WorldWideScience

Sample records for birmingham synchrotron

  1. Abstract Possible: The Birmingham Beat

    OpenAIRE

    Bergman, Aeron; Salinas, Alejandra

    2013-01-01

    Gruppeutstilling. Samarbeidspartner: Alejandra Salinas. ABSTRACT YOUR SHIT IS Video loop and billboard. Eastside Projects, Birmingham UK Abstract Possible: The Birmingham Beat Curated by Maria Lind 6 October - 1 December 2012. Invited artists: José León Cerrillo, Zachary Formwalt, Goldin+Senneby, Wade Guyton, Yelena Popova, Alejandra Salinas and Aeron Bergman. Visningssted: Eastside Projects, Birmingham, UK. Se også: http://eastsideprojects.org/past/abstract-possible

  2. The Birmingham Irradiation Facility

    International Nuclear Information System (INIS)

    At the end of 2012 the proton irradiation facility at the CERN PS will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm2) silicon sensors

  3. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  4. A Trojan Horse in Birmingham

    Science.gov (United States)

    Yarker, Patrick

    2014-01-01

    "Trojan Horse" has become journalistic shorthand for an apparent attempt by a small group in East Birmingham to secure control of local non-faith schools and impose policies and practices in keeping with the very conservative (Salafist and Wahhabi) version of Islam which they hold. In this article, Pat Yarker gives an account of two…

  5. Birmingham probes the Big Bang

    CERN Multimedia

    2007-01-01

    "The world's largest particle accelerator in Geneva is gearing up to begin work again. BBC Midlands Today science correspondent David Gregory went to see how scientists from the University of Birmingham are at the heart of trying to understand what makes our universe tick." (1 page)

  6. Reflections on a Degree Initiative: The UK's Birmingham Royal Ballet Dancers Enter the University of Birmingham

    Science.gov (United States)

    Benn, Tansin

    2003-01-01

    This paper provides an opportunity to share experiences and perceptions of the first 5 years of a degree programme for professional dancers. A partnership developed in the mid-1990s between the UK's Birmingham Royal Ballet and the University of Birmingham, Westhill (now School of Education), to provide a part-time, post-experience, flexible study…

  7. Reflection on Letter from Birmingham Jail

    Institute of Scientific and Technical Information of China (English)

    张远艳; 罗瑞

    2015-01-01

    "Letter from Birmingham Jail" is written by Martin Luther King,Jr.,who is a famous American civil rights leader.This essay attempts to analyze three major arguments in this letter to arouse people’s consciousness to cherish and protect our freedom.

  8. Reflection on Letter from Birmingham Jail

    Institute of Scientific and Technical Information of China (English)

    张远艳; 罗瑞

    2015-01-01

    “Letter from Birmingham Jail” is written by Martin Luther King,Jr.,who is a famous American civil rights leader.This essay attempts to analyze three major arguments in this letter to arouse people’s consciousness to cherish and protect our freedom.

  9. Reflections on a degree initiative: the UK's Birmingham Royal Ballet dancers enter the University of Birmingham

    OpenAIRE

    Benn, Tansin

    2003-01-01

    This paper provides an opportunity to share experiences and perceptions of the first 5 years of a degree programme for professional dancers. A partnership developed in the mid-1990s between the UK's Birmingham Royal Ballet and the University of Birmingham, Westhill (now School of Education), to provide a part-time, post-experience, flexible study programme for full-time Company dancers. This is the first 'company customised' higher education programme to dovetail studies around rehearsal, per...

  10. Early British synchrotrons, an informal history

    International Nuclear Information System (INIS)

    An historical account of the design and construction of early synchrotrons in the United Kingdom, based partly on personal reminiscences, is presented. Material is also drawn from archives at Birmingham and CERN. The document covers the period from plans for the world's first synchrotron at Malvern after the Second World War to work done at Harwell Laboratory for CERN in the period 1951-1953. (UK)

  11. Upgrade to the Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin- Reyes; Parker, K; Wilson, J; Baca, M

    2015-01-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 10^15 (1 MeV neutron equivalent (neq)) cm^-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of 50 1C in 30 min and aims to maintain sub-0 1C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and perform...

  12. Birmingham-Britain’s Second Largest City

    Institute of Scientific and Technical Information of China (English)

    汪伦

    2009-01-01

    Surrounded by several motorways, separated by canals and with many modem shopping centres, Birmingham seems like a huge maze (迷宫). (1) Best to.set your bearings on the great Council House 19th-century buildings which is located in the heart of town. This area consists of Victoria and Chamberlain Squares, which are the most attractive architecture in the city. To the west are Centenary Square, the International Convention Centre and Symphony Hall, as well as the popular bars and cafes. To the northwest is the colourful Jewellery Quarter. In the southeast of the area are the Pallasades and Pavilions shopping centres and the City Plaza.

  13. 75 FR 3695 - Television Broadcasting Services; Birmingham, AL

    Science.gov (United States)

    2010-01-22

    ...The Commission has before it a petition for rulemaking filed by Alabama Educational Television Commission (``AETC''), the licensee of noncommercial educational station WBIQ (TV), channel *10, Birmingham, Alabama. AETC requests the substitution of channel *39 for channel *10 at...

  14. 75 FR 10692 - Television Broadcasting Services; Birmingham, AL

    Science.gov (United States)

    2010-03-09

    ...The Commission has before it a petition for rulemaking filed by Alabama Educational Television Commission, the licensee of noncommercial educational station WBIQ(TV), channel *10, Birmingham, Alabama, requesting the substitution of channel *39 for channel *10 at...

  15. 78 FR 75306 - Television Broadcasting Services; Birmingham, Alabama

    Science.gov (United States)

    2013-12-11

    ... COMMISSION 47 CFR Part 73 Television Broadcasting Services; Birmingham, Alabama AGENCY: Federal... filed by Alabama Educational Television Commission (``AETC''), the licensee of station WBIQ(TV), channel... seeks a waiver of the Commission's freeze on the filing of petitions for rulemaking by...

  16. Modelling environmental equity: access to air quality in Birmingham, England

    OpenAIRE

    Brainard, Julii S.; Jones, Andrew P.; Bateman, Ian J.; Lovett, Andrew A; Peter J Fallon

    2002-01-01

    Many studies in the USA have noted inequities with regard to the socioeconomic status or racial character of communities and their relative exposure to environmental disamenities. In this paper the authors focus particularly on the environmental equity of air pollution in the English city of Birmingham. Using statistical methodologies they examine the pattern of exposure to two key air pollutants: carbon monoxide (CO) and nitrogen dioxide (NO 2 ) across certain population groups in the city. ...

  17. Separate Tables: Segregation, Gentrification, and the Commons in Birmingham, Alabama's Alternative Food and Agriculture Movement

    OpenAIRE

    Henson, Zachary Floyd

    2013-01-01

    Birmingham, Alabama has a long history of racial conflict and segregation. This dissertation investigates that how that history has shaped space in the region and the consequences of that spatial production on the current alternative food and agriculture movement. Specifically, I analyze three processes that produce Birmingham's racialized space - capital accumulation, racialization, and commoning. I first look at how Birmingham's segregated space shapes the initiatives of the alternative ...

  18. Synchrotron radiation

    International Nuclear Information System (INIS)

    The paper on Synchrotron Radiation contains the appendix to the Daresbury Annual Report 1987/88. The appendix is mainly devoted to the scientific progress reports on the work at the Synchrotron Radiation Source in 1987/8. The parameters of the Experimental Stations and the index to the Scientific Reports are also included in the appendix. (U.K.)

  19. Synchrotron light

    International Nuclear Information System (INIS)

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  20. Synchrotron radiation

    International Nuclear Information System (INIS)

    A detailed account of the research work associated with the Synchrotron Radiation Source at Daresbury Laboratory, United Kingdom, in 1984/85, is presented in the Appendix to the Laboratory's Annual Report. (U.K.)

  1. Synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamt of just a decade or so ago. In this paper, the authors discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others

  2. Synchrotron radiation

    International Nuclear Information System (INIS)

    A report is given on the work involving the Synchrotron Radiation Division of the Daresbury Laboratory during the period January 1981 - March 1982. Development of the source, beamlines and experimental stations is described. Progress reports from individual investigators are presented which reveal the general diversity and interdisciplinary nature of the research which benefits from access to synchrotron radiation and the associated facilities. Information is given on the organisation of the Division and publications written by the staff are listed. (U.K.)

  3. Synchrotron radiation

    International Nuclear Information System (INIS)

    The paper on synchrotron radiation is the appendix to the Daresbury (United Kingdom) annual report, 1985/86. The bulk of the volume is made up of the progress reports for the work carried out during the year under review using the Synchrotron Radiation Source (SRS) at Daresbury. The Appendix also contains: the scientific programmes at the the SRS, progress on beamlines, instrumentation and computing developments, and activities connected with accelerator development. (U.K.)

  4. 50 Years of synchrotrons Adams' Memorial lecture

    CERN Document Server

    Lawson, J D; CERN. Geneva

    1996-01-01

    Fifty years ago Frank Goward of the Atomic Energy Research Establishment Group at Malvern converted a small American betatron to make the worldÕs first synchrotron. At the same time Marcus Oliphant was planning to build at Birmingham a large proton machine with a ring magnet and variable magnetic field. Ideas for this had come to him during night-shifts tending the electromagnetic separators at Oak Ridge during the war. Some seven years later, in 1953, a group gathered together in Geneva to build the PS. A major contributor to the design work which had made this possible was John Adams. An account of some of the achievements in these eventful years will be presented. CERN has built nine synchrotrons/colliders and two temporary test rings. Eight machines are still running. The review will start with the PS, the first proton synchrotron based on the alternating gradient principle invented in 1952 at BNL. The design work of the PS team, under the enlightened leadership of J.B. Adams, and the construction of the...

  5. Synchrotron radiation

    International Nuclear Information System (INIS)

    This report details the activities in synchrotron radiation and related areas at Daresbury Laboratory during 1989/90. The number and scope of the scientific reports submitted by external users and in-house staff is a reflection of the large amount of scheduled beamtime and high operating efficiency achieved at the Synchrotron Radiation Source (SRS) during the past year. Over 4000 hours of user beam were available, equivalent to about 80% of the total scheduled time. Many of the reports collected here illustrate the increasing technical complexity of the experiments now being carried out at Daresbury. Provision of the appropriate technical and scientific infrastructure and support is a continuing challenge. The development of the Materials Science Laboratory together with the existing Biological Support Laboratory will extend the range of experiments which can be carried out on the SRS. This will particularly facilitate work in which the sample must be prepared or characterised immediately before or during an experiment. The year 1989/90 has also seen a substantial upgrade of several stations, especially in the area of x-ray optics. Many of the advantages of the High Brightness Lattice can only be exploited effectively with the use of focusing optics. As the performance of these stations improves, the range of experiments which are feasible on the SRS will be extended significantly. (author)

  6. Synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron radiation (SR) from the bending magnet of a circular electron (positron) accelerator is a brilliant source in the vacuum ultraviolet, soft- and hard-x ray regions. First the characteristics of the bending SR are delete discussed. Though the brilliance of SR was improved dramatically in the last decade, neither bending, wiggler SR nor undulator SR is coherent. Coherent far infrared radiation in the mm wavelength region has recently been observed from a short electron bunch (∼ 2.5 mm long) in a bending magnet connected to a linac at Tohoku University. Coherent radiation due to higher harmonics generation by laser excitation of electron bunches in an undulator is then described. Finally a free electron laser (FEL) using optical klystron in a storage ring is reviewed. (author)

  7. The Rule of Law and Civil Disobedience: The Case behind King's Letter from a Birmingham Jail

    Science.gov (United States)

    Kaplan, Howard

    2013-01-01

    Fifty years ago, the Reverend Dr. Martin Luther King Jr. wrote his "Letter from a Birmingham Jail." In exploring the story of the events behind the essay, and the Supreme Court case that resulted, "Walker v. Birmingham", 399 U.S. 307 (1967), educators will find a pedagogically powerful lens through which to review the seminal…

  8. Synchrotron radiation

    International Nuclear Information System (INIS)

    Work at the Daresbury SRS has of necessity been interrupted this year (1991/92) due to the incorporation of Wiggler II. However, considerable beamtime was awarded before the shutdown and the major part of this appendix is concerned with the progress reports of the research undertaken then. The reports have been organised under the following broad headings: Molecular Science (19 papers), Surface and Materials Science (169 papers), Biological Science (85 papers), Instrumental and Technique Developments (13 papers) and Accelerator Physics (3 papers). It is hoped that in time the number of contributions on accelerator physics will grow to reflect the in-house activity on, for example, accelerator improvement and design. The research reports are preceded by the Annual Report of the Synchrotron Radiation Facilities Committee, which outlines the research highlights identified by that Committee (also included are details of the current membership of the SRFC and the chairmen of the Beamtime Allocation Panels). Following the reports are the specifications for the beamlines and stations. This year Section 3 contains 289 reports (nearly 100 more than last year) and the number of publications, generated by scientists and engineers who have used or are associated with Daresbury Laboratory facilities, has topped 500 for the first time. (author)

  9. The Sociopolitical Context of Education in Post-Civil Rights Birmingham

    Science.gov (United States)

    Loder-Jackson, Tondra L.

    2015-01-01

    Drawing on scholarship from the politics and history of education, narrative and archival data, and the author's emic perspectives, this article examines social and political transformations in the Birmingham City Schools (BCS) and some of the surrounding metropolitan school districts during the pre- and post-classical phases of the American civil…

  10. Virtual Visit to the ATLAS Control Room by The University of Birmingham

    CERN Multimedia

    2014-01-01

    The particle physics research group in the School of Physics and Astronomy at the University of Birmingham is holding a Masterclass to highlight the exciting results from the LHC at CERN. The particle physics group is involved strongly in the ATLAS and LHCb experiments at the LHC.

  11. Ethnic differences in patient perceptions of heart failure and treatment: the West Birmingham heart failure project

    OpenAIRE

    Lip, G Y H; Khan, H; Bhatnagar, A; Brahmabhatt, N; Crook, P.; Davies, M. K.

    2004-01-01

    Objective: To investigate further the hypothesis that ethnic groups would have different levels of knowledge and perceptions of congestive heart failure (CHF) and treatments for this condition, a cross sectional survey was conducted of patients who were attending the heart failure clinics in two teaching hospitals of Birmingham, UK, that serve a multiethnic population.

  12. Listening to Students: Customer Journey Mapping at Birmingham City University Library and Learning Resources

    Science.gov (United States)

    Andrews, Judith; Eade, Eleanor

    2013-01-01

    Birmingham City University's Library and Learning Resources' strategic aim is to improve student satisfaction. A key element is the achievement of the Customer Excellence Standard. An important component of the standard is the mapping of services to improve quality. Library and Learning Resources has developed a methodology to map these…

  13. The Consequences of the Trojan Horse Affair and a Possible Way Forward for Birmingham

    Science.gov (United States)

    Barton, Sarah; Hatcher, Richard

    2014-01-01

    The UK government seized the opportunity of the Trojan Horse affair to launch a damaging Islamophobic attack, eagerly relayed by a racist press, on the Muslim community in Birmingham and beyond, abusing Ofsted and the Prevent strategy as blatant instruments of ideologically-driven policy. The various reports found no evidence of radicalisation or…

  14. The meaning of place and state‐led gentrification in Birmingham's Eastside

    OpenAIRE

    Porter, E.; Barber, A. (Ana)

    2006-01-01

    Despite Birmingham's claim to constitute `England's second city', it has arguably been overlooked in much recent academic research - perhaps because of a tendency to regard Manchester as the paradigmatic English example of the emerging post‐industrial city‐region. Contributors to CITY have gone some way to redressing this imbalance - with Frank Webster's paper in vol 5 no 1 and Kevin Ward's paper in vol 7 no 2 underlining the wider issues raised by the adoption of `urban entrepreneurialism' i...

  15. The TAPin electronic libraries project and the experience at the University of Birmingham

    Directory of Open Access Journals (Sweden)

    Tracy K. Mulvaney

    1997-01-01

    Full Text Available The TAPin Project and its implementation at the University of Birmingham is described. Local issues and key features of a hybrid approach to Networked Learner Support are addressed. The methods of NLS adopted included electronic mail and the Internet. The key role in NLS played by subject librarians is stressed. Transfer of skills to learners by means of targeted individual training and a web guide is discussed.

  16. Virtual Visit to the ATLAS Control Room by the University of Birmingham

    CERN Multimedia

    2013-01-01

    The particle physics research group in the School of Physics and Astronomy at the University of Birmingham is holding a Masterclass to highlight the exciting results from the Large Hadron Collider (LHC) at CERN: the existence of a new particle which may be the long sought Higgs boson. The particle physics group is involved strongly in the ATLAS, ATLAS and LHCb experiments at the LHC.

  17. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS quadrangles, Alabama

    International Nuclear Information System (INIS)

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. Purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  18. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS Quadrangles, Alabama

    International Nuclear Information System (INIS)

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. The purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  19. MRI does not detect acetabular osteolysis around metal-on-metal Birmingham THA

    OpenAIRE

    Waldstein, Wenzel; Schmidt-Braekling, Tom; Boettner, Friedrich

    2014-01-01

    Objective Osteolysis has not been recognized as a common failure mode of the Birmingham modular metal-on-metal (MoM) total hip arthroplasty (THA). The clinical value of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) to assess the periprosthetic soft tissue is well documented; however, the appropriate image modalities to detect periacetabular osteolysis remain unclear. Case summary Eleven patients with periacetabular osteolysis within 3–6 years after uncemented Birmi...

  20. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  1. Synchrotron radiation: science & applications

    OpenAIRE

    Aranda, Miguel A. G.

    2015-01-01

    This general talk is devoted to briefly introduce the main uses and applications of synchrotron radiation. An initial introduction will be dedicated to describe a synchrotron as a Large Facility devoted to produce photons that will be used to carry out excellent science. The five outstanding main characteristics of synchrotron radiation are: i) High brilliance and collimation ii) Wavelength tunability iii) Beamsize tunability iv) Defined polarization v) Time structure vi)...

  2. Size as a Risk Factor for Growth in Conservatively Managed Vestibular Schwannomas: The Birmingham Experience.

    Science.gov (United States)

    Daultrey, Charles R J; Rainsbury, James W; Irving, Richard M

    2016-10-01

    This article discusses conservatively managed tumors, whether larger tumors at presentation are more likely to grow, and whether position at presentation corresponds with growth. A review is presented of more than 900 patients managed at Queen Elizabeth Hospital, Birmingham, between 1997 and 2012. Tumors were arbitrarily divided into 3 groups: intracanalicular (IC), and extracanalicular (EC) tumors measuring 1 to 10 mm or 11 to 20 mm at the cerebellopontine angle. This series shows that larger EC tumors grow faster than IC tumors and that EC tumors overall at presentation are more likely to grow than IC tumors. PMID:27565393

  3. Performance of the Birmingham Solar-Oscillations Network (BiSON)

    CERN Document Server

    Hale, S J; Chaplin, W J; Davies, G R; Elsworth, Y P

    2015-01-01

    The Birmingham Solar-Oscillations Network (BiSON) has been operating with a full complement of six stations since 1992. Over 20 years later, we look back on the network history. The meta-data from the sites have been analysed to assess performance in terms of site insolation, with a brief look at the challenges that have been encountered over the years. We explain how the international community can gain easy access to the ever-growing dataset produced by the network, and finally look to the future of the network and the potential impact of nearly 25 years of technology miniaturisation.

  4. A medical proton synchrotron

    International Nuclear Information System (INIS)

    A special medical weak-focusing synchrotron using only wedge focusing at dipole ends, is proposed to make a proton cancer therapy. A new method of the turn number calculation in a proton synchrotron allowing to calculate the energy gain per turn, is formulated. 13 refs.; 10 figs.; 1 tab

  5. Synchrotron radiation from protons

    Energy Technology Data Exchange (ETDEWEB)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature.

  6. The Birmingham Urban Climate Laboratory—A high density, urban meteorological dataset, from 2012–2014

    Science.gov (United States)

    Warren, Elliott L.; Young, Duick T.; Chapman, Lee; Muller, Catherine; Grimmond, C.S.B.; Cai, Xiao-Ming

    2016-01-01

    There is a paucity of urban meteorological observations worldwide, hindering progress in understanding and mitigating urban meteorological hazards and extremes. High quality urban datasets are required to monitor the impacts of climatological events, whilst providing data for evaluation of numerical models. The Birmingham Urban Climate Laboratory was established as an exemplar network to meet this demand for urban canopy layer observations. It comprises of an array of 84 wireless air temperature sensors nested within a coarser array of 24 automatic weather stations, with observations available between June 2012 and December 2014. data routinely underwent quality control, follows the ISO 8601 naming format and benefits from extensive site metadata. The data have been used to investigate the structure of the urban heat island in Birmingham and its associated societal and infrastructural impacts. The network is now being repurposed into a testbed for the assessment of crowd-sourced and satellite data, but the original dataset is now available for further analysis, and an open invitation is extended for its academic use. PMID:27272103

  7. The Birmingham Urban Climate Laboratory-A high density, urban meteorological dataset, from 2012-2014.

    Science.gov (United States)

    Warren, Elliott L; Young, Duick T; Chapman, Lee; Muller, Catherine; Grimmond, C S B; Cai, Xiao-Ming

    2016-01-01

    There is a paucity of urban meteorological observations worldwide, hindering progress in understanding and mitigating urban meteorological hazards and extremes. High quality urban datasets are required to monitor the impacts of climatological events, whilst providing data for evaluation of numerical models. The Birmingham Urban Climate Laboratory was established as an exemplar network to meet this demand for urban canopy layer observations. It comprises of an array of 84 wireless air temperature sensors nested within a coarser array of 24 automatic weather stations, with observations available between June 2012 and December 2014. data routinely underwent quality control, follows the ISO 8601 naming format and benefits from extensive site metadata. The data have been used to investigate the structure of the urban heat island in Birmingham and its associated societal and infrastructural impacts. The network is now being repurposed into a testbed for the assessment of crowd-sourced and satellite data, but the original dataset is now available for further analysis, and an open invitation is extended for its academic use. PMID:27272103

  8. The Impact of Three Evidence-Based Programmes Delivered in Public Systems in Birmingham, UK

    Directory of Open Access Journals (Sweden)

    Michael Little

    2012-12-01

    Full Text Available The Birmingham Brighter Futures strategy was informed by epidemiological data on child well-being and evidence on “what works,” and included the implementation and evaluation of three evidence-based programmes in regular children’s services systems, as well as an integrated prospective cost-effectiveness analysis (reported elsewhere. A randomised controlled trial (RCT of the Incredible Years BASIC parenting programme involved 161 children aged three and four at risk of a social-emotional or behavioural disorder. An RCT of the universal PATHS social-emotional learning curriculum involved children aged four–six years in 56 primary schools. An RCT of the Level 4 Group Triple-P parenting programme involved parents of 146 children aged four–nine years with potential social-emotional or behavioural disorders. All three studies used validated standardised measures. Both parenting programme trials used parentcompletedmeasures of child and parenting behaviour. The school-based trial used teacher reports of children’s behaviour, emotions, and social competence.Incredible Years yielded reductions in negative parenting behaviours among parents, reductions in child behaviour problems, and improvements in children’s relationships. In the PATHS trial, modest improvements in emotional health and behavioural development after one year disappeared by the end of year two. There were no effects for Triple-P. Much can be learned from the strengths and limitations of the Birmingham experience.

  9. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    This report discussion research being conducted at the National Synchrotron light source. In particular, this report contains operations summaries; symposia, workshops, and projects; NSLS highlights; and abstracts of science at the NSLS

  10. The Australian synchrotron project

    International Nuclear Information System (INIS)

    Full text: The Australian Synchrotron to be built at Monash University, is a synchrotron light facility based on a 3-GeV electron storage ring. It is scheduled to be fully operational in 2007. In this paper we describe the accelerator systems that lie at the heart of the facility, and describe the spectral characteristics of the 'light' - ranging from infra-red to hard x-rays - that will be provided from bend magnets, undulators, and wigglers

  11. RF gymnastics in synchrotrons

    OpenAIRE

    Garoby, R.

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most c...

  12. "A Creative Psalm of Brotherhood": The (De)Constructive Play in Martin Luther King's "Letter from Birmingham Jail"

    Science.gov (United States)

    Gaipa, Mark

    2007-01-01

    Scholars have celebrated the spoken word in King's "Letter from Birmingham Jail," but they have overlooked the significance of the Letter's writing. In this essay I closely read King's act of writing the Letter, along with the figures of speech he employs in it, and I show how both--by enacting the mass media's ability to cross contexts--are…

  13. La Escuela de Birmingham: La sintaxis de la cotidianidad como producción social de la conciencia

    Directory of Open Access Journals (Sweden)

    Blanca Muñoz

    2009-01-01

    Full Text Available Este ensayo comprende una aproximación teórica a las distintas aportaciones que desde el culturalismo de la Escuela de Birmingham se han configurado para dar respuesta a la problemática de la construcción social de la cotidianidad en el contexto histórico del capitalismo tardío. Asimismo, también intenta establecer una comparación entre las contribuciones de los autores que componen la “primera generación” (E.P. Thompson, R. Williams, Stuart Hall y R. Hoggart de la Escuela de Birmingham, y los de la “segunda generación”, con las perspectivas teóricas propuestas desde la Escuela de Frankfurt. This essay includes a theoretical approximation to the different contributionthat from the culturalismo of the School of Birmingham have been formed togive response to the problematics of the social construction of the commonnesin the historical context of the late capitalism. Likewise, also it tries to establisha comparison between the contributions of the authors who compose the “firsgeneration” (E.P. Thompson, R. Williams, Stuart Hall y R. Hoggart of theSchool of Birmingham, and those of the “second generation”, with thetheoretical perspectives proposed from Frankfurt's School.

  14. The Art of ATLAS; multimedia installation by Neal Hartman and Claudia Marcelloni at Thinktank science museum in Birmingham, UK.

    CERN Multimedia

    Claudia Marcelloni

    2010-01-01

    The Art of ATLAS is an multimedia installation, developed by Neal Hartman and Claudia Marcelloni about the physicists, engineers and technicians behind the ATLAS Experiment. The installation will been shown at Planetarium entrance of the Thinktank science museum in Birmingham, UK from October 2010 until January 2011.

  15. Listening to You...Listening to Us. Expanding Educational Provision for Unemployed Adults in Birmingham. FEU/REPLAN.

    Science.gov (United States)

    Adams, Barbara

    This report describes a project that adopted a curriculum development approach to meet the education and training needs of the unemployed and other disadvantaged groups in Birmingham, England. Chapter 1 gives the project's purpose. Chapter 2 sets the project in its context--an outer city area. Chapter 3 describes the processes of analyzing needs…

  16. Extremism and Neo-Liberal Education Policy: A Contextual Critique of the Trojan Horse Affair in Birmingham Schools

    Science.gov (United States)

    Arthur, James

    2015-01-01

    This paper offers new insights into the effects of neo-liberal education policies on some Muslim majority schools in Birmingham. It critically reveals how the implementation of neo-liberal education policies, pursued by both Labour and Conservative Governments, has contributed to the failure of some mechanisms of school leadership and governance.…

  17. The University of Birmingham, nuclear power, and start of UK reactor programme

    International Nuclear Information System (INIS)

    As long ago as 1919 Sir Oliver Lodge, the first principal of The University of Birmingham presented a remarkable prescient account of the potential of nuclear power. However, he could not have predicted that a mere 20 years later, in that university, Peierls and Frisch would begin to lay the foundations with their calculation that the critical mass of 235U was only of the order of 1 kg. It is generally the case that work in the field of pure physics leads to the initiating discovery; metallurgy follows with the development of the resultant technology. In this paper, it is illustrated how the shortage of suitable materials (and facilities) forced the UK to follow a route which would lead to the development of gas cooled reactors. (author)

  18. The extrasolar planet-finder group study at the University of Birmingham

    International Nuclear Information System (INIS)

    In this paper I describe a student-led group project undertaken as part of the physics and astrophysics degree at the University of Birmingham, on the subject of finding extrasolar planets. The group project involves exposing the student to exciting new astrophysics, in the context of a research-like environment. The main focus of the study is on the student group developing plans for an optimal strategy for a planet-finding programme. To do this, the students have to study the techniques involved in planet finding and parameters of the likely planets and synthesize a strategy from this. The subject of planet finding is scientifically very approachable and is a young and fast-moving field; consequently it gives rise to lively, varied and interesting project work

  19. Review of the Laguerre-Gauss mode technology research program at Birmingham

    CERN Document Server

    Fulda, Paul; Brown, Daniel; Brückner, Frank; Carbone, Ludovico; Chelkowski, Simon; Hild, Stefan; Kokeyama, Keiko; Wang, Mengyao; Freise, Andreas

    2011-01-01

    Gravitational wave detectors from the advanced generation onwards are expected to be limited in sensitivity by thermal noise of the optics, making the reduction of this noise a key factor in the success of such detectors. A proposed method for reducing the impact of this noise is to use higher-order Laguerre-Gauss (LG) modes for the readout beam, as opposed to the currently used fundamental mode. We present here a synopsis of the research program undertaken by the University of Birmingham into the suitability of LG mode technology for future gravitational wave detectors. This will cover our previous and current work on this topic, from initial simulations and table-top LG mode experiments up to implementation in a prototype scale suspended cavity and high-power laser bench.

  20. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  1. RF gymnastics in synchrotrons

    CERN Document Server

    Garoby, R

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  2. RF Gymnastics in Synchrotrons

    CERN Document Server

    Garoby, R

    2005-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. "RF gymnastics" designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  3. Birmingham Mayor Larry Langford has a good plan to help restore and protect rare fish population at city-owned pond drained by mistake

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Newspaper article highlighting a restoration plan by Birmingham Mayor Larry Langford after a significant fish kill in Roebuck Spring pond in 2008.

  4. Effect of telephone health coaching (Birmingham OwnHealth) on hospital use and associated costs: cohort study with matched controls

    OpenAIRE

    Steventon, Adam; Tunkel, Sarah; Blunt, Ian; Bardsley, Martin

    2013-01-01

    Objectives To test the effect of a telephone health coaching service (Birmingham OwnHealth) on hospital use and associated costs. Design Analysis of person level administrative data. Difference-in-difference analysis was done relative to matched controls. Setting Community based intervention operating in a large English city with industry. Participants 2698 patients recruited from local general practices before 2009 with heart failure, coronary heart disease, diabetes, or chronic obstructive ...

  5. Do the malnutrition universal screening tool (MUST) and Birmingham nutrition risk (BNR) score predict mortality in older hospitalised patients?

    OpenAIRE

    Lee Emma; Moore Nicola; Henderson Sarah; Witham Miles D

    2008-01-01

    Abstract Background Undernutrition is common in older hospitalised patients, and routine screening is advocated. It is unclear whether screening tools such as the Birmingham Nutrition Risk (BNR) score and the Malnutrition Universal Screening Tool (MUST) can successfully predict outcome in this patient group. Methods Consecutive admissions to Medicine for the Elderly assessment wards in Dundee were assessed between mid-October 2003 and mid-January 2004. Body Mass Index (BMI), MUST and BNR scor...

  6. Dual energy X-ray absorptiometry analysis of peri-prosthetic stress shielding in the Birmingham resurfacing hip replacement.

    LENUS (Irish Health Repository)

    Harty, J A

    2012-02-03

    INTRODUCTION: Numerous reports in the literature refer to the femoral neck fracture rate in hip resurfacing. The aim of this study was to determine the bone mineral density and evidence of stress shielding around the femoral component of the Birmingham resurfacing prosthesis. MATERIAL AND METHODS: Twenty-eight patients with primary unilateral osteoarthritis had a Birmingham resurfacing prosthesis. DEXA analysis of the proximal femur and femoral neck was performed and compared with the opposite unaffected side. RESULTS: Total periprosthetic bone mineral density was 0.49% greater than the control, but this did not achieve statistical significance. Although the BMD of the femoral neck was slightly increased on the prosthetic side (1.002 g\\/cm2) as opposed to the control side, this difference did not reach statistical significance. CONCLUSION: The Birmingham resurfacing prosthesis does not appear to reduce femoral neck bone mineral density in comparison to the normal femoral neck bone density. We conclude that femoral neck fractures are unlikely to be due to stress shielding related to the prosthesis.

  7. CORNELL: Synchrotron 25

    International Nuclear Information System (INIS)

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell

  8. Advancing City Sustainability via Its Systems of Flows: The Urban Metabolism of Birmingham and Its Hinterland

    Directory of Open Access Journals (Sweden)

    Susan E. Lee

    2016-03-01

    Full Text Available Cities are dependent on their hinterlands for their function and survival. They provide resources such as people, materials, water, food and energy, as well as areas for waste disposal. Over the last 50 years, commerce and trade has become increasingly global with resources sourced from further afield often due to cheap labour costs, better transportation and a plentiful supply of energy and raw materials. However, the use and transportation of resources is becoming increasingly unsustainable as the global population increases, raw materials become increasing scarce, and energy costs rise. This paper builds on research undertaken in the Liveable Cities Programme on the resource flows of Birmingham, UK. It investigates how people, material, and food flows interact within regional, national, and international hinterlands through road and rail transportation and assesses their sustainability across all three pillars (economic, social, and environmental. The type and weight of goods is highlighted together with their costs and energy used. For a city to move with greatest effect towards sustainability it needs to: (i source as much as it can locally, to minimise transportation and energy costs; (ii adopt such principles as the “circular economy”; and (iii provide clean and efficient means to move people, especially public transportation.

  9. Modelling the factors affecting image quality for the RAL-Birmingham positron camera

    International Nuclear Information System (INIS)

    The RAL-Birmingham positron camera is based on position sensitive multiwire technology developed originally for particle physics. It provides quantitative images of positron emitting tracers in a wide variety of process engineering research applications. A simulation of the camera has been developed to give insights into how the physical processes underlying positron-based imaging affect the overall performance. It is shown, by comparison with real data, that the simulation reproduces the useful data logging rate and spatial resolution to within 5% of the real values over the whole field of view. It reproduces the detector efficiency as a function of energy to better than 10% in the range 50 keV to 511 keV and better than 15% in the range 511 keV to 1.3 MeV. A series of point source measurements has been simulated to study the effect on spatial resolution of photon scattering in the object and in the detectors themselves. This shows that detector scatter contributes 0.9 mm to the FWHM and 3.2 mm to the FWTM of the point spread function (PSF) of a central 18F source. Scatter in the object, or additional γ-rays accompanying positron decay, produces a broad background on the PSF that contains little spatial information. ((orig.))

  10. Brazilian Synchrotron Radiation Project

    International Nuclear Information System (INIS)

    The proposal for a Brazilian national laboratory for synchrotron radiation is presented. The first design study led to a system consisting of a LINAC, an injection ring and a low emittance storage ring. The main ring is designed to be upgraded to 3GeV with an emittance of 4 x 10-8 rad.m. The design study also indicated the possibility of using the injection ring as a soft x-Rays/VUV source

  11. Engineering application of synchrotron radiation

    International Nuclear Information System (INIS)

    The synchrotron radiation which is generated when the circular motion of fast electrons is carried out in vacuum has been studied as the source of X-ray and ultraviolet ray for physical property research, but recently attention has been paid to its industrial application. In this report, from the viewpoint of how to utilize the properties of synchrotron radiation to electronic industries, the recent trend of research is explained. Synchrotron radiation is the electromagnetic waves radiated in the tangential direction to their track when the electrons at the velocity close to light velocity carry out acceleration motion. The synchrotron radiation generator is an electron storage ring. Synchrotron radiation is the beam having good parallelism, concentrating in the orbit plane of electrons, and is led to respective experimental devices with beam lines. Synchrotron radiation lithography has become the start of its industrial application. The process technology being excited by synchrotron radiation, the evaluation of materials using synchrotron radiation, small synchrotron radiation generators and the new sources of light are reported. Synchrotron radiation is the important technological field developed by the joint work of physics and engineering in the latter half of 20th century, following semiconductors, lasers and superconductivity. (K.I.)

  12. Urbanization effects on stream habitat characteristics in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah

    Science.gov (United States)

    Short, T.M.; Giddings, E.M.P.; Zappia, H.; Coles, J.F.

    2005-01-01

    Relations between stream habitat and urban land-use intensity were examined in 90 stream reaches located in or near the metropolitan areas of Salt Lake City, Utah (SLC); Birmingham, Alabama (BIR); and Boston, Massachusetts (BOS). Urban intensity was based on a multi-metric index (urban intensity index or UII) that included measures of land cover, socioeconomic organization, and urban infrastructure. Twenty-eight physical variables describing channel morphology, hydraulic properties, and streambed conditions were examined. None of the habitat variables was significantly correlated with urbanization intensity in all three study areas. Urbanization effects on stream habitat were less apparent for streams in SLC and BIR, owing to the strong influence of basin slope (SLC) and drought conditions (BIR) on local flow regimes. Streamflow in the BOS study area was not unduly influenced by similar conditions of climate and physiography, and habitat conditions in these streams were more responsive to urbanization. Urbanization in BOS contributed to higher discharge, channel deepening, and increased loading of fine-grained particles to stream channels. The modifying influence of basin slope and climate on hydrology of streams in SLC and BIR limited our ability to effectively compare habitat responses among different urban settings and identify common responses that might be of interest to restoration or water management programs. Successful application of land-use models such as the UII to compare urbanization effects on stream habitat in different environmental settings must account for inherent differences in natural and anthropogenic factors affecting stream hydrology and geomorphology. The challenge to future management of urban development is to further quantify these differences by building upon existing models, and ultimately develop a broader understanding of urbanization effects on aquatic ecosystems. ?? 2005 by the American Fisheries Society.

  13. Synchrotron Radiation as CMB Foreground

    OpenAIRE

    Smoot, George F.

    1999-01-01

    Synchrotron emission is an important process in Galactic dynamics and a potentially confusing foreground for cosmic microwave background (CMB) radiation observations. Though the mechanism of synchrotron emission is well understood, the details for the Galaxy and many external sources are not well characterized. Quality maps at multiple frequencies are lacking but needed for a full understanding of the Galactic synchrotron emission, including intensity, spectrum, and spectral variation. At hig...

  14. Synchrotron Radiation as CMB Foreground

    CERN Document Server

    Smoot, G F

    1999-01-01

    Synchrotron emission is an important process in Galactic dynamics and a potentially confusing foreground for cosmic microwave background (CMB) radiation observations. Though the mechanism of synchrotron emission is well understood, the details for the Galaxy and many external sources are not well characterized. Quality maps at multiple frequencies are lacking but needed for a full understanding of the Galactic synchrotron emission, including intensity, spectrum, and spectral variation. At high frequencies (> 70 GHz) synchrotron emission is not a severe limitation to precise CMB observations well away from the Galactic plane.

  15. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  16. The synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron Radiation is a fantastic source of electromagnetic radiation the energy spectrum of which spreads continuously from the far infrared to hard X-rays. For this reason a wide part of the scientific community, fundamentalists as well as industry, is concerned by its use. We shall describe here the main properties of this light source and give two examples of application in the field of characterization of materials: EXAFS (Extended X-Ray Absorption Fine Structure) and X-ray fluorescence. (author). 8 figs., 21 refs

  17. Synchrotron light beam and a synchrotron light experiment facility

    International Nuclear Information System (INIS)

    In the National Laboratory for High Energy Physics, about two years ago, the requirements of synchrotron light beam in respective measuring instruments were discussed. Then, also the arrangement (lattice) of a storage ring, the nature of synchrotron light beam, a synchrotron light experiment facility and the arrangement of the beam lines were studied. During the period of two years since then, due to the changes in the circumstances, the design of the lattice was altered. Accordingly, the arrangement of the beam lines and of measuring instruments were largely changed. At this point, the results of discussions in various meetings are described, though they may still be subject to future changes, with due consideration to beam, environment and beam lines required for the design of the measuring instruments: (1) storage ring and synchrotron light beam, (2) requirements on small beam size and beam stability, (3) a synchrotron light experiment facility. (J.P.N.)

  18. Synchrotron radiation source Indus-1

    International Nuclear Information System (INIS)

    Indus-1 is a 450 MeV electron storage ring for the production of the synchrotron radiation in VUV range with a critical wavelength of 61 A. In this paper we discuss the synchrotron radiation source Indus-1 and report some results of its present performance. Besides, results of beam lifetime studies are also reported. (author)

  19. SAXS experiments using synchrotron sources

    International Nuclear Information System (INIS)

    The main characteristics of SAXS (small angle x-ray scattering) experimental instruments associated with classical and synchrotron sources are outlined. Some examples of applications of synchrotron radiation to SAXS studies of solid state phase separation, molecular aggregation, gel formation, porous materials and sintering processes, are described. An overview of recent instrumental progress and tendencies is presented

  20. Induction synchrotron and its applications

    International Nuclear Information System (INIS)

    An RF synchrotron has been the indispensable device for nuclear physics and high energy physics experiments so far. Instead of this conventional accelerator, an induction synchrotron has been proposed and its demonstration is going to be done in the near future. The induction synchrotron is capable of accelerating a super-bunch of 1 μs long. A new generation of proton driver or hadron collider accommodating super-bunches, which claims to increase their luminosity ten times larger, is under consideration. Key devices to realize the novel induction synchrotron are a pulse modulator and induction accelerating cavity being operated at 1 MHz rep-rate. The concept and characteristics of the induction synchrotron are presented including the outline of R and D works. (author)

  1. Proton synchrotron accelerator theory

    International Nuclear Information System (INIS)

    This is the text of a series of lectures given as part of the CERN Academic Training Programme and primarily intended for young engineers and technicians in preparation for the running-in of the 400 GeV Super Proton Synchrotron (SPS). Following the definition of basic quantities, the problems of betatron motion and the effect of momentum spread and orbital errors on the transverse motion of the beam are reviewed. Consideration is then given to multipole fields, chromaticity and non-linear resonances. After dealing with basic relations governing longitudinal beam dynamics, the space-charge, resistive-wall and other collective effects are treated, with reference to precautions in the SPS to prevent their occurrence. (Auth.)

  2. The Birmingham Burn Centre archive: A photographic history of post-war burn care in the United Kingdom.

    Science.gov (United States)

    Hardwicke, Joseph; Kohlhardt, Angus; Moiemen, Naiem

    2015-06-01

    The Medical Research Council Burns and Industrial Injuries Unit at the Birmingham Accident Hospital pioneered civilian burn care and research in the United Kingdom during the post-war years. A photographic archive has been discovered that documents this period from 1945 to 1975. The aim of this project was to sort, digitize and archive the images in a secure format for future reference. The photographs detail the management of burns patients, from injury causation and surgical intervention, to nursing care, rehabilitation and long-term follow-up. A total of 2650 images files were collected from over 600 patients. Many novel surgical, nursing, dressing and rehabilitation strategies are documented and discussed. We have chosen to report part of the archive under the sections of (1) aseptic and antimicrobial burn care; (2) burn excision and wound closure; (3) rehabilitation, reconstruction and long-term outcomes; (4) accident prevention; and (5) response to a major burns incident. The Birmingham collection gives us a valuable insight into the approach to civilian burn care in the post-war years, and we present a case from the archive to the modern day, the longest clinical photographic follow-up to date. PMID:25749201

  3. The European Synchrotron Radiation Facility

    DEFF Research Database (Denmark)

    Buras, B.; Materlik, G.

    In recent years, X-ray synchrotron radiation became a powerful tool for studies of condensed matter, and in view of that a proposal for the construction of a European Synchrotron Radiation Facility (ESRF) was elaborated in some detail by the European Synchrotron Radiation Project. The heart of the...... great flexibility and a small emittance (7×10−9 rad m) leading to a very high brilliance (1019 photons/(s mm2 mrad2) in a relative bandwidth of 0.1% in case of a 1 Å undulator). The overview, as seen from the users point of view, gives a brief account of the storage ring, emitted radiation...

  4. Biomedical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron radiation techniques application in medical diagnostics have been presented especially for: trace element analysis in tissues, elemental mapping, chemical speciation at trace levels, chemical structure determination. Presented techniques are very useful for early cancer discovery

  5. Mossbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    The principles underlying observation of the Mossbauer effect with synchrotron radiation are explained. The current status of the field is reviewed, and prospects for dedicated experimental stations on third generation machines are discussed

  6. Synchrotron scientists unpack their suitcases

    International Nuclear Information System (INIS)

    Australian Synchrotron will enable 3000 Australian scientists to overcome the tyranny of distance and accelerate their research into fields as diverse as drug development, IVF and self-cleaning textiles

  7. Superpower monochromatic coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Here a special case of coherent synchrotron radiation from relativistic electron bunches distributed uniformly on a circular orbit is investigated. The possibility to obtain a monochromatic intense coherent radiation in the long-wavelength region is shown

  8. Preliminary findings on the reliability and validity of the Cantonese Birmingham Cognitive Screen in patients with acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Pan X

    2015-09-01

    Full Text Available Xiaoping Pan,1,* Haobo Chen,1,2,* Wai-Ling Bickerton,2 Johnny King Lam Lau,2 Anthony Pak Hin Kong,3 Pia Rotshtein,2 Aihua Guo,1 Jianxi Hu,1 Glyn W Humphreys4 1Department of Neurology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China; 2School of Psychology, University of Birmingham, Birmingham, UK; 3Department of Communication Sciences and Disorders, University of Central Florida, Orlando, FL, USA; 4Department of Experimental Psychology, University of Oxford, Oxford, UK *These authors contributed equally to this work Background: There are no currently effective cognitive assessment tools for patients who have suffered stroke in the People’s Republic of China. The Birmingham Cognitive Screen (BCoS has been shown to be a promising tool for revealing patients’ poststroke cognitive deficits in specific domains, which facilitates more individually designed rehabilitation in the long run. Hence we examined the reliability and validity of a Cantonese version BCoS in patients with acute ischemic stroke, in Guangzhou.Method: A total of 98 patients with acute ischemic stroke were assessed with the Cantonese version of the BCoS, and an additional 133 healthy individuals were recruited as controls. Apart from the BCoS, the patients also completed a number of external cognitive tests, including the Montreal Cognitive Assessment Test (MoCA, Mini Mental State Examination (MMSE, Albert’s cancellation test, the Rey–Osterrieth Complex Figure Test, and six gesture matching tasks. Cutoff scores for failing each subtest, ie, deficits, were computed based on the performance of the controls. The validity and reliability of the Cantonese BCoS were examined, as well as interrater and test–retest reliability. We also compared the proportions of cases being classified as deficits in controlled attention, memory, character writing, and praxis, between patients with and without spoken language impairment

  9. Gym for Free: The Short-Term Impact of an Innovative Public Health Policy on the Health and Wellbeing of Residents in a Deprived Constituency in Birmingham, UK

    Science.gov (United States)

    Rabiee, Fatemeh; Robbins, Anne; Khan, Maryam

    2015-01-01

    Background: This paper describes the process, impact and outcomes of an innovative health policy project entitled Gym for Free in Birmingham, UK. Objectives: To explore the short-term effectiveness of the pilot scheme in relation to access, utilisation, perceived benefits and sustainability. Design: Cross-sectional study using survey and focus…

  10. In-phantom characterisation studies at the Birmingham Accelerator-Generated epIthermal Neutron Source (BAGINS) BNCT facility.

    Science.gov (United States)

    Culbertson, Christopher N; Green, Stuart; Mason, Anna J; Picton, David; Baugh, Gareth; Hugtenburg, Richard P; Yin, Zaizhe; Scott, Malcolm C; Nelson, John M

    2004-11-01

    A broad experimental campaign to validate the final epithermal neutron beam design for the BNCT facility constructed at the University of Birmingham concluded in November 2003. The final moderator and facility designs are overviewed briefly, followed by a summary of the dosimetric methods and presentation of a small subset of the results from this campaign. The dual ionisation chamber technique was used together with foil activation to quantify the fast neutron, photon, and thermal neutron beam dose components in a large rectangular phantom exposed to the beam with a 12 cm diameter beam delimiter in place. After application of a normalisation factor, dose measurements agree with in-phantom MCNP4C predictions within 10% for the photon dose, within 10% for thermal neutron dose, and within 25% for the proton recoil dose along the main beam axis. PMID:15308136

  11. Spin Echo in Synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alexander W.; /SLAC; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving

  12. Contact microscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  13. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  14. The Australian Synchrotron Project - Update

    CERN Document Server

    Jackson, Alan

    2004-01-01

    The Australian Synchrotron - a synchrotron light facility based on a 3-GeV electron storage ring is under construction at a site in the Metropolitan District of Melbourne. Building preparation started on a "green-field" site in September 2003 and staff moved in to their new offices in February 2005. Installation of the technical equipment started in April 2005 with all accelerator contracts expected to be completed before April 2006. Storage Ring commissioning with beam will start in June 2006, and project completion is scheduled for March 2007. In this paper we present an overview of the facility and discuss progress to date in meeting this very aggressive schedule.

  15. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  16. DESY: Synchrotron and storage rings

    CERN Multimedia

    1972-01-01

    An improvement programme has been under way for several years at the 7.5 GeV électron synchrotron at DESY. In particular it has been designed to increase the accelerated beam intensity, to achieve better quality of the ejected électron beams and photon beams and to improve machine reliability.

  17. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  18. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J.M.; Chavanne, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E. [Hasylab at Desy, Hamburg (Germany)] [and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  19. Synchrotron radiation in material science

    International Nuclear Information System (INIS)

    A brief review on the several experimental techniques (XRD, SAXS, EXAFS, IRRS, etc...) which, utilizing of synchrotron radiation can be applied in glass structural studies, is presented. The major part of these techniques can be also used for studies of other materials such as polymers, metals, etc... (L.C.)

  20. Synchrotron radiation and biomedical imaging

    International Nuclear Information System (INIS)

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs

  1. The Birmingham parallel genetic algorithm and its application to the direct DFT global optimisation of Ir(N) (N = 10-20) clusters.

    Science.gov (United States)

    Davis, Jack B A; Shayeghi, Armin; Horswell, Sarah L; Johnston, Roy L

    2015-09-01

    A new open-source parallel genetic algorithm, the Birmingham parallel genetic algorithm, is introduced for the direct density functional theory global optimisation of metallic nanoparticles. The program utilises a pool genetic algorithm methodology for the efficient use of massively parallel computational resources. The scaling capability of the Birmingham parallel genetic algorithm is demonstrated through its application to the global optimisation of iridium clusters with 10 to 20 atoms, a catalytically important system with interesting size-specific effects. This is the first study of its type on Iridium clusters of this size and the parallel algorithm is shown to be capable of scaling beyond previous size restrictions and accurately characterising the structures of these larger system sizes. By globally optimising the system directly at the density functional level of theory, the code captures the cubic structures commonly found in sub-nanometre sized Ir clusters. PMID:26239404

  2. Effects of urbanization on benthic macroinvertebrate assemblages in contrasting environmental settings: Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah

    Science.gov (United States)

    Cuffney, T.F.; Zappia, H.; Giddings, E.M.P.; Coles, J.F.

    2005-01-01

    Responses of invertebrate assemblages along gradients of urban intensity were examined in three metropolitan areas with contrasting climates and topography (Boston, Massachusetts; Birmingham, Alabama; Salt Lake City, Utah). Urban gradients were defined using an urban intensity index (UII) derived from basin-scale population, infrastructure, land-use, land-cover, and socioeconomic characteristics. Responses based on assemblage metrics, indices of biotic integrity (B-IBI), and ordinations were readily detected in all three urban areas and many responses could be accurately predicted simply using regional UIIs. Responses to UII were linear and did not indicate any initial resistance to urbanization. Richness metrics were better indicators of urbanization than were density metrics. Metrics that were good indicators were specific to each study except for a richness-based tolerance metric (TOLr) and one B-IBI. Tolerances to urbanization were derived for 205 taxa. These tolerances differed among studies and with published tolerance values, but provided similar characterizations of site conditions. Basin-scale land-use changes were the most important variables for explaining invertebrate responses to urbanization. Some chemical and instream physical habitat variables were important in individual studies, but not among studies. Optimizing the study design to detect basin-scale effects may have reduced the ability to detect local-scale effects. ?? 2005 by the American Fisheries Society.

  3. Validation of solar-cycle changes in low-degree helioseismic parameters from the Birmingham Solar-Oscillations Network

    CERN Document Server

    Howe, R; Chaplin, W J; Elsworth, Y P; Hale, S J

    2015-01-01

    We present a new and up-to-date analysis of the solar low-degree $p$-mode parameter shifts from the Birmingham Solar-Oscillations Network (BiSON) over the past 22 years, up to the end of 2014. We aim to demonstrate that they are not dominated by changes in the asymmetry of the resonant peak profiles of the modes and that the previously published results on the solar-cycle variations of mode parameters are reliable. We compare the results obtained using a conventional maximum likelihood estimation algorithm and a new one based on the Markov Chain Monte Carlo (MCMC) technique, both taking into account mode asymmetry. We assess the reliability of the solar-cycle trends seen in the data by applying the same analysis to artificially generated spectra. We find that the two methods are in good agreement. Both methods accurately reproduce the input frequency shifts in the artificial data and underestimate the amplitude and width changes by a small amount, around 10 per cent. We confirm earlier findings that the frequ...

  4. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  5. Multipole correction in large synchrotrons

    International Nuclear Information System (INIS)

    A new method of correcting dynamic nonlinearities due to the multipole content of a synchrotron such as the Superconducting Super Collider is discussed. The method uses lumped multipole elements placed at the center (C) of the accelerator half-cells as well as elements near the focusing (F) and defocusing (D) quads. In a first approximation, the corrector strengths follow Simpson's Rule. Correction of second-order sextupole nonlinearities may also be obtained with the F, C, and D octupoles. Correction of nonlinearities by about three orders of magnitude are obtained, and simple solutions to a fundamental problem in synchrotrons are demonstrated. Applications to the CERN Large Hadron Collider and lower energy machines, as well as extensions for quadrupole correction, are also discussed

  6. Medical Applications of Synchrotron Radiation

    Science.gov (United States)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  7. Threedimensional microfabrication using synchrotron radiation

    International Nuclear Information System (INIS)

    For fabricating microstructures with extreme structural heights a technology has been developed which is based on deep-etch lithography and subsequent replication processes. A particularly high precision is achieved if the lithographic process is carried out by means of synchrotron radiation. Electroforming and molding processes are used for the replication of microstructures from a large variety of materials. The field of application comprises sensors, electrical and optical microconnectors, components for fluid technology, microfiltration systems and novel composite materials. (author)

  8. Proposals for synchrotron light sources

    International Nuclear Information System (INIS)

    Ever since it was first applied in the 1960's synchrotron radiation from an accelerating electron beam has been gaining popularity as a powerful tool for research and development in a wide variety of fields of science and technology. By now there are some 20 facilities operating either parasitically or dedicatedly for synchrotron radiation research in different parts of the world. In addition there are another 20 facilities either in construction or in various stages of proposal and design. The experiences gained from the operating facilities and the recent development of insertion devices such as wigglers and undulators as radiation sources led to a new set of requirements on the design of synchrotron radiation storage rings for optimum utility. The surprisingly uniform applicability and unanimous acceptance of these criteria give assurance that they are indeed valid criteria derived form mature considerations and experiences. Instead of describing the design of each of these new facilities it is, thus, more effective to discuss these desirable design features and indicate how they are incorporated in the design using machines listed as examples. 9 refs., 7 figs., 2 tabs

  9. Beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron radiation is often used to measure the dimensions of an electron beam. The transverse size is obtained from an image of the beam cross section formed by means of the emitted synchrotron radiation. Because of the small natural opening angle the resolution is limited by diffraction. The angular spread of the particles in the beam can be measured by observing the radiation directly. Here, the resolution is limited by the natural opening angle of the emitted light. Measuring both beam cross section and angular spread gives the emittance of the beam. However, in most cases only one of these two parameters is observed and the other deduced from the known particle beam optics at the source of the radiation. Usually one observes radiation emitted in long bending magnets. However, short magnets and undulators are also useful sources for these measurements. For practical reasons the beam diagnostics is carried out using visible or ultraviolet light. This part of the spectrum is usually far below the critical frequency, and corresponding approximations can be applied. Synchrotron radiation is an extremely useful tool for diagnostics in electron (or positron) rings. In some cases it has also served in proton rings using special magnets. (author)

  10. Synchrotron Environmental Science-I Workshop Report

    International Nuclear Information System (INIS)

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research

  11. Linac for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    The nominally 100 MeV electron linear accelerator to be used as an injector for the booster synchrotron of the National Synchrotron Light Source is described. The machine utilizes a combination of Varian and SLAC accelerating guides and is interfaced by means of a microprocessor-based Intel Multibus system, to the Data General central control computer. Provision for emittance and momentum measurement is provided in the transport line between the linac and the booster synchrotron

  12. Research on feedback system of synchrotron accelerator

    International Nuclear Information System (INIS)

    It is a very complex problem to use feedback control system in synchrotron accelerator. Some scientists design feedback control system to make high energy beam stable in synchrotron accelerator, but it is very rare to see theoretically analysis feedback system in synchrotron accelerator by using new concept of control model. One new feedback control model is a fresh idea to discuss the feedback system more deeply. A topic about feedback control system discussed here will be useful for synchrotron accelerator design and operation. It is an good idea for some scientists and technician to continue study. (authors)

  13. Some application of synchrotron radiation

    International Nuclear Information System (INIS)

    Continuous tuneable wavelength in the range 0.01A < λ < 100A, high brilliance and parallelity of the beam are the outstanding properties for all applications of synchrotron radiation in condensed matter research. High angular and time resolution in synchrotron X-ray diffraction may be achieved. Powder Diffraction pattern with a full width at half maximum (FWHM) of Bragg reflections of ΔΘ - 0.02 display a resolution about five times better than laboratory equipment. Thus the investigation of structural phase transitions with only minor metric changes are feasible as well as direct determination of crystal structures from powder data. Registration of complete powder patterns in a few milliseconds opens the road to kinetic studies of crystallisation from glasses or melt and to structural phase transitions. The information from diffraction experiments which provide information on long range order is related to X-ray absorption experiments (XANES and EXAFS). X-ray absorption will provide information on the local environment of atoms (EXAFS) or on its electronic nature. Texture, strain and stress investigations with synchrotron radiation offer advantages as compared to laboratory X-ray work. The angular resolution is considerably improved due to the parallel beam geometry and the small beam size and the penetration depth may be varied by a factor of 6. Thus not only general orientation distribution functions but the anisotropy strain and complex stress behaviour at surfaces may be investigated in particular grains. Furthermore all kinds of surface studies at grazing incidence are performed with considerable advantage. (orig.)

  14. An evaluation of Birmingham Own Health® telephone care management service among patients with poorly controlled diabetes. a retrospective comparison with the General Practice Research Database

    Directory of Open Access Journals (Sweden)

    Adab Peymané

    2011-09-01

    Full Text Available Abstract Background Telephone-based care management programmes have been shown to improve health outcomes in some chronic diseases. Birmingham Own Health® is a telephone-based care service (nurse-delivered motivational coaching and support for self-management and lifestyle change for patients with poorly controlled diabetes, delivered in Birmingham, UK. We used a novel method to evaluate its effectiveness in a real-life setting. Methods Retrospective cohort study in the UK. 473 patients aged ≥ 18 years with diabetes enrolled onto Birmingham Own Health® (intervention cohort and with > 90 days follow-up, were each matched by age and sex to up to 50 patients with diabetes registered with the General Practice Research Database (GPRD to create a pool of 21,052 controls (control cohort. Controls were further selected from the main control cohort, matching as close as possible to the cases for baseline test levels, followed by as close as possible length of follow-up (within +/-30 days limits and within +/-90 days baseline test date. The aim was to identify a control group with as similar distribution of prognostic factors to the cases as possible. Effect sizes were computed using linear regression analysis adjusting for age, sex, deprivation quintile, length of follow-up and baseline test levels. Results After adjusting for baseline values and other potential confounders, the intervention showed significant mean reductions among people with diabetes of 0.3% (95%CI 0.1, 0.4% in HbA1c; 3.5 mmHg (1.5, 5.5 in systolic blood pressure, 1.6 mmHg (0.4, 2.7 in diastolic blood pressure and 0.7 unit reduction (0.3, 1.0 in BMI, over a mean follow-up of around 10 months. Only small effects were seen on average on serum cholesterol levels (0.1 mmol/l reduction (0.1, 0.2. More marked effects were seen for each clinical outcome among patients with worse baseline levels. Conclusions Despite the limitations of the study design, the results are consistent with the

  15. Computed tomography using synchrotron radiation

    International Nuclear Information System (INIS)

    X-ray computed tomography (CT) is a widely used method of obtaining cross-sectional views of objects. The high intensity, natural collimation, monochromaticity and energy tunability of synchrotron x-ray sources could potentially be used to provide CT images of improved quality. The advantages of these systems would be that images could be produced more rapidly with better spatial resolution and reduced beam artifacts. In addition, images, in some cases, could be acquired with elemental sensitivity. As a demonstration of the capability of such a system, CT images were obtained of four slices of an excised pig heart in which the arteries and the cardiac chambers were filled with an iodinated medium. Images were taken with incident x-rays tuned successively to energies just above and below the iodine K edge. Iodine specific images were obtained by logarithmically subtracting the low energy image data from the high energy data and then reconstructing the image. CT imaging using synchrotron radiation may become a convenient and non-destructive method of imaging samples difficult to study by other methods

  16. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  17. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  18. High-Intensity Synchrotron Radiation Effects

    CERN Document Server

    Suetsugu, Y

    2016-01-01

    Various effects of intense synchrotron radiation on the performance of particle accelerators, especially for storage rings, are discussed. Following a brief introduction to synchrotron radiation, the basic concepts of heat load, gas load, electron emission, and the countermeasures against these effects are discussed.

  19. Funding problems threaten Middle East's synchrotron

    CERN Multimedia

    McCabe, H

    1999-01-01

    Scientists will tour the Middle East to try to raise support for the Synchrotron radiation for Experimental Science and Applications in the Middle East project. The plan is to dismantle and move a decommissioned synchrotron from Berlin to the Middle East where scientists of any nationality would be able to use it (3 paragraphs).

  20. Does obesity influence target organ damage and outcomes in patients with malignant phase hypertension? The West Birmingham Malignant Hypertension Project.

    Science.gov (United States)

    Shantsila, Alena; Lane, Deirdre A; Beevers, D Gareth; Lip, Gregory Yh

    2013-06-01

    Several studies have suggested that hypertension has a stronger detrimental impact on cardiovascular outcome in lean than in obese persons, but neutral or opposite results have also been reported. We investigated the impact of baseline body mass index (BMI) at presentation with the most severe form of hypertension, that is, malignant phase hypertension (MPH) on the primary outcome of 'death or dialysis' in these patients. A total of 184 patients (overall mean (s.d.) age 48 (13) years; 61% male; 62% White-European; 20% African-Caribbean, 18% South-Asian) from the West Birmingham MPH Register were included. The patients were grouped according to their BMI (underweight, normal weight, overweight and obese groups). Ninety-three primary outcomes occurred during a median (interquartile range) follow-up of 10.7 (5.8-18.6) years. No significant baseline differences in age or ethnicity were seen between the study groups. Overweight and obese patients included a larger proportion of females, but less smokers than those underweight or of normal weight. There was no inter-group difference in retinopathy (P=0.25), proteinuria (P=0.08), haematuria (P=0.56) and left ventricular hypertrophy (P=0.14). In univariate analyses, BMI was predictive of death or dialysis (0.95 (0.90-1.00), P=0.046) but multivariate analyses showed that only baseline age (odds ratio (95% confidence intervals) 1.06 (1.03-1.09), P<0.001), smoking (2.89 (1.40-5.92), P=0.004), creatinine level (1.01 (1.01-1.02), P=0.001) and estimated glomerular filtration rates (0.99 (0.93-1.00), P=0.047) were independently associated with death or dialysis. BMI was not an independent predictor of adverse outcomes in MPH patients. Age, smoking status, creatinine levels and estimated glomerular filtration rates at diagnosis of MPH were independent predictors for death or dialysis in this high-risk population of hypertensive patients. PMID:23407241

  1. Synchrotron radiation - Applications in the earth sciences

    Science.gov (United States)

    Bassett, W. A.; Brown, G. E., Jr.

    Synchrotron-radiation sources and their characteristics are overviewed along with recent synchrotron-based research on earth materials and future earth-science applications utilizing the next generation of synchrotron-radiation sources presently under construction. Focus is placed on X-ray scattering studies of earth materials (crystalline and noncrystalline) under ambient conditions, diffraction studies of earth materials at high pressures and/or temperatures, spectroscopic studies, primarily X-ray absorption spectroscopy, and spatially resolved X-ray fluorescence studies of compositional variations in earth materials. It is noted that other synchrotron-based methods, such as X-ray tomography and topography may become important in characterizing earth materials, while soft X-ray/vacuum ultraviolet radiation from synchrotron sources can be applied to problems involving the structural environments of low-atomic-number elements and the characterization of surface reactions of minerals with liquids and gases.

  2. A Palmtop Synchrotron-like Radiation Source

    CERN Document Server

    Chen, Min; Luo, Ji; Liu, Feng; Sheng, Zheng-Ming; Zhang, Jie

    2015-01-01

    Synchrotron radiation sources are immensely useful tools for scientific researches and many practical applications. Currently, the state-of-the-art synchrotrons rely on conventional accelerators, where electrons are accelerated in a straight line and radiate in bending magnets or other insertion devices. However, these facilities are usually large and costly. Here, we propose a compact all-optical synchrotron-like radiation source based on laser-plasma acceleration either in a straight or in a curved plasma channel. With the laser pulse off-axially injected in a straight channel, the centroid oscillation of the pulse causes a wiggler motion of the whole accelerating structure including the trapped electrons, leading to strong synchrotron-like radiations with tunable spectra. It is further shown that a ring-shaped synchrotron is possible in a curved plasma channel. Due to the intense acceleration and bending fields inside plasmas, the central part of the sources can be made within palm size. With its potential...

  3. Protein Data Bank Depositions from Synchrotron Sources

    International Nuclear Information System (INIS)

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results () show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources

  4. Medical applications with synchrotron radiation in Japan

    International Nuclear Information System (INIS)

    In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima

  5. Effects, causing intensification of synchrotron radiaiton beams

    International Nuclear Information System (INIS)

    Possibility of intensification of synchrotron radiation beams in optical and ultraviolet spectrum range by shift of generation range of the output synchrotron radiation beams from circle sections of electron orbit to the magnetic field of gaps, separating sections of the accelerator electromagnets is discussed. The degree of manifestation of the considered effects in synchrotrons for 0.6 and 7.5 GeV energy is evaluated. The results of their experimental investigati.on in the optical beam of the 0.6 GeV synchrotron radiation are given. The results obtained show that beam intensity in the gap centre between the magnet sections increases 3.2 times. The structure of beam intensity distribution improves simultaneously and vertical direction of radiation increases approximately 2 times. A conclusion is made on applicability of the described method for beam intensification of synchrotron radiation

  6. Carbyne formation by synchrotron radiation

    CERN Document Server

    Kaito, C; Hanamoto, K; Sasaki, M; Kimura, S; Nakada, Tatsuya; Saitô, Y; Koike, C; Nakayama, Y

    2001-01-01

    Thin carbon films prepared by vacuum evaporation using the arc method were mounted on a standard electron microscope copper grid. They were irradiated by white synchrotron radiation (SR) beam by the use of cylindrical and toroidal mirrors. The irradiated film was examined using a high-resolution electron microscope. alpha and alpha+beta mixture carbyne crystals were grown in round and the elongated shapes. The round crystals were composed of 5-10 nm crystallites of a carbyne form. The elongated crystal grew into a single crystal 100 nm in size. The c-axes of both grown crystals were oblique to the film. The growth of the carbynes was discussed as being the result of nucleation due to graphite microcrystallites formed by SR beam irradiation.

  7. Synchrotron applications to the earth sciences

    International Nuclear Information System (INIS)

    The earliest applications and development of conventional X-ray technologies at the beginning of the last century were strongly focused on earth science materials. Over the past 20 years minerals have continued to play a central role in the development of the new generations of synchrotron radiation techniques and the range of applications of synchrotron X-ray techniques to the study of the earth sciences has grown enormously. In this article we focus on the analytical possibilities arising from the application of synchrotron X-ray radiation as opposed to conventional cathode-tube based X-ray sources, using examples drawn from mineral characterisation and mineral processing

  8. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  9. Synchrotron refraction CT and synchrotron bragg magnification CT for NDE

    International Nuclear Information System (INIS)

    X-Ray Refraction Topography techniques are based on Ultra Small Angle Scattering by micro structural elements causing phase related effects like refraction and total reflection at a few minutes of arc as the refractive index of X-rays is nearly unity. The refraction contrast is several times higher than 'true absorption' and results in images of cracks, pores and fibre de-bonding separations below the spatial resolution of the detector. In most cases the investigated inner surface and interface structures correlate to mechanical properties. For the exploration of micro structured materials the refraction technique has been improved by a 3D Synchrotron Refraction Computed Tomography test station. The specimen is placed in an X-ray beam between two single crystals, which suppresses all sample scattering. In addition an asymmetric cut second crystal can magnify the image up to 50 times revealing nano meter resolution. The technique is an alternative to other attempts on raising the spatial resolution of CT machines. (authors)

  10. Study of radioactive materials with synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron radiation brings 3 major improvements compared to other X-ray sources usually used in laboratories. Its high brilliance permits the study of size-reduced samples, the low divergency of the beam gives the possibility to increase the angular resolution of the diffractometer and the spectrum of the X-photons which is continuous, allows the experimenter to chose a particular wavelength. Synchrotron radiation is becoming an important tool to investigate radioactive materials particularly burnt nuclear fuels. Zircon is the corrosion product that appears on fuel clad during irradiation, the use of synchrotron radiation with the right wavelength and a discerning incidence angle has clearly shown a crystallographic change of the zircon induced by heavy ion irradiation. X-ray fluorescence induced by synchrotron radiation can give information on fission products which were till then undetected because of the lack of sensibility of previous methods. (A.C.)

  11. Panel backs next-generation synchrotron

    CERN Multimedia

    Service, R F

    1999-01-01

    A key federal panel recommended continued research into development of a fourth-generation synchrotron. It would be capable of creating x-ray pulses billions of times more intense than current designs (1 page).

  12. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.)

  13. Simulation of synchrotron motion with rf noise

    International Nuclear Information System (INIS)

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking

  14. Spain in quandry over French synchrotron

    CERN Multimedia

    Bosch, X

    2000-01-01

    The French government has invited Spain to participate in the funding and operation of its proposed synchrotron Soleil. This could result though in the end of Spanish scientists' hopes for their own machine (1 page).

  15. National synchrotron light source VUV storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Krinsky, S.; Schuchman, J.; van Steenbergen, A.

    1979-01-01

    A 700 MeV electron storage ring designed for synchrotron radiation applications is described. Lattice and stability calculations are presented and the vacuum, correction and injection systems are discussed.

  16. Synchrotron radiation x-ray lithography

    International Nuclear Information System (INIS)

    Fine pattern fabrication technology has been supporting the progress in LSI integration. Synchrotron radiation X-ray lithography is considered the most promising path towards mass-production of LSIs a quarter micron or less in feature size. The present report first describes some fundamental characteristics of synchrotron radiation X-ray lithography, focusing on pattern replication methods, resolution (Fresnel diffraction, penumbral blur, mask contrast, and secondary electron range), process latitude, exposure field size, throughput, and overlay accuracy. The report also addresses test device fabrication conducted at NTT LSI Laboratories in Japan. Deep-submicron test device fabrication is carried out using synchrotron radiation lithography all of five exposure levels. The characteristics of the fabricated devices are found to be satisfactory. Synchrotron radiation X-ray lithography can potentially provide an excellent tool for fabricating fine patterns in the quarter micron range. (N.K.)

  17. Stanford Synchrotron Radiation Light Source (SSRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The SSRL at SLAC National Accelerator Laboratory was built in 1974 to take and use for synchrotron studies the intense x-ray beams from the SPEAR storage ring that...

  18. Molecular photoemission studies using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  19. Molecular photoemission studies using synchrotron radiation

    International Nuclear Information System (INIS)

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems

  20. National Synchrotron Light Source annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  1. Synchrotrons are also devoted to society

    International Nuclear Information System (INIS)

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  2. Synchrotrons are also devoted to the society

    International Nuclear Information System (INIS)

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  3. Synchrotron radiation in inhomogeneous tokamak plasmas

    International Nuclear Information System (INIS)

    Synchrotron emission in a tokamak configuration with inhomogeneous plasma parameters is considered to investigate the effects of the temperature profile and vertical elongation on the radiation loss. Using the numerical solution of the transfer equation for ITER-like plasma parameters, several new results on the radiated energy in a Maxwellian plasma have been derived. In particular: (i) synchrotron loss is profile dependent, namely, at constant average thermal energy, the emitted radiation increases with the peak temperature, (ii) an analytical formula of the global loss in inhomogeneous tokamak plasmas with arbitrary vertical elongation is established, (iii) the maximum of the frequency emission spectrum is a linear function of the volume average temperature, (iiii) high frequency synchrotron radiation is entirely due to electrons with energy much greater than the thermal energy. The need for experimental investigations on synchrotron emission in present-day large tokamaks to determine the effect of reflections of the complex tokamak first wall is stressed

  4. Basic design for the synchrotron in the large synchrotron radiation facility, 1

    International Nuclear Information System (INIS)

    Synchrotron Radiation Facility Project Team in JAERI had tried to preliminarily design the injection system of Large Synchrotron Radiation Facility in the fiscal year 1988. Concentrating on the basic design for the booster synchrotron in this injection system, we describe the general method to design the separated function synchrotron which is used to accelerate high energy electrons or positrons. The content of this paper is founded on the physics of single particle motion. And in the next report we will discuss about the collective beam dynamics, the phenomena occurred during acceleration, and so on. (author)

  5. Experimental demonstration of the KEK induction synchrotron

    International Nuclear Information System (INIS)

    Recent progress in the KEK induction synchrotron is presented. In the recent experiment, by using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV Booster ring and captured by the barrier bucket created by the induction step-voltages was accelerated to 6 GeV in the KEK proton synchrotron

  6. Commissioning experiences of the ALS booster synchrotron

    International Nuclear Information System (INIS)

    Installation of the ALS booster synchrotron proper was completed on April 30, 1991, and commissioning has just begun. Circulating beam around the booster was observed on the first day of operation, May 3, 1991. The beam was visible for about 400 turns. In this paper we describe the status and commissioning experience of the 1.5-GeV electron synchrotron accelerator. 14 refs., 2 figs., 4 tabs

  7. 伯明翰造币厂出口中国的造币设备%The Birmingham Mint's Minting Equipment in China

    Institute of Scientific and Technical Information of China (English)

    尚碧仁; 世华

    2009-01-01

    @@ 在谈论中国近代机制钱币时,英国伯明翰造币厂是个不可或缺的角色,但相关细节在泉刊书籍上通常仅约略论及,缺乏完整的叙述,因此许多资料上出现矛盾、甚至于错误的说法.1981年伯明翰造币厂出版一本由美国学者史威尼(James O.Sweeny)在参访该厂后所著之A NUMISMATIC HISTORY OF THE BIRMINGHAM MINT,书内第78-85页有段与中国往来的记载,现将全文译出并加注解,供读者参考.

  8. Characterisation and source attribution of the semi-volatile organic content of atmospheric particles and associated vapour phase in Birmingham, UK

    Science.gov (United States)

    Harrad, Stuart; Hassoun, Suzanne; Callén Romero, María. S.; Harrison, Roy M.

    Concentrations of n-alkanes, petroleum biomarkers such as hopanes and steranes, n-alkanoic acids, n-alkanols, polycyclic aromatic hydrocarbons (PAH), dicarboxylic acids, and selected oxygenated PAH were separately determined in total suspended particulate matter and associated vapour phase in ambient air in Birmingham, UK. Samples were taken simultaneously at two locations on 24 separate occasions every 1-2 weeks between August 1999 and August 2000. Site A was 10 m from a busy road, 800 m from site B that was located within the "green space" of the University of Birmingham campus. Despite some differences in concentrations of some compounds, data from this study is in line with that reported in London, UK and in California. Differences between Sites A and B in both concentrations and carbon preference indices are consistent with greater traffic inputs at Site A, with some evidence of an appreciable biogenic input of n-alkanols and n-alkanes at the less-traffic influenced and more vegetated Site B. The biogenic input at Site B appears greater in the spring and summer months and suggests that biogenic emissions are appreciable even in British urban areas. Secondary formation mechanisms for some compounds including dicarboxylic acids and oxygenated PAH like fluoren-9-one are indicated by the lack of any significant intersite difference in concentrations. Intersite differences in concentrations provide new evidence that while petroleum biomarkers arise predominantly from local traffic, regional as well as local sources play an important rôle for the higher molecular weight PAH which exist predominantly in the particle phase.

  9. Synchrotron radiation applications in medical research

    International Nuclear Information System (INIS)

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ''gold standards'' to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications

  10. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  11. Paraxial Green's functions in Synchrotron Radiation theory

    CERN Document Server

    Geloni, G; Schneidmiller, E; Yurkov, M; Geloni, Gianluca; Saldin, Evgeni; Schneidmiller, Evgeni; Yurkov, Mikhail

    2005-01-01

    This work contains a systematic treatment of single particle Synchrotron Radiation and some application to realistic beams with given cross section area, divergence and energy spread. Standard theory relies on several approximations whose applicability limits and accuracy are often forgotten. We begin remarking that on the one hand, a paraxial approximation can always be applied without loss of generality and with ultra relativistic accuracy. On the other hand, dominance of the acceleration field over the velocity part in the Lienard-Wiechert expressions is not always granted and constitutes a separate assumption, whose applicability is discussed. Treating Synchrotron Radiation in paraxial approximation we derive the equation for the slow varying envelope function of the Fourier components of the electric field vector. Calculations of Synchrotron Radiation properties performed by others showed that the phase of the Fourier components of the electric field vector differs from the phase of a virtual point sourc...

  12. Chemical applications of synchrotron radiation: Workshop report

    International Nuclear Information System (INIS)

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases

  13. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  14. Space-charge calculations in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.

  15. New extreme synchrotron BL Lac objects

    International Nuclear Information System (INIS)

    We report on the BeppoSAX observations of four 'extreme' BL Lacs, selected to have high synchrotron peak frequencies. All have been detected also in the PDS band. For 1ES 0120+340, PKS 0548-322 and H 2356-309 the spectrum is well fitted by a convex broken power-law, thus locating the synchrotron peak around 1-4 keV. 1ES 1426+428 presents a flat energy spectral index (αx=0.92) up to ∼100 keV, thus constraining the synchrotron peak to lie near or above that value. For their extreme properties, all sources could be strong TeV emitters

  16. Third-generation synchrotron light sources

    International Nuclear Information System (INIS)

    X rays are a powerful probe of matter because they interact with electrons in atoms, molecules, and solids. They are commonly produced by relativistic electrons or positrons stored in a synchrotron. Recent advances in technology are leading to the development of a new third generation of synchrotron radiation sources that produce vacuum-ultraviolet and x-ray beams of unprecedented brightness. These new sources are characterized by a very low electron-beam emittance and by long straight sections to accommodate permanent-magnet undulators and wigglers. Several new low-energy light sources, including the Advanced Light Source, presently under construction at the Lawrence Berkeley Laboratory, and ELETTRA, presently being constructed in Trieste, will deliver the world's brightest synchrotron radiation in the VUV and soft x-ray regions of the spectrum. Applications include atomic and molecular physics and chemistry, surface and materials science, microscopy, and life sciences

  17. Synchrotron environmental laboratory (SUL) at Anka

    International Nuclear Information System (INIS)

    A research facility dedicated to environmental/geochemical research, the Synchrotron Environmental Laboratory (SUL), is planned to be installed and operated at ANKA. ANKA is the new synchrotron facility at the Research Centre Karlsruhe (FZK), Karlsruhe, Germany. ANKA is now in commissioning and planning operations for the fall of 2000. As the Institute for Nuclear Waste Disposal (INE) at FZK conducts a vigorous synchrotron-based research programme, INE was instrumental in the original impetus for installing such a facility at ANKA. These research activities at INE concentrate on actinide speciation in nuclear waste forms, geological media and geochemical model systems. In order for INE to direct their synchrotron research activities to ANKA, equipment and licensing required for performing experiments on actinide-containing samples is required. One great advantage of performing experiments on actinide-containing samples at ANKA is that the INE radiological laboratories lie in the near vicinity of the facility. This will minimise transport hazards and costs and allow experiments to be performed on samples whose characteristics may change with time. Experiments on radioactive samples with activities below the exemption level, according to German regulations, will be possible at ANKA at the start of operations. Licensing for work on higher levels of activity will be applied for in the future. The decades of experience in radiological work at FZK will facilitate development of procedure and equipment as prerequisites to licensing. A consortium of synchrotron radiation-user groups with environmental research interests has specified their requirements and needs for this facility. This scientific case serves as the foundation for the SUL design and is the basis for an application for federal funding. The SUL design reflects the heterogeneity and complexity of challenges facing researchers in the environmental/geochemical sciences. X-ray absorption fine structure (XAFS

  18. Basic technology of synchrotron power supply

    International Nuclear Information System (INIS)

    The thyristor power supply for a synchrotron magnet system is described. An analysis of the magnet strings, power electronics and control system is carried out with a bird's-eye view, however the fundamental description is appeared. It assumes a student and an engineer in fields concepts, which can be the electronics designing in related fields, and a background in Laplas transforms. It presents an example of power supply, which is developed for the synchrotron- cooler ring TARN II at Institute for Nuclear Study, Univ. of Tokyo. (author)

  19. Bunch heating by coherent synchrotron radiation

    International Nuclear Information System (INIS)

    The authors discuss here effects which define the steady-state rms energy spread of a microbunch in a storage ring. It is implied that the longitudinal microwave instability is controlled by low α lattice. In this case the coherent synchrotron radiation, if exists, may be the main factor defining the bunch temperature. Another effect comes from the fact that a nonlinear momentum compaction of such lattices makes Haissinskii equation not applicable, and the coherent synchrotron radiation may effect not only bunch lengthening but the energy spread as well

  20. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Peter L [US Department of Energy Office of Science Office Basic Energy Sciences; Rhyne, James J [US Department of Energy Office of Science Office of Basic Energy Sciences

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  1. Atomic collision experiments using pulsed synchrotron radiation

    International Nuclear Information System (INIS)

    High intensity and continuous nature of the synchrotron radiation are the properties that are fundamentally important for studies of some atomic collision experiments, and many processes have been investigated by using these characteristics. However, so far the property that the radiation is highly polarized and pulsed in time has not been exploited significantly in atomic physics. As an example of the atomic processes relevant to such polarized and pulsed features of the synchrotron radiation, collisions involving optically-allowed excited atoms and molecules will be presented. (author)

  2. Synchrotron characterization of functional tin dioxide nanowires

    International Nuclear Information System (INIS)

    Wire-like crystals of tin dioxide were synthesized by a gas-transport technique. The wires, of mainly nanometric diameters, were characterized by spectroscopy and microscopy techniques with the use of highly brilliant and intense synchrotron radiation. We studied the influence of the surface chemical state and the oxygen vacancies on the atomic and electronic structure of the nanowires. The surface of the nanowires is covered by a few nanometers of tin suboxides. The lack of oxygen over the surface layers leads to specific sub-zone formation in a gap, as shown by synchrotron studies

  3. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    International Nuclear Information System (INIS)

    A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. Although this proof-of-principle experiment made use of visible light on a borrowed beamline, the laser 'time-slicing' technique at the heart of the demonstration will soon be applied in a new bend-magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness

  4. Synchrotron characterization of functional tin dioxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Domashevskaya, E. P., E-mail: ftt@phys.vsu.ru; Chuvenkova, O. A.; Turishchev, S. Yu. [Voronezh State University, Voronezh (Russian Federation)

    2015-12-31

    Wire-like crystals of tin dioxide were synthesized by a gas-transport technique. The wires, of mainly nanometric diameters, were characterized by spectroscopy and microscopy techniques with the use of highly brilliant and intense synchrotron radiation. We studied the influence of the surface chemical state and the oxygen vacancies on the atomic and electronic structure of the nanowires. The surface of the nanowires is covered by a few nanometers of tin suboxides. The lack of oxygen over the surface layers leads to specific sub-zone formation in a gap, as shown by synchrotron studies.

  5. Preliminar plan of a machine for the synchrotron radiation production

    International Nuclear Information System (INIS)

    A preliminar plan, with all the technical specifications, for the construction of a machine for the synchrotron radiation production to be done by the National Synchrotron Radiation Laboratory in Brazil is presented. (L.C.)

  6. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  7. Materials science and technology by synchrotron radiation

    International Nuclear Information System (INIS)

    In the present paper, features of the Photon Factory, a facility for synchrotron research installed at the National Laboratory for High Energy Physics in Japan, are outlined, and then the impact of the advent of synchrotron radiation is discussed in relation to its outcome during the past seven years. Prospects for future development of synchrotron radiation are also presented. The facility consists of an injector linac to accelerate electrons up to 2.5 GeV and a ring to store the accelerated electrons in a closed orbit. In the Photon Factory, a 400m-long linac has been constructed for use as injector for both the Photon Factory and the TRISTAN electron-positron collider. The storage ring is operated at the same electron energy of 2.5 GeV. The present report also describes some applications of synchrotron radiation, focusing on spectroscopy (X-ray fluorescence technique and time-resolved X-ray absorption spectroscopy), diffraction and scattering (surface structure studies and protein crystallography), and photo-chemical processing. (N.K.)

  8. The Synchrotron Radiation for Steel Research

    Directory of Open Access Journals (Sweden)

    Piyada Suwanpinij

    2016-01-01

    Full Text Available The synchrotron X-ray radiation is a great tool in materials characterization with several advantageous features. The high intensity allows clear interaction signals and high energy of X-ray yields higher sampling volume. The samples do not need extra preparation and the microstructure is therefore not affected. With the tunability of the X-ray energy, a large range of elements and features in the samples can be investigated by different techniques, which is a significant difference between a stand-alone X-ray tube and synchrotron X-ray. Moreover, any experimental equipment can be installed through which the synchrotron beam travels. This facilitates the so-called in situ characterization such as during heat treatment, hot deformation, chemical reaction or welding. Although steel which possesses rather high density requires very high energy X-ray for large interaction volume, lower energy is still effective for the investigation of local structure of nanoconstituents. This work picks up a couple examples employing synchrotron X-ray for the characterization of high strength steels. The first case is the quantification of precipitates in high strength low alloyed (HSLA steel by X-ray absorption spectroscopy. The other case is the in situ X-ray diffraction for phase fraction and carbon partitioning in multiphase steels such as transformation induced plasticity (TRIP steel.

  9. Synchrotron radiation and free electron laser activities in Novosibirsk

    International Nuclear Information System (INIS)

    The results of studies realized in the Siberian synchrotron radiation centre within the frameworks of wide program of synchrotron radiation and free electron laser research are summarized. The technical information on the VEPP-2M, VEPP-3 and VEPP-4M storage rings used as synchrotron radiation sources is given. 10 refs.; 8 figs.; 12 tabs

  10. Basic design for the RF system of the synchrotron in the large synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    The large synchrotron radiation facility (SPring-8) is planned to be built at Nishiharima in Hyogo-ken. This paper describes basic designs, its philosophy and specifications of the ratio frequency system in the synchrotron. (author)

  11. Computerized microtomography using synchrotron radiation from the NSLS [National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Results of microtomography experiments that employ filtered radiation from the National Synchrotron Light Source X-26 Microprobe beam line are presented. These experiments have yielded images of a freeze-dried caterpillar with a spatial resolution of the order of 30 μm and show that the limit on the spatial resolution with the present apparatus will be 1 to 10 μm. Directions for improvement in synchrotron microtomography techniques and some possible applications are discussed. 14 refs., 3 figs

  12. 14th September 2010 - UK Birmingham University Vice Chancellor D. Eastwood signing the guest book with Director for Accelerators and Technology S. Myers (CERN-HI-1009225 13-22)

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    (CERN-HI-1009225 02-12): visiting the LHC superconducting magnet test hall with Beams Department Head P. Collier; (CERN-HI-1009225 27-34): visiting the ATLAS visitor centre with Collaboration Spokesperson F. Gianotti and Deputy D. Charlton, University of Birmingham. D.Eastwood is accompnied by Pro-Vice-Chancellor and Head of College (Engineering and Physical Sciences) N. Weatherill and Head of School, School of Physics & Astronomy A.Schofield.

  13. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.)

  14. Refinement of the dual ionisation chamber dosimetry carried out at the accelerator-based epithermal neutron beam facility of the University of Birmingham

    International Nuclear Information System (INIS)

    The paper presents the refined dual ionisation chamber technique used for in-air and in-phantom measurements in the Birmingham epithermal neutron beam. The study includes the derivation of the spectrum-dependent relative neutron sensitivity of the tissue-equivalent ionisation chamber. The average values over shallow depths for the kt parameter in A150 is 0.85 +/- 0.04, corresponding to an average value of 0.80 for water. For photon dosimetry in mixed fields, the formalism initially proposed by Munck af Rosenschold et al has been applied at a specific depth of 3 cm using MCNP4C as the radiation transport tool in the mixed beam and the reference calibration beam to generate electron fluence profiles in the detector gas cavities. The BEAMnrc code was used to generate the starting photon spectrum for the 8MV photon beam. The effect of the chosen energy-indexing algorithm on the in-cavity electron dose using the MNCP4C *F8 tally was also investigated. (author)

  15. 50 years of synchrotrons. Early synchrotrons in Britain, and early work for CERN. - The CERN synchrotrons. Lectures

    International Nuclear Information System (INIS)

    In the first report, 'Early synchrotrons in Britain, and early work for CERN', John Lawson gives an extended account of the material presented at the John Adams lecture, and at the same time a revised and shortened version of RAL report 97-011, which contains fuller archival references and notes. During the period covered by this report there was extensive work in Russia, where the principle of phase stability had been discovered in 1944 by Veksler. Unfortunately, all experimental work was kept secret until Veksler's talk at the first 'Atoms for Peace' conference at Geneva in August 1955. In the second lecture, 'The CERN Synchrotrons', Giorgio Brianti outlines the history of alternating-gradient synchrotrons from 1953/54 until today. In preparing this lecture he was confronted with a vast amount of material, while the time at his disposal was not even one minute per year, implying a time compression factor close to one million. Therefore, he had to exercise drastic choices, which led him to concentrate on CERN hadron synchrotrons and colliders and leave aside the Large Electron-Positron storage ring (LEP). Indeed, LEP was the subject of the John Adams Memorial Lecture in 1990, and it may be treated again in the future in connection with its energy upgrade. Even with these severe limitations, it was impossible to do justice to the number and variety of events and to the ingenuity of the people who have carved the history of CERN and of particle physics on the magnets, radiofrequency cavities, vacuum etc., and on the record performance of our machines. (orig./WL)

  16. Synchrotron radiation. Basics, methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Mobilio, Settimio; Meneghini, Carlo [Roma Tre Univ. (Italy). Dept. of Science; Boscherini, Federico (ed.) [Bologna Univ. (Italy). Dept. of Physics and Astronomy

    2015-02-01

    Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.

  17. Indus synchrotron source: A national facility

    International Nuclear Information System (INIS)

    Indus Synchrotron Radiation complex at Raja Ramanna Centre for Advanced Technology at Indore, India houses two synchrotron radiation sources: Indus-1 and Indus-2 respectively. Indus-1 is a 450 MeV source emitting in VUV and soft x-ray region and operating at 100 mA since 1990 and Indus-2, designed for 2.5 GeV, 300 mA and is currently operating at 2 GeV and 100 mA. Indus-1 has five operational beamlines while Indus-2 has six beamlines installed and operational. Several materials research related problems have been investigated using the reflectivity and photo-electron spectroscopy beamlines at Indus-1 and also the beamlines at Indus-2. Here we will report the current status of both these sources and discuss a few of our studies carried out using these beamlines.

  18. Synchrotron Applications of High Magnetic Fields

    International Nuclear Information System (INIS)

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R5(SixGe1-x)4: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF

  19. Impact parameter profile of synchrotron radiation

    CERN Document Server

    Artru, X

    2005-01-01

    The horizontal impact parameter profile of synchrotron radiation, for fixed vertical angle of the photon, is calculated. This profile is observed through an astigmatic optical system, horizontally focused on the electron trajectory and vertically focused at infinity. It is the product of the usual angular distribution of synchrotron radiation, which depends on the vertical angle $\\psi$, and the profile function of a caustic staying at distance $\\bcl = (\\gamma^{-2} + \\psi^2) \\RB/2 $ from the orbit circle, $\\RB$ being the bending radius and $\\gamma$ the Lorentz factor. The {\\it classical impact parameter} $\\bcl$ is connected to the Schott term of radiation damping theory. The caustic profile function is an Airy function squared. Its fast oscillations allow a precise determination of the horizontal beam width.

  20. Phase contrast portal imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures

  1. Synchrotron Mossbauer Spectroscopy of powder samples

    International Nuclear Information System (INIS)

    Synchrotron Mossbauer Spectroscopy, SMS, is an emerging technique that allows fast and accurate determination of hyperfine field parameters similar to conventional Mossbauer spectroscopy with radioactive sources. This new technique, however, is qualitatively different from Mossbauer spectroscopy in terms of equipment, methodology, and analysis to warrant a new name. In this paper, the authors report on isomer shift and quadrupole splitting measurements of Mohr's salt, Fe(NH4)2(SO4)2·6H2O for demonstration purposes. Theoretical calculations were performed and compared to experiments both in energy and time domain to demonstrate the influence of thickness distribution and preferential alignment of powder samples. Such measurements may prove to be useful when the data collection times are reduced to few seconds in the third generation, undulator based synchrotron radiation sources

  2. Diffusive synchrotron radiation from extragalactic jets

    CERN Document Server

    Fleishman, G D

    2006-01-01

    Flattenings of nonthermal radiation spectra observed from knots and interknot locations of the jets of 3C273 and M87 in UV and X-ray bands are discussed within modern models of magnetic field generation in the relativistic jets. Specifically, we explicitly take into account the effect of the small-scale random magnetic field, probably present in such jets, which gives rise to emission of Diffusive Synchrotron Radiation, whose spectrum deviates substantially from the standard synchrotron spectrum, especially at high frequencies. The calculated spectra agree well with the observed ones if the energy densities contained in small-scale and large-scale magnetic fields are comparable. The implications of this finding for magnetic field generation, particle acceleration, and jet composition are discussed.

  3. Structural analysis with high brilliance synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Hideo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1997-11-01

    The research subjects in diffraction and scattering of materials with high brilliance synchrotron radiation such as SPring-8 (Super Photon ring 8 GeV) are summarized. The SPring-8 project is going well and 10 public beamlines will be opened for all users in October, 1997. Three JAERI beamlines are also under construction for researches of heavy element science, physical and structural properties under extreme conditions such as high temperature and high pressure. (author)

  4. Synchrotron radiation of a relativistic magneton

    Energy Technology Data Exchange (ETDEWEB)

    Bordovitsyn, V.A.; Torres, R.

    1986-11-01

    The classical theory of synchrotron radiation of an electrically neutral relativistic particle with a large intrinsic magnetic moment is considered (g-factor much greater than unit). The spectral-angular composition and polarization of the radiation are studied. The magneton radiation self-polarization time is calculated. It is shown that identical results follow from the Ternov-Bagrov-Khapaev quantum theory constructed on the basis of the Dirac-Pauli equation for a neutron.

  5. Diffraction measurements at sources of synchrotron radiation

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    Vol. 2a. Praha : Czech and Slovak Crystallographic Association, 2008, s. 15-16. ISSN 1211-5894. [Struktura 2008 - Colloquium of the Czech and Slovak Crystallographic Association. Valtice (CZ), 16.06.2008-20.06.2008] R&D Projects: GA AV ČR IAA500500701; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : synchrotron radiation Subject RIV: CE - Biochemistry

  6. The Synchrotron Radiation for Steel Research

    OpenAIRE

    Piyada Suwanpinij

    2016-01-01

    The synchrotron X-ray radiation is a great tool in materials characterization with several advantageous features. The high intensity allows clear interaction signals and high energy of X-ray yields higher sampling volume. The samples do not need extra preparation and the microstructure is therefore not affected. With the tunability of the X-ray energy, a large range of elements and features in the samples can be investigated by different techniques, which is a significant difference between a...

  7. The Australian synchrotron - a progress report

    International Nuclear Information System (INIS)

    This paper summarises progress with the development of the Australian Synchrotron. The facility is based on the Boomerang Storage Ring which has a DBA structure with 14 superperiods. The design objective was to achieve a low emittance in a relatively compact circumference that had an excellent dynamic aperture and was obust with respect to potential construction aberrations. The potential suite of beamline and instrument stations is discussed and some examples are given

  8. Plasma diagnostics using synchrotron radiation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I.; Giruzzi, G.; Granata, G.

    1995-09-01

    This report deal with the use of synchrotron radiation in tokamaks. The main advantage of this new method is that it enables to overcome several deficiencies, caused by cut-off, refraction, and harmonic overlap. It also makes it possible to enhance the informative contents of the familiar low harmonic scheme. The basic theory of the method is presented and illustrated by numerical applications, for plasma parameters of relevance in present and next step tokamaks. (TEC). 10 refs., 13 figs.

  9. Paraxial Green's functions in synchrotron radiation theory

    International Nuclear Information System (INIS)

    This work contains a systematic treatment of single particle synchrotron radiation and some application to realistic beams with given cross section area, divergence and energy spread. Standard theory relies on several approximations whose applicability limits and accuracy are often forgotten. We begin remarking that on the one hand, a paraxial approximation can always be applied without loss of generality and with ultra relativistic accuracy. On the other hand, dominance of the acceleration field over the velocity part in the Lienard-Wiechert expressions is not always guaranteed and constitutes a separate assumption, whose applicability is discussed. Treating synchrotron radiation in paraxial approximation we derive the equation for the slow varying envelope function of the Fourier components of the electric field vector. Calculations of Synchrotron Radiation properties performed by others showed that the phase of the Fourier components of the electric field vector differs from the phase of a virtual point source. In this paper we present a systematic, analytical description of this phase shift, calculating amplitude and phase of electric field from bending magnets, short magnets, two bending magnet system separated by a straight section (edge radiation) and undulator devices. We pay particular attention to region of applicability and accuracy of approximations used. Finally, taking advantage of results of analytical calculation presented in reduced form we analyze various features of radiation from a complex insertion device (set of two undulators with a focusing triplet in between) accounting for the influence of energy spread and electron beam emittance. (orig.)

  10. Improvements in the Rapid Cycling Synchrotron

    International Nuclear Information System (INIS)

    The Rapid Cycling Synchrotron1 (RCS), originally designed as an injection energy booster for the Zero Gradient Synchrotron (ZGS), operated under contraints imposed by ZGS operation until December 1979. Once these restraints were removed, the RCS made rapid strides toward its nearterm goals of 8 μA of protons for Argonne National Laboratory's (ANL) Intense Pulsed Neutron Source (IPNS) program. Reliable 30 Hz operation was achieved in the spring of 1980 with beams as high as 2 x 1012 protons per pulse and weekly average intensities of over 6 μA on target. These gains resulted from better injection matching, more efficient RF turn-on and dynamic chromatricity control. A high intensity small diameter synchrotron, such as the RCS, has special problems with loss control which dictate prudence during intensity improvment activities. Additional improvements were made to the machine starting in August of 1980 while the extraction magnets were relocated for operation with the IPNS-I target. These improvements have now been completed. Startup of the accelerator is now underway, and it is clear that these modifications have resulted in a radio-actively cleaner operation. It is too early to evaluate the effects of the improvements on intensity and reliability, but a single pulse extracted intensity of 2.4 x 1012 protons has been achieved, a 20% increase. The studies and equipment leading to the intensity gains are discussed. (orig.)

  11. Synchrotron-radiation experiments with recoil ions

    Energy Technology Data Exchange (ETDEWEB)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab.

  12. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possible chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.

  13. Tabletop synchrotron and its unique features

    CERN Document Server

    Yamada, H

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few mu s to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  14. A novel approach to synchrotron radiation simulation

    CERN Document Server

    Trad, G; Goldblatt, A; Mazzoni, S; Roncarolo, F

    2014-01-01

    At the Large Hadron Collider (LHC) at CERN, synchrotron radiation (SR) is used to continuously monitor the transverse properties of the beams. Unfortunately the machine and beam parameters are such that the useful radiation emitted inside a separation dipole, chosen as source, is diffraction limited heavily affecting the accuracy of the measurement. In order to deconvolve the diffraction effects from the acquired beam images and in order to design an alternative monitor based on a double slit interferometer an extensive study of the synchrotron light source and of the optical propagation has been made. This study is based on simulations combining together several existing tools: SRW for the source, ZEMAX for the transport and MATLAB for the “glue” and analysis of the results. The resulting tool is very powerful and can be easily adapted to other synchrotron radiation problems. In this paper the simulation package and the way it is used will be described as well as the results obtained for the LHC and SPS.

  15. Evaluating the effects of sevelamer carbonate on cardiovascular structure and function in chronic renal impairment in Birmingham: the CRIB-PHOS randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Steeds Richard P

    2011-02-01

    Full Text Available Abstract Background Serum phosphate is an independent predictor of cardiovascular morbidity and mortality in patients with chronic kidney disease and the general population. There is accumulating evidence that phosphate promotes arterial stiffening through structural vascular alterations such as medial calcification, which are already apparent in the early stages of chronic kidney disease. Aim To determine the effects of phosphate binding with sevelamer carbonate on left ventricular mass and function together with arterial stiffness in patients with stage 3 chronic kidney disease. Methods/Design A single-centre, prospective, randomised, double-blind, placebo-controlled trial of 120 subjects with stage 3 chronic kidney disease recruited from University Hospitals Birmingham NHS Foundation Trust. Baseline investigations include transthoracic echocardiography and cardiac magnetic resonance imaging to assess ventricular mass, volumes and function, applanation tonometry to determine pulse wave velocity and pulse wave analysis as surrogate measures of arterial stiffness and dual energy x-ray absorptiometry scanning to determine bone density. During an open-label run in phase, subjects will receive 1600 mg sevelamer carbonate with meals for four weeks. They will then be randomised to either continue sevelamer carbonate or receive an identical placebo (60 subjects per arm for the remaining 36 weeks. Four-weekly monitoring of serum electrolytes and bone biochemistry will be performed. All baseline investigations will be repeated at the end of the treatment period. The primary endpoint of the study is a reduction in left ventricular mass after 40 weeks of treatment. Secondary endpoints are: i change in aortic compliance; ii change in arterial stiffness; iii change in arterial elastance; iv change in left ventricular systolic and diastolic elastance; v change in left ventricular function; and vi change in bone density. Trial Registration This trial is

  16. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK

    International Nuclear Information System (INIS)

    Development and management of urban groundwater resources is limited in practice by a lack of knowledge of the nature, distribution and sources of groundwater contamination in an urban aquifer that may have had complex land use and abstraction history. Sulfate is associated with many of the solute sources to urban groundwater and in this study the use of dual isotope (δ18O and δ34S) 'fingerprinting' of SO42- in groundwater to assess the contribution of different sources to urban groundwater is investigated. Groundwater (70 locations) and surface water samples from the city of Birmingham on the Triassic Sherwood sandstone aquifer have been analyzed for inorganic chemical and SO42- isotopic composition. Isotopic compositions of SO42- associated with various solute sources have also been determined. Sulfate derived from pyrite oxidation during recharge through Quaternary Drift deposits is characteristically depleted in 18O and 34S compared to other sources and is ubiquitous in unconfined zone groundwater, though the contribution from this source has increased markedly following draw down induced by abstraction from the aquifer. In unpolluted groundwaters other SO42- sources are dissolution of evaporite minerals (confined zone) and rainfall (unconfined zone). Unfortunately, SO42- isotopic composition cannot distinguish between made-ground (i.e. artificial man-made ground, usually demolition waste) and sewage sources of SO42-, which constitute the major contributions to SO42- in polluted urban groundwater at most sites. Contributions of SO42- from spilt industrial acids do have a distinctive isotopic composition seen at many metal-working and former metal-working sites. Estimates of solute contributions derived from these sources derived in this way provide a useful check on the 'calibration' of aquifer and pollutant flux recharge models for urban groundwater

  17. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  18. Medical applications of synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    The overriding features of the synchrotron beams which make them applicable to medical research are their extremely high intensity and broadband energy spectrum. Several orders of magnitude separate the smooth, continuous spectrum of the synchrotron from the sharply peaked characteristic emission spectrum of a conventional source. Basically, the high intensity and tunability allow monochromatic beams to be generated at virtually any energy. The standard problem of beam hardening in both medical imaging and therapy is eliminated by the monochromatic beams since the energy spectrum does not change with passage through tissue. The tunable spectrum allows enhancement of images and therapeutic dose by selection of the most effective energy for a given procedure

  19. The 10 to 20 GeV Cornell Electron Synchrotron

    CERN Document Server

    Wilson, Richard R

    1967-01-01

    The National Science Foundation awarded a contract to Cornell University on April 4, 1965 for the construction of a 10 Gev electron synchrotron. The synchrotron itself has now been built and preliminary tests have been made at low energy. The present report is largely a revision and up-dating of CS DC-26 which was written two years ago when the construction of the synchrotron was authorized.

  20. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  1. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections.

  2. Injection System design for a hadron therapy Synchrotron

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Quan; SONG Ming-Tao; WEI Bao-Wen

    2008-01-01

    A synchrotron is designed for tumour therapy with C6+ ions or proton.Its injector is a cyclotron, which delivers C5+or H+2 ions to the synchrotron.After comparing the methods of the single-turn injection, the multi-turn injection and the stripping injection,this paper chooses the stripping injection method.In addition,the concept design of the injection system is presented,in which the synchrotron lattice is optimized.

  3. The Synchrotron Boiler: a Thermalizer in Seyfert Galaxies

    OpenAIRE

    Ghisellini, Gabriele; Haardt, Francesco; Svensson, Roland

    1996-01-01

    There are difficulties in understanding what keeps the plasma thermalized in compact sources, especially during rapid variations of the emitted flux. Particle-particle collisions are too inefficient in hot rarefied plasmas, and a faster process is called for. Synchrotron absorption is such a process. We show that relativistic electrons can thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium distribution is a Maxwellian a...

  4. Impact of synchrotron radiation on macromolecular crystallography: a personal view

    International Nuclear Information System (INIS)

    This article, largely based on personal experiences of the authors, reviews the early history of the application of synchrotron radiation to structural biology, and particularly protein crystallography, to show the tremendous impact that this experimental innovation has had on these disciplines. The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled

  5. Synchrotron radiation direct photoetching of polymers and crystals for micromachining

    International Nuclear Information System (INIS)

    Synchrotron radiation etching of polymers and optical crystals which are transparent throughout the spectral range from visible to ultraviolet has been carried out without using any chemicals, successfully creating high-aspect-ratio microstructures for micromachining. A detailed study of the etching rates by varying the synchrotron beam current, sample temperature, beam size and aspect ratio showed that this synchrotron radiation process is essentially different from laser ablation, while an in situ mass spectrometric analysis of gaseous etching products showed that the dissociation mechanism involved with the synchrotron radiation processing, even with heating, is completely different from the thermal dissociation of the laser ablation

  6. Application of synchrotron radiation in material Science

    International Nuclear Information System (INIS)

    In recent years many synchrotron radiation facilities are built around the world. The properties of this radiation, it's intensity and tuneability, are leading to exciting new experiments in chemistry, physics, biology and material sciences. In X-ray crystallographic studies, data can be collected on very small samples of only a few microns in size and time as short as one millisecond. Other techniques allow us to probe the local structures of impurities in technologically important materials. In the present paper unique properties of synchrotron radiation will be described. X-ray diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) spectroscopic techniques are now routinely used for materials characterization. X-ray Absorption Fine Structure (XAFS) spectroscopic techniques have been applied to study the local structural environment of host and dopant cations in complex systems. X-ray Absorption Near Edge Structure (XANES) spectroscopy is useful to determine the valence state of different cations. To examine the local structure around different cations Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy is the most appropriate technique. A review of these methodologies and the results on Yba/sub 2/ Cu/sub 3-x/ Sb/sub x/O/sub 7/, and SrFe/sub 1-x/ Nb/sub x/O/sub 3/ (where x = 0.0 and 0.5) will be presented. The Synchrotron light for Experimental Science and Applications in the Middle East (SESAME) is under construction in jordan, Pakistan in one of the member states of SESAME project, therefore a brief review of SESAME will be presented. (author)

  7. Laser synchrotron radiation and beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Esarey, E.; Sprangle, P.; Ting, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  8. Synchrotron radiation facilities in the USA

    International Nuclear Information System (INIS)

    With the successful commissioning and achievement of significant milestones at both the 7-GeV Advanced Photon Source (APS) and the 1.5- GeV Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, synchrotron radiation research capability in the United States holds the promise of many important discoveries in the decade to come. An overview of current accelerator commissioning performance at the American third-generation light sources, state-of-the-art developments at first- and second-generation sources, and a preview of fourth-generation source progress is presented

  9. X-ray microscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    The system for x-ray microscopy now being developed at the X-26 beam line of the Brookhaven National Synchrotron Light Source (NSLS) is described here. Examples of the use of x-ray microscopy for trace element geochemistry, biology and medicine, and materials investigations are given to emphasize the scientific applications of the technique. Future directions for the improvement and further development of the X-26 microscope and of the x-ray microscopy field in general are discussed. 11 refs., 7 figs

  10. Glancing angle synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school

  11. Spherical quartz crystals investigated with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N. R. [Ecopulse, Inc., 7844 Vervain Ct., Springfield, Virginia 22152 (United States); Macrander, A. T. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Hill, K. W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08536 (United States); Baronova, E. O. [Kurchatov Institute, Moscow (Russian Federation); George, K. M.; Kotick, J. [The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-10-15

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal’s x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal’s local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background.

  12. Spherical quartz crystals investigated with synchrotron radiation

    International Nuclear Information System (INIS)

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal’s x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal’s local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background

  13. Spherical quartz crystals investigated with synchrotron radiation

    Science.gov (United States)

    Pereira, N. R.; Macrander, A. T.; Hill, K. W.; Baronova, E. O.; George, K. M.; Kotick, J.

    2015-10-01

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background.

  14. Emittance growth from transient coherent synchrotron radiation

    International Nuclear Information System (INIS)

    If the energies of individual particles in a bunch change as the bunch traverses a bending system, even if it is achromatic, betatron oscillations can be excited. Consequently, the transverse emittance of the bunch will grow as it moves downstream. Short bunches may be particularly susceptible to emission of coherent synchrotron radiation which can act back on the particles to change their energies and trajectories. Because a bend spans a well-defined length and angle, the bunch-excited wakefield and its effect back on the bunch are inherently transient. We outline a recently developed theory of this effect and apply it to example bending systems

  15. Matching to gantries for medical synchrotrons

    CERN Document Server

    Benedikt, Michael

    1997-01-01

    Treatment of tumours by hadron-therapy is greatly improved if the patient can be irradiated from different directions. This task is performed by a gantry, i.e. a section of beam line that can be rotated around the patient. The gantry optics have to be designed in such a way that the beam at the patient is independent of the rotation angle. The various matching techniques are briefly reviewed in the light of the current development in medical synchrotrons towards active scanning, which requires a small, high-precision beam spot at the patient. In particular, beam delivery systems with rotators are discussed.

  16. CRYRING - a synchrotron, cooler and storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsson, K.; Andler, G.; Bagge, L.; Beebe, E.; Carle, P.; Danared, H.; Egnell, S.; Ehrnsten, K.; Engstroem, M.; Herrlander, C.J.; Hilke, J.; Jeansson, J.; Kaellberg, A.; Leontein, S.; Liljeby, L.; Nilsson, A.; Paal, A.; Rensfelt, K.G.; Rosengaard, U.; Simonsson, A.; Soltan, A.; Starker, J.; Ugglas, M. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden)) Filevich, A. (CNEA, Physics Dept., Tandar, Buenos Aires (Argentina))

    1993-06-01

    CRYRING is a small synchrotron and storage ring equipped with electron cooling. Highly charged ions from the electron beam ion source CRYSIS or singly charged ions from the plasmatron source MINIS are injected via an RFQ into the ring. The facility is in the commissioning phase. Full design energy has been achieved and electron cooling demonstrated both for atomic and molecular ions. The experimental program started in August with two projects, dissociative recombination of H[sup +][sub 3] ions and radiative recombination to deuterons. The status as of September 20, 1992, is reported. (orig.)

  17. Bent approximations to synchrotron radiation optics

    International Nuclear Information System (INIS)

    Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors

  18. Biological effects of synchrotron radiation on crops

    Institute of Scientific and Technical Information of China (English)

    唐掌雄; 董保中; 等

    1996-01-01

    The sensitivity of germinating seeds of barley,winter wheat and spring one to synchrotron ultraviolet radiation is barley>winter wheat and spring one.But when dry seeds of the three crops are irradiated by 3.5-22keV X-rays,the sequence of their sensitivity to radiation can be changed.for irradiation of 0.6-3keV ultra soft X-rays,0.40-0.90 of the seedlings of the first generation appear mutation of striped chlorophyll defect.This biological effect has never been found for irradiation of other rays.

  19. Tolerances in diffraction limited synchrotron light sources

    International Nuclear Information System (INIS)

    The PEP storage ring at Stanford can be operated to become a synchrotron light source of super-high brightness. Using a combination of a high-tune configuration and damping wigglers, the beam emittance can be reduced to less than 6 A rad at 6 GeV. For such small beam emittance, alignment and field tolerances as well as nonlinear fields in the wiggler magnets can significantly perturb the attainable low-emittance. This paper reports on studies to control and establish the tolerances required for the operation of a super-low-emittance storage ring. (orig.)

  20. Precision geometric parameter gage for synchrotron radiation

    CERN Document Server

    Gubrienko, K I; Makonin, S; Seleznev, V; Solodovnik, F; Sytin, A N; Vrazhnov, M; Wittenburg, K

    2001-01-01

    This article includes the description of the geometric parameter gage device prototype for synchrotron radiation of HERA collider (DESY). The system construction which capable to measure photo current, caused by such a radiation in a refractory metal, described here. The system component parts are: measuring heads and photo current measuring electronics designed by IHEP, stepper motor by Vacuum Generators with HEDS-550X encoder by Hewlett Packard, PCI-STEP-4CX 4-Axis Closed Loop Step controller by National Instruments. The device is controlled by means of Microsoft Visual Basic program using Value Motion Windows Libraries. The device prototype was tested in the beam of the DORIS storage ring.

  1. Synchrotron radiation facilities in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Decker, G.

    1996-07-01

    With the successful commissioning and achievement of significant milestones at both the 7-GeV Advanced Photon Source (APS) and the 1.5- GeV Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, synchrotron radiation research capability in the United States holds the promise of many important discoveries in the decade to come. An overview of current accelerator commissioning performance at the American third-generation light sources, state-of-the-art developments at first- and second-generation sources, and a preview of fourth-generation source progress is presented.

  2. 3D IMAGING USING COHERENT SYNCHROTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Peter Cloetens

    2011-05-01

    Full Text Available Three dimensional imaging is becoming a standard tool for medical, scientific and industrial applications. The use of modem synchrotron radiation sources for monochromatic beam micro-tomography provides several new features. Along with enhanced signal-to-noise ratio and improved spatial resolution, these include the possibility of quantitative measurements, the easy incorporation of special sample environment devices for in-situ experiments, and a simple implementation of phase imaging. These 3D approaches overcome some of the limitations of 2D measurements. They require new tools for image analysis.

  3. Medical applications of synchrotron radiation. Ch. 10

    International Nuclear Information System (INIS)

    Synchrotron radiation has a number of properties which make it uniquely suited for medical diagnostic imaging. The radiation is intense and can be readily monochromatized. With these highly intense, mono-chromatized X-ray beams, iodine K-edge di-chromatography can yield images which greatly enhance the visualization of iodine containing structures. As this technology continues to improve, the possibility of performing diagnostic cardiac, neuroradiological, and other vascular examinations with minimally invasive peripheral venous injections of iodinated contrast agent becomes increasingly practical. (author). 10 refs.; 6 figs

  4. Glancing angle synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cernik, R.J. [Daresbury Lab., Warrington, WA (United States)

    1996-09-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school.

  5. Effective spectrum width of the synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V. G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Institute of High Current Electronics, SB RAS, Tomsk (Russian Federation); Gitman, D. M., E-mail: gitman@if.usp.br [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Institute of Physics, University of São Paulo, São Paulo (Brazil); P.N.Lebedev Physical Institute, Moscow (Russian Federation); Levin, A. D., E-mail: alevin@if.usp.br [Institute of Physics, University of São Paulo, São Paulo (Brazil); Loginov, A. S.; Saprykin, A. D. [Department of Physics, Tomsk State University, Tomsk (Russian Federation)

    2015-11-25

    For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory.

  6. Synchrotron Lightcurves of blazars in a time-dependent synchrotron-self Compton cooling scenario

    CERN Document Server

    Zacharias, Michael

    2013-01-01

    Blazars emit non-thermal radiation in all frequency bands from radio to \\gamma-rays. Additionally, they often exhibit rapid flaring events at all frequencies with doubling time scale of the TeV and X-ray flux on the order of minutes, and such rapid flaring events are hard to explain theoretically. We explore the effect of the synchrotron-self Compton cooling, which is inherently time-dependent, leading to a rapid cooling of the electrons. Having discussed intensively the resulting effects of this cooling scenario on the spectral energy distribution of blazars in previous papers, the effects of the time-dependent approach on the synchrotron lightcurve are investigated here. Taking into account the retardation due to the finite size of the source and the source geometry, we show that the time-dependent synchrotron-self Compton (SSC) cooling still has profound effects on the lightcurve compared to the usual linear (synchrotron and external Compton) cooling terms. This is most obvious if the SSC cooling takes lon...

  7. The synchrotron radiation angiography program at the national synchrotron light source

    International Nuclear Information System (INIS)

    The National Synchrotron Light Source (NSLS) angiography program is under development. The program is a collaboration between the Stanford University Angiography Project and the NSLS. A 180 m2 clinical facility has been built. A beam line is being constructed to utilize a superconducting wiggler radiation source. Projected start-up date for the NSLS program is Summer 1988

  8. Looking Back at International Synchrotron Radiation Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Gwyn

    2012-03-01

    With the 11th International Synchrotron Radiation Instrumentation coming up in July 2012 in Lyons, France, we thought it might be of interest to our readers to review all the past meetings in this series. We thank Denny Mills of the APS, Argonne for putting the list together. Prior to these larger meetings, and in the early days, facilities held their own meetings similar to the user meetings of today. However, the meeting held at ACO in Orsay, France in 1977 was the first such meeting with an international flavor and so it is on the list. However it is not counted as number 1 since it was agreed way back to start the numbering with the 1982 DESY meeting. The 2005 USA National Meeting scheduled at CAMD in Baton Rouge had to be canceled due to Hurricane Katrina. It was ultimately held in 2007, with the CLS hosted meeting the following year. And a personal note from the magazine - Synchrotron Radiation News was born at the 1987 meeting in Madison, Wisconsin with a proposal that was put to a special session of the meeting organized by Susan Lord. Initial proposals were to model it after the CERN Courier, but it soon adopted its own distinct flavor.

  9. Status of the SOLEIL Booster Synchrotron

    CERN Document Server

    Loulergue, Alexandre

    2005-01-01

    SOLEIL is a 2.75 GeV third generation synchrotron radiation facility under construction near Paris. The injection system is composed of a 100 MeV electron Linac pre-accelerator followed by a full energy (2.75 GeV) booster synchrotron. The booster lattice is based on a FODO structure with missing magnet. With a circumference of 157 m and low field magnets (0.74 T), the emittance is of 150 nm.rad at 2.75 GeV. A flexible and economic ramping switched mode procedure for the main supply cycled up to 3 Hz and a 35 kW-352 MHz solid state amplifier powering the RF system are used. At present time, all the magnets, supports and vacuum have been received and tested. Half of the ring is already assembled and installation is the tunnel will begin in January 05. The pulsed elements and their pulser will be received and tested from January to April. The four main magnet power supplies will be received in February and tested in Marsh. We plan the booster commissioning with beam in May 2005.

  10. Ferroelectrics under the Synchrotron Light: A Review

    Directory of Open Access Journals (Sweden)

    Luis E. Fuentes-Cobas

    2015-12-01

    Full Text Available Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS and X-ray absorption fine structure (XAFS experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  11. Synchrotron radiation from a Helical Wiggler

    International Nuclear Information System (INIS)

    The use of Wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years ago. Since then it has also been suggested that synchrotron radiation from Wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a Wiggler which is appropriate when the beam is radiating incoherently. In this paper a general formalism is developed for the case when the beam radiates coherently. These results are then applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to be used as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  12. Synchrotrons for hadron therapy: Part I

    CERN Document Server

    Badano, L; Bryant, P; Crescenti, M; Holy, P; Knaus, P; Maier, A; Pullia, M; Rossi, S

    1999-01-01

    The treatment of cancer with accelerator beams has a long history with betatrons, linacs, cyclotrons and now synchrotrons being exploited for this purpose. Treatment techniques can be broadly divided into the use of spread-out beams and scanned 'pencil' beams. The Bragg-peak behaviour of hadrons makes them ideal candidates for the latter. The combination of precisely focused 'pencil' beams with controllable penetration (Bragg peak) and high, radio-biological efficiency (light ions) opens the way to treating the more awkward tumours that are radio-resistant, complex in shape and lodged against critical organs. To accelerate light ions (probably carbon) with pulse-to-pulse energy variation, a synchrotron is the natural choice. The beam scanning system is controlled via an on-line measurement of the particle flux entering the patient and, for this reason, the beam spill must be extended in time (seconds) by a slow-extraction scheme. The quality of the dose intensity profile ultimately depends on the uniformity o...

  13. Synchrotrons for hadron therapy, part 1

    CERN Document Server

    Badano, L; Bryant, P J; Crescenti, M; Holy, P; Knaus, P; Maier, A T; Pullia, M; Rossi, S

    1999-01-01

    The treatment of cancer with accelerator beams has a long history with linacs, cyclotrons and now synchrotrons being exploited for this purpose. Treatment techniques can be broadly divided into the use of spread-out beams and scanned 'pencil' beams. The Bragg-peak behaviour of hadrons makes them ideal candidates for the latter. The combination of precisely focused 'pencil' beams with controllable penetration (Bragg peak) and high, radio-biological efficiency (light ions) opens the way to treating the more awkward tumours that are radio-resistant, complex in shape and lodged against critical organs. To accelerate light ions (probably carbon) with pulse-to-pulse energy variation, a synchrotron is the natural choice. The beam scanning system is controlled via an on-line measurement of the particle flux entering the patient and, for this reason, the beam spill must be extended in time (seconds) by a slow-extraction scheme. The quality of the dose intensity profile ultimately depends on the uniformity of the beam ...

  14. Improvements in the rapid cycling synchrotron

    International Nuclear Information System (INIS)

    The Rapid Cycling Snychrotron1 (RCS), originally designed as an injection energy booster for the Zero Gradient Synchrotron (ZGS), operated under constraints imposed by ZGS operation until December 1979. Once these restraints were removed, the RCS made rapid strides toward its nearterm goals of 8 μA of protons for Argonne National Laboratory's (ANL) Intense Pulsed Neutron Source (IPNS) program. Reliable 30 Hz operation was achieved in the spring of 1980 with beams as high as 2 x 1012 protons per pulse and weekly average intensities of over 6 μA on target. These gains resulted from better injection matching, more efficient RF turn-on and dynamic chromaticity control. A high intensity small diameter synchrotron, such as the RCS, has special problems with loss control which dictate prudence during intensity improvement activities. Additional improvements were made to the machine starting in August of 1980 while the extraction magnets were relocated for operation with the IPNS-I target. These improvements have now been completed. Startup of the accelerator is now underway, and it is clear that these modifications have resulted in a radioactively cleaner operation. It is too early to evaluate the effects of the improvements on intensity and reliability, but a single pulse extracted intensity of 2.4 x 1012 protons has been achieved, a 20% increase. The studies and equipment leading to the intensity gains are discussed. (orig.)

  15. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    CERN Document Server

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  16. Application of circular polarized synchrotron radiation

    International Nuclear Information System (INIS)

    The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)

  17. Mapping prehistoric ghosts in the synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, N.P.; Wogelius, R.A. [University of Manchester, School of Earth, Atmospheric, and Environmental Sciences, Manchester (United Kingdom); University of Manchester, Williamson Research Centre for Molecular Environmental Science, Manchester (United Kingdom); Bergmann, U. [SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA (United States); Larson, P. [Black Hills Institute of Geological Research, Inc., Hill City, SD (United States); Sellers, W.I. [University of Manchester, Faculty of Life Sciences, Manchester (United Kingdom); Manning, P.L. [University of Manchester, School of Earth, Atmospheric, and Environmental Sciences, Manchester (United Kingdom); University of Manchester, Williamson Research Centre for Molecular Environmental Science, Manchester (United Kingdom); University of Pennsylvania, Department of Earth and Environmental Science, Philadelphia, PA (United States)

    2013-04-15

    The detailed chemical analysis of fossils has the potential to reveal great insight to the composition, preservation and biochemistry of ancient life. Such analyses would ideally identify, quantify, and spatially resolve the chemical composition of preserved bone and soft tissue structures, but also the embedding matrix. Mapping the chemistry of a fossil in situ can place constraints on mass transfer between the enclosing matrix and the preserved organism(s), and therefore aid in distinguishing taphonomic processes from original chemical zonation remnant within the fossils themselves. Conventional analytical methods, such as scanning electron microscopy (SEM) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) have serious limitations in this case, primarily, an inability to provide large (i.e., decimeter) scale chemical maps. Additionally, vacuum chamber size and the need for destructive sampling preclude analysis of large and precious fossil specimens. However, the recent development of Synchrotron Rapid Scanning X-ray Fluorescence (SRS-XRF) at the Stanford Synchrotron Radiation Lightsource (SSRL) allows the non-destructive chemical analysis and imaging of major, minor, and trace element concentrations of large paleontological and archeological specimens in rapid scanning times. Here we present elemental maps of a fossil reptile produced using the new SRS-XRF method. Our results unequivocally show that preserved biological structures are not simply impressions or carbonized remains, but possess a remnant of the original organismal biochemistry. We show that SRS-XRF is a powerful new tool for the study of paleontological and archaeological samples. (orig.)

  18. Physics design of SSRF synchrotron radiation security

    Institute of Scientific and Technical Information of China (English)

    XU Yi; DAI Zhi-Min; LIU Gui-Min

    2009-01-01

    High brightness of SSRF brings about synchrotron radiation security problems,which will be solved in physics design.The main radiations are generated from bending magnets and insertion devices.Since the fact that radiation power and radiating area are different in these two kinds of synchrotron radiation,the arrangements of photon absorbers,diaphragms and other vacuum components need to be treated distinctively.In addition.SSRF interlock protection threshold is defined and the beam orbit in the straight line is limited.Hence.beam orbit in the bending magnets and IDs are also restricted by the threshold.The orbit restriction is calculated and helps us to arrange the vacuum components.In this paper,beam orbit distortion restricted by interlock protection threshold,radiation power,radiation angle and illuminating area are calculated.From the calculation results,the physics designs in manufacture and installation vacuum components are put forward.By commissioning,it is shown that physics requirements are met rigidly in the engineering process.

  19. Synchrotron Facilities and Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Vaclav, Vylet; /Duke U.; Liu, James; /SLAC

    2007-12-21

    Synchrotron radiation (SR) is electromagnetic radiation emitted when a charged particle travels along a curved trajectory. Initially encountered as a nuisance around orbits of high energy synchrotron accelerators, it gradually became an indispensable research tool in many applications: crystallography, X-ray lithography, micromechanics, structural biology, microprobe X-ray experiments, etc. So-called first generation SR sources were exploiting SR in parasitic mode at electron accelerators built to study particle collisions. The second generation of SR sources was the first facilities solely devoted to SR production. They were optimized to achieve stable high currents in the accelerator ring to achieve substantially higher photon flux and to provide a large number of SR beam lines for users. Third generation sources were further optimized for increased brilliance, i.e. with photons densely packed into a beam of very small cross-sectional area and minimal angular divergence (see the Appendix for more detailed definitions of flux, brightness and brilliance) and makes extensive use of the insertion devices such as wigglers and undulators. Free Electron Lasers (FELs), the fourth generation SR sources, open new research possibilities by offering extremely short pulses of extremely bright and coherent radiation. The number of SR sources around the world now probably exceeds 100. These facilities vary greatly in size, energy of the electron (or positron) beams, range of photon energies and other characteristics of the photon beams produced. In what follows we will concentrate on describing some common aspects of SR facilities, their operation modes and specific radiation protection aspects.

  20. Performances of BNL high-intensity synchrotrons

    International Nuclear Information System (INIS)

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 x 1013 ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 x 1013 ppp surpassing the design goal of 1.5 x 1013 ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented

  1. Thermal loading considerations for synchrotron radiation mirrors

    International Nuclear Information System (INIS)

    Grazing incidence mirrors used to focus synchrotron radiation beams through small distant apertures have severe optical requirements. The surface distortion due to heat loading of the first mirror in a bending magnet beam line is of particular concern when a large fraction of the incident beam is absorbed. In this paper we discuss mirror design considerations involved in minimizing the thermal/mechanical loading on vertically deflecting first surface mirrors required for SPEAR synchrotron radiation beam lines. Topics include selection of mirror material and cooling method, the choice of SiC for the substrate, optimization of the thickness, and the design of the mirror holder and cooling mechanism. Results obtained using two-dimensional, finite-element thermal/mechanical distortion analysis are presented for the case of a 60 grazing incidence SiC mirror absorbing up to 260 W at Beam Line VIII on the SPEAR ring. Test descriptions and results are given for the material used to thermally couple this SiC mirror to a water-cooled block. The interface material is limited to applications for which the equivalent normal heat load is less than 20 W/cm2

  2. Urban groundwater baseflow influence upon inorganic river-water quality: The River Tame headwaters catchment in the City of Birmingham, UK

    Science.gov (United States)

    Rivett, Michael O.; Ellis, Paul A.; Mackay, Rae

    2011-03-01

    SummaryUnderstanding the linkage between urban land, groundwater, baseflow and river contamination at the city scale is lacking. This study evaluates the influence of inorganic (major/minor ions and metals) groundwater contamination in the Triassic sandstone-Quaternary deposits aquifer system underlying the City of Birmingham, UK upon the baseflow and water quality of the river Tame. Baseflow water-quality data have been collected from a riverbed piezometer network installed in the 7.4 km reach crossing the effluent unconfined sandstone aquifer and compared to river and aquifer water-quality data. Overall, the inorganic chemical quality of the baseflow was not as poor as potentially surmised from the urbanisation present. Baseflow impact upon river-water quality was also low. These conclusions were underpinned by evidences of: limited river-water quality changes along the reach; some river concentrations being diluted by better quality baseflow; only occasional breaching of water-quality criteria; limited impact upon river-reach quality local to elevated baseflow dicharges; natural attenuation occurrence within the riverbed; and, modest, albeit somewhat uncertain, baseflow mass fluxes. Baseflow fluxes to the reach were in the ranges 100-3500 t/yr for major ions, 1-50 t/yr for minor ions and 1-500 kg/yr for toxic metals with zinc and nickel most prominent. The sporadic occurrence of elevated baseflow concentrations was ascribed to discrete groundwater plume discharges. More detailed sub-reach studies would be required to fully resolve discrete plume baseflow contributions and improve mass flux estimates. Not uncommonly, the urban river studied was already contaminated and hence persistent baseflow fluxes may assume more importance if the river became cleaner through other control measures. Future research should hence consider the emergent significance of urban baseflows. There are needs to: conduct similar studies to investigate if city-scale baseflow impacts are

  3. Distribution pattern of legacy and "novel" brominated flame retardants in different particle size fractions of indoor dust in Birmingham, United Kingdom.

    Science.gov (United States)

    Al-Omran, Layla Salih; Harrad, Stuart

    2016-08-01

    This study investigates the particle size distribution of eight polybrominated diphenyl ethers (PBDEs) and five "novel" brominated flame retardants (NBFRs) in settled house dust. Elevated surface dust (ESD) and floor dust (FD) were collected from 5 homes in Birmingham, UK, yielding a total of 10 samples. Each sample was fractionated into three different particle sizes: 125-250 μm (P1), 63-125 μm (P2) and 25-63 μm (P3). Non-fractionated bulk dust samples (BD) were also analysed. BDE-209 predominated, comprising an average 74.3%, 77.3%, 69.2%, and 62.7% ΣBFRs of BD, P1, P2 and P3 respectively. Σ5NBFRs contributed 24.2%, 21.5%, 29.0% and 35.3% ΣBFRs, while Σ7tri-hepta-BDEs represented 1.5%, 1.2%, 1.7%, and 2.0% ΣBFRs. BEH-TEBP was the predominant NBFR contributing 76.9%, 75.1%, 83.1%, and 83.9% ΣNBFRs in BD, P1, P2 and P3 respectively; followed by DBDPE which contributed 20.1%, 21.9%, 14.1% and 13.9% ΣNBFRs. EH-TBB, BTBPE and PBEB were the least abundant NBFRs. Concentrations of Σ7tri-hepta-BDEs and BEH-TEBP in P3 exceeded significantly (P P1. In contrast, no significant differences were found between concentrations of BDE-209, EH-TBB, BTBPE, and DBDPE in different particle size fractions. Concentrations of Σ7tri-hepta-BDEs, BDE-209, and BEH-TEBP in ESD exceeded significantly those in FD (P < 0.05). Normalising BFR concentrations to organic carbon content, did not alter these findings. This suggests that differences in BFR concentrations between different particle size fractions are caused by variations in particle surface area to volume ratio, rather than by variations in organic carbon content. PMID:27213241

  4. For the first time: Moessbauer effect with synchrotron radiation

    International Nuclear Information System (INIS)

    After 9 years of preparation a group of scientists under the leadership of Prof. Erich Gerdau from the University of Hamburg succeeded in observing the Moessbauer Effect (recoilless emission of a gamma quantum) with the help of synchrotron radiation in October last year. The experiments were carried out at the Hamburg Synchrotron Radiation Laboratory, HASYLAB, at the DORIS II storage ring. (orig.)

  5. Synchrotron radiation in art and archaeology SRA 2005

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, A.M.; Janssens, K.; Artioli, G.; Young, M.L.; Casadio, F.; Schnepp, S.; Marvin, J.; Dunand, D.C.; Almer, J.; Fezzaa, K.; Lee, W.K.; Haeffner, D.R.; Reguer, S.; Dillmann, Ph.; Mirambet, F.; Susini, J.; Lagarde, P.; Pradell, T.; Molera, J.; Brunetti, B.; D' acapito, F.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sgamellotti, A.; Garges, F.; Etcheverry, M.P.; Flank, A.M.; Lagarde, P.; Marcus, M.A.; Scheidegger, A.M.; Grolimund, D.; Pallot-Frossard, I.; Smith, A.D.; Jones, M.; Gliozzo, E.; Memmi-Turbanti, I.; Molera, J.; Vendrell, M.; Mcconachie, G.; Skinner, T.; Kirkman, I.W.; Pantos, E.; Wallert, A.; Kanngiesser, B.; Hahn, O.; Wilke, M.; NekaT, B.; Malzer, W.; Erko, A.; Chalmin, E.; Vignaud, C.; Farges, F.; Susini, J.; Menu, M.; Sandstrom, M.; Cotte, M.; Kennedy, C.J.; Wess, T.J.; Muller, M.; Murphy, B.; Roberts, M.A.; Burghammer, M.; Riekel, C.; Gunneweg, J.; Pantos, E.; Dik, J.; Tafforeau, P.; Boistel, R.; Boller, E.; Bravin, A.; Brunet, M.; Chaimanee, Y.; Cloetens, P.; Feist, M.; Hoszowska, J.; Jaeger, J.J.; Kay, R.F.; Lazzari, V.; Marivaux, L.; Nel, A.; Nemoz, C.; Thibault, X.; Vignaud, P.; Zabler, S.; Sciau, P.; Goudeau, P.; Tamura, N.; Doormee, E.; Kockelmann, W.; Adriaens, A.; Ryck, I. de; Leyssens, K.; Hochleitner, B.; Schreiner, M.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.; Sanchez Del Rio, M.; Martinetto, P.; Dooryhee, E.; Suarez, M.; Sodo, A.; Reyes-Valerio, C.; Haro Poniatowski, E.; Picquart, M.; Lima, E.; Reguera, E.; Gunneweg, J.; Reiche, I.; Berger, A.; Bevers, H.; Duval, A

    2005-07-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations.

  6. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland;

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  7. Synchrotron radiation in art and archaeology SRA 2005

    International Nuclear Information System (INIS)

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations

  8. Activity report of Synchrotron Radiation Laboratory 2000

    International Nuclear Information System (INIS)

    In the spring of 2000, the Synchrotron Radiation Laboratory (SRL) moved from Tanashi to Kashiwa Campus. Now, most important for SRL is to promote the future project of High-brilliance Light Source, Super SOR project, in cooperation with the nationwide user group as well as with the users of the University of Tokyo. The Super SOR will be one of the most brilliant light sources in vacuum ultraviolet and soft x-ray regimes. In order to continue extensive efforts on research and developments (R and D) of the light source and beamlines, the SRL Experimental Building has been built at Kashiwa Campus, which acts as the Super SOR Project Office of the University of Tokyo. On the other hand, the SRL has a branch laboratory in the High Energy Accelerator Research Organization (KEK) at Tsukuba. The branch laboratory maintains an undulator called Revolver, two beamlines and three experimental stations (BL-18A, 19A and 19B); they are installed in the Photon Factory (PF) and fully opened to outside users. The in-house staffs not only serve the outside users with technical support and advices, but also carry out their own research works on advanced solid state spectroscopy as well as instrumentation. In the fiscal year of 2000, the operation time of the beamlines wag more than 5000 hours and the number of the users was more than 200. The main scientific interests and activities in the SRL at KEK-PF are directed to the electronic structures of new materials with new transport and optical properties. The electronic structures of solid surfaces and interfaces are also intensively studied. The study of the behavior of electrons in a synchrotron radiation source is indispensable as a part of accelerator physics for developing electron accelerators. The SRL is carrying out research works of the accelerator physics and developing the accelerator-related technology, many parts of which will be directly applied to the Super SOR light source. This report contains the activities of the SRL

  9. Quadrupole magnet for a rapid cycling synchrotron

    International Nuclear Information System (INIS)

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  10. Quadrupole magnet for a rapid cycling synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  11. New Synchrotron Radiation Center beamlines at Aladdin

    International Nuclear Information System (INIS)

    In the past year, the Synchrotron Radiation Center (SRC) staff has installed five new beamlines at SRC. Three of these beamlines are ''public'' beamlines operated by SRC for experiments selected from peer-reviewed proposals. Fifty to seventy-five percent of the experimental time on the other two beamlines is managed by the SRC as a consequence of the SRC being a partner in participating research teams (PRTs). These new beamlines bring the number of VUV and soft x-ray research beamlines installed on Aladdin to 17 as of August 1988. Including two storage ring optical diagnostic ports, there will be 20 ports in use on Aladdin by the end of 1988

  12. Coherent synchrotron radiation experiments for the LCLS

    International Nuclear Information System (INIS)

    The authors describe a coherent synchrotron radiation experiment planned at Los Alamos to support the design of the Linac Coherent Light Source (LCLS) x-ray FEL. Preliminary simulations of the LCLS compressors show that a clever tuning strategy can be used to minimize the electron's beam emittance growth due to noninertial space-charge forces by employing a delicate cancellation of these forces. The purpose of the Los Alamos experiment, using a sub-picosecond chicane compressor, is to benchmark these simulations tools. In this paper, the authors present detailed numerical simulations of the experiment, and point out unique signatures of this effect that are measurable. As predicted previously, the largest emittance growths and induced energy spreads result from the nonradiative components of this space-charge force

  13. Optical substrate materials for synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Paquin, R.A. [Univ. of Arizona, Tucson, AZ (United States). Optical Sciences Center

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.

  14. Optical substrate materials for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop trademark, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research

  15. A guide to synchrotron radiation science

    CERN Document Server

    Sato, Shigeru; Munro, Ian; Lodha, G S

    2015-01-01

    Synchrotron Radiation (SR), as a light source is now in use around the world to provide brilliant radiation from the infrared into the soft and hard X-ray regions. It is an indispensible and essential tool to establish the physic-chemical characteristics of materials and surfaces from an atomic and molecular view point. It is being applied to topics which range from mineralogy to protein crystallography, embracing research in areas from the physical to the life sciences. This new guide is a concise yet comprehensive and easily readable introduction to an expanding area of science. It presents in a readily assimilable form the basic concepts of SR science from its generation principles, through source design and operation to the principles of instruments for SR exploitation followed by a survey of its actual applications in selected research fields, including spectroscopy, diffractometry, microanalysis and chemical processing.

  16. Synchrotron radiation techniques. Extension to magnetism research

    International Nuclear Information System (INIS)

    Recently developed techniques using synchrotron radiation for the study of magnetism are reviewed. These techniques are based on X-ray absorption spectroscopy (XAS), and they exhibit significant advantages in element specificity. This is very important since the most attractive magnetic materials contain many magnetic elements, and those with small magnetic moments often play an essential role in the magnetic properties. Circularly polarized X-rays emitted from bending magnets or helical undulators allow us to perform magnetic circular dichroism measurements to reveal microscopic magnetic properties of various kinds of magnetic materials. X-ray absorption magnetic circular dichroism (XMCD) is discussed in detail. This technique provides unique information on orbital magnetic moments as well as spin magnetic moments, which are useful for the study of magnetic anisotropy. X-ray magnetic linear dichroism (XMLD) and X-ray resonant magnetic reflectometry (XRMR) techniques are also described. (author)

  17. Application of synchrotron radiation to submicron lithography

    International Nuclear Information System (INIS)

    Relevant features of modern X-ray sources suitable for submicron lithography with special emphasis on synchrotron with classical, normal and superconducting storage rings are compared. Capability of such sources for X-ray lithographic fabrication of 100 nm lines and 0.5 micron devices such as ULSI and multimegabit memory are discussed. Selecting the materials for X-ray mask substrate as well as the technique of patterning absorber material over it are extremely critical. Use of advanced techniques such as reactive ion etching, ion beam patterning and electron beam lithography for their fabrication is discussed. Characteristics of positive/negative X-ray resists such as sensitivity and resolution, critically governing their suitability in lithographic applications are compared. The technology of alignments recently adopted for X-ray lithography is presented. Submicron patterns and devices like CMOS, BPF and deep grooves featured through dedicated and commercial X-ray systems have been sampled. (author). 5 refs., 2 figs., 2 tabs

  18. 3D Detectors for Synchrotron Applications

    CERN Document Server

    Pennicard, D

    2009-01-01

    3D detectors are a novel variety of photodiode radiation detector, invented by Parker, Kenney and Segal (1997). Instead of having n- and p-type contacts on the front and back surfaces of a silicon substrate, like a standard photodiode, they have columns of doped material passing through the thickness of the silicon. This structure means that the detector can combine a reasonable substrate thickness with a very small electrode spacing, resulting in a low depletion voltage, fast charge collection and low charge sharing. These detectors have a couple of promising applications. Their fast charge collection and low depletion voltage should make them very radiation-tolerant. So, they could be used for future particle physics experiments at the Super Large Hadron Collider (SLHC), where high levels of radiation damage are expected. Also, their low charge sharing means they could potentially improve X-ray diffraction measurements at synchrotrons such as Diamond Light Source. This would allow these experiments, for exa...

  19. Discussion on spin-flip synchrotron radiation

    CERN Document Server

    Bordovitsyn, V A; Myagkii, A N

    1998-01-01

    Quantum spin-flip transitions are of great importance in the synchrotron radiation theory. For better understanding of the nature of this phenomenon, it is necessary to except the effects connected with the electric charge radiation from observation. This fact explains the suggested choice of the spin-flip radiation model in the form of radiation of the electric neutral Dirac-Pauli particle moving in the homogeneous magnetic field. It is known that in this case, the total radiation in the quantum theory is conditioned by spin-flip transitions. The idea is that spin-flip radiation is represented as a nonstationary process connected with spin precession. We shall shown how to construct a solution of the classical equation of the spin precession in the BMT theory having the exact solution of the Dirac-Pauli equation.Thus, one will find the connection of the quantum spin-flip transitions with classical spin precession.

  20. Status of Hiroshima Synchrotron Radiation Center

    International Nuclear Information System (INIS)

    The HSRC is a synchrotron radiation facility of Hiroshima University established in 1996. The HiSOR is a compact racetrack-type storage ring having 21.95 m circumference, therefore its natural emittance of 400 nmrad is not so small compared with the other medium ∼ large storage rings. The most outstanding advantage of the facility lies in good combination with beamlines for high-resolution photoelectron spectroscopy in energy range in VUV ∼ soft X-ray. We report the operation status of HiSOR and the present status of beamlines and experimental stations. The user time last year was achieved 1541 hours which was at the same level with those in the past several years because there was no serious trouble. (author)

  1. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  2. Synchrotron radiation — 1873 to 1947

    Science.gov (United States)

    Blewett, John P.

    1988-04-01

    In 1873 Maxwell's treatise "Electricity and Magnetism" made it clear that a changing electric current will emit electromagnetic radiation. By the turn of the century, J.J. Thomson was showing that currents in space could be carried by electrons; accordingly, it was reasonable to believe that electrons, when accelerated, would radiate. By 1912, the theory of radiation from accelerated electrons was worked out and buried in the literature. Radiation from accelerated relativistic electrons did not come into prominence again until the 1940's when, finally, it was observed at the Research Laboratory of the General Electric Company. This paper will discuss the early theoretical treatments and will describe the first observations with the G.E. 100 MeV betatron and 75 MeV synchrotron.

  3. A Thick Target for Synchrotrons and Betatrons

    Science.gov (United States)

    McMillan, E. M.

    1950-09-19

    If a wide x-ray beam from an electron synchrotron or betatron is desired, in radiographic work with large objects for example, the usually very thin target may be replaced by a thick one, provided the resulting distortion of the x-ray spectrum due to multiple radiative processes is permissible. It is difficult to make the circulating electron beam traverse a thick target directly because of the small spacing between successive turns. Mounting a very thin beryllium, or other low-z material, fin on the edge of the thick target so that the fin projects into the beam will cause the beam to lose sufficient energy, and therefore radium, to strike the thick target the next time around. Sample design calculations are given.

  4. A program for synchrotron radiation dose calculations

    International Nuclear Information System (INIS)

    The computer program PHOTON was obtained from Brookhaven National Laboratory (courtesy D. Chapman, NSLS), and has now been installed at APS VAX. In the following a brief description of the program and how to access to it is described with an example. A detailed manual for the program is also available. The program is developed to calculate the transmitted and scattered spectra of the synchrotron radiation, as it passes through series of filters. The source can be a bending magnet or a wiggler. This can be generated for any bending magnet or a wiggler source by varying ring energy, the critical energy and opening angles of the radiation beam. Monochromatic beams to white radiation can be treated. Filter materials can be pure elements or composites. The absorption cross-sections of all elements for covering 10-2 to 106 keV are now included in a table, which can be accessed by giving the atomic symbol

  5. Application of synchrotron radiation in archaeology

    International Nuclear Information System (INIS)

    This paper reports current status of archaeological application of synchrotron radiation (SR). The advantages of SR in archaeological research and various application possibilities of X-ray powder diffraction (XPD), X-ray fluorescence (XRF) and X-ray absorption fine structure (XAFS) analyses of objects and materials of cultural heritage value are demonstrated through a number of case studies from literatures. They include XPD characterizations of Egyptian cosmetic powder, Attic Black Gloss, and pigments in Gothic altarpieces, provenance analysis of Old-Kutani china wares by high energy XRF, and XAFS analyses to reveal to origin of red color in Satsuma copper-ruby glass and role of iron in Maya blue. (author)

  6. Brightness of synchrotron radiation from wigglers

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2014-01-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called `depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. I...

  7. Helical magnetized wiggler for synchrotron radiation laser

    International Nuclear Information System (INIS)

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude

  8. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  9. Control system for a compact synchrotron

    International Nuclear Information System (INIS)

    The control system for a compact superconducting synchrotron (HELIOS) is described. The machine is intended to be used as a prototype production tool for X-ray lithography, so emphasis has been placed on engineering the control system for this purpose. The system has been designed to be flexible for commissioning, but easy to use for an operator at a lithography facility. With this in mind the following facilities have been included: keys to limit control functions, a HELP facility for operators, colour touch-panels and displays, limits and other software protection. The conservative hardware design is based on well established CAMAC interfaces. Similarly, the software runs on a MicroVAX with VMS, is written in FORTRAN 77, and is adapted from a well developed SLAC control system. Design features include the use of local intelligence for some subsystems, modular hardware and software, interlocks and a central database. (orig.)

  10. Liquid metal cooling of synchrotron optics

    International Nuclear Information System (INIS)

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi

  11. Time-resolved spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Work performed at the Stanford Synchrotron Radiation Laboratory (SSRL) is reported. The timing characteristics of the SPEAR beam (pulse width less than or equal to 0.4 nsec, pulse repetition period = 780 nsec) were exploited to determine dynamic behavior of atomic, molecular, excimeric, and photodissociative gas-phase species excited by vacuum-ultraviolet (VUV) radiation. Fast fluorescence timing measurements were done to determine excited-state lifetimes of Kr and Xe. Pressure-dependent timing studies on Xe gas at higher concentrations demonstrated some of the problems associated with previous kinetic modeling of the Xe2 system. It was found that even qualitative agreement of observed Xe2 lifetimes as a function of pressure required the assumption that the radiative lifetime was a strong function of internuclear separation. The radiative decays of chemically unstable fragments, CN* (B2Σ+) and XeF* (B2Σ+ and C2 Pi/sub 3/2//), were studied by pulsed photodissociation of stable parent compounds, ICN and XeF2. When the polarization of the CN* (B2Σ+) fragment fluorescence was measured, it was found to be non-zero and strongly dependent on excitation wavelength. This polarization is related to the symmetry of the photodissociative surface via a classical model, and the variations in the polarization with wavelength is attributed to symmetry and lifetime effects of a predissociating parent molecule. Despite the drawbacks of limited availability and low radiation flux, synchrotron radiation is definitely a useful spectroscopic tool for VUV studies of gas-phase systems

  12. European synchrotron radiation facility at Risoe

    International Nuclear Information System (INIS)

    The results of the feasibility study on a potential European Synchrotron Radiation Facility site at Risoe, Denmark, can be summarized as follows: The site is located in a geologically stable area. The ground is fairly flat, free from vibrations and earth movements, and the foundation properties are considered generally good. The study is based upon the machine concept and main geometry as presented in the ESF feasibility study of May 1979. However, the proposed site could accomodate a larger machine (e.g. 900 m of circumference) or a multi-facility centre. The site is located in the vicinity of Risoe National Laboratory, a R and D establishment with 850 employees and a well-developed technical and scientific infrastructure, which can provide support to the ESRF during the plant construction and operation. In particular the possible combination of synchrotron radiation with the existing neutron scattering facilities in DR 3 is emphasized. The site is located 35 km west of Copenhagen with easy access to the scientific, technological and industrial organizations in the metropolitan area. The regional infrastructure ensures easy and fast communication between the ESRF and locations in the host country as well as abroad. The site is located 35 minutes drive from Copenhagen International Airport and on a main communication route out of Copenhagen. The estimated time duration for the design, construction and commissioning of ESRF phase 1 - taking into account national regulatory procedures - is consistent with that of the ESF feasibility study, i.e. approx. 6 years. The estimated captal costs associated with site-specific structures are consistent with those of the ESF feasibility study, taking into account price increase between 1979 and 1981. It should be emphasized that the study is based upon technical and scientific assessments only, and does not reflect any official position or approval from appropriate authorities. (author)

  13. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  14. Operation of INDUS-1, India's first synchrotron radiation source

    International Nuclear Information System (INIS)

    INDUS-1 is a 450 MeV electron storage ring for the production of Synchrotron Radiation in Visible Ultra Violet (VUV) range with a critical wavelength of 61 A deg. The ring was commissioned in June 1999. Since then it is in regular operation. This Synchrotron Radiation Source (SRS) facility consists of a 20 MeV injector microtron, a 450 MeV booster synchrotron and a storage ring. In this paper operation aspects of INDUS-1 SRS facility will be presented. (author)

  15. Synchrotron radiation photoionization mass spectrometry of laser ablated species

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Ruiz, J., E-mail: j.alvarez@iqfr.csic.e [Instituto de Quimica Fisica Rocasolano, CSIC, 28006 Madrid (Spain); Casu, A. [University of Cagliari, 09042 Monserrato (Italy); Coreno, M. [CNR-IMIP, c/o Lab. Elettra Trieste, 00016 Montelibretti (Italy); Simone, M. de [CNR-INFM, Laboratorio Nazionale TASC, 34149 Trieste (Italy); Hoyos Campo, L.M.; Juarez-Reyes, A.M. [ICF-UNAM Cuernavaca (Mexico); Kivimaeki, A. [CNR-INFM, Laboratorio Nazionale TASC, 34149 Trieste (Italy); Orlando, S. [CNR-IMIP, c/o Lab. Elettra Trieste, 00016 Montelibretti (Italy); Sanz, M. [Instituto de Quimica Fisica Rocasolano, CSIC, 28006 Madrid (Spain); Spezzani, C. [Sincrotrone Trieste, 34149 Trieste (Italy); Stankiewicz, M. [Jagiellonian University, 30-059 Krakow (Poland); Trucchi, D.M. [CNR - ISC, 00016 Montelibretti (Italy)

    2010-02-15

    The present paper describes an experimental apparatus suitable to create and study free clusters by combining laser ablation and synchrotron radiation. First tests on sulfur samples, S, showed the production, through laser ablation, of neutral S{sub n} clusters (n = 1-8). These clusters were ionized using synchrotron radiation at photon energies from 160 eV to 175 eV, across the S 2p core edge. The feasibility of such combined ablation-synchrotron radiation experiments is demonstrated, opening new possibilities on the investigation of free clusters and radicals.

  16. Synchrotron radiation photoionization mass spectrometry of laser ablated species

    International Nuclear Information System (INIS)

    The present paper describes an experimental apparatus suitable to create and study free clusters by combining laser ablation and synchrotron radiation. First tests on sulfur samples, S, showed the production, through laser ablation, of neutral Sn clusters (n = 1-8). These clusters were ionized using synchrotron radiation at photon energies from 160 eV to 175 eV, across the S 2p core edge. The feasibility of such combined ablation-synchrotron radiation experiments is demonstrated, opening new possibilities on the investigation of free clusters and radicals.

  17. Longitudinal emittance control in high intensity proton synchrotrons

    International Nuclear Information System (INIS)

    Experiments of synchrotron injection using the direct fast chopped H- beam extracted from a surface-plasma-type H- ion source has been successfully achieved. The injection phase of the fast chopped beam from linac into the booster synchrotron is adjustable to the center of rf bucket by using this beam. It was obtained that the longitudinal emittance was controlled at the extraction of the booster synchrotron, and that the beam loss during the injection into main ring of the KEK-PS was reduced by this fast chopped beam. (author)

  18. Development of pulsed power modulator for induction synchrotron

    CERN Document Server

    Koseki, K

    2006-01-01

    A pulsed power modulator for the POP experiment of an induction synchrotron has been developed. Various difficulties in the development of the modulator, such as enormous power dissipation at a MOSFET, the resonant ringing in the output waveform, the isolation from the ground potential, and the incorrect action of a gate driving circuit, have been discussed and solved. The developed power modulator is installed into the existing accelerator, KEK 12GeV proton synchrotron. The POP experiment of the induction synchrotron has been successfully conducted. A single RF bunch injected from the 500 MeV booster ring was accelerated to the flat-top energy of 8 GeV.

  19. Proceedings of the workshop on LAMPF II synchrotron

    International Nuclear Information System (INIS)

    Topics covered at the workshop include: considerations for a staged approach to synchrotron construction; consideration of energy and cost for a kaon and/or antiproton factory; changing the transition energy in the main ring for the Fermilab antiproton beam; a lattice with 50% undispersed straight sections; bunch width considerations in a stretcher ring; a self-consistent longitudinal distribution; rapid-cycling tuned rf cavity for synchrotron use; considerations on a high-shunt impedance tunable RF cavity; rotating condensers; low extraction from the stretcher ring; an antiproton source for LAMPF II; synchrotron magnet circuit; power supply and ring magnet options; and notes for a kaon factory design

  20. Visualization of angiogenic vessels by synchrotron radiation microangiography

    International Nuclear Information System (INIS)

    The usefulness of synchrotron radiation microangiography for evaluating angiogenic vessels in regenerative therapy is illustrated. In a rabbit model of microvascular myocardial ischemia, angiogenic vessels in the heart were well visualized. In a rabbit model of hindlimb ischemia, vessel-regenerative therapy with fibroblast growth factor 4-gene incorporated to gelatin hydrogel well ameliorated muscle necrosis. Synchrotron radiation microangiography confirmed significant blood flow increase to adenosine administration in these treated rabbits (vascular responsiveness), but not in the control. Thus, synchrotron radiation microangiography is shown to be useful for the depiction, quantification and evaluation of angiogenic vessels in reproductive therapy. (author)

  1. 3 GeV Booster Synchrotron Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  2. 12th International School and Symposium on Synchrotron Radiation in Natural Sciences (ISSRNS 2014)

    Science.gov (United States)

    Kozak, Maciej; Kwiatek, Wojciech M.; Kowalski, Bogdan

    2015-12-01

    Polish Synchrotron Radiation Society (PTPS - Polskie Towarzystwo Promieniowania Synchrotronowego), founded in 1991, is one of the oldest world scientific societies gathering not only active users of synchrotron radiation, but also a large group of those interested in synchrotron techniques (http://www.synchrotron.org.pl)

  3. Activity report of Synchrotron Radiation Laboratory 2001

    International Nuclear Information System (INIS)

    After moved from Tanashi to Kashiwa Campus in the spring of 2000, the Synchrotron Radiation Laboratory (SRL) has been promoting the High-brilliance Light Source project, Super SOR project, in cooperation with the nationwide user group as well as with the users of the University of Tokyo. In May of 2001, the project has met with a dramatic progress. The Ministry of Education, Science, Sports and Culture organized the Advisory Board and started to discuss the future synchrotron radiation facilities in EUV and SX regime in Japan. Based on extensive discussion, they proposed the new facility consisting of a 1.8 GeV storage ring of 3rd generation type. The University of Tokyo approved to construct the proposed facility in the Kashiwa campus. The plan is supported not only by researchers in academic institutions but also bio- and chemical-industries. We strongly hope the plan will be realized in near future. On the other hand, SRL maintains a branch laboratory in the Photon Factory (PF) High Energy Accelerator Research Organization (KEK) at Tsukuba with a Revolver undulator, two beamlines and three experimental stations (BL-18A, 19A and 19B), which are and fully opened to the outside users. In the fiscal year of 2001, the operation time of the beamlines was more than 5000 hours and the number of the users was about 200. The main scientific interests and activities in the SRL at KEK-PF are directed to the electronic structures of new materials with new transport, magnetic and optical properties. The electronic structures of solid surfaces and interfaces are also intensively studied by photoelectron spectroscopy and photoelectron microscopy. The accelerator group of SRL is carrying out research works of the accelerator physics and developing the accelerator-related technology, many parts of which will be directly applied to the new light source project. This report contains the activities of the staff members of SRL and users of the three beamlines in FY2001. The status of

  4. Potential applications of synchrotron radiation to the treatment of cancer

    International Nuclear Information System (INIS)

    Although conventional radiotherapy remains to be one of the most useful treatments for cancer, it is not the best strategy to maximize the effects on the tumors and minimize the damage to the surrounding tissues due to its physical and biological characteristics. Synchrotron radiation (SR) with uniquely physical and biological advantages may represent an innovative approach for cancer treatment. In recent years, SR-based photon activation therapy, stereotactic synchrotron radiation therapy and micro-beam radiation treatment have been developed, and the results of in vitro and in vivo experiments are very promising. It is necessary to understand the physical and radiobiological principle of those novel strategies before the approach is applied to the clinic. In this paper, we summarize the advances of SR in terms of physical, radiobiological advantages and its potential clinical applications. With the successful operation of shanghai synchrotron radiation, good opportunities in China have been provided for investigations on the treatment of cancer with synchrotron radiation. (authors)

  5. Linac injector options for a relativistic heavy ion synchrotron

    International Nuclear Information System (INIS)

    A growing interest in medical uses for high energy heavy ion beams has led to two recent proposals to build dedicated medical heavy ion synchrotrons. Linear accelerators are generally preferred as injectors for synchrotrons, but in the case of heavy ions with relatively low charge to mass ratios, the required linacs are extremely large, and/or complex, low frequency structures. Cyclotrons were therefore initially proposed as the injectors for the medical synchrotrons. Recently a new radio-frequency quadrupole (RFQ) linac structure has been developed. Its excellent capture, beam transport and acceleration characteristics for low velocity ion beams makes it ideally suited as a heavy ion synchrotron injector either alone or in combination with a drift tube linac

  6. Open Cell Conducting Foams for High Synchrotron Radiation Beam Liners

    OpenAIRE

    Petracca, Stefania; Stabile, Arturo

    2014-01-01

    The possible use of open-cell conductive foams in high synchrotron radiation particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are discussed, and preliminary conclusions are drawn.

  7. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    L. M. Du; J. M. Bai; Z. H. Xie; T. F. Yi; Y. B. Xu; R. Xue; X. H. Wang

    2015-06-01

    In this paper, the scale invariance of the synchrotron jet of Flat Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the fundamental plane, while near-Eddington sources such as FSRQs have not been explicitly studied. The extracted physical properties of synchrotron jet of FSRQs have been shown to be scale invariant using our sample. The results are in good agreement with theoretical expectations of Heinz & Sunyaev (2003). Therefore, the jet synchrotron is shown to be scale independent, regardless of the accretion modes. Results in this article thus lend support to the scale invariant model of the jet synchrotron throughout the mass scale of black hole systems.

  8. Synchrotron radiation sources: general features and vacuum system

    International Nuclear Information System (INIS)

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10-9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.)

  9. Grazing incidence synchrotron radiation optics: correlation of performance with metrology

    International Nuclear Information System (INIS)

    Image distortions produced by a cylinder mirror at the National Synchrotron Light Source are compared with performance predictions based on measurements of surface slope errors in the millimeter spatial period regime made with an optical surface profiler

  10. The use of slow-cycling synchrotrons in injection systems

    CERN Multimedia

    1966-01-01

    The PS improvement programme is concerned with increasing the potential of the PS for high energy physics. It involves developing the performance of the proton synchrotron itself and providing major items of experimental equipment to be used on the machine.

  11. Stability of high-brilliance synchrotron radiation sources

    International Nuclear Information System (INIS)

    This paper discusses the following topics: characteristics of synchrotron radiation sources; stability of the orbits; orbit control; nonlinear dynamic stability; and coherent stability and control. 1 ref., 5 figs., 1 tab

  12. Synchrotrons and their applications in medical imaging and therapy

    International Nuclear Information System (INIS)

    Full text: Australasia's first synchrotron is being built on the campus of Monash University near Melbourne. Is it of any relevance to the medical imaging and radiation therapy communities? The answer is an unequivocal yes. Synchrotrons overcome many of the problems with conventional X-ray sources and as a result make it possible to demonstrate extraordinary advances in both X-ray imaging and indeed in radio-therapy. Synchrotron imaging offers us a window into what is possible and the results are spectacular. Specific examples include lung images that reveal alveolar structure and computed tomography of single cells. For therapy treatments are being pioneered that seem to be effective on high grade gliomas. An overview of the status of medical applications using synchrotrons will be given and the proposed Australian medical imaging and therapy facilities will be described and some of the proposed research highlighted. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  13. On the implementation of computed laminography using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Helfen, L.; Pernot, P.; Elyyan, M. [Institut fuer Synchrotronstrahlung (ISS/ANKA), Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe (Germany); Myagotin, A. [Institut fuer Synchrotronstrahlung (ISS/ANKA), Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe (Germany); Saint-Petersburg State University of Civil Aviation, 196210, Saint-Petersburg (Russian Federation); Mikulik, P. [Department of Condensed Matter Physics, Faculty of Science, Masaryk University, CZ-61137 Brno (Czech Republic); Voropaev, A. [Saint-Petersburg State University of Civil Aviation, 196210, Saint-Petersburg (Russian Federation); Di Michiel, M.; Baruchel, J. [European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble (France); Baumbach, T. [Institut fuer Synchrotronstrahlung (ISS/ANKA), Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe (Germany); LAS, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany)

    2011-06-15

    Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional (3D) imaging of flat, laterally extended objects. Due to outstanding properties of synchrotron light, high spatial resolution down to the micrometer scale can be attained, even for specimens having lateral dimensions of several decimeters. Operating either with a monochromatic or with a white synchrotron beam, the method can be optimized to attain high sensitivity or considerable inspection throughput in synchrotron user and small-batch industrial experiments. The article describes the details of experimental setups, alignment procedures, and the underlying reconstruction principles. Imaging of interconnections in flip-chip and wire-bonded devices illustrates the peculiarities of the method compared to its alternatives and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.

  14. On the implementation of computed laminography using synchrotron radiation

    International Nuclear Information System (INIS)

    Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional (3D) imaging of flat, laterally extended objects. Due to outstanding properties of synchrotron light, high spatial resolution down to the micrometer scale can be attained, even for specimens having lateral dimensions of several decimeters. Operating either with a monochromatic or with a white synchrotron beam, the method can be optimized to attain high sensitivity or considerable inspection throughput in synchrotron user and small-batch industrial experiments. The article describes the details of experimental setups, alignment procedures, and the underlying reconstruction principles. Imaging of interconnections in flip-chip and wire-bonded devices illustrates the peculiarities of the method compared to its alternatives and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.

  15. On the implementation of computed laminography using synchrotron radiation

    Science.gov (United States)

    Helfen, L.; Myagotin, A.; Mikulík, P.; Pernot, P.; Voropaev, A.; Elyyan, M.; Di Michiel, M.; Baruchel, J.; Baumbach, T.

    2011-06-01

    Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional (3D) imaging of flat, laterally extended objects. Due to outstanding properties of synchrotron light, high spatial resolution down to the micrometer scale can be attained, even for specimens having lateral dimensions of several decimeters. Operating either with a monochromatic or with a white synchrotron beam, the method can be optimized to attain high sensitivity or considerable inspection throughput in synchrotron user and small-batch industrial experiments. The article describes the details of experimental setups, alignment procedures, and the underlying reconstruction principles. Imaging of interconnections in flip-chip and wire-bonded devices illustrates the peculiarities of the method compared to its alternatives and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.

  16. Solaris—National synchrotron radiation centre, project progress, May 2012

    International Nuclear Information System (INIS)

    The first Polish synchrotron radiation facility Solaris is being built at the Jagiellonian University in Krakow. The project was approved for construction in February 2010 using European Union structural funds. The Solaris synchrotron is based on the 1.5 GeV facility being built for the MAX IV project at Lund University in Sweden. A general description of the facility is given together with a status of its implementation. The specific Solaris solutions taken for the linear accelerator, beamlines and civil engineering infrastructure are outlined. - Highlights: • The current status and plans for the future development of the Solaris synchrotron are presented. • The layout and basic design parameters of the accelerator are shown and described. • The powerful scientific capabilities of the innovative design of the synchrotron are pointed out

  17. Rapid cycling synchrotron magnet with separate ac and dc circuit

    International Nuclear Information System (INIS)

    In present rapid cycling synchrotron magnets ac and dc currents flow in the same coil to give the desired field. The circuit reactance is made zero at dc and the operating frequency by running the magnet in series with an external parallel resonant LC current. We propose to return the ac flux in a gap next to the synchrotron. The dc coil encloses the ac magnetic circuit and thus links no ac flux. A shorted turn between the dc coil and ac flux enhances the separation of the two circuits. Several interesting developments are possible. The dc coil could be a stable superconductor to save power. The ac flux return gap could be identical with the synchrotron gap and contain a second synchrotron. This would double the output of the system. If the return flux gap were used for a booster, the ac coil power could be greatly reduced or radiation hardening of the ac coil could be simplified

  18. The National Synchrotron Light Source, Part I: Bright Idea

    International Nuclear Information System (INIS)

    The National Synchrotron Light Source (NSLS) was the first facility designed and built specifically for producing and exploiting synchrotron radiation. It was also the first facility to incorporate the Chasman-Green lattice for maximizing brightness. The NSLS was a $24-million project conceived about 1970. It was officially proposed in 1976, and its groundbreaking took place in 1978. Its construction was a key episode in Brookhaven's history, in the transition of synchrotron radiation from a novelty to a commodity, and in the transition of synchrotron-radiation scientists from parasitic to autonomous researchers. The way the machine was conceived, designed, promoted, and constructed illustrates much both about the tensions and tradeoffs faced by large scientific projects in the age of big science. In this article, the first of two parts, I cover the conception, design, and planning of the NSLS up to its groundbreaking. Part II, covering its construction, will appear in the next issue.

  19. The synchrotron beam, a new dimension for contrast media research?

    Science.gov (United States)

    Elleaume, H; Charvet, A M; Le Bas, J F

    1997-01-01

    Synchrotron sources can provide intense, collimated and tunable X-ray beams suitable for medical imaging and research, allowing the use of monochromatic X-rays for human examinations. At the European Synchrotron Radiation Facility (ESRF), a beam line dedicated to medical research is under commissioning. Two imaging programs are being developed, for coronary angiography and cerebral CT. The new monochromatic imaging systems should improve image contrast and provide better image quantification. The properties of synchrotron radiation are described, as well as the instrumentation of the medical beam line and its 2 imaging programs. The new possibilities offered by synchrotron radiation for contrast media research are discussed, the improvement on concentration measurement precision achievable is underlined. PMID:9240078

  20. Coherence Inherent in an Incoherent Synchrotron Radio Source

    Indian Academy of Sciences (India)

    Ashok K. Singal

    2011-12-01

    We show that a partial coherence due to antenna mechanism can be inherently present in any compact synchrotron source, which resolves many long-standing problems in the spectra and variability of compact extragalactic radio sources.

  1. Synchrotron speciation data for zero-valent iron nanoparticles

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include...

  2. CERN PSB Beam Tests of CNAO Synchrotron's Digital LLRF

    CERN Document Server

    Angoletta, M E; De Martinis, C; Falbo, L; Findlay, A; Foglio, R; Hunt, S; Tourres, D; Vescovi, C

    2008-01-01

    The Italian National Centre for Oncological hAdrontherapy (CNAO), in its final construction phase, uses proton and carbon ion beams to treat patients affected by solid tumours. At the heart of CNAO is a 78- meter circumference synchrotron that accelerates particles to up to 400 MeV/u. The synchrotron relies on a digital LLRF system based upon Digital Signal Processors (DSPs) and Field Programmable Gate Array (FPGA). This system implements cavity servoing and beam control capabilities, such as phase and radial loops. Beam tests of the CNAO synchrotron LLRF system were carried out at CERN's Proton Synchrotron Booster (PSB) in autumn 2007, to verify the combined DSP/FPGA architecture and the beam control capabilities. For this, a prototype version of CNAO's LLRF system was adapted to the PSB requirements. This paper outlines the prototype system layout and describes the tests carried out and their results. In particular, system architecture and beam control capabilities were successfully proven by comparison wit...

  3. The Synchrotron Boiler a Thermalizer in Seyfert Galaxies

    CERN Document Server

    Ghisellini, G; Svensson, R; Ghisellini, Gabriele; Haardt, Francesco; Svensson, Roland

    1996-01-01

    There are difficulties in understanding what keeps the plasma thermalized in compact sources, especially during rapid variations of the emitted flux. Particle-particle collisions are too inefficient in hot rarefied plasmas, and a faster process is called for. Synchrotron absorption is such a process. We show that relativistic electrons can thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium distribution is a Maxwellian at low energies, with a high energy power law tail when Compton cooling is important. Assuming that the particles emit completely self absorbed synchrotron radiation while they at the same time Compton scatter ambient UV photons, we calculate the time dependent behavior of the distribution function, and the final high energy spectra.

  4. Plans for use of synchrotron radiation from the Tristan rings

    International Nuclear Information System (INIS)

    Soon after the first success of storing electrons at PF in 1982, some preliminary experiments using synchrotron radiation were started. Since then the rumber of experiments and associated experiences using synchrotron x-radiation has grown so much taht requirements for the beam characteristics of synchrotron x-radiation are now much clearer. Following are some of the requirements: high intensity in the current energy region, higher brightness, more photons in the higher energy region, and sometimes a larger beam size. In order to meet some of these requirements the Tristan rings, the Accumulation and the Main Ring seem to be very suitable in the higher energy region so that plans for use of those rings are under way as a joint project between the Photon Factory and the users' community. The following material has been collected for discussion on the above mentioned use of synchrotron radiation. Further details will be published as proceedings of the planned meetings. (author)

  5. 23 April 2010 - Her Majesty’s Ambassador to Switzerland and Liechtenstein, United Kingdom of Great Britain and Northern Ireland, S. Gillett CMG CVO, accompanied by Beams Department Head P. Collier, visiting the ATLAS control room with Collaboration Deputy Spokesperson, University of Birmingham, D. Charlton and signing the guest book with Director for Research and Scientific Computing S. Bertolucci.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    23 April 2010 - Her Majesty’s Ambassador to Switzerland and Liechtenstein, United Kingdom of Great Britain and Northern Ireland, S. Gillett CMG CVO, accompanied by Beams Department Head P. Collier, visiting the ATLAS control room with Collaboration Deputy Spokesperson, University of Birmingham, D. Charlton and signing the guest book with Director for Research and Scientific Computing S. Bertolucci.

  6. Hearthfire reference concept No. 3. A rapid cycling synchrotron system

    International Nuclear Information System (INIS)

    This report describes a reference design for an accelerator system for heavy ion fusion based on a rapid cycling synchrotron and storage rings. The system irradiates one fusion target per second with 1 MJ, 100 TW (peak) pulses of 20 GeV Xe+8. The major components are a 550 MV linac, eight 60 Hz synchrotrons, four matching rings, 16 storage rings, and 24 final beam lines and lenses

  7. Recent Developments in Synchrotron Mössbauer Reflectometry

    Science.gov (United States)

    Deák, L.; Bottyán, L.; Major, M.; Nagy, D. L.; Spiering, H.; Szilágyi, E.; Tanczikó, F.

    2002-12-01

    Synchrotron Mössbauer Reflectometry (SMR), the grazing incidence nuclear resonant scattering of synchrotron radiation, can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and methodological aspects of SMR are briefly reviewed. Off-specular SMR provides information from the lateral structure of multilayers. In anti-ferromagneticly coupled systems the size of magnetic domains can be measured.

  8. Radio frequency system for the booster synchrotron and INDUS-1

    International Nuclear Information System (INIS)

    The synchrotron radiation facility at the Centre for Advanced Technology (CAT), consists of two storage rings of 450 MeV(INDUS-1) and 2.0 GeV(INDUS-2). In the first phase the storage ring INDUS-1 is being constructed along with a 20 MeV injector microtron and a 700 MeV booster synchrotron. Present paper describes the RF systems for the booster and the storage ring INDUS-1. (author). 2 refs., 1 fig., 1 tab

  9. An introduction to synchrotron radiation techniques and applications

    CERN Document Server

    Willmott, Philip

    2011-01-01

    This book introduces the reader to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter, and the application of synchrotron light in the “classical” techniques, while including some of the most modern technological developments. As much as possible, complicated mathematical derivations and formulas are avoided. A more heuristic approach is adopted, whereby the general physical reasoning behind the equations is highlighted.

  10. National Synchrotron Light Source safety-analysis report

    International Nuclear Information System (INIS)

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given

  11. Femtosecond x-ray pulses from a synchrotron

    OpenAIRE

    Schoenlein, R. W.; Chong, H. H. W.; Glover, T. E.; Heimann, P. A.; Shank, C. V.; Zholents, A.A.; Zolotorev, M.S.

    2000-01-01

    An important frontier in ultrafast science is the application of femtosecond x-ray pulses to the study of structural dynamics in condensed matter. We show that femtosecond laser pulses can be used to generate high-brightness, tunable, femtosecond x-ray pulses from a synchrotron. Performance of existing and proposed femtosecond x-ray beamlines at the Advanced Light Source synchrotron are discussed.

  12. Studies of free and deposited clusters using synchrotron radiation

    International Nuclear Information System (INIS)

    Clusters deposited onto substrates or into rare gas matrices are being studied at present synchrotron radiation sources using absorption or secondary emission type spectroscopies. Thus the electronic and geometric structure of these systems can be determined as a function of particle size. Using the next generation synchrotron radiation sources, it will be possible to extend these studies to free beams of these particles where the results are not perturbed by substrate or matrix effects

  13. Avalanche photodiodes as large dynamic range detectors for synchrotron radiation

    International Nuclear Information System (INIS)

    We investigated silicon-based avalanche photodiodes (APDs) as X-ray detectors in terms of their linearity, maximum counting rates, and dynamic range with 8.4 keV synchrotron radiation. Measurements resulted in counting rates that extend from the APD's noise level of 10-2 Hz to saturation counting rates in excess of 108 Hz. In addition, by monitoring the APD's noise level and photon counting efficiency between synchrotron bursts, we demonstrate nine orders of magnitude dynamic range. ((orig.))

  14. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    OpenAIRE

    Leone, Stephen R.

    2010-01-01

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction me...

  15. Theory of synchrotron radiation: II. Backreaction in ensembles of particles

    OpenAIRE

    Roberto AloisioINFN LNGS; Pasquale Blasi(INAF Arcetri)

    2002-01-01

    The standard calculations of the synchrotron emission from charged particles in magnetic fields does not apply when the energy losses of the particles are so severe that their energy is appreciably degraded during one Larmor rotation. In these conditions, the intensity and spectrum of the emitted radiation depend on the observation time $T_{obs}$: the standard result is recovered only in the limit $T_{obs}\\ll T_{loss}$, where $T_{loss}$ is the time for synchrotron losses. In...

  16. On the polarized beam acceleration in medium energy synchrotrons

    International Nuclear Information System (INIS)

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined

  17. Synchrotron radiation studies of supported metal catalysts

    International Nuclear Information System (INIS)

    Metallic clusters supported on refractory oxides have been used extensively for several decades in the production of chemicals and petroleum derived transportation fuels. Catalysts containing more than one metal component are of particular interest since the addition of a second metal provides a method of controlling the selectivity of the catalyst. That is, the second metal can alter the rates of competing reactions in a complex reaction sequence and thus alter the final product distribution of the reaction. In this work the reactions of cyclohexane in hydrogen over silica supported ruthenium and osmium catalysts were studied. Bimetallic catalysts represent an important class of materials that are of interest both scientifically and technologically. Despite the importance and long-standing use of supported metal catalysts, detailed information on the structure of the metal clusters has been difficult to obtain. The development of x-ray absorption spectroscopy with the increasing availability of synchrotron radiation, however, has provided a powerful and versatile tool for studying the structure of these complex systems. Using the Extended X-ray Absorption Fine Structure (EXAFS) technique, it is possible to obtain information on the local atomic structure of supported monometallic catalytic metals and their interaction with the support. In the discussion that follows the authors will focus on results that have been obtained on the structure of supported bimetallic cluster catalysts

  18. Golden Jubilee photos: The Proton Synchrotron

    CERN Multimedia

    2004-01-01

    Energy record Standing before the CERN personnel in the Main Auditorium on 25 November 1959, John Adams held not a bottle of champagne but a bottle of vodka. It had been presented to him a few months earlier during a visit to Dubna in the Soviet Union, where the world's most powerful accelerator had just been commissioned. He had been given strict instructions not to open the bottle until Dubna's energy record of 10 GeV had been broken. On 24 November, the record was smashed by CERN's brand new machine, the Proton Synchrotron, which accelerated protons at 24 GeV, over twice the energy of the Dubna machine. Before sending the empty bottle back to the Soviet Union, John Adams, who had headed the accelerator's construction, placed the recording of the signal in it as proof of the record. More than 40 years later, the PS is still going strong, delivering beams with particle densities a thousand times greater than when it first started operation. Over the years, other accelerators have grown up around it and the...

  19. Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion

    CERN Document Server

    Zhang, Jian-Fu; Lee, Hyeseung; Cho, Jungyeon

    2016-01-01

    We test a new technique of studying magnetohydrodynamic (MHD) turbulence suggested by Lazarian \\& Pogosyan, using synthetic synchrotron polarization observations. This paper focuses on a one-point statistics, which is termed the polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of wavelengths along a single line of sight. We adopt a ratio $\\eta$ of the standard deviation of the line-of-sight turbulent magnetic field to the line-of-sight mean magnetic field to depict the level of turbulence. When this ratio is either large ($\\eta\\gg1$), which characterizes a turbulent field dominated region, or small ($\\eta\\lesssim0.2$), which characterizes a mean field dominated region, we obtain the polarization variance $\\left\\propto\\lambda^{-2}$ and $\\left\\propto\\lambda^{-2-2m}$, respectively. At small $\\eta$, i.e., the mean field dominated region, we successfully recover the turbulent spectral index by the polarization variance. We find that our si...

  20. Bremsstrahlung and synchrotron radiation from planet magnetospheres

    International Nuclear Information System (INIS)

    Bremsstrahlung and synchrotron radiation from the moving charged particles was calculated in planet magnetospheres. A program package RADIATION was developed for these calculations. The radiative intensity is projected on a far sphere. The directional dependence of the radiation during the penetration of charged particles through the polar cusp was calculated. The program package RADIATION can be also used for treating the radiation of plasma cluster penetrating through the electric double layer, MHD and compress magnetic bow shock, plasma fibers and pinches and in other important situations. Intensity of radiation was derived from advanced and retarded potentials calculated from the Maxwell set of equations. Only radiative fields are displayed (I ∼ 1/r2) and the space intensity distribution does not depend on the distance of the projection sphere. In future non-radiative fields will be treated as well. In this case the distance of the projection sphere will be important parameter. The program was written in FORTRAN CVF 6.5A. The Earth magnetosphere and ionosphere form a natural protective shield from cosmic radiation and solar wind. Various models of the magnetosphere are compared (Tsyganenko, Safrankova-Nemecek, IGRF, and others) in the end of the contribution. (author)

  1. METROLOGICAL CHALLENGES OF SYNCHROTRON RADIATION OPTICS

    International Nuclear Information System (INIS)

    Modern third generation storage rings, require state-of-the-art grazing incidence x-ray optics, in order to monochromate the Synchrotrons Radiation (SR) source photons, and focus them into the experimental stations. Slope error tolerances in the order of 0.5 microRad RMS, and surface roughness well below 5 angstrom RMS, are frequently specified for mirrors and gratings exceeding 300 mm in length. Non-contact scanning instruments were developed, in order to characterize SR optical surfaces, of spherical and aspherical shape. Among these, the Long Trace Profiler (LTP), a double pencil slope measuring interferometer, has proved to be particularly reliable, and was adopted by several SR optics metrology laboratories. The ELETTRA soft x-rays and optics metrology laboratory, has operated an LTP since 1992. We review the basic operating principles of this instrument, and some major instrumental and environmental improvements, that were developed in order to detect slope errors lower than 1 microRad RMS on optical surfaces up to one metre in length. A comparison among measurements made on the same reference flat, by different interferometers (most of them were LTPs) can give some helpful indications in order to optimize the quality of measurement

  2. METROLOGICAL CHALLENGES OF SYNCHROTRON RADIATION OPTICS.

    Energy Technology Data Exchange (ETDEWEB)

    SOSTERO,G.

    1999-05-25

    Modern third generation storage rings, require state-of-the-art grazing incidence x-ray optics, in order to monochromate the Synchrotrons Radiation (SR) source photons, and focus them into the experimental stations. Slope error tolerances in the order of 0.5 {micro}Rad RMS, and surface roughness well below 5 {angstrom} RMS, are frequently specified for mirrors and gratings exceeding 300 mm in length. Non-contact scanning instruments were developed, in order to characterize SR optical surfaces, of spherical and aspherical shape. Among these, the Long Trace Profiler (LTP), a double pencil slope measuring interferometer, has proved to be particularly reliable, and was adopted by several SR optics metrology laboratories. The ELETTRA soft x-rays and optics metrology laboratory, has operated an LTP since 1992. We review the basic operating principles of this instrument, and some major instrumental and environmental improvements, that were developed in order to detect slope errors lower than 1 {micro}Rad RMS on optical surfaces up to one metre in length. A comparison among measurements made on the same reference flat, by different interferometers (most of them were LTPs) can give some helpful indications in order to optimize the quality of measurement.

  3. Wavelength dependent experiments at EMBL synchrotron beamlines

    International Nuclear Information System (INIS)

    Full text. The optimised anomalous X-ray diffraction experiments were proved to facilitate crystal structure determination and often provide data sufficient to solve the phase problem. Two new structures, of glucosamine-6-phosphate synthase and deoxynucleotide kinase, have been recently solved in our group by the method of single isomorphous replacement with anomalous scattering (SIRAS). The phasing power of the single heavy atom derivative was significantly enhanced by using the optimal wavelength close to the absorption edge. Experiments were performed at the EMBL beamlines X31 and BW7A at DESY in Hamburg. Even in the absence of an anomalous scattered the choice of the optimal wavelength for data collection is important to compromise between the flux of synchrotron radiation, diffraction ability of a protein crystal, and absorption effects. Experiments carried out at the wiggler beamline BW7A using a frozen crystal of glucosamine-6-phosphate synthase have shown that the higher quality of data can be achieved using the wavelength of 1.5 A as compared to 1.0 A or 0.8 A provided the other conditions are similar. (author)

  4. Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion

    Science.gov (United States)

    Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon

    2016-07-01

    We test a new technique for studying magnetohydrodynamic turbulence suggested by Lazarian & Pogosyan, using synthetic observations of synchrotron polarization. This paper focuses on a one-point statistics, which is termed polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of the wavelength along a single line of sight. We adopt the ratio η of the standard deviation of the line-of-sight turbulent magnetic field to the line-of-sight mean magnetic field to depict the level of turbulence. When this ratio is large (η \\gg 1), which characterizes a region dominated by turbulent field, or small (η ≲ 0.2), which characterizes a region dominated by the mean field, we obtain the polarization variance \\propto {λ }-2 or \\propto {λ }-2-2m, respectively. At small η, i.e., in the region dominated by the mean field, we successfully recover the turbulent spectral index from the polarization variance. We find that our simulations agree well with the theoretical prediction of Lazarian & Pogosyan. With existing and upcoming data cubes from the Low-Frequency Array for Radio Astronomy (LOFAR) and the Square Kilometer Array (SKA), this new technique can be applied to study the magnetic turbulence in the Milky Way and other galaxies.

  5. Characterization of Medipix3 With Synchrotron Radiation

    CERN Document Server

    Gimenez, E N; Marchal, J; Turecek, D; Ballabriga, R; Tartoni, N; Campbell, M; Llopart, X; Sawhney, K J S

    2011-01-01

    Medipix3 is the latest generation of photon counting readout chips of the Medipix family. With the same dimensions as Medipix2 (256 x 256 pixels of 55 mu m x 55 mu m pitch each), Medipix3 is however implemented in an 8-layer metallization 0.13 mu m CMOS technology which leads to an increase in the functionality associated with each pixel over Medipix2. One of the new operational modes implemented in the front-end architecture is the Charge Summing Mode (CSM). This mode consists of a charge reconstruction and hit allocation algorithm which eliminates event-by-event the low energy counts produced by charge-shared events between adjacent pixels. The present work focuses on the study of the CSM mode and compares it to the Single Pixel Mode (SPM) which is the conventional readout method for these kind of detectors and it is also implemented in Medipix3. Tests of a Medipix3 chip bump-bonded to a 300 mu m thick silicon photodiode sensor were performed at the Diamond Light Source synchrotron to evaluate the performan...

  6. The RF Cycle of the PIMMS Synchrotron

    CERN Document Server

    Crescenti, M; Rossi, S

    1999-01-01

    This paper deals with the study of the rf cycle of the synchrotron of the Proton-Ion Medical Machine Study (PIMMS) hosted at CERN. The cycle comprises the adiabatic trapping, the acceleration and the rf gymnastics, both for protons and fully stripped carbon ions. The injection energy is 20 MeV for protons and 7 MeV/u for carbon. The maximum extraction energies are 250 MeV for protons and 400 MeV/u for carbon ions. The reserved time is less than 1 s, with a maximum magnetic field ramp of less than 3 T/s. The simulations show that the beam stays inside the aperture of the machine, and that there are no longitudinal losses. At the end of the cycle the beam is ready for extraction with a Dp/p of 0.4 %. The peak rf voltage is 3 kV and the frequency range is from 0.49 to 2.85 MHz.

  7. Synchrotron Radiation Studies of Environmental Materials

    Science.gov (United States)

    Olive, Daniel; Terry, Jeff

    2009-11-01

    In the case of environmental contaminants, the mobility of elements changes depending on oxidation state. Remediation techniques often focus on changing the oxidation state in order to immobilize, by forming an insoluble species, or removing by binding a soluble species to an insoluble material. In order to accomplish this immobilization one has to understand all the possible reactions that can change the oxidation state. One of the techniques that can be used to determine the oxidation state and local atomic structure of environmental contaminants under aqueous conditions is x-ray absorption spectroscopy (XAS). Synchrotron radiation was used to excite the absorption edges of As, Tc, and Pu, in order to characterize their oxidation states and structures under environmentally relevant conditions. Granular activated carbon treated with iron has shown promise for the removal of arsenic from contaminated ground water, where XAS measurements have determined that the arsenic bound to iron oxide as AsO4^3-. Pertechnetate (TcO4^-) was found to be reduced to TcO2 in a reaction with amorphous iron sulfide (FeS). Bio-reduction of plutonium has also been studied using bacteria that may be found in nuclear waste repositories resulting in an end product of Pu(III).

  8. Unveiling the Synchrotron Cosmic Web: Pilot Study

    Science.gov (United States)

    Brown, Shea; Rudnick, Lawrence; Pfrommer, Christoph; Jones, Thomas

    2011-10-01

    The overall goal of this project is to challenge our current theoretical understanding of the relativistic particle populations in the inter-galactic medium (IGM) through deep 1.4 GHz observations of 13 massive, high-redshift clusters of galaxies. Designed to compliment/extend the GMRT radio halo survey (Venturi et al. 2007), these observations will attempt to detect the peaks of the purported synchrotron cosmic-web, and place serious limits on models of CR acceleration and magnetic field amplification during large-scale structure formation. The primary goals of this survey are: 1) Confirm the bi-modal nature of the radio halo population, which favors turbulent re-acceleration of cosmic-ray electrons (CRe) during cluster mergers as the source of the diffuse radio emission; 2) Directly test hadronic secondary models which predict the presence of cosmic-ray protons (CRp) in the cores of massive X-ray clusters; 3) Search in polarization for shock structures, a potential source of CR acceleration in the IGM.

  9. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Grischa R. [Monash University, Clayton, Victoria 3800 (Australia); Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M. [Monash University, Clayton, Victoria 3800 (Australia); Bond, Charles S. [The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia (Australia); Buckle, Ashley M. [Monash University, Clayton, Victoria 3800 (Australia); Androulakis, Steve, E-mail: steve.androulakis@monash.edu [Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800 (Australia)

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  10. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    International Nuclear Information System (INIS)

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community

  11. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  12. Analysis and applications of measurements of source dominated hydrocarbon concentrations from the PUMA campaigns in June/July 1999 and January/February 2000 at an urban background site in Birmingham, UK

    Science.gov (United States)

    Hopkins, J. R.; Lewis, A. C.; Seakins, P. W.

    Approximately, hourly C 2-C 7 hydrocarbon concentrations from gas chromatographic measurements are reported for an urban background site in Birmingham, UK, from summer 1999 and winter 1999-2000. Comparison with another measurement site suggests that the observed behaviour is typical of the urban background in the whole conurbation. The lack of any correlation between seasonal variation and OH rate coefficient shows that hydrocarbon concentrations are dominated by local sources. Chemical mass balance techniques have been applied and indicate the main sources are vehicle emissions (exhaust and fugitive) and natural gas leakage. Winter concentrations of isoprene correlate well with butadiene concentrations suggesting an automotive related source. This correlation disappears during the summer when isoprene displays a high correlation with radiation. During a period of the summer campaign ethane and propane concentrations displayed a regular diurnal behaviour, which has been utilized to estimate the ratios of the day/night boundary layer height and natural gas emission rates for the West Midlands conurbation.

  13. Multipositional internal target at the Yerevan synchrotron

    International Nuclear Information System (INIS)

    Main characteristics of the inner targets of three gamma-ray beams from the Erevan synchrotron are given. The accelerated electron beam is dumped on the targets by the orbit local disturbance method. Oscillograms of the beam stretching with time during extraction are given for different target operation. Some drawbacks of the design of the operating targets are pointed out, the main being the large period of time (about 3 hours) required to replace the target radiator. The comparative analysis of other known target designs is presented. The investigation was aimed at the development of a new target design that may ensure the possibility of an operative radiator replacement without breaking the accelerator vacuum with minimum effort and time. The problem has been solved by the modification of the present target design. An additional electromotor has been installed on the target chamber; the shaft pf the electromotor passes through the vacuum seal inside the chamber. The shaft has a gear at the end and it can be engaged with a gear at the main rod end of the target. 8 various radiators may be placed simulltaniously on the gear. The accuracy of installing each radiator in the radial direction is +-0.2 mm, and the accuracy of fixing if in rotation is +-0.3 degree. The replacement of the radiator takes not more than 3 min. The target may be used as an inner or an outer target in experiments in interactions of various materials with a particle beam. The relay control system for the multi-position target is described

  14. Nuclear dynamical diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1 1/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei

  15. 1994 activity report: Stanford Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    The SSRL facility delivered 89% of the scheduled user beam to 25 experimental stations during 6.5 months of user running. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. The standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994. It is not possible to describe in this summary all of the scientific experimentation which was performed during the run. However, the flavor of current research projects and the many significant accomplishments can be realized by the following highlights: A multinational collaboration performed several experiments involving x-ray scattering from nuclear resonances; Studies related to nuclear waste remediation by groups from Los Alamos National Laboratory and Pacific Northwest Laboratories continued in 1994; Diffraction data sets for a number of important protein crystals were obtained; During the past two years a collaboration consisting of groups from Hewlett Packard, Intel, Fisons Instruments and SSRL has been exploring the utility of synchrotron radiation for total reflection x-ray fluorescence (TRXRF); and High-resolution angle-resolved photoemission experiments have continued to generate exciting new results from highly correlated and magnetic materials

  16. Industrial Use of Synchrotron Radiation:. Love at Second Sight

    Science.gov (United States)

    Hormes, Josef; Warner, Jeffrey

    2012-06-01

    Synchrotron radiation (SR) has become one of the most valuable tools for many areas of basic and applied research. In some cases, techniques have been developed that rely completely on the specific properties of synchrotron radiation; in many other cases, using synchrotron radiation has opened completely new and exciting opportunities for conventional techniques. In this chapter, the challenges, problems, and advantages of the industrial use of synchrotron radiation will be highlighted, in an admittedly subjective way, based on the experience of the authors at various synchrotron radiation facilities. "Typical" examples of industrial use of SR will be discussed for all areas of industrial activities, i.e., production, quality control and control of regulatory requirements, and research and development. Emphasis will be put on examples from R&D as this is the most intensively used area. Because this field is much too broad for a complete review here, examples will focus on applications from just three major sectors: biotechnology, pharmaceuticals and cosmetics, and automotive and mining. Environmental research is a fourth area that will be partly covered in the section on regulatory requirements.

  17. Vacuum chambers full of ideas for the Swedish synchrotron

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    CERN’s Vacuum, Surfaces and Coatings group has contributed to the development of vacuum chambers for the MAX IV synchrotron, which has just been officially opened in Sweden.   A section of the new 3 GeV MAX IV synchrotron at the time of installation. In the centre of the magnets you can see the vacuum chamber developed in collaboration with CERN. (Photo: Marek Grabski, MAX IV Vacuum group) On 21 June, the King and the Prime Minister of Sweden officially opened MAX IV, a brand-new synchrotron in Lund, Sweden. The summer solstice, the longest day of the year, was deliberately chosen for the ceremony: MAX IV, a cutting-edge synchrotron, will deliver the brightest X-rays ever produced to more than 2000 users. Some 1500 kilometres away, a team at CERN followed the opening ceremony with a touch of pride. The Vacuum, Surfaces and Coatings group in the Technology department (TE-VSC) participated in the construction of this new synchrotron. Its contribution lies at the very hea...

  18. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  19. Review of third and next generation synchrotron light sources

    International Nuclear Information System (INIS)

    Synchrotron radiation (SR) is having a very large impact on interdisciplinary science and has been tremendously successful with the arrival of third generation synchrotron x-ray sources. But the revolution in x-ray science is still gaining momentum. Even though new storage rings are currently under construction, even more advanced rings are under design (PETRA III and the ultra high energy x-ray source) and the uses of linacs (energy recovery linac, x-ray free electron laser) can take us further into the future, to provide the unique synchrotron light that is so highly prized for today's studies in science in such fields as materials science, physics, chemistry and biology, for example. All these machines are highly reliant upon the consequences of Einstein's special theory of relativity. The consequences of relativity account for the small opening angle of synchrotron radiation in the forward direction and the increasing mass an electron gains as it is accelerated to high energy. These are familiar results to every synchrotron scientist. In this paper we outline not only the origins of SR but discuss how Einstein's strong character and his intuition and excellence have not only marked the physics of the 20th century but provide the foundation for continuing accelerator developments into the 21st century

  20. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  1. The pressure behaviour of actinides via synchrotron radiation

    International Nuclear Information System (INIS)

    Various aspects of performing high-pressure studies with radioactive f-elements using synchrotrons as sources of X-rays are discussed. For ultra-high pressures, intense well-focused beams of 10 to 30 microns in diameter and a single wavelength of 0.3 to 0.7 angstrom are desired for angle dispersive diffraction measurements. Special considerations are necessary for the studies of transuranium elements under pressure at synchrotron facilities. Normally, with these actinides the pressure cells are prepared off-site and shipped to the synchrotron for study. Approved containment techniques must be provided to assure there is not a potential for the release of sample material. The goal of these high-pressure studies is to explore the fundamental science occurring as pressure is applied to the actinide samples. One of the primary effects of pressure is to reduce interatomic distances, and the goal is to ascertain the changes in bonding and electronic nature of the system that result as atoms and electronic orbitals are forced closer together. Concepts of the science being pursued with these f-elements are outlined. A brief discussion of the behaviour of americium metal under pressure performed recently at the ESRF is provided as an example of the high-pressure research being performed with synchrotron radiation. Also discussed here is the important role synchrotrons play and the techniques/procedures employed in high-pressure studies with actinides. (authors)

  2. Synchrotron radiation - a perfect mimic of star light

    International Nuclear Information System (INIS)

    Synchrotrons are an ideal solar mimic (or more generally a mimic of star light). Continuously tuneable from the IR to the VUV (and beyond into the X ray region) they produce light beams with intensities compatible with sunlight, not the multiphoton processes induced by lasers, and therefore have become a standard tool in environmental studies. In this talk I will review how synchrotron facilities have been used to study the photochemical processes in the Earth's stratosphere that lead to ozone formation, and its destruction by CFCs and other anthropogenic pollutant sources and how by exploring the VUV-vis spectroscopy the role of chemical species in both ozone depletion and global warming is being evaluated and used to suggest new more environmental friendly chemical for industry. Synchrotrons may also be used to study the biological effects of environmental change for example by exploring the effect of enhanced UV levels due to loss of stratospheric ozone (the so called ozone hole). Synchrotron radiation may be used to explore the effects of enhanced UV levels of plants and the mechanisms leading to skin cancers, the latter by studying DNA damage. In this talk I will discuss recent experiments using synchrotron radiation to explore DNA damage and what such experiments tell us about mechanisms involved

  3. Modelisation of synchrotron radiation losses in realistic tokamak plasmas

    International Nuclear Information System (INIS)

    Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)

  4. National Synchrotron Light Source 2008 Activity Report

    International Nuclear Information System (INIS)

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R and D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  5. National Synchrotron Light Source 2008 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  6. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  7. Possible applications of synchrotron radiation for materials science

    International Nuclear Information System (INIS)

    In the past 20 years, synchrotron radiation has become an important aid for solid-state physicists, chemists and biologists. On the other hand, the use of synchrotron radiation for experimental studies of a large series of specimens is still in the preliminary stage, however, is necessary for the analyzation of materials. In this paper, present and future possible applications of synchrotron radiation for the characterization of advanced materials are discussed. Beside the further optimization of techniques for the analysis of the atomic structure (e.g. diffraction, absorption spectroscopy), essential progress has to be expected in the field of nondestructive, threedimensional characterization of the microstructure of metallic and ceramic materials, especially during the synthesis of materials. (orig.)

  8. High-temperature diffraction gratings for synchrotron radiation

    International Nuclear Information System (INIS)

    SiC-based mechanically ruled master gratings and replicas are developed for synchrotron radiation instruments. An SiC-based gold replica grating without any thermal deformation due to active cooling is used in a high-photon-flux-soft x-ray monochromator that is installed in a bending magnet beamline. An SiC-based gold master grating is used in a vacuum ultraviolet/soft x-ray monochromator installed in an undulator beamline with slight groove shape deformation. This deformation is caused by the thermal change of the gold film occurring at higher than 250--300 degree C. A method for cleaning carbon-contaminated synchrotron radiation optics is tested. The ultraviolet ozone ashing method effectively cleans carbon contamination on the optics and is useful for extending the lifetime of synchrotron radiation optics

  9. Phase contrast image guidance for synchrotron microbeam radiotherapy.

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C; Larkin, Kieran G

    2016-08-21

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required. PMID:27436750

  10. Phase contrast image guidance for synchrotron microbeam radiotherapy

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C.; Larkin, Kieran G.

    2016-08-01

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required.

  11. Space charge tracking code for a synchrotron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, M.B.; Tajima, T. [Univ. of Texas, Austin, TX (United States); Hiramoto, K. [Hitachi Ltd., Hitachi, Ibaraki (Japan). Hitachi Research Lab.

    1997-06-01

    An algorithm has been developed to compute particle tracking, including self-consistent space charge effects for synchrotron accelerators. In low-energy synchrotrons space charge plays a central role in enhancing emittance of the beam. The space charge effects are modeled by mutually interacting (through the Coulombic force) N cylindrical particles (2-{1/2}-dimensional dynamics) whose axis is in the direction of the equilibrium particle flow. On the other hand, their interaction with synchrotron lattice magnets is treated with the thin-lens approximation and in a fully 3-dimensional way. Since the existing method to treat space charge fully self-consistently involved 3-D space charge effect computation, the present method allows far more realistic physical parameters and runs in far shorter time (about 1/20). Some examples on space charge induced instabilities are presented.

  12. National synchrotron light source medical personnel protection interlock

    International Nuclear Information System (INIS)

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated

  13. The challenges of third-generation synchrotron light source

    International Nuclear Information System (INIS)

    Third-generation synchrotron light sources are specifically designed to operate with long insertion devices that produce very high brightness beams of synchrotron radiation. There are many such facilities now under construction, or in the design stage, all over the world. After a brief review of the main properties of the low emittance storage rings that form the heart of these facilities, we will discuss the particular challenges that accompany their design. These include: the effects of the strong sextupoles required for chromatic correction of the low emittance lattices; impact of machine imperfections on the dynamic aperture; the effects of the linear and nonlinear magnetic fields of the undulators; impedance consequences of long, narrow, undulator vacuum vessels; injection; and beam lifetime. As examples, we take the Advanced Light Source, currently under construction at the Lawrence Berkeley Laboratory, USA, and the European Synchrotron Radiation Facility under construction in Grenoble, France. 8 refs., 8 figs., 1 tab

  14. Applications of synchrotron x-ray fluorescence to extraterrestrial materials

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.R.; Rivers, M.L.; Smith, J.V.

    1986-01-01

    Synchrotron x-ray fluorescence (SXRF) is a valuable technique for trace element analyses of extraterrestrial materials permitting minimum detection limits less than 1 ppM for 20 micrometer spots. SXRF measurements have been performed on iron meteorites and micrometeorites using white synchrotron radiation and an energy dispersive x-ray detector at the National Synchrotron Light Source (X-26C), Brookhaven National Laboratory (NY). Partitioning of Cu between troilite (FeS) and metal in the nine iron meteorites studied suggests sub-solidus re-equilibration in these objects. A technique has been developed for determining self-absorption corrections for filtered, continuum excitation of small specimens, such as stratospheric particles and refractory inclusions in meteorites.

  15. Rising dough and baking bread at the Australian synchrotron

    Science.gov (United States)

    Mayo, S. C.; McCann, T.; Day, L.; Favaro, J.; Tuhumury, H.; Thompson, D.; Maksimenko, A.

    2016-01-01

    Wheat protein quality and the amount of common salt added in dough formulation can have a significant effect on the microstructure and loaf volume of bread. High-speed synchrotron micro-CT provides an ideal tool for observing the three dimensional structure of bread dough in situ during proving (rising) and baking. In this work, the synchrotron micro-CT technique was used to observe the structure and time evolution of doughs made from high and low protein flour and three different salt additives. These experiments showed that, as expected, high protein flour produces a higher volume loaf compared to low protein flour regardless of salt additives. Furthermore the results show that KCl in particular has a very negative effect on dough properties resulting in much reduced porosity. The hundreds of datasets produced and analysed during this experiment also provided a valuable test case for handling large quantities of data using tools on the Australian Synchrotron's MASSIVE cluster.

  16. Synchrotron X-ray induced solution precipitation of nanoparticles

    CERN Document Server

    Lee, H J; Hwu, Y; Tsai, W L

    2003-01-01

    By irradiating a solution in electroless Ni deposition using synchrotron X-rays, Ni composite was found to nucleate homogeneously and eventually precipitate in the form of nanoparticles. The size of the nanoparticles precipitated is rather uniform (100-300 nm depending on the applied temperature). By the addition of an organic acid, well-dispersed nanoparticles could be effectively deposited on glass substrate. The hydrated electrons (e sub a sub q sup -), products of radiolysis of water molecules by synchrotron X-rays, may be responsible for the effective reduction of the metal ions, resulting in homogeneous nucleation and nanoparticle formation. Our results suggest that synchrotron X-ray can be used to induce solution precipitation of nanoparticles and therefore lead to a new method of producing nanostructured particles and coating.

  17. 6th International School “Synchrotron Radiation and Magnetism”

    CERN Document Server

    Bulou, Hervé; Joly, Loic; Scheurer, Fabrice; Magnetism and Synchrotron Radiation : Towards the Fourth Generation Light Sources

    2013-01-01

     Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Sixth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  18. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  19. Transvenous coronary angiography in humans with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  20. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  1. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    International Nuclear Information System (INIS)

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures

  2. RF-knockout Extraction System for the CNAO Synchrotron

    CERN Document Server

    Carmignani, Nicola; Serio, Mario; Balbinot, Giovanni; Bressi, Erminia; Caldara, Michele; Pullia, Marco; Bosser, Jacques; Venchi, Giuseppe

    2010-01-01

    The National Centre for Oncological Hadrontherapy (CNAO) is a centre in Italy for the treatment of patients affected by tumours with proton and carbon ions beams accelerated in a synchrotron. The synchrotron extraction method is based on the use of a betatron core. This work aims to verify, through a theoretical study and a simulation, the possibility of using the RF-knockout extraction method exploiting the existing hardware. A simulation program has been written to simulate the extraction system of the synchrotron with the purpose to define the parameters of the radio frequency. Two types of radio frequencies have been compared in order to obtain a constant spill with the minimum ripple: a carrier wave with a frequency and amplitude modulation, and a gaussian narrow band noise modulated in amplitude. Results of the simulation and considerations on the kicker characteristics are presented

  3. Transvenous coronary angiography in humans with synchrotron radiation

    International Nuclear Information System (INIS)

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images

  4. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Anne [Institut Neel - CNRS, 38 - Grenoble (France); Artioli, G. [Padova Univ. (Italy); Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Dumas, P.; Somogyl, A. [SOLEIL Synchrotron, 91 - Gif sur Yvette (France); Cotte, M. [Centre de Recherche et de Restauration des Musees de France, UMR171, 75 - Paris (France)]|[European Synchrotron Radiation Facility, 38 - Grenoble (France); Kockelmann, W. [Science and Technology Facilities Council, Rutherford Appleton Lab. (United Kingdom); Kolar, J. [Ljubljana Univ., Morana RTD, Slovenia, Faculty of Chemistry and Chemical Technology (Slovenia); Areon, I. [Nova Gorica Univ. (Slovenia); Meden, A.; Strlie, M. [Ljubljana Univ., Faculty of Chemistry and Chemical Technology (Slovenia); Pantos, M. [Daresbury Laboratory, Warrington (United Kingdom); Vendrell, M. [Barcelona Univ., dept. of Crystallography and Mineralogy (Spain); Wess, T. [Cardiff Univ., School of Optometry and Institute of Vision (Ireland); Gunneweg, J. [Hebrew Univ., Jerusalem (Israel)

    2007-07-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures.

  5. Evidence for Synchrotron Bubbles from GRS 1915+105

    CERN Document Server

    Ishwara-Chandra, C H; Rao, A P

    2002-01-01

    We present GMRT observations of the Galactic microquasar GRS 1915+105 at 1.28 GHz for 8 days from 2001 June 18 to July 1. We have seen several isolated radio flares of varying magnitudes (20 - 50 mJy) and durations (6 - 35 min) and we model them as due to adiabatically expanding synchrotron emitting clouds (synchrotron bubbles) ejected from the accretion disk. By applying this model, we provide a new method to estimate the electron power-law index p, hence the spectral index, from single frequency radio observations. This method does not require correction for the optical depth time delay effects which may be important in the case of optically thick radio emission. Using our estimated value of p and simultaneous multiwavelength data from literature, we have calculated the time of ejection of the synchrotron plasma and the time delays at different observed frequencies. Our estimates are in good agreement with the observed time delays.

  6. K-Edge Subtraction Angiography with Synchrotron X-Rays

    CERN Document Server

    Giacomini, J C

    1996-01-01

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with r...

  7. Synchrotron X-ray analyses in art and archaeology

    International Nuclear Information System (INIS)

    X-ray synchrotron techniques play an increasingly important part in the analysis strategy of archaeological materials, in order to determine the source materials, their provenance and the ancient techniques of preparation. In favourable cases, the microstructure (crystallite size and deformation) can be interpreted as a residual mark of the elaboration techniques and origin of ancient polycrystalline materials. Our study on cosmetic recipes and make-up manufacturing in Antiquity, illustrates some possible applications of non-destructive synchrotron techniques, complementing other standard analytical tools

  8. Characteristics of synchrotron radiation and of its sources

    International Nuclear Information System (INIS)

    Synchrotron light emission and the classical relativistic electromagnetic theory describing it are reviewed. The electron optics of storage rings are considered in some detail, beginning with the ideal electron orbit and the distribution which electrons take around it. This is folded with the process of synchrotron light emission itself to define the effective photon source. The predictions of classical relativistic theory are compared with experiment, and one finds agreement within the experimental uncertainties. Further refinements, such as wiggler magnets and free electron lasers are also considered

  9. Study of beam dynamics at cooler synchrotron TARN-II

    International Nuclear Information System (INIS)

    Several kinds of beam diagnostic instruments, have been developed at cooler-synchrotron TARN-II. These are intended to study beam dynamics at low beam current of several microamperes and then have high sensitivity of good S/N ratio. In addition, the acceleration system, especially low level RF system, has been improved to attain the maximum beam energy. With the successful performance of these instrumentations, the study of beam dynamics are presently being carried out. For example, the synchrotron acceleration of the light ions was achieved up to 220 MeV/u without any beam loss. (author)

  10. Synchrotron radiation sources INDUS-1 and INDUS-2

    International Nuclear Information System (INIS)

    The synchrotron radiation sources, INDUS-1 and INDUS-2 are electron storage rings of 450 MeV and 2 GeV beam energies respectively. INDUS-1 is designed to produce VUV radiation whereas INDUS-2 will be mainly used to produce x-rays. INDUS-1 is presently undergoing commissioning whereas INDUS-2 is under construction. Both these rings have a common injector system comprising of a microtron and a synchrotron. Basic design features of these sources and their injector system are discussed in this paper. The radiation beamlines to be set up on these sources are also described. (author)

  11. X-ray intensity interferometer for synchrotron radiation

    International Nuclear Information System (INIS)

    We propose to measure the transverse coherence of an x-ray beam, for the first time, by Hanbury Brown intensity interferometry. Our approach is to use an intensity interferometer adapted to the soft x-ray region. The X1 or X13 soft x-ray undulator at the National Synchrotron Light Source will supply the partially coherent x-rays. We are developing this technique to characterize the coherence properties of x-ray beams from high brilliance insertion devices at third-generation synchrotron light facilities such as the Advanced Photon Source

  12. Project X with Rapid Cycling and Dual Storage Superconducting Synchrotrons

    CERN Document Server

    Piekarz, Henryk

    2012-01-01

    Investigation of neutrino oscillations and rare meson decays are main physics goals of Project X. The successful physics outcome relies on the feasibility of high-intensity neutrino and meson (K+ and \\mu) beams. In order to meet this goal we propose accelerator system dominated by the synchrotrons (Option A) as a technologically easier and significantly more cost-effective alternative to the accelerator system dominated by the linear accelerators (Option B). The synchrotron-based accelerator system and its main components are outlined and the expected proton beam power for the neutrino and meson beams production is presented and discussed.

  13. Energy dispersive spectroscopy using synchrotron radiation: intensity considerations

    International Nuclear Information System (INIS)

    Detailed considerations are given to the reliability of energy dependent integrated intensity data collected from the pressure cavity of a diamond-anvil pressure cell illuminated with heterochromatic radiation from a synchrotron storage ring. It is demonstrated that at least in one run, the electron beam current cannot be used to correct for energy-intensity variations of the incident beam. Rather there appears to be an additional linear relationship between the decay of the synchrotron beam and the magnitude of the background intensity. 13 refs., 7 figs

  14. Measurement of accelerated electron beam current at the Erevan synchrotron

    International Nuclear Information System (INIS)

    A system which ensures high accuracy of accelerated electro n beam current measurement at the synchrotron is described. The expected limits for the frequency characteristic of the measured magnitude, i.e. current of accelerated electron beam, are analyzed. A structure of measurement devices ensuring a necessary frecuency range for measured signals is chosen. A magnetoinduction feedback converter operating in aperiodic mode is taken as a primary beam current monitor. The parameters of the converter with a coincidence amplifier were calculated with a computer. Oscillograms of accelerated electron beam current corresponding to different operational modes of the synchrotron are presented

  15. RF-system design of proton synchrotron for hadron therapy

    International Nuclear Information System (INIS)

    A conceptual design of the RF-system for the medical proton synchrotron is presented. The synchrotron will be able to accelerate high-intensity proton beam of 6.25 · 1010 protons per pulse till the energy of 60 - 220 MeV with the repetition rate of 1 Hz. The RF-system consists of a RF-cavity with a magnetic material, a power amplifier, a tuning control system and a beam control system. The RF-system must supply 2 kV peak voltage in the frequency range from 1 to 5 MHz

  16. SYNCHROTRON RADIATION XRF MICROPROBE STUDY OF HUMAN BONE TUMOR SLICE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described Using the bovine liver as the standard reference.the minimum detection limit(MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe.The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated The experimental result relation to the clinical medicine was also discussed.

  17. Extended 1D Method for Coherent Synchrotron Radiation including Shielding

    CERN Document Server

    Sagan, David; Mayes, Christopher; Sae-Ueng, Udom

    2008-01-01

    Coherent Synchrotron Radiation can severely limit the performance of accelerators designed for high brightness and short bunch length. Examples include light sources based on ERLs or FELs, and bunch compressors for linear colliders. In order to better simulate Coherent Synchrotron Radiation, the established 1-dimensional formalism is extended to work at lower energies, at shorter bunch lengths, and for an arbitrary configuration of multiple bends. Wide vacuum chambers are simulated by means of vertical image charges. This formalism has been implemented in the general beam dynamics code "Bmad" and its results are here compared to analytical approximations, to numerical solutions of the Maxwell equations, and to the simulation code "elegant".

  18. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  19. Challenges in Biology and Medicine with Synchrotron Infrared Light

    International Nuclear Information System (INIS)

    The brightness (or brilliance) of synchrotron radiation was exploited in infrared microspectroscopy. Among application of this synchrotron-based microanalytical technique, biological and biomedical investigations, at the diffraction-limited spot size, are exhibit of an increasing interest among almost all the existing infrared beamline worldwide. This paper is presenting the main properties of such a source, coupled with an infrared microscope. Several important applications in biomedical field are reported: cancer cells studies and drug effects, human substantia nigra in Parkinson's disease, β-amyloids deposits in Alzheimer's disease. (authors)

  20. National Synchrotron Light Source 2010 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of

  1. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  2. Research by industry at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    The world's foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.)

  3. India's first synchrotron radiation source Indus-1: a historical perspective

    International Nuclear Information System (INIS)

    The first Indian synchrotron radiation source Indus-l was commissioned in May 1999. This article briefs the development of accelerator based research programme in India and discusses the historical perspectives starting from the year 1953 at and goes to the development of Indus-1 and Indus-2 at Centre for Advanced Technology at Indore

  4. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  5. Characterizing THz Coherent Synchrotron Radiation at Femtosecond Linear Accelerator

    Institute of Scientific and Technical Information of China (English)

    LIN Xu-Ling; ZHANG Jian-Bing; LU YU; LUO Feng; LU Shan-Liang; YU Tie-Min; DAI Zhi-Min

    2009-01-01

    The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported.We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.

  6. Science minister puts French synchrotron back on the agenda

    CERN Multimedia

    2000-01-01

    The new French minister of Science has said that he would pursue plans to build a synchrotron in France, reversing the decision of his predecessor. He is still intending to participate in the British project Diamond though (1/2 page).

  7. 200 MeV RF linac for synchrotron injection

    International Nuclear Information System (INIS)

    Construction has been completed on an electron linear accelerator for the Brookhaven National Laboratory. This accelerator will be used for the injection of a 200 MeV electron beam into a synchrotron for lithography experiments. This paper describes the conceptual design of the linac, its e-gun pulser, and its control and timing systems. 3 figs., ref

  8. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  9. Applying Frequency Map Analysis to the Australian Synchrotron Storage Ring

    CERN Document Server

    Tan, Yaw-Ren E; Le Blanc, Gregory Scott

    2005-01-01

    The technique of frequency map analysis has been applied to study the transverse dynamic aperture of the Australian Synchrotron Storage Ring. The results have been used to set the strengths of sextupoles to optimise the dynamic aperture. The effects of the allowed harmonics in the quadrupoles and dipole edge effects are discussed.

  10. Diagnostics of coated fuel particles by neutron and synchrotron radiography

    International Nuclear Information System (INIS)

    The nondestructive monitoring of coated fuel particles has been performed using contact neutron radiography and refraction radiography based on synchrotron radiation. It is shown that these methods supplement each other and have a high potential for determining the sizes, densities, and isotopic composition of the particle components.

  11. Vacuum design of advanced and compact synchrotron light sources

    International Nuclear Information System (INIS)

    This book contains papers dealing with the following main topics: Vacuum considerations for synchrotron radiation sources; Machine design; Compact light sources for x-ray lithography; Surface cleaning and conditioning; Ion trapping, gas desorption, lifetime; Wigglers, undulators chamber design; and General conditioning of pumps, machines and gauges

  12. Summary of session 3 on synchrotron radiation and beam dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; /Fermilab; Metral, E.; /CERN

    2010-12-01

    We summarize presentations, discussions and general conclusions of the Workshop session on 'Beam Dynamics Issues'. Major subjects include effects due to synchrotron radiation (SR), cryogenic loads, electron cloud, impedances, intra-beam scattering (IBS) and beam-beam interactions.

  13. Spatially Varying X-ray Synchrotron Emission in SN 1006

    CERN Document Server

    Dyer, K K; Borkowski, K; Petre, R; Dyer, Kristy; Reynolds, Stephen P; Borkowski, Kazik; Petre, Rob

    2001-01-01

    A growing number of both galactic and extragalactic supernova remnants show non-thermal (non-plerionic) emission in the X-ray band. New synchrotron models, realized as SRESC and SRCUT in XSPEC 11, which use the radio spectral index and flux as inputs and include the full single-particle emissivity, have demonstrated that synchrotron emission is capable of producing the spectra of dominantly non-thermal supernova remnants with interesting consequences for residual thermal abundances and acceleration of particles. In addition, these models deliver a much better-constrained separation between the thermal and non-thermal components, whereas combining an unconstrained powerlaw with modern thermal models can produce a range of acceptable fits. While synchrotron emission can be approximated by a powerlaw over small ranges of energy, the synchrotron spectrum is in fact steepening over the X-ray band. Having demonstrated that the integrated spectrum of SN 1006, a remnant dominated by non-thermal emission, is well desc...

  14. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  15. Synchrotron radiation damage on insulating materials of TRISTAN magnets

    International Nuclear Information System (INIS)

    The shielding design to protect the coils of the bending magnet against synchrotron radiation was performed. The absorbed doses to the magnet components, particularly on the insulating material such as epoxy resin of coil or rubber hoses for water cooling, were measured. The property against radiation exposure was studied. 6 refs., 5 figs

  16. Nuclear Bragg diffraction of synchrotron x-rays

    International Nuclear Information System (INIS)

    In the last few years several groups have successfully carried out experiments involving the excitation of nuclear resonances using synchrotron radiation. All the experiments so far have used 57Fe as the resonant nucleus. The extremely narrow width of the 14.4 keV resonance in 57Fe makes these experiments very difficult at even the highest-brightness synchrotron beam lines currently available, so much effort is being devoted toward improvements in equipment and techniques. The general aim of this work is to use resonant scattering to produce high-flux beams of extremely monochromatic radiation, which can then be used as source beams for a variety of experiments. This talk, however, will stress the kinds of physics questions that can be answered using broad-band synchrotron radiation to induce resonant nuclear diffraction in perfect crystal samples. Experiments of this type are being carried out today, albeit with difficulty, using present synchrotron sources. They will become technically easy when advanced sources such as the APS become available, and it is expected that nuclear Bragg diffraction will become a standard technique

  17. Moessbauer filtration of synchrotron radiation: advances and perspectives

    International Nuclear Information System (INIS)

    A short review of the conventional ways of Moessbauer filtration (obtaining highly monochromatized radiation limited only by the energy width of the Moessbauer line) is presented and some new proposals related to the Moessbauer filtration of synchrotron radiation (SR) are discussed

  18. Workshop on performance optimization of synchrotron radiation storage rings

    International Nuclear Information System (INIS)

    The purpose of this workshop was to provide a forum, with user participation, for accelerator physicists the synchrotron light source field to discuss current and planned state-of-the-art techniques storage ring performance. The scope of the workshop focused on two areas: lattice characterization and measurement, and fundamental limitations on low frequency beam stability

  19. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  20. Synchrotron radiation, neutron, and mass spectrometry techniques at user facilities

    OpenAIRE

    Sutton, S. R.; Caffee, M. W.; Dove, M. T.

    2006-01-01

    User research facilities around the world offer tremendous opportunities for scientific experimentation by members of the Earth science community. Synchrotron radiation sources, neutron sources, mass spectrometers, and others represent a powerful force in tackling complex scientific problems. In these techniques, Earth materials are bombarded with beams of ions, subatomic particles and/or photons to learn the secr...

  1. Deutsches Elektronen-Synchrotron DESY. Scientific annual report 1993

    International Nuclear Information System (INIS)

    The main event in 1993 was the commissioning start-up of DESY as synchrotron radiation source. The annual report covers activities in research (also DESY-Zeuthen), machinery, central data processing, development, and operation. There is much interest in international cooperation. (orig.)

  2. Discovery of synchrotron emission from a YSO jet

    Directory of Open Access Journals (Sweden)

    Carrasco-González Carlos

    2013-12-01

    Full Text Available Synchrotron emission at radio wavelengths is commonly found in relativistic jets from active galactic nuclei (AGNs and microquasars and allows the study of the magnetic field in these kind of jets. In contrast, the radio emission from jets from young stellar objecs (YSOs is usually of very different nature: thermal free-free emission, which does not provide direct information about their magnetic field. Thus, that the magnetic field is still one of the most unknown physical parameters in these YSO jets. However, very recently, we detected for the first time polarized synchrotron emission from of a YSO (HH 80-81, a result that has two important consequences. First, it allows to study the magnetic field in a YSO jet by analyzing the properties of the synchrotron emission, in a similar way than in the case of AGN jets. Secondly, the presence of synchrotron emission in a YSO jet implies the presence of relativistic particles, and therefore, an acceleration mechanism that should be taken place in these "slow" jets. These results open new windows for the study of YSO jets in a wide range of wavelengths, from radio to X- and Gamma-rays.

  3. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs.

  4. RF system of a synchrotron for protons and heavy ions

    International Nuclear Information System (INIS)

    In this paper the potential and the constraints of producing many kilovolts of rf accelerating voltage for synchrotrons in a cumbersome board frequency range are reviewed from the electrical engineering standpoint. This paper elaborates on numbers and limits which determine cost and complexity of the rf system. (orig./HSI)

  5. The national synchrotron ray of hope or ring of fire?

    CERN Document Server

    Hollis, T

    2002-01-01

    While most agree the synchrotron will be a boost for Australian science, the author reports on concerns about the cost of building and operating the project Biotech industry representatives want to know how that $100 million will be used and want to see the government's justification for pouring more than a third of its total technology budget for 2001/2 into the synchrotron. They, and the opposition, also want to know where the private money will come from to make up the balance or whether the state will ultimately have to pitch in the rest itself. Indeed, an Auditor-General's report released last week warned of the need for comprehensive financial risk management of the facility. The National Synchrotron, to be built at Monash University, will be a hollow ring of about 60 metres diameter and initially housing nine beamlines, each capable of performing independent experiments simultaneously. According to Dr Richard Garrett, director of the Australian Synchrotron Research Program (http://www.ansto.gov.au/natf...

  6. Design of slow extraction system for therapy synchrotron

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Quan; SONG Ming-Tao; WEI Bao-Wen

    2009-01-01

    Based on the optimized design of the lattice for therapy synchrotron and considering the requirement of radiation therapy,the third order resonant extraction is adopted.Using the momentum-amplitude selection method,the extraction system is designed and optimized.An extraction efficiency of more than 97%and a momentum spread less than 0.11%are obtained.

  7. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba+ ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  8. The use of a classification of residential neighbourhoods (ACORN) to demonstrate differences in dental health of children resident within the south Birmingham health district and of different socio-economic backgrounds.

    Science.gov (United States)

    Elley, K M; Langford, J W

    1993-06-01

    This study was undertaken to evaluate variations in the dental health of children living within fluoridated South Birmingham, using a classification of residential neighbourhoods (ACORN) as a descriptor of socio-economic status, and to evaluate the change in these differences over time. Five-year-old children were examined as part of the rolling programme of epidemiological surveys co-ordinated by the British Association for the Study of Community Dentistry (BASCD) in 1987 and 1989/90. The ACORN classification of each child was determined from the postal code of the home address. ACORN groups were amalgamated into three ranked divisions. There was a variation in dental health both in 1987 and 1989/90; children from disadvantaged groups had the poorest dental health. There was more marked variation in 1987 than in 1989/90. The reduction in inequality during this period was due to a relatively greater improvement in the dental health of the children from the more socially deprived areas. PMID:8402299

  9. Synchrotron Physics and Industry: new opportunities for technology transfer

    International Nuclear Information System (INIS)

    Full text: In 1979, with the opening in the UK of the world's first dedicated synchrotron light source, the SRS, experimental science in virtually every discipline underwent what amounted to a major revolution. The unique nature of synchrotron radiation, with its intensity, brightness, polarization, time structure and energy spectrum offer an unequalled probe of matter in all its states. The decades since have seen the development of a wide range of associated experimental techniques which harness the power of this radiation, including photoemission, EXAFS, spectroscopy, imaging and, of course, protein crystallography. These in turn have been applied to studies from surface science to molecular biology. The advances using synchrotron radiation throughout the 1980s and '90s naturally had a major impact on fundamental research, particularly in unraveling the structures of large proteins and in understanding the properties of semiconductors and surfaces. Much of this work could not have been accomplished without access to one of the world's increasing number of synchrotron facilities, of which there are now approaching 100. However, industrial awareness of the opportunities afforded by the use of synchrotron radiation was restricted to the handful of major multinational corporations, primarily in Europe, the USA and Japan, whose fundamental research staff had access. While there were major programmes in certain specific areas, such as X-ray lithography for semiconductor LSI fabrication, the general level of industrial involvement was low. But today, this is changing. In protein crystallography, for example, the use of synchrotron radiation in structure determination puts the 1PX' technique on the same level as NMR in terms of its routine utility. It has become an essential tool to drug designers in biopharmaceuticals, where access to the structural data is increasingly thought of almost as a service, rather than fundamental research. Pioneering work on medical imaging

  10. Precision mirror mounting system for UHV compatible synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    A ultra high vacuum compatible system for precision adjustment of the orientation and location of a mirror with respect to incident synchrotron radiation beam has been designed. This will be used for the upcoming photoelectron spectroscopy beamline to be installed on Indus-1. Our ray tracing calculations indicate that positioning of mirror with respect to synchrotron radiation beam direction and other beam line optical components is very critical for good resolution and photon flux. This requires the mirror to have various motions with a precision control over these motions of the order of millidegree for angular and five micron for linear motions. Based on these calculations, design of mirror mount system having various kinematic motions in ultra high vacuum has been worked out and incorporated in the mechanical design of the system. (author). 7 refs., 4 figs

  11. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    CERN Document Server

    Thurman-Keup, R; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-01-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measur...

  12. Upgrade of multiple-energy synchrotron operation at HIMAC

    International Nuclear Information System (INIS)

    In scanned heavy-ion therapy, the narrow beam is required to reduce the damage of healthy tissues around the target tumor. The multiple-energy synchrotron operation with stepwise flattops has been developed at HIMAC in NIRS, in order to perform scanning irradiation without using the energy degrader which increases the beam size by the multiple scattering. The operation can vary the extraction beam energy quickly from 430 to 56 MeV/n by gradually decelerating the stored beam in the synchrotron ring. The number of the energy steps required from the scanning irradiation system is about 200. To meet the requirement with a shorter commissioning time, we proposed a method to determine the beam- and device-parameter settings for all energies by an interpolation method. As a result, it was confirmed that it is possible to produce the multiple-energy operation having many energy steps by small manual adjustments for less energy steps. (author)

  13. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  14. First Beam Measurements with the LHC Synchrotron Light Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Thibaut; /CERN; Bravin, Enrico; /CERN; Burtin, Gerard; /CERN; Guerrero, Ana; /CERN; Jeff, Adam; /CERN; Rabiller, Aurelie; /CERN; Roncarolo, Federico; /CERN; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  15. Rapid cycling medical synchrotron and beam delivery system

    Science.gov (United States)

    Peggs, Stephen G.; Brennan, J. Michael; Tuozzolo, Joseph E.; Zaltsman, Alexander

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  16. Materials science research at the European Synchrotron Radiation Facility

    CERN Document Server

    Kvick, A

    2003-01-01

    The Materials Science Beamline ID11 at the European Synchrotron Radiation Facility in Grenoble, France is dedicated to research in materials science notably employing diffraction and scattering techniques. Either an in-vacuum undulator with a minimum gap of 5 mm or a 10 kW wiggler giving high-flux monochromatic X-rays generates the synchrotron radiation in the energy range 5-100 keV. The dominant research is in the area of time-resolved diffraction, powder diffraction, stress/strain studies of bulk material, 3D mapping of grains and grain interfaces with a measuring gauge down approx 5x5x50 mu m, and microcrystal diffraction. A variety of CCD detectors are used to give time-resolution down to the millisecond time regime.

  17. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-12-13

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  18. Precise stress measurements with white synchrotron x rays

    International Nuclear Information System (INIS)

    In situ measurement of stress in polycrystalline samples forms the basis for studies of the mechanical properties of materials with very broad earth science and materials science applications. Synchrotron x rays have been used to define the local elastic strain in these samples, which in turn define stress. Experimental work to date has been carried out on a prototype detection system that provided a strain measurement precision >10-4, which corresponds to a stress resolution >50 MPa for silicate minerals. Here we report operation of a new, permanent, energy dispersive detection system for white radiation, which has been developed at the National Synchrotron Light Source. The new system provides differential strain measurements with a precision of 3x10-5 for volumes that are 50x50x500 μm3. This gives a stress precision of about 10 MPa for silicate minerals.

  19. Experience with interactive control software at the CERN proton synchrotron

    CERN Document Server

    Carpenter, B E

    1973-01-01

    The computer system includes, in addition to the central computer, a Varian 620 used for real-time function generation and two Imlac PDS1 display mini-computers used as operator consoles. The configuration is being expanded to include 3 PDP-11/45's and links with various other online computers associated with the synchrotron, and the present survey of interactive control software in use with the old configuration was carried out as part of the planning of this expansion. This paper describes the various means of computer access available to the synchrotron operators and development engineers, and outlines the associated software. One of the more flexible pieces of software, an on-line syntax handler, is discussed in more detail. (3 refs).

  20. Synchrotron radiation in transactinium research report of the workshop

    International Nuclear Information System (INIS)

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe2 and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials

  1. Lung cancer and angiogenesis imaging using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaoxia; Zhao Jun; Xu, Lisa X [Biomedical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai (China); Sun Jianqi; Gu Xiang; Liu Ping [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Xiao Tiqiao [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai (China)], E-mail: pingliu@sjtu.edu.cn, E-mail: lisaxu@sjtu.edu.cn

    2010-04-21

    Early detection of lung cancer is the key to a cure, but a difficult task using conventional x-ray imaging. In the present study, synchrotron radiation in-line phase-contrast imaging was used to study lung cancer. Lewis lung cancer and 4T1 breast tumor metastasis in the lung were imaged, and the differences were clearly shown in comparison to normal lung tissue. The effect of the object-detector distance and the energy level on the phase-contrast difference was investigated and found to be in good agreement with the theory of in-line phase-contrast imaging. Moreover, 3D image reconstruction of lung tumor angiogenesis was obtained for the first time using a contrast agent, demonstrating the feasibility of micro-angiography with synchrotron radiation for imaging tumor angiogenesis deep inside the body.

  2. Transverse beam coupling impedance of the CERN Proton Synchrotron

    Science.gov (United States)

    Persichelli, S.; Migliorati, M.; Biancacci, N.; Gilardoni, S.; Metral, E.; Salvant, B.

    2016-04-01

    Beam coupling impedance is a fundamental parameter to characterize the electromagnetic interaction of a particle beam with the surrounding environment. Synchrotron machine performances are critically affected by instabilities and collective effects triggered by beam coupling impedance. In particular, transverse beam coupling impedance is expected to impact beam dynamics of the CERN Proton Synchrotron (PS), since a significant increase in beam intensity is foreseen within the framework of the LHC Injectors Upgrade (LIU) project. In this paper we describe the study of the transverse beam coupling impedance of the PS, taking into account the main sources of geometrical impedance and the contribution of indirect space charge at different energies. The total machine impedance budget, determined from beam-based dedicated machine measurement sessions, is also discussed and compared with the theoretical model.

  3. HESYRL: a dedicated synchrotron radiation laboratory in China

    International Nuclear Information System (INIS)

    The HESYRL national synchrotron radiation laboratory was first proposed in 1977 as a conclusion of a general planning meeting on nationwide development of natural science and technology at which a topic was the application of synchrotron radiation. A study group was formed in 1978 to carry out preliminary research and prototype development work. The final approval of the project was given in April 1983 and the lab was soon founded. Designs of the main facilities and building completed in Oct 1984. The ground breaking was in Nov 1984. Manufacturing and purchasing of all the equipment and components are now in progress. The overall layout of HESYRL project is shown. the main facilities are an 800 MeV electron storage ring, a 88 meter transport line and a 240 MeV linac as the injector. Some basic considerations in the selecting of major machine parameters are discussed

  4. Lung cancer and angiogenesis imaging using synchrotron radiation

    Science.gov (United States)

    Liu, Xiaoxia; Zhao, Jun; Sun, Jianqi; Gu, Xiang; Xiao, Tiqiao; Liu, Ping; Xu, Lisa X.

    2010-04-01

    Early detection of lung cancer is the key to a cure, but a difficult task using conventional x-ray imaging. In the present study, synchrotron radiation in-line phase-contrast imaging was used to study lung cancer. Lewis lung cancer and 4T1 breast tumor metastasis in the lung were imaged, and the differences were clearly shown in comparison to normal lung tissue. The effect of the object-detector distance and the energy level on the phase-contrast difference was investigated and found to be in good agreement with the theory of in-line phase-contrast imaging. Moreover, 3D image reconstruction of lung tumor angiogenesis was obtained for the first time using a contrast agent, demonstrating the feasibility of micro-angiography with synchrotron radiation for imaging tumor angiogenesis deep inside the body.

  5. Aharonov-Bohm Effect in Cyclotron and Synchrotron Radiations

    CERN Document Server

    Bagrov, V G; Levin, A; Tlyachev, V B

    2000-01-01

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra

  6. Synchrotron X-Ray Radiation and Deformation Studies

    DEFF Research Database (Denmark)

    Fæster Nielsen, Søren

    boundary morphology. Another X-ray diffraction technique was applied on the three-dimensional X-ray diffraction (3DXRD) microscope at the ESRF synchrotron. The microscope uses a new technique based on ray tracing of diffracted high energy X-rays, providing a fast and non-destructive scheme for mapping the......In the present thesis two different synchrotron X-ray diffraction techniques capable of producing non-destructive information from the bulk of samples, have been investigated. Traditionally depth resolu-tion in diffraction experiments is obtained by inserting pinholes in both the incoming and...... machining. The conical slit has six 25µm thick conically shaped openings matching six of the Debye-Scherrer cones from a fcc powder. By combining the conical slit with a micro-focused incoming beam of hard X-rays an embedded gauge volume is defined. Using a 2D detector, fast and complete information can be...

  7. Rf capture studies for injection into a synchrotron

    International Nuclear Information System (INIS)

    The capture process for a rapid cycling protron synchrotron is studied by numerical simulation. The rf-programming is optimized to allow efficient capture such that minimum particle losses and reasonable capture voltage are attained. The total capture time is constrained to be less than 700 μseconds. Two methods of trapping the injected beam by the synchrotron rf system are examined: by stationary adiabatic capture and by synchronous injection in a standing bucket of the ring. In the adiabatic method, the non-linear function of Lilliequist and Symon is employed. The simulation allows the ''tracking back'' of the original distribution of any set of particles, in particular of those not captured at a given time, which is useful in studying injection alternatives such as shaping the phase-space density prior to injection. The simulation results will be used to design a chopper system to facilitate loss-free injection

  8. Synchrotron-based FTIR spectromicroscopy Cytotoxicity and heating considerations

    CERN Document Server

    Holman, H Y N; McKinney, W R

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  9. Synchrotron diffraction characterization of nanostructured KY3F10:Tb

    International Nuclear Information System (INIS)

    Nanostructured rare-earth fluorides materials are being intensively studied recently due to their potential applications in high-dose dosimetry. Particularly, nanostructured Tb-doped KY3F10 has shown satisfactory results to be used in this area. In the present work, the structure and microstructure of KY3F10:Tb was investigated by means of X-ray synchrotron diffraction. One of the samples was analyzed as synthesized and another after a heat treatment. Rietveld refinement of synchrotron diffraction data was applied to obtain cell parameters, atomic positions and atomic displacement factors and the results were compared to values found in literature. X-ray line profile analysis methods were applied to determine mean crystallite sizes and their distribution. (author)

  10. Estimation of presampling modulation transfer function in synchrotron radiation microtomography

    CERN Document Server

    Mizutani, Ryuta; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    The spatial resolution achieved by recent synchrotron radiation microtomographs should be estimated from the modulation transfer function (MTF) on the micrometer scale. Step response functions of a synchrotron radiation microtomograph were determined by the slanted edge method by using high-precision surfaces of diamond crystal and ion-milled aluminum wire. Tilted reconstruction was introduced to enable any edge to be used as the slanted edge by defining the reconstruction pixel matrix in an arbitrary orientation. MTFs were estimated from the step response functions of the slanted edges. The obtained MTFs coincided with MTF values estimated from square-wave patterns milled on the aluminum surface. Although x-ray refraction influences should be taken into account to evaluate MTFs, any flat surfaces with nanometer roughness can be used to determine the spatial resolutions of microtomographs.

  11. A future perspective of the medical programme using synchrotron radiation

    International Nuclear Information System (INIS)

    Medical activities with synchrotron radiation using the Photon Factory ring and the Accumulation Ring at KEK since 1984 are reviewed. Some of the activities are (1) Intravenous Coronary Angiography (2) Observation of Microvasculars (3) Intraarterial Coronary Angiography (4) X-ray Phase-Contrast Imaging (5) CT Using Monochromatic X rays (6) CT Using Fluorescent X rays (7) X-ray Microscopy. As characteristic features of x rays particularly (a) high brilliance and (b) tunability of synchrotron radiation are employed. In reference to each of the above numbers (1) a first clinical application to humans was successfully done recently, (2), (3) and (4) feasibility studies were completed to be ready for clinical requirements. (5) and (6) are also under development. (7) has been fully developed in case of dry sample, however in case of vivo not yet fully done. Their associated source characteristics and performances are precisely described. (author)

  12. Study on Atomic Fluorescence Spectrometry Excited by Synchrotron Radiation

    Institute of Scientific and Technical Information of China (English)

    Jia-jia Guo; Wu-er Gan; Guo-bin Zhang; Qing-de Su

    2008-01-01

    A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as flow rate, analyte acidity, concentration of pre-reducing and hydrogenation system are optimized. The proposed method is successfully applied to get an excitation spectrum of arsenic. Seven of ten primary spectral lines, four of which have never been reported by means of atomic fluorescence spectrometry, agree well with the existing reports. The other three are proposed for the first time. Excitation potentials and possible transitions are investigated. Especially for the prominent line at 234.99 nm, the mechanism of generation is discussed and a model of energy transition processes is proposed.

  13. Brightness, coherence, and propagation characteristics of synchrotron radiation

    International Nuclear Information System (INIS)

    A formalism is presented by means of which the propagation and imaging characteristics of synchrotron radiation can be studied, taking into account the effects of diffraction, electron beam emittance, and the transverse and longitudinal extent of the source. An important quantity in this approach is the Wigner distribution of the electric fields, which can be interpreted as a phase-space distribution of photon flux, and thus can be identified with the brightness. When integrated over the angular variables, the brightness becomes the intensity distribution in the spatial variables and when integrated over the spatial variables, it becomes the intensity distribution in angular variables. The brightness so defined transforms through a general optical medium in exactly the same way as in the case of a collection of geometric rays. Finally, the brightness of different electrons adds in a simple way. Optical characteristics of various synchrotron radiation sources - bending magnets, wigglers and undulators, are analyzed using this formalism

  14. Surface modification of fluorocarbon polymers by synchrotron radiation

    CERN Document Server

    Kanda, K; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The surface modification of a poly (tetrafluoroethylene) sheet was carried out by synchrotron radiation in the soft X-ray region. The poly (tetrafluoroethylene) substrate was exposed to synchrotron radiation while varying the substrate temperature from room temperature to 200degC. The contact angle of the modified surfaces with a water drop decreased from 96deg to 72deg by the irradiation at room temperature, while the contact angle increased to 143deg by the irradiation at the substrate temperature of 200degC. Scanning electron microscopy suggested that this repellence was ascribable to the microstructure of the poly (tetrafluoroethylene) surface. We succeeded in controlling the wettability of the poly (tetrafluoroethylene) surface from hydrophobic to hydrophilic by irradiation of the soft X-ray light. (author)

  15. Theory and calculations of synchrotron instabilities and feedback-mechanism

    International Nuclear Information System (INIS)

    The properties of the phenomenon synchrotron radiation are given with general theory on the basic processes and betatron and synchrotron oscillations. A more extended theoretical view at transverse instabilities and the influence of a damping feedback system are discussed. The longitudinal case is covered. For the calculations on the longitudinal case with M equally spaced pointbunches, with N electrons each, in the storage ring, the parasitic modes of the radio-frequency cavity were measured. A description of this is given. The values of damping rates of the longitudinal feedback system found, are as expected, but too low to damp the longitudinal instabilities calculated. This might be caused by the input data. The calculated growth rates are very sensitive to changes in frequency and width of the parasitic modes, which were measured under conditions differing slightly from the operating conditions

  16. Incoherent synchrotron emission of laser-driven plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Serebryakov, D. A., E-mail: dmserebr@gmail.com; Nerush, E. N.; Kostyukov, I. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  17. Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation

    OpenAIRE

    Porth, Oliver Joachim Georg

    2011-01-01

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separati...

  18. Micro-irradiation experiments in MOS transistors using synchrotron radiation

    International Nuclear Information System (INIS)

    Spatially-resolved total-dose degradation has been performed in MOS transistors by focusing x-ray synchrotron radiation on the gate electrode with micrometer resolution. The influence of the resulting permanent degradation on device electrical properties has been analyzed using current-voltage and charge pumping measurements, in concert with optical characterization (hot-carrier luminescence) and one-dimensional device simulation. (authors)

  19. Synchrotron FT-IR microspectroscopic analysis of necrotic bone

    OpenAIRE

    Bayari, Sevgi Haman; Utku, Haluk; Ikemoto, Yuka; Celasun, Bülent; Kömürcü, Mahmut; Atik, Aziz

    2007-01-01

    Avascular necrosis (osteonecrosis) is a disease that results from the temporary or permanent loss of blood supply to the bone. Synchrotron FT-IR microspectroscopy has been used to study the changes in mineral and matrix content of necrotic bone. FT-IR spectroscopic analysis revealed that in necrotic bone the relative mineral/matrix ratio decreased. Spectroscopic differences were observed between normal and necrotic bones. The noticeable differences may have important implications for analyzin...

  20. Study of the neutrons scattered around the Saturne synchrotron (1963)

    International Nuclear Information System (INIS)

    The fast neutron fluxes diffused around the proton synchrotron Saturne of Saclay and the average energy of neutrons were measured at distances from 25 to 700 meters from accelerators a center. Experimental results are in very good agreement with diffusion theory of neutrons in an infinite medium in which the mean free path is 135 meters. The results obtained may be used for the calculation of shielding around sources or accelerators emitting fast neutrons. (authors)

  1. Synchrotron radiation sources- INDUS-1 and INDUS-2

    International Nuclear Information System (INIS)

    The design features of INDUS-1 and INDUS-2 and their radiation characteristics such as variation of flux and brightness with wavelength are discussed. The construction of INDUS-1 and the injector system has reached an advanced stage and the design of INDUS-2 is in a final stage of optimization. The status of the synchrotron radiation facility is discussed briefly. (author). 4 figs., 2 tabs

  2. An arbitrarily function generator for the ramping of booster synchrotron

    International Nuclear Information System (INIS)

    This paper describes the design and implementation of an arbitrarily function generator (AFG), which will be used in the control system of Shanghai Synchrotron Radiation Facility. The AFG is constructed with COTS hardware modules and vxWorks real-time operating system and works under EPICS software environment. The AFG can be used to ramp booster's energy for power supply system, and to control the radio frequency system as well

  3. Electron cloud observations at the ISIS Proton Synchrotron

    OpenAIRE

    Pertica, A.; Payne, S. J.

    2013-01-01

    The build up of electron clouds inside a particle accelerator vacuum chamber can produce strong transverse and longitudinal beam instabilities which in turn can lead to high levels of beam loss often requiring the accelerator to be run below its design specification. To study the behaviour of electron clouds at the ISIS Proton Synchrotron, a Micro-Channel Plate (MCP) based electron cloud detector has been developed. The detector is based on the Retarding Field Analyser (RFA) design and consis...

  4. Polymer research at synchrotron radiation sources: symposium proceedings

    International Nuclear Information System (INIS)

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed

  5. Time- and frequency domain spectroscopy using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, W.; Wiggenhauser, H.; Herbert, T.; Ding, A.

    1989-05-01

    Time-correlated single photon counting experiments show that the time structure of the synchrotron radiation from BESSY can be usefully applied for subnanosecond and nanosecond time-resolved experiments both in the single-bunch (4.8 MHz) and multibunch (500 MHz, 62.5 MHz) operation modes. Also experiments without the need for time resolution can profit by application of these correlation techniques. The possible use of transformation methods using Hadamard sequences is discussed.

  6. Control of synchrotron radiation effects during recirculation with bunch compression

    International Nuclear Information System (INIS)

    Studies of beam quality during recirculation have been extended to an arc providing bunch compression with positive momentum compaction. It controls both incoherent and coherent synchrotron radiation (ISR and CSR) using methods including optics balance and generates little microbunching gain. We detail the dynamical basis for the design, discuss the design process, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of microbunching effects.

  7. Photoionization of atoms and small molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    The combination of synchrotron radiation and time-of-flight electron spectroscopy has been used to study the photoionization dynamics of atoms (Li) and small molecules (SF6, SiF4, and SO2). Partial cross sections and angular distribution asymmetry parameters have been measured for Auger electrons and photoelectrons as functions of photon energy. Emphasis is on the basic understanding of electron correlation and resonant effects as manifested in the photoemission spectra for these systems. 254 refs., 46 figs., 10 tabs

  8. Synchrotron radiation computed laminography for polymer composite failure studies

    OpenAIRE

    Xu, Feng; Helfen, Lukas; Moffat, Andrew J.; Johnson, Gregory; Sinclair, Ian; Baumbach, Tilo

    2010-01-01

    Synchrotron radiation computed laminography is applied to the three-dimensional micro-imaging of damage in large polymer composite plates with high spatial resolution. The influence of different experimental conditions is studied with respect to measurement time optimization, dose minimization and reduction of artefacts in the reconstructed images. Failures like delaminations, transverse ply cracks and splits are observed under in situ loads. The propagation of up to 2 mm-long cracks is non-d...

  9. Polymer research at synchrotron radiation sources: symposium proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Russell, T.P.; Goland, A.N. (eds.)

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  10. Recent advances in synchrotron-based Moessbauer experiments

    International Nuclear Information System (INIS)

    As the field of nuclear resonant scattering using synchrotron radiation matures, we see a shift from experiments designed to verify theoretical predictions towards those designed to use the phenomenon to elucidate the behavior of a sample. In parallel with this trend towards applications, we have seen further instrumental developments that extend the range of possible applications. This paper will review the recent work in this field with an emphasis on new sources, new isotopes, and new instrumentation. copyright 1996 American Institute of Physics

  11. Workshop on performance optimization of synchrotron radiation storage rings

    International Nuclear Information System (INIS)

    The purpose of this workshop was to provide a forum, with user participation, for accelerator physicists working in the synchrotron light source field to discuss current and planned state-of-the-art techniques to optimize storage ring performance. The scope of the workshop focused on two areas: lattice characterization and measurement, and fundamental limitations on low frequency beam stability. copyright 1996 American Institute of Physics

  12. Fluorescence tomography using synchrotron radiation at the NSLS

    International Nuclear Information System (INIS)

    Fluorescence tomography utilizing focussed, tunable, monoenergetic X-rays from sychrotron light sources hold the promise of an non-invasive analytic tool for studying trace elements in specimens, particularly biological, at spatial resolutions of the order of micrometers. This note reports an early test at the National Synchrotron Light Source at Brookhaven National Laboratories in which fluorescence tomographic scans were successfully made of trace elements of iron and titanium in NBS standard glass and in a bee. (orig.)

  13. THE ORGANIC LED SURFACE: A SYNCHROTRON RADIATION PHOTOEMISSION STUDY

    OpenAIRE

    TUN-WEN PI; T. C. YU

    2007-01-01

    Tris(8-hydroxyquinolato) aluminum (Alq3), a prototypical molecule for organic light-emitting devices, has been studied via synchrotron radiation photoemission to investigate (1) the surface electronic structure of the molecules at room temperature and at elevated temperatures, (2) adsorption onto the inorganic Si(001)-2×1 surface, and (3) doping with the alkaline metal Mg. For case (1), three chemical environments of carbon are resolved. Moreover, the shake-up satellite structures are detecte...

  14. Control of synchrotron radiation effects during recirculation with bunch compression

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Benson, Stephen [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, Christopher [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey [Old Dominion Univ., Norfolk, VA (United States); Terzic, Balsa [Old Dominion Univ., Norfolk, VA (United States); Tsai, Cheng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-05-01

    Studies of beam quality during recirculation have been extended to an arc providing bunch compression with positive momentum compaction. It controls both incoherent and coherent synchrotron radiation (ISR and CSR) using methods including optics balance and generates little microbunching gain. We detail the dynamical basis for the design, discuss the design process, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of microbunching effects.

  15. X-ray imaging detectors for synchrotron and XFEL sources

    OpenAIRE

    Takaki Hatsui; Heinz Graafsma

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivit...

  16. A station for synchrotron X-ray topography

    International Nuclear Information System (INIS)

    The scheme of a station with three parallel horizontal axes for X-ray synchrotron topography is suggested. The possibility of shifting the axis of the first monochromator along the direction of the SR beam, while the second and the third axes are stationary in horizontal plane outside the primary beam, allows one to carry out different precise methods for dispersion and nondispersion diffraction geometries. (orig.)

  17. A station for synchrotron X-ray topography

    Energy Technology Data Exchange (ETDEWEB)

    Lider, V.V.; Aleshko-Ozhevskij, O.P.; Shilin, Yu.N.; Kovalchuk, M.V.; Litvinov, Yu.M.; Mazurenko, S.N. (AN SSSR, Moscow. Inst. Kristallografii)

    1989-10-10

    The scheme of a station with three parallel horizontal axes for X-ray synchrotron topography is suggested. The possibility of shifting the axis of the first monochromator along the direction of the SR beam, while the second and the third axes are stationary in horizontal plane outside the primary beam, allows one to carry out different precise methods for dispersion and nondispersion diffraction geometries. (orig.).

  18. FLUX – Software to Calculate the Synchrotron Radiation Characteristics

    Directory of Open Access Journals (Sweden)

    P.I. Gladkikh

    2015-03-01

    Full Text Available In this paper, the main characteristics of quantum flow of synchrotron radiation (SR of relativistic electron beam in the storage ring NSC KIPT with maximal energy of 225 MeV are represented. Analytical expressions for quantum flow intensity of SR with given wavelength and the geometry of registration are obtained. The algorithms for calculation of the last ones are proposed. The dependences which characterize the intensity and spectrally-angular properties of photon flux of SR are shown.

  19. Calcified-tissue investigations using synchrotron x-ray microscopy

    International Nuclear Information System (INIS)

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 μm for the emission work and 25 μm for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs

  20. Synchrotron Radiation Lithography and MEMS Technique at NSRL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two beamlines and stations for soft X-ray lithography and hard X-ray lithography at NSRL are presented. Synchrotron radiation lithography (SRL) and mask techniques are developed, and the micro-electro-mechanical systems (MEMS) techniques are also investigated at NSRL. In this paper, some results based on SRL and MEMS techniques are reported, and sub-micron and high aspect ratio microstructures are given. Some micro-devices, such as microreactors are fabricated at NSRL.

  1. Investigating spintronics thin film systems with synchrotron radiation

    International Nuclear Information System (INIS)

    Spintronics is a research field involving a wide variety of different magnetic materials. Synchrotron radiation in the VUV and soft X-ray regime is ideally suited to investigate the relationships between magnetic properties and electronic structure of spintronics thin film stacks. Complex layered structures and nanomagnets are the main building blocks for current and future spintronics applications. In this contribution we describe the study of spintronics model systems with respect to the static and dynamic behavior with an emphasis on interfaces.

  2. Crossed undulator system for a variable polarization synchrotron radiation source

    International Nuclear Information System (INIS)

    A crossed undulator system can produce synchrotron radiation whose polarization is arbitrary and adjustable. The polarization can be linear and modulated between two mutually perpendicular directions, or it can be circular and can be modulated between right and left circular polarizations. The system works on low emittance electron storage rings and can cover a wide spectral range. Topics discussed include the basic principle of the system, the design equations and the limitations in performance

  3. Inelastic x-ray scattering at the National Synchrotron Light

    International Nuclear Information System (INIS)

    The research program at the inelastic x-ray scattering beamline at the National Synchrotron Light Source is focused on the study of elementary excitations in condensed matter with total energy resolution on the order of 0.1 eV to 1.0 eV. Results from selected experiments are reported to demonstrate the capability of the beamline as well as the information can be obtained from inelastic x- ray scattering experiments

  4. The European 400 GeV proton synchrotron

    CERN Document Server

    Middelkoop, Willem Cornelis

    1977-01-01

    On 19th February 1971, CERN decided to build a super proton synchrotron at a cost of 1150*10/sup 6/ Swiss francs. The design target of 400 GeV with a beam intensity of 10/sup 13/ protons/pulse was reached on the 4th of November 1976 within the original budget, allowing for inflation. The technical aspects of the SPS are reviewed, together with operating experience since May 1976. (2 refs).

  5. Experiments planned to be made with the synchrotron radiation source

    International Nuclear Information System (INIS)

    For this working meeting, various research groups from the Land Sachsen and from the neighbouring countries Poland and the Czech Republic have been invited in order to present their materials research programmes or task-specific experiments intended to be carried out with the synchrotron radiation source to be installed in the near future. The proceedings volume in hand presents the discussion papers, which have been directly reproduced from the original foils. (orig.)

  6. Prospects for studying vacuum polarisation using dipole and synchrotron radiation

    CERN Document Server

    Ilderton, Anton

    2016-01-01

    The measurement of vacuum polarisation effects, in particular vacuum birefringence, using combined optical and x-ray laser pulses is now actively pursued. Here we briefly examine the feasibility of two alternative setups. The first utilises an alternative target, namely a converging dipole pulse, and the second uses an alternative probe, namely the synchrotron-like emission from highly energetic particles, themselves interacting with a laser pulse. The latter setup has been proposed for experiments at ELI-NP.

  7. Prospects for studying vacuum polarisation using dipole and synchrotron radiation

    OpenAIRE

    Ilderton, Anton; Marklund, Mattias

    2016-01-01

    The measurement of vacuum polarisation effects, in particular vacuum birefringence, using combined optical and x-ray laser pulses is now actively pursued. Here we briefly examine the feasibility of two alternative setups. The first utilises an alternative target, namely a converging dipole pulse, and the second uses an alternative probe, namely the synchrotron-like emission from highly energetic particles, themselves interacting with a laser pulse. The latter setup has been proposed for exper...

  8. Septum magnet for electron extraction system at the synchrotron EPI

    International Nuclear Information System (INIS)

    Extraction from the Yerevan synchrotron is carried out by the build-up resonance of the betatron oscillation amplitudes, and kicking electrons at the bending magnets with the current sheet. There are two septum magnets in the accelerator, the first one with thin current sheet for bending of the part of the electrons to the required distance necessary for passing through the vacuum chamber and reaching the working region of the second septum magnet. (R.P.) 3 refs.; 4 figs.; 1 tab

  9. Primakoff effect: synchrotron and coulomb mechanisms of axion emission

    International Nuclear Information System (INIS)

    For the first time the axion radiative emission by alternating electromagnetic field Fa → γa is considered due to Primakoff effect. As a concrete supplement, the synchrotron and Coulomb mechanisms are discussed and in the last case the alternating field is formed at the infinite motion of a charge in a Coulomb center field. The estimates for contributions of these effects into axion luminosity of magnetic neutron stars and the Sun are determined

  10. Primakoff effect: Synchrotron and Coulomb mechanisms of axion emission

    International Nuclear Information System (INIS)

    The Primakoff effect-induced radiative emission of axions by an alternating electromagnetic field, Fa → γa, is considered for the first time. The synchrotron mechanism and the Coulomb mechanism--in the latter case, the alternating field is formed when a charge executes an infinite motion in the field of a Coulomb center--are considered as specific examples. The contributions of these effects to the axion emissivity of magnetic neutron stars and of the Sun are estimated

  11. Plan and present status of synchrotron radiation applications at HESYRL

    International Nuclear Information System (INIS)

    An 800 MeV electron storage ring is being constructed at Hefei, China. It is a dedicated UV synchrotron light source from which 27 beam lines could be extracted to accommodate about 50 experimental stations. Four beam lines and five stations are planned and some instruments have been designed and are under construction for the first five-year plan. The proposed experiments include x-ray lithography, soft x-ray microscopy, photoelectron spectroscopy, time-resolved spectroscopy and photochemistry

  12. The proposed CERN Proton-Synchrotron upgrade program

    CERN Document Server

    Gilardoni, SS; Bartmann, W; Bartolome, S; Berrig, O; Bertone, C; Blas, A; Bodart, D; Borburgh, J; Brown, R; Butterworth, A; Buzio, M; Carli, C; Chiggiato, P; Damerau, H; Dobers, T; Folch, R; Garoby, R; Goddard, B; Gourber-Pace, M; Hancock, S; Hourican, M; Le Roux, P; Lopez Hernandez, L; Masi, A; Metral, G; Metral, E; Muttoni, Y; Nonis, M; Pierlot, J; Pittet, S; Rossi, C; Ruehl, I; Rumolo, G; Sermeus, L; Steerenberg, R; Widorski, M

    2011-01-01

    In the framework of the High-Luminosity LHC project, the CERN Proton Synchrotron (PS) would require a major upgrade to match the future beam parameters requested as pre-injector of the collider. The different beam dynamics issues, from space-charge limitations to longitudinal instabilities are discussed, as well as the proposed technical solutions to overcome them, covering the increase of the injection energy to RF related improvements.

  13. Beam spill control with frequency modulation in electron synchrotron

    International Nuclear Information System (INIS)

    The new method has been applied to the beam spill control of the INS electron synchrotron. In this method, the RF operating frequency is slowly increased at the final stage of the accelerating period. Then the equilibrium orbit shrinks and the beam hits the radiator gradually, staying in the stable phase. The new method gives the uniform beam spill in the energy region below 700 MeV where the old method has not been successful enough. (author)

  14. Anisotropic Compton scattering in LiF using synchrotron radiation

    OpenAIRE

    Loupias, G.; Petiau, J.

    1980-01-01

    Using synchrotron radiation, the electronic momentum distribution is measured with a 0.15 atomic unit resolution in a LiF single crystal for the and directions. This resolution is about four times better than obtained in γ experiments. The spectrometer uses the LURE-DCI radiation with a channel-cut monochromator, a focusing crystal analyser and a position sensitive detector. The measurements performed confirm the significant anisotropy of the electron distribution in LiF. The ...

  15. Numerical simulations for the super radiation of FER synchrotron sidebands

    International Nuclear Information System (INIS)

    The basic equations to describe the super-radiation of FEL synchrotron sidebands and also the solving process and the corresponding numerical calculation code for these equations are presented. Using this code, the spectrum and the intensity of sideband super-radiation have been studied systematically. The numerical results show that the induced radiation is dominant for sideband radiation. This result is consistent with the theoretical analysis

  16. HOT CARRIER SENSITIVITY OF MOSFET's EXPOSED TO SYNCHROTRON-LIGHT

    OpenAIRE

    Przyrembel, G.; Mahnkopf, R.; Wagemann, H.

    1988-01-01

    The influence of synchrotron-light irradiation for p- and n-channel MOSFET's on their sensitivity to hot carrier degradation was investigated. The radiation induces additional interface states and a positive oxide charge. Annealing at 450°C reduces the interface state density to its initial value but not the oxide charge. A hot carrier stress can compensate this remaining charge by trapping electrons. This effect produces an enhanced shift of the threshold voltage compared to non-irradiated d...

  17. Techniques of production and analysis of polarized synchrotron radiation

    International Nuclear Information System (INIS)

    The use of the unique polarization properties of synchrotron radiation in the hard x-ray spectral region (E>3 KeV) is becoming increasingly important to many synchrotron radiation researchers. The radiation emitted from bending magnets and conventional (planar) insertion devices (IDs) is highly linearly polarized in the plane of the particle's orbit. Elliptically polarized x-rays can also be obtained by going off axis on a bending magnet source, albeit with considerable loss of flux. The polarization properties of synchrotron radiation can be further tailored to the researcher's specific needs through the use of specialized insertion devices such as helical and crossed undulators and asymmetrical wigglers. Even with the possibility of producing a specific polarization, there is still the need to develop x-ray optical components which can manipulate the polarization for both analysis and further modification of the polarization state. A survey of techniques for producing and analyzing both linear and circular polarized x-rays will be presented with emphasis on those techniques which rely on single crystal optical components

  18. Accelerator system for the Central Japan Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Accelerator system for Central Japan Synchrotron Radiation Research Facility that consists of 50MeV electron S-band linac, 1.2GeV full energy booster synchrotron and 1.2GeV storage ring, has been constructed. Eight 1.4T bending magnets and four 5T superconducting magnet with compact refrigerator system provide beam lines. For top-up operation, the 1ns single bunch electron beam from 50MeV injector linac is injected by on-axis injection scheme and accelerated up to 1.2GeV at booster synchrotron. The timing system is designed for injection from booster ring is possible for any bunch position of storage ring. To improve efficiency of booster injection, the electron gun trigger and RF frequency of 2856MHz is synchronized with storage ring frequency of 499.654MHz. The EPICS control system is used with timing control system for linac, pulse magnet and also for booster pattern memory system. The beam commissioning for 1.2GeV storage ring has been progressing. (author)

  19. Current advances in synchrotron radiation instrumentation for MX experiments.

    Science.gov (United States)

    Owen, Robin L; Juanhuix, Jordi; Fuchs, Martin

    2016-07-15

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Furthermore it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choice for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. A main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. The most critical optical components are discussed, as are aspects of endstation design, sample delivery, visualisation and positioning, the sample environment, beam shaping, detectors and data acquisition and processing. PMID:27046341

  20. Methods for lipid nanostructure investigation at neutron and synchrotron sources

    Science.gov (United States)

    Kiselev, M. A.

    2011-03-01

    A lipid membrane is a main component of biological membranes. Contemporary bionanotechnologies use phospholipids and ceramides as basic components of drugs and cosmetic preparations. Phospholipids-based nanoparticles are used as drug carriers. Effective development of bionanotechnologies in Russia calls for creation of physical methods to diagnose the particle nanostructure which would be promising for application in pharmacology. Radiation with wavelengths of 1-10 Å is an adequate instrument for detecting the nanostructure of lipid bi- and monolayers. The review deals with methods that apply neutron scattering and synchrotron radiation for studying nanostructures of lipid membranes, phospholipid nanoparticles, and phospholipid monolayers on a water surface by techniques of diffraction, small-angle scattering, and reflectometry. The importance of the mutually complementary application of neutron and synchrotron radiation for solving urgent problems of membrane biophysics, microbiology, dermapharmacology, and bionanotechnologies is demonstrated by particular examples of studies of phospholipid membranes and ceramide-based membranes. The efficiency of development and application of new methods for solving urgent problems of biophysics is shown. The review is written on the basis of results obtained over the period of 1999-2010 at the Joint Institute for Nuclear Research (JINR) Laboratory of Neutron Physics in collaboration with the Pharmaceutical Departments of universities of France (Paris-Sud, Chatenay Malabry) and Germany (Martin Luther University, Halle). The experiments were performed at various European and Russian neutron and synchrotron sources.

  1. Quantitative X-ray microtomography with synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron-radiation-based computed microtomography (SRμCT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SRμCT measurements have been further improved by enhancements that were made to the SRμCT apparatus and to the reconstruction chain. For high-resolution SRμCT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SRμCT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  2. Synchrotron radiation XRF imaging techniques at the Brazil-LNLS

    International Nuclear Information System (INIS)

    Full text: The X-ray Fluorescence (XRF) analysis is a well-established method for quantitative multi-elemental bulk analysis. The use of a synchrotron radiation source allows constructing effective x-ray microprobes for study trace elements in small (nanogram) samples or their distributions with high spatial resolution. Since its operation, the XRF fluorescence beamline of the LNLS has offered to the user community several hard x-ray microprobes configurations to develop microscopic x-ray fluorescence analysis. The initially developed setup consisted of a fine conical monocapillary that allows condensing the polychromatic synchrotron beam down to an area of 20 microns in diameter. Novel strategies are now routinely in use or being installed at several synchrotron laboratories that require determining the 3D compositional structure of minor and trace elements in specific samples. These experimental setups take advantages of the high penetration depth of the x-rays (several orders of magnitude higher than the microbeam size). These alternative (microanalytical) methods are called x-ray fluorescence microtomography and confocal micro-XRF. This lecture intends to give a general description of all above configurations, showing their advantages/disadvantages and also pretends to show some specific applications carried out at the XRF Fluorescence beamline of the LNLS. (author)

  3. Longitudinal bunch dynamics study with coherent synchrotron radiation

    Science.gov (United States)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  4. Synchrotron radiation XRF imaging techniques at the Brazil-LNLS

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Carlos A., E-mail: perez@lnls.br [X-ray Fluorescence and Absorption Group, Laboratorio Nacional de Luz Sincrotron, Campinas, SP (Brazil)

    2011-07-01

    Full text: The X-ray Fluorescence (XRF) analysis is a well-established method for quantitative multi-elemental bulk analysis. The use of a synchrotron radiation source allows constructing effective x-ray microprobes for study trace elements in small (nanogram) samples or their distributions with high spatial resolution. Since its operation, the XRF fluorescence beamline of the LNLS has offered to the user community several hard x-ray microprobes configurations to develop microscopic x-ray fluorescence analysis. The initially developed setup consisted of a fine conical monocapillary that allows condensing the polychromatic synchrotron beam down to an area of 20 microns in diameter. Novel strategies are now routinely in use or being installed at several synchrotron laboratories that require determining the 3D compositional structure of minor and trace elements in specific samples. These experimental setups take advantages of the high penetration depth of the x-rays (several orders of magnitude higher than the microbeam size). These alternative (microanalytical) methods are called x-ray fluorescence microtomography and confocal micro-XRF. This lecture intends to give a general description of all above configurations, showing their advantages/disadvantages and also pretends to show some specific applications carried out at the XRF Fluorescence beamline of the LNLS. (author)

  5. Progress in multielement silicon detectors for synchrotron XRF applications

    International Nuclear Information System (INIS)

    Multielement silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon and high purity germanium detectors for high count rate, low noise synchrotron x-ray fluorescence applications. We have been developing these types of detectors specifically for low noise synchrotron applications, such as extended x-ray absorption fine structure spectroscopy, microprobe x-ray fluorescence and total reflection x-ray fluorescence. The current version of the 192-element detector and integrated circuit preamplifier, cooled to -25 degree C with a single-stage thermoelectric cooler, achieves an energy resolution of <200 eV FWHM (at 5.9 keV, 2 microseconds peaking time), and each detector element is designed to handle a ∼20 kHz count rate. The detector system will soon be completed to 64 channels using new IC amplifier chips, CAMAC ADCs, CAMAC histogramming modules, and Macintosh-based data acquisition software. We will report on the characteristics of this detector system, the characteristics of the next generation system (192 channels with IC ADCs), and the use of these detector systems in synchrotron XRF applications. copyright 1996 American Institute of Physics

  6. Report of meeting on monochromator technology for MR synchrotron radiation

    International Nuclear Information System (INIS)

    This meeting was held on June 12, 1996 at the National Laboratory for High Energy Physics. The MR was reconstructed so as to be used for synchrotron radiation in the summer of the last year, and has been stably operated at 8-10 GeV. The synchrotron radiation of ultrahigh luminance was taken out, and by using this light, the experiments of 14 subjects were carried out, and a number of the data which have the highest quality in the world were obtained. By having carried out the researches, the perspective for future was able to be slightly obtained. As the technologies which supported these activities, there were many such as accelerators, beam lines and others, but especially the splendid working of the monochromator must be remembered. The monochromator is composed of the vacuum tanks for first crystal and second crystal, the bellows connecting both crystals and the translating table, and is cooled with liquid nitrogen. At the meeting, lectures were given on MR synchrotron radiation project, the concept of design of the monochromator, the precision control of goniometers, the detailed design, the table for first crystal, the assembling and installation, control software, the adjustment of light paths and others. (K.I.)

  7. Synchrotron UV-visible multispectral luminescence microimaging of historical samples.

    Science.gov (United States)

    Thoury, Mathieu; Echard, Jean-Philippe; Réfrégiers, Matthieu; Berrie, Barbara; Nevin, Austin; Jamme, Frédéric; Bertrand, Loïc

    2011-03-01

    UV-visible luminescence techniques are fre-quently used for the study of cultural heritage materials, despite their limitations for identification and discrimination in the case of complex heterogeneous materials. In contrast to tabletop setups, two methods based on the vacuum ultraviolet (VUV)-UV-visible emission generated at a bending magnet of a synchrotron source are described. The main advantages of the source are the extended wavelength range attained, the continuous tunability of the source, and its brightness, leading to a submicrometer lateral resolution. Raster-scanning microspectroscopy and full-field microimaging were implemented and tested at the DISCO beamline (synchrotron SOLEIL, France). Investigative measurements were performed on a sample from a varnished musical instrument and a paint sample containing the pigment zinc white (ZnO) in order to illustrate some of the challenges analyzing heterogeneous cultural heritage cross-section samples with the novel imaging approach. The data sets obtained proved useful for mapping organic materials at the submicrometer scale and visualizing heterogeneities of the semiconductor pigment material. We propose and discuss the combined use of raster-scanning microspectroscopy and full-field microimaging in an integrated analytical methodology. Synchrotron UV luminescence appears as a novel tool for identification of craftsmen's and artists' materials and techniques and to assess the condition of artifacts, from the precise identification and localization of luminescent materials. PMID:21291177

  8. Application of Synchrotron Radiation in the Geological and Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    A survey of some of the different ways that synchrotrons x-ray beams can be used to study geological materials is presented here. This field developed over a period of about 30 years, and it is clear that the geological community has made major use of the many synchrotrons facilities operating around the world during this time period. This was a time of rapid change in the operational performance of the synchrotrons facilities and this in itself has made it possible for geologists to develop new and more refined types of experiments that have yielded many important results. The advance in experimental techniques has proceeded in parallel with a revolution in computing techniques that has made it possible to cope with the great amount of data accumulated in the experiments. It is reasonable, although risky, to speculate about what might be expected to develop in the field during the next five- to ten-year period. It does seem plausible that the rate of change in the performance of what might now be called conventional x-ray storage rings will slow. There are no new facilities that are superior to the ESRF, ALS, APS, or SPring8 facilities under construction or about to come into operation. Thus, performance increments in the characteristics of the x-ray sources may come through the introduction of specialized devices in existing storage rings. The free electron laser is one example of a developing new technology that should take us into new regions of performance for radiation sources and stimulate new types of experimental applications. It is also likely that major advances will come through the introduction of more sophisticated experimental devices developed for use with the very recently operational undulator or wiggler sources at the newer rings. Improved x-ray optics and x-ray detectors and more powerful computation and high-speed data transmission can bring about more refined experiments and make the synchrotrons facilities more widely available to the

  9. A phase-space beam position monitor for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Nazanin, E-mail: nazanin.samadi@usask.ca [University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK (Canada); Bassey, Bassey; Martinson, Mercedes [University of Saskatchewan, 116 Science Place, Saskatoon, SK (Canada); Belev, George; Dallin, Les; Jong, Mark de [Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK (Canada); Chapman, Dean [University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK (Canada)

    2015-06-25

    A system has been developed to measure the vertical position and angle of the electron beam at a single location from a synchrotron source. The system uses a monochromator tuned to the absorption edge of a contrast material and has a sensitivity comparable with other beam position monitors. The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered

  10. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    International Nuclear Information System (INIS)

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N(γ) ∼ γ–p with γ1 2, especially for a finite high-energy limit, γ2, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> η2 with parameter η = γ2/γ1. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, αν, for the high-frequency range ν >> ν2 (with ν2 the synchrotron frequency corresponding to γ2). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  11. Towards Establishing of National Centre of Synchrotron Radiation in Poland

    International Nuclear Information System (INIS)

    Synchrotron radiation facilities (SRF) are established part of contemporary world research landscape. They facilitate fast advances of life, health, and physical sciences as well as development of new technologies. The extent of synchrotron radiation (SR) use has been growing up steadily for the last two decades all over the world and it is anticipated that the growth will continue in future. Growing community of SR users has generated increasing demand for the beam-time in infrared, vacuum UV and X-ray ranges. In response, many new SR facilities are now being constructed and planned, not only in large countries of strong economy but also in developing countries. It is expected that such trends will be followed in other parts of the world. No doubt, the ''cutting edge'' of research activity will continue to create the demand for beams of higher brightness, flux and photon energy but it is predictable that the increasing fraction of research done presently with laboratory radiation sources will be shifting towards small-scale SR facilities. Several hundred Polish scientists, a meaningful fraction of all SR users, take part in experiments using synchrotron sources all over the world. Many of them belong to the Polish Synchrotron Radiation Society - an active body promoting the use of SR. Present European Union priorities include knowledge, research and innovation as the key priorities and a pillar of development and stable welfare of Europe. Poland as a new member of EU will have to conform to the EU policy. The government strategy assumes a fast increase of investments in research and development sector starting from 2005. No other scientific research installations has had such major impact on advances in science an technology as the SRF. It is obvious that the time is ripe now for establishing a National Centre of Synchrotron Radiation in Poland. Recently, several Polish educational and research institutions constituted around the idea of Polish SRF. The initiative

  12. Home-based versus hospital-based cardiac rehabilitation after myocardial infarction or revascularisation: design and rationale of the Birmingham Rehabilitation Uptake Maximisation Study (BRUM: a randomised controlled trial [ISRCTN72884263

    Directory of Open Access Journals (Sweden)

    Lane Deirdre

    2003-09-01

    Birmingham Rehabilitation Uptake Maximisation Study (BRUM study and has implications for the clinical management of these patients. A novel feature of this study is the inclusion of non-English Punjabi speakers.

  13. Protocol for Birmingham Atrial Fibrillation Treatment of the Aged study (BAFTA: a randomised controlled trial of warfarin versus aspirin for stroke prevention in the management of atrial fibrillation in an elderly primary care population [ISRCTN89345269

    Directory of Open Access Journals (Sweden)

    Fletcher Kate

    2003-08-01

    Full Text Available Abstract Background Atrial fibrillation (AF is an important independent risk factor for stroke. Randomised controlled trials have shown that this risk can be reduced substantially by treatment with warfarin or more modestly by treatment with aspirin. Existing trial data for the effectiveness of warfarin are drawn largely from studies in selected secondary care populations that under-represent the elderly. The Birmingham Atrial Fibrillation Treatment of the Aged (BAFTA study will provide evidence of the risks and benefits of warfarin versus aspirin for the prevention of stroke for older people with AF in a primary care setting. Study design A randomised controlled trial where older patients with AF are randomised to receive adjusted dose warfarin or aspirin. Patients will be followed up at three months post-randomisation, then at six monthly intervals there after for an average of three years by their general practitioner. Patients will also receive an annual health questionnaire. 1240 patients will be recruited from over 200 practices in England. Patients must be aged 75 years or over and have AF. Patients will be excluded if they have a history of any of the following conditions: rheumatic heart disease; major non-traumatic haemorrhage; intra-cranial haemorrhage; oesophageal varices; active endoscopically proven peptic ulcer disease; allergic hypersensitivity to warfarin or aspirin; or terminal illness. Patients will also be excluded if the GP considers that there are clinical reasons to treat a patient with warfarin in preference to aspirin (or vice versa. The primary end-point is fatal or non-fatal disabling stroke (ischaemic or haemorrhagic or significant arterial embolism. Secondary outcomes include major extra-cranial haemorrhage, death (all cause, vascular, hospital admissions (all cause, vascular, cognition, quality of life, disability and compliance with study medication.

  14. A Method for Ultrashort Electron Pulse Shape-Measurement Using Coherent Synchrotron Radiation

    OpenAIRE

    Geloni, G. A.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2003-01-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-Ray Free Electron Lasers (XFELs). The method is based on the detection of the Coherent Synchrotron Radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose ...

  15. Synchrotron Radiation from the Galactic Center in Decaying Dark Matter Scenario

    OpenAIRE

    Ishiwata, Koji; Matsumoto, Shigeki; Moroi, Takeo

    2008-01-01

    We discuss the synchrotron radiation flux from the Galactic center in unstable dark matter scenario. Motivated by the anomalous excess of the positron fraction recently reported by the PAMELA collaboration, we consider the case that the dark matter particle is unstable (and long-lived), and that energetic electron and positron are produced by the decay of dark matter. Then, the emitted electron and positron becomes the source of the synchrotron radiation. We calculate the synchrotron radiatio...

  16. A compact high brightness laser synchrotron light source for medical applications

    International Nuclear Information System (INIS)

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy

  17. Investigations of coupled biogeochemical processes affecting the transformation of U: Integration of synchrotron-based approaches

    International Nuclear Information System (INIS)

    The summary of this paper is that: (1) An improved understanding of fundamental coupled biogeochemical processes obviously is critical for decision making for environmental remediation and long-term stewardship. (2) Synchrotron x-ray radiation provides the most versatile and powerful approach for directly determining the chemical speciation of the radionuclide and heavy metal contaminants of concern to DOE. (3) Integration of synchrotron approaches with integrated multidisciplinary scientific investigations provides a powerful way of understanding coupled biogeochemical processes whereby the scientific question drives the development of new synchrotron-based technologies and the unique information provided by the synchrotron-based technology enables the development of new scientific hypotheses and insights

  18. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  19. Finite element analysis of osteoporosis models based on synchrotron radiation

    Science.gov (United States)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m‑1 to 697.41 Fμ m‑1, the bending and torsion stiffness were from 1390.80 Fμ m‑1 to 566.11 Fμ m‑1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  20. Recent advances in high power RF systems of Indus synchrotron

    International Nuclear Information System (INIS)

    In Indus accelerator complex at Raja Ramanna Centre for Advanced Technology, three major RF systems namely booster synchrotron RF system, Indus-1 Storage ring RF System and Indus-2 Storage ring RF System were commissioned and are running in round the clock operation mode for beam line users. High Power RF amplifier system of a particle accelerator required for energizing the Resonating structures is complex in nature and to run it smoothly with better performance various up gradations are needed. Booster and Indus-1 RF system operating at 31.6 MHz were conventional tetrode tube based system and were being used for more than 10 years. Indus-2 RF system consists of four Klystron based amplifier system with maximum output power of 64 kW each at 505.8 MHz. With recent advances in solid state RF amplifying devices and its inherent advantages like graceful degradation, low maintenance, better quality of signal, absence of high voltage points as compared to traditional tube based RF amplifiers, SSPAs of several tens of kW of RF power level are being successfully deployed in RF systems of Indus synchrotron. Booster RF system and Indus-1 RF system has been already replaced by Solid State RF amplifier system and is working satisfactorily. Presently three Klystron based RF systems for Indus-2 are already replaced with Solid State RF amplifier system with total installed power of 200 kW. In particle accelerators the beam parameters depend highly on the stability of the RF field. Due to dynamic beam loading conditions the variations in RF parameters of accelerating structures needs to be controlled precisely, hence low level RF feedback control system plays vital role. Considering revolutionary development in the field of digital electronics and inherent advantages of digital systems, FPGA based digital LLRF control system development work was taken up. In this paper recent up gradation in RF Systems of Indus Synchrotron will be presented. (author)