasmon resonance (SPR) based structure using Ag-Au bimetallic alloy film of different alloy fractions and nanoparticle sizes has been reported along with some interesting performance related simulated results at 633 nm wavelength. The sensitivity and other performance parameter issues of the structure based on the choice of correct alloy fraction and nanoparticle size of Ag-Au bimetallic alloy film have a...

  10. An Unusual Bismuth Ethanedisulfonate Network

    Directory of Open Access Journals (Sweden)

    Fabienne Gschwind

    2012-09-01

    Full Text Available The three dimensional bismuth ethanedisulfonate framework Bi(O3SC2H4SO31.5(H2O2 was synthesized under hydrothermal conditions using the bidentate ligand 1,2-ethanedisulfonate and then characterized through X-ray diffraction and elemental analyses. The bismuth cation coordinates at three different ethanedisulfonate ligands and has a coordination number of eight, which is accompanied by a distorted square antiprismatic configuration. Here, we report on the crystal structure of this bismuth metal–organic framework and its coordination behavior, which has thus far not been reported in heavier main group elements.

  11. Melt Protection of Mg-Al Based Alloys

    Directory of Open Access Journals (Sweden)

    María J. Balart

    2016-05-01

    Full Text Available This paper reports the current status of Mg melt protection in view to identify near-future challenges, but also opportunities, for Mg melt protection of Mg-Al based alloys. The goal is to design and manufacture sustainable Mg alloys for resource efficiency, recycling and minimising waste. Among alternative cover gas technologies for Mg melt protection other than SF6: commercially available technologies containing―HFC-134a, fluorinated ketone and dilute SO2―and developed technologies containing solid CO2, BF3 and SO2F2, can potentially produce toxic and/or corrosive by-products. On the other hand, additions of alkaline earth metal oxides to Mg and its alloys have developed a strong comparative advantage in the field of Mg melt protection. The near-future challenges and opportunities for Mg-Al based alloys include optimising and using CO2 gas as feedstock for both melt protection and grain refinement and TiO2 additions for melt protection.

  12. Results from investigations with an instrumented impact machine on a molybdenum base alloy, nickel base alloys, and Incoloy 800

    International Nuclear Information System (INIS)

    Experiments were performed on the molybdenum base alloy TZM, the nickel base alloys Nimocast 713 LC, Inconel 625, Nimonic 86, Hastelloy S, and the iron base alloy Incoloy 800 with an instrumented impact machine. The results are discussed in terms of absorbed impact energies and dynamic fracture toughness. In all cases the agreement between the energy determined by the dial reading and the energy determined by the integration of the load vs. load point displacement diagram was excellent. A procedure for the determination of the dynamic fracture toughness for load vs. load point displacement diagrams exhibiting high oscillations using an averaged curve is proposed. Using this procedure a pronounced influence of the experiments with tup and chisel (5.0 m/s and 0.1 m/s respectively) on the dynamic fracture toughness is not detectable. Using half the drop height, i.e. halving the total energy, lowers the dynamic fracture toughness values for these types of alloys. Low absorbed impact energies are often combined with high fracture toughness values. In these cases there is no or only a small reserve in deformation and/or stable crack growth. (Auth.)

  13. Luminescence properties of IR-emitting bismuth centres in SiO{sub 2}-based glasses in the UV to near-IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Firstova, E G; Vel' miskin, V V; Firstov, S V; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Bufetov, I A [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Khopin, V F; Gur' yanov, A N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Bufetova, G A [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Nishchev, K N [N.P. Ogarev Mordovia State University, Physics and Chemistry Institute, Saransk (Russian Federation)

    2015-01-31

    We have studied UV excitation spectra of IR luminescence in bismuth-doped glasses of various compositions and obtained energy level diagrams of IR-emitting bismuth-related active centres (BACs) associated with silicon and germanium atoms up to ∼5.2 eV over the ground level. A possible energy level diagram of the BACs in phosphosilicate glass has been proposed. The UV excitation peaks for the IR luminescence of the BACs in the glasses have been shown to considerably overlap with absorption bands of the Bi{sup 3+} ion, suggesting that Bi{sup 3+} may participate in BAC formation. (optical fibres)

  14. Optimization of amorphous silicon double junction solar cells for an efficient photoelectrochemical water splitting device based on a bismuth vanadate photoanode.

    Science.gov (United States)

    Han, Lihao; Abdi, Fatwa F; Perez Rodriguez, Paula; Dam, Bernard; van de Krol, Roel; Zeman, Miro; Smets, Arno H M

    2014-03-01

    A photoelectrochemical water splitting device (PEC-WSD) was designed and fabricated based on cobalt-phosphate-catalysed and tungsten-gradient-doped bismuth vanadate (W:BiVO4) as the photoanode. A simple and cheap hydrogenated amorphous silicon (a-Si:H) double junction solar cell has been used to provide additional bias. The advantage of using thin film silicon (TF-Si) based solar cells is that this photovoltaic (PV) technology meets the crucial requirements for the PV component in PEC-WSDs based on W:BiVO4 photoanodes. TF-Si PV devices are stable in aqueous solutions, are manufactured by simple and cheap fabrication processes and their spectral response, voltage and current density show an excellent match with the photoanode. This paper is mainly focused on the optimization of the TF-Si solar cell with respect to the remaining solar spectrum transmitted through the W:BiVO4 photoanode. The current matching between the top and bottom cells is studied and optimized by varying the thickness of the a-Si:H top cell. We support the experimental optimization of the current balance between the two sub-cells with simulations of the PV devices. In addition, the impact of the light induced degradation of the a-Si:H double junction, the so-called Staebler-Wronski Effect (SWE), on the performance of the PEC-WSD has been studied. The light soaking experiments on the a-Si:H/a-Si:H double junctions over 1000 hours show that the efficiency of a stand-alone a-Si:H/a-Si:H double junction cell is significantly reduced due to the SWE. Nevertheless, the SWE has a significantly smaller effect on the performance of the PEC-WSD. PMID:24452785

  15. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  16. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  17. Effect of Impurities and Cerium on Stress Concentration Sensitivity of Al-Li Based Alloys

    Institute of Scientific and Technical Information of China (English)

    孟亮; 田丽

    2002-01-01

    A notch sensitivity factor was derived in order to evaluate the stress concentration sensitivity of Al-Li based alloys. The factor values for the Al-Li alloy sheets containing various contents of impurities and cerium addition were evaluated by determining the mechanical properties. It is found that the impurities Fe, Si, Na and K significantly enhance the stress concentration sensitivity of the alloys 2090 and 8090, whereas cerium addition reduces the stress concentration sensitivity to a certain degree for the high strength alloys. However, an excess amount of cerium addition in the high ductility alloy 1420 can significantly increase the stress concentration sensitivity. As compared with conventional aluminum alloys, the Al-Li based alloys generally show high stress concentration sensitivity. Therefore, a special attention must be paid to this problem in the practical application of Al-Li based alloys.

  18. Smart materials based on shape memory alloys: examples from Europe

    International Nuclear Information System (INIS)

    Shape memory alloys (SMAs) have become increasingly attractive as embedded actuators in polymers yielding adaptive composite structures. In particular, SMA-elements have been used to actively or passively control shape, elastic modules, internal stress level and damping capacity of such smart composites. In the passive approach, copper-base SMA-plates can be used as temperature-sensitive damping elements, an interesting solution to improve the vibrational behaviour of alpine skis for example. Active materials are obtained by the integration of pre-strained Ni-Ti-base thin wires in polymer matrix composites enabling control of the vibrational behaviour through the recovery-stress tuning technique. In this paper, some results of national research programmes in Belgium and Switzerland, mainly concerning the damping capacity, are shown and a new European project entitled ''adaptive composites with embedded shape memory alloy wires'' is presented in which partners from Belgium, Germany, Greece, Great Britain and Switzerland are collaborating. (orig.)

  19. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1995-06-01

    The objective of this task is to develop a new generation of structural materials based on intermetallic alloys for use as critical hot components in advanced fossil energy conversion systems. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for this development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), excellent high-temperature strength (at 1000 to 1250{degrees}C), and potential resistance to oxidation and corrosion. This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions. The major engineering concern with Cr{sub 2}Nb and other A{sub 2}B Laves phases is their poor fracture toughness and fracture resistance at ambient temperatures. The single-phase Cr{sub 2}Nb is very hard ({approximately}800 DPH) and brittle at room temperature. Because of this brittleness, the development effort has concentrated on two-phase structures containing the hard intermetallic phase Cr{sub 2}Nb and the softer Cr-rich solid solution phase. Potential applications of Cr-Cr{sub 2}Nb alloys include hot components (for example, air heat exchangers and turbine blades) in advanced energy conversion systems and heat engines, wear-resistant parts in coal handling systems (e.g., nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. Current studies are focuses on enhancement of fracture resistance in tension at ambient temperatures and oxidation resistance above 1000{degrees}C. This report summarizes recent progress on controlling microstructure and improving the mechanical and metallurgical properties and the high-temperature corrosion behavior of Cr-Cr{sub 2}Nb alloys through alloying conditions, material processing, and heat treatment.

  20. Toughness enhancement in TiAlN-based quarternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sangiovanni, D.G., E-mail: davsan@ifm.liu.se; Chirita, V., E-mail: vio@ifm.liu.se; Hultman, L., E-mail: larhu@ifm.liu.se

    2012-03-30

    Improved toughness in hard and superhard thin films is a primary requirement for present day ceramic hard coatings, known to be prone to brittle failure during in-use conditions. We use density functional theory calculations to investigate a number of (TiAl){sub 1-x}M{sub x}N thin films in the B1 structure, with 0.06 {<=} x {<=} 0.75, obtained by alloying TiAlN with M = V, Nb, Ta, Mo and W. Results show significant ductility enhancements, hence increased toughness, in these compounds. Importantly, these thin films are also predicted to be superhard, with similar or increased hardness values, compared to Ti{sub 0.5}Al{sub 0.5} N. For (TiAl){sub 1-x}W{sub x}N the results are experimentally confirmed. The ductility increase originates in the enhanced occupancy of d-t{sub 2g} metallic states, induced by the valence electrons of substitutional elements (V, Nb, Ta, Mo, W). This effect is more pronounced with increasing valence electron concentration, and, upon shearing, leads to the formation of a layered electronic structure in the compound material, consisting of alternating layers of high and low charge density in the metallic sublattice, which in turn, allows a selective response to normal and shear stresses. - Highlights: Black-Right-Pointing-Pointer DFT calculated mechanical properties of TiAlN-based quarternary alloys. Black-Right-Pointing-Pointer (TiAl){sub 1-x}M{sub x}N alloys with M = V, Nb, Ta, Mo and W for 0.06 {<=} x {<=} 0.75. Black-Right-Pointing-Pointer Ductility enhancement induced by increased valence electron concentration (VEC). Black-Right-Pointing-Pointer Alloys predicted to be superhard, with higher hardness than TiAlN. Black-Right-Pointing-Pointer The hardness/ductility combination implies enhanced toughness in all alloys.

  1. Toughness enhancement in TiAlN-based quarternary alloys

    International Nuclear Information System (INIS)

    Improved toughness in hard and superhard thin films is a primary requirement for present day ceramic hard coatings, known to be prone to brittle failure during in-use conditions. We use density functional theory calculations to investigate a number of (TiAl)1−xMxN thin films in the B1 structure, with 0.06 ≤ x ≤ 0.75, obtained by alloying TiAlN with M = V, Nb, Ta, Mo and W. Results show significant ductility enhancements, hence increased toughness, in these compounds. Importantly, these thin films are also predicted to be superhard, with similar or increased hardness values, compared to Ti0.5Al0.5 N. For (TiAl)1−xWxN the results are experimentally confirmed. The ductility increase originates in the enhanced occupancy of d-t2g metallic states, induced by the valence electrons of substitutional elements (V, Nb, Ta, Mo, W). This effect is more pronounced with increasing valence electron concentration, and, upon shearing, leads to the formation of a layered electronic structure in the compound material, consisting of alternating layers of high and low charge density in the metallic sublattice, which in turn, allows a selective response to normal and shear stresses. - Highlights: ► DFT calculated mechanical properties of TiAlN-based quarternary alloys. ► (TiAl)1−xMxN alloys with M = V, Nb, Ta, Mo and W for 0.06 ≤ x ≤ 0.75. ► Ductility enhancement induced by increased valence electron concentration (VEC). ► Alloys predicted to be superhard, with higher hardness than TiAlN. ► The hardness/ductility combination implies enhanced toughness in all alloys.

  2. Self healing of damage in Fe-based alloys

    OpenAIRE

    Zhang, S.

    2015-01-01

    Steel components can exhibit premature and low-ductility creep fracture, when exposed to high temperatures for long times. The failure arises from the formation, growth and coalescence of ultra-fine cracks and cavities. Self healing of damage is a promising new approach to enhance the lifetime of the steel components, in particular for applications at high temperatures. This thesis aims to realize the self-healing of damage in Fe-based alloys and unravel the mechanism responsible for efficien...

  3. Combined thermodynamic study of nickel-base alloys. Progress report

    International Nuclear Information System (INIS)

    Achievements during this period are the following: (1) initiation of a high-temperature study of the Ni-Ta system using the galvanic cell technique, (2) emf study of high-temperature thermodynamics in the Ni-Mo system, (3) measured heat capacity data on ordered and disordered Ni4Mo, (4) heat capacities of Ni and disordered Ni3Fe, and (5) computer correlation of thermodynamic and phase diagram data in binary Ni-base alloys

  4. High Temperature Internal Oxidation Behavior of Iron Based Alloys

    International Nuclear Information System (INIS)

    A study of growth kinetics and microstructure of internal oxides in the iron-base alloys was carried out by an optical microscope and a scanning electron microscope, so that the growth mechanisms of the oxide precipitates in the internal oxidation zone could be understood in detail. Iron-based alloys, Fe-1%Al, Fe-1%Al-1%Hf, Fe-1%Cr, Fe-1%Cr-1%Hf and Fe-2%Hf, were oxidized in a sealed quartz tube containing Fe/FeO powder mixtures which maintained the oxygen partial pressure at the FeO decomposition pressure at 800 .deg. C for the various time periods to 121 hours. Results show that the growth rate of the oxide precipitates in the internal oxidation zone is controlled by the diffusion of oxygen. The variation of the solute element and the addition of Hf in the iron-base alloys led to a change in the depth of internal oxidation zone and in the oxide morphology. The internal precipitate adopted the form of continuous needles or feathers for the Fe-Al system, whereas that in the Fe-Cr and Fe-2%Hf systems adapted the form of discontinuous crystallites, that is, spheres or polyhedral crystallites. The mechanism of this morphological evolution was explained in detail

  5. Tribological properties of laser cladding TiB2 particles reinforced Ni-base alloy composite coatings on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Long He; Ye-Fa Tan; Xiao-Long Wang; Qi-Feng Jing; Xiang Hong

    2015-01-01

    To improve the wear resistance of aluminum alloy frictional parts,TiB2 particles reinforced Ni-base alloy composite coatings were prepared on aluminum alloy 7005 by laser cladding.The microstructure and tribological properties of the composite coatings were investigated.The results show that the composite coating contains the phases of NiAl,Ni3Al,Al3Ni2,TiB2,TiB,TiC,CrB,and Cr23C6.Its microhardness is HV0.5 855.8,which is 15.4 % higher than that of the Ni-base alloy coating and is 6.7 times as high as that of the aluminum alloy.The friction coefficients of the composite coatings are reduced by 6.8 %-21.6 % and 13.2 %-32.4 % compared with those of the Ni-base alloy coatings and the aluminum alloys,while the wear losses are 27.4 %-43.2 % less than those of the Ni-base alloy coatings and are only 16.5 %-32.7 % of those of the aluminum alloys at different loads.At the light loads ranging from 3 to 6 N,the calculated maximum contact stress is smaller than the elastic limit contact stress.The wear mechanism of the composite coatings is micro-cutting wear,but changes into multi-plastic deformation wear at 9 N due to the higher calculated maximum contact stress than the elastic limit contact stress.As the loads increase to 12 N,the calculated flash temperature rises to 332.1 ℃.The composite coating experiences multi-plastic deformation wear,micro-brittle fracture wear,and oxidative wear.

  6. Preparation and research on poisoning resistant Zr-Co based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    LI Hualing; WANG Shumao; JIANG Lijun; ZHANG Lidong; LIU Xiaopeng; LI Zhinian

    2008-01-01

    At present,all hydrogen storage alloys are poisoned by hydrogen mixed with CO,CO2,etc,which decreases the hydrogen storage property sharply.Zr-Co based hydrogen storage alloys with good poisoning resistance were prepared by alloying,fluorinating,and electroless plating.The experiment results show that the poisoning resistance of the Zr-Co based alloy was improved remarkably after the treatments.The poisoning resistance mechanism of the Zr-Co based hydrogen storage alloys was analyzed.

  7. Electrochemical immunosensor based on bismuth nanocomposite film and cadmium ions functionalized titanium phosphates for the detection of anthrax protective antigen toxin.

    Science.gov (United States)

    Sharma, Mukesh K; Narayanan, J; Upadhyay, Sanjay; Goel, Ajay K

    2015-12-15

    Bacillus anthracis is a bioterrorism agent classified by the Centers for Disease Control and Prevention (CDC). Herein, a novel electrochemical immunosensor for the sensitive, specific and easy detection of anthrax protective antigen (PA) toxin in picogram concentration was developed. The immunosensor consists of (i) a Nafion-multiwall carbon nanotubes-bismuth nanocomposite film modified glassy carbon electrodes (BiNPs/Nafion-MWCNTs/GCE) as a sensing platform and (ii) titanium phosphate nanoparticles-cadmium ion-mouse anti-PA antibodies (TiP-Cd(2+)-MαPA antibodies) as signal amplification tags. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), thermogravimmetric analysis (TGA), Fourier transform-infra red spectroscopy (FT-IR), zeta-potential analysis, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to characterize the synthesized TiP nanoparticles and modified electrode surfaces. The immunosensing performance of BiNPs/Nafion-MWCNTs/GCE was evaluated based on sandwich immunoassay protocol. A square wave voltammetry (SWV) scan from -1.2 to -0.3 V in HAc-NaAc buffer solution (pH 4.6) without stripping process was performed to record the electrochemical responses at -0.75 V corresponding to high content of Cd(2+) ions loaded in TiP nanoparticles for the measurement of PA toxin. Under optimal conditions, the currents increased with increasing PA toxin concentrations in spiked human serum samples and showed a linear range from 0.1 ng/ml to 100 ng/ml. The limit of detection of developed immunosensor was found to be 50 pg/ml at S/N=3. The total time of analysis was 35 min. PMID:26148674

  8. Corrosion of iron-base alloys by lithium

    International Nuclear Information System (INIS)

    A review of corrosion mechanisms operating in lithium-iron-base alloy systems is presented along with data obtained with thermal-convection loops of niobium-stabilized 2 1/4 percent Cr-1 percent Mo steel and types 304L and 321 stainless steels. A corrosion rate of 2.3 μm/year (0.09 mil/year) was obtained on the 2 1/4 percent Cr-1 percent Mo steel at 6000C. Considerably more mass transport of alloying constituents and a maximum corrosion rate of about 14 μm/year (0.55 mil/year) was obtained with the austenitic stainless steels. Results of metallography, x-ray fluorescence analysis, scanning electron microscopy, and weight-change data are presented and discussed

  9. Thermophysical properties of liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Background: Liquid lead-bismuth eutectic (LBE) is important spallation target materials and candidate coolant materials in accelerator driven subcritical (ADS) system. Purpose: Its thermodynamic physical properties are keys to understand the basic problems in ADS R&D. Methods: By the calculation of scientific laws as well as fitting other scholars' experimental results, we tried to obtain the above thermodynamics physical properties. Results: By the calculation, we got formula about characteristic temperatures, density, specific heat, viscosity and thermal conductivity of liquid lead-bismuth alloy. And by fitting other scholars' experimental results, we got the fitting formula. Conclusions: Finally, by the contrast analysis, we found that the fitting formula and calculation formula agree well, and fitting formula more approaches the experimental value with a high accuracy whose differential deviation is not over 1%. (authors)

  10. Comparison between sequential and bismuth-based quadruple therapies as rescue regimen for H. pylori enradication%两种方案对幽门螺杆菌根除失败后补救治疗疗效观察

    Institute of Scientific and Technical Information of China (English)

    徐海燕; 房殿春; 谭克文; 代高举; 宋仁; 刘锫; 彭燕; 陈奇; 胡刚; 罗敏

    2015-01-01

    Objective To compare the efficacy and safety of sequential and bismuth-based quadruple therapies as rescue therapy for H. pylori eradication. Methods One hundred and sixty-three patients, in whom the initial standard triple therapy had failed to eradicate H. pylori infection were included in this study. Patients were randomly assigned to two groups to receive either 10-day sequential therapy or 14-day bismuth-based quadruple therapy with omeprazole (20 mg Bid)), plus colloidal bismuth pectin capsules (200 mg bid), amoxi-cillin (1,000 mg bid), and tinidazole (500 mg bid), respectively. The eradication effect was assessed by the 13C-urea breath test 4 weeks after treatment, adverse events were recorded. Results The eradication rates of H. py-lori in bismuth-based quadruple therapy group and sequential therapy group were 88.5%and 82.3%, respec-tively (P>0.05). The rates of adverse events were 14.1%and 32.9%, respectively. The rate of adverse events in sequential therapy group was statistically significantly higher than that in bismuth-based quadruple therapy group (P<0.05). Conclusion Both bismuth-based quadruple therapy and the sequential therapy were effec-tive as rescue regimen for H. pylori eradication after failure of standard triple treatment. However, sequential therapy showed a higher rate of adverse effects.%目的:评价两种幽门螺杆菌(Helicobacter pylori, H. pylori)补救治疗方案的的疗效和安全性。方法选择我院消化内科规范根除H. pylori,三联方案治疗失败病例163例,随机分为四联方案组(奥美拉唑20 mg+阿莫西林1.0 g+替硝唑500 mg+胶体果胶铋200 mg)和序贯方案组(先奥美拉唑20 mg+阿莫西林1.0 g,后奥美拉唑20 mg+痢特灵0.1 g+克拉霉素500 mg),治疗结束至少4周后通过13C-尿素呼吸试验判断根除效果,评价安全性。结果四联方案组78例,H. pylori根除69例,根除率88.5%,不良反应发生率为14.1%(11例);序贯方案组85例,H. pylori根除70例,根除率82

  11. Pathways for the release of polonium from a lead-bismuth spallation target (thermochemical calculation)

    International Nuclear Information System (INIS)

    An analysis of literature data for the thermochemical constants of polonium reveals considerable discrepancies in the relations of these data among each other as well as in their expected trends within the chalcogen group. This fact hinders a reliable assessment of possible reaction paths for the release of polonium from a liquid lead-bismuth spallation target. In this work an attempt is made to construct a coherent data set for the thermochemical properties of polonium and some of its compounds that are of particular importance with respect to the behaviour of polonium in a liquid Pb-Bi target. This data set is based on extrapolations using general trends throughout the periodic table and, in particular, within the chalcogen group. Consequently, no high accuracy should be attributed to the derived data set. However, the data set derived in this work is consistent with definitely known experimental data. Furthermore, it complies with the general trends of physicochemical properties within the chalcogen group. Finally, well known relations between thermochemical quantities are fulfilled by the data derived in this work. Thus, given the lack of accurate experimental data it can be regarded as best available data. Thermochemical constants of polonium hydride, lead polonide and polonium dioxide are derived based on extrapolative procedures. Furthermore, the possibility of formation of the gaseous intermetallic molecule BiPo, which has been omitted from discussion up to now, is investigated. From the derived thermochemical data the equilibrium constants of formation, release and dissociation reactions are calculated for different polonium containing species. Furthermore equilibrium constants are determined for the reaction of lead polonide and polonium dioxide with hydrogen, water vapour and the target components lead and bismuth. The most probable release pathways are discussed. From thermochemical evaluations polonium is expected to be released from liquid lead-bismuth

  12. Characterization of cold-sprayed nanostructured Fe-based alloy

    International Nuclear Information System (INIS)

    The ball-milled Fe-Si alloy was used as feedstock for deposition of nanocrystalline Fe-Si by cold spraying process. The microstructure of the as-sprayed nanostructured Fe-Si was characterized by using optical microscopy, scanning electron microscopy and transmission electron microscopy. The grain sizes of the feedstock and as-sprayed deposit were estimated based on X-ray diffraction analysis. The microhardness and coercivity of the deposited Fe-Si alloy were characterized. The results showed that the as-sprayed deposit presented a dense microstructure. The mean grain size of the as-deposited Fe-Si was several tens nanometers and comparable to that of the corresponding milled feedstock. The temperature of driving gas presented little effect on the microstructure of cold-sprayed nanostructured Fe-Si deposit. The mechanical alloying induced oxygen contents up to 8 wt% in the feedstocks and subsequent deposits. The microhardness of the deposit reached about 400 Hv. The deposit achieved a high coercivity up to 190 kA/m indicating the potential possibility for applications to recording materials.

  13. Investigation of solidification dynamics of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kobold, Raphael; Herlach, Dieter [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany); Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2013-07-01

    In contrast to experiments with most undercooled binary alloys the velocity of dendritic growth of a Cu50Zr50 alloy does not increase monotonically with undercooling but passes through a maximum and then decreases. To study this behaviour we investigate Zr-based alloys such as CuZr, NiZr and NiZrAl with Zirconium concentrations ranging from 36 to 64 at.% including eutectic and intermetallic phases. We use electrostatic levitation technique to melt and undercool samples with a diameter of 2-3 mm under ultra-high-vacuum conditions. Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures since heterogeneous nucleation on container walls is completely avoided. During crystallisation of the undercooled melt the heat of crystallisation is released. The rapid increase of the temperature at the solid-liquid interface makes the solidification front visible. The velocities of the solidification front are recorded by using a high-speed camera with a maximum rate of 50.000 frames per second and are analyzed with a software for optical ray tracing. Furthermore, we try to model the growth velocity vs. the undercooling temperature and perform sample EBSD analysis with a scanning electron microscope.

  14. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  15. Pack cementation diffusion coatings for iron-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1995-02-01

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels. The Cr-Si ferrite layers have proven to be very resistant to high temperature cyclic oxidation and to pitting in aqueous solutions. The process has been patented, and is being transferred for industrial application, e.g. for water walls of utility boilers, etc. In the proposed extension of this project, the use of mixed pure metal powders in the pack will be extended to achieve similar ferrite Fe-Cr-Al coatings with excellent oxidation resistance, with the eventual transfer of the technology to industry. In other recent studies, Ni-base alloy rods were aluminized by the halide-activated pack cementation process to bring their average composition to that for the ORNL-developed Ni{sub 3}Al, for use as a welding rod. A similar effort to develop a welding rod for the ORNL Fe{sub 3}Al alloy did not yield reproducible coating compositions or growth kinetics. The continued effort to produce Duriron-type (Fe-18Si-5Cr) coatings on steels was not successful. Literature for the intrinsic diffusion coefficients suggests that this task cannot be achieved.

  16. The thermal transient effect on some nickel-based alloys

    International Nuclear Information System (INIS)

    This paper studies two nickel-based alloys after thermal transient tests. Two alloys were tested, namely Inconel 617 (UNS N06617) and Haynes 230 (UNS N06230). These materials are study for to be used in the construction of the steam generators of the future NPP reactors which must operate in severe conditions (high temperature, thermo-mechanical stress, aggressive media). The experiment consisted in thermal transient tests using a few scenarios: fast heating rates (50OC/minute) up to 1,000OC, maintaining this temperature level (0-60 minutes) and slowly/fast cooling. The metallographic analysis consisted in microstructure, micro-hardness determinations and traction tests. The average grain size was determined by linear interception method. The micro hardness was calculated by the relationship from the device technical book. On the traction diagrams the following mechanic characteristics were obtained: breaking resistance (Rm), elongation at rupture (A) and elastic modulus (E). The tested alloys were compared with the received materials. (authors)

  17. Crystallization kinetics of Fe based amorphous alloy

    Science.gov (United States)

    Shanker Rao, T.; Lilly Shanker Rao, T.

    2015-02-01

    Differential Scanning Calorimetry(DSC) experimental data under non-isothermal conditions for Fe based Metglas 2605SA1 (wt% Fe=85-95, Si=5-10, B=1-5) metallic glass ribbons are reported and discussed. The DSC Scans performed at different heating rates showed two step crystallization processes and are interpreted in terms of different models like Kissinger, Ozawa, Boswell, Augis & Bennett and Gao & Wang. From the heating rate dependence of the onset temperature (To) and the crystallization peak temperature (Tp), the kinetic triplet, activation energy of crystallization (E), Avrami exponent (n) and the frequency factor (A) are determined. The determined E for peak I is 354.5 ± 2.5 kJ/mol and for the peak II is 348.2 ± 2.2 kJ/mol, respectively. The frequency factor for peak I is 1.1 × 1023sec-1 and for peak II is 6.1 × 1020sec-1.

  18. Alloy 690 in PWR type reactors; Aleaciones base niquel en condiciones de primario de los reactores tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Serrano, M.

    2005-07-01

    Alloy 690, used as replacement of Alloy 600 for vessel head penetration (VHP) nozzles in PWR, coexists in the primary loop with other components of Alloy 600. Alloy 690 shows an excellent resistance to primary water stress corrosion cracking, while Alloy 600 is very susceptible to this degradation mechanisms. This article analyse comparatively the PWSCC behaviour of both Ni-based alloys and associated weld metals 52/152 and 82/182. (Author)

  19. Performance of a base isolator with shape memory alloy bars

    Institute of Scientific and Technical Information of China (English)

    Fabio Casciati; Lucia Faravelli; Karim Hamdaoui

    2007-01-01

    A new and innovative base isolation device is introduced in this paper based on extensive research carried out by the authors and their co-workers.A prototype of the device was built and experimentally tested on the shaking table.The new base isolation device consists of two disks,one vertical cylinder with an upper enlargement sustained by three horizontal cantilevers,and at least three inclined shape memory alloy(SMA) bars.The role of the SMA bars is to limit the relative motion between the base and the superstructure,to dissipate energy by their super-elastic constitutive law and to guarantee the re-centring of the device.To verify the expected performance,a prototype was built and tested under sinusoidal waves of displacement of increasing frequency with different amplitudes.It is shown that the main feature of the proposed base isolation device is that for cyclic loading,the super-elastic behavior of the alloy results in wide load-displacement loops,where a large amount of energy is dissipated.

  20. Spectroscopy of the hyperfine transition in lithium like bismuth at the ESR at GSI and an APD based single photon detector for laser spectroscopy on highly charged ions

    OpenAIRE

    Jöhren, R. (Raphael)

    2013-01-01

    Um die Vorhersagen der Quantenelektrodynamik in starken Feldern zu testen werden an der GSI Laserspektroskopie-Experimente an schweren, hochgeladenen Ionen durchgeführt. Im LIBELLE Experiment konnte erstmals der 2s Hyperfein-Übergang in lithium-ähnlichem Bismuth nachgewiesen werden. Dazu wurde ein neuartiges Detektorsystem, bestehend u.a. aus einem Parabolspiegel mit Schlitz, eingesetzt, das in Vorwärtsrichtung emittierte Photonen der im ESR gespeicherten Ionen sammelt. Aus den Experimentdate...

  1. Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.; Zhang, Y. G., E-mail: ygzhang@mail.sim.ac.cn; Chen, X. Y.; Xi, S. P.; Du, B.; Ma, Y. J. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-23

    We report the effect of Bi surfactant on the properties of highly strained InAs/InGaAs triangular quantum wells grown on InP substrates. Reduced surface roughness, improved heterostructure interfaces and enhanced photoluminescence intensity at 2.2 μm are observed by moderate Bi-mediated growth. The nonradiative processes are analysed based on temperature-dependent photoluminescence. It is confirmed that Bi incorporation is insignificant in the samples, whereas excessive Bi flux during the growth results in deteriorated performance. The surfactant effect of Bi is promising to improve InP-based highly strained structures while the excess of Bi flux needs to be avoided.

  2. Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells

    International Nuclear Information System (INIS)

    We report the effect of Bi surfactant on the properties of highly strained InAs/InGaAs triangular quantum wells grown on InP substrates. Reduced surface roughness, improved heterostructure interfaces and enhanced photoluminescence intensity at 2.2 μm are observed by moderate Bi-mediated growth. The nonradiative processes are analysed based on temperature-dependent photoluminescence. It is confirmed that Bi incorporation is insignificant in the samples, whereas excessive Bi flux during the growth results in deteriorated performance. The surfactant effect of Bi is promising to improve InP-based highly strained structures while the excess of Bi flux needs to be avoided

  3. The surface spin polarization of Co-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Roman; Wuestenberg, Jan-Peter; Neuschwander, Sabine; Aeschlimann, Martin; Cinchetti, Mirko [University of Kaiserslautern (Germany). Department of Physics and Research Center OPTIMAS; Jourdan, Martin; Herbort, Christian; Vilanova Vidal, Enrique; Jakob, Gerhard [University of Mainz (Germany). Institute of Physics

    2010-07-01

    Co-based Heusler alloys belong mainly to the family of half-metallic ferromagnets (HMFs). The predicted full spin polarization at the Fermi level due to the minority spin band gap makes this class of materials highly interesting for application in the field of spintronics. Thus, the characterization of the surface of Co-based Heusler compounds is extremely relevant for understanding and improving the performance of Heusler-based spintronics devices, like tunnel-magnetoresistance (TMR) junctions. Using Auger electron spectroscopy (AES) and low energy spin polarized electron photoemission, we systematically studied the correlation between chemical composition and spin polarisation of the surface. For various Co-based Heusler alloys, e.g. Co{sub 2}CrAl, Co{sub 2}MnAl and Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}, we found different degrees of spin-polarization at the very surface region. Reasons for the distinct deviation from the predicted 100% spin polarization and the dependence on the specific surface preparation procedure are discussed.

  4. Chromium Activity Measurements in Nickel Based Alloys for Very High Temperature Reactors: Inconel 617, Haynes 230, and Model Alloys

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHXs) of (very) high temperature reactors ((V)-HTRs). The behavior under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra- and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer. The alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow (Rouillard, F., 2007, 'Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR, Ph.D. thesis, Ecole des Mines de Saint-Etienne, France). To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T approximate to 1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617, and model alloys 1178, 1181, and 1201. This coupling makes it possible for the thermodynamic equilibrium to be obtained between the vapor phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (I) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared with that of the pure substance (Cr) at the same temperature

  5. Characterization of bismuth nanospheres deposited by plasma focus device

    International Nuclear Information System (INIS)

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed

  6. Characterization of bismuth nanospheres deposited by plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: cscientific2@aec.org.sy [IBA Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Mrad, O. [Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  7. Ferromagnetic resonance in Ni-Mn based ferromagnetic Heusler alloys

    International Nuclear Information System (INIS)

    Ferromagnetic Ni-Mn based Heusler alloys undergo martensitic transformations leading to properties such as magnetic shape memory, magnetic field induced strain and magneto-caloric effects. The occurrence of such effects are closely related to the nature of magnetic interactions around the transition. These interactions can be closely examined by the ferromagnetic resonance (FMR) technique. Here, we report on the results of FMR studies performed at various temperatures in the martensite and austenite states of powder samples and discuss the mixed nature of the magnetic interactions in the martensitic state.

  8. Design of Zr-based AB2 type hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    文明芬; 王秋萍; 王兴海; 翟玉春; 陈廉

    2003-01-01

    The influences of the ratio of the radius of atom A(rA)to radius of atom B(rB),electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydrogen storage alloy.An enthalpy model of Zr-based AB2 alloy was obtained from known data and twelve Zr-based alloys were designed to test the model.The results show that the predicted values are in good agreement with the experimental values.The model can be used for predicting enthalpy values of Zr-based hydrogen storage alloys and settles a foundation for experiments.

  9. Lead–bismuth eutectic technology for Hyperion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J., E-mail: Zhang.3558@osu.edu [Dept. of Mechanical and Aerospace Engineering, The Ohio State University, 201 W, 19th Avenue, Columbus, OH 43210 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Kapernick, R.J.; McClure, P.R. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Trapp, T.J. [Hyperion Power Generation (United States)

    2013-10-15

    A small lead–bismuth eutectic-cooled reactor concept (referred to as the Hyperion reactor concept) is being studied at Los Alamos National Laboratory and Hyperion Power Generation. In this report, a critical assessment of the lead–bismuth eutectic technology for Hyperion reactor is presented based on currently available knowledge. Included are: material compatibility, oxygen control, thermal hydraulics, polonium control. The key advances in the technology and their applications to Hyperion reactor design are analyzed. Also, the near future studies in main areas of the technology are recommended for meeting the design requirements.

  10. Defect Interaction in Iron and Iron-based Alloys

    Science.gov (United States)

    Xu, Haixuan; Stocks, G. Malcolm; Stoller, Roger

    2014-03-01

    Magnetism has a profound influence on the defect properties in iron and iron-based alloys. For instance, it has been shown from first principles calculations that the helium interstitial occupies the tetrahedral site instead of octahedral site in contrast to all previous work that neglected the magnetic effects. In this study, we explore the effects of magnetism on the defect interaction, primarily interstitial-type defects, in bcc iron and Fe-Cr systems. The magnetic moment change during the interaction of two 1/2 interstitial loops in bcc iron was calculated using the ab initio locally self-consistent multiple-scattering (LSMS) method and a significant fluctuation was observed. Adding Cr significantly modifies the magnetic structure of the defects and defect interactions. In addition, the effects of magnetism on the defect energetics are evaluated. This study provides useful insights on whether magnetism can be used as a effective means to manipulate the defect evolution in iron-based structural alloys. This material is based upon work supported as part of the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  11. Properties of rhenium-based master alloys prepared by powder metallurgy techniques

    Directory of Open Access Journals (Sweden)

    A. Wrona

    2010-10-01

    Full Text Available Purpose: The aim of this work was to investigate an effect of phase composition, microstructure and selected properties of the rhenium-based alloys on the conditions of their preparation by mechanical alloying followed by pressure sintering.Design/methodology/approach: The structure and mechanical and physical properties of the Re-14.0% Ni, Re-13.7% Co and Re-9.1% Fe alloys prepared from pure metal powders by mechanical alloying in a planetary mill for 10 hours followed by sintering conducted for 1 hour at the temperature of 1150°C under the pressure of 600 MPa were investigated.Findings: The mechanical alloying results in partial dissolving of alloy components into each other, whereas their structure remains unchanged, and in a decrease in average density of powders and average diameter of their particles. As a result of sintering the alloy additives almost fully pass into rhenium-based solid solution. Density and hardness of the sinter compacts and homogeneity of alloying elements distribution were higher at longer times of mechanical alloying.Research limitations/implications: The obtained results provide complementary information on the possibility of obtaining high-melting alloys by mechanical alloying and on the rate of structural transformations taking place as a result of this process.Practical implications: The obtained materials can be used as master alloys for the production of contact materials and superalloys, providing higher homogeneity of the chemical composition and microstructure of the final products.Originality/value: A new method for preparation of rhenium-based alloys by means of mechanical alloying and powder metallurgy techniques has been successfully tested.

  12. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    International Nuclear Information System (INIS)

    In order to investigate the role of amorphous SiO2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO2 particles, and under alloying temperature (1000 deg. C) condition, the nano-SiO2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr2O3, MoO3, SiO2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer

  13. Replacement of Co-base alloy for radiation exposure reduction in the primary system of PWR

    International Nuclear Information System (INIS)

    Of numerous Co-free alloys developed to replace Co-base stellite used in valve hardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, and Stellite 6 was also selected as a standard hardfacing material. These four alloys were welded on 316SS substrate using TIG welding method. The first corrosion test loop of KAERI simulating the water chemistry and operation condition of the primary system of PWR was designed and fabricated. Corrosion behaviors of the above four kinds of alloys were evaluated using this test loop under the condition of 300 deg C, 1500 psi. Microstructures of weldment of these alloys were observed to identify both matrix and secondary phase in each weldment. Hardnesses of weld deposit layer including HAZ and substrate were measured using micro-Vickers hardness tester. The status on the technology of Co-base alloy replacement in valve components was reviewed with respect to the classification of valves to be replaced, the development of Co-free alloys, the application of Co-free alloys and its experiences in foreign NPPs, and the Co reduction program in domestic NPPs and industries. 18 tabs., 20 figs., 22 refs. (Author)

  14. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses

    NARCIS (Netherlands)

    J. Muris; R.J. Scheper; C.J. Kleverlaan; T. Rustemeyer; I.M.W. van Hoogstraten; M.E. von Blomberg; A.J. Feilzer

    2014-01-01

    Background Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. Objectives This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and in vitr

  15. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb5Si3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb5Si3. At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  16. High Energy Storage Mg-based amorphous alloys for nickel-metal hydride battery

    International Nuclear Information System (INIS)

    Full text: Mg-based hydrogen storage alloys possess very high hydrogen absorption capacity (For example, Mg2NiH4 contains 3.6 wt.% of hydrogen). Magnesium is also abundant in nature, light in weight and low in cost. As a result, magnesium alloys have become the subject of increasing research world-wide. For a long period, it was thought that Mg-based alloy-hydrogen systems needed to be operated at high temperature (over 250 deg C) and under high hydrogen pressure. However, in recent years, some research work was successfully done to improve the hydrogen absorption kinetics of Mg2Ni by mechanical grinding and alloying. Some nano and amorphous structured Mg2Ni alloys could absorb hydrogen even at room temperature. Our research results show that it is possible to use Mg2Ni-type alloys as promising materials for increasing the negative electrode capacity of Ni-MH batteries because the theoretical discharge capacity of Mg2Ni alloy is approximately 1000 mAh/g, much higher than that of the main commercial LaNi5 alloy (which has a capacity of only about 370 mAh/g). Mg-based alloy electrodes were manufactured by a powder metallurgical technique or a induction melting method followed by ball milling with Ni and/or other metal powders. The discharge capacities of the Mg-based alloy electrodes were significantly improved by ball milling. An amorphous structure is a key factor in order to achieve high discharge capacities. The figure below shows the ball milled amorphous Mg-based alloy electrodes have very high discharge capacities by comparison with crystalline Mg2Ni alloys or commercial AB5 alloy

  17. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    TiAu (equiatomic) exhibits phase transformation from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed. (author)

  18. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  19. Electronic-Structure-Based Design of Ordered Alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Andersson, M.P.; Jacobsen, Karsten Wedel; Skriver, Hans Lomholt; Christensen, Claus H.; Nørskov, Jens Kehlet

    2006-01-01

    We describe some recent advances in the methodology of using electronic structure calculations for materials design. The methods have been developed for the design of ordered metallic alloys and metal alloy catalysts, but the considerations we present are relevant for the atomic-scale computational...... discovery of a promising catalytic metal alloy surface with high reactivity and low cost....

  20. Smart materials based on shape memory alloys: examples from Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gotthardt, R.; Scherrer, P. [Ecole Polytechnique Federale, Lausanne (Switzerland). Dept. de Physique; Stalmans, R. [Dept. of Metallurgy and Materials Engineering, Katholieke Univ. Leuven, Heverlee (Belgium)

    2000-07-01

    Shape memory alloys (SMAs) have become increasingly attractive as embedded actuators in polymers yielding adaptive composite structures. In particular, SMA-elements have been used to actively or passively control shape, elastic modules, internal stress level and damping capacity of such smart composites. In the passive approach, copper-base SMA-plates can be used as temperature-sensitive damping elements, an interesting solution to improve the vibrational behaviour of alpine skis for example. Active materials are obtained by the integration of pre-strained Ni-Ti-base thin wires in polymer matrix composites enabling control of the vibrational behaviour through the recovery-stress tuning technique. In this paper, some results of national research programmes in Belgium and Switzerland, mainly concerning the damping capacity, are shown and a new European project entitled ''adaptive composites with embedded shape memory alloy wires'' is presented in which partners from Belgium, Germany, Greece, Great Britain and Switzerland are collaborating. (orig.)

  1. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  2. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  3. Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites

    Science.gov (United States)

    Balcerzak, M.; Jakubowicz, J.; Kachlicki, T.; Jurczyk, M.

    2015-04-01

    Mechanical alloying and annealing at 1023 K for 0.5 h under an argon atmosphere were used to prepare Ti2Ni-based nanocrystalline alloys and their nanocomposites. Ti2Ni alloy was chemically modified by Pd and multi-walled carbon nanotubes. An objective of the present study is to provide data on hydrogenation properties of Ti2Ni-based alloys and compounds containing Pd and/or multi-walled carbon nanotubes. Alloys and composites were characterized by X-ray diffraction, scanning electron microscopy equipped with an electron energy dispersive spectrometer, transmission electron microscopy, atomic force microscopy to evaluate phase composition, crystal structure, grain size, particle morphology and distribution of catalyst element. Hydrogenation/dehydrogenation properties and hydriding kinetics of materials were measured using a Sievert's apparatus. Hydrogenation properties of nanostructured Ti2Ni-based alloy and Ti2Ni-based nanocomposites were compared with those of the binary Ti2Ni compound. In present work we shown how mechanical alloying method and chemical modification by Pd and MWCNTs affected hydrogen storage properties of Ti2Ni alloy. The highest hydrogen capacity obtained for nanostructured Ti2Ni + Pd alloy equaled 2.1 wt.%. Up to our knowledge it is the highest hydrogen storage capacity obtained so far for Ti2Ni-based materials.

  4. Evaluation of different finish line designs in base metal alloys

    Directory of Open Access Journals (Sweden)

    Aghandeh R

    1999-06-01

    Full Text Available This investigation was performed according to the widespread application of base metal alloys"nand few articles published about the marginal integrity of restorations fabricated by these metals."nThree standard dies of a maxillary first premolar were prepared with a flat shoulder finish line in buccal"naspect and chamfer in palatal. One of them left with no change. On the buccal aspect of the second and"nthird dies 135?and 1607 bevel were added respectively"nUsing dual wax technique, nine wax patterns were formed on each die and casting procedure of selected"nnon precious alloy was performed by centrifugal method. Marginal gaps of each copping seated on dies"nwere measured by scanning electron microscope (SEM with X500 magnification. Measurements were"ndone on three areas of marked dies on buccal aspect. Measurement son palatal aspect was done on"nmarked midpalatal point as control."nResults and statistical analysis showed no significant difference among marginal gaps in lingual aspect."nBut on the buccal aspect there were statistically significant differences among the groups (P<0.001. Flat"nshoulder had the best marginal integrity (mean 4 micron. Shoulder with 160' bevel had the most marginal"ngap (mean 26.5 micron and shoulder with 1357 bevel was between two other groups (mean 15.7 micron.

  5. 'Age-hardened alloy' based on bulk polycrystalline oxide ceramic

    Science.gov (United States)

    Gurnani, Luv; Singh, Mahesh Kumar; Bhargava, Parag; Mukhopadhyay, Amartya

    2015-05-01

    We report here for the first time the development of 'age-hardened/toughened' ceramic alloy based on MgO in the bulk polycrystalline form. This route allows for the facile development of a 'near-ideal' microstructure characterized by the presence of nanosized and uniformly dispersed second-phase particles (MgFe2O4) within the matrix grains, as well as along the matrix grain boundaries, in a controlled manner. Furthermore, the intragranular second-phase particles are rendered coherent with the matrix (MgO). Development of such microstructural features for two-phase bulk polycrystalline ceramics is extremely challenging following the powder metallurgical route usually adopted for the development of bulk ceramic nanocomposites. Furthermore, unlike for the case of ceramic nanocomposites, the route adopted here does not necessitate the usage of nano-powder, pressure/electric field-assisted sintering techniques and inert/reducing atmosphere. The as-developed bulk polycrystalline MgO-MgFe2O4 alloys possess considerably improved hardness (by ~52%) and indentation toughness (by ~35%), as compared to phase pure MgO.

  6. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  7. Hydrogen determinations in a zirconium based alloy with a DSC

    International Nuclear Information System (INIS)

    In the present work a method to measure hydrogen concentrations in zirconium-based alloys was developed measuring simultaneously both, the temperature of terminal solid solubility, TTSSd, and the hydride dissolution heat, Qδ->α, using a differential scanning calorimeter (DSC). The hydrogen concentration measured with that technique, [H]Q, and the values obtained with a standard hydrogen gas meter, [H]HGM, shows a linear relation: [H]Q=(1.00+/-0.03)[H]HGM|+(9.2+/-8.0) with a correlation factor of 0.99 in the entire solubility interval in the αZr phase, from 15 to 650wt.ppm-H. The mean enthalpy value determined with two different criteria for TTSSd and Qδ->α measurements is ΔHδ->α(Q)=39.3+/-1.5kJ/mol H. The present method is specially appropriate for alloys where a partition of the overall hydrogen concentration in two phases exists. It is applicable to all hydride forming metals which ideally follows the van't Hoff law

  8. Rational design of Nb-based alloys for hydrogen separation: A first principles study

    OpenAIRE

    Byungki Ryu; Hyeon Cheol Park; Eunseog Cho; Kwanghee Kim; Jaeho Lee; Meilin Liu

    2013-01-01

    We have investigated the effect of alloying metal elements on hydrogen solubility and mechanical integrity of Nb-based alloys, Nb15M1 (where M = Ca–Zn, Ge), using first principles-based calculations. In general, the chemical interaction between the interstitial H and metal is weakened as the alloying element is changed from an early to a late transition metal, leading to lower H solubility and higher resistance to H embrittlement. This effect becomes more pronounced when a smaller alloying el...

  9. Comparative Study of Semiconductors Bismuth Iodate, Bismuth Triiodide and Bismuth Trisulphide Crystals

    Directory of Open Access Journals (Sweden)

    T.K. Patil

    2012-12-01

    Full Text Available In the present investigation, crystals of Bismuth Iodate[Bi(IO33], Bismuth Iodide[BiI3] and Bismuth- Tri Sulphide [Bi2S3] were grown by a simple gel technique using single diffusion method. The optimum growth conditions were established by varying various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of reactant etc. Gel was prepared by mixing sodium meta silicate (Na2SiO35H2O, glacial acetic acid (CH3COOH and supernant bismuth chloride (BiCl3 at pH value 4.4 and transferred in glass tube of diameter 2.5 cm and 25 cm in length. The mouth of test tube was covered by cotton plug and kept it for the setting. After setting the gel, it was left for aging. After 13 days duration the second supernant K(IO3, KI3 and H2S water gas solution was poured over the set gel by using pipette then it was kept undisturbed. After 72 hours of pouring the second supernatant, the small nucleation growth was observed at below the interface of gel. The good quality crystals of [Bi(IO33], [BiI3] and [Bi2S3] were grown. These grown crystals were characterized by XRD, FTIR, Chemical Analysis and Electrical Conductivity.

  10. Relationship between phase composition and corrosion resistanceof Ni-Ti-Nb based shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The stability and microstructure of Ni-Ti-Nb based shape memory alloys were investigated after alloyed with elements Zr, Cr and V. In artificial seawater (3.5%NaCl) and physiological solution (5%NaCl+0.1%H2O2), the results show that the alloying elements influence the corrosion behavior of Ni-Ti-Nb alloys. Generally, Zr improves the corrosion resistance of Ni-Ti-Nb alloy, Cr reduces its corrosion resistance and V does not change the property. In order to investigate the reason of the difference,the relation of the phase components and corrosion resistance of Ni-Ti-Nb based shape memory alloys were studied by element analysis and SEM.

  11. Wear and isothermal oxidation kinetics of nitrided TiAl based alloys

    Institute of Scientific and Technical Information of China (English)

    赵斌; 吴建生; 孙坚

    2002-01-01

    Gas nitridation of TiAl based alloys in an ammonia atmosphere was c arried out. The evaluation of the surface wear resistance was performed to compare with those of the non-nitrided alloys. It is concluded that high temperature nitridation raised wear resistance of TiAl based alloys markedly. The tribol ogical behaviors of the nitrided alloys were also discussed. The oxidation kinetics of the nitrided TiAl based alloys were investigated at 800~1000 ℃ in hot air. It is concluded that nitridation is detrimental to the oxidation resistance of TiAl based alloys under the present conditions. The nitrided alloys exhibit increased oxidizing rate with the prolongation of nitridation time at 800 ℃. However, alloys nitrided at 940 ℃ for 50 hdisplay a sign of better oxidat ion resistance than the other nitrided alloys at more severe oxidizing conditions. The parabolic rate law is considered as the basis of the data processing and interpretation of the mass gainvs time data. As a comparison with it, attempts were made to fit the data with the power law. The oxidation kinetic parameter kn, kp and n were measured and the trends were discussed.

  12. CO2 laser beam welding of AM60 magnesium-based alloy

    OpenAIRE

    BELHADJ, Asma; MASSE, Jean-Eric; Barrallier, Laurent; BOUHAFS, Mahmoud; BESSROUR, Jamel

    2010-01-01

    Magnesium alloys have a 33% lower density than aluminum alloys, whereas they exhibit the same mechanical characteristics. Their application increases in many economic sectors, in particular, in aeronautic and automotive industries. Nevertheless, their assembly with welding techniques still remains to be developed. In this paper, we present a CO2 laser welding investigation of AM60 magnesium-based alloy. Welding parameters range is determinate for the joining of 3 mm thickness sheets. The effe...

  13. Maintenance of Ni-based alloy at PWR plant

    International Nuclear Information System (INIS)

    Kansai Electric owns 11 PWR plants. At our PWR plants, we are taking various preventive maintenance measures on Ni-based alloy according to the prediction of possible trouble while past trouble occurred at overseas plants due to Primary Water Stress Corrosion Cracking (PWSCC) being considered. In addition, we are making an effort to put new maintenance techniques into practical use by conducting demonstration tests to confirm their applicability to actual plants. We have replaced reactor vessel heads at 7 plants with new ones. At the other 4 plants, we took, measures to reduce the temperature of reactor vessel head top to delay the timing of PWSCC occurrence. We are carrying out the constant load tests to predict the timing of PWSCC occurrence at these 4 plants. It is planned to conduct non-destructive inspections at an appropriate timing based on the result of the prediction. Based on the prediction of the timing of PWSCC occurrence at bottom-mounted instrumentation (BMI), we have developed water jet peening (WJP) technique to reduce residual stress and applied the technique to our plants successively. Meanwhile, a technique to cut and eliminate cracking has been developed. In addition, capping technique, which covers overall the concerned nozzle on the outer surface of the reactor vessel, has been also established. For alloy 132/82 weld metal for the connection, we are conducting ultrasonic inspection at our plants successively. In order to prepare against PWSCC occurrence, we have also established a technique to replace the entire section of concerned short piping with new one. (author)

  14. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  15. Mechanical and microstructural characterization of the nickel base alloy (Alloy 600) after heat treatment

    International Nuclear Information System (INIS)

    The characterization of microstructural and mechanical properties of cold rolled and heat treated alloys 600 made in Brazil were investigated. The recovery and recrystallization behavior as well as solubilization and aging have been studied using optical, scanning electron and transmission electron microscopy. Microhardness and tensile testing have been carried out. The recovery process of the cold rolled alloy 600 occurred until 600 deg C and the recrystallization stage was situated between 600 and 850 deg C. The primary recrystallization temperature was obtained at 850 deg C after 1 hour (isochronal heat treatments). The aged alloy 600 shows carbide precipitation on grains bu with ductility maintenance. (author)

  16. On the role of alloying elements in the formation of serrated grain boundaries in Ni-based alloys

    International Nuclear Information System (INIS)

    Ni-based model alloys were used to study the effect of alloying elements, namely Cr, Mo, C and Zr on the occurrence of grain boundary serration. The model alloys were free of aluminum to exclude precipitation of second-phase γ'. Similarly, the carbon content was very low, when present, to prevent precipitation of carbides. A special heat treatment involving slow cooling was used to promote grain boundary serration. No significant sign of serration was observed for Ni-10Cr-10Mo, Ni-20Cr-10Mo and Ni-10Cr-10Mo-0.05C model alloys. However, substantial serration was observed for Ni-10Cr-10Mo-0.5Zr and Ni-20Cr-0.5Zr model alloys. Serrated grain boundaries were observed in the absence of either γ' or carbides. Zirconium-rich precipitates were recognized at serrated grain boundaries though their involvement in the occurrence of serration was doubtful. A mechanism of grain boundary serration formation is proposed.

  17. On the role of alloying elements in the formation of serrated grain boundaries in Ni-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Terner, Mathieu; Hong, Hyun-Uk; Lee, Je-Hyun [Changwon National Univ. (Korea, Republic of). Dept. of Materials Science and Engineering; Choi, Baig-Gyu [Korea Institute of Materials Science, Changwon (Korea, Republic of). High Temperature Materials Group

    2016-03-15

    Ni-based model alloys were used to study the effect of alloying elements, namely Cr, Mo, C and Zr on the occurrence of grain boundary serration. The model alloys were free of aluminum to exclude precipitation of second-phase γ'. Similarly, the carbon content was very low, when present, to prevent precipitation of carbides. A special heat treatment involving slow cooling was used to promote grain boundary serration. No significant sign of serration was observed for Ni-10Cr-10Mo, Ni-20Cr-10Mo and Ni-10Cr-10Mo-0.05C model alloys. However, substantial serration was observed for Ni-10Cr-10Mo-0.5Zr and Ni-20Cr-0.5Zr model alloys. Serrated grain boundaries were observed in the absence of either γ' or carbides. Zirconium-rich precipitates were recognized at serrated grain boundaries though their involvement in the occurrence of serration was doubtful. A mechanism of grain boundary serration formation is proposed.

  18. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    International Nuclear Information System (INIS)

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x1020 n/cm2 at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranular failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed

  19. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, R.; Mills, W.J.; Kammenzind, B.F.; Burke, M.G.

    1999-07-01

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranular failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.

  20. Phases stability of shape memory alloys Cu based under irradiation

    International Nuclear Information System (INIS)

    The effects of irradiation on the relative phase stability of phases related by a martensitic transformation in copper based shape memory alloys were studied in this work.Different kind of particles and energies were employed in the irradiation experiments.The first kind of irradiation was performed with 2,6 MeV electrons, the second one with 170 keV and 300 keV Cu ions and the third one with swift heavy ions (Kr, Xe, Au) with energies between 200 and 600 MeV.Stabilization of the 18 R martensite in Cu-Zn-Al-Ni induced by electron irradiation was studied.The results were compared to those of the stabilization induced by quenching and ageing in the same alloy, and the ones obtained by irradiation in 18 R-Cu-Zn-Al alloys.The effects of Cu irradiation over b phase were analyzed with several electron microscopy techniques including: scanning electron microscopy (S E M), high resolution electron microscopy (H R E M), micro diffraction and X-ray energy dispersive spectroscopy (E D S). Structural changes in Cu-Zn-Al b phase into a closed packed structure were induced by Cu ion implantation.The closed packed structures depend on the irradiation fluence.Based on these results, the interface between these structures (closed packed and b) and the stability of disordered phases were analyzed. It was also compared the evolution of long range order in the Cu-Zn-Al and in the Cu-Zn-Al-Ni b phase as a function of fluence.The evolution of the g phase was also compared. Both results were discussed in terms of the mobility of irradiation induced point defects.Finally, the effects induced by swift heavy ions in b phase and 18 R martensite were studied. The results of the irradiation in b phase were qualitatively similar to those produced by irradiation with lower energies. On the contrary, nano metric defects were found in the irradiated 18 R martensite.These defects were characterized by H R E M.The characteristic contrast of the defects was associated to a local change in the

  1. Elevated temperature fretting fatigue of nickel based alloys

    Science.gov (United States)

    Gean, Matthew C.

    This document details the high temperature fretting fatigue of high temperature nickel based alloys common to turbine disk and blade applications. The research consists of three area of focus: Experiments are conducted to determine quantitatively the fretting fatigue lives of advanced nickel based alloys; Analytical tools are developed and used to investigate the fretting fatigue response of the material; Fractographic analysis of the experimental results is used to improve the analytical models employed in the analysis of the experiments. Sixty three fretting fatigue experiments were conducted at 649 °C using a polycrystalline Nickel specimen in contact with directionally solidified and single crystal Nickel pads. Various influences on the fretting fatigue life are investigated. Shot peened Rene' 95 had better fretting fatigue life compared to shot peened Rene' 88. Shot peening produced a 2x increase in life for Rene' 95, but only a marginal improvement in the fretting fatigue life for Rene' 88. Minor cycles in variable amplitude loading produces significant damage to the specimen. Addition of occasional overpeaks in load produces improvements in fretting fatigue life. Contact tractions and stresses are obtained through a variety of available tools. The contact tractions can be efficiently obtained for limited geometries, while FEM can provide the contact tractions for a broader class of problems, but with the cost of increased CPU requirements. Similarly, the subsurface contact stresses can be obtained using the contact tractions as a boundary condition with either a semi-analytical FFT method or FEM. It is found that to calculate contact stresses the FFT was only marginally faster than FEM. The experimental results are combined with the analysis to produce tools that are used to design against fretting fatigue. Fractographic analysis of the fracture surface indicates the nature of the fretting fatigue crack behavior. Interrupted tests were performed to analyze

  2. Laser welding of AZ61 magnesium-based alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Hongying; Li Zhijun; Zhang Yihui

    2006-01-01

    Laser welding of AZ61 magnesium alloys was carried out asing a CO2 laser weldingexperimental system.The welding properties of AZ61 sheets with different thickness were investigated.The effect of processing parameters including laser power, welding speed and protection gas flow was researched.The results show that laser power and welding speed have large effect on the weld width and joint dimensions.Protection gas flow has relatively slight effect on the weld width.The property test of three typical joints indicates that microhardness and tensile strength in weld zone are higher than that of AZ61 base metal.Joints with good appearance and excellent mechanical properties can be produced using CO2 laser welding method.The microstructure with small grains in weld zone is believed to be responsible for the excellent mechanical properties of AZ61 joints.

  3. Study of superficial films and of electrochemical behaviour of some nickel base alloys and titanium base alloys in solution representation of granitic, argillaceous and salted ground waters

    International Nuclear Information System (INIS)

    The corrosion behaviour of the stainless steels 304, 316 Ti, 25Cr-20Ni-Mo-Ti, nickel base alloys Hastelloy C4, Inconel 625, Incoloy 800, Ti and Ti-0.2% Pd alloy has been studied in the aerated or deaerated solutions at 200C and 900C whose compositions are representative of interstitial ground waters: granitic or clay waters or salt brine. The electrochemical techniques used are voltametry, polarization resistance and complexe impedance measurements. Electrochemical data show the respective influence of the parameters such as temperature, solution composition and dissolved oxygen, addition of soluble species chloride, fluoride, sulfide and carbonates, on which depend the corrosion current density, the passivation and the pitting potential. The inhibition efficiency of carbonate and bicarbonate activities against pitting corrosion is determined. In clay water at 900C, Ti and Ti-Pd show very high passivation aptitude and a broad passive potential range. Alloying Pd increases cathodic overpotential and also transpassive potential. It makes the alloy less sensitive to the temperature effect. Optical Glow Discharge Spectra show three parts in the composition depth profiles of surface films on alloys. XPS and SIMS spectrometry analyses are also carried out. Electron microscopy observation shows that passive films formed on Ti and Ti-Pd alloy have amorphous structure. Analysis of the alloy constituents dissolved in solutions, by radioactivation in neutrons, gives the order of magnitude of the Ni base alloy corrosion rates in various media. It also points out the preferential dissolution of alloying iron and in certain cases of chromium

  4. Evaluation of Nb-base alloys for the divertor structure in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, I.M. [Argonne National Laboratory, Upton, IL (United States)

    1996-04-01

    Niobium-base alloys are candidate materials for the divertor structure in fusion reactors. For this application, an alloy should resist aqueous corrosion, hydrogen embrittlement, and radiation damage and should have high thermal conductivity and low thermal expansion. Results of corrosion and embrittlement screening tests of several binary and ternary Nb alloys in high-temperature water indicated the Mb-1Zr, Nb-5MO-1Zr, and Nb-5V-1Z4 (wt %) showed sufficient promise for further investigation. These alloys, together with pure Nb and Zircaloy-4 have been exposed to high purity water containing a low concentration of dissolved oxygen (<12 ppb) at 170, 230, and 300{degrees}C for up to {approx}3200 h. Weight-change data, microstructural observations, and qualitative mechanical-property evaluation reveal that Nb-5V-1Zr is the most promising alloy at higher temperatures. Below {approx}200{degrees}C, the alloys exhibit similiar corrosion behavior.

  5. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  6. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    International Nuclear Information System (INIS)

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations in some corrosion-tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed. (orig.)

  7. Development and Making of New Jewellery Palladium Based Alloys at JSC "Krastsvetmet"

    Institute of Scientific and Technical Information of China (English)

    YEFIMOV V. N.; MAMONOV S. N.; SHULGIN D. R.; YELTSIN S. I.

    2012-01-01

    Complex of research and development work aimed at implementation of jewellery palladium based alloys technology has been carried out at JSC Krastsvetmet.A range of palladium alloys jewellery fabrication has been organized.Compositions of a number of jewellery palladium alloys grade 850,900,950 and 990 have been proposed,their production and application in jewellery manufacture has been organized.To produce palladium alloys induction melting in inert atmosphere and melt pouring into a copper mould has been used.The ingots heat treatment conditions,as well as semi-finished jewelry plastic deformation parameters have been determined.

  8. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties

    International Nuclear Information System (INIS)

    Cu-based shape memory alloys were developed in the 1960s. They show excellent thermoelastic martensitic transformation. However the problems in mechanical properties and thermal instability have inhibited them from becoming promising engineering alloys. A new Cu-Zn-Al-Mn-Zr Cu-based shape memory alloy has been developed. With the addition of Mn and Zr, the martensitic transformation behaviour and the grain size ca be better controlled. The new alloys demonstrates good mechanical properties with ultimate tensile strenght and ductility, being 460 MPa and 9%, respectively. Experimental results revealed that the alloy has better thermal stability, i.e. martensite stabilisation is less serious. In ordinary Cu-Zn-Al alloys, martensite stabilisation usually occurs at room temperature. The new alloy shows better thermal stability even at elevated temperature (∝150 C, >Af=80 C). A limited small amount of martensite stabilisation was observed upon ageing of the direct quenched samples as well as the step quenched samples. This implies that the thermal stability of the new alloy is less dependent on the quenching procedure. Furthermore, such minor martensite stabilisation can be removed by subsequent suitable parent phase ageing. The new alloy is ideal for engineering applications because of its better thermal stability and better mechanical properties. (orig.)

  9. 氢化物发生-原子荧光光谱法测定合金钢及合金中痕量元素铅、锡、砷、锑、铋的进展%Determination Progress of Trace Elements (Lead, Tin, Arsenic, Antimony, Bismuth)in Staliness Steel Alloys by HF-AFS

    Institute of Scientific and Technical Information of China (English)

    赵艳兵; 刘爱坤; 戴学谦; 王珺

    2011-01-01

    通过对近年来有关氢化物发生-原子荧光光谱法在复杂基体体系中痕量元素检测方面的资料总结,阐述了氢化物发生-原子荧光光谱法分析过程中的干扰类型、干扰机理及消除干扰的措施,对其在合金钢及合金中痕量元素铅、锡、砷、锑、铋测定中的应用进展作了评述,并对氢化物发生-原子荧光光谱法的发展前景提出了展望。%This paper presented a data summary of determination of trace elements in a complex matrix system by HG-AFS,covering the recent years. The interference type, interference mechanism and measures to eliminate interference of HG-AFS were also described. We reviewed the progress of the determination application of the Staliness Steel Alloys of trace elements, tin, lead, arsenic, antimony bismuth.We also discussed the HG-AFS development prospect.

  10. An experimental study of the magnetic ordering in Pd-based Fe and Mn alloys

    International Nuclear Information System (INIS)

    This thesis presents the results of an investigation on the magnetic ordering phenomena in some Pd based alloys with small concentrations of magnetic impurities. It has been the object to explore the ordering mechanisms in these alloys which lead to various types of magnetism at low temperature. The experimental techniques used are described. (Auth.)

  11. Bismuth absorption from 205 Bi-labelled pharmaceutical bismuth compounds used in the treatment of peptic ulcer disease

    International Nuclear Information System (INIS)

    The absorption of bismuth from five 205Bi-labelled pharmaceutically used bismuth compounds was studied in man. From single oral doses of all compounds under investigation only <0.1% bismuth was absorbed and excreted with the urine. A significantly higher absorption was observed from the colloidal bismuth subcitrate and the basic bismuth gallate than from the basic bismuth salicylate, nitrate and aluminate. No retention of bismuth in the whole body was found from the single dose experiment. The biologic fast-term half-lives of absorbed bismuth were calculated to be 0.12 and 1.5 days. 14 refs., 2 figs., 1 tab

  12. Bismuth absorption from sup 205 Bi-labelled pharmaceutical bismuth compounds used in the treatment of peptic ulcer disease

    Energy Technology Data Exchange (ETDEWEB)

    Dresow, B.; Fischer, R.; Gabbe, E.E.; Wendel, J.; Heinrich, H.C. (Eppendorf University Hospital, Hamburg (Germany))

    1992-04-01

    The absorption of bismuth from five {sup 205}Bi-labelled pharmaceutically used bismuth compounds was studied in man. From single oral doses of all compounds under investigation only <0.1% bismuth was absorbed and excreted with the urine. A significantly higher absorption was observed from the colloidal bismuth subcitrate and the basic bismuth gallate than from the basic bismuth salicylate, nitrate and aluminate. No retention of bismuth in the whole body was found from the single dose experiment. The biologic fast-term half-lives of absorbed bismuth were calculated to be 0.12 and 1.5 days. 14 refs., 2 figs., 1 tab.

  13. Properties and Application of Iron-based Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jian-chen; Jiang Qing; Dai Jun

    2005-01-01

    The properties of FeMnSiCrNi shape memory alloy were investigated. The results show that the best shape memory effect of Fel4Mn6Si9Cr5Ni alloy is 85%. The transformation amount of the ε→γ transformation is not complete after heating the alloy to 1000 K, As and Af points drop with increased transformation enthalpy ( △Hγ→ε) by thermal cycling and increased prestrain. The alloy shows also good creep and stress relaxation resistance. In addition, the alloy having a tensile force of 20 kN and a sealing pressure of 6 MPa can satisfy requirements for possible industrial application on pipe joints.

  14. Mechanical Properties of Ni-base ODS Alloy Influenced by Process Variables

    International Nuclear Information System (INIS)

    According to a recent investigation, no proven industrial technology could be directly used for such applications. For example, extensive work on Alloy 617 which is the candidate material for the intermediate heat exchanger (IHX) in very high temperature reactors (VHTR) shows that Alloy 617 exhibit quite good creep properties, the maximum service temperature of Alloy 617 is much less than that required for the VHTR-IHX applications. In this regard, oxide dispersion strengthened (ODS) materials have received a great attention owing to their excellent mechanical properties at higher temperatures, e.g., creep resistance. As part of an alloy development program for nickel base ODS alloy, we have produced an ODS Alloy 617 via mechanical alloying and hot extrusion, and characterized its microstructural evolution during the process and evaluated mechanical properties at elevated temperatures. The current work reports the effects of process variables and yttria contents on the microstructure and mechanical properties of ODS Alloy 617. From the experimental work on the influences of yttria content, and process variables such as hot-extrusion ratio and hydrogen reduction on the mechanical properties of ODS Alloy 617, it is concluded that reduction of yttria contents from 0.6 wt.% to 0.45 wt.% and increasing hot extrusion ratio from 6.25:1 to 9:1 improve the ductility at elevated temperatures without the sacrifice of strength

  15. First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data

    Science.gov (United States)

    Polak, M. P.; Scharoch, P.; Kudrawiec, R.

    2015-09-01

    Bi-induced changes in the band structure of Ga-V-Bi and In-V-Bi alloys are calculated within the density functional theory (DFT) for alloys with Bi ≤3.7% and the observed chemical trends are discussed in the context of the virtual crystal approximation (VCA) and the valence band anticrossing (VBAC) model. It is clearly shown that the incorporation of Bi atoms into III-V host modifies both the conduction band (CB) and the valence band (VB). The obtained shifts of bands in GaP1-xBix, GaAs1-xBix, GaSb1-xBix, InP1-xBix, InAs1-xBix, and InSb1-xBix are respectively, 15, -29, -16, -27, -15, and -10 meV/%Bi for CB, 82, 62, 16, 79, 45, and 16 meV/%Bi for VB, and -17, -3, -2, -8, -6, and 14 meV/%Bi for spin-orbit split off band. The Bi-induced reduction of the band gap is very consistent with the available experimental data. The chemical trends observed in our calculations as well as in experimental data are very clear: in a sequence of alloys from III-P-Bi to III-Sb-Bi the Bi-induced changes in the band structure weaken. For dilute GaSb1-xBix and InSb1-xBix alloys the band structure modification, in the first approximation, can be described within the VCA, while for Ga-V-Bi and In-V-Bi alloys with V = As or P another phenomenological approach is needed to predict the Bi-induced changes in their band structure. We have found that a combination of the VCA with the VBAC model, which is widely applied for highly mismatched alloys, is suitable for this purpose. The chemical trends for III-V-Bi alloys observed in our DFT calculations are also exhibited by the coupling parameter {C}BiM, which describes the magnitude of interaction between Bi-induced levels and VB states in the VBAC model. This coupling parameter monotonously decreases along the sequence of alloys from III-P-Bi to III-Sb-Bi.

  16. Effects of Cr and Nb contents on the susceptibility of Alloy 600 type Ni-base alloys to stress-corrosion cracking in a simulated BWR environment

    International Nuclear Information System (INIS)

    In order to discuss the effects of chromium and niobium contents on the susceptibility of Alloy 600 type nickel-base alloys to stress-corrosion cracking in the BWR primary coolant environment, a series of creviced bent-beam (CBB) tests were conducted in a high-temperature, high-purity water environment. Chromium, niobium, and titanium as alloying elements improved the resistivity to stress-corrosion cracking, whereas carbon enhanced the susceptibility to it. Alloy-chemistry-based correlations have been defined to predict the relative resistances of alloys to stress-corrosion cracking. A strong correlation was found, for several heats of alloys, between grain-boundary chromium depletion and the susceptibility to stress-corrosion cracking

  17. Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature

    Directory of Open Access Journals (Sweden)

    Wei Li Cheng

    2014-12-01

    Full Text Available The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated. These dislocations create stress fields within the material depending on their intrinsic character. Generally, the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature: fine-grain strengthening, precipitate strengthening and solid solution strengthening as well as texture strengthening. The indirect-extruded Mg–8Sn (T8 and Mg–8Sn–1Al–1Zn (TAZ811 alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition. The contributions to the strengthen of Mg–Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics, physical characteristics, thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.

  18. Microstructure and tensile properties of magnesium alloy modified by Si/Ca based refiner

    Institute of Scientific and Technical Information of China (English)

    DUAN Zhi-chao; SUN Yang-shan; WEI Yu; DU Wen-wen; XUE Feng; ZHU Tian-bai

    2005-01-01

    Microstructure and mechanical properties of pure magnesium and AZ31 alloy with Ca/Si based refiner addition were investigated. The results indicate that addition of Ca/Si based refiners to pure magnesium and AZ31 alloy results in remarkable microstructure refinement. With proper amount of refiner addition, the grain size in as cast ingots can be one order of magnitude lower than that without refiner addition. Small amount of refiner addition to AZ31 alloy increases both ultimate strength and yield strength significantly, while the ductility of the alloy with refiner addition is similar to that without refiner addition. Addition of refiner improves the deformability of AZ31 alloy and extruded or hot rolled specimens (rods or sheets) with refiner addition exhibit higher surface quality and mechanical properties than those without refiner addition.

  19. Scale formation on Ni-based alloys in simulated solid oxide fuel cell interconnect environments

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, Margaret; Cramer, Stephen D.; Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Singh, P. (PNNL); Windisch, C.F. (PNNL); Johnson, C.D. (NETL); Schaeffer, C. (National Energy Research Laboratory, Morgantown, WV)

    2004-11-01

    Recent publications suggest that the environment on the fuel side of the bi-polar stainless steel SOFC interconnects changes the oxidation behavior and morphology of the scale formed on the air side. The U.S. Department of Energy Albany Research Center (ARC), has examined the role of such exposure conditions on advanced nickel base alloys. Alloy formulations developed at ARC and commercial alloys were studied using X-ray diffraction (XRD) and Raman spectroscopy. The electrical property of oxide scales formed on selected alloys was determined in terms of areaspecific resistance (ASR). The corrosion behavior of ARC nickel-based alloys exposed to a dual environment of air/ H2 were compared to those of Crofer 22APU and Haynes 230.

  20. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    Science.gov (United States)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  1. Detection of residual Al-base core in Ni alloy with Gd-tagging neutron radiography

    International Nuclear Information System (INIS)

    Detection of residual aluminum-base core in nickel alloy is important for manufacturing blades of an aero-engine. Because of the strong penetrability, neutrons are more effective than X-rays to detect residual material in the nickel alloy blade. In this paper, both theoretical calculation and experiments on an accelerator-based neutron source at Peking University are used to verify the feasibility of Gd-tagging neutron radiography in detecting residual aluminum-base core in the nickel alloy. The results show that the technique can achieve a sensitivity of 0.2 mg for the residual core detection. (authors)

  2. Melting, Processing, and Properties of Disordered Fe-Al and Fe-Al-C Based Alloys

    Science.gov (United States)

    Satya Prasad, V. V.; Khaple, Shivkumar; Baligidad, R. G.

    2014-09-01

    This article presents a part of the research work conducted in our laboratory to develop lightweight steels based on Fe-Al alloys containing 7 wt.% and 9 wt.% aluminum for construction of advanced lightweight ground transportation systems, such as automotive vehicles and heavy-haul truck, and for civil engineering construction, such as bridges, tunnels, and buildings. The melting and casting of sound, porosity-free ingots of Fe-Al-based alloys was accomplished by a newly developed cost-effective technique. The technique consists of using a special flux cover and proprietary charging schedule during air induction melting. These alloys were also produced using a vacuum induction melting (VIM) process for comparison purposes. The effect of aluminum (7 wt.% and 9 wt.%) on melting, processing, and properties of disordered solid solution Fe-Al alloys has been studied in detail. Fe-7 wt.% Al alloy could be produced using air induction melting with a flux cover with the properties comparable to the alloy produced through the VIM route. This material could be further processed through hot and cold working to produce sheets and thin foils. The cold-rolled and annealed sheet exhibited excellent room-temperature ductility. The role of carbon in Fe-7 wt.% Al alloys has also been examined. The results indicate that Fe-Al and Fe-Al-C alloys containing about 7 wt.% Al are potential lightweight steels.

  3. Imprecise knowledge based design and development of titanium alloys for prosthetic applications.

    Science.gov (United States)

    Datta, S; Mahfouf, M; Zhang, Q; Chattopadhyay, P P; Sultana, N

    2016-01-01

    Imprecise knowledge on the composition-processing-microstructure-property correlation of titanium alloys combined with experimental data are used for developing rule based models for predicting the strength and elastic modulus of titanium alloys. The developed models are used for designing alloys suitable for orthopedic and dental applications. Reduced Space Searching Algorithm is employed for the multi-objective optimization to find composition, processing and microstructure of titanium alloys suitable for orthopedic applications. The conflicting requirements attributes of the alloys for this particular purpose are high strength with low elastic modulus, along with adequate biocompatibility and low costs. The 'Pareto' solutions developed through multi-objective optimization show that the preferred compositions for the fulfilling the above objectives lead to β or near β-alloys. The concept of decision making employed on the solutions leads to some compositions, which should provide better combination of the required attributes. The experimental development of some of the alloys has been carried out as guided by the model-based design methodology presented in this research. Primary characterizations of the alloys show encouraging results in terms of the mechanical properties. PMID:26398780

  4. Electronic-Structure-Based Design of Ordered Alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Andersson, M.P.; Jacobsen, Karsten Wedel; Skriver, Hans Lomholt; Christensen, Claus H.; Nørskov, Jens Kehlet

    2006-01-01

    We describe some recent advances in the methodology of using electronic structure calculations for materials design. The methods have been developed for the design of ordered metallic alloys and metal alloy catalysts, but the considerations we present are relevant for the atomic-scale computational...... discovery of a promising catalytic metal alloy surface with high reactivity and low cost....... design of other materials as well. A central problem is how to treat the huge number of compounds that can be envisioned by varying the concentrations and the number of the elements involved. We discuss various strategies for approaching this problem and show how one strategy has led to the computational...

  5. Formation and Corrosion Resistance of Amorphous Ti Base Alloys

    OpenAIRE

    Naka, M.; Okada, T.; T. Matsui

    1996-01-01

    Corrosion resistant amorphous Ti-B and Ti-Si alloys were prepared on various substrates by RF sputtering. The alloying of B content of 8 at% or more stabilizes the amorphous structure. The corrosion properties of Ti alloys were evaluated by measuring the polarization curves in 1N HCl. Although the addition of B to crystalline bulky Ti shifts the corrosion potentials of Ti to the less nobles of -0.5 V(SCE) or less, that of B to amorphous sputtered Ti moves the corrosion potentials to the noble...

  6. Electron-ion plasma modification of Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yurii, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Rygina, Mariya, E-mail: l-7755me@mail.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com; Krysina, Olga, E-mail: krysina-82@mail.ru; Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, Tomsk, 634002, Russia, Tomsk, 2 Solyanaya Sq (Russian Federation)

    2016-01-15

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm{sup 2}) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa.

  7. Electron-ion plasma modification of Al-based alloys

    International Nuclear Information System (INIS)

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm2) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa

  8. Tunneling behavior of bismuth telluride nanoplates in electrical transport

    OpenAIRE

    Eginligil, Mustafa; Zhang, Weiqing; Kalitsov, Alan; Lu, Xianmao; Yang, Hyunsoo

    2012-01-01

    We study the electrical transport properties of ensembles of bismuth telluride (Bi2Te3) nanoplates grown by solution based chemical synthesis. Devices consisting of Bi2Te3 nanoplates are fabricated by surface treatment after dropping the solution on the structured gold plates and the temperature dependence of resistance shows a nonmetallic behavior. Symmetric tunneling behavior in I-V was observed in both our experimental results and theoretical calculation of surface conductance based on a s...

  9. Factors affecting the optical properties of Pd-free Au-Pt-based dental alloys.

    Science.gov (United States)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Tanaka, Yasuhiro; Hisatsune, Kunihiro

    2003-12-01

    The optical properties of experimental Au-Pt-based alloys containing a small amount of In, Sn, and Zn were investigated by spectrophotometric colorimetry to extract factors affecting color of Au-Pt-based high-karat dental alloys. It was found that the optical properties of Au-Pt-based alloys are strongly affected by the number of valence electrons per atom in an alloy, namely, the electron:atom ratio, e/a. That is, by increasing the e/a-value, activities of reflection in the long-wavelength range and absorption in the short-wavelength range in the visible spectrum apparently increased. As a result, the maximum slope of the spectral reflectance curve at the absorption edge, which is located near 515 nm (approximately 2.4 eV), apparently increased with e/a-value. Due to this effect, the b*-coordinate (yellow-blue) in the CIELAB color space considerably increased and the a*-coordinate (red-green) slightly increased with e/a-value. The addition of a third element with a higher number of valence electrons to the binary Au-Pt alloy is, therefore, effective in giving a gold tinge to the parent Au-Pt alloy. This information may be useful in controlling the color of Au-Pt-based dental alloys. PMID:15348493

  10. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  11. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    International Nuclear Information System (INIS)

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work

  12. Bismuth electrodes, an alternative in stripping voltammetry

    International Nuclear Information System (INIS)

    The heavy metals are known as highly toxic contaminants, the processes carried out in industry contribute that finally they remain dispersed in effluents and sewage, doing part of the food chain. The importance of controlling the levels of these heavy metals has become an international policy, so it has generated interest in developing new analytical methodologies for its determination [1, 2, 3, 4]. The stripping voltammetry has been considered as a family of electro-sensitive analytical techniques useful for the determination of trace levels of many metals in environmental, clinical and industrial samples [3, 4]. This work presents an overview of these bismuth-based electrodes which were introduced around 2000, which have interesting characteristics for detection of heavy metals and which represent an alternative to mercury electrodes

  13. Bismuth electrodes, an alternative in stripping voltammetry

    Science.gov (United States)

    Barón-Jaimez, J.; Joya, M. R.; Barba-Ortega, J.

    2013-11-01

    The heavy metals are known as highly toxic contaminants, the processes carried out in industry contribute that finally they remain dispersed in effluents and sewage, doing part of the food chain. The importance of controlling the levels of these heavy metals has become an international policy, so it has generated interest in developing new analytical methodologies for its determination [1, 2, 3, 4]. The stripping voltammetry has been considered as a family of electro-sensitive analytical techniques useful for the determination of trace levels of many metals in environmental, clinical and industrial samples [3, 4]. This work presents an overview of these bismuth-based electrodes which were introduced around 2000, which have interesting characteristics for detection of heavy metals and which represent an alternative to mercury electrodes.

  14. Damping and microstructures in aged Cu-Mn based alloys

    OpenAIRE

    Heil, Joseph Patrick.

    1988-01-01

    Approved for public release; distribution is unlimited An aged high damping alloy 53Cu 45Mn-2Al was studied both microstructurally by transmission electron microscopy (TEM) and microstructurally with two different damping measurement methods. In-situ heating and cooling observations were made with TEM in order to define the recently discovered flickering phenomenon associated with it's tweed microstructure. TEM studies were also made of an aged 53.6Cu-46.4Mn binary alloy. Damping measureme...

  15. Effects of copper-based alloy on the synthesis of single-crystal diamond

    CERN Document Server

    Chen Li Xue; Ma Hong An; Jia Xiao Peng; Wakatsuki, M; Zou Guang Tian

    2002-01-01

    The catalytic effects of copper-based alloys in diamond growth have been investigated. A single crystal of diamond has been obtained by the temperature gradient method (TGM), using Cu-Mn-Co and Cu-Co alloys as catalysts. It was found that the melted Cu-Mn-Co and Cu-Co alloys show low viscosity. The eutectic temperatures of these two alloys with graphite were between 1130 and 1150 deg. C, and the temperature of the transition to diamond was over 1300 deg. C at 5.5 GPa. High-quality diamond could not be obtained in Cu-Co alloy by the TGM. Our results suggest that adding Cu to a catalyst cannot decrease the reaction temperature for diamond growth.

  16. Modification of mechanical properties and microstructure of Ni-Cr-base alloy by continuous electron irradiation

    International Nuclear Information System (INIS)

    Using the methods of transmission and scanning electron microscopy and X-ray structure analysis investigation of 40CrNiAl alloy structure-phase state after different conditions of thermomechanical treatment (TMT) and electron irradiation is carried out. Correlation of microstructure parameters of irradiated alloy with its mechanical properties is ascertained as well as morphology of structural and phase transformations in alloy at continuous electron irradiation. Simultaneous increasing of strength characteristics and plasticity of 40CrNiAl alloy after certain conditions of TMT and electron irradiation is find out, the reasons of the phenomenon is analyzed. The scientifically-based schemes of 40CrNiAl alloy TMT are developed and choice of electron irradiation conditions for optimization of its mechanical properties is substantiated

  17. Oxidation induced phase transformations and lifetime limits of chromia forming nickel base alloy 625

    OpenAIRE

    Chyrkin, Anton

    2011-01-01

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of delta-Ni3Nb and (Ni,Mo,Si)6C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900–1000°C in oxidatio...

  18. Study on DC welding parameters of Al-alloy shaping based on arc-welding robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMAW, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.

  19. Neutron scattering measurements a useful alloy development tool for the new generation high temperature alloys based Co-Re system

    Czech Academy of Sciences Publication Activity Database

    Mukherji, D.; Wehr, J.; Strunz, Pavel; Gilles, R.; Hofmann, M.; Hoelzel, M.; Roesler, J.

    München : Technische Universität München, 2012 - (Carsughi, F.; Lommatzsch, I.; Neuhaus, J.). s. 34-34 [4th User Meeting at the FRM II. 23.03.2012-23.03.2012, Garching bei München] Institutional support: RVO:61389005 Keywords : Co-Re based alloys * neutron scattering * high temeperature Subject RIV: BM - Solid Matter Physics ; Magnetism http://cdn.frm2.tum.de/fileadmin/stuff/ information /UserOffice/UM2012_Booklet_lr.pdf

  20. Alloys based on Group 5 metals for hydrogen purification membranes

    International Nuclear Information System (INIS)

    Highlights: • The Ta77Nb23 alloy showed hydrogen permeability high enough to be used in diffusion purification technology. • The Ta77Nb23 alloy has mechanical properties suitable for practical application. • The hydrogen permeability data were acquired for the alloys with no special coatings. - Abstract: Production of high-purity hydrogen is required to move to power systems with little environmental impact. The considerable part of hydrogen is suggested to be obtained by methane conversion and its separation from other hydrocarbon gases which are not involved in the energy production process (associated gas, waste gas of petrochemical industry, etc.). The aim of this study was to compare properties of low cost alloys for membranes for hydrogen purification and separation. To investigate the membranes of V53Ti26Ni21 and Ta77Nb23 (wt.%) alloys, the specific hydrogen permeability and micro hardness tests, metallography and X-ray diffraction were applied. It was concluded the Ta77Nb23 (wt.%) alloy has hydrogen permeability parameters and mechanical characteristics that make it suitable for the production of thin membranes

  1. Alloys based on Group 5 metals for hydrogen purification membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kozhakhmetov, S. [Institute of High Technologies, 050012 Almaty (Kazakhstan); Sidorov, N. [Institute of Metallurgy UB RAS, 620016 Ekaterinburg (Russian Federation); Piven, V. [Saint Petersburg State University, 198504 Saint Petersburg (Russian Federation); Sipatov, I. [Institute of Metallurgy UB RAS, 620016 Ekaterinburg (Russian Federation); Gabis, I. [Saint Petersburg State University, 198504 Saint Petersburg (Russian Federation); Arinov, B. [Institute of High Technologies, 050012 Almaty (Kazakhstan)

    2015-10-05

    Highlights: • The Ta{sub 77}Nb{sub 23} alloy showed hydrogen permeability high enough to be used in diffusion purification technology. • The Ta{sub 77}Nb{sub 23} alloy has mechanical properties suitable for practical application. • The hydrogen permeability data were acquired for the alloys with no special coatings. - Abstract: Production of high-purity hydrogen is required to move to power systems with little environmental impact. The considerable part of hydrogen is suggested to be obtained by methane conversion and its separation from other hydrocarbon gases which are not involved in the energy production process (associated gas, waste gas of petrochemical industry, etc.). The aim of this study was to compare properties of low cost alloys for membranes for hydrogen purification and separation. To investigate the membranes of V{sub 53}Ti{sub 26}Ni{sub 21} and Ta{sub 77}Nb{sub 23} (wt.%) alloys, the specific hydrogen permeability and micro hardness tests, metallography and X-ray diffraction were applied. It was concluded the Ta{sub 77}Nb{sub 23} (wt.%) alloy has hydrogen permeability parameters and mechanical characteristics that make it suitable for the production of thin membranes.

  2. Deployable aerospace PV array based on amorphous silicon alloys

    Science.gov (United States)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  3. Shape-Memory-Alloy-Based Deicing System Developed

    Science.gov (United States)

    1996-01-01

    Ice buildup on aircraft leading edge surfaces has historically been a problem. Most conventional deicing systems rely either on surface heating to melt the accreted ice or pneumatic surface inflation to mechanically debond the ice. Deicers that rely solely on surface heating require large amounts of power. Pneumatic deicers usually cannot remove thin layers of ice and lack durability. Thus, there is a need for an advanced, low-power ice protection system. As part of the NASA Small Business and Innovation Research (SBIR) program, Innovative Dynamics, Inc., developed an aircraft deicing system that utilizes the properties of Shape Memory Alloys (SMA). The SMA-based system has achieved promising improvements in energy efficiency and durability over more conventional deicers. When they are thermally activated, SMA materials change shape; this is analogous to a conventional thermal expansion. The thermal input is currently applied via conventional technology, but there are plans to implement a passive thermal input that is supplied from the energy transfer due to the formation of the ice itself. The actively powered deicer was tested in the NASA Lewis Icing Research Tunnel on a powered rotating rig in early 1995. The system showed promise, deicing both rime and glaze ice shapes as thin as 1/8 in. The first prototype SMA deicer reduced power usage by 45 percent over existing electrothermal systems. This prototype system was targeted for rotorcraft system development. However, there are current plans underway to develop a fixed-wing version of the deicer.

  4. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  5. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  6. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  7. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    International Nuclear Information System (INIS)

    The aim of this study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. According to our study, the salient features for the ternary alloy are a negative SRO parameter between Ni–Cr and a positive between Cr–Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni–Cr and Ni–Fe pairs and positive for Cr–Cr and Fe–Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. The predicted SRO has an impact on point-defect energetics, electron–phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys

  8. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding

    Science.gov (United States)

    Terrani, K. A.; Zinkle, S. J.; Snead, L. L.

    2014-05-01

    Application of advanced oxidation-resistant iron alloys as light water reactor fuel cladding is proposed. The motivations are based on specific limitations associated with zirconium alloys, currently used as fuel cladding, under design-basis and beyond-design-basis accident scenarios. Using a simplified methodology, gains in safety margins under severe accidents upon transition to advanced oxidation-resistant iron alloys as fuel cladding are showcased. Oxidation behavior, mechanical properties, and irradiation effects of advanced iron alloys are briefly reviewed and compared to zirconium alloys as well as historic austenitic stainless steel cladding materials. Neutronic characteristics of iron-alloy-clad fuel bundles are determined and fed into a simple economic model to estimate the impact on nuclear electricity production cost. Prior experience with steel cladding is combined with the current understanding of the mechanical properties and irradiation behavior of advanced iron alloys to identify a combination of cladding thickness reduction and fuel enrichment increase (∼0.5%) as an efficient route to offset any penalties in cycle length, due to higher neutron absorption in the iron alloy cladding, with modest impact on the economics.

  9. Thermodynamic Prediction of Compositional Phases Confirmed by Transmission Electron Microscopy on Tantalum-Based Alloy Weldments

    International Nuclear Information System (INIS)

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for radioisotope based thermal to electrical power systems since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. Tantalum alloys have demonstrated sufficient high-temperature toughness to survive prolonged exposure to the radioisotope power-system working environment. Typically, the fabrication of power systems requires the welding of various components including the structural members made of tantalum alloys. Issues such as thermodynamics, lattice structure, weld pool dynamics, material purity and contamination, and welding atmosphere purity all potentially confound the understanding of the differences between the weldment properties of the different tantalum-based alloys. The objective of this paper is to outline the thermodynamically favorable material phases in tantalum alloys, with and without small amounts of hafnium, during and following solidification, based on the results derived from the FactSage(c) Integrated Thermodynamic Databank. In addition, Transition Electron Microscopy (TEM) data will show for the first time, the changes occurring in the HfC before and after welding, and the data will elucidate the role HfC plays in pinning grain boundaries

  10. Aluminium Alloy-Based Metal Matrix Composites: A Potential Material for Wear Resistant Applications

    OpenAIRE

    Rupa Dasgupta

    2012-01-01

    Aluminium alloy-based metal matrix composites (AMMCs) have been by now established themselves as a suitable wear resistant material especially for sliding wear applications. However, in actual practice engineering components usually encounter combination of wear types. An attempt has been made in the present paper to highlight the effect of dispersing SiC in 2014 base alloy adopting the liquid metallurgy route on different wear modes like sliding, abrasion, erosion, and combinations of wear m...

  11. Single-crystal tungsten-based alloys with molybdenum and rhenium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Single crystals of ternary W-based alloys with 2 % Re and less than 7 % Mo have been grown for the first time at the Baikov Institute of Metallurgy and Materials Science RAS. Plasma arc melting allowed us to effectively purify the single crystals from a number of impurities. According to mass spectrometric analysis for 70 elements, the total content of impurities does not exceed 0. 063%. It was found that, as the Mo content increases, the size of first-kind subgrains decreases and their mutual misorientation increases. In the W-based alloy with 2.3 % Re and 6.7% Mo, no first-kind subgrains are observed,whereas second-kind subgrains are elongated along the growth direction. In this case, their total misorientation is well below that in the other low-alloy single crystals.Single-crystal of binary tungsten-based alloys with rhenium were prepared by electron-beam zone melting (1% Re, mass fraction) and plasma arc melting (2%Re, 10%Re, 25%Re (mass fraction)). It was found that the low-alloyed (1%-2 % Rh (mass fraction)) W-based alloys are characterized by a rather perfect single-crystal structure and misorientations of first- and second-kind subgrains of 20-50' and 10-40', respectively. Sections with the coarse-grained structure are observed in ingots of the alloy with 10%and 25% (mass fraction) Rh; in the alloy with 25% Rh, such structure is observed immediately from the seed.A device for measuring the liquidus and solidus temperatures of refractory metallic alloys has been designed. The liquidus temperatures of ternary single crystals (W-Mo-Re) have been measured.The studied single crystals, owing to their purity and high stability of the structure and properties,are widely used in electronics, electrical engineering, and analytical devices for various purposes.

  12. Survey of BGFA Criteria for the Cu-Based Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    D. Janovszky

    2011-01-01

    Full Text Available To verify the effect of composition on the bulk glass forming ability (BGFA of Cu-based alloys, properties have been collected from the literature (~100 papers, more than 200 alloys. Surveying the BGFA criteria published so far, it has been found that the atomic mismatch condition of Egami-Waseda is fulfilled for all the Cu-based BGFAs, the value being above 0,3. The Zhang Bangwei criterion could be applied for the binary Cu-based alloys. The Miracle and Senkov criteria do not necessarily apply for Cu based bulk amorphous alloys. The critical thickness versus =/(+ plot of Lu and Liu extrapolates to =0.36, somewhat higher than the 0.33 value found in other BGFA alloys. The Park and Kim parameter correlates rather poorly with the critical thickness for Cu based alloys. The Cheney and Vecchino parameter is a good indicator to find the best glass former if it is possible to calculate the exact liquids projection. In 2009 Xiu-lin and Pan defined a new parameter which correlates a bit better with the critical thickness. Based on this survey it is still very difficult to find one parameter in order to characterize the real GFA without an unrealized mechanism of crystallization.

  13. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  14. Shape memory alloy wire-based smart natural rubber bearing

    International Nuclear Information System (INIS)

    In this study, two types of smart elastomeric bearings are presented using shape memory alloy (SMA) wires. Due to the unique characteristics of SMAs, such as the superelastic effect and the recentering capability, the residual deformation in SMA-based natural rubber bearings (SMA-NRBs) is significantly reduced whereas the energy dissipation capacity is increased. Two different configurations of SMA wires incorporated in elastomeric bearings are considered. The effect of several parameters, including the shear strain amplitude, the type of SMA, the aspect ratio of the base isolator, the thickness of SMA wire, and the amount of pre-strain in the wires on the performance of SMA-NRBs is investigated. Rubber bearings are composed of natural rubber layers bonded to steel shims as reinforcement. Results show that ferrous SMA wire, FeNiCuAlTaB, with 13.5% superelastic strain and a very low austenite finish temperature (−62 °C), is the best candidate to be used in SMA-NRBs subjected to high shear strain amplitudes. In terms of the lateral flexibility and wire strain level, the smart rubber bearing with a cross configuration of SMA wires is more efficient. Moreover, the cross configuration can be implemented in high-aspect-ratio elastomeric bearings since the strain induced in the wire does not exceed the superelastic range. When cross SMA wires with 2% pre-strain are used in a smart NRB, the dissipated energy is increased by 74% and the residual deformation is decreased by 15%. (paper)

  15. The metallographic investigation of brazed joints in nickel base alloys using various techniques for the production of contrast

    International Nuclear Information System (INIS)

    Brazing with high melting point nickel base brazing alloys permits distortion-free, high strength joints to be produced in high temperature, high alloy steel and nickel alloys which cannot easily be welded. This method is used for gas turbine parts subject to high thermal stresses and in nuclear engineering. (orig.)

  16. Rational design of Nb-based alloys for hydrogen separation: A first principles study

    Directory of Open Access Journals (Sweden)

    Byungki Ryu

    2013-02-01

    Full Text Available We have investigated the effect of alloying metal elements on hydrogen solubility and mechanical integrity of Nb-based alloys, Nb15M1 (where M = Ca–Zn, Ge, using first principles-based calculations. In general, the chemical interaction between the interstitial H and metal is weakened as the alloying element is changed from an early to a late transition metal, leading to lower H solubility and higher resistance to H embrittlement. This effect becomes more pronounced when a smaller alloying element is used due to stronger elastic interaction between interstitial H and metal atoms. These finding may provide scientific basis for rational design of Nb-based hydrogen separation membranes with tailored H solubility to effectively suppress H embrittlement while maintaining excellent hydrogen permeation rate.

  17. Dry sliding wear characteristics of rheocast Mg–Sn based alloys

    International Nuclear Information System (INIS)

    Highlights: • Studied wear behavior of rheocast Mg–Sn based alloys under ambient temperature. • The volumetric wear was found to be increased with increasing applied load. • Different wear micro-mechanism was observed under electron micro-scope. • Plastic deformation and work hardening took place for all the alloys mainly at the higher loads. - Abstract: Present paper focuses on the dry sliding wear behavior of rheocast Mg–Sn based alloys under ambient temperature. The alloys were studied through pin-on-disc wear experiments under four different loading conditions, namely, 9.8, 19.6, 29.4 and 39.2 N. Present investigations highlight the influence of load on the cumulative wear loss, volumetric wear loss, dry sliding wear rate and co-efficient of friction of the different alloys under study. The volumetric wear was found to be increased with increasing applied load. Different wear micro-mechanisms were observed under electron micro-scope. The wear occurs mainly by ploughing mechanism and by delamination also. During wear, extensive plastic deformation and work hardening took place for all the alloys mainly at the higher loads. Micro-structural analysis has been performed for all the alloys at different loading conditions

  18. Hot Workability of CuZr-Based Shape Memory Alloys for Potential High-Temperature Applications

    Science.gov (United States)

    Biffi, Carlo Alberto; Tuissi, Ausonio

    2014-07-01

    The research on high-temperature shape memory alloys has been growing because of the interest of several potential industrial fields, such as automotive, aerospace, mechanical, and control systems. One suitable candidate is given by the CuZr system, because of its relative low price in comparison with others, like the NiTi-based one. In this context, the goal of this work is the study of hot workability of some CuZr-based shape memory alloys. In particular, this study addresses on the effect of hot rolling process on the metallurgical and calorimetric properties of the CuZr system. The addition of some alloying elements (Cr, Co, Ni, and Ti) is taken into account and their effect is also put in comparison with each other. The alloys were produced by means of an arc melting furnace in inert atmosphere under the shape of cigars. Due to the high reactivity of these alloys at high temperature, the cigars were sealed in a stainless steel can before the processing and two different procedures of hot rolling were tested. The characterization of the rolled alloys is performed using discrete scanning calorimetry in terms of evolution of the martensitic transformation and scanning electron microscopy for the microstructural investigations. Additionally, preliminary tests of laser interaction has been also proposed on the alloy more interesting for potential applications, characterized by high transformation temperatures and its good thermal stability.

  19. Investigation of the isothermal precipitation behaviour of nickel-base alloys using electrochemical phase extraction

    International Nuclear Information System (INIS)

    Electrochemical phase extraction methods have been developed empirically for the selective separation of the precipitates in metallic materials. A detailed description of the process has been undertaken to allow optimization for various nickel-base alloys. For this part of the investigation, 16 model alloys were prepared as test electrodes and the electrolyte composition was varied over a wide range. The results enabled a series of effects to be explained on the basis of electrochemical data. The large number of test parameters limited the scope of the preliminary experiments and the range of model alloys used. In the nickel-base alloys, titanium carbo-nitride and primary M6C precipitates were identified. During isothermal ageing, M23C6 (except in Alloy KSN), Ni3Al (in INCONEL 617), Laves phases (in Hastelloy X and INCONEL 617), M12C (in HASTELLOY X and INCONEL 617) and α-tungsten (in the tungsten-containing alloys) were precipitated. The precipitation behaviour changed in the alloys investigated from intracrystalline to intercrystalline with increasing ageing temperature. The intracrystalline secondary precipitations affect the microhardness, structure and the solid-solution lattice. (orig.)

  20. Biocompatibility of new Ti-Nb-Ta base alloys.

    Science.gov (United States)

    Hussein, Abdelrahman H; Gepreel, Mohamed A-H; Gouda, Mohamed K; Hefnawy, Ahmad M; Kandil, Sherif H

    2016-04-01

    β-type titanium alloys are promising materials in the field of medical implants. The effect of β-phase stability on the mechanical properties, corrosion resistance and cytotoxicity of a newly designed β-type (Ti77Nb17Ta6) biocompatible alloys are studied. The β-phase stability was controlled by the addition of small quantities of Fe and O. X-ray diffraction and microstructural analysis showed that the addition of O and Fe stabilized the β-phase in the treated solution condition. The strength and hardness have increased with the increase in β-phase stability while ductility and Young's modulus have decreased. The potentio-dynamic polarization tests showed that the corrosion resistance of the new alloys is better than Ti-6Al-4V alloy by at least ten times. Neutral red uptake assay cytotoxicity test showed cell viability of at least 95%. The new alloys are promising candidates for biomedical applications due to their high mechanical properties, corrosion resistance, and reduced cytotoxicity. PMID:26838885

  1. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  2. Bismuth ions are metabolized into autometallographic traceable bismuth-sulphur quantum dots

    Directory of Open Access Journals (Sweden)

    M Stoltenberg

    2009-06-01

    Full Text Available Bismuth – sulphur quantum dots can be silver enhanced by autometallography (AMG. In the present study, autometallographic silver enhanced bismuth-sulphur nanocrystals were isolated from unfixed cryo-sections of kidneys and livers of rats exposed to bismuth (Bi207 subnitrate. After being subjected to AMG all the organic material was removed by sonication and enzymatic digestion and the silver enhanced Bi- S quantum dots spun down by an ultracentrifuge and analyzed by scintillation. The analysis showed that the autometallographic technique traces approximately 94% of the total bismuth. This implies that the injected bismuth is ultimately captured in bismuthsulphur quantum dots, i.e., that Bi-S nanocrystals are the end product of bismuth metabolism

  3. Interstitial-phase precipitation in iron-base alloys: a comparative study

    International Nuclear Information System (INIS)

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy

  4. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    OpenAIRE

    J. Cebulski

    2015-01-01

    This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C an...

  5. Mechanical Responses of Superlight β-Based Mg-Li-Al-Zn Wrought Alloys under Resonance

    Science.gov (United States)

    Song, Jenn-Ming; Lin, Yi-Hua; Su, Chien-Wei; Wang, Jian-Yih

    2009-05-01

    To extend the application of lightweight Mg alloys in the automotive industry, this study suggests a β-based Mg-Li alloy (LAZ1110) with superior vibration fracture resistance by means of material design. In the cold-rolled state, a strengthened β matrix by the additions of Al and Zn, as well as intergranular platelike α precipitates, which are able to stunt the crack growth, contributes to a comparable vibration life with commercial Mg-Al-Zn alloys under a similar strain condition.

  6. Thermo-physical properties and phase transformation behavior of thorium-based alloys and oxides

    International Nuclear Information System (INIS)

    In this presentation, the results of classical molecular dynamics (CMD) simulations of lattice thermal expansion (LTE), elastic constants and thermal conductivity of Urania-Thoria, Thoria-Ceria/Plutonia MOX fuels will be presented along with some experimental results using high temperature X-ray diffraction techniques. At the same time, it is very useful to understand the possible phase transformations in Th bases metallic alloys with a view to identify the metastable phases. This aspect is important from phase stability point of view. All these metallic alloys shows phase separation tendencies and complex compound formation. This presentation also discusses the nature of phase transformations in these alloys involving stable and metastable phases

  7. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.)

  8. Solute partitioning and site preference in γ/γ′ cobalt-base alloys

    International Nuclear Information System (INIS)

    This paper reports three-dimensional atom probe tomography results from a γ/γ′ based Co–Al–W alloy and two quaternary variants of this alloy highlighting the following salient features: (i) sub-nanometer-scale solute partitioning across the γ/γ′ interface as well as solute pile-up at this interface; (ii) the site preference of quaternary elements in γ′ precipitates, Co3(Al, W); and (iii) formation of multiple generations of γ′ precipitates in one of the alloys.

  9. Atom probe analysis of Sn in Zr-based alloys

    International Nuclear Information System (INIS)

    We have extensively used atom-probe field ion microscopy (APFIM) for microanalyses of a heat-treated Zircaloy-4 and Zr-Sn alloys containing 0.6 or 1.39 wt% Sn and clarified as to whether Sn is fully dissolved or not in the α-Zr matrix. It is found that Sn dissolves in the matrix of both Zircaloy-4 and Zr-0.6 wt% Sn alloy upon annealing at 723 K. For Zr-1.39 wt% Sn alloy, after annealing for more than 200 h, the symptom of phase separation has been found. The distribution of Sn in the matrix is changed from the α-quenched state, and local regions enriched with Sn are formed in the matrix. (orig.)

  10. Extraction and separation of bismuth(III).

    Science.gov (United States)

    Langade, A D; Shinde, V M

    1981-10-01

    Separation of bismuth from beryllium, lead, iron(III), indium, scandium, lanthanum, antimony(III), zirconium, titanium, thorium, vanadium(V), molybdenum(VI), uranium (VI) and chromium(VI) is achieved by selective extraction of bismuth from 0.1M sodium salicylate solution (adjusted to pH 7) into mesityl oxide (MeO). The extracted species is Bi (HOC(6)H(4)COO)(3).3MeO. The results are accurate within +/- 0.5%, with a standard deviation of 0.8%. The separation and determination of bismuth takes only 15 min. PMID:18963000

  11. Study Plan for Material Corrosion Test in Lead and Bismuth Eutectic at High Temperature

    International Nuclear Information System (INIS)

    A concept of steam lift pump type lead-bismuth cooled fast reactor (SLPLFR) is proposed as high temperature and high efficiency Pb-Bi cooled fast reactors. Fe-Al alloy-surface treated steels and ceramics of SiC, Si3N4 and SiC/SiC composites have been chosen as candidates of cladding and structural materials, respectively. A corrosion test plan is proposed, where compatibility of steels applied with Al-Fe alloy-surface treatment and the ceramics will be tested in high temperature Pb-Bi flow. A conceptual design of a test apparatus for the corrosion test is provided. (authors)

  12. Local atomic ordering in nickel based Ir and Rh alloys

    International Nuclear Information System (INIS)

    Experimental measurements of the diffuse X-ray scattering are performed on alloys of Ni with Rh and Ir. The atomic short range order (SRO) parameters αsub(i) are calculated from the measured intensity. The existence of SRO is established in the two systems. The values of α1 are observed to have anomalously large negative values for all the samples. The experimental data so obtained is interpreted theoretically by calculating the interaction energies on the basis of electronic theory of ordering. Theoretically calculated values of interaction energies are found to be in agreement with the experimentally determined type of order in these alloys. (author)

  13. Martensitic transformation in Co-based ferromagnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Kopeček, Jaromír; Yokaichiya, F.; Laufek, F.; Jarošová, Markéta; Jurek, Karel; Drahokoupil, Jan; Sedláková-Ignácová, Silvia; Molnár, Peter; Heczko, Oleg

    2012-01-01

    Roč. 122, č. 3 (2012), s. 475-477. ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : microstructure * shape memory alloy s * neutron diffraction * cobalt alloy s Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  14. Mechanical strenght and niobium and niobium-base alloys substructures

    International Nuclear Information System (INIS)

    Niobium and some of its alloys have been used in several fields of technological applications such as the aerospace, chemical and nuclear industries. This is due to its excelent mechanical stringth at high temperatures and reasonable ductility at low temperatures. In this work, we review the main features of the relationship mechanical strength - substructure in niobium and its alloys, taking into account the presence of impurities, the influence of initial thermal and thermo - mechanical treatments as well as the irradiation by energetic particles. (Author)

  15. Undercooling and demixing of copper-based alloys

    DEFF Research Database (Denmark)

    Kolbe, M.; Brillo, J.; Egry, I.; Herlach, D.M.; Ratke, L.; Chatain, D.; Tinet, N.; Antion, C.; Battezzati, L.; Curiotto, S.; Johnson, E.; Pryds, Nini

    Since the beginning of materials science research under microgravity conditions immiscible alloys have been an interesting subject. New possibilities to investigate such systems are offered by containerless processing techniques. Of particular interest is the ternary system Cu-Fe-Co, and its...... limiting binaries, Cu-Co and Cu-Fe. They all show a metastable miscibility gap in the regime of the undercooled melt. Within the ESA-MAP project “CoolCop”, different aspects of this alloy have been investigated; results obtained so far are reported here....

  16. Corrosion properties of high silicon iron-based alloys in nitric acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of copper and rare-earth elements on corrosion behavior of ~iigh silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments. The anodic polarization curve was also made to discuss the corrosion mechanism. The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%, the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite. When adding 4.57% copper in the iron alloy, its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased. In contrast, the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid.

  17. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P. [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J. [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  18. Atomic site location by channelling enhanced microanalysis (ALCHEMI) in γ'-strengthened Ni- and Pt-base alloys

    International Nuclear Information System (INIS)

    The additions of alloying elements to Ni- and Pt-base alloys influence the microstructure and thereby the creep properties, whereas the mechanism is uncertain. Therefore atomic site location by channelling enhanced microanalysis (ALCHEMI) was used to determine the site partitioning of ternary and quaternary alloying elements in the L12-ordered γ'-phase. Two ternary Ni-Al alloys with Cr and Ti additions were investigated. The measured site partitioning showed that Cr and Ti atoms prefer the Al-sublattice sites. For a ternary Pt-Al-Cr alloy, it was found that Cr atoms occupy Al sites. The influence of Ni as a fourth alloying element in a Pt-Al-Cr-Ni alloy on the site partitioning was also investigated. The detected results give evidence that in the quaternary alloy Cr and Ni atoms prefer the Pt sublattice. First principles calculations were used to support the experimental data

  19. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    Science.gov (United States)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  20. Atmospheric Corrosion of Different Fe-based Alloys in Nanocrystalline State

    Science.gov (United States)

    Sitek, J.; Sedlačková, K.; Seberíni, M.

    2005-07-01

    Nanocrystalline Fe-based alloys are interesting for their soft magnetic properties. Because these alloys are potentially applicable in outdoor-working components, their corrosion behaviour requires careful analysis. This work presents the results of the atmospheric corrosion tests in industrial and rural environments performed for up to 6 months. We compared the corrosion behaviour of two different compositions of NANOPERM-type alloys: Fe87.5Zr6.5B6 and Fe76Mo8Cu1B15 with classical FINEMET alloys of the nominal composition of Fe73.5Cu1Nb3Si13.5B9 type. The techniques of Mössbauer spectroscopy, conversion electron Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy have been employed to compare their corrosion rate, characterize corrosion products and inspect the structural changes of the nanocrystalline structure. It was found that the Si-containing FINEMET alloys are the most corrosion-resistant whereas worse corrosion properties were observed for molybdenum-containing Fe76Mo8Cu1B15 alloy. The corrosion product formed on the surface of NANOPERM-type alloys showed a needlelike morphology and a poor crystalline order and has been identified as lepidocrocite, γ-FeOOH.

  1. Microstructural observations of the crystallization of amorphous Fe-Si-B based magnetic alloys

    International Nuclear Information System (INIS)

    The effect of Cu and Nb alloying additions on the crystallization of Fe-Si-B based alloys were studied. DSC, XRD, TEM, EELS and VSM techniques were used to study the thermal properties, phase formation during primary crystallization, morphological transitions and magnetic properties. The additions of individual Cu or Nb alloying additions changed the crystallization temperature as well as the activation energy for primary crystallization. The phases formed during primary crystallization for the Fe77.5Si13.5B9, Fe76.5Si13.5B9Cu1 and Fe74.5Si13.5B9Nb3Cu1 alloys are the same, however the morphologies are significantly different. Alloying additions of 3 at.% Nb induced a change in the crystallization mechanism and the type of phases formed. The combined additions of Cu and Nb resulted in the formation of nanocrystals. B atoms were found to be rejected around dendrites formed during primary crystallization of the Fe77.5Si13.5B9 alloy. The highest saturation magnetization and the lowest coercivity is obtained in the Fe77.5Si13.5B9 and Fe74.5Si13.5B9Nb3Cu1 alloy respectively after annealing at 550 deg. C for 1 h

  2. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells

    OpenAIRE

    Ahmad Agha, Nezha; Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Se...

  3. Formation Mechanism of Curved Martensite Structures in Cu-based Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The curved martensite structures have been observed in CuZnAl-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in as-solution treated, as-aged and as-trained alloys usually occurred around dislocation tangles or precipitate, at the plate boundary or grain boundary, and when the growing plates collided with each other or alternate mutually.

  4. RESIDUAL STRESS IN NICKEL BASE SUPER ALLOY UDIMET 720 FOR DIFFERENT SURFACE CONDITIONS

    OpenAIRE

    B.R.SRIDHAR,; S.RAMACHANDRA,; U.CHANDRASEKAR

    2011-01-01

    Nickel base super alloy Udimet 720 finds applications in gas turbine engine components like discs, shafts and blades. These components rotate at high speeds in a gas turbine engine and consequently experience both high cycle fatigue (HCF) and low cycle fatigue (LCF) due to dynamic loads and temperatures. Since residual stress affects both HCF and LCF properties, study of residual stress for varying surface conditions for this alloy assumes significance. Specimens extracted from a forging were...

  5. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    Science.gov (United States)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  6. Formation of silicide based oxidation resistant coating over Mo-30 wt. % W alloy

    International Nuclear Information System (INIS)

    Silicide based oxidation resistant coatings were developed over Mo-30 W alloy using halide activated pack cementation process. Coated samples were characterized by SEM, optical microscopy, EDX and hardness measurements. Isothermal oxidation tests of coated alloy performed at 1000 deg C for 25h revealed a smaller weight gain at the initial stage of oxidation followed by no weight change indicating the protective nature of the coating. (author)

  7. Impact of dilution on the microstructure and properties of Ni-based 625 alloy coatings

    OpenAIRE

    Tiago Jose Antoszczyszyn; Rodrigo Metz Gabriel Paes; Ana Sofia Clímaco Monteiro de Oliveira; Adriano Scheid

    2014-01-01

    Nickel-based alloy IN 625 is used to protect components of aircrafts, power generation and oil refinery due to an association of toughness and high corrosion resistance. These properties are associated with the chemical composition and microstructure of coatings which depend on the processing parameters and the composition of the component being protected. This paper assessed impact of dilution on the microstructure and properties of the Ni alloy IN 625 deposited by Plasma Transferred Arc (PT...

  8. A first principles examination of phase stability in FCC-based Ni-V substitutional alloys

    International Nuclear Information System (INIS)

    In this paper the phase stability of fcc- based Ni-V substitutional alloys is investigated using linear muffin-tin orbitals total energy (LMTO) calculations. The method of Connolly and Williams (CWM) is used to extract many body interactions from the ground state energies of selected ordered configurations. These interactions are used in conjunction with the cluster variations method (CVM) to calculate the alloy phase diagram. The dependence of the interactions on the choice of configurations used to calculate them is examined

  9. Welding of cobalt-based amorphous alloys with Nd: YAG laser

    International Nuclear Information System (INIS)

    The paper describes the results concerning the investigation of the welding of cobalt-based amorphous alloys with Nd:YAG laser. Five alloys with different chemical structure and dimensions in shape of amorphous metal foils were welded. The quality of the welded joints were tested by using a microstructure analysis with an optical microscope and SEM, when the metal graphic structure, the chemical structure and the microhardness of the welded joints were tested as well. (Author)

  10. Control of equiaxed grains in a complicated Cu-Ni based alloy prepared by centrifugal casting

    OpenAIRE

    Luo Zongqiang; Zhang Weiwen; Xin Baoliang

    2011-01-01

    A complicated Cu-Ni based alloy was developed to fabricate wear-resisting bush for high temperature application. The concern focuses on the control of equiaxed grains in the developed alloy ingot prepared by centrifugal casting. The results show that the equiaxed grains are determined by the pouring temperature of the melt, the cooling rate and the rotation speed of the mold. With the decrease in pouring temperature, the fraction of the equiaxed grains in the transverse section of the ingot i...

  11. A study of surface tension driven segregation in monotectic alloy systems

    Science.gov (United States)

    Andrews, J. Barry; Andrews, Rosalia N.; Gowens, Terrell F.

    1988-01-01

    The compatibilities of various monotectic alloy systems with several different crucible materials were evaluated. The study was carried out using small candidate alloy samples of compositions that produced fifty volume percent of each liquid phase at the monotectic temperature. Compatibility was based on the evaluation of the wetting tendency of the two immiscible phases with the crucible material in a one-g solidified sample. Three types of wetting phenomena were observed during the evaluation. Type 1 indicates an alloy-crucible combination where the L2 phase preferentially wets the crucible material. Since L2 is usually the minority phase in desirable alloys, this material combination would be difficult to process and is therefore considered incompatible. Type 2 behavior indicates an alloy-crucible combination where the L1 phase preferentially wets the crucible material. This type of combination is considered compatible since surface tension effects should aid in processing the alloy to a useful form. Type 3 indicates any combination that leads to major reactions between the alloy and crucible material, gas entrapment, or separation of the metal from the crucible wall. Additional compatibility evaluations would have to be carried out on combinations of this category. The five alloy systems studied included aluminum-bismuth, copper-lead, aluminum-indium, aluminum-lead and cadmium-gallium. The systems were combined with crucibles of alumina, boron nitride, mullite, quartz, silicon carbide and zirconia.

  12. Oxidation of steels in liquid lead bismuth: Oxygen control to achieve efficient corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, Laure, E-mail: laure.martinelli@cea.f [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Jean-Louis, Courouau; Fanny, Balbaud-Celerier [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France)

    2011-05-15

    Hybrid systems dedicated to waste transmutation are constituted of an accelerator generating a high energy proton flux, a spallation target on which the accelerated proton beam impinges to produce neutrons and a subcritical core. The Pb-Bi eutectic liquid alloy is considered as spallation target material due to its suitable nuclear and physical properties. However, liquid metals can be corrosive towards containment materials (austenitic and Fe9Cr alloys). In the case of liquid lead bismuth alloy, one of the protection means considered against the dissolution of the steels is the in situ protection by the formation of an oxide layer at the steels' surface. However, in order to ensure the efficient protection of the steels by an oxide layer, the control and the monitoring of the oxygen content in the Pb-Bi alloy is a major issue. The paper recalls, first, the oxygen chemistry in a lead alloy system, in order to propose the oxygen operating window that complies with both the contamination by lead oxide of the coolant and the corrosion control by the promotion of an oxide film on the structure. Results of tests performed in stagnant lead bismuth at high oxygen concentrations are also presented showing the effect of various operating parameters on the oxidation kinetics and on the nature of the oxide layer. An oxidation mechanism and model are also proposed and compared with experimental data.

  13. Undercooling and demixing of copper-based alloys

    DEFF Research Database (Denmark)

    Kolbe, M.; Brillo, J.; Egry, I.; Herlach, D.M.; Ratke, L.; Chatain, D.; Tinet, N.; Antion, C.; Battezzati, L.; Curiotto, S.; Johnson, E.; Pryds, Nini

    Since the beginning of materials science research under microgravity conditions immiscible alloys have been an interesting subject. New possibilities to investigate such systems are offered by containerless processing techniques. Of particular interest is the ternary system Cu-Fe-Co, and its limi...

  14. SYNTHESIS AND PERFORMANCE OF FE-BASED AMORPHOUS ALLOYS FOR NUCLEAR WASTE REPOSITORY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, L; Perepezko, J; Hildal, K

    2007-02-08

    In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s that exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. Moreover, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys with increased cross-section for thermal neutron capture will be outlined to demonstrate that through careful design of alloy composition it is possible to tailor the material properties of the thermally spray-formed amorphous coating to accommodate the challenges anticipated in typical nuclear waste storage applications over tens of thousands of years in a variety of corrosive environments.

  15. Thermodynamic calculations in the development of high-temperature Co–Re-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gorr, Bronislava, E-mail: gorr@ifwt.mb.uni-siegen.de [University of Siegen, Institut für Werkstofftechnik, Siegen (Germany); Christ, Hans-Jürgen [University of Siegen, Institut für Werkstofftechnik, Siegen (Germany); Mukherji, Debashis; Rösler, Joachim [TU Braunschweig, Institut für Werkstoffe, Braunschweig (Germany)

    2014-01-05

    Highlights: • Phase diagram as a starting point for alloy development. • Design of pre-oxidation treatments by means of thermodynamic assessment. • Contribution of thermodynamic calculations to the general understanding of materials chemistry. -- Abstract: The experimental Co–Re-based alloys are being developed for high-temperature applications for service temperatures beyond 1100 °C. One of the main tasks of this research is to find the optimal chemical composition. Thermodynamic calculations are very helpful for composition selection and optimization. In this study, thermodynamic calculations were used to identify potential alloying elements and to determine suitable concentration ranges to improve properties, such as strength and oxidation resistance that are essential for high-temperature structural materials. The calculated ternary phase diagram of the Co–Re–Cr system was used to design the reference model alloy. Corrosion products formed under different atmospheric conditions were reliably predicted for a number of model Co–Re-based alloys. Pre-oxidation treatment, a common method used to improve the oxidation resistance of alloys in aggressive atmosphere, was successfully designed based on thermodynamic considerations.

  16. Improvement of Zr-base alloy for nuclear reactor core materials application by Mo addition

    International Nuclear Information System (INIS)

    The role of Mo in Zr-based alloys was studied in terms of the microstructure, texture and corrosion resistance. The base compositions of the experimental alloys were Zr-1Nb and Zr-1Nb-1Sn-0.1Fe to which Mo was added in varying amount up to 0.5%. Buttons of 300 g in weight have been produced by plasma arc remelting (PAR) and processed in sequence by hot forging, hot rolling, beta annealing, cold rolling and recrystallization annealing. It was confirmed that Mo addition resulted in grain refinement: beta grains as well as recrystallized alpha grains. This, in turn reduced the formation frequency and the size of twins and relaxed of the surface normal preferred orientation, fn. In the corrosion test in water containing 220 ppm LiOH (360 deg C, 17.9 MPa), the alloys with up to 0.2% Mo showed a good corrosion resistance whereas that with 0.5% Mo showed a degraded resistance. Apparently, the corrosion resistance was related to the density and morphology of the second phase particles. Alloys containing fine and uniformly distributed β-Nb particles showed good corrosion resistance whereas those containing excessive number or undesirable distribution of particles particularly in uncrystallized region showed degraded corrosion resistance. Overall, the present study suggests that alloying of up to 0.2% Mo should be favorably considered for improving the mechanical properties without impairing the corrosion resistance of Zr-based alloys for nuclear core applications. (author)

  17. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  18. Sheet texture modification in magnesium-based alloys by selective rare earth alloying

    International Nuclear Information System (INIS)

    Research highlights: → Different RE elements gave distinct microstructures and imparted different properties. → Gd demonstrated the highest potential to modify the sheet texture of rolled Mg. → Gd yielded excellent mechanical properties despite a coarse-grained microstructure. → RE alloying seems to promote the hard deformation mechanisms in Mg. → Indications of PSN were found in the annealed microstructures of rolled sheets. - Abstract: The current study examines the influence of select rare earth elements; Gd, Nd, Ce, La and mischmetal (MM) on the sheet texture modification during warm rolling and annealing of a ZEK100 magnesium alloy, and the resulting formability and anisotropy during subsequent tensile testing at room temperature. It was found that all the investigated RE elements led to weak sheet textures and hence promoted enhanced ductility and reduced anisotropy over conventional Mg sheet. Gd was of a particular interest because it gave rise to a desired Mg sheet texture despite its coarsest grain size resulting in promising mechanical properties. It is suggested that solute related effects on the grain boundary migration and the relative strengths of different deformation mechanisms are responsible for altering the common concepts of recrystallization and grain growth during annealing, and the activation scenarios of slip and twinning during deformation.

  19. Bond strength of resin cements to noble and base metal alloys with different surface treatments.

    Directory of Open Access Journals (Sweden)

    Farkhondeh Raeisosadat

    2014-10-01

    Full Text Available The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen.Cylinders of light cured Z 250 composite were cemented to "Degubond 4" (Au Pd and "Verabond" (Ni Cr alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05.When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021 and Verabond (P< 0.001. No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291 and Verabond (P=0.899. Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003. The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011. The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59. RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035.The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2.

  20. Properties of thermally stable PM Al-Cr based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, D. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)], E-mail: Dalibor.Vojtech@vscht.cz; Verner, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Serak, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Simancik, F. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Balog, M. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Nagy, J. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia)

    2007-06-15

    The presented paper describes properties of Al-6.0 wt.%Cr-2.3 wt.%Fe-0.4 wt.%Ti-0.7 wt.%Si alloy produced by powder metallurgy (PM). The powder alloy was prepared by the pressure nitrogen melt atomization. The granulometric powder fraction of less than 45 {mu}m was then hot-extruded at 450 deg. C to produce a rod of 6 mm in diameter. Microstructure of the as-extruded material was composed of recrystallized {alpha}(Al) grains (the average grain size of 640 nm) and Al{sub 13}Cr{sub 2} spheroids (the average particle diameter of 130 nm and interparticle spacing of 290 nm). Metastable phases were not observed due to their decomposition on the hot extrusion. Hardness of the as-extruded material was 108 HV1, ultimate tensile strength, 327 MPa, yield strength, 258 MPa and elongation, 14%. Mechanical properties resulted mainly from Hall-Petch strengthening. The room-temperature mechanical properties were also measured after a long-term annealing at 400 deg. C. The investigated PM material was compared with the commercial Al-11.8 wt.%Si-0.9 wt.%Ni-1.2 wt.%Cu-1.2 wt.%Mg casting alloy generally applied at elevated temperatures. The PM alloy showed much higher thermal stability, since its room temperature hardness and tensile properties did not degradate significantly even after annealing at 400 deg. C/200 h. In contrast, the hardness and strength of the casting alloy reduced rapidly already after a 30 min annealing. The excellent thermal stability of the investigated PM material was a consequence of very slow diffusivities and low equilibrium solubilities of chromium and iron in solid aluminium.

  1. Properties of thermally stable PM Al-Cr based alloy

    International Nuclear Information System (INIS)

    The presented paper describes properties of Al-6.0 wt.%Cr-2.3 wt.%Fe-0.4 wt.%Ti-0.7 wt.%Si alloy produced by powder metallurgy (PM). The powder alloy was prepared by the pressure nitrogen melt atomization. The granulometric powder fraction of less than 45 μm was then hot-extruded at 450 deg. C to produce a rod of 6 mm in diameter. Microstructure of the as-extruded material was composed of recrystallized α(Al) grains (the average grain size of 640 nm) and Al13Cr2 spheroids (the average particle diameter of 130 nm and interparticle spacing of 290 nm). Metastable phases were not observed due to their decomposition on the hot extrusion. Hardness of the as-extruded material was 108 HV1, ultimate tensile strength, 327 MPa, yield strength, 258 MPa and elongation, 14%. Mechanical properties resulted mainly from Hall-Petch strengthening. The room-temperature mechanical properties were also measured after a long-term annealing at 400 deg. C. The investigated PM material was compared with the commercial Al-11.8 wt.%Si-0.9 wt.%Ni-1.2 wt.%Cu-1.2 wt.%Mg casting alloy generally applied at elevated temperatures. The PM alloy showed much higher thermal stability, since its room temperature hardness and tensile properties did not degradate significantly even after annealing at 400 deg. C/200 h. In contrast, the hardness and strength of the casting alloy reduced rapidly already after a 30 min annealing. The excellent thermal stability of the investigated PM material was a consequence of very slow diffusivities and low equilibrium solubilities of chromium and iron in solid aluminium

  2. Thermodynamics of neptunium in LiCl-KCl eutectic/liquid bismuth systems

    International Nuclear Information System (INIS)

    Thermodynamic properties of neptunium in LiCl-KCl eutectic/liquid bismuth systems in the temperature range 400--500 C have been studied using a galvanic cell method for the pyrometallurgical reprocessing of nuclear spent fuels. The standard potential of the Np/Np(III) couple vs. the Ag/AgCl (1 wt% AgCl) reference electrode in LiCl-KCl eutectic was measured and given by the equation ENp/Np(III)0 = minus2.0667 + 0.0007892 T (σ = 0.0009), where E is in volts, T is in kelvin, and σ is the standard deviation. The potential of neptunium-bismuth alloy, ENp-Bi, was measured as a function of neptunium concentration, XNpinBi. The curves for EBi-Np vs. log XNpinBi indicated the neptunium solubility in liquid bismuth to be 0.34 ± 0.02, 0.61 ± 0.08, and 1.06 ± 0.09 (±σ) atom % at 400, 450, and 500 C, respectively. The excess partial free energy of neptunium in liquid bismuth was represented by the equation, Δbar GNpxs (kcal/g atom) = minus32.5 (±0.7) + 0.0072 (±0.0010) T. The values of the solubility and excess partial free energy for neptunium were closer to those for plutonium rather than uranium

  3. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E. [Tohoku University, Sendai (Japan); Yoshimi, K.; Hanada, S. [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  4. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests

    International Nuclear Information System (INIS)

    Highlights: • Bismuth nanoparticles have been obtained by laser ablation of solids in liquids. • The technique allows controlling the size and concentration of the samples. • Bi np’s in base oils can improve the tribological characteristics of the lubricant. - Abstract: The improvement of the tribological properties of mineral base oils through the addition of bismuth nanoparticles as an additive, together with the idea of obtaining lubricants free of heavy metals, was evaluated. Bismuth nanoparticles were produced directly in the heavy and light viscosity mineral base oils (BS900 and BS6500) using the technique of laser ablation of solids immersed in liquids. Transmission electron microscopy measurements showed the presence of pure bismuth nanoparticles. Small Angle X-ray Scattering (SAXS) measurements showed that the average size of the nanoparticles was between 7 and 65 nm depending on the experimental conditions used. The tribological properties of the base oil with the bismuth nanoparticles additives were evaluated using a four-ball tester. Tests were performed using the base oil with and without Bi nanoparticles. It was observed that the coefficient of friction of the oil decrease with an increasing concentration of the nanoparticles. The results also showed that the wear rate was reduced when the Bi nanoparticle additives were used

  5. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, M., E-mail: mar.floc@hotmail.com [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camps, E. [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camacho-López, M. [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Muhl, S. [Instituto de Investigación en Materiales (UNAM), Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, D.F., México (Mexico); and others

    2015-09-15

    Highlights: • Bismuth nanoparticles have been obtained by laser ablation of solids in liquids. • The technique allows controlling the size and concentration of the samples. • Bi np’s in base oils can improve the tribological characteristics of the lubricant. - Abstract: The improvement of the tribological properties of mineral base oils through the addition of bismuth nanoparticles as an additive, together with the idea of obtaining lubricants free of heavy metals, was evaluated. Bismuth nanoparticles were produced directly in the heavy and light viscosity mineral base oils (BS900 and BS6500) using the technique of laser ablation of solids immersed in liquids. Transmission electron microscopy measurements showed the presence of pure bismuth nanoparticles. Small Angle X-ray Scattering (SAXS) measurements showed that the average size of the nanoparticles was between 7 and 65 nm depending on the experimental conditions used. The tribological properties of the base oil with the bismuth nanoparticles additives were evaluated using a four-ball tester. Tests were performed using the base oil with and without Bi nanoparticles. It was observed that the coefficient of friction of the oil decrease with an increasing concentration of the nanoparticles. The results also showed that the wear rate was reduced when the Bi nanoparticle additives were used.

  6. Fracture mechanics data and modeling of environmental cracking of nickel-base alloys in high temperature water

    International Nuclear Information System (INIS)

    This paper reports on environmental cracking of ductile nickel-base alloys which has occurred both in pressurized water reactors and boiling water reactor components such as pressure-vessel safe ends, weld butters, and filler metals for joining nickel-base alloys or dissimilar metals, and attachment welding pads on pressure vessels. Accurate assessment of the interrelated effects of material, environment, and mechanics on environmental cracking behavior of ductile nickel-base alloys in 288C water

  7. Compatibility of structural materials with liquid bismuth, lead, and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, J.R. [Brookhaven National Lab., Upton, NY (United States)

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies, the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.

  8. Improvement on Hot Workability of γ-TiAl Base Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    γ-TiAl base alloys have potential usage in aerospace engine fortheir high specific strength. In order to improve their poor hot workability, a new approach of hot deformation processing was investigated. The starting microstructure of Ti-46.5Al-2.5V-1.0Cr (atom percent, %) alloy is fully lamellar (FL) microstructure. The near gamma (NG) microstructure can be obtained through Nickel microalloying and heat treatment at 1 150 ℃. The isothermal compression tests were conducted on both materials using MTS machine at temperatures of 950 ℃, 1 000 ℃, and 1 050 ℃, and the strain rates of 0.01, 0.1 and 1 s-1. Compared with the γ-TiAl alloy with FL microstructure, the Ni-bearing alloy with NG microstructure has better hot workability, such as enlarged hot workable region, decreased flow stresses, more uniform and finer deformed microstructure.

  9. Effect of Sr on forming properties of Al-Mg-Si based alloy sheets

    Institute of Scientific and Technical Information of China (English)

    LU Guang-xi; CHEN Hai-jun; GUAN Shao-kang

    2006-01-01

    The effects of Sr element on the forming properties of the Al-Mg-Si based alloy sheets were studied by tensile test,metallograph, DSC, XRD, SEM and TEM. The results show that the tensile strength of aluminum alloy sheet added 0.033%(mass fraction)Sr increases comparing with that of free Sr. Simultaneously, the forming properties of sheets evidently increase, the elongation hardenability (n) and plastic strain ratio (r) and Erichsen number increase 27.8%, 11.1%, 10.8% and 12%, respectively,and the forming limit diagram increases evidently, too. The analysis shows that Sr is surface active element, which can refine grains of alloys, promote precipitation, reduce activation energy ofβ" phase, and lead the formation of α-(Al8Fe2Si) phase instead of β-(Al5FeSi) phase. As a result, the forming properties of the alloy sheet increase.

  10. Microstructure evolution model based on deformation mechanism of titanium alloy in hot forming

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-li; LI Miao-quan

    2005-01-01

    The microstructure evolution in hot forming will affect the mechanical properties of the formed product.However, the microstructure is sensitive to the process variables in deformation process of metals and alloys. A microstructure evolution model of a titanium alloy in hot forming, which included dislocation density rate and primary α phase grain size, was presented according to the deformation mechanism and driving forces, in which the effect of the dislocation density rate on the grain growth was studied firstly. Applying the model to the high temperature deformation process of a TC6 alloy with deformation temperature of 1 133 - 1 223 K, strain rate of 0.01 -50 s-1 and height reduction of 30%, 40% and 50%, the material constants in the present model were calculated by the genetic algorithm(GA) based objective optimization techniques. The calculated results of a TC6 alloy are in good agreement with the experimental ones.

  11. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  12. Thermal analysis of selected tin-based lead-free solder alloys

    DEFF Research Database (Denmark)

    Palcut, Marián; Sopoušek, J.; Trnková, L.; Hodúlová, E.; Szewczyková, B.; Ožvold, M.; Turňa, M.; Janovec, J.

    2009-01-01

    The Sn-Ag-Cu alloys have favourable solderability and wetting properties and are, therefore, being considered as potential lead-free solder materials. In the present study, tin-based Sn-Ag-Cu and Sn-Ag-Cu-Bi alloys were studied in detail by a differential scanning calorimetry (DSC) and...... thermodynamic calculations using the CALPHAD approach. The amount of the alloying elements in the materials was chosen to be close to the respective eutectic composition and the nominal compositions were the following: Sn-3.7Ag-0.7Cu, Sn-1.0Ag-0.5Cu-1Bi (in wt.%). Thermal effects during melting and solidifying...... simulated using the Thermo-Calc software package. This approach enabled us to obtain the enthalpy of cooling for each alloy and to compare its temperature derivative with the experimental DSC curves....

  13. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    International Nuclear Information System (INIS)

    The average longevity of hip replacement devices is approximately 10–15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25–30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics

  14. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  15. Potentiality of the “Gum Metal” titanium-based alloy for biomedical applications

    International Nuclear Information System (INIS)

    In this study, the “Gum Metal” titanium-based alloy (Ti–23Nb–0.7Ta–2Zr–1.2O) was synthesized by melting and then characterized in order to evaluate its potential for biomedical applications. Thus, the mechanical properties, the corrosion resistance in simulated body fluid and the in vitro cell response were investigated. It was shown that this alloy presents a very high strength, a low Young's modulus and a high recoverable strain by comparison with the titanium alloys currently used in medicine. On the other hand, all electrochemical and corrosion parameters exhibited more favorable values showing a nobler behavior and negligible toxicity in comparison with the commercially pure Ti taken as reference. Furthermore, the biocompatibility tests showed that this alloy induced an excellent response of MC3T3-E1 pre-osteoblasts in terms of attachment, spreading, viability, proliferation and differentiation. Consequently, the “Gum Metal” titanium-based alloy processes useful characteristics for the manufacturing of highly biocompatible medical devices. - Highlights: • The Gum Metal alloy composition was synthesized by melting in this study. • Appropriate mechanical properties for biomedical applications were obtained. • High corrosion resistance in simulated body fluids was observed. • Excellent in-vitro cell response was evidenced

  16. Potentiality of the “Gum Metal” titanium-based alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gordin, D.M. [Institut des Sciences Chimiques de Rennes (UMR CNRS 6226), INSA Rennes, 20 Avenue des Buttes de Coësmes, F-35043 Rennes Cedex (France); Ion, R. [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vasilescu, C.; Drob, S.I. [Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Cimpean, A. [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Gloriant, T., E-mail: Thierry.Gloriant@insa-rennes.fr [Institut des Sciences Chimiques de Rennes (UMR CNRS 6226), INSA Rennes, 20 Avenue des Buttes de Coësmes, F-35043 Rennes Cedex (France)

    2014-11-01

    In this study, the “Gum Metal” titanium-based alloy (Ti–23Nb–0.7Ta–2Zr–1.2O) was synthesized by melting and then characterized in order to evaluate its potential for biomedical applications. Thus, the mechanical properties, the corrosion resistance in simulated body fluid and the in vitro cell response were investigated. It was shown that this alloy presents a very high strength, a low Young's modulus and a high recoverable strain by comparison with the titanium alloys currently used in medicine. On the other hand, all electrochemical and corrosion parameters exhibited more favorable values showing a nobler behavior and negligible toxicity in comparison with the commercially pure Ti taken as reference. Furthermore, the biocompatibility tests showed that this alloy induced an excellent response of MC3T3-E1 pre-osteoblasts in terms of attachment, spreading, viability, proliferation and differentiation. Consequently, the “Gum Metal” titanium-based alloy processes useful characteristics for the manufacturing of highly biocompatible medical devices. - Highlights: • The Gum Metal alloy composition was synthesized by melting in this study. • Appropriate mechanical properties for biomedical applications were obtained. • High corrosion resistance in simulated body fluids was observed. • Excellent in-vitro cell response was evidenced.

  17. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na2SO4+H2SO4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  18. Control of equiaxed grains in a complicated Cu-Ni based alloy prepared by centrifugal casting

    Directory of Open Access Journals (Sweden)

    Luo Zongqiang

    2011-02-01

    Full Text Available A complicated Cu-Ni based alloy was developed to fabricate wear-resisting bush for high temperature application. The concern focuses on the control of equiaxed grains in the developed alloy ingot prepared by centrifugal casting. The results show that the equiaxed grains are determined by the pouring temperature of the melt, the cooling rate and the rotation speed of the mold. With the decrease in pouring temperature, the fraction of the equiaxed grains in the transverse section of the ingot increases and the average length of columnar grain decreases. When the pouring temperature is confined below 1,250℃, complete equiaxed grains can be obtained. Based on the optimal centrifugal casting processing, the tensile strength of the developed alloy ingot with complete equiaxed grains reaches to 810 MPa and 435 MPa at room temperature and 500℃, respectively, which is 14% and 110% higher than that of common commercial QAl10-4-4 alloy. The wear rate of the developed alloy is 7.0 × 10-8 and 3.8 × 10-7 mm3•N-1•mm-1 at room temperature and 500℃, respectively, which is 5 times and 39 times lower than that of QAl10-4-4 alloy.

  19. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  20. Description of the capacity degradation mechanism in LaNi{sub 5}-based alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Spodaryk, Mariana, E-mail: poshtamary@ukr.net [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Shcherbakova, Larisa; Sameljuk, Anatoly [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Wichser, Adrian; Zakaznova-Herzog, Valentina; Holzer, Marco; Braem, Beat [EMPA Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Khyzhun, Oleg [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Mauron, Philippe; Remhof, Arndt [EMPA Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Solonin, Yurii [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Züttel, Andreas [EMPA Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Ecole polytechnique fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne (Switzerland)

    2015-02-05

    Highlights: • Morphology of gas atomised powders depends on the alloy composition. • Co substituted alloy electrodes exhibit slow activation and slow degradation. • The corrosion mechanism depends on the alloy composition and solubility of metals. - Abstract: The mechanism of the capacity degradation of LaNi{sub 5}-based alloy electrodes was investigated with a special focus on the influence of the alloy and surface composition, as well as the unique structure obtained by gas atomisation. The electrochemical properties, especially the cycle life curve (i.e. the capacity as a function of the cycle number of LaNi{sub 4.5}Al{sub 0.5}, LaNi{sub 2.5}Co{sub 2.4}Al{sub 0.1}, (La + Mm)Ni{sub 3.5}Co{sub 0.7}Al{sub 0.35}Mn{sub 0.4}Zr{sub 0.05}, and MmNi{sub 4.3}Al{sub 0.2}Mn{sub 0.5} alloy electrodes), was analysed and modelled. The capacity degradation upon cycling is determined by the chemical state of the alloy elements and the solubility of their oxides. The cycle life curves for the alloy electrodes without Co exhibited a rapid activation (3–4 cycles to reach maximum capacity), as well as rapid degradation (130–180 cycles for 50% maximum discharge capacity). LaNi{sub 2.5}Co{sub 2.4}Al{sub 0.1} and (La + Mm)Ni{sub 3.5}Co{sub 0.7}Al{sub 0.35}Mn{sub 0.4}Zr{sub 0.05} alloy electrodes activated after 7–10 cycles and showed very stable discharge behaviour (more than 400 cycles). The Co-containing alloy electrodes primarily lose the cycle stability because of mechanical decrepitation, whereas the alloys without Co suffer from selective dissolution of the unstable elements in the potential window, which was shown by our model of alloy degradation and confirmed by means of SEM, WDX, and ICP-OES data.

  1. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  2. Modelling technological properties of commercial wrought aluminium alloys

    International Nuclear Information System (INIS)

    The purpose of this paper is to model three important technological properties for aluminium alloys, based on their performance indices. The models are based on the chemical compositions and microstructure characteristics which are calculated using thermodynamical calculations. The properties that were modelled are the general corrosion, the weldability (MIG and TIG) and the machinability. The results from these models are to be used in materials selection and optimisation. The models clearly show that the general corrosion resistance is reduced for all alloy additions, except for small amounts of titanium. The largest influence on the corrosion is from copper and zinc. The weldability is negatively influenced by the copper and zinc-content, and for small additions of zirconium and titanium it is increased. The machinability is positively influenced by the hardness of the alloy or by adding lead or bismuth. For the non-heat-treatable alloys there was no influence from the composition to the corrosion resistance or the weldability. Copper and zinc which are added to increase the strength to the alloy strongly reduce both the weldability and the corrosion resistance but due to the increase in hardness increase the workability.

  3. Atomic scale properties of magnetic Mn-based alloys probed by Emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys at the most atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  4. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2013-10-01

    Full Text Available Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys.

  5. The surface tension of liquid aluminium-based alloys

    International Nuclear Information System (INIS)

    In a systematic study, the surface tensions of the binary alloys Al-Fe and Al-Ni were investigated over a wide temperature and concentration range using electromagnetic levitation and the oscillating drop technique. Surface tensions were derived from the oscillation frequencies applying the formalism of Cummings and Blackburn. Temperature was measured by single-color pyrometry. Of particular interest in these alloys are melts corresponding to compositions of intermetallic phases, because potential ordering phenomena may influence all thermophysical properties. In both systems, an increase of the surface tension is observed at such concentrations. On the basis of partial excess Gibbs enthalpies, surface tensions can be calculated via the Butler equation and compared with experimental results. The agreement with our experimental data depends crucially on the quality of the thermodynamic potentials used. In addition, phenomenological models are also discussed, which describe the general trend correctly

  6. Dilatometer study of rapidly solidified aluminium-silicon based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Varga, B [University TRANSILVANIA, B-dul Eroilor nr. 29, 500036, Brasov (Romania); Fazakas, E; Hargitai, H [Inst. for Materials Science and Technology, Bay Z. Foundation, Fehervari ut, 130., H-1116 Budapest (Hungary); Varga, L K, E-mail: varga@szfki.h

    2009-01-01

    Aluminum-Silicon alloys are sought in a large number of automotive and aerospace applications due to their low coefficient of thermal expansion and high wear resistance. The present study focused on structural transformations as a function of the temperature of rapidly solidified hypereutectic Al{sub 100-x}Si{sub x} (x = 12, 22 and 40) alloys. Different structures out of equilibrium have been obtained after casting in sand, graphite and copper moulds and by melt spinning. The retained Si content in supersaturated alpha Al and the precipitation of Si is discussed in the light of the dilatometer studies [1, 2, 3] complemented by metallographic microscopy, XRD and DSC [4] measurements. A Kissinger analysis was used to determine the activation energy for the precipitation of supersaturated Si content.

  7. Fracture of niobium-base silicide coated alloy

    International Nuclear Information System (INIS)

    Mechanical properties and character of fracture of Nb-W-Mo-Zr-C alloy composition with complex by composition and structure silicide coating under different states of stage-by-stage coating are studied. Structural features, character of fracture from ductile to quasibrittle transcrystalline one and, respectively, the composition plasticity level are defined by interrelation of fracture processes in coating, matrix plastic flow and possibility and way of stress relaxation on their boundary

  8. Degradation mode survey of titanium-base alloys

    International Nuclear Information System (INIS)

    Of the materials reviewed, commercially pure titanium, Ti Gr 2, is the most susceptible to crevice corrosion. Ti Gr 7, 12, and 16 are likely to be resistant to crevice corrosion under the current expected Yucca Mountain repository conditions. Although Grade 7 has the greatest resistance to crevice corrosion it is also the most expensive. Although the possibility of sustained loads cracking exists, it has not yet been observed in a Ti alloys. For hydride precipitation to occur 100 degrees C, the hydrogen concentration would need to be relatively high, much higher than the maximum amount of hydrogen allowed during the manufacture of (α Ti alloys (0.0 15 wt%). A large amount of (SCC) stress corrosion cracking data accumulated at SNL and BNL for the WIPP program and by the Canadian Waste Management Program on titanium grades 2 and 12 indicates that there is no SCC at naturally occurring potentials in various brines. Hydride-induced cracking of titanium is a possibility and therefore, further investigation of this phenomenon under credible repository conditions is warranted. One disadvantage of titanium and its alloys is that their strengths decrease rather rapidly with temperature. This is due to the strong temperature dependence of interstitial solute strengthening mechanisms. Ti Gr 12 and 16 are recommended for further consideration as candidate materials for high level nuclear waste containers

  9. Development of rapidly solidified Al-Y-Ni-based alloys

    International Nuclear Information System (INIS)

    The present study is concerned with the effect of alloying additions (e.g. Co, Nb, Pd, La and Y) to the glass forming ability (GFA) of Al-Y-Ni alloys. Rapidly solidified ribbons of the following systems have been prepared by melt-spinning process: Al88Ni x/2Pd x/2Y12-x (x = 2, 5, 10), Al88Ni1Co1Y10-xLa x (x = 0, 5, 10), Al88Ni1Nb1Y10, and Al86Ni4-xCo xY10 (x = 1, 2, 3). Characterisation of the melt spun alloys was carried out through a combination of X-ray diffractometry, differential scanning calorimetry, and transmission electron microscopy. GFA in Al88Ni1TM1Y10 (where TM = Co, Nb, Pd) increases in the following order: Nb 88-Ni-Pd-Y systems the optimum quantity of yttrium is 10 at.%. A complete substitution of Y with La, or aluminium with 2 at.% of (Co,Ni) decreases the glass forming ability in Al88Ni1Co1Y10 but increases thermal stability of the residual amorphous phase. Partial replacement of Y with La significantly improves the thermal stability of the amorphous phase in Al-Ni-Co-Y

  10. Oxygen Behavior in Bulk Amorphous Zr-base Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Bulk Zr55Al10Ni5Cu30 metallic glass plates with a dimension of 85 mm×35mm×4 mm and a complicated plate werefabricated by injecting casting method using spongy zirconium and industrial purity aluminum, nickel and copper asraw materials. It was shown that the holding time of liquid metals at elevated temperatures had a great influence onthe oxygen content of the plates due to the contamination resulting from the atmosphere. Increasing holding timeresulted in the increase of oxygen content in the injected alloy. The glass transition temperatures of the bulk metallicglass plates are higher than that reported in the literature and crystallization temperature is lower for the one withhigher oxygen content at the same heating rate. The extension of the undercooled liquid region △Tx reaching about87 K is 3 K higher than that previously reported and 26 K higher than that with oxygen content of 0.076 wt pct forthe one with oxygen content as high as 0.065 wt pct. Therefore the oxygen content of the alloy has a significantinfluence on the glass forming ability and thermal stability of bulk metal glass. It is suggested that direct correlationbetween high glass forming ability and large △Tx is only valid for a well-defined Iow oxygen concentration or has tobe reconsidered by incorporating oxygen as an additional alloying element.

  11. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    Science.gov (United States)

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  12. Ageing dependence and martensite stabilization in copper based shape memory alloys

    International Nuclear Information System (INIS)

    Shape memory alloys exhibit a peculiar property called shape memory effect based on a first order solid state phase transformation, martensitic transformation which occurs in thermal manner on cooling the materials. Martensitic transformation is evaluated by the structural changes in microscopic scale. Copper-based ternary alloys exhibit shape memory effect in metastable beta phase region. These alloys have bcc-based ordered structures at high temperature, and transform martensiticaly to the long-period layered structures on cooling. The material atoms move cooperatively on (110)-type close packed planes of parent phase by means of a shear-like mechanism, and structural and fundamental properties of these alloys are altered by aging in the martensitic state. Therefore, the ageing gives rise to the structural changes in both long and short-range order in material. X-ray powder diffraction studies carried out in a long time interval on copper based shape memory alloys reveal that peak locations and intensities chance with ageing duration in martensitic condition, and these changes lead to the martensite stabilization in the redistribution or disordering manner, and stabilization proceeds by a diffusion-controlled process. (author)

  13. Ageing dependence and martensite stabilization in copper based shape memory alloys

    International Nuclear Information System (INIS)

    Shape memory alloys exhibit a peculiar property called shape memory effect based on a first order solid state phase transformation, martensitic transformation which occurs in thermal manner on cooling the materials. Martensitic transformation is evaluated by the structural changes in microscopic scale. Copper-based ternary alloys exhibit shape memory effect in metastable beta phase region. These alloys have bcc-based ordered structures at high temperature, and transform martensiticaly to the long-period layered structures on cooling. The material atoms move cooperatively on {110}-type close packed planes of parent phase by means of a shear-like mechanism, and structural and fundamental properties of these alloys are altered by aging in the martensitic state. Therefore, the ageing gives rise to the structural changes in both long and short-range order in material. X-ray powder diffraction studies carried out in a long time interval on copper based shape memory alloys reveal that peak locations and intensities chance with ageing duration in martensitic condition, and these changes lead to the martensite stabilization in the redistribution or disordering manner, and stabilization proceeds by a diffusion-controlled process

  14. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  15. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    Science.gov (United States)

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content. PMID:27192231

  16. Structure and mechanical properties of Ti-5Cr based alloy with Mo addition

    International Nuclear Information System (INIS)

    The effects of molybdenum (Mo) on the structure and mechanical properties of a Ti-5Cr-based alloy were studied with an emphasis on improving its strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-5Cr and a series of Ti-5Cr-xMo (x = 1, 3, 5, 7, 9 and 11 wt.%) alloys were prepared by using a commercial arc-melting vacuum-pressure casting system, and investigated with X-ray diffraction (XRD) for phase analysis. Three-point bending tests were performed to evaluate the mechanical properties of all specimens and their fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that Ti-5Cr-7Mo, Ti-5Cr-9Mo and Ti-5Cr-11Mo alloys exhibited ductile properties, and the β-phase Ti-5Cr-9Mo alloy exhibited the lowest bending modulus. However, the Ti-5Cr-3Mo and Ti-5Cr-5Mo alloys had much higher bending moduli due to the formation of the ω phase during quenching. It is noteworthy that the Ti-5Cr-9Mo alloy exhibited the highest bending strength/modulus ratios at 26.0, which is significantly higher than those of c.p. Ti (8.5) and Ti-5Cr (13.3). Furthermore, the elastically recoverable angle of the Ti-5Cr-9Mo alloy (30o) was greater than that of c.p. Ti (2.7o). The reasonably high strength (or high strength/modulus ratio) β-phase Ti-5Cr-9Mo alloy exhibited a low modulus, ductile property, and excellent elastic recovery capability, which qualifies it as a novel implant materials.

  17. An Experimental Study on Rate-sensitive Tensile Deformation Behaviour of Fe-based Shape Memory Alloy

    OpenAIRE

    Iwamoto Takeshi; Fujita Kazuki

    2015-01-01

    Recently, it is attempted to apply high manganese steel including Fe-based shape memory alloy to vibration dampers. Especially, the alloy indicates a special characteristic as a well-known shape memory effect. By coupling between this effect and its plastic deformation, it can be considered that its deformation behaviour at higher deformation rate becomes quite complicated and still unclear. In this study, tensile tests of Fe-based shape memory alloy at different rate of deformation are condu...

  18. The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead

    International Nuclear Information System (INIS)

    The mode of stress corrosion cracking (SCC) in Ni-base alloys in high temperature aqueous solutions containing lead was studied using C-rings and slow strain rate testing (SSRT). The lead concentration, pH and the heat treatment condition of the materials were varied. TEM work was carried out to observe the dislocation behavior in thermally treated (TT) and mill annealed (MA) materials. As a result of the C-ring test in 1M NaOH+5000 ppm lead solution, intergranular stress corrosion cracking (IGSCC) was found in Alloy 600MA, whereas transgranular stress corrosion cracking (TGSCC) was found in Alloy 600TT and Alloy 690TT. In most solutions used, the SCC resistance increased in the sequence Alloy 600MA, Alloy 600TT and Alloy 690TT. The number of cracks that was observed in alloy 690TT was less than in Alloy 600TT. However, the maximum crack length in Alloy 690TT was much longer than in Alloy 600TT. As a result of the SSRT, at a nominal strain rate of 1 x 10-7/s, it was found that 100 ppm lead accelerated the SCC in Alloy 600MA (0.01%C) in pH 10 at 340 C. IGSCC was found in a 100 ppm lead condition, and some TGSCC was detected on the fracture surface of Alloy 600MA cracked in the 10000 ppm lead solution. The mode of cracking for Alloy 600 and Alloy 690 changed from IGSCC to TGSCC with increasing grain boundary carbide content in the material and lead concentration in the solution. IGSCC seemed to be retarded by stress relaxation around the grain boundaries, and TGSCC in the TT materials seemed to be a result of the crack blunting at grain boundary carbides and the enhanced Ni dissolution with an increase of the lead concentration. (orig.)

  19. Synthesis and Performance of Fe-based Amorphous Alloys for Nuclear Waste Applications

    International Nuclear Information System (INIS)

    Recent developments in multi-component Fe-based amorphous alloys have shown that these novel materials exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. During the past decade, amorphous alloy synthesis has advanced to allow for the casting of bulk metallic glasses. In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s. At such low cooling rates, there is an opportunity to produce amorphous solids through industrial processes such as thermal spray-formed coatings. Moreover, since cooling rates in typical thermal spray processing exceed 1000 K/s, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. For example, a wedge casting technique has been applied to examine bulk glass forming alloys by combining multiple thermal probes with a measurement based kinetics analysis and a computational thermodynamics evaluation to elucidate the phase selection competition and critical cooling rate conditions. Based upon direct measurements and kinetics modeling it is evident that a critical cooling rate range should be considered to account for nucleation behavior and that the relative heat flow characteristics as well as nucleation kinetics are important in judging ease of glass formation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys

  20. Corrosion and mechanical property at high temperature of nickel based alloy for VHTR

    International Nuclear Information System (INIS)

    Using a very high temperature reactor (VHTR), it is conceptually and practically possible to generate highly efficient electricity and produce massive hydrogen among generation IV nuclear power plants. The structural material for an intermediate heat exchanger (IHX) is exposed to high temperature of up to 950 .deg. C. In this harsh environment, nickel-based alloys such as Alloy 617 and Haynes 230 are considered as promising candidate materials for IHX material owing to their excellent creep resistances at high temperature. However, high-temperature degradation cannot be avoided even for nickel-based alloy. Helium which inevitably includes impurities such as H2, CH4, H2O and CO is used as a coolant in a VHTR. Material degradation is aggravated by corrosion under an impure helium environment, which is one of the main obstacles to overcome for the application and successful long-term operation of a VHTR. A review of the thermodynamics indicates which reactions are available on the surface of the materials among oxidation, carburization and decarburization, but it does not give US the kinetic preference. This kinetic preference can induce localized corrosion, kinetic irreversibility and long-term material instability leading to material degradation. In addition to a long-term corrosion test under a VHTR coolant environment, the development of new alloys superior to commercial nickel-based alloy also give way to the successful establishment of a VHTR. Commercial nickel-based wrought alloy is strengthened by a solid solution and precipitation hardening mechanism in a wide temperature range of 500 to 900 .deg. C. The γ' significantly contributes to the strengthening by locking dislocation motion by an antiphase boundary at an intermediate temperature range of 700 to 800 .deg. C, but is no longer stable above this temperature range. However, the material for an IHX needs to fulfill the mechanical property requirements in a narrow and very high temperature range of 850 to

  1. Interface structure and formation mechanism of diffusion-bonded joints of TiAl-based alloy to titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Vacuum diffusion bonding of a TiAl-based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa. The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al-rich α(Ti)layer adjacent to TC2,and the other is (Ti3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three-stage mechanism,namely(a)the occurrence of a single-phase α(Ti)layer;(b)the occurrence of a duplex-phase(Ti3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti3Al+TiAl)layers.

  2. Bismuth-based cyclic synthesis of 3,5-di-tert-butyl-4-hydroxybenzoic acid via the oxyarylcarboxy dianion, (O2CC6H2(t)Bu2O)2-.

    Science.gov (United States)

    Kindra, Douglas R; Evans, William J

    2014-02-28

    3,5-Di-tert-butyl-4-hydroxybenzoic acid can be made under mild conditions in a cyclic process from carbon dioxide and 3,5-di-tert-butyl-4-phenol using bismuth-based C-H bond activation and CO2 insertion chemistry starting with the Bi(3+) complex, Ar'BiCl2, of the NCN pincer ligand, Ar' = 2,6-(Me2NCH2)2C6H3. Complexes of the recently discovered oxyaryl dianion, (C6H2(t)Bu2-3,5-O-4)(2-), and the oxyarylcarboxy dianion, [O2C(C6H2(t)Bu2-3,5-O-4)](2-), are intermediates in the process. Further studies of the oxyarylcarboxy dianion in Ar'Bi[O2C(C6H2(t)Bu2-3,5-O-4)-κ(2)O,O'], show that it undergoes decarboxylation upon reaction with I2 and it reacts with trimethylsilyl chloride to produce the trimethylsilyl ether of the trimethylsilyl ester of 3,5-di-tert-butyl-4-hydroxybenzoic acid and the Ar'BiCl2 starting material. PMID:24336959

  3. Design and development of powder processed Fe-P based alloys

    International Nuclear Information System (INIS)

    Highlights: → The forming technique does not require any binder. Thus the system remains uncontaminated. → The use of ceramic protective coating eliminates the need of hydrogen protective atmosphere during heating. → Combined application of glassy ceramic coating and use of graphite as a reducing agent has lead to economy in P/M processing. → The technology developed in the present investigation showed very low coercivity and total loss values. -- Abstract: The present investigation deals with designing Fe, Fe-P binary and Fe-P-Si ternary alloys produced by an in-house developed powder metallurgical technique based on 'Hot Powder Preform Forging'. Proper soaking of preforms at high temperature (1050 oC) eliminates iron-phosphide eutectic and brings entire phosphorus into solution in iron. Attempting hot forging thereafter completely eliminates hot as well as cold shortness and thereby helps to form these preforms (alloys) into very thin sheets of 0.5 mm. The use of costly hydrogen atmosphere during sintering has been eliminated by the addition of carbon as a reducing agent to form CO gas within the compact by reacting with oxygen of iron powder particles. The glassy ceramic coating applied over the compact serves as a protective coating to avoid atmospheric oxygen attack over the compact held at high temperature. These alloys so formed were subjected to density examination at various stages. Microstructural study has been carried out to estimate the grain size, volume percentage of porosity in the alloys, and uniform distribution of phosphorus and silicon in an iron matrix. X-ray diffraction studies of these alloys revealed the presence of only ferrite as product phase. Addition of alloying elements such as P and Si has improved the resistivity and magnetic properties of iron. Fe-0.07C-0.2O-0.3P-0.5Si alloy showed a resistivity as high as 31.7 μΩ cm. Coercivity values of the alloys ranged from 0.51 to 1.98 Oe. The total magnetic loss of Fe-0.07C-0.2O-0.3P

  4. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  5. The size-effect on the formation enthalpy of nanosized binary ti based alloy

    International Nuclear Information System (INIS)

    The effects of grain size and composition on the formation enthalpy of nano binary Ti-based alloy are investigated by taking the surface effect into account within the modified Miedema model. It is demonstrated that the formation enthalpy of binary Ti based alloy with nano grains is size-dependent and exhibits evident size-effects. The formation enthalpy increases with the size decrease, and its value turns from negative to positive at a critical size, which will weaken the thermal stability of the nano grains. Furthermore, the composition segregation taking place in the nano grains of the Ti based alloy is obvious when the grain size is less than 10 nm and the tendency of segregation is dependent on the surface formation enthalpy of nanoparticle. (authors)

  6. An X-ray Fourier line shape analysis in cold-worked hexagonal titanium base alloys

    International Nuclear Information System (INIS)

    X-ray diffraction is an established technique for the analysis of microstructural parameters such as domain sizes, microstrains within the domains, and deformation fault densities in the deformed state of metals and alloys. These microstructural parameters influence the flow of dislocation in the lattice under deformation and thus regulate the strength and hardenability of the materials. The evaluation of such microdefects is this necessary for understanding the mechanical behavior of materials. In the present study, considering the wide applicability of titanium-base alloys in aviation industry, two alloy systems, i.e., titanium-base aluminum and titanium-base zirconium, have been selected. A number of X-ray diffraction profiles belonging to both fault-affected (H - K = 3N ± 1) and fault-unaffected (H - K = 3N) reflections have been recorded by a SIEMENS Kristolloflex-4 diffractometer using Cu Kα radiation, and the profiles have been analyzed to evaluate the microstructural parameters

  7. Vanadium alloys: development strategy

    International Nuclear Information System (INIS)

    A strategy for the development of vanadium alloys for use in radiation environments is outlined. An attractive reference alloy (V-15Cr-5Ti) has been identified. The critical issues in developing vanadium base alloys are summarized

  8. Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries

    International Nuclear Information System (INIS)

    Research highlights: → State-of-the-art of new R-Mg-Ni-based hydrogen storage electrode alloys is reviewed. → Electrode performances of the R-Mg-Ni-based alloys depend strongly on the stoichiometric ratio, alloy components and microstructure. → Optimized alloy compositions contain mainly metallic elements of La, Mg, Ni, Co, Mn and Al. → Pulverization of particles and oxidation/corrosion of active components are responsible for the fast capacity degradation. → Low-Co or Co-free R-Mg-Ni-based electrode alloys should be developed. - Abstract: This review is devoted to new rare earth-Mg-Ni-based (R-Mg-Ni-based) hydrogen storage alloys that have been developed over the last decade as the most promising next generation negative electrode materials for high energy and high power Ni/MH batteries. Preparation techniques, structural characteristics, gas-solid reactions and electrochemical performances of this system alloy are systematically summarized and discussed. The improvement in electrochemical properties and their degradation mechanisms are covered in detail. Optimized alloy compositions with high discharge capacities, good electrochemical kinetics and reasonable cycle lives are described as well. For their practical applications in Ni/MH batteries, however, it is essential to develop an industrial-scale homogeneous preparation technique, and a low-cost R-Mg-Ni-based electrode alloy (low-Co or Co-free) with high discharge capacity, long cycle life and good kinetics.

  9. Comparative evaluation of the effect of simulated porcelain firing cycle on the mechanical properties and microstructure of base metal ceramic alloys.

    OpenAIRE

    Singla A; Shetty P; Joseph M; Kotian R

    1999-01-01

    A comparison of mechanical properties and microstructure of four metal ceramic alloys in as-cast and heat-treated conditions resulted in significant differences. The alloys that were tested included two nickel-based and two cobalt-based metal ceramic alloys. Mechanical properties tested included strength, percent elongation and hardness. Ten tensile bars were cast for each alloy. Five of the ten bars for each alloy were randomly selected for heat treatment with the simulated porcelain firing ...

  10. Effects of can parameters on canned-forging process of TiAl base alloy(Ⅰ)--Microstructural analyses

    Institute of Scientific and Technical Information of China (English)

    刘咏; 韦伟峰; 黄伯云; 何双珍; 周科朝; 贺跃辉

    2002-01-01

    By using thermal simulation technique, the conventional canned-forging process of TiAl based alloy was studied. The effect of can parameters on the microstruct ures of TiAl alloy was analyzed in this process. The results show that, the defo rmation microstructure of TiAl based alloy without canning is inhomogeneous. In lateral area, crack and shearing lines can be found; while in central area, fine -grained shearing zone can be found. The effect of can is to reduce the seconda ry tensile stress. However, only when the deformation of the steel can is coinci dental with that of TiAl alloy ingot, can this effect be effective. Moreover, a thick can would enhance the microstructural homogeneity in TiAl based alloy. With the H/D ratio of the ingot increasing, the deformation of TiAl alloy would be more unsteady, therefore, a thicker can should be needed.

  11. Influence of Cumulative Plastic Deformation on Microstructure of the Fe-Al Intermetallic Phase Base Alloy

    Directory of Open Access Journals (Sweden)

    Bednarczyk I.

    2014-10-01

    Full Text Available This article is part of the research on the microstructural phenomena that take place during hot deformation of intermetallic phase-based alloy. The research aims at design an effective thermo - mechanical processing technology for the investigated intermetallic alloy. The iron aluminides FeAl have been among the most widely studied intermetallics because their low cost, low density, good wear resistance, easy of fabrication and resistance to oxidation and corrosion. There advantages create wide prospects for their industrial applications for components of machines working at a high temperature and in corrosive environment. The problem restricting their application is their low plasticity and their brittle cracking susceptibility, hampers their development as construction materials. Consequently, the research of intermetallic-phase-based alloys focuses on improvement their plasticity by hot working proceses. The study addresses the influence of deformation parameters on the structure of an Fe-38% at. Al alloy with Zr, B Mo and C microadditions, using multi – axis deformation simulator. The influence of deformation parameters on microstructure and substructure was determined. It was revealed that application of cumulative plastic deformation method causes intensive reduction of grain size in FeAl phase base alloy.

  12. Effects of AI Addition on the Thermoelectric Properties of Zn-Sb Based Alloys

    Institute of Scientific and Technical Information of China (English)

    CUI Jiaolin; LIU Xianglian; YANG Wei; CHEN Dongyong; MAO Liding; QIAN Xin

    2009-01-01

    The β-Zn4Sb3, emerged as a compelling p-type thermoelectric material, is widely used in heat-electricity conversion in the 400-650 K range. In order to probe the effects of slight doping on the crystal structure and physical properties, we prepared the samples of Al-added Zn-Sb based alloys by spark plasma sintering and evaluated their microstructures and thermoelectric properties. After a limited Al addition into the Zn-Sb based alloys we observed many phases in the alloys, which include a major phase β-Zn4Sb3,intermetallic phases ZnSb and AISb. The major β-Zn4Sb3 phase plays a fundamental role in controlling the thermoelectric performance, the precipitated phases ZnSb and AISb are of great importance to tailor the transport properties, such as the gradual enhancement of lattice thermal conductivity, in spite of an increased phonon scattering in additional grain boundaries. The highest thermoelectric figure of merit of 0.55 is obtained for the alloy with a limited AI addition at 653 K, which is 0.08 higher than that of un-doped β-Zn4Sb3 at the corresponding temperature. Physical property experiments indicate that there is a potentiality for the improvement of thermoelectric properties if a proper elemental doping is carried out into the Zn-Sb based alloys, which was confirmed by AI addition in the present work.

  13. Hydrothermal synthesis map of bismuth titanates

    International Nuclear Information System (INIS)

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO3·2H2O and anatase TiO2 in concentrated NaOH solution at 240 °C is shown to produce perovskite and sillenite phases Na0.5Bi0.5TiO3 and Bi12TiO20, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi1.43Ti2O6(OH)0.29(H2O)0.66 is formed. The use of a mixture of HNO3 and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi4Ti3O12. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi LIII-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products. - Graphical abstract: Use of NaBiO3·2H2O and TiO2 as reagents under hydrothermal conditions allows the phase-pure preparation of four crystalline bismuth titanate materials. Highlights: ► NaBiO3 and TiO2 under hydrothermal conditions allow formation of bismuth titanates. ► Synthesis of four distint phases has been mapped. ► Bi LIII-edge XANES shows Bi is reduced to oxidation state +3 in all materials. ► A new hydrated bismuth titanate pyrochlore has been isolated

  14. Shear bond strength of a ceromer to noble and base metal alloys

    Directory of Open Access Journals (Sweden)

    Dorriz H.

    2006-08-01

    Full Text Available Background and Aim: The improvement of the physical and chemical properties of resins as well as great advances achieved in the field of chemical bonding of resin to metal has changed the trend of restorative treatments. Today the second generation of laboratory resins have an important role in the restoration of teeth. The clinical bond strength should be reliable in order to gain successful results. In this study the shear bond strength (SBS between targis (a ceromer and two alloys (noble and base metal was studied and the effect of thermocycling on the bond investigated. Materials and Methods: In this experimental study, alloys samples were prepared according to the manufacturer. After sandblasting of bonding surfaces with 50µ AI2o3 Targis was bonded to the alloy using Targis I link. All of the samples were placed in 37°C water for a period of 24 hours. Then half of the samples were subjected to 1000 cycles of thermocycling at temperatures of 5°C and 55°C. Planear shear test was used to test the bond strength in the Instron machine with the speed rate of 0.5mm/min. Data were analyzed by SPSS software. Two-way analysis of variance was used to compare the bond strength among the groups. T test was used to compare the alloys. The influence of thermocycling and alloy type on bond strength was studied using Mann Whitney test. P<0.05 was considered as the limit of significance. Result: The studied alloys did not differ significantly, when the samples were not thermocycled (P=0.136 but after thermocycling a significant difference was observed in SBS of resin to different alloys (P=000.1. Thermal stress and alloy type had significant interaction, with regard to shear bond strength (P=0.003. There was a significant difference in SBS before and after thermocycling in noble alloys (P=0.009, but this was not true in base metals (P=0.29. Maximum SBS (19.09 Mpa belonged to Degubond 4, before thermocycling. Minimum SBS (8.21 Mpa was seen in Degubond 4

  15. High Temperature Oxidation and Electrochemical Investigations on Ni-base Alloys

    OpenAIRE

    Obigodi-Ndjeng, Marthe Georgia

    2011-01-01

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy’s corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 °C in air for different time periods. The superalloy showed...

  16. AFM research on the mechanism of Fe-based alloy stress annealed inducing magnetic anisotropy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cross-section of the Fe-based alloy (Fe73.5Cu1Nb3Si13.5B9) ribbon annealed at 540℃ under various tensile stress was investigated with atomic force microscope (AFM). The stress effect mechanism in Fe-based alloy ribbon tensile stress an-nealed inducing transverse magnetic anisotropy field was studied using the X-ray diffraction spectra and longitudinal drive giant magneto-impedance effect curves, and the model of direction dominant in encapsulated grain agglomeration was es-tablished. The relationship between the direction dominant in encapsulated grain agglomeration and magnetic anisotropy field was disclosed.

  17. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    International Nuclear Information System (INIS)

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  18. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  19. Formation and Oxidation Resistance of Silicide Coatings for Mo and Mo-Based Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The forming process of silicide coatings on pure Mo and Mo-base alloys, obtained by the gasphase deposition method, has been studied by examining the microstructure of coatings and the relationship between coating thickness and process parameters. It was shown that the growth of coatings was diffusion-controlled, the diffusion of silicon to be coated into Mo or Mo-base alloys was mainly responsible for the formation of silicide. The relationship between initial silicide thickness and oxidation resistance was also investigated, and the equation of service life of the coatings at high temperature in air is presented.

  20. Thermodynamic properties of lanthanum in gallium-indium eutectic based alloys

    OpenAIRE

    Shchetinskiy, A. V.; Dedyukhin, A. S.; Volkovich, V. A.; Yamshchikov, L. F.; Maisheva, A. I.; Osipenko, A. G.; Kormilitsyn, M. V.

    2013-01-01

    Activity and activity coefficients of lanthanum were determined for the first time in gallium-indium eutectic based alloys in a wide temperature range employing electromotive force method. Activity of β-La and super cooled liquid lanthanum in Ga-In eutectic based alloys between 573 and 1073 K linearly depends on the reciprocal temperature: lgaβ-La(Ga-In)=5.660-15, 352T±0.093 lgaLa(Ga-In)=6.074-15,839T±0.093 Activity coefficients of β-La and super cooled liquid lanthanum in this system at 617-...

  1. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications. PMID:27062241

  2. Preparation and characterization of aluminum based alloy - mica composites

    International Nuclear Information System (INIS)

    In this work, six pallets each of 2.0 cm dia and 0.5 cm thickness were prepared by powder metallurgy; half of them also contained 1% mica-powder to form a composite. Inclusion of mica resulted in a decreased density and an increased porosity of the sample. Brinell hardness was found to be 21% less for the composite than for the pure alloy. Micro-graphs of different areas of the sample show uniform distribution of mica particles and avoids around them. (author)

  3. Applications of relative and internal monostandard NAA methods for analysis of alloys: as a part of chemical quality control exercise

    International Nuclear Information System (INIS)

    INAA using relative as well as internal monostandard methods has been applied for the major, minor and trace element determination of various alloys namely Nimonic alloy, Lead-Bismuth alloy and Zircaloys. The elements determined include, In, Sn, W, Mn, Sb and Ag in lead-bismuth alloy, Ni, Ti, Al, V and Mn in Nimonic alloy and In, Sn, Mn, Cl, Hf, Ta, Cr, Fe, Ni and Zr in zircaloys. The results were compared with the results obtained by ICP-AES. (author)

  4. Layer formation on metal surfaces in lead-bismuth at high temperatures in presence of zirconium

    Science.gov (United States)

    Loewen, Eric P.; Yount, Hannah J.; Volk, Kevin; Kumar, Arvind

    2003-09-01

    If the operating temperature lead-bismuth cooled fission reactor could be extended to 800 °C, they could produce hydrogen directly from water. A key issue for the deployment of this technology at these temperatures is the corrosion of the fuel cladding and structural materials by the lead-bismuth. Corrosion studies of several metals were performed to correlate the interaction layer formation rate as a function of time, temperature, and alloy compositions. The interaction layer is defined as the narrow band between the alloy substrate and the solidified lead-bismuth eutectic on the surface. Coupons of HT-9, 410, 316L, and F22 were tested at 550 and 650 °C for 1000 h inside a zirconium corrosion cell. The oxygen potential ranged from approximately 10 -22 to 10 -19 Pa. Analyses were performed on the coupons to determine the depth of the interaction layer and the composition, at each time step (100, 300, and 1000 h). The thickness of the interaction layer on F22 at 550 °C was 25.3 μm, the highest of all the alloys tested, whereas at 650 °C, the layer thickness was only 5.6 μm, the lowest of all the alloys tested. The growth of the interaction layer on F22 at 650 °C was suppressed, owing to the presence of Zr (at 1500 wppm) in the LBE. In the case of 316L, the interaction layers of 4.9 and 10.6 μm were formed at 550 and 650 °C, respectively.

  5. Glass forming ability of iron based amorphous alloys depending on Mo, Cr and Co content

    International Nuclear Information System (INIS)

    The Fe41Co7Cr15Mo14C15B6Y2 multicomponent Fe-based alloy is known to be one of the best glass formers in iron-based systems and shows a critical casting thickness of 16 mm. The elements constituting the alloy have different influences on the glass forming ability. Therefore, the content of Mo, Cr and Co was systematically changed in the master alloy Fe77-x(Co,Cr,Mo)xC15B6Y2 to investigate how these three elements support the glassy microstructure. It was found that a certain content of Mo, Cr, and Co leads to a microstructure of amorphous matrix and α-Fe precipitates without any carbides.

  6. Crack growth rates for Ni--base alloys with the application to an operating BWR

    International Nuclear Information System (INIS)

    To perform adequate safety assessments of primary components in operating BWRs Crack Growth Rates (CGR) for Stress Corrosion Cracking in Normal Water Chemistry (NWC) as well as Hydrogen Water Chemistry (HWC) are needed. The data behind NUREG 0313 rev 2 was based on laboratory testing of sensitized stainless steels in oxygenated water. This so called NUREG-line overestimates CGRs for operating BWRs with respect to todays specification for water chemistry. In order to suggest new CGRs for Ni-base-alloys in the span from NWC to HWV we performed a literature review. Alloy 600 and welding alloys 182 and 82 were included in the search. The environments were NWC, 'partial' HWC and HWC

  7. Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation

    International Nuclear Information System (INIS)

    A surface severe plastic deformation (S2PD) method has been applied to bulk specimens of HASTELLOY C-2000 alloy, a nickel-base alloy. The mechanical properties of the processed C-2000 alloy were determined via tensile tests and Vickers hardness measurements, whereas the microstructure was characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. The improved tensile strength was related to the nanostructure at the surface region, the residual compressive stresses, and the work-hardened surface layer, all of which resulted from the S2PD process. To understand the contributions of these three factors, finite element modeling was performed. It was found that the improved tensile strength could be interpreted based on the contributions of nano-grains, residual stresses, and work hardening

  8. Cobalt base alloy surfacing. Influence of welding process on residual stress level

    International Nuclear Information System (INIS)

    Influence of welding conditions on alloy characteristics for wear resistant valves, cocks and fittings of nuclear power plants is studied. Three welding methods: oxyacetylene torch (OAT), plasma arc welding (PAW) and gas tungsten arc welding (TIG) are tested for welding hard cobalt base alloy (stellite 6) on two substrates (304 L and A 37). Parameters investigated are preheating temperature for PAW and TIG, dilution for PAW and flame type for OAT. Microstructure is dendritic with a solid solution Co Cr W and an interdentritic eutectic (the hard part). Hardness is more or less dilution dependent and slightly temperature dependent for preheating. Residual stress is measured by X-ray diffraction but application of this method is sometimes difficult because of grain size or cobalt base alloy texture

  9. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hattel, Jesper Henri; Hald, John

    2010-01-01

    Au–Sn based candidate alloys have been proposed as a substitute for high-lead content solders that are currently being used for high-temperature soldering. The changes in microstructure and microhardness associated with the alloying of Ag and Cu to the Au rich side as well to the Sn rich side of...... the Au–Sn binary system were explored in this work. Furthermore, the effects of thermal aging on the microstructure and microhardness of these promising Au–Sn based ternary alloys were investigated. For this purpose, the candidate alloys were aged at a lower temperature, 150°C for up to 1week and...

  10. Electron-phonon coupling in Ni-based binary alloys with application to displacement cascade modeling.

    Science.gov (United States)

    Samolyuk, G D; Béland, L K; Stocks, G M; Stoller, R E

    2016-05-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron-phonon (el-ph) coupling. The el-ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el-ph coupling. Thus, the el-ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10-20% in the alloys under consideration. PMID:27033732

  11. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    Science.gov (United States)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium–indium binary alloy (EGaIn) and gallium–indium–tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  12. Effect of boron addition on hydrogen embrittlement sensitivity in Fe-Ni based alloys

    International Nuclear Information System (INIS)

    In Fe-Ni based alloys, hydrogen embrittlement sensitivity is thought to correlate well with microstructure. The effect of boron addition on microstructure of Fe-Ni austenitic alloys has been investigated. It is found that 0.002 wt.% boron addition can significantly retard the formation of η phase, and only a few continuous carbides precipitate at the grain boundaries. As the boron content increases to 0.006 wt.%, carbides at grain boundaries become discontinuous, and are finer in size than that in the alloy with 0.002 wt.% boron. Significant decrease of the percent loss of reduction of area (RA) are seen in the alloys with boron contents lower than 0.006 wt.%. However, when further increasing the boron concentration to 0.01 wt.%, an increase in the percent loss of RA is found, due to the re-appearance of η phase and boride precipitation. Appropriate addition of boron can be an effective way of lowering hydrogen embrittlement sensitivity in Fe-Ni based alloys.

  13. Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    International Nuclear Information System (INIS)

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration. (paper)

  14. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  15. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    Science.gov (United States)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  16. Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    Science.gov (United States)

    Samolyuk, G. D.; Béland, L. K.; Stocks, G. M.; Stoller, R. E.

    2016-05-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.

  17. Evaluation of Ni-Cr-base alloys for SOFC interconnect applications

    Science.gov (United States)

    Yang, Zhenguo; Xia, Guan-Guang; Stevenson, Jeffry W.

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr 2O 3 and (Mn,Cr,Ni) 3O 4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 × 10 -6 K -1 from room temperature to 800 °C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear.

  18. Gilbert damping and anisotropic magnetoresistance in iron-based alloys

    Science.gov (United States)

    Berger, L.

    2016-07-01

    We use the two-current model of Campbell and Fert to understand the compositional dependence of the Gilbert damping parameter in certain iron alloys. In that model, spin-up and spin-down carriers have different resistivities ρ↑ and ρ↓. We emphasize the part of the Gilbert parameter, called Gsf, generated by spin-flip interband processes. Both Gsf and the anisotropic magnetoresistance Δρ are proportional to the square of the spin-orbit parameter, and also proportional to ρ↑. In bcc alloys of iron with V, Cr, Mo, etc. solutes on the left of iron in the periodic table, ρ↑ is increased by a scattering resonance (Gomes and Campbell, 1966, 1968). Then ρ↑, Δρ, and Gsf all exhibit a peak at the same moderate concentration of the solute. We find the best fit between this theory and existing experimental data of Gilbert damping for Fe-V epitaxial films at room temperature (Cheng, 2006; Scheck et al., 2007). At room temperature, the predicted Gsf peak is masked by a background arising from non-flip intraband processes. At elevated temperatures, the peak is expected to become more prominent, and less hidden in the background.

  19. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L. (Nuclear Engineering Division)

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep

  20. Nickel based alloys compatibility with fuel salts for molten salt reactor with thorium and uranium support

    International Nuclear Information System (INIS)

    R and D on molten salt reactors (MSR) in Europe are concentrated now on fast/intermediate spectrum concepts which were recognised as long-term alternative to solid fuelled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarises results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salts on tellurium attack and to develop means of controlling tellurium cracking in the special Ni - based alloys recently developed for large power units: molten salt actinide recycler and transmuter (MOSART) and molten salt fast reactor (MSFR). Tellurium corrosion of Ni-based alloys was tested in the temperature range from 730 deg. C up to 800 deg. C in stressed and unloaded conditions with fuel LiF-BeF2-UF4 and LiF-BeF2-ThF4-UF4 salt mixtures at different [U(IV)]/[U(III)] ratios from 0.7 up to 500. Following Russian and French Ni-based alloys (in mass%): HN80M-VI (Mo-12, Cr-7.6, Nb-1.5), HN80MTY (Mo-13, Cr-6.8, Al-1.1, Ti-0.9), HN80MTW (Mo-9.4, Cr-7.0, Ti-1.7, W-5.5) and EM-721 (W-25.2, Cr-5.7, Ti-0.17) were used for the study in the corrosion facility. The HN80MTY alloy has shown the best resistance against Te cracking and after test mechanical properties. (authors)

  1. Quaternary alloys based on II-VI semiconductors

    CERN Document Server

    Tomashyk, Vasyl

    2014-01-01

    Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystems Based on CdSeSystems Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  2. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  3. The influence of thermomechanical treatment on structure of FeAl intermetallic phase-based alloys

    Directory of Open Access Journals (Sweden)

    I. Bednarczyk

    2008-08-01

    Full Text Available Purpose: The major problem restricting universal employment of intermetallic phase base alloy is their low plasticity which leads to hampering their development as construction materials. The following work concentrates on the analysis of microstructure and plasticity of ordered FeAl (B2 alloy during cold and hot deformation and rolling process.Design/methodology/approach: After casting and annealing, alloy specimens were subjected to axial-symmetric compression in the Gleeble 3800 simulator at temperatures ranging from 800, 900 and 1000°C at 0.1s-1 strain rate. In order to analyse the processes which take place during deformation, the specimens after deformation were intensely cooled with water. The process was conducted on the K -350 quarto rolling mill used for hot rolling of flat products. The process was conducted in some stages at temperature ranging from 1200-1000°C: Structural examination was carried out using light microscopy. The examination of the substructure was carried out by transmission electron microscopy (TEM.Findings: The research carried out enabled the understanding of the phenomena taking place during hot rolling of the investigated alloy. which has been also confirmed in plastometric studies conducted in the form of hot compression tests. The microstructure analyses applying optic and electron microscopy have revealed the structure reconstruction processes occurring in FeAl alloys during cold and hot deformation.Practical implications: The research carried out enabled the understanding of the phenomena taking place during deformation and annealing of the investigated alloy. The obtained sheets can be used as constructional elements working in complex stress fields, at a high temperature and corrosive environments. The results will constitute the basis for modelling the structural changes.Originality/value: The obtained results are vital for designing an effective thermo - mechanical processing technology for the

  4. Magnetic properties of two new uranium-based alloys: UAuCu4 and UPdCu4

    International Nuclear Information System (INIS)

    Two new uranium-based alloys UAuCu4 and UPdCu4 have been prepared and their magnetic properties studied. The NMR of the isotope 63Cu in these alloys suggests that they are well ordered ternary materials. There is a strong correlation between the occupancy of the (4c) sites in the structure and the relative size of the two non-uranium atoms in these alloys. (author)

  5. Hydrogen-plasticity interactions in nickel and nickel base alloys

    International Nuclear Information System (INIS)

    We evaluate the different contributions of the hydrogen-dislocation interactions to the plasticity of fcc materials in order to feed predictive models of stress corrosion cracking. Static strain ageing experiments are used to quantify the hardening contribution of solute drag by dislocations to the flow stress. We demonstrate the role of hydrogen transport by dislocations on the fracture mechanism. We model the influence of the screening of the elastic field of dislocations by hydrogen on elementary plasticity mechanisms and we conclude that the decrease of the cross slip ability arises from the combined action of elastic and core effects. The testing of single crystals shows that the major effect is on the cross slip mechanism. Tensile tests on polycrystals enlighten the diversity of macroscopic responses observed in alloys. (author)

  6. Superconducting state parameters of indium-based binary alloys

    Indian Academy of Sciences (India)

    A M Vora; Minal H Patel; P N Gajjar; A R Jani

    2002-05-01

    Our well-recognized pseudopotential is used to investigate the superconducting state parameters viz; electron–phonon coupling strength , Coulomb pseudopotentialµ *, transition temperature c, isotope effective exponent and interaction strength 0 for the In1-Zn and In1-Sn binary alloys. We have incorporated six different types of local field correction functions, proposed by Hartree, Taylor, Vashistha–Singwi, Ichimaru–Utsumi, Farid et al and Sarkar et al to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The comparison with other such theoretical values is encouraging, which confirms the applicability of our model potential in explaining the superconducting state parameters of binary mixture.

  7. Characterization of hydrogen barrier coatings for titanium-base alloys

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the barrier efficiency of a thick thermal spray deposit on the α-titanium alloy, Ti-5Al-2.4Sn against hydrogen penetration. Therefore, a duplex coating has been applied by plasma spraying using a Sulzer Metco F4 gun. The selected duplex coating system consisted of a 0.1-0.2 mm thick tantalum bond layer and a chromium oxide top layer doped with 3 wt% titanium oxide. The achieved thickness of the top layer was about 0.6 mm. The coated specimens have been characterized with regard to bond strength, hardness and microstructure. Hydrogen charging experiments were performed in a Sievert's apparatus

  8. Experimental and Theoretical Investigation of Three Alloy 690 Mockup Components: Base Metal and Welding Induced Changes

    Directory of Open Access Journals (Sweden)

    Rickard R. Shen

    2014-01-01

    Full Text Available The stress corrosion cracking (SCC resistance of cold deformed thermally treated (TT Alloy 690 has been questioned in recent years. As a step towards understanding its relevancy for weld deformed Alloy 690 in operating plants, Alloy 690 base metal and heat affected zone (HAZ microstructures of three mockup components have been studied. All mockups were manufactured using commercial heats and welding procedures in order to attain results relevant to the materials in the field. Thermodynamic calculations were performed to add confidence in phase identification as well as understanding of the evolution of the microstructure with temperature. Ti(C,N banding was found in all materials. Bands with few large Ti(C,N precipitates had negligible effect on the microstructure, whereas bands consisting of numerous small precipitates were associated with locally finer grains and coarser M23C6 grain boundary carbides. The Ti(C,N remained unaffected in the HAZ while the M23C6 carbides were fully dissolved close to the fusion line. Cold deformed solution annealed Alloy 690 is believed to be a better representation of this region than cold deformed TT Alloy 690.

  9. Strengthening of Mg based alloy through grain refinement for orthopaedic application.

    Science.gov (United States)

    Nayak, Soumyaranjan; Bhushan, Bharat; Jayaganthan, R; Gopinath, P; Agarwal, R D; Lahiri, Debrupa

    2016-06-01

    Magnesium is presently attracting a lot of interest as a replacement to clinically used orthopaedic implant materials, due to its ability to solve the stress shielding problems, biodegradability and osteocompatibility. However, the strength of Mg is still lower than the requirement and it becomes worse after it starts degrading fast, while being exposed in living body environment. This research explores the effectiveness of 'grain refinement through deformation', as a tool to modify the strength (while keeping elastic modulus unaffected) of Mg based alloys in orthopaedic application. Hot rolled Mg-3wt% Zn alloy (MZ3) has been investigated for its potential in orthopaedic implant. Microstructure, mechanical properties, bio-corrosion properties and biocompatibility of the rolled samples are probed into. Grain size gets refined significantly with increasing amount of deformation. The alloy experiences a marked improvement in hardness, yield strength, ultimate tensile strength, strain and toughness with finer grain size. An increment in accelerated corrosion rate is noted with decreasing grain size, which is correlated to the increased grain boundary area and mechano-chemical dissolution. However, immersion test in simulated body fluid (SBF) reveals reduction in corrosion rate after third day of immersion. This was possible owing to precipitation of protective hydroxyapatite (HA) layer, formed out of the interaction of SBF and the alloy. More nucleation sites at the grain boundary for fine grained samples help in forming more HA and thus reduce the corrosion rate. Human osteosarcoma cells show less viability and adhesion on grain refined alloy. PMID:26745721

  10. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  11. Electrodeposition and Characterization of Bismuth Telluride Nanowires

    Science.gov (United States)

    Frantz, C.; Stein, N.; Gravier, L.; Granville, S.; Boulanger, C.

    2010-09-01

    In this work, we report thermoelectric measurements on electroplated bismuth telluride nanowires. Porous polycarbonate membranes, obtained by ion-track irradiation lithography, were chosen as electroplating templates. Bismuth telluride nanowires were achieved in acidic media under potentiostatic conditions at -100 mV versus saturated silver chloride electrode. The filling ratio of the pores was increased to 80% by adding dimethyl sulfoxide to the electrolyte. Whatever the experimental conditions, the nanowires were polycrystalline in the rhombohedral phase of Bi2Te3. Finally, the power output of arrays of bismuth telluride nanowires was analyzed as a function of load resistance. The results were strongly dependent on the internal resistance, which can be significantly reduced by the presence of dimethyl sulfoxide during electroplating.

  12. New high strength technologically ecological and expedient economically advantageous alloys on Fe-C base

    International Nuclear Information System (INIS)

    The paper presents framework a part of by now obtained results of the authors studies in the period 1967(68) - 2002 about possibilities for obtaining new high-strength and wear resistant cast alloys on, Fe-C base (complex alloyed steels and cast irons of different systems with different structure, reflected in over 125 articles, 15 inventions (patents) and other scientific studies. The paper includes summarized results and discussion. Key words: new austenite steels and cast irons, mechanical characteristics, wear resistance. (Original)

  13. An X-ray diffraction study of defect parameters in a Ti-base alloy

    Indian Academy of Sciences (India)

    G Karmaker; P Mukherjee; A K Meikap; S K Chattopadhyay; S K Chatterjee

    2001-12-01

    Detailed studies based on the well established method of Fourier line shape analysis have been made on the X-ray diffraction profile of hexagonal titanium alloy of nominal composition Ti–6.58% Al–3.16% Mo–1.81% Zr–0.08% Fe–0.012% N–0.0078% C. While deformation fault probability, , has been found to be quite high compared to that of pure titanium, the deformation growth fault parameter, , shows a negative value ruling out the presence of growth fault in this alloy in the deformed state.

  14. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Results of low cycle fatigue tests on alloy Mar-M-246 and Inconel 713 are presented. Based on the limited data, it was concluded that the Mar-M-246 material had a cyclic life in hydrogen that averaged three times higher than the alloy 713LC material for similar strain ranges. The hydrogen environment reduced life for both materials. The life reduction was more than an order of magnitude for the 713LC material. Porosity content of the cast specimens was as expected and was an important factor governing low cycle fatigue life

  15. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  16. Effect of TBC on oxidation behaviour of γ-TiAl based alloy

    OpenAIRE

    G. Moskal

    2007-01-01

    Purpose: The purpose of the research was identification of the influence of TBC coating system on oxidation resistance of TiAl based alloy during oxidation at temperature of 900°C and 950°C for 500h and 200h respectively.Design/methodology/approach: The APS technique was used to modify and improvement of oxidation resistance of TiAl intermetallic alloy. As a bond coat the NiCrAlY overlay coating was applied. The bond-coat provided a good bonding strength between matrix and ceramic top coat. T...

  17. Effect of cold work on initiation stage crack growth rate of nickel based alloys

    International Nuclear Information System (INIS)

    To investigate the effect of cold work on initiation stage crack growth rates of nickel based alloy, initiation stage crack growth rates were measured for simulated PWR primary water conditions using flat type specimens which were prepared from three different heats of alloy 600 and then 20 and 40% cold worked. Almost all data showed the stress had an increasing linear dependency on crack growth rate ; however there was some scattering of data and some materials showed a different tendency. Since yield strength was increased by cold work, for the same stress, the initiation stage crack growth rates were restrained or were not changed significantly by cold work. (author)

  18. Integrated Design and Rapid Development of Refractory Metal Based Alloys for Fossil Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; King, P.E.; Gao, M.C.

    2008-07-01

    One common barrier in the development of new technologies for future energy generating systems is insufficiency of existing materials at high temperatures (>1150oC) and aggressive atmospheres (e.g., steam, oxygen, CO2). To overcome this barrier, integrated design methodology will be applied to the development of refractory metal based alloys. The integrated design utilizes the multi-scale computational methods to design materials for requirements of processing and performance. This report summarizes the integrated design approach to the alloy development and project accomplishments in FY 2008.

  19. Electronic aspects of the martensitic transition in Ni-Mn based Heusler alloys

    International Nuclear Information System (INIS)

    The martensitic transformation temperature Ms depends linearly on the valence electron concentration for Ni-Mn-X Heusler systems where X is a group III-group V element. However, the slopes of the linearity are different for alloys with different X species and increases either as X changes from Al to In (isoelectronic) or from In to Sb (increase in number of p electrons). We discuss the features in the Ms vs e/a diagram and the relative stability of the various crystallographic phases of Ni-Mn based Heusler alloys

  20. Structural and mechanical characteristics of some lead-free Cu-Sn based solder alloys

    OpenAIRE

    Mitovski Aleksandra M.; Balanović Ljubiša T.; Živković Dragana T.; Marjanović Šaša R.; Marjanović Bata R.; Novaković Slađana O.

    2008-01-01

    The results of structural and mechanical characteristics of lead-free Cu-Sn based solder alloys, produced in Company "11. mart" AD Srebrenica (Republic of Srpska), are presented in this paper. The results of investigation of samples - alloys CuSnl4, CuSnlFelAlO.5, CuSnlOFelAllMnO.5 and CuA110Fe3Mn produced by different processing methods, include the data obtained by optical microscopy and measurements of hardness, micro hardness and electroconductivity, in order to characterize mentioned all...

  1. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  2. Electrochemical machining of hard tungsten carbide base alloys in neutral solutions using anodal pulses imposition

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A.D.; Klepikov, R.P.; Moroz, I.I.

    1981-01-01

    The experiments carried out show that activating pulses of higher amplitude imposition on constant comparatively low voltage extends the possibility of anodic dissolution process control. It proves to be possible to select pulse and constant voltage parameters, allowing to decrease the passivation effect and conduct the process of electrochemical machining of hard tungsten carbide base alloys in neutral water solutions.

  3. Electrochemical machining of hard tungsten carbide base alloys in neutral solutions using anodal pulses imposition

    International Nuclear Information System (INIS)

    The experiments carried out show that activating pulses of higher amplitude imposition on constant comparatively low voltage extends the possibility of anodic dissolution process control. It proves to be possible to select pulse and constant voltage parameters, allowing to decrease the passivation effect and conduct the process of electrochemical machining of hard tungsten carbide base alloys in neutral water solutions

  4. Property enhancement of orthorhombic Ti2AlNb-based intermetallic alloys

    International Nuclear Information System (INIS)

    This paper provides an overview of our research efforts aimed at improving the room and high temperature mechanical properties of an orthorhombic Ti2AlNb-based Ti-22Al-27Nb intermetallic alloy by the microstructural and compositional modifications, and the dispersion of fine TiB particulates. Challenges in each of the activities is highlighted and discussed. (orig.)

  5. Heterogeneous Nb-Based Nuclei for the Grain Refinement of Al-Si Alloys

    Science.gov (United States)

    Bolzoni, L.; Hari Babu, N.

    2016-05-01

    Nb-based intermetallics are, generally, low-density high-temperature materials used for structural applications or cryogenic superconductors. In this work, we report the development of an Al(96)-Nb(2)-B(2) master alloy where in situ-formed micrometric Nb-based intermetallics (i.e. NbB2 and Al3Nb) are used for a completely different purpose: to promote the refinement of Al-Si alloys by taking advantage of enhanced heterogeneous nucleation. Nb-based intermetallics have the right characteristics, like low density, stability at high temperature and good lattice match, to be used as heterogeneous nucleation substrates. It was found that the addition of these Nb-based intermetallics permits the significant refinement of the microstructural features of the Al-Si alloy studied. The enhanced heterogeneous nucleation makes the grain size of the material far less dependent on the cooling rate, which is one of the critical parameters influencing the variation of the properties of the alloy.

  6. A distributed optical fiber sensor for hydrogen detection based on Pd, and Mg alloys

    NARCIS (Netherlands)

    Perrotton, C.; Slaman, M.; Javahiraly, N.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2010-01-01

    An optical fiber containing structured hydrogen sensing points, consisting of Palladium and/or Magnesium alloys is proposed and characterized. The sensitive layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The sensor is based on a measurement technique whi

  7. Corrosion properties of plasma deposited nickel and nickel-based alloys

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Had, J.; Neufuss, Karel

    2003-01-01

    Roč. 48, č. 3 (2003), s. 215-226. ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, nickel , nickel -based alloys Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  8. Magnetic damping constant in Co-based full heusler alloy epitaxial films

    International Nuclear Information System (INIS)

    Co-based full-Heusler alloys, such as Co2MnSi and Co2MnGe, are expected to be used as half-metallic ferromagnetic material, which has complete spin polarization. They are the most promising materials for realizing half-metallicity at room temperature due to their high Curie temperature. The optimization of the magnetic damping constant of ferromagnetic materials is extremely important for achieving high-speed magnetization switching and reducing critical current density for spin torque transfer switching. We have systematically investigated the magnetic damping constant in Co-based full Heusler alloy epitaxial films. We found that the Gilbert damping constant seems to be roughly proportional to the total density of states at the Fermi level (EF) by first principle calculation. A very small magnetic damping constant of 0.003 in the Co2Fe0.4Mn0.6Si epitaxial film was demonstrated. The small magnetic damping constant in Co2FexMn1−xSi films with x < 0.6 can be attributed to the half-metallicity of Heusler alloys. Co-based full Heusler alloys with both half-metallicity and small magnetic damping will be very useful for future applications based on spintronic devices. (paper)

  9. Hard recharging. Metallurgical characteristics and use properties of hard recharging deposited by based cobalt alloys melting

    International Nuclear Information System (INIS)

    Hard recharging with cobalt base alloys are used in different parts of nuclear power plants. This paper presents mechanical properties, wear, thermal shock and corrosion resistances of hard coatings according to RCC-M S8000 rules, and explains relations between code recommendations and uses characteristics. (A.B.). 9 figs., 4 tabs

  10. Corrosion behaviour, microstructure and phase transitions of Zn-based alloys

    Indian Academy of Sciences (India)

    A K Yildiz; M Kaplan

    2004-08-01

    This paper is aimed at investigating the corrosion behaviour, microstructure and phase transitions of Zn-based alloys with different compositions. The corrosion tests are carried out both in acidic medium using 1 N HCl solution and in temperature dependence of thermogravimetric analysis (TGA). In the two different media, in particular, the corrosion behaviour of Zn-based alloys with respect to Al and Si contents is examined, and microstructure in acidic and TGA and phase transformations in TGA are also studied. Corrosion mechanism in TGA is also examined in terms of oxidation parameters and activation energies. The study reveals that corrosion behaviour of Zn-based alloys in acidic medium shows sometimes an increase and sometimes a decrease with time due to Al content which assists in delaying the corrosion by forming a oxide layer on the surface of Zn-based alloys. This property does not appear in temperature dependence of TGA. Further, Si content appears to remain in main matrix without being affected by acidic solution. On the other hand, it is observed that in microstructure, AlO(Al2O3), ZnO oxides and Zn–Cu phase precipitations are formed in main matrix, grain boundaries and partially inside the grains.

  11. The analysis of Al-based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics

    OpenAIRE

    Starink, M.J.

    2004-01-01

    Differential scanning calorimetry (DSC) and isothermal calorimetry have been applied extensively to the analysis of light metals, especially Al based alloys. Isothermal calorimetry and differential scanning calorimetry are used for analysis of solid state reactions, such as precipitation, homogenisation, devitrivication and recrystallisation; and solid–liquid reactions, such as incipient melting and solidification, are studied by differential scanning calorimetry. In producing repeatable calo...

  12. ZnO-based semiconductors studied by Raman spectroscopy. Semimagnetic alloying, doping, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schumm, Marcel

    2009-07-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). (orig.)

  13. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    Directory of Open Access Journals (Sweden)

    J. Cebulski

    2015-01-01

    Full Text Available This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C and 1 100 °C, which was followed by validation under operating conditions. To do so, the tests were carried out over a distance of 20 000 km. The last stage involved examination of the surfaces after the test drive. The obtained results are the basis for further research in this field.

  14. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Nezha Ahmad Agha

    Full Text Available Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.

  15. EFFECT OF TESTING ENVIRONMENT ON FRACTURING BEHAVIOR OF Fe3Si BASED ALLOY

    Institute of Scientific and Technical Information of China (English)

    J.H. Peng; G.L. Chen

    2003-01-01

    The mechanical behavior of Fe3Si based alloy with B2 structure was studied by tensionand fracture toughness test in various testing media. The fracture strength σb ofFe3Si alloy decreased in the following order: oxygen, air and hydrogen respectively.The fracture toughness in different testing environment showed that KiC in oxygenis 11.5±0.3MPa. m1/2, and is 8.6±0.4MPa. m1/2 in distilled water. The reductionof fracture toughness is contributed to the environmental reaction of Si with water.Addition of Al element in Fe3Si is not beneficial to improve the intrinsic ductility ofFe-14Si-3Al alloy. The scattering phenomenon of fracture strength was found, andexplained by fracture mechanics. It was found by means of SEM that the fracture modechanged from transgranular in oxygen to intergranular in hydrogen gas and distilledwater.

  16. Thermodynamics of several lewis-acid-base stabilized transition metal alloys

    Science.gov (United States)

    Gibson, John K.; Brewer, Leo; Gingerich, Karl A.

    1984-11-01

    High-temperature (1425 to 2750 K) thermodynamic activities of one or both components of twenty-five binary alloys of a group IVB-VIB element (Ti, Zr, Hf, Nb, Ta, or W) with a platinum group element (Ru, Os, Ir, Pd, Pt, or Au) have been determined by equilibrating the alloy with the appropriate carbide and graphite, equilibrating with the nitride and nitrogen gas, or measuring the partial vapor pressure(s) thermogravimetrically or mass spectrometrically. The extraordinary stability of this class of transition metal alloy is attributed to a generalized Lewis-acid-base interaction involving valence d electrons, and the results of these investigations are interpreted within the context of this effect. Among the conclusions made are that a non-spherically-symmetrical crystal field significantly reduces the bonding effectiveness of certain valence d orbitals; the effect of the extent of derealization of these orbitals is also considered.

  17. Brazeability of a 3003 Aluminum alloy with Al-Si-Cu-based filler metals

    Science.gov (United States)

    Tsao, L. C.; Weng, W. P.; Cheng, M. D.; Tsao, C. W.; Chuang, T. H.

    2002-08-01

    Al-Si-Cu-based filler metals have been used successfully for brazing 6061 aluminum alloy as reported in the authors’ previous studies. For application in heat exchangers during manufacturing, the brazeability of 3003 aluminum alloy with these filler metals is herein further evaluated. Experimental results show that even at such a low temperature as 550 °C, the 3003 alloys can be brazed with the Al-Si-Cu fillers and display bonding strengths that are higher than 77 MPa as well. An optimized 3003 joint is attained in the brazements with the innovative Al-7Si-20Cu-2Sn-1Mg filler metal at 575 °C for 30 min, which reveals a bonding strength capping the 3003 Al matrix.

  18. Liquid Bismuth Feed System for Electric Propulsion

    Science.gov (United States)

    Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.

    2006-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.

  19. Oxidation behavior of multiphase Mo5SiB2 (T2)-based alloys at high temperatures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two Mo5SiB2 (T2)-based alloys with nominal compositions of Mo-12.5Si-25B and Mo-14Si-28B (molar fraction, %)were prepared in an arc-melting furnace, and their oxidation kinetics from 1 000 to 1 300 ℃ were studied. The microstructures of the alloys were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM) with energy dispersive spectroscopy (EDS). The oxide scales of both alloys oxidized at 1 200 ℃ for 10 min, 2 h and 100 h were investigated by surface XRD and cross-sectional SEM-EDS. The results show that the matrix of both alloys consists of T2. The dispersions of Mo-12.5Si-25B alloy are Mo and Mo3Si, and the dispersions of Mo-14Si-28B alloy are Mo5Si3 (T1) and MoB. The cyclic oxidation kinetics data exhibit initial rapid mass loss followed by slow mass loss. The mass loss of Mo-12.5Si-25B alloy is much faster than that of Mo-14Si-28B alloy at 1 200 and 1 300 ℃. For 10 min exposure, both alloys form irregular and porous thin scale. For 2 h exposure, Mo-12.5Si-25B alloy forms irregular thin scale and the scale contains large cracks, and Mo-14Si-28B alloy forms sound and continuous scale. For 100 h exposure, Mo-12.5Si-25B and Mo-14Si-28B alloys form sound and continuous scale about 50-75 μm and 40-45 μm in thickness, respectively. The better oxidation resistance of Mo-14Si-28B alloy is due to a sound and continuous B-SiO2 layer formation in the early stage of oxidation.

  20. Sintering characteristics of La/Nd doped Bi4Ti3O12 bismuth titanate ceramics

    Directory of Open Access Journals (Sweden)

    Islam Aminul Md.

    2015-01-01

    Full Text Available A good understanding about the properties of La/Nd doped Bismuth Titanate (BIT ceramics at high temperature is very important as the new materials being developed based on the BIT. Pure BIT, La doped (BLT, Nd doped (BNT and La and Nd co-doped BIT (BLNT powders were synthesized by solid state reaction method. Prepared powders were calcined at different temperatures and structural properties measured by XRD. For pure BIT better crystal quality was obtained at 750 0C and for both BLT and BNT better result obtained at 800 0C. Calcined powders were formed into pellets and sintered at different temperatures and its dielectric properties were characterized. Optimum sintering temperature for both BLT and BNT showed was 850 0C and La and Nd co-doped bismuth titanate (BLNT revealed optimum sintering temperature of 950 0C. Therefore, optimum sintering temperature of bismuth titanate was increased due to La and Nd doping.

  1. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection

    International Nuclear Information System (INIS)

    Transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. In another configuration, a bismuth-loaded PVT plastic is coated with ZnS(6Li) paint, permitting simultaneous gamma and neutron detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%

  2. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine J., E-mail: cherepy1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Sanner, Robert D.; Beck, Patrick R.; Swanberg, Erik L.; Tillotson, Thomas M.; Payne, Stephen A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hurlbut, Charles R. [Eljen Technology, Sweetwater, TX (United States)

    2015-04-01

    Transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. In another configuration, a bismuth-loaded PVT plastic is coated with ZnS({sup 6}Li) paint, permitting simultaneous gamma and neutron detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%.

  3. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  4. Fuel behavior in severe accidents and Mo-alloy based cladding designs to improve accident tolerance

    International Nuclear Information System (INIS)

    The severe accidents at TMI-2 and Fukushima-Daiichi led to core meltdown and hydrogen explosions. The main source of energy causing core melting is the decay heat from β-, β+, and γ decays of short-lived isotopes following a power scram. The exothermic reaction of Zr-alloy cladding can further increase the cladding temperature leading to rapid cladding corrosion and hydrogen production. The most effective mitigation to minimize core damage in a severe accident is to extend the duration of heat removal capacity via battery-supported passive cooling for as long as practically possible. Replacing the Zr-alloy cladding with a higher heat resistant cladding with lower enthalpy release rate may also provide additional coping time for accident management. Such a heat resistant cladding may also overcome the current licensing concerns about Zr-alloy hydriding and post quench ductility issues in a design base loss of coolant accident (LOCA). Zr-alloy cladding, while has been optimized for normal operation in high pressure water and steam of light water reactors, will rapidly lose its corrosion resistance and tensile and creep strength in high pressure steam. Evaluation of alternate cladding materials and designs have been performed to search for a new fuel cladding design which will substantially improve the safety margins at elevated temperatures during a severe accident, while maintaining the excellent fuel performance attributes of the current Zr-alloy cladding. The screening criteria for the evaluation include neutronic properties, material availability, adaptability and operability in current LWRs, resistance to melting. The new designs also need to be fabricable, maintain sufficient strength and resist to attack by high pressure steam. Engineering metals, alloys and ceramics which can meet some or most of these requirements are limited. Following review of the properties of potential candidates, it is concluded that molybdenum alloys may potentially achieve the

  5. Unusual glass-forming ability of new Zr-Cu-based bulk glassy alloys containing an immiscible element pair

    International Nuclear Information System (INIS)

    We herein report the unusual glass-forming ability (GFA) of a new series of quinary Zr48Cu36-xNixAg8Al8 (048Cu36Ag8Al8 alloy. By cooper mold casting, an as-cast glassy rod with a diameter of 30 mm can be easily obtained for the representative alloy Zr48Cu32Ni4Ag8Al8. The possible reasons for the excellent GFA of the new quinary alloys with an immiscible element pair are discussed based on the atomic size distribution, chemical compatibility among the components and atomic structure of glassy alloys. (author)

  6. Burnout current density of bismuth nanowires

    Science.gov (United States)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  7. Holographic data storage in photorefractive bismuth tellurite

    International Nuclear Information System (INIS)

    Bismuth tellurite is a photorefractive material for holographic data storage offering unique fixing capabilities. Important material and electro-optic properties obtained by four-wave-mixing and data storage experiments are reviewed and recent results concerning the applicability of bismuth tellurite for holographic data storage, including dynamic range, multiplexing capabilities and bit-error evaluations, are presented. Furthermore, it is demonstrated how the latest progress in growing Bi2TeO5 made this crystal a candidate for durable holographic recording media.

  8. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  9. Fano interference for large-amplitude coherent phonons in bismuth

    International Nuclear Information System (INIS)

    We report femtosecond time-resolved measurements of lattice dynamics in bismuth made over a wide range of temperatures and excitation levels. We demonstrate that time-integrated Fourier transforms for both the fully symmetric A1g and doubly degenerate Eg coherent oscillations of large amplitude exhibit asymmetric line shapes described by the Fano formula. Measuring the real and imaginary part of the phonon self-energy, we attempt to identify the nature of the continuum responsible for the configuration mixing. Based on the measured pump and temperature dependences, we suggest that the continuum responsible for the interference includes both the electronic and lattice degrees of freedom

  10. Electron microscopy of barium bismuth titanate multilayer ceramics

    International Nuclear Information System (INIS)

    For a number of years bismuth containing compounds have been used with pre-calcined barium titanate to reduce the sintering temperature of the capacitor formulations. As reported earlier the backscattered electron (BSE) SEM micrographs of the bismuth containing barium titanate ceramic reveal that the grains having an average size of 1.2μm consist of a two phase structure consisting of relatively pure barium titanate grain cores surrounded by bismuth rich grain shells. The TEM and STEM studies along with the EDS analyses show that the bismuth concentration increases sharply as one steps towards the grain boundary with a maximum bismuth content at the grain boundary. It is the purpose of this work to investigate the distribution of bismuth in these formulations including the bismuth content, if any, at the ceramic metal interface as affected by the sintering temperature. The subsequent effect on the electrical resistivity of these ceramics in the multilayer configuration is reported

  11. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  12. Ni–Cr based dental alloys; Ni release, corrosion and biological evaluation

    International Nuclear Information System (INIS)

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10–15% for female adults and 1–3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni–Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni–Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: ► Nickel released was higher than the limits imposed in EU in contact with the skin. ► No direct relationship between the biological evaluation and chemical degradation.

  13. On the nature of the variation of martensitic transformation hysteresis and SME characteristics in Fe-Ni-base alloys

    International Nuclear Information System (INIS)

    The purpose of this paper is to summarize the various investigations, both by the authors and other works, concerning with the martensitic transformation and SME in Fe-Ni-base alloys. The thermal hysteresis dependence on the alloying elements and thermal treatments are surveyed. The contribution and effect on SME characteristics of widely used alloying elements such as Ti, Nb, Ni, Al, Co, Ta and peculiarities of thermal treatment are discussed. It is noted the main goal of these treatments is to reduce the symmetry of transformation by the ordering or precipitation of a fine coherent phase. The physical principles of transformation hysteresis manipulation in Fe-base alloys is discussed and it concluded that the thermal cycling behavior of Fe-base alloys is very complex and is not clearly understood at present. On the other hand, it is pointed out that thermal cycling is an effective method for control and improvement of SME in these alloys. It is concluded that Fe-base alloys are highly evolved shape memory materials-having a wide working range, good workability and are relatively cheap. In addition, the properties are easily controlled by suitably alloying, aging and thermal cycling. (orig.)

  14. Frenkel defects in Ni and Ni-base alloys

    International Nuclear Information System (INIS)

    The defect structure produced by low temperature (4K) electron irradiation in single crystals of Ni, Ni62Cu38 and Ni3 Fe was investigated by measurements of the diffuse scattering of X-rays (Huang Diffuse Scattering), the change of the lattice parameter and the change of the electrical resistivity: The volume relaxation and the structure of the self interstitial atom (SIA) is very similar for the alloys and the pure fcc metals. The interstitial clustering processes during stage I and II proceed progressively more slowly in Cu, Ni, NiCu and Ni3Fe respectively. In Ni3Fe even the di-interstitial seems immobile up to stage III. The formation of large vacancy agglomerates during stage III annealing is only observed with the pure metals Ni and Cu. Interstitial mobility during annealing in stage II contributes to the decomposition of NiCu but not to the ordering of Ni3Fe. There is an increase of order for highly ordered Ni3Fe (S = 0.7) during annealing in stage III and, within the errors, no change for samples with S = 0. (author)

  15. Hydrogen distribution in amorphous silicon and silicon based alloys

    International Nuclear Information System (INIS)

    The results of hydrogen evolution experiments on amorphous silicon alloys prepared by high frequency PECVD of gas mixtures containing SiH4, NH3, PH2, B2H6 are compared. Using a very low heating rate of 5 degree/min it is possible to resolve fine structure on the exodiffusion spectra. Three evolution processes are observed: (a) low temperature effusion due to included gas (b) mid temperature effusion due to 'clustered' hydrogen bonds (c) high temperature effusion due to 'isolated' hydrogen bonds In addition it is possible to oberve very fine structure 'puffing' due to the release of molecular hydrogen at mid to high temperature. Silicon and silicon nitride films have been annealed at low temperatures before the exodiffusion experiments and changes in the evolution spectra are observed, dependent on the annealing process. A scanning electron microscope study of the effect of high temperature heat treatment has also been undertaken. These results are correlated with infra-red absorption measurements and the influence of doping concentration and substrate character discussed. Under certain preparation conditions the films blister on heating and finally burst forming circular craters, and these effects are shown to be dependent on substrate material and intrinsic stress of the as-grown films

  16. The surface layer degradation of γ-TiAl phase based alloy

    Directory of Open Access Journals (Sweden)

    J. Małecka

    2013-05-01

    Full Text Available Purpose: The aim of the present research is to describe the chemical composition and microstructure of the surface layer of Ti-46Al-7Nb-0.7Cr-0,1Si-0.2Ni alloy after the test of isothermal oxidation in 9%O2+0.2%HCl+0.08%SO2+N2 during 250 h. Design/methodology/approach: The objectives were achieved using several techniques including conventional metallography, SEM, BSE, EDX. The oxides scales and their effects were investigated at temperatures 750ºC.Findings: This investigation confirms that the better protection of the substrate was determined using AlCrN coating.Research limitations/implications: The basic limitations concern alloys in a higher temperature and establish the oxidation kinetics of the analysed alloy as a function of time and temperature.Practical implications: One of practical outcomes is to select the coatings which guarantee the reduction of oxidation behavior. It is recommended to use alloys with AlCrN coating.Originality/value: Original value of the paper is assessing of the oxidation resistance of Ti-46Al-7Nb-0.7Cr-0.1Si–0.2Ni-based intermetallic alloy at the conditions combining high temperature and sulphur and chlorine compounds-containing atmosphere. The novelty of this research deals with the mechanism of oxidation at such boundary conditions. This knowledge can support the design of parts made of the intermetallic alloy. The problem considered is currently important for aeroplane and automotive industry, especially for gas turbine manufacturers.

  17. Research on CMT welding of nickel-based alloy with stainless steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronius company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results show that the thickness of interface reaction layer of the nickel-based alloy is 14.3μm, which is only 4.33% of base material. The weld is made up of two phases,α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184.9MPa.

  18. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    International Nuclear Information System (INIS)

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe3+ and Bi3+ valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi0 valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  19. The electronic mechanism of the γ/γ' interface strength of Ir-based alloys

    International Nuclear Information System (INIS)

    The electronic structures of the γ/γ' interface for two-phase Ir-based alloys (Ir/Ir3Ta and Ir/Ir3Ti) have been investigated by performing first-principles quantum mechanics DMol3 (a type of density functional theory for molecules) calculations. The Mayer bond order (MBO) is used to represent the shear and cohesion strengths of the interface by a local sum of the horizontal and vertical MBOs. By comparison with those for single-crystal Ir, the results show that both the cohesive and shear strengths of the γ/γ' interface for the Ir/Ir3Ta alloy increase. The cohesive strength of the interface for the Ir/Ir3Ti alloy increases, whereas the shear strength of the interface for Ir/Ir3Ti decreases. The electron charge density, the Hirshfeld charge, and orbital charge transfers are also calculated and analysed. An electronic mechanism for the γ/γ' interface strength of Ir-based alloys is then suggested

  20. Fundamental aspects of corrosion on zirconium base alloys in water reactor environments

    International Nuclear Information System (INIS)

    The purpose of this meeting was to discuss the state of knowledge of zirconium alloy corrosion mechanisms. Forty-five participants from 16 countries attended the meeting, and 25 papers were presented and discussed. One additional paper was provided only in written form. The papers were presented in seven sub-sessions under the following headings: Electrochemistry, Coolant Chemistry Effects, Irradiation Effects, Characteristics of Zirconium Oxide, Effects of Alloying on Corrosion, Corrosion Modeling and Effect of Zirconium Base Metal Properties on Corrosion. There is still a need for a laboratory corrosion test that reliably predicts in-pile corrosion in BWR's and PWR's. This holds particularly if out-of-pile tests are used for developing new Zr base alloy compositions. The role of the precipitates and of the solute elements in the matrix has still to be clarified. As it appears, a combination of both influences is necessary to explain the mechanistic aspect of the corrosion of Zircaloy. It is clear that mechanistic understanding of zirconium alloy corrosion is still some way off, although a significant amount of progress has been made toward experimental determination of the micro-scale phenomena. The papers presented a status report of our knowledge of these corrosion mechanisms, but they also served to illustrate the fact that much of the work done to date has been phenomenological rather than mechanistic. The summaries of individual sessions detail the specific conclusions and recommendations made at the meeting. Refs, figs and tabs

  1. Solid particle erosion of steels and nickel based alloys candidates for USC steam turbine blading

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, Federico; Guardamagna, Cristina; Lorenzoni, Lorenzo [ERSE SpA, Milan (Italy); Robba, Davide [CESI, Milan (Italy)

    2010-07-01

    The main objective of COST536 Action is to develop highly efficient steam power plant with low emissions, from innovative alloy development to validation of component integrity. In this perspective, to improve the operating efficiency, materials capable of withstanding higher operating temperatures are required. For the manufacturing of components for steam power plants with higher efficiency steels and nickel-based alloys with improved oxidation resistance and creep strength at temperature as high as 650 C - 700 C have to be developed. Candidate alloys for manufacturing high pressure steam turbine diaphragms, buckets, radial seals and control valves should exhibit, among other properties, a good resistance at the erosion phenomena induced by hard solid particles. Ferric oxide (magnetite) scales cause SPE by exfoliating from boiler tubes and steam pipes (mainly super-heaters and re-heaters) and being transported within the steam flow to the turbine. In order to comparatively study the erosion behaviour of different materials in relatively short times, an accelerated experimental simulation of the erosion phenomena must be carried out. Among different techniques to induce erosion on material targets, the use of an air jet tester is well recognised to be one of the most valid and reliable. In this work the results of SPE comparative tests performed at high temperatures (550 C, 600 C and 650 C) at different impaction angles on some steels and nickel based alloys samples are reported. (orig.)

  2. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N2, H2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  3. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  4. Modeling of self-controlling hyperthermia based on nickel alloy ferrofluids: Proposition of new nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Delavari, H. Hamid, E-mail: Hamid.delavari@gmail.com [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Avenue, 145888-9694 Tehran (Iran, Islamic Republic of); Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Madaah Hosseini, Hamid R. [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Avenue, 145888-9694 Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 145888-9694 Tehran (Iran, Islamic Republic of); Wolff, Max, E-mail: Max.wolff@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2013-06-15

    In order to provide sufficient heat without overheating healthy tissue in magnetic fluid hyperthermia (MFH), a careful design of the magnetic properties of nanoparticles is essential. We perform a systematic calculation of magnetic properties of Ni-alloy nanoparticles. Stoner–Wohlfarth model based theories (SWMBTs) are considered and the linear response theory (LRT) is used to extract the hysteresis loop of nickel alloy nanoparticles in alternating magnetic fields. It is demonstrated that in the safe range of magnetic field intensity and frequency the LRT cannot be used for the calculation of the area in the hysteresis for magnetic fields relevant for hyperthermia. The best composition and particle size for self-controlling hyperthermia with nickel alloys is determined based on SWMBTs. It is concluded that Ni–V and Ni–Zn are good candidates for self-controlling hyperthermia. - Highlights: ► Systematic calculation of magnetic properties of Ni-alloy NPs with composition has been performed. ► Optimum composition and particle size for self-controlling hyperthermia (SCH) have been determined. ► Ni–V and Ni–Zn nanoparticles are more appropriate candidates for SCH.

  5. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  6. The creep Kinetics of sand cat zinc-based alloys no. 2, ACuZinc5, and ACuzinc10

    International Nuclear Information System (INIS)

    Compressive creep tests have been carried out on three sand cast zinc-rich alloys No. 2 (Zn-4% Al-2.8% Cu 0.03% Mg), ACuZinc5 (Zn-3% Al-5.2% Cu-0.04% Mg) and ACuZinc10 (Zn-3.5% Al-9.3% Cu-0.03% Mg) in the stress range 20 to 100 MPa, and at temperatures from 70 to 160 deg. centigrade. The tests were performed on a standard weight lever arm compressive creep machine. Alloy No. 2 is a conventional zinc alloy, whereas ACuZinc5 and ACuZinc10 belong to a family of new, GM-patented, high performance ternary zin-copper-aluminium alloys which are suitable for manufacturing net shape die castings. Along with creep, other properties of ACuZinc alloys are claimed to be better than conventional zinc alloys No. 3 and No. 5 and ZA alloys, i.e. ZA.8, ZA.12 and ZA.27. A parametric relationship was obeyed, of the form:In t=C-n(In sigma)+Q/RTm where C is a constant, sigma the applied stress, t time of test, n the stress exponent, Q the activation energy, R the gas constant, and T is the absolute temperature. The primary creep contraction was generally found to increase with increasing copper content, but in a non-linear fashion. The secondary creep rates of alloy No. 2 were slightly lower than those of ACuZinc5 and ACuZinc10. Based on the above equation, continuous design stresses were calculated under different testing conditions which showed that both ACuZinc alloys were inferior in creep strength to alloy No.2 due to its lower secondary creep rates. The results and microstructure of alloys also showed that in all three alloys, the creep-controlling mechanism is the dislocation climb over second-phase (Epsilon) particles. (author)

  7. Development of an Electromagnetic Wave Shielding Textile by Electroless Ni-Based Alloy Plating

    OpenAIRE

    Sonehara, Makoto; Noguchi, Shin; Kurashina, Tadashi; Sato, Toshiro; YAMASAWA, Kiyohito; Miura, Yoshimasa

    2009-01-01

    A polyester nonwoven textile with Ni-based alloy coating was fabricated, and the effect of electromagnetic wave shielding was evaluated. The Ni-based was coated by electroless plating on the textile. The electromagnetic wave shielding effect of the textile with Ni-B coating was about 99.98% over the induction range of 6-13 GHz. Because the textile has thin, light, flexible, and breathable characteristics, it will be versatile for the various electromagnetic wave shielding applications.

  8. Syntheses, crystal structures and characterizations of two new bismuth(III) arsenites

    International Nuclear Information System (INIS)

    Two new bismuth arsenites with two different structural types, namely, Bi2O(AsO3)Cl (1), Bi8O6(AsO3)2(AsO4)2 (2), have been synthesized by the solid-state reactions. Compound 1 exhibits novel 2D bismuth arsenite layers with Bi4O4 rings capped by oxide anions, which are further interconnected by Bi–Cl–Bi bridges into a 3D network. Compound 2 contains both arsenite and arsenate anions, its 3D structures are based on 1D bismuth arsenite and 1D bismuth arsenate chains both along b-axis, which are interconnected by oxide anions via Bi–O–Bi bridges, forming 1D tunnels of Bi4As4 8-membered rings (MRs) along b-axis, the lone pairs of the arsenite groups are orientated toward the centers of the above tunnels. Thermogravimetric analysis indicated that both compounds display high thermal stability. Optical property measurements revealed that they are wide band-gap semiconductors. Both compounds display broad green-light emission bands centered at 506 nm under excitation at 380 and 388 nm. - Graphical abstract: Solid state reactions of Bi2O3 (BiCl3) and As2O3 yielded two new compounds with two different structural types, namely, Bi2O(AsO3)Cl (1), Bi8O6(AsO3)2(AsO4)2 (2). They represent the first examples of bismuth arsenates. Highlights: ► Solid state reactions of Bi2O3 (BiCl3) and As2O3 yielded two new phases. ► They represent the first examples of bismuth arsenites. ► The two compounds exhibit two different structural types.

  9. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    Science.gov (United States)

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  10. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    Science.gov (United States)

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-08-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  11. Thermodynamic prediction of thixoformability in alloys based on the Al-Si-Cu and Al-Si-Cu-Mg systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Atkinson, H.V. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Jones, H. [Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2005-08-15

    Most commercial semi-solid processing (of which thixoforming is one type) utilises the conventional casting alloys A356 and A357. There is, however, a demand to widen the range of alloys, including those with higher performance which tend to show poor characteristics for thixoforming. Thermodynamic calculation packages, such as MTDATA, provide a tool for predicting thixoformability. Here, the effects of compositional variations, in particular the effect of added copper on the thixoformability of alloy A356 and the effect of added silicon on the thixoformability of alloy 2014, have been investigated using MTDATA thermodynamic and phase equilibrium software combined with the MTAL database. Criteria for thixoformability are identified and a range of alloy compositions based on Al-Si-Cu and Al-Si-Cu-Mg evaluated in relation to these criteria. Compositions which satisfy these criteria include: 308 (Al-5.5Si-4.5Cu); 319 (Al-6Si-3.5Cu); 238 (Al-10Cu-4Si-0.3Mg); 355 (Al-5Si-1.3Cu-0.5Mg); 2014 based alloys Al-4.4Cu-0.5Mg-(4-6)Si; and a range of alloys (7.5 Si + Cu 9 and 1.5 Si/Cu 2.33) and alloys (9 < Si + Cu 10 and Si/Cu = 1.5) based on the Al-Si-Cu-Mg system.

  12. Photosensitive bismuth ions in lead tungstate

    Czech Academy of Sciences Publication Activity Database

    Vazhenin, V.A.; Potapov, A.P.; Asatryan, G.R.; Nikl, Martin

    2013-01-01

    Roč. 55, č. 4 (2013), s. 803-806. ISSN 1063-7834 Institutional support: RVO:68378271 Keywords : PbWO 4 * single crystal * bismuth * electron paramagnetic resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.782, year: 2013

  13. Hydrothermal synthesis map of bismuth titanates

    Science.gov (United States)

    Sardar, Kripasindhu; Walton, Richard I.

    2012-05-01

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO3·2H2O and anatase TiO2 in concentrated NaOH solution at 240 °C is shown to produce perovskite and sillenite phases Na0.5Bi0.5TiO3 and Bi12TiO20, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi1.43Ti2O6(OH)0.29(H2O)0.66 is formed. The use of a mixture of HNO3 and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi4Ti3O12. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi LIII-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products.

  14. Bismuth titanate ceramics obtained by hot forging

    International Nuclear Information System (INIS)

    In this work, bismuth titanate samples were obtained from powder calcined at 800 deg C for 24 h through conventional sintering (OF) and hot-forging (HF) methods. The plate-like morphology grains were observed in ceramics obtained in both process. Samples produced by HF showed higher grain orientation, ≅ 90%. (author)

  15. Polyvinyl chloride filled with bismuth oxychloride powder

    Czech Academy of Sciences Publication Activity Database

    Polášková, M.; Sedláček, T.; Kharlamov, Alexander; Pivokonský, Radek; Saha, P.

    Larnaca : Polymer Processing Society, 2009, s. 242. [Polymer Processing Society Europe/Africa Regional Meeting. Larnaca (GR), 18.10.2009-21.10.2009] Institutional research plan: CEZ:AV0Z20600510 Keywords : olyvinyl chloride * bismuth oxychloride * radiopaque agents Subject RIV: BK - Fluid Dynamics

  16. The kinetics of phase transformations of undercooled austenite of the Mn-Ni iron based model alloy

    Directory of Open Access Journals (Sweden)

    E. Rożniata

    2011-12-01

    Full Text Available Purpose: Present work corresponds to the research on the kinetics of phase transformations of undercooled austenite of Mn-Ni iron based model alloy. The kinetics of phase transformations of undercooled austenite of investigated alloy was presented on CCT diagram (continuous cooling transformation. Also the methodology of a dilatometric samples preparation and the method of the critical points determination were described.Design/methodology/approach: The austenitising temperature was defined in a standard way i.e. 30-50°C higher than Ac3 temperature for model alloy. A technique of full annealing was proposed for the model alloy. The CCT diagrams were made on the basis of dilatograms recorded for samples cooled at various rates. The microstructure of each dilatometric sample was photographed after its cooling to the room temperature and the hardness of the samples was measured.Findings: The test material was a Mn-Ni hypoeutectoid iron based alloy. The microstructure of test Mn-Ni alloy on CCT diagram changes depending on the cooling rate. At the cooling rates of 10°C/s and 5°C/s there is ferrite in Widmannstätten structure present in the structure of tested alloy.Research limitations/implications: The new Mn-Ni iron based model alloy and a new CCT diagram.Practical implications: The paper contains a description of one from a group of iron based model alloys with 0.35-0.40% carbon content. According to PN-EN 10027 standard this steel should have a symbol 38MnNi6-4.Originality/value: The new Mn-Ni iron based model alloy.

  17. Hydrothermal synthesis map of bismuth titanates

    Energy Technology Data Exchange (ETDEWEB)

    Sardar, Kripasindhu [Department of Chemistry, University of Warwick, Coventry, CV4 7AL (United Kingdom); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry, CV4 7AL (United Kingdom)

    2012-05-15

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO{sub 3}{center_dot}2H{sub 2}O and anatase TiO{sub 2} in concentrated NaOH solution at 240 Degree-Sign C is shown to produce perovskite and sillenite phases Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} and Bi{sub 12}TiO{sub 20}, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi{sub 1.43}Ti{sub 2}O{sub 6}(OH){sub 0.29}(H{sub 2}O){sub 0.66} is formed. The use of a mixture of HNO{sub 3} and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi{sub 4}Ti{sub 3}O{sub 12}. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi L{sub III}-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products. - Graphical abstract: Use of NaBiO{sub 3}{center_dot}2H{sub 2}O and TiO{sub 2} as reagents under hydrothermal conditions allows the phase-pure preparation of four crystalline bismuth titanate materials. Highlights: Black-Right-Pointing-Pointer NaBiO{sub 3} and TiO{sub 2} under hydrothermal conditions allow formation of bismuth titanates. Black-Right-Pointing-Pointer Synthesis of four distint phases has been mapped. Black-Right-Pointing-Pointer Bi LIII-edge XANES shows Bi is reduced to oxidation state +3 in all materials. Black-Right-Pointing-Pointer A new hydrated bismuth titanate pyrochlore has been isolated.

  18. The resistance to embrittlement by a hydrogen environment of selected high strength iron-manganese base alloys

    Science.gov (United States)

    Benson, R. B., Jr.; Kim, D. K.; Atteridge, D.; Gerberich, W. W.

    1974-01-01

    Fe-16Mn and Fe-25Mn base alloys, which had been cold worked to yield strength levels of 201 and 178 KSI, were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature under the loading conditions employed in this investigation. Transmission electron microscopy established that bands of epsilon phase martensite and fcc mechanical twins were formed throughout the fcc matrix when these alloys were cold worked. In the cold worked alloys a high density of crystal defects were observed associated with both types of strain induced structures, which should contribute significantly to the strengthening of these alloys. High strength iron base alloys can be produced which appear to have some resistance to degradation of mechanical properties in a hydrogen environment under certain conditions.

  19. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, K.D.; Herring, J.S.; Macdonald, P.E. [Idaho National Engineering and Environment Lab., Advanced Nuclear Energy, Idaho (United States)

    2001-07-01

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  20. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to “incinerate” or “transmutate” the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.